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Abstract. In this article we show how to represent UML models de-
picting ordered properties using OWL2, and how to reason about model
conformance using OWL2 reasoners. Our translation from UML models
to OWL2 is driven by three important forces. First, we want to maintain
the close-world assumption about UML models. Second, we want to pre-
serve structural model information of ordered properties. Finally, model
conformance is defined solely by OWL2 axioms so that reasoning can be
done by using existing and future OWL2 reasoner developed by others.
We have implemented the translation as an automatic model transfor-
mation tool. The model transformation tool takes as input a UML object
model and its class model and produces an ontology that can be processed
by an OWL2 reasoner to reveal if the object model elements conform to
their class model or not.
Keywords: Model Validation, OWL2, Ordering, Reasoning.

1 Introduction

Model Driven Engineering (MDE) [8] advocates the use of models to repre-
sent the most relevant design decisions in a software development process. Each
software model is described using a particular modeling language, such as the
Unified Modeling Language (UML) [15] or a domain specific modeling language
(DSML) [5]. A complex development project involves the creation of many differ-
ent models often using different modeling languages, and this raises the question
if each model conforms to its metamodel or not.

In this article, we address the problem of the conformance of a UML object
model against a UML class model containing ordered properties. In our context,
conformance means that given a UML class model containing classes and asso-
ciations and a UML object model containing objects and links, we want to know
if each object is a proper instance of a class and each link is an instance of an
association depicted in the class model.

In a UML class model an ordered property represents an ordered set of facts.
It is represented diagrammatically by using a normal association and labeled as
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”ordered”, whereas in a UML object model an instance of an ordered property is
represented with an indexed link, and require that the index is always unique and
in order. The UML Superstructure metamodel [15] contains more that 50 ordered
properties. An ordered property is used for example to hold the sequence of a
parameters in a operation. An example of class and object models that contain
an ordered property is shown in Figure 1.
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ATMLogin:Operation
2
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1
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*
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hasParameter
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Fig. 1. Top: UML class model depicting ATM Machine login operation by using ordered
property, Middle: Consistent UML object model, Bottom: Inconsistent UML object
model due to the non-unique index link.

2 Overview

In order to reason about model conformance we need to have a formal definition
of the UML. In this article we have chosen Web Ontology Language version 2
for Description Logic (OWL2 DL) [20] to formalize the UML class and object
modeling concepts. There are number of reasons behind the selection of OWL2
DL. Firstly, OWL2 DL is the subset of OWL2 that it is decidable. Secondly,
by using OWL2 DL we will be able to use existing OWL2 reasoners for model
conformance. Finally, OWL2 DL already provides constructs to represent many
of the concepts of the UML such as classes, associations, individuals, and links
in a rather straightforward way.

Still, a translation of UML models to OWL2 presents several challenges. Un-
fortunately, OWL2 DL does not provide any constructions to represent ordered
facts in UML models directly. Also, OWL2 uses open-world assumption, whereas,
UML operates under the closed-world assumption [9], where complete knowledge
of the domain is assumed to be provided in a model. We assume that all existing
classes and objects are known and depicted explicitly in the models.

The details about representing order facts and the closed-world environment
in OWL2 DL are the main contribution of the article and will be discussed in
Sections 4 and 5 in detail.
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2.1 Automatic Model Conformance

To tackle the problem of model conformance, we propose to use a tool to first
translate UML models into OWL2 DL, and then check the translated models for
consistency using an OWL2 reasoner. An overview of the process can be seen in
Figure 2. The translator will take UML class and object models as an input in
form of XMI [14] and produce formally defined ontology in OWL2 format as an
output. The translator contains the translations of UML concepts into OWL2
axioms in form of MOFScript [2]. The detail about the translation of a UML
class and object modeling concepts into OWL2 will be discussed in Section 4
and 5 respectively, and the detail about the translation process will be discussed
in Section 6. Furthermore, the ontology generated by the translator, contains

        Ontology

      UML Class and
      Object Models

Validation ReportValidation 
using Reasoner

Translator

Fig. 2. Automatic object and class model conformance process.

the translated object model and a class model in form of OWL2 DL, will further
be validated by using an OWL2 reasoner.

– If a generated ontology is consistent, it means that the object model conforms
to all constraints of the class model interpreted according to the semantics
that we have given in our translation.

– If a generated ontology is inconsistent, it means that the object model does
not conform the constraints given in the class model.

Moreover, in our previous work [6] and [10] we have described an automatic
validation process of a UML class diagrams using an OWL2 reasoner. In this ar-
ticle, firstly we show the translations that maps a UML class model and an object
model into OWL2. Secondly, we will discuss how to enforce a UML close-world
assumption in OWL2, with regard to UML constrain like ordering. Furthermore,
we will discuss the implementation of our proposed model conformance process
by using a MOFScript translation language and OWL2 reasoner, and lastly we
will validate our approach with the help of a test case.

2.2 Related Work

The use of ontology languages and description logic in the context of model
validation has been proposed in the past by different authors [18, 16, 11, 17, 21,
4, 3]. However, to our knowledge, none of them has addressed the reasoning of
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ordered properties. Furthermore, the validation of UML models using OCL has
been discussed by [7, 12]. Nevertheless, these works focus on the problem of class
model satisfiability, e.g. a class model can generate consistent object models or
not.

3 Definition of UML Models

We consider a UML class model as a set of classes and their relationships in
form of generalization and associations, as shown on top of Figure 3. Whereas, a
UML object model consist of objects and links, where objects are the instances
of a class and links are the instances of an association, as shown at the bottom
of Figure 3. In this section, we will give a formal definition of the UML class and
object modeling concepts that we require for the reasoning of ordered properties.
The definition is given in terms of predicate logic. In this section we will also
motivate our choice of features that are included in the definition.

C1

C2 C3
n..m
P

x:C2 y:C3

Class Model
Object Model

Fig. 3. Top: A UML class model depicting class hierarchy and association. Bottom: A
UML object model.

3.1 Class and Class hierarchy

A UML class represents a set of objects that have the same characteristics [13].
A UML class C is defined as a unary predicate C in predicate logic. In UML,
any two classes that do not share subclasses are considered as disjoint classes,
the basic restriction on any two disjoint classes C1 and C2 that does not share
any object x :

∀x .¬(C1(x) ∧ C2(x)) (1)

3.2 Objects

An instance of a class is called an object. In UML, every object in an object
model must belong to a specific class in a class model. An object x in an object
model belongs to a class C in a class model is defined in predicate logic as:

C (x) (2)
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3.3 UML Associations

A UML association defines a relationship between two classes; every association
is connected with a domain class and a range class. An association P is modeled
by a binary predicate P in predicate logic. If C1 is the domain and C2 is the
range class, and x , y are the objects of a domain and a range class, the basic
restriction on P is:

∀x , y .P(x , y)→ C1(x) ∧ C2(y) (3)

Furthermore, UML associations can be specified with minimum and maximum
multiplicity. This means that there are cardinality restrictions on how many
objects from the range class can link to an object of the domain class. If the
minimum multiplicity is n and the maximum multiplicity is m on association P
then:

∀x .C (x)→ n ≤ #{y | P(x , y)} ≤ m (4)

Where n,m are non-negative integers and #X is the cardinality of X .

3.4 Links

A link is an instance of an association. A link of an association P connecting
objects x and y is represented in predicate logic as:

P(x , y) (5)

If there exists no link between the objects of a domain class and a range class
of a UML association, we will explicitly mention the negative assertion between
those objects, and in predicate logic we can define the absence of a link between
the objects x and y of an association P as:

¬P(x , y) (6)

The negative assertion is only required for those objects whose specific classes
are related with each other by an association but their objects are not connected
with the links.

3.5 Ordering

In UML ordering, the links of an ordered property are labeled with a unique
numbered index, and required that the indexes are in order. An ordering would
be used for example to preserve a sequence of a parameter in a function. A link of
an ordered property P connecting the object x of source class and the object y of
target class of an ordered property P having a label i is represented in predicate
logic as:

P(x , y , i) (7)

Furthermore, all links of an ordered property having identical index i are required
to have an identical source and target, in predicate logic it is represented as:

∀i ∈ N ∀x , y , a, b.P(x , a, i) ∧ P(y , b, i)→ (x = y) ∧ (a = b) (8)

Where, x , y are the objects of a domain class and a, b are the objects of a range
class of an ordered property P.
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4 UML Class Model Formalization in OWL2

OWL2 DL is a decidable fragment of OWL2, and it is based on Description
logic (DL). In this section, we will show the translation of UML Class modeling
concepts discussed in Section 3 in to OWL2 DL.

4.1 UML Class

A class represents a collection of objects which share same features, constraints
and definition. A UML Class C in the class model is translated in OWL2 as:

Declaration( Class( C ) )

Moreover, in UML one object in an object model can only belong to one class
in a class model, whereas in an open-world assumption of OWL2 one individual
can belong to many classes, except those classes that are declared as disjoint. It
is therefore necessary to explicitly declare all classes which are not a superclass,
a subclass, or sharing any of the subclasses as disjoint. In OWL2 disjointness (1)
among classes is represented as:

DisjointClasses( C1 C2 ) )

4.2 UML Association

A UML association defines a relationship between two classes. It can be labeled
as ordered. A UML association (3) is represented in OWL2 as ObjectProperty,
an association P from a class C1 to a class C2 is represented in OWL2 as:

1. Declare a UML association P as an objectproperty :

Declaration( ObjectProperty( P ) )

2. Assign a domain C1 to the property P:

ObjectPropertyDomain( P C1 )

3. Assign a range C2 to the property P:

ObjectPropertyRange( P C2 )

Associations Multiplicity. A UML association defines the multiplicity (4)
in a non negative integer, which describes the number of allowable instances
of a range class. We map the multiplicity of a UML association into OWL2, by
defining the domain class of an association as a subclass of a set of classes, which
relates with the same property and the given cardinality.

The UML association P from class C1 and C2 has a multiplicity constraint
of n..m is represented in OWL2 as:

1. Define a minimum cardinality:

SubClassOf( C1 ObjectMinCardinality( n P ) )

2. Define a maximum cardinality:

SubClassOf( C1 ObjectMaxCardinality( m P ) )
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5 Object Model Representation

An object model consists of objects and links, where each objects is an instances
of a UML class defined in the class model and each link is an instances of an
association. A consistent object model must not contain a definition of a new
class or an association, and all objects that exist in the object model must be an
instance of the classes that exist in the class model. Similarly, all links present
in the object model, must be an instance of an association that exist in the class
model. If any of the object or link, present in an object model, is not an instance
of an association or a class that exist in the class model, then that object model
will be considered inconsistent.

In this section we show how to translate UML object modeling concepts
discussed in Section 3 into OWL2 DL, while discussing the translation, we will
also discuss that how to apply close-world restrictions in OWL2 at model level.

5.1 Objects

Every object exist in an object model must belong to a specific class in a class
model. In OWL2 the UML object (2) is represented as a classassertion and called
individual . A UML object x of class C is translated in OWL2 as:

ClassAssertion( C x )

Furthermore, every object in a UML object model is by default different from
another. Whereas, in OWL2 due to the open-world assumption, we need to
explicitly mention that all individuals are different from each other. For example:
for objects x1, .., xn in an object model, we use OWL2 axiom:

DifferentIndividuals(x1..xn)

5.2 Links

A UML association assertion between the objects in an object model is called
link (5). A link in OWL2 is represented as a propertyassertion. The link of an
association P between the objects x1 and x2 in an object model is represented
in OWL2 as:

ObjectPropertyAssertion( P x1 x2 )

Moreover, due to the open-world assumption of OWL2, for a reasoner to be
able to detect a violation of a minimum multiplicity constraint, we need to
provide a definitive knowledge about the links, connecting or not connecting the
individuals of a domain class and a range class of an association. Therefore, if
there is no link between the objects of a domain class and a range class of a UML
association, we need to explicitly declare that there is no connection between the
individuals. The knowledge about the non-existence of link between individuals
is called a negativeassertion. The negative assertion of an association P between
the objects x1 and x2 in OWL2 is written as:
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NegativeObjectPropertyAssertion( P x1 x2 )

A negative assertion is required when there exist an association between the
classes but two specific individuals are not connected with a link.

5.3 Ordered Properties

The UML ordered property is translated in OWL2 as normal objectproperty. The
translation of basic constraints like domain, range and multiplicity is also same
as mention in Section 4.2. For example the translation of an ordered property P
depicted on top of Figure 4 is as follows.

Declaration( ObjectProperty( P ) )

ObjectPropertyDomain( P C1 )

ObjectPropertyRange( P C2 )

SubClassOf( C1 ObjectMinCardinality( n P ) )

SubClassOf( C1 ObjectMaxCardinality( m P ) )

C1 C2
n..m

{ ordered }
P

y1:C2
1

y2:C2

2
x1:C1

Class Model
Object Model

Fig. 4. Top: A UML class model depicting ordered property. Bottom: A UML object
model depicting ordered links

Moreover, in a UML object model, a link of an ordered property is labeled with
an index, and require that the index is unique and in order. In OWL2 there is
no specific axiom for the representation of a UML ordered property link (7) or
any link with a label. Due to this fact, we translate a UML ordered property
link into OWL2 in four steps. First, declare an index property for each ordered
property link that exist in an object model. The index property is declared in
OWL2 as:

Declaration( ObjectProperty( index_P_# ) )

To make every ordered property link reachable while parsing a translated object
model in OWL2, the name of an index property comprises three parts. First,
index refers that the link of this objectproperty will represent an ordered property
link. Second, P refers the name of an ordered property in a class model. Third,
# is representing an index or a label on a link of an ordered property. The data
type of an index can be ”xsd:integer” [19] or ”xsd:string” [19]. For example, for
each labeled link 1 and 2 of the ordered property P shown at the bottom of
Figure 4, we will declare an index property in OWL2 as:
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Declaration(ObjectProperty( index_P_1 ))

Declaration(ObjectProperty( index_P_2 ))

Second, a domain and a range of each index property in OWL2 is same as the
domain and the range of an ordered property. Therefore, each index property in
OWL2 will be a subproperty of an ordered property P:

SubObjectPropertyOf( index_P_# P )

Third, all links of an index property must have an identical source and target
(8). In OWL2 all links having an identical source and target are considered as
one link. Therefore, we have also made the index property:

1. FunctionalObjectProperty so that one link of an index property may not
lead to two individuals.

FunctionalObjectProperty( index_P_# )

2. InverseFunctionalObjectProperty so that two links of an index property may
not lead to one individual.

InverseFunctionalObjectProperty( index_P_# )

Last, each index property in OWL2 is then instantiated among the respective
individuals of a domain and a range class of an ordered property. For example
the UML ordered property links P(x1, y1, 1) and P(x1, y2, 2) as shown at the
bottom of Figure 4, is represented in OWL2 as:

ObjectPropertyAssertion( index_P_1 x1 y1)

ObjectPropertyAssertion( index_P_2 x1 y2)

6 Implementation of a Model Conformance Tool

6.1 Translator

We have implemented, the translations of UML class and object modeling con-
cepts, as discussed in Section 4 and 5 into a translator, by using the model-to-
text translation tool MOFScript [2]. The implemented translator in MOFScript
allows us to automatically transform the UML class and object models into
OWL2. The translator take a UML class model and an object model as an input
in form of UML XMI 2.1 [14], which is parsed according to UML 2. The output
of the translator is an ontology, which contain transformed object model and its
class model in from of OWL2 functional syntax. The translator script can be
downloaded from [1].

6.2 Reasoning Engine

The conformance of an object model against a class model is done by validating
an output ontology using an OWL2 reasoner. The output ontology contains the
transformed object model and its class model in form of OWL2. Since translation
tool produces output ontology in OWL2 functional syntax, the validation of
output ontology can be done by using any ontology reasoner which supports
OWL2 functional syntax.



10 Ali Hanzala Khan et al.

6.3 Conformance Report

A conformance report is an output of an OWL2 reasoner. After the validation of
a transformed object model against its class model, a reasoner will produce the
conformance report; this report will contain the details about the inconsistencies
present in a transformed object model against its class model.

6.4 Example

We have translated the class model and its inconsistent object model as shown
in Figure 1, into an OWL2 DL ontology, by using the implemented translator,
the output ontology generated by the translator is as follows:

Declaration(Class(Operation))
SubClassOf( Operation_Direct Operation )
EquivalentClasses( Operation Operation_Direct )
DisjointClasses( Operation_Direct Parameter )
Declaration(Class(Parameter))
SubClassOf( Parameter_Direct Parameter )
EquivalentClasses( Parameter Parameter_Direct )
DisjointClasses( Parameter_Direct Operation )
Declaration(ObjectProperty( hasParameter ))
ObjectPropertyDomain(has_Parameter Operation)
ObjectPropertyRange(has_Parameter Parameter)
SubClassOf( ObjectOneOf( ATMLogin ) Operation_Direct )
SubClassOf( ObjectOneOf( ATMCardNumber ) Parameter_Direct )
SubClassOf( ObjectOneOf( ATMPinCode ) Parameter_Direct )
ObjectPropertyAssertion( hasParameter ATMLogin ATMCardNumber)
ObjectPropertyAssertion( hasParameter ATMLogin ATMPinCode)
SubObjectPropertyOf( index_hasParameter_1 hasParameter )
FunctionalObjectProperty( index_hasParameter_1 )
InverseFunctionalObjectProperty( index_hasParameter_1 )
ObjectPropertyAssertion( index_hasParameter_1 ATMLogin ATMCardNumber)
SubObjectPropertyOf( index_hasParameter_1 hasParameter )
FunctionalObjectProperty( index_hasParameter_1 )
InverseFunctionalObjectProperty( index_hasParameter_1 )
ObjectPropertyAssertion( index_hasParameter_1 ATMLogin ATMPinCode)
DifferentIndividuals( ATMLogin ATMCardNumber ATMPinCode )

The output of a translation tool which contains the transformed object model
and its class model is then validated by a reasoner. The conformance report of
the output ontology produced by a reasoner is as follows:

Consistent: No

Reason: Individual ATMLogin has more than one value

for the functional property index_hasParameter_1

The conformance report clearly indicates the inconsistency that exists in the ob-
ject model, that there exist more then one link of an ordered property hasParameter
with an index label 1.

7 Conclusions

In this article we have presented an approach to reason about the conformance
of a UML object model containing ordered properties against its class model
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using an OWL2 reasoner. Furthermore, we have discussed the implementation
of the translations as an automatic model translation tool.

When comparing the scope of proposed translations with other approaches [18,
16, 11, 17, 21, 4, 3], we consider that we have made a contribution in the field of
model conformance using Semantic Web technologies, by addressing the ordering
of properties and the enforcement of the close-world restrictions in OWL2 DL.

The approach is fully automated thanks to the translation tool and the ex-
isting OWL2 reasoners. Unfortunately, the validation report generated by the
reasoner is not always self-explanatory, because the relationship between UML
concepts and OWL2 axioms is not so obvious. As a consequence, it is not always
possible to immediately point out the cause of the problem based on these vio-
lations without manual inspection of the validation report and the problematic
object models. It would greatly add to the usefulness of the method to have some
sort of automated discovery of the cause of violations.

As a future work, we would like to enhance the scope of the proposed transla-
tions by addressing the validation of other UML concepts, including composition,
non-unique properties, data type and class enumeration.
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