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Abstract -- Increasing performance expectations and requirements for modern
communications and networking devices call for novel solutions in hardware design. To
achieve high performance without losing flexibility, several authors have identified the need
for a special family of processors dedicated to protocol processing. In previous work we
have identified a number of common protocol processing operations. In this paper we
present a modular and scalable protocol processor architecture that has these operations
as primitive instructions. We also discuss a simulator framework and VHDL models for the
architecture. As a case study we present simulation results for ATM AIS cell processing.

1. INTRODUCTION
The design of modern networking hardware is facing new challenges because of decreasing
time to market and increasing demands on performance. This is especially true in third
generation mobile networks, where the convergence of traditional telephony, modern
multimedia and the internet will be used to provide totally new services to customers. In
order to meet these increased performance requirements and to achieve shorter development
times new system design technologies like System-on-Chip and ASIP have arisen.

In System-on-Chip (SoC) design the objective is to reduce the number of microchips
needed to build a certain system. As the name suggests, the ultimate goal is to integrate an
entire system to one microchip. A SoC is designed from pre-designed and reusable
intellectual property (IP) blocks. An IP block could be e.g. a silicon layout of a multiplier
unit. The SoC system designer obtains IP blocks from in-house IP block designers or
possibly from a third-party IP block provider, and then combines and possibly alters the
blocks to reach a SoC that matches the original specification. A SoC device can be any kind
of static or programmable microchip. A SoC trades time-to-market and flexibility for
performance and price.

An alternative approach is to try to take a general purpose processor (GPP) architecture and
increase its performance by moving often executed instruction sequences into special
hardware units. Such an Application Specific Instruction-set Processor (ASIP) is designed
to perform certain specific tasks as efficiently as possible. Because ASIP’s are targeted
mainly at embedded applications, processor simplicity is a major design goal. In a typical
ASIP design flow the application software is profiled at assembler language level to detect
instruction sequences that occur often and that could be implemented in hardware to
improve performance. The typical size of such a detected instruction sequence is 2-3
instructions [1, 9]. 

We have found that in control oriented protocol processing there are certain recurring
protocol processing operations that are in practice similar in all communications protocols
[5, 10, 11] and that these operations typically do not fit into 2-3 instructions. By utilizing
the knowledge of such recurring operations it is possible to form programmable functional
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Figure 1. A TACO protocol processor for ATM. 

Figure 2. Connectivity between FU's, sockets and the
interconnection network. GL = global lock,

LL = local lock request, SQ = squash.

units that are able to perform the required processing tasks regardless of the protocol at
hand. It is not clear how the existing ASIP design approaches scale up to such functional
units. There is therefore a need for a new approach to programmable protocol processor
design.

The objective in our research project, TACO, is to design and implement an ASIP design
environment that is optimized for the specification and synthesis of communications
protocol processors. A core component of the methodology is to exploit functional blocks
in design of the processor.  The novelty of this approach is that no application-specific code
or code block identification is necessary during the synthesis of the processor. This
approach also generates very compact ASIP assembler code, because the functionality that
would normally be implemented in software is now replaced by a single assembler
instruction. The TACO environment is intended to provide the necessary tools and
functionality for generating an ASIP, its instruction set and its application program code
from a high level protocol description using our protocol processing IP blocks.

In this paper we present a proposal for a Programmable Protocol Processor (PPP)
architecture in the TACO project that has the following two properties:

1. It is flexible and scalable; it is easy to add new instructions to the processor and

increase its performance.

2. Its architecture is focused on moving data; a crucial component in protocols.

2. THE TACO PROTOCOL PROCESSOR
The main function of a telecom protocol is
to reliably transfer data from the sender to
the receiver. Interleaved within this data
transfer task are different signaling tasks
like control flow, connection setup or
teardown etc. However, in a well designed
protocol these signaling activities should
occur seldom enough not to incur any extra
penalty on the performance of the data
transfer. In selecting an architecture for the
TACO processors an important criteria was
therefore the ability to have efficient data
transfers.

2.1. Architecture
The TACO processor architecture is a
slightly modified transport triggered
architecture (TTA), a novel processor
architecture proposed by H. Corporaal [2].
In TTA processors data transports are
programmed and they trigger operations
(traditionally operations are programmed
and they trigger transports). A TTA
processor is formed of functional units
(FU's) that communicate via an
interconnection network of data buses,
controlled by an interconnection network



controller unit, as seen in figure 1. The connection between a functional unit and the
interconnection network is managed by input and output socket units as shown in figure 2.
Each functional unit has one or more operand registers, trigger registers and result registers.
An operation is triggered when data is transported to a trigger register. 

TTA's are in essence one instruction processors, the only instruction being move data. Thus,
the instruction word of a TTA processor consists mostly of source and destination addresses
of sockets called socket ID's. The socket ID's are transported on ID buses from the
interconnection network controller. There are as many ID buses as there are data buses in
the interconnection network. Upon finding its socket ID on one of the ID buses, a socket
opens the connection between an FU and the corresponding bus on the interconnection
network. The maximum number of instructions (i.e. data transports) that can be carried out
in one clock cycle is equivalent to the number of data buses in the interconnection network.

The benefit of the TTA architecture is its modularity and scalability. Functional units can
be added to the architecture or they can be refined and changed as long as they provide the
same interface to the sockets connecting them to the interconnection network. The same
holds naturally for the interconnection network. According to [2], this modularity allows the
hardware design to be automated.

In previous work [10] we have analyzed a number of commonly used communications
protocols and identified a number of typical protocol processing elements that are common
to the protocols: bitstring matching, integer comparison, checksum calculation (especially
CRC) and indexing (counters). Wireless and timing-critical protocols also need capabilities
for maintaining timers and generating random values. All of these protocol processing tasks
are distinct enough to be considered for implementation as FU's. 

Some protocols also benefit from protocol data unit (PDU) pre-processing (the pre-processor
in figure 1). The tasks performed in pre-processing are protocol dependent and may include
synchronization to the incoming bitstream, data integrity verification (by means of
performing a protocol-dependent error check on incoming data) and incoming PDU storage
into the processor's data memory (using DMA). The memory addresses of first data words
of PDU headers can be stored into a FIFO to provide quick access to the data that requires
processing. The pre-processor unit in our architecture is optional and protocol dependent.

2.2. The Processor Simulator
To test the fundamental assumptions of the TACO framework we are at the moment
prototyping a processor for processing ATM cells. It features three 32-bit buses in the
interconnection network as shown in figure 2. This makes it possible to have three parallel
data transports in one machine cycle. The control signals in figure 2 are typical for TTA
and thus are not explained in detail in this paper. The reader is referred to [2] for a detailed
discussion on this topic.

A functional view of the simulated processor is shown in figure 1. All of the functional
units in the processor are fairly simple, and well-known solutions for reasonably fast
algorithms, gate-level schematics or even silicon layouts for all of them exist. Analyses of
the requirements and implementations of some of the FU's as well as the motivation to use
exactly these units can be found in e.g. [2], [3], [5], [10] and [11].

The simulator is written in SystemC [7]. SystemC is a C++ [6] application framework for
simulating hardware. It provides a set of classes for describing common entities in hardware
design e.g. signals, clocks etc. SystemC is distributed under an open license and is
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Figure 3. Class hierarchy of the TACO 
simulation framework.

Figure 4. Matcher FU details from VHDL description. a) overview, 
   b) one bit match operation, c) all-one detector.

supported by several of the major EDA companies. SystemC tries to address the verification
bottleneck in ASIC design. Instead of going from a textual specification to a VHDL design
directly the system specification is expressed as an executable SystemC specification.
Because SystemC is based on C++ it is
possible to exploit all the powerful
structuring capabilities of C++, like
inheritance, in the designs. We have used
inheritance and object oriented (OO)
concepts extensively in the simulator. The
class hierarchy of the simulator is given in
Figure 3. OO techniques ensure that
similar objects have compatible external
interfaces (e.g. FU's have compatible
registers). They also make easy addition of
new objects of the same kind into the
system possible (e.g. two matchers).
Functional units that are not needed for a
certain protocol processing application can
be left out of the simulation (e.g. in the
prototype processor simulation, objects
from classes Timer and RandomGen are
not needed (figure 3)).

As the algorithms needed for internal FU functionality are well known and hardware (gate-
level or schematic level) specifications with excellent performance characteristics exist for
them, the emphasis in the simulator is to define the processor control structure, internal
signaling and the number of FU's in a way that ensures maximal protocol processing
throughput for a certain application.

2.3. VHDL Models of Processor Components
To make it possible to synthesize processors and obtain initial physical estimates we are
also working on VHDL models of TACO processors. Presently we have a model for the
processor shown in figure 1. The VHDL models for processor components are described
by using both structural and behavioral VHDL, depending on the component. FU's are
described as hybrid models: the common operations that are the same from one FU to
another (e.g. interfaces to sockets) are modeled as structural VHDL, and the parts that are
specific to each kind of FU (e.g. calculations) are modeled as behavioral VHDL. All
processor specific functions, types and constants are located in a package.
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Figure 5. TACO instruction format for a processor with three data buses. The 64 bit instruction is divided
into three 20 bit bus instructions. The four IC bits are used for long/short immediate generation.

Because of the nature of the TACO processors and the use of structural VHDL coding the
reusability level of component and subcomponent models is high. A duplicate of an FU is
created by copying the component instances related to the FU. Only the FU identification
information (source and destination ID information) needs to be modified. Common
operations inside FU models can be reused and some flexibility is achieved using
parameterized constants. As an example, a matcher FU (figure 4a) consists of three
registers, the FU manager and the match operation itself. Registers and the FU manager are
generic subcomponents and are used by all FU's. These subcomponents are included in other
FU models using component instances. The match operation is coded using behavioral
VHDL because only the matcher FU needs this operation. In figure 4b is a schematic of the
match operation for one bit and in 4c a schematic for a 32 bit all-one detector.

3. PROGRAMMING THE PROCESSOR
The prototype processor has three data buses and is programmed with 64-bit instructions
as shown in figure 5. This leaves 20 bits of instructions for each bus. The last four bits are
used for controlling the generation of short and long immediate values. TTA processors
have in essence only one instruction, move data. For this reason, the 20 instruction bits for
each bus only contain a source socket ID and a destination socket ID accompanied with
four guard bits (i.e. Guard ID, see figure 5) used for conditional execution. The 64 bit
instruction is decoded and the socket ID's distributed by the interconnection network
controller.

As presented in figure 2, some FU's have a result bit connected directly to the
interconnection network controller. With this structure it is possible to directly use the result
from an FU in guard bit evaluation. This feature is especially useful in matchers, compare
units and error check units. The interconnection network looks for a certain combination of

Guard ID Boolean Assembler Guard ID Boolean Assembler
0000   (0) a a:src -> dst 1000   (8) e e:src -> dst

0001   (1) ¬a !a:src -> dst 1001   (9) f f:src -> dst

0010   (2) b b:src -> dst 1010  (10) a ∧ b a.b:src -> dst

0011   (3) ¬b !b:src -> dst 1011  (11) a ∧ (¬b) a.!b:src -> dst

0100   (4) c c:src -> dst 1100  (12) (¬a) ∧ b !a.b:src -> dst

0101   (5) ¬c !c:src -> dst 1101  (13) (¬a) ∧ (¬b) !a.!b:src -> dst

0110   (6) d d:src -> dst 1110  (14) (¬a) ∧ (¬c) !a.!c:src -> dst

0111   (7) ¬d !d:src -> dst 1111  (15) TRUE src -> dst

Table 1. Assembler commands, Guard ID's and their corresponding Boolean expressions in the TACO
processor being prototyped (two matchers, two compare units and two counters). a = result from Matcher 1,
b = result from Matcher 2, c = result from Compare 1, d = result from Compare 2, e = Counter 1 has
reached zero, f = Counter 2 has reached zero.



MATCH (word2, pattern2);

MATCH (word1, pattern1);

COUNTER2.INCREMENT;

COUNTER1.DECREMENT;COUNTER1.INCREMENT;
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Figure 6. Block diagram of the application used for
a programming example.

the result bits specified by the Guard ID for each bus. An example of guard bits and
corresponding result bit signal conditions is shown in table 1. If the result bit signals do not
satisfy the condition specified by the Guard ID, a squash signal is sent to all sockets
connected to the corresponding data bus to terminate the specified data move. If the Guard
ID for a bus is 1111, then no evaluation is needed and the data move is carried out
regardless of the result bit signal values. This technique is similar to branch predication
used in advanced processor architectures like the IA-64 [8].

To exploit the increased parallelism offered
by three concurrent data transports in TACO
processors the assembler code of any
application must be organized in an optimal
manner. This optimization will be carried
out by a compiler that takes in program
code written in a high-level language and
yields optimized assembler code. As an
example we will consider the algorithm in
figure 6. Clearly the processing of this
algorithm would require four cycles to
complete in traditional sequential
programming (assuming each operation
takes one cycle and there is no instruction
pipeline). 

If  we consider a TACO processor with two counter FU's and two matcher FU's (already
holding the match patterns pattern1 and pattern2), we have the following assembler code
for this particular TACO processor (each line represents one 64 bit TACO instruction, i.e.
is executed in one cycle):

word1->TM1; word2->TM2; incr->TC2;  // TM1, TM2 = trigger registers of matchers 1 and 2
a.b:incr->TC1; a.!b:decr->TC1;         // TC1, TC2 = trigger registers for counters 1 and 2

The assembler code for this algorithm requires five data moves, and can be carried out in
two cycles. In the code, both of the match operations are carried out in parallel. The third
move in the first cycle is used for updating counter2 (in the original algorithm counter2 is
updated at the end of the algorithm, but updating it earlier does not have an effect on the
outcome of the algorithm). Counter1 is incremented in the second cycle only if both match
results are true, and decremented, if the result from matcher1 is true and the result from
matcher 2 is false. If the result from matcher1 is false, counter1 is not updated. Note the
utilization of conditional moves.

4. SIMULATIONS
As our first case study we created a simulation of the protocol processor presented in figure
1. As its application we used an algorithm for processing ATM AIS (Alarm Indication
Signal) cells [4]. The algorithm is used for analyzing incoming ATM cells to find out if a
cell is a regular user cell, an empty cell or an AIS operation and maintenance (OAM) cell.

The application is executed in our simulator as 32-bit data transports between the FU's. The
AIS algorithm was chosen as an example since another approach to its processing was
presented by Jantsch et al. in [5]. The control flow of the example is shown in figure 7. AIS
cells cause the system to enter AIS state, in which cells are sent from the buffer that holds
outgoing cells, and an AIS cell is inserted after every 1024 regular or empty cells. If a
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Figure 7. Control flow of the ATM AIS processing example.

Figure 9. Data bus utilization and worst case clock cycles in prototyped TACO processors. Above:
processor without dual FU's, below: processor with dual FU's. Rows represent data buses and columns
represent clock cycles. Darkened box means bus activity.

Figure 8. Part of the example's control flow 
and its corresponding assembler code.

regular cell appears at the processor input when the system is in AIS mode, the system
returns to normal processing. If an empty cell appears at the input, it is discarded. If there
are no cells to be sent, empty cells are transmitted. A part of the assembler implementation
is shown in figure 8, where each block of three instructions represents code executed in one
clock cycle.  Note in figure 8 the corresponding parts in the code (boldface) and the control
flow diagram (dotted line): the three match operations can be executed in one clock cycle
when a compare unit is used for matching an empty cell.

FIFO -> R1; // cell header mem addr from FIFO to R1
FIFO -> OMM; // cell header mem addr into MMU op reg
0 -> TRMM; // trigger data mem read with offset 0

RMM -> R2; // put mem read result into register R2
1 -> TRMM; // trigger data mem read from address R1+1
0 -> OCM1; // zero compare 1 to check if cell is empty

R2 -> TM1;R2 -> TM1; // perform OAM match operation
R2 -> TEQ1;R2 -> TEQ1; // perform empty cell compare operation
RMM -> TM2;RMM -> TM2; // perform AIS match operation 

RMM -> R3; // put data memory word to register R3 
!a.!c:0 -> OCM2; // cell not empty/not OAM -> unset AIS mode
a.!b: 0 -> OCM2; // OAM but not AIS -> unset AIS mode

a.b:1 -> OCM2; // if OAM and AIS -> set AIS mode 
1 -> TEQ2; // Test AIS mode

We also obtained results for a processor without the dual FU's, i.e. a processor with just one
matcher, counter and compare unit, for comparison purposes. The results of our simulations
are shown in figure 9 and table 2. Data bus utilizations presented in figure 9 show quite
clearly that the processor with only one matcher, counter and compare unit is not able to
take advantage of the third data bus: the third bus is used only during 19% of the cycles
needed to process an ATM cell, whereas the processor with dual FU's has a 95% bus
utilization when running this AIS processing algorithm. 

Table 2 shows that the processor with dual FU's is able to process an ATM cell 30-40%
faster than the processor without dual FU's (the increase in speed depends on the ATM cell
type received). The theoretical minimum requirement for processor clock speed is calculated
for 622 Mbps ATM, which transports approximately 1,47 million cells per second. In the
dual FU processor cycle count depends on the type of cell to be sent.
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Processor Lines of asm code Bus instructions Cycles Min. clock [MHz]

TACO 1 26 63 47 69

TACO 2 19 52 33-37 55

Table 2.  TACO processor comparison in processing ATM AIS cells. TACO 1 is a processor with one matcher,
counter and compare unit, TACO 2 has two of each.

5. CONCLUSIONS AND FUTURE WORK
We have presented a modular and scalable
microprocessor architecture for protocol processing
applications. Our design is based on the Transport
Triggered Architecture. We have implemented a
prototype processor both in SystemC and VHDL and
successfully simulated ATM AIS cell processing. The
long term goal of the project is to develop a design
environment for protocol processors that includes a
compiler, simulators and a tool for physical estimation,
as shown in figure 10. In this context we will e.g.
explore how to automatically generate VHDL code
from the simulators/executable specifications. Also an
important line of work is to study the effects of
different VLSI design methods to processor speed and
power consumption.
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