
Specification of an Asynchronous On-Chip Bus

Juha Plosila and Tiberiu Seceleanu

University of Turku, Dept. of Information Technology,
Lab. of Electronics and Communication Systems,

FIN-20014 Turku, Finland, tel: +358-2-3336954, fax: +358-2-3336950,
email: { Juha.Plosila, Tiberiu.Seceleanu }@utu.fi

Abstract. The latest improvements in the technology of digital devices
allow designers to build whole systems on a single silicon chip. New
problems arise in this context, one of them being the complexity of in-
terconnections. Optimizing interfaces has become a tedious design step.
Other problematic issues are global clock signal distribution and design
composability, for which asynchronous design methodology proves to be
a good solution. Formal methods can be used to verify the logical cor-
rectness of digital hardware. These methods are well featured for asyn-
chronous designs and this study introduces bus-modeling aspects in the
formal framework of Action Systems.

1 Introduction

Modern deep sub-micron silicon technologies have given a real boost to system-
on-chip (SOC) design research and development. A key issue in integrating a
whole system into a single chip is to realize efficient and reliable interconnections
between system modules on the chip, because the overall performance of the
system is constrained by the properties of the interconnect. Furthermore, the
time required to complete a design task depends strongly on the complexity of
the different interconnections in the system. Optimizing interfaces has become
a cumbersome process [9].

A common way to implement a digital system is to build it around a bus
shared by the system modules. As the modules connected to the bus have uni-
form interfaces, the bus-based design approach offers a relatively rapid method to
construct large systems-on-chip. In future high-performance systems, maintain-
ing global synchrony will be increasingly difficult, if not impossible. A solution to
this problem comes from the employment of asynchronous, or self-timed, design
methodologies [3]. Enhanced composability is another advantage of self-timed
approaches over synchronous ones. Therefore, the present study describes a self-
timed bus structure. This means that all the components of a system employing
the bus interact via handshakes on asynchronous communication channels, while
locally they can operate synchronously, controlled by some local clock signal(s).

The integration of a complex digital system requires comprehensive know-
how of verification and development of SOC solutions, both at the functional
(behavioral) as well as at the physical levels. Because a system can be viewed as a

composition of concurrent processes, formal methods of concurrent programming
can be used to verify mathematically the logical correctness of digital hardware.
The Action Systems framework is one of such formalisms. It has recently been
applied to the area of asynchronous (self-timed) and synchronous VLSI design
[8, 10].

In this paper, we present an Action Systems-based specification of an on-
chip bus targeted for SOC designs. While bus-related protocols have been stud-
ied before from a formal point of view [6, 7], our study goes one step further
and describes the components of a bus-based system. The specification is com-
posed of the formal descriptions of the bus components, including the central
bus controller (arbiter) and the abstract models of the master and slave mod-
ules attached to the bus. The generality of the specification allow for further
derivation towards concrete descriptions, at lower levels of abstraction, following
precise rules. We only provide template-components, which can fit a large range
of actual devices. From a more specific point of view, the integration of a bus
model into our Action Systems framework is a part of our current work on de-
veloping a formal design flow for complex systems-on-chip. In this flow, a design
process from a specification to an implementable model is viewed as a sequence
of correctness preserving refinement steps.

Instead of trying to develop a completely new bus specification, we prefer to
adapt an existing standard bus to our needs. The AMBA bus specification [1] is
an established, open bus standard that serves as a framework for SOC designs.
We use many characteristics of this specification in our descriptions. However,
mostly because AMBA is a synchronous bus, our asynchronous bus does not re-
quire some of the control issues described in [1]. On the other hand, we introduce
several new control signals which are needed in asynchronous communication be-
tween system modules. Thus, our representation of the bus controller and the
associated masters and slaves would show some differences concerning the inter-
faces with respect to the AMBA specification. For the matched signals, however,
we will use the same notations as in [1].

2 Action Systems

The Action Systems formalism is based on an extended version of Dijkstra’s
language of guarded commands [5]. An action A is defined (for example) by

A ::= x := x′.R
A1 [] A2

A1; A2

P → A1

A1 // A2

(nondeterministic assignment)
(nondeterministic choice)
(sequential composition)

(guarded action)
(prioritized composition)

where P and R are predicates, x is a variable or a list of variables, and A1 and A2

are actions. Semantically, an action A is defined by the weakest precondition for
A to establish some post-condition Q, denoted wp(A,Q). The guard of an action,
gA is defined by gA =̂ ¬wp(A, false). An action is said to be enabled, if its

guard is true, disabled otherwise. Actions are considered atomic, meaning that
whenever one is selected for execution, it will be completed without interference.

���������	��

�������	�������������������
 �!
"$#&% ��'(�)���+*
�,���-�,./����01�����2���3�,����'4

546+78��9 ��'(�)���:��';
/���<�,
=�>01�����2���3�,����'4

?(@�A % ?$���)BC6+78�D��E$F1����������'4
1�>G1����0H��'I�)��������J/�K���)��0&��.1�C�����ML
5;9�BC6+78� ��������'4
H�������
B	7NBC9 ��
1�����2������O)�,����'4
P'4�8*4�����2��.1�����
Q 6 ��������'4
H��'4RIF+';��������'4
�6 Q
S�

Fig. 1. A partial action system representation.

An action system A is an iterative composition of actions. It has the form
shown in Figure 1 [11]. Here, the interface list defines the global variables through
which A communicates with other systems. The var and const clauses define
the local variables and constants, visible only within A. The expressions clause
defines shorthand notations for some expressions used within A. The items de-
clared here are evaluated every time they are met during the execution of the
system. The actions clause describes the atomic actions present in the system.
A unique name is given for each action. An action can also be, partly or com-
pletely, composed of other actions defined in the actions clause. For instance:
A4 : (A1; A2) [] A3. Here, the actions A1, A2, A3 are called included actions
with respect to the action A4.

In the init clause, all the local and interface variables are initialized. For the
latter, special care has to be devoted, as these variables have to be initialized
with the same values in all the systems that share them.

The system’s do-od loop contains a composition of the actions defined in the
actions clause. The composition can be realized using the atomic operators ‘ [] ’
and ‘ // ’ and the macro operators such as the non-atomic sequential composition
operator ‘ ; ’ which is actually defined in terms of the non-deterministic choice
(‘ [] ’) and an auxiliary local variable. In the loop, one enabled action is executed
at the time. Parallel behavior is modeled by two or more actions that are enabled
simultaneously and can be executed in any order without affecting the result of
the computation.
Notation. A substitution operation within an action A is denoted byA[enew/eold],
where eold refers to an element (variable, predicate, component action etc.) of
the original action A, and enew denotes the new element which replaces eold in
A. The same notation may also be used for action systems.
Composing action systems. The parallel composition of two action systems
A1 and A2, denoted A1 ‖ A2, is defined as an action system whose loop has the
form do A1 [] A2 od, where A1 and A2 represent the action compositions within
the loops of the constituent systems A1 and A2, respectively. The composed

system merges the global variables of the components keeping the local variables
and action identifiers distinct.
Quantified composition. Any composition operator can be quantified. This
applies to the different types of action compositions and the parallel composition
of action systems. The notation is defined as follows:

[∗ i = 1..n : A(i)] =̂ A[1/i] ∗ . . . ∗A[n/i]

[‖ i = 1..n : A(i)] =̂ A[1/i] ‖ . . . ‖ A[n/i]

Here the asterisk ‘∗’ denotes any action constructor mentioned above. Note that
in general the index variable does not have to run through a range of values. In
this case, the set of values is defined explicitly, for example: i ∈ {5, 2, 6, 9}. The
leftmost value is considered first, the rightmost value last. The actions A(i) are
called parameterized actions, and, naturally, i is the parameter. The same rules
are valid for the action systems in the second definition above.

3 Bus Components

A bus is a cost-effective data communication connection between two or more
communicating devices. It is composed of data, address and control signals.
The components of a concrete bus-based system include masters, slaves and
an arbiter [1, 4, 12]. A master is a module that actively requests services from
passive modules connected to the bus, the slaves. The master devices request
the bus from the central control unit, the arbiter, which grants the bus to only
one master at a time. This requires dedicated request and grant wires between
each master and the arbiter.

In this section, we describe the variables and communication protocols that
we use to model an asynchronous bus inspired by the AMBA AHB [1], supporting
up to 16 bus masters. The interface between the bus components in our approach
is shown in Figure 2. The actual Action System specifications of the components
are presented later in section 4.

Master

HADDR

Arbiter Slave

bsize[j]

schan

mchan[j]

HSPLIT

HMASTLOCK HMASTER

HWRITE

HRESP

dbus

Fig. 2. System interconnections.

The asynchronous realization of the bus introduces more complex commu-
nication protocols than the synchronous one, mainly due to the fact that the
participants to a given transfer have to know when data is actually ready to be
either read or written. Hence, in asynchronous communication the active party
sends a request signal to the passive party, which then responds by sending back
an acknowledgement signal after completing the requested task.
Master-Arbiter communication. The asynchronous communication channel
between the bus controller, i.e., the arbiter, and a master j, where j = 0. .15
is a number identifying a particular master, is modeled by the 5-value variable
mchan[j] of the type mchanType =̂ { hr, hrl, gr, done, idle }.

The initial value of mchan[j] is idle. The master requests the bus from the
arbiter by setting mchan[j] to either hr (bus request) or hrl (request for a locked
transfer). The arbiter responds eventually by setting the channel to gr (bus
grant) and the control signal HMASTLOCK according to the request. When
the master completes a transaction with a slave, it updates the signal bsize[j]
(burst size, bsize[j] = 0..16), which carries the number of data words still to
be transferred between the master and the slave, and sets mchan[j] to done. If
bsize[j] 6= 0, the arbiter responds by setting the channel to either hr, hrl, or gr
depending on the response received from the slave. If bsize[j] = 0, i.e., the whole
burst has been transferred, the arbiter initializes mchan[j] to idle.

The values hr, hrl, and gr of mchan[j] correspond to the AMBA AHB signals
HBUSREQx, HLOCKx, and HGRANTx , respectively [1].
Master-Slave communication. The master-slave communication channel is
modeled by the variable schan of the type schanType =̂ {req, ack }. This
is accompanied by the natural-type variables dbus and HADDR that model
the data and address signals of the bus, the boolean variable HWRITE which
specifies whether the master is reading (HWRITE = false) or writing (HWRITE
= true) data, and the variable HRESP of the type SlaveResponseType =̂
{OKAY, ERROR, RETRY, SPLIT } through which the selected slave signals
the status of the latest transaction. All the mentioned variables are globally
shared by all the masters and slaves in the system.

The address HADDR of the AMBA AHB is composed of two parts: the N
most significant bits represent the identification of the slave, while the remaining
32−N bits, assuming a 32-bit address, represent a valid location in the memory
space of the selected slave. Hence, in our abstract model HADDR is a natural
number with the range 0. .232−1, from which the identification number SlaveId
of the selected slave is computed by: SlaveId = HADDR/232−N . The maximum
number of slaves in the system is then 2N .

Once the access to the bus is granted by the arbiter, the granted master
first sets the HWRITE signal, the slave address HADDR, and also data dbus
if HWRITE = true indicating a write operation, and places the channel schan
to req. The selected slave tries to execute the requested operation and assigns
then an appropriate value to HRESP. If HRESP = OKAY and HWRITE =
false indicating a successful read operation, the slave also assigns a valid value
to dbus. Then it acknowledges the master’s request by setting schan to ack. In

the case of a successful read, the master stores the value of dbus set by the
slave. If HRESP = OKAY and HMASTLOCK = true, i.e., a successful locked
transfer event (write or read) took place, the master initiates immediately a
new communication cycle with the slave, as long as the burst has not yet been
completed (bsize[j] 6= 0). If the slave sets HRESP to ERROR as the response to
a locked transfer event, it is up to the master to decide whether to continue the
locked burst with the slave or to interrupt it by communicating with the arbiter.
In any other case the master always communicates first with the arbiter which
then decides whether the master still has the access to the bus or not.

In the AMBA AHB specification, the slave may delay the transfer on the bus
by making use of the HREADY signal. Basically, both the data and HRESP sig-
nal values are ignored, unless HREADY is high. Thus, the slave may insert wait
states in the transaction flow. Due to the asynchronous communication protocol
on the channel schan, the HREADY signal is not needed in our descriptions, as
the master waits for the slave to set the channel schan to ack at every transfer
event.

Another difference is that our abstract model does not contain an explicit de-
coder which generates the slave select signals HSELx from the address HADDR
as in the AMBA AHB specification. Instead, a slave itself performs this selection
based on the value of the address variable HADDR which is shared by all the
slaves.
Arbiter-Slave communication. The interface between the arbiter and the
slaves consists of the shared variables HMASTER = 0 . .15, HRESP (defined
above), and HSPLIT[0..15] (array of booleans).

The arbiter reports the master that is currently accessing the bus by assigning
its identification number to the variable HMASTER. The arbiter reads the value
of the variable HRESP which is set by a slave as a response to a transaction
requested by the master accessing the bus. If HRESP = SPLIT, the slave has
decided to split the current transfer, i.e., to postpone a part of the transfer
burst. In this case, the arbiter masks or disables the request signal of the master
identified by HMASTER. When the slave is later ready to continue the burst with
a masked master j, it sets the boolean variable HSPLIT[j] to true. The arbiter
then responds by removing the mask allowing the master j to access the bus
again. If HRESP = RETRY, the slave wishes to retry the latest transaction with
the master HMASTER. The arbiter gives the bus to this master immediately,
provided there are no higher priority requests present. Otherwise the master has
to compete with the other masters normally.

4 Specification

In this section we illustrate characteristics of the three components of a bus sys-
tem, the arbiter, the slaves and the masters. The last two are abstract templates
that we show in Figure 3 and Figure 4, respectively.

We consider a fixed number of masters, 16, and a generic number of slaves,
specified as NrSlaves = 2N , with SlaveId running from 0 to NrSlaves - 1. The

���������	��

��������������������� �"!��#�%$#&'&)(�*,+�-.��/0��132546�7������� �"!��#�%$#&'&98;:
-
<
= �?>@������� �"!��
� -A>CBCDE���F�G1HB�DI���?2KJ;LM�G-
�N1HO@PHQG2SRT8;UWV�X.�NYZ�[Q\254]� =A^_^ � -.�`�[4S1HOa�G1H�	��
#�C�[�W>bL ^ �%>;��2KJWLM�Wc'�d�e R

f#g"h]i � i �\���G� �"!��#� -,/0�E>j�bk�Rl8CUWVmX = �?>�J�� =A^_^ �
n\oqp%�jr�1H�	��

�;Q < �Tst���G� �"!��#�
g n�rWuvoqp%�w1yxz�
>CBCDE����s{!\�C|K}~1H�	�G
#�CQ < s��`�������@��(_*.+j�q���

�m� = �?>�J����FYZ��QG2547� i � i �Ts <
= �?>
R V3�3�FYZ��QG2547� <
= �?>@��s i � i

R V = �?>�J���>W����LqcA-
= �?>�J��Ts =;��=w��� � !_�q�\X.�M�
�9>;���

1 + � = �?>�J����`�[4S1HO��Ts�D � D ��� �@4[2z�[��X,1HO@PHQG2[�
RV�� = �?>�J������[4S1HO��Ts�D � D ���W�6� �w��X,46��� � �S�

1 * ���`�[4S1HOZs�1�O@P�QG2t��/Z�E>��bk�R �N/Z��132546�5V���st� !_�q�\-
1q�@��1yxC-.1 + -.1 * -A>CBCDE�����Tst�
BC�
1����"�m�_� � /0�#>��bk�R �\V?���N1HO@PHQ\2SR �\V��Ts{� !_�q�\-,/0�#>��bk�R �\V��TsZ�"�#�9>C�_c

R V��m x¡�
¢.£?¤ �3/0�#>��bk�R �\Vq�¥>;����L?c

u¦pyu)r§/Z�E>��bk�X.�NYZ��QG254�X,�N1HO@PHQ\2zX = �?>�J��Ts©¨jª�«�¬�­�-A>;B�DE�����Tst�#B��"-
i � i X,����������X,�N/Z��132546��X <�= �?>[��s�$E-,���[4S1HO���s �S� �w�

® o�1q�W�j��1���o ®
V e

Fig. 3. The Asynchronous Slave Specification.

whole bus-based system is then represented by the parallel composition:

Arbiter
‖ [‖ j = 0. .15 : Master(j)[mchan[j], bsize[j]/mchan, bsize]

‖ [‖ i := 0. .NrSlaves : Slave(i)[i/SlaveId]]

In the composition, the Arbiter runs in parallel with the other system com-
ponents, the masters and the slaves. We identify the master systems in the above
description by the corresponding channel they share with the arbiter (mchan[j]
and bsize[j]). The SlaveId number identifies the slaves.

Even though the arbiter that we analyze here is also a general template, we
discuss it in more detail, as the generality only refers to the number of masters
and slaves present in the system and not to the actual functionality of the arbiter,
which is completely defined.

4.1 The Arbiter

The representation of the bus controller, modeled by the system Arbiter, is
illustrated in Figure 5.
Priorities. We leave the decision on the priority scheme to be decided at later
steps in design. We only consider that the masters are organized in priority
groups. If a master belongs to a higher priority group, it is allowed to interrupt
the access to the bus of another master placed in a lower priority group. In the
exemplification we give here, the masters belong to three priority groups. The
groups are identified as the sets Gk, k = 0..2 declared in the const clause of the
system Arbiter. These sets contain the index by which the arbiter identifies the
masters in the system. The group G0 contains the masters having the highest
priority.

���������	��
���
��������������������������! #"$�&%'�#���(���)��*+���������! #"$�&%-,���.0/&�1�2�3��
045
2�	687:9;9=<#>	%
? �A@B*C�ED+FHGHIKJ ?)LNMBO �EPQ��,SRTRT60% ? @BUVU M �2�3��
045
2�W6X7Y9=9[Z2\-]2%_^W,-4��1�2�3��
045
2�	60%
?�M PH*+`a��*+6b��c	� M �d��"$R#�8�����! #"e�dfg�h�

ikj
l	m5n �K���oJ'�d�#�#60J_�W^�^&
��2�3��
045
2�	6p%=qE
T.r
��1��,sRTRT60%
m5t2udvbw$x �y��zE�2�K���(���K{|.p^�6��B}

�~,��s.�/&�B{�7H}
qE
T.r
��&J',s��.0/��&J'�d�#�#6X��{
q�J-,dJ'�&�h��q��K,sRTRT6�f��)��<1��,���<�>�f3����7��|����Z&�|��<#f

j� ,��s.�/&���{�7H}��-�d���3fS%
�K���(������{|�o� �����T�	
TJS�	
&6p�

�] �2�K���(���K{���
1}����V�!�& �¡=J_�W^�^&
���{|q¢
T.p
��&J_�e� 7����V��Z2\-]s£$�|��<&%
�E¤E¥�¥��¦��{¦ZT\']s£$�|§d�#�#�#6�¨©�W^�^�
	%
�p�����¢�2 3¡ª}«^W,'4�����{�^W,#� ^W,E���3��
045
2�	6 j �C¬ �����¢�2 3¡ª}­�'�d� �3fS%
�#���(������{|
&��®

� \ ���#���(���K{��	��¯�}�°�E�¢¡;±	²³{µ´+¶B¤�·:}
� ¬ �����¢�2 3¡o}«��������{¦^�,'4�� j � ���V�!�& �¡³}­�'�#���3fS%-,���.0/&�H��{¦,���.0/&�¢��<

j� �E�!¡;±�²³{¦P MBM F M }¸,���.0/&�H��{¦,d�¹�r,={¦,���.0/&�¢��<df3º)�r,={�7�f
j� �E�!¡;±�²»���d*[`1D O �!J M P1� MB¼ ��}��-�d���3fS%

�ª½H�(� ¬ �E¾�¤�±¿ �À!´BÁ�¶»º)�r,���.0/&�B{�7�f3º��p�¢�¢¡;±�²Â�o�#*+`1D O �¢J M P1� MB¼ �Tf[}
�����(��� j Ã&� ��{�^WR#���

j � �E¾K¤E±¿ 3À=´BÁ8¶»�)�r,���.0/&���{�7�f3���p�¢�¢¡;±�²|��o�#*+`1D O �¢J M P1� MB¼ �Tf[}
�-�d���3f

�ÂÄ���� \ %'�o½v�xXv¹u ,s��.0/��&J��K���oJ'�d�#�#60J_�W^�^�
TJ ? @BUVU M J_^W,-4��1��{�7�%_�����(������{|.0^�6��&%S���������K{¦�W��¯5%
q¢
T.p
��&J ? �N@B*C�ED+FHGHIKJ ?ÅLNM�O �EPQ��{�Æ5�	6��#�&% ?KM P�*[`a��{¦FHIÅ@ ¼

Ç w �»z j � �r�]YÈ �ÂÄ#f w Ç��i

Fig. 4. The Asynchronous Master Specification.

���������	��

��������������������� �"!$#�%&�������('*) +,�	-�.�%&/102'4365&#	�$���879�:�<;>=*?�?�?�� @<-
.A%B/10C'4DFE�GIHAJK.A0FLIDFM	'��N� � !$#��POQOQ;8-K��R�
8S	�6#	�$���879�:�<;�=*?�?T?�� �<-
.�5U3�0FLV#W0�;X��Y<�T5U�"R�+ZO �>RT�T'*) +,�"[\#]#

^ �
_<`9a �b�cR"dZ�N� � !eJ��	�T����� �"!
Jf�	�"R ���QY<�Tgh#��POQOQ;
i	jZk>�mlonIpU#�q&rT=cJT�:J�s<JKt<J�ucvW-Knxw*#�q&r"@<JK�<JPy�J�z<JK{<J��T=cJ��	�:vW-Kn6|}#�q&r	� s<J�� t<J���u�J�� @~v
�~��� a �~�T� �XjZk>���6� �������P���m�m�]�	JPd<[I�qo�X�,
���n6��?�
��q��x�����	�����

!�[
` i:l"�XjZk>�����f�:���e�]�WJ�dc[�#�������������� �	!$� rQ�c�QJ��c�	;
vQ[(¡ ���b�<R"d(� �	!<¢£.A0FLIDFM	'�� �	!�[

¡¤�6� ���m���P���P�m�]�WJ�dc[�¡¥���	�"R ���QY~� g§¦
¨�©�ª}«2¬$­�®1¯>° J ¨�©�ª}«2¬$± �²#³q��������c����� �	!,q´�<�	;�[PJ
�9-
�¥�cR"dZ� �	!
Jf�	�"R ���QY<�Tgµ#³q¶���P·���-��	����� �	!$#�q�¸m�:¹³����-
�b��������� �	!�#³q»º��

¯2¼W½ ���m�e¾Z�]�~[�#¿����������� �	!Zq²g�O ���1¦
� « ¾,¹N�X�
�]�<[1�!2�������PÀ:�]�<[U�! ®�½ �:� ± �P�m�]�<[f[P-
�	�"R ���QY~� gh#�qÁ¸��:¹³���

« ¾,¹����e�]�~[�# .�5U3�0FLBqÂ0FLIDFMW'Ã¦Ä�¥�cR"dZ� �	!�#�qÁ¸m�:¹³����-}���KÅT�]�<[
�������PÀ:�]�<[�# .�5U3�0FLBq²5U3I'�51Æ�¦Ä�	����� �	!�#�q¶���P·c�T-4����Å��]�<[
®\½ �:� ± �P�m�]�<[�#W.�5U3�0FLV� r"E6HA/}Æ�J�3I5U5UEI5�v4¦

�mR�
8SW��� �	!��q²=�¦�����Å��]�<[U�!2�mR�
8SW��� �	!(qÂ=6¦Ç�������W��� �	!$#�qÃ
eg~;��
����ÅT�]�~[\# � ¨�©�ª}«2¬$­�®1¯>° ¦Ä�����c����� �	!$#�q´�<�

� ! ¨4©�ª4«C¬$­�®1¯>° ¦Ç�b�T�c����� �:!�#�q´�<�	;
��k��ÈlÉ�¥�cR"dµ#�q¶���P·c��-�.�0FLIDFMW'*Jf�	���PJ��	�QRT�T�QY~�Tg9JK.A%B/10C'4DFE�GIH�#³q�¸��:¹³���m-

�b�������Ê#�qÃ
8g�;��	-�.b5U3�0FL�#�qÂE6HA/}Æh-K��R�
8S	�	J�.�%&/102'4365V#³q²=
Ë jÌ� ÍmÍ	dxq²=c?]? sx#,�(�!,�µ��n6��#������f�:���
�]�	JPd<[I�! ¯�¼W½ ���P�e¾Z�]�<[f[e!]!$j Ë
! ^

Fig. 5. The Asynchronous Arbiter.

Actions composing the Arbiter system. In the following, we analyze the
behavior of the system Arbiter, by describing the behavior of its actions.

In the actions clause of the system we specified six actions. The notation
also provides a generic aspect, illustrated by the action parameters k and j.
We describe the behavior of the controller with respect to a single master, and
the parameters help generalizing, so that we cover all the other masters. In the
following we refer to the system’s actions without mentioning the parameters.

Action Grant. This action is responsible for granting the bus ownership to a
master requesting it (mchan[j] ∈ { hr, hrl }), while: the module is not masked, or
it received an HSPLIT update (mask[j] ∨ HSPLIT[j]), the bus is not reserved,
and the answer from the last operating slave was not RETRY. Consequently,
the bus is granted, not before updating the system with the right information
concerning the current master, the mask value, etc.

Action ChkResp. The second important action of the arbiter models the answer
of the controller following the different possible results communicated by the
operating slaves. The behavior is constructed on the included actions, Split,
Retry, Ok or Error and Req. The communication variable mchan[j] is updated
correspondingly in each situation characterized by a given HRESP value.

Action Split. The slave may decide not to answer immediately to the request
coming from the current owner of the bus. We modeled this by assigning an
arbitrary value to the slave’s local variable busy (Figure 3). If the slave issues a
SPLIT answer to the request of the master, the arbiter then inhibits the master
from taking part in the arbitration process by setting the corresponding mask
element to false. The value of every mask element is checked in the action Grant.
Whenever the slave decides to allow the master to (re)start the operations, it
informs the arbiter by setting the corresponding element of the HSPLIT vector
to true. This is also checked by the action Grant. If the slave is ready to resume
a previously split connection, then the mask is updated next time the specific
master obtains the access to the bus.

Action Retry. Similar to the above action Split, this action, by assigning ret[j] :=
true, does not allow any other master from the same priority group with the
current owner of the bus to gain access. If there is no higher priority master
requesting, the ownership of the bus will remain to the current master.

Action Ok or Error. From the point of view of the arbiter, an OKAY or an ER-
ROR answer from the operating slave bears the same significance. The decision
in an erroneous situation is taken by the master (action M3, Figure 4). The
arbiter only checks the value of the corresponding bsize element and either puts
the specific channel on idle, or continues in a normal manner, consequently.

Global behavior. The behavior of the arbiter is described further by the com-
position [//k = 0..2 : [[] j ∈ Gk : (Grant(j, k) [] ChkResp(j))]]. The actions
within the innermost quantified composition deal with masters coming from the
same priority group. The outermost quantified composition describes the priority
scheme.

5 Discussion

Bus Access. In the original AMBA bus specification [1] the bus is governed
by a global clock. All the transfers relate to this signal which synchronizes the
data transfers and the control lines. In the previous sections we described an
asynchronous approach to bus control. Instead of the clock signal we introduced
communication channels that identify the moments when data or control signals
are valid on certain lines.

The transfers allowed on the synchronous bus are not only limited in size,
but also, based on the clock frequency, in time. Thus, a sixteen-word transfer
can be realized in sixteen clock cycles if the master that controls it receives no
interruption. Knowing the clock frequency, one can establish a period of time in
which a normal executed transfer takes place. In the asynchronous representa-
tion, even though the transfer size is also limited, one cannot be certain of the
time period in which a sixteen-word transfer is completed, in an uninterrupted
execution.

Even though, at this level of the description, the period of time in which a
certain master controls the bus was ignored, we can also think of means by which
one can control this aspect of the arbitration. For instance, a local synchronous
counter can be attached to the arbiter so that it monitors, in steps that can
be related to the actual time of the processing, the actual time a master has
been accessing the bus. Another solution could be the employment of a specific
master, which would implement the same counter. This master would have the
highest priority in the system, and thus, could interrupt the access to the bus
of any other master. By not addressing any slave, the interrupt requests sent by
this master cannot be masked by a possible split or retry operation.
Refinement issues. The abstract bus specification, given above as an action
system description, is intended to be developed into a hardware-realizable model
in a stepwise manner using Refinement Calculus-based [2] transformation rules.
Such a disciplined design flow yields a concrete system model which is a logically
correct implementation of the initial abstract specification, satisfying possibly
a set of auxiliary logical constraints which are necessary for successful circuit
implementation [8, 10]. This lays a solid ground for the technology mapping
process, where the final formal description is transformed into a layout of actual
circuit components.

After the initial specification, the abstract bus arbiter and the involved mas-
ters and slaves are further decomposed or partitioned into compositions of action
systems each of which describes some essential functional aspect of an original
system component. Each decomposition step is a refinement, where a new com-
munication channel is created between the separated parties. The majority of
the introduced channels are local to the system components, which means that
they do not change the bus itself. However, some transformations may involve
the bus as well. For example, if the address decoding operation is extracted from
the slaves, a new global control block is created for the bus. Splitting the vari-
able dbus, which models the data bus between the masters and slaves, into two

separate variables modeling write and read buses is an example of another kind
of global refinement.

The decomposition procedure is followed by the handshake expansion, a non-
trivial data refinement [2], where the description is brought closer to the circuit
level by implementing each abstract communication channel with a set of boolean
variables.

As an example, let us consider a master-arbiter channel mchan (we have
omitted the index j to make the notation simpler) which has 5 possible values
{hr, hrl, gr, done, idle}. We can implement it using 5 boolean handshake vari-
ables or signals, say hr, hrl, gr, done, and next. They are related to the original
variable by the following relations:

R1 =̂ (mchan = hr)⇔ (hr ∧ ¬hrl ∧ ¬gr ∧ (¬done ∨ next))
R2 =̂ (mchan = hrl)⇔ (¬hr ∧ hrl ∧ ¬gr ∧ (¬done ∨ next))
R3 =̂ (mchan = gr)⇔ ((hr ∨ hrl) ∧ gr ∧ (¬done ∨ next))
R4 =̂ (mchan = done)⇔

((((hr ∨ hrl) ∧ done) ∨ (¬hr ∧ ¬hrl ∧ ¬done)) ∧ gr ∧ ¬next)
R5 =̂ (mchan = idle)⇔ (¬hr ∧ ¬hrl ∧ ¬gr ∧ ¬done ∧ ¬next)

Hence, the resulting communication channel is considered idle when all of its
handshake variables are false (R5). The channel is put to a request state, when
the master sets either hr or hrl to true, or when the arbiter decides to remove
grant by setting the grant signal gr to false and asserting the next signal (R1,
R2). The arbiter puts the channel to the grant state by setting gr to true as
the response to the asserted request hr or hrl, or by setting the variable next
to true as the response to the asserted done signal while keeping gr true (R3).
The done state indicates that the master has set either the variable done to true,
or the request hr or hrl to false (R4). In the former case, the master has just
transmitted or received a data word, but the burst has not yet been completed.
In the latter case, the last data of the burst has just been transmitted or received,
which means that the arbiter can put the channel to the initial idle state.

In Figure 6, we illustrate the correspondence between the abstract channel
and the refined, concrete one. However, the figure is a simplified representation,
as it does not include the hrl value of the abstract channel.

The design flow continues, after the transformation of the communication
channels, with the circuit extraction, where the formal description of each sys-
tem component is stepwise refined into a concrete description from which an
actual circuit implementation can be easily derived. The final phase in the Ac-
tion Systems-based design flow is the implementation or technology mapping
step, where the system units are refined into compositions of action systems
each of which corresponds to either an actual circuit component in a compo-
nent library available to the designer or a synthesizable register-transfer-level
hardware description language (HDL) model.

Observe that the design flow becomes more fluent, if our component library
contains abstract action system models for large circuit components that have

been verified formally beforehand. For example, we could have an entire bus
master or slave, or a significant part of it, as a single library component. Fur-
thermore, once the shared bus controller (arbiter) has been designed from an
abstract specification to the circuit implementation, it is placed in a library and
re-used from there. Then the design flow of a system built around the bus dis-
cussed in this paper would mainly consist of the decomposition phase, where the
abstract models of the pre-defined library components are stepwise extracted
from the initial system specification.

idle#

hr#

gr#

done#

hr*

gr*

done*

next*

* - concrete channel components
- abstract channel components

Fig. 6. The transformation of the channel mchan.

6 Conclusions

We presented in this study a formal representation of an asynchronous bus
structure. It originally started with the intention to describe an asynchronous
AMBA bus, which, in comparison with similar approaches to bus modeling [4,
12], seemed to be a less complex structure. Due to the specifics of the asyn-
chronous architecture the descriptions, the modeling eliminated several charac-
teristics of the original AMBA structure. Some of the common aspects are the
centralized arbitration, the split transfer features and the selection of the slave.
Some details of the AMBA specification are abstracted away in our presentation,
due to the higher level of description. This is the case with the data bus, the
communication channels and aspects of the slave selection.

One of the purposes of this study was to integrate the analyzed bus structure
into our formal framework for digital hardware design as a means of allowing
different devices to communicate and exchange data. By representing the bus
in the same framework with the other systems in a design process, we have
the possibility to apply the same techniques on both the systems modeling the

digital hardware devices and the systems describing the underlying connectivity.
The (successive) transformations one needs to perform in order to bring the
descriptions of these systems to more concrete levels are executed in the formal
framework of Action Systems, thus ensuring a correct derivation process. As
an example, we described the transformations applied to the communication
channel mchan in order to bring its representation at a lower level, where physical
interconnection lines can be identified in the description. We can apply the same
technique in order to bring the representation of the slave channel schan closer
to hardware implementation levels.

We provided templates for the components to be included in bus-oriented de-
sign architectures. There is no specification on the internal architecture of these
devices, as they may be either synchronous or asynchronous implementations.

There are several other aspects of bus design that are subject to subsequent
studies. For instance, we did not specify, yet, how the arbiter may terminate
the ownership of the bus in case of a prolonged access, although we offered some
possible scenarios. An immediate follower of this work can start with the analysis
of the other possibilities offered by the original AMBA specification, the System
Bus (ASB) and the Peripheral Bus (APB).

References

1. ARM Limited. AMBA Specification (Rev 2.0), 1999.
2. R. J. R. Back and J. von Wright. Refinement calculus: A Systematic Introduction.

Springer. April 1998.
3. W.J.Bainbridge. Asynchronous System-on-Chip Interconnect. PhD. Thesis, Uni-

versity of Manchester, UK, 2000.
4. W.J.Bainbridge and S.B.Furber. Asynchronous Macrocell Interconnect Using MAR-

BLE. In Proceedings of the 4th International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC ’98) San Diego, CA, March 30 - April
2, 1998.

5. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.
6. J. Hooman. Verifying Part of the ACCESS.bus Protocol using PVS. Proceedings

15th Conference on the Foundations of Software Technology and Theoretical Com-
puter Science, LNCS 1026, Springer-Verlag, pages 96-110, 1995.

7. A. Mokkedem, R. Hosabettu, M. D. Jones, G. Gopalakrishnan, Formalization and
proof of a solution to the PCI 2.1 bus transaction ordering problem. Formal Methods
in Systems Design, vol. 16, no. 1, pp. 93-119, January 2000.

8. J. Plosila. Self-Timed Circuit Design - The Action Systems Approach. Ph.D. Thesis,
University of Turku, Dept of Applied Physics, Turku, Finland, 1999.

9. C. Purtell-Tappen. Platform Express to Accelerate Platform-Based System-on-Chip
Design and Verification. ECN Magazine, September 2001.

10. T. Seceleanu. Systematic Design of Synchronous Digital Circuits. Ph.D. Thesis,
Abo Akademi, Turku, Finland, 2001.

11. T. Seceleanu, J. Plosila. Hierarchical Action Systems. Manuscript. To appear as
Technical Report.

12. A. Zitouni et All. Design of an Asynchronous VME bus Controller for Hetero-
geneous systems. Dedicated Systems Magazine - 2000 Q3 (http://www.dedicated-
systems.com).

