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Abstract -- Increasing performance expectations and requirements for modern
communications and networking devices call for novel solutions in hardware design. To
achieve high performance without losing flexibility, several authors have identified the need
for a special family of processors dedicated to protocol processing. In previous work we
have identified a number of common protocol processing operations. In this paper we
present a modular and scalable protocol processor architecture that has these operations
as primitive instructions. We also discuss a simulator framework and VHDL models for the
architecture. As a case study we present simulation results for ATM AIS cell processing.

1. INTRODUCTION

The design of modern networkingardware is facing new challenges because of deageasin
time to market and increasing demands on performance. This is especially truedin thir
generation mobile networks, where the convergence of traditional telephony, moder
multimediaand the internet will be used to provide totally new services to customers. |
orderto meet these increased performaregiirements and to achieve shorter developmen
times new system design technologies like System-on-Chip and ASIP have arisen.

In System-on-Chip (SoC) design the objective is to reduce the number of micr®chip
neededo build a certain system. As the name suggests, the ultimate goal is to integrate a
entire sysem to one microchip. A SoC is designed from pre-designed and reusabl
intellectual property (IP) blocks. An IP block could &g. a silicon layout of a multiplier

unit. The SoC system designer obtains IP blocks from in-house IP block designers o
possiblyfrom a third-party IP block provider, and then combines and possibly aleers th
blocksto reach &oC that matches the original specification. A SoC device can be ahy kin
of datic or programmable microchid SoC trades time-to-market and flexibilityrfo
performance and price.

An alternative approach te try to take a general purpose processor (GPP) architectlire an
increaseits performance by moving often executed instruction sequences intol specia
hardwareunits. Suckan Application Specific I nstruction-set Processor (ASIP) is designa

to perform certain specific tasks as efficiently as possiBecause ASIP’s are targdte
mainly at embedded applicatis, processor simplicity is a major design goal. In a typical
ASIP design flow the application software is profiled at assembler languagededetet
instruction sequences that occur often and that could be implemented in hardware t
improve performance. The typical size of such a detected instruction sequencg is 2-
instructions [1, 9].

We have found that in control oriented protocol processing there are certain recurrin
protocol processing operations that are in pradioelar in all communications protocols
[5, 10, 11]and that these operations typically do not fit into 2-3 instructions. By utilizing
the knowledge of such recurringperations it is possible to form programmable functiona



units that are able to perform the required processing tasks regardless of the protocol a
hand.It is notclear how the existing ASIP design approaches scale up to such functional
units. There is therefore a need for a new approach to programmable protocol processo
design.

The objective in our research proje€EACO, is to design and implement an ASIP design
environmet that is optimized for the specification and synthesis of communisation
protocol processors. A coreraponent of the methodology is to exploit functional blocks
in design of the processor. The novelty of this approatifatsno application-specific ced

or code blek identification is necessary during the synthesis of the processa. Thi
approach also generates very compact ASIP assembler code, because the fundtanality t
would normally be implemented in software is now replaced by a single assemble
instruction. The TACO environment is intended to provide the necessary toals an
functionality for generating an ASIP, its instruction set and its application program cod
from a high level protocol description using our protocol processing IP blocks.

In this paper we present a proposal for a Programmable Protocol Processor (PPP
architecture in the TACO project that has the following two properties:

1. It is flexible and scalable; it is easy to add new instructions to the proceskor an
increase its performance.
2. Its architecture is focused on moving data; a crucial component in protocols.

2. THE TACO PROTOCOL PROCESSOR
The main function of a telecom protoC® fies
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2.1. Architecture @ S i seror i
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controller unit, as seen in figure 1. The connection between a functional unit and th
interconnectiometworkis managed by input and output socket units as shown in figure 2
Eachfunctional unithas one or more operand registers, trigger registers and result registers
An operation is triggered when data is transported to a trigger register.

TTA's are in essence one instruction processors, theimsthyction being move data. Thus

the instruction word ofa TTA processor consists mostly of source and destination addresse
of sockets called socket ID's. The socket ID's are transported on ID buses fom th
interconnection network contter. There are as many ID buses as there are data buses in
the interconnection network. Upon finding its socket ID on one of the ID buses, a socke
opensthe connection between an FU and the corresponding bus on the intercamnectio
network. The maximum numbaeuf instructions i(e. data transports) that can be carried ou

in one clock cycle is equivalent to the numbedafa buses in the interconnection network

The beneti of the TTA architecture is its modularity and scalability. Functional units can
be added to the architecture or they can be refined and changed as long as they provide th
sameinterface to the sockets connecting them to the interconnection network. Tee sam
holds naturally for the interconnectiametwork. According to [2], this modularity allowseth
hardware design to be automated.

In preMous work [10] we have analyzed a number of commonly used commungation
protocolsandidentified a number of typical protocol processing elements that are apmmo
to the protocols: bitstring matching, integggmparison, checksum calculation (especially
CRC)and indexing (counters). Wireless and timing-critical protocols also need camabilitie
for maintaining timers and generating random valdisof these protocol processing task
are distinct enough to be considered for implementation as FU's.

Some protocols also benefit from protocol data unit (PDU) pre-processing (the pre-processo
in figure 1). The tasks performeaa pre-processing are protocol dependent and may mclud
synchronzation to the incoming bitstream, data integrity verification (by meahs o
performinga protocol-dependent error chemk incoming data) and incoming PDU staag

into the processordata memory (using DMA). The memory addresses of first datasword

of PDU headers can be storietb a FIFO to provide quick access to the data that rexqquire
processing. The pre-processor unit in our architecture is optional and protocol dependent.

2.2. The Processor Simulator

To test tle fundamental assumptions of the TACO framework we are at the rhomen
prototypng a processor for processing ATM cells. It features three 32-bit buseg in th
interconnectiometworkas shown in figure 2. This makes it possible to have three paralle
datatranspots in one machine cycle. The control signals in figure 2 are typical fér TT
andthus are noexplained in detail in this paper. The reader is referred to [2] for a detaile
discussion on this topic.

A functional view of the simulated processor is shown in figure 1. All of the funttiona
units in the processor are fairly simple, and well-known solutions for reasonalily fas
algorithms, gate-level schematics or even silicon layouts for all of h@sh Analyses of

the requirements and implementations of some ofRld&s as well as the motivation toeus
exactly these units can be found in e.g. [2], [3], [5], [10] and [11].

The simulator is written in SystemC [7]. Sysi€ is a C++ [6] application framework for
simulatinghardware. It provides a set of classes for descritngmon entities in hardwar
design e.g. signals, clocks etc. SystemC is distributed under an open licenses and |



supportedoy several of the major EDA companies. SystemC toegldress the verificatio
bottleneckin ASIC designinstead of going from a textual specification to a VHDL desig
directly the system specification is expressed as an executable SystemC specification

BecauseSystemC is based on C++ & |
possible to exploit all the powerfu Base Classes
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As the algorithms needddr internal FU functionality are well known and hardware (gate
level or schematic level) specifications with excellent performance ¢bastics exist for

them the emphasis in the simulator is to define the processor control structure,linterna
signalingand the number of FU's in a way that ensures maximal protocol pra@cessin
throughput for a certain application.

2.3. VHDL Models of Processor Components

To make it possible to synthesize processors and obtain initial physical estimates we ar
alsoworking on VHDL models of TACO processors. Presently we have a modelefor th
processorshown in figure 1. The VHDL models for processor components are dekcribe
by udng both structural and behavioral VHDL, depending on the component. FUJ's ar
describedas hybrid models: the common operations that are the same from one FU t
another (e.g. interfaces to sockets) are modeletragisal VHDL, and the parts that are
specifc to each kind of FU (e.g. calculations) are modeled as behavioral VHDL. Al
processor specific functions, types and constants are located in a package.
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Figure 4. Matcher FU details from VHDL description. a) overview,
b) one bit match operation, c) all-one detector.



63 44 43 24 23 4 3 0

Instruction 1 Instruction 2 Instruction 3 I1C
19 16 15 8 7 0
Guard ID Source ID Destination ID

Figure 5. TACO instruction format for a processor with three data buses. The 64 bit instruction is divided
into three 20 bit bus instructions. The four 1C bits are used for long/short immediate generation.

Becauseof the nature of the TACO processors and the use of structural VHDL coéing th
reusability level of component and subcomponent models is Aigluplicate of an FU is
created by copyinghe component instances related to the FU. Only the FU identification
informaton (source and destination ID information) needs to be modified. Coammo
operatons inside FU models can be reused and some flexibility is achieved usin
paraméerized constants. As an example, a matcher FU (figure 4a) consists ef thre
registersthe FU manager and the match operation itself. Registers and the FU maaager ar
genericsubcomponents and are used by all FU's. Teigseomponents are included in athe

FU modeb using component instances. The match operation is coded using béhaviora
VHDL because only the matcheU needs this operation. In figure 4b is a schematiceof th
match operation for one bit and in 4c a schematic for a 32 bit all-one detector.

3. PROGRAMMING THE PROCESSOR

The prototype processor has three data buses and is programmed with 64-bit instruction
asshownin figure 5. This leaves 20 bits of instructions for each bus. The last four éits ar
usedfor controlling the generation of short and long immediate values. TTA prosessor
havein essence only one instruction, move data. Forréason, the 20 instruction bitsrfo
eachbus onlycontain a source socket ID and a destination socket ID accompanied wit
four guard bis (.e. Guard ID, see figure 5) used for conditional execution. The t64 bi
instruction is decoded and the socket ID's distributed by the interconnection ketwor
controller.

As presented in figure 2, some FU's have a result bit connected directlyeto th
interconnectiometwork controller. With this structure it is possible to directly use thetresul
from an FU in guard bit evaluation. This feature is especially usefolatchers, compare
units and error check units. The interconnection network Idoks certain combinationfo

Guard ID Boolean Assembler Guard ID Boolean Assembler
0000 (0) a a:src -> dst 1000 (8) e e:src -> dst
0001 (1) -a la:src -> dst 1001 (9) f fisrc -> dst
0010 (2) b b:src -> dst 1010 (10) alb a.b:src -> dst
0011 (3) -b Ib:src -> dst 1011 (112) ad(-b) a.lb:src -> dst
0100 (4) c c:src -> dst 1100 (12) (-a)0b la.b:src -> dst
0101 (5) -C Ic:src -> dst 1101 (13) (-a) O (=b) la.lb:src -> dst
0110 (6) d d:src -> dst 1110 (14) (-a) O (=c) la.lc:src -> dst
0111 (7) -d Id:src -> dst 1111 (15) TRUE src -> dst

Table 1. Assembler commands, Guard ID's and their corresponding Boolean expressions in the TACO
processor being prototyped (two matchers, two compare units and two counters). a = result from Matcher 1,
b = result from Matcher 2, ¢ = result from Compare 1, d = result from Compare 2, e = Counter 1 has
reached zero, f = Counter 2 has reached zero.



the result bis specified by the Guard ID for each bus. An example of guard hits an
correspondingesult bit signal conditions is shown in table 1. If the result bit signals tdo no
satisfy the condition specified by the Guard ID, a squash signal is sent to all socket
connectedo the corresponding data bus to terminate the specified data move. If tidle Guar
ID for a bus is 1111, then no evaluation is needed and the data move is catrried ou
regardlesof the result bit signal values. This technique is similar to branch predicatio
used in advanced processor architectures like the 1A-64 [8].

To exploitthe increased parallelism offered
by three concurrent data transpartsTACO

processorsthe assembler code of yan \ VATCH (vordt. pat terni);
applicationmust be organized in an optima / .
mamer. This optimization will be carri

out by a compiler that takes in progna \ MATOH (vord2, pattern2): \

coce written in a high-level language @n T .

yields optimized assembler code. A% @
examplewe will consider the algorithrmi‘ STER e ‘ ‘ SoTER premeT ‘
figure 6. Clearly the processing of i \\
algorithm would require four cyclesot

complete in traditional  sequentia \ CONTER? | RCRENENT. \

programming (assuming each operatio

takes one cycle and there is no instruatioFigure 6. Block diagram of the application used for
pipeline). a programming example.

If we consider a TACO processor with two counter FU's and two matcher FU'syalread
holding the match patterngatternl andpattern2), we have the following assembler code
for this particular TACO processor (each line reprdgs one 64 bit TACO instruction, i.e.

is executed in one cycle):

wor d1->TML; wor d2->TM2; incr->TC2; [/l TM1, TM2 = trigger registers of matchers 1 and 2
a.b:incr->TCL; a.!b:decr->TCl; /I TC1, TC2 = trigger registers for counters 1 and 2

The assembler coderfthis algorithm requires five data moves, and can be carried out in
two cycles. In the code, both of the matgerations are carried out in parallel. The third
move in the first cycle is used for updating counter2 (in the origigakihm counter2 is
updatedat the end of the algorithm, but updating it earlier does not have an effect on the
outcomeof the algorithm). Counterl is incremented in the second cycle onbthfmatt
resultsare tue, and decremented, if the result from matcherl is true and the result fro
matcher2 is false. If the result from matcherl is falseunterlis not updated. Note ¢h
utilization of conditional moves.

4. SIMULATIONS

As our first case study we created a simulation of the protocol progessented in figer

1. As its application we used an algorithm for processing ATM AIS (Alarm Indicatio
Signal) cells [4]. The algorithm is used for analyzingoming ATM cells to find out if a
cell is a regular user cell, an empty cellaor AIS operation and maintenance (OAM) cell

The application is executed in our simulator as 32-bit data transports between the EU's. Th
AIS algorithm was chosen as an example since another approach to its processing wa
presentedy Jantsch et al. in [5]. The control flow of the example is shown in figureS/. Al
cells cause the system to enter AIS state, in which cells are sentifeohuffer that holsl
outgoing cells, and an AIS cell is inserted after every 1024 regular or empty cedls. If



IS AIS
OAMCOUNT = 1024
SET AISMODE

IS EMPTY

OAMCOUNT = 1024

SEND EMPTY CELL

SEND CELL /

Figure 7. Control flow of the ATM AIS processing example.

regularcell appears at the processor input when the system is in AIS mode, thm syste
returns to normal processing. If an empty cell appears at the ihputliscarded. If there
areno cells to be sent, empty cells are transmitted. Agéatie assembler implementatio

is shown infigure 8, where each block of three instructions represents code executed in on
clock cycle. Noten figure 8 the corresponding parts in the code (boldface) and thelcontro
flow diagram (dotted line): the threeatch operations can be executed in one clock cycle
when a compare unit is used for matching an empty cell.

IS AIS
OAMCOUNT = 1024
SET AISMODE

rR2 -> TML;

IS EMPTY

Figure 8. Part of the exampl€e's control flow
and its corresponding assembler code.

R2 -> TEQ;
RW -> TM2;

la.!c:0 -> OCVe;
a.!b: 0 -> OCOwe;

a.b:1 -> oCwve;

cell header mem addr fromFIFOto Rl
cell header mem addr into MMU op reg
trigger data memread with offset 0

put memread result into register R2
trigger data memread from address R1+1
zero conpare 1 to check if cell is enpty

perform OAM mat ch operation
performenpty cell conpare operation
perform AI'S match operation

put data nenory word to register R3
cell not enpty/not OAM -> unset Al S node
OAM but not AlI'S -> unset Al S node

if OAMand AI'S -> set Al S node
Test Al'S npde

We also obtained results for a processor without the dual FU's, i.e. a processor witle just on
matcher,counter and compare unit, for comparison purpodes.results of our simulatisn

are shown infigure 9 and table 2. Data bus utilizations presented in figure 9 shog quit
cleaty that the processor with only one matcher, counter and compare unit is nai able t
take advantge of the third data bus: the third bus is used only during 19% of thescycle
neededto process an ATM cell, whereas the processor with dual FU's has a %% bu
utilization when running this AIS processing algorithm.

Table 2 shavs that the processor with dual FU's is able to process an ATM cell%80-40
fasterthan the processavithout dual FU's (the increase in speed depends on the ATM cel
type received). The theoretical minimum requirement for processor sfmexd is calculate

for 622 Mbps ATM,which transports approximately 1,47 million cells per second. In the
dual FU processor cycle count depends on the type of cell to be sent.

Figure 9. Data bus utilization and worst case clock cycles in prototyped TACO processors. Above:
processor without dual FU's, below: processor with dual FU's. Rows represent data buses and columns
represent clock cycles. Darkened box means bus activity.



Pr ocessor Lines of asm code Bus instructions Cycles Min. clock [MHZ]
TACO 1 26 63 47 69
TACO 2 19 52 33-37 55

Table 2. TACO processor comparison in processing ATM AIS cells. TACO 1 is a processor with one matcher,
counter and compare unit, TACO 2 has two of each.

5. CONCLUSIONS AND FUTURE WORK
We have presented a modular and scadabl
microprocessorarchitecture for protocol procesgin
applications. Our design is based on the Transpor
Triggered Architecture. We have implemented
prototypeprocessor both in SystemC and VHDLdan
successfully simulated ATM AIS cell process The
long term goal of the project is to develop a desig
environment for protocol processors that includas
compiler,simulators and a tool for physical estimation
as shownin figure 10. In this context we will e.g
explore how to automatically generate VHDL aod
from the simulators/executable specificatioAlso an
important line of work is to study the effectsf o

different VLSI designmethods to processor speedian
power consumption. Figure 10. Lo_ng term goal of the TACO
project: a protocol processor

design environment [12].
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