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Chapter 1

Introduction

The information systems introduced by Z. Pawlak [41, 42] are used for represent-
ing properties of objects by means of attributes and their values. For example,
we may express statements concerning the color of objects if the information sys-
tem includes the attribute “color” and a set of values of this attribute consisting of
“green”, “yellow”, etc. The more general nondeterministic information systems
in which an object may have several values of an attribute were introduced by
E. Ortowska and Z. Pawlak in [37].

Several relations reflecting the indiscernibility, similarity or dissimilarity of
objects of a nondeterministic information system have been considered in the lit-
erature (see [38, 39, 40], for example). It seems that these relations have many
properties in common, and here we introduce general strong and weak preimage
relations which are suited for studying such common features.

The information about the objects of an information system yielded by differ-
ent sets of attributes may depend on each other in various ways. For example, it
may turn out that a proper subset of a set of attributes classifies the objects with
the same accuracy as the original set. Dependence spaces were introduced by
M. Novotny and Z. Pawlak [31] as a general abstract setting for studying such
informational dependency. In this thesis we consider cores, dependency relations,
independent sets, and reducts especially in terms of dense families of dependence
spaces. Dependence spaces induced by strong and weak preimage relations are
also studied. In addition to this, we introduce matrices of preimage relations and
show how we can by using a matrix represention of preimage relations determine
families of sets, which are dense in dependence spaces defined by preimage rela-
tions.

In rough set theory it is usually assumed that the knowledge about objects



is restricted by some indiscernibility relation (see [43, 45], for example). Indis-
cernibility relations are equivalences which are interpreted so that two objects are
equivalent if we cannot distinguish them by using our information. In an informa-
tion system an indiscernibility relation arises naturally when one considers a given
set of attributes: two objects are equivalent when their values of all attributes in
the set are the same.

Some of the natural indiscernibility relations encountered in nondeterministic
information systems are not necessarily transitive. Hence, we shall assume that
the knowledge about objects is given by a similarity relatibnwhich is a tol-
erance on the given univergé of objects. The loweRkR-approximation of a set
X(C U) of objects consists of elements which necessarily belony to view
of the knowledge provided bi. The upperR-approximation ofX is formed of
elements which possibly are i in light of the knowledgdz. Here we study the
properties of the above approximations and investigate the structure of the ordered
set of rough sets. We also characterize the three types of rough equality relations
defined by tolerances (cf. [28, 29]).

Our work is structured as follows. This chapter is concluded by a general
overview of the thesis. In Chapter 2 we recall some notions and notation of lattice
theory and universal algebra. In the following chapter we consider complete con-
gruences and morphisms of semilattices, which provide the basis of our further
study in the subsequent chapters. The fourth chapter is devoted to the study of in-
formation systems and preimage relations. In Chapter 5 we examine dependence
spaces and in the final chapter we investigate rough sets defined by tolerances.

1.1 Complete Congruences and Morphisms of
Semilattices

A closure operator: P — P on an ordered seP = (P, <) is an extensive,
idempotent, and isotone map. Ward [55] has shown thatisa complete lattice,
then the pointwise defined meet of any set of closure operato® @magain

a closure operator o®. This implies that the set of all closure operators on a
complete lattice is again a complete lattice with respect to the pointwise order.
Here we generalize this result by showing tha®ifs a complete join-semilattice
(i.e.,\V S exists for allp £ S C P), then the set of all closure operators Bris

a complete lattice. Moreover, we describe the joins in this complete lattice in a
novel way by applying the Knaster—Tarski Fixpoint Theorem. As a special case



we depict the join of continuous closure operators by applying Kleene’s Fixpoint
Theorem.

Consider a semilatticP = (P, V). We say that a congruenéeon P is com-
plete if each®-class has a greatest element. The set of all complete congruences
on P may be ordered with the inclusion relation. We prove that this ordered set
is isomorphic to the ordered set of all closure operator§/or<). We note that
if © is a complete congruence @ then the quotient semilattide/©, ordered
bya/© < b/Oiff (aVb)/O = b/O, is isomorphic to the se®y of the greatest
elements of9-classes ordered by the order inherited frdmWe also show that
if (P, <) is a lattice, a complete join-semilattice, a complete meet-semilattice, or
a complete lattice, then so a®/© and (Pg, <). We prove that for a complete
join-semilattice( P, <), the complete congruences @R V) are exactly the equiv-
alences which are completelyxcompatible. In addition to this, we describe for
any complete join-semilattice?, <) the closure operatdt.: Rel(P) — Rel(P),
which maps each binary relatiaR on P to the least complete congruence on
(P, V) containingR.

Let (P, <) and (@, <) be ordered sets. A mafp P — () is a complete join-
morphism if for allS C P such that\/ S exists, the join\/ f[S] (= V{f(z) |
z € S}) exists and/ f[S] = f(\V/ S). We show that ifP = (P, <) is a complete
join-semilattice, then the kernél; of any complete join-morphisrfi: P — @ is
a complete congruence OFR, V). This means that for a complete join-semilattice
P, each complete join-morphisih P — () induces a complete congrueneg
on(P, V) and a closure operatof on (P, <). We note that f[P], <), (P/Oy, <),
and(Py, <) are isomorphic complete join-semilattices, whéyeis the set of:;-
closed elements. We also point out tH#fP], <), (P/O0;, <), and(Py, <) are
complete lattices wheneveéris a complete lattice.

Let P = (P, <) be an ordered set arfil C P. Novotry [35] has defined an
equivalences on P by setting

Os={(z,y) e P*|(Vze€S)r <2 — y<z}

It is known [35] that if P is a join-semilattice, the®g is a congruence ofP, V).

We show that ifP is a complete join-semilattice, then the congrue@gas com-
plete. Consider a congruenéeon a semilatticg P, V). A subsetS(C P) is said

to be©®-dense ifOg = O (cf. [34]). We prove that if© is complete, then the
©-dense subsets d? are exactly the meet-dense (see [5], for example) subsets
of (Pe,<). We also show that for any complete congrueten a complete
join-semilattice there exists at least twodense sets. This implies that in a finite



semilattice( P, V) the number of congruence relations and closure operators is at

most2/ =1, Furthermore, we point out that this upper bound is the best possible.
In this work a Galois connectioft,*) between( P, <) and(P, >) is called a

dual Galois connection aiP, <). If (P, <) is a complete lattice, then P — Pis

a complete join-morphisms and its keragl is a complete congruence 6R, V)

such that the greatest element in thg-class of anyr € P is ><. By duality,

the kernel® ( of : P — P is a congruence ofP, A) such that for any € P,

the congruence clasg© ( hasz** as its least element .

1.2 Information Systems and Preimage Relations

A nondeterministic information system [37] consists of aletf objects, a setl

of attributes, and an indexed 9éf, } ,c 4 of value sets of attributes. Each attribute

is amapa: U — p(V,) — {0}, which assigns to every object a nonempty set of
values of the attribute(c A). We exclude the empty set because this assumption
guarantees that the similarity relations defined in a nondeterministic information
system are reflexive and that the strong and the weak indiscernibility relations
defined by an attribute set are included in the corresponding similarity relations.

In a nondeterministic information syste$h= (U, A, {V, }.c4) we may define
several information relations (see [38, 39, 40], for example). These relations are
similar in the following sense. Two objects belong to a certain strong (resp. weak)
relation with respect to an attribute sBtif and only if their values of all (resp.
some) attributes i3 are in some given relation. For example, objeceédy are
in the strong relation of similarityim(B) if and only if a(z) N a(y) # 0 for all
a € B.

We introduce preimage relations, which allow us to study in a more general
setting the common features of strong and weak relations defined in information
systems. LeU andY be nonempty setd € Rel(Y), and letf:U — Y be a
function. The preimage relation &f is defined by

fHR) =A{(z,y) e U* | f(z)Rf(y)}-

The notion of preimage relation may be extended in the following way. For any
setB of functionsU — Y, the strong and the weak preimage relation&adre
defined by

Sr(B) = {(z,y) e U* | (Vf € B)f(x)Rf(y)};
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Wr(B) = {(z.y) €U*| (3f € B)f(2)Rf(y)}.

Because in a nondeterministic information syst&me (U, A, {V,}.c4) each at-
tributea € Aisamap: U — p(V,)—{0}, strong and weak information relations
are preimage relations.

Skowron and Rauszer introduced discernibility matrices in [52]. They pre-
sented several results concerning cores, dependency relations, and reducts defined
in information systems by applying this notion. Here we introduce matrix repre-
sentations of preimage relations as a generalization of discernibility matrices.

1.3 Dependence Spaces

We present a generalized definition of dependence spaces. According to Wovotn”
and Pawlak [31], a paiD = (A,©) is a dependence space, Afis a finite
nonempty set an@ is a congruence on the semilattigg{ A), U). It can be easily

seen that if4 is finite, then each congruence gn(A), U) is complete, i.e., each
congruence class has a greatest element. Therefore our following definition of
dependence spaces is justified. We call a pai= (A, ©) a dependence space

if © is a complete congruence @p(A),U). A family of subsetsi{ C p(A) is

called dense iD if H is ©-dense.

We show that strong and weak preimage relations define dependence
spaces. Letd be a set of mapping§ — Y and let R be a binary relation
onY. Then the mapy: p(A) — Rel(U), B — Sg(B), is a complete join-
morphism(p(A4),C) — (Rel(U), 2). Similarly, the maghg: p(A) — Rel(U),

B — Wg(B), is a complete join-morphisrtp(A4),C) — (Rel(U),C). This
implies that the kernels of those maps, denote®hyA, R) and@y (A, R), re-
spectively, are complete congruences on the semilditicé), U). We also show
how we can determine dense families of the dependence spac€s (A, R))
and(A, Oy (A, R)) by applying preimage matrices.

Consider a seB C A. A subsetC' C B is said to be a reduct a8 if C'is
minimal in B/©. We characterize the reducts of any subset of a dependence space
in terms of dense families.

In a dependence spate= (4, ©), the®-classB/O = {C C A | BOC} of
any B C A has a greatest elemeaiy(B) = | J B/©. A subset’(C A) is said to
be dependent oB(C A), denoted byB — C, if Cp(C') C Cp(B). We present a
method based on dense families which for a given dependBney C' finds all



minimal subsetd of B such thatD — B.

1.4 Rough Sets

We generalize the lower and upper approximations defined by Pawlak [43]. For
any tolerance? on U the lowerR-approximation of a seX (C U) is

Xp={reU|z/RC X}
and its uppeRR-approximation is
XP={recU|z/RNX #0}.

Here z/R is the R-neighborhood{y € U | zRy} of . The setBr(X) =
XE® — Xy is referred to as th&-boundary ofX .

The idea is that objects can be observed only by the accuracy given by a tol-
erance relation?. The setXy (resp. X*) consists of elements which surely
(resp. possibly) belong t& with respect to the knowledge provided By The
R-boundary is the actual area of uncertainty. It consists of elements whose mem-
bership inX cannot be decided wheR-related objects cannot be distinguished
from each other.

The kernek: of the map®: X — X% is referred to as the uppéi-equality,
and the kernek; of the mapg: X — Xy is the lowerR-equality. We show that
the pair(%,) forms a dual Galois connection ¢p(U), C). So,~" is a complete
congruence ofip(U), U) and the greatest element in thé-class of anyX (C U)
is (X ). Furthermore, the séi(z/R)" | z € U} is ~"-dense. Similarlyxy is
a congruence ofy(U), N) such that thexx-class of anyX (C U) has(Xg)" as
its smallest element, and the et/ R | x € U} is ~z-dense.

The relatior~* N ~ is called theR-equality, and it is denoted by . Thus,
two setsX (C U) andY (C U) are =p-related if and only if exactly the same
objects belong surely t& and toY’, and precisely the same objects are possibly
in X and inY".

We say that a relatio® is a rough bottom equality if there is a tolerange
such that? = =5. Rough top equalities and rough equalities are defined in a
similar manner.

Here we present a characterization of all three types of rough equalities de-
fined by tolerances. Note thatin [28, 29] M. Novgtrid Z. Pawlak characterized
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the three types of rough equalities defined by equivalences on a finite set of ob-
jects, and in [54] M. Steinby generalized these characterizations by omitting the
assumption of finiteness.

We also generalize Pawlak’s notion of rough sets [43] by defining rough sets in
terms of tolerances. We call the equivalence classes;oR-rough sets. We also
study in our generalized setting an approach to rough sets introducedrskiwi”
[17], which is based on the fact that am¢rough setC € (U)/ =g may be
viewed as a paitXx, X %), whereX € C. Itis known that for any equivalence
E € Eq(U) the set{(Xp, X¥) | X C U} ordered by the coordinatewise order is
a Stone lattice (see e.g. [7, 10, 13, 46]). Here we show that thid Xt X %) |
X C U}, whereR € Tol(U), is not necessarily even a semilattice with respect to
the coordinatewise order jf/| > 5.



Chapter 2

Preliminaries

All general lattice theoretical and algebraic notions used in this work can be found
in[1, 2, 3, 4,5, 15, 16], for example.

2.1 General Notation and Conventions

Sets. We assume that the reader is familiar with the following notationem-
bership(€), set-builder({— | —}), subset(C), proper subse{C), union (U),
intersection(n), difference(—), complemen(®), orderedn-tuples((z1, ..., z,)),
andproducts of setéA; x --- x A,).

The notations4;, i € I, and{A;};c; refer to afamily of sets indexed by a set
I. Given a familyF of sets, the union of, | J F, is defined by: € |J F if and
only if a € Afor someA € F. Theintersection ) F of F is defined bys € (| F
ifand only ifa € Aforall A € F. For a set4, let o(A) denote thepower sebf
A, that is, the set of all subsets af

Let us writeN = {1, 2,...} andN, = {0} UN. Thecardinality of a setA is
denoted by A|. A setA is said to bdiniteif |A| = n for somen € Ny; otherwise
A isinfinite. In particular, the empty sétis finite and its cardinality i§.

Relations. An n-ary relation R on a set4 is a subset oA™. If n = 2, thenR
is called abinary relation We denote byRel(A) the set of all binary relations
on the setd. We sometimes write Rb for (a,b) € R. Theinverseof a relation
R € Rel(A)isR™" = {(b,a) | aRb}. ArelationR € Rel(A) is

e antisymmetricif for all a,b € A, aRb andbRa imply a = b;



irreflexive if for all a € A, (a,a) ¢ R;

reflexive if for all « € A, aRa;

symmetricif for all a,b € A, aRb impliesbRa;

transitive if for all a,b,c € A, aRb andbRc imply aRc.

If R is reflexive and symmetric, it is calledtalerance relation The set of
all tolerance relations onl is denoted byTol(A). For R € Tol(A), the set
a/R = {b € A | aRb} is called theR-neighborhoodof a. A tolerance rela-
tion is anequivalence relatioif it is transitive. We denote b¥iq(A) the set of alll
equivalence relations aa. Thediagonal relationof A,

Ay ={(a,a)|ac A},

and theall relation of A,
VA =Ax A,

are equivalences oA. Let F' € Eq(A). For alla € A, the E-neighborhood:/ E
is called theequivalence class af moduloE. Thequotient set oA moduloF is
the setA/FE = {a/E | a € A}.

Functions. A functionf from a set4 to a setB, denoted byf: A — B, is a subset
of A x B such that for each € A, there exists exactly ortec B with (a,b) € f,
in which case we writef (a) = b or f:a — b. The termanapandmappingare
often used instead of function. The set of all functions frarto B is denoted by
B#. For a functionf: A — B, we write for allS C A,

fIS1=Af(z) |z € S}.
The setf[A] is called theangeof f. Thepreimage setf Y (C B) is
fAY)={r e A| f(x) €Y}

The mapf: A — B is injective (or one-to-ongif f(a;) = f(ay) implies
a, = a, andf is surjective(or onto) if for everyb € B, there exists an element
a € Awith f(a) = b; thatis, f[A] = B. Furthermoref is bijectiveif it is both
injective and surjective. A map: A — A isidempotentf f(f(a)) = f(a) for all
a € A.



Fortwo mapsf: A — Bandg: B — C, letgo f: A — C be the map defined
by (g o f)(a) = g(f(a)). The mapg o f is called thecomposition(or produc)
of f andg. The mapl ,.: A — A, a — a, is called thadentity mapof A. A map
g: B — Aistheinverse mamf f:A — Bif gof =14andfog = 1. Itis
well-known thatf: A — B has an inverse map if and only/fis a bijection. The
inverse of a bijectiorf is denoted byf .

For an equivalenc& € Eq(A), thecanonical mapf F is the mapyg: A —
A/E,a — a/E. Onthe other hand, for any mgpA — B, thekernelof the map
f, which is defined by

O ={(z,y) e Ax A f(z) = fy)},

is an equivalence oA.

2.2 Orders and Lattices

Order Relations. Let P be a set. Arorder (or apartial order) on P is a binary
relation< such that, for alk, b, ¢ € P,

(1) a < aq,

(2)a<bandb <aimplya=»5 and

B)a<bandb < cimplya <e¢,
that is to say, the relatiort is reflexive, antisymmetric, and transitive. A set
P equipped with an order relatiod is said to be aordered sef{or apartially
ordered sét Many authors use the shorthapdset An order-relation< gives
rise to a relation< of strict order. a < biff a < banda # b. LetP = (P, <) be
an ordered set and &t C P. Then.sS inherits the order relatior from P: for
anya,b e S,a <binSifandonlyifa <bin P.

Letz,y € P. We say that is coveredby y (or y coversr), and writexr —< v,
if z < yandx < z < yimpliesx = z. TheHasse diagranof an ordered set
(P, <) represents the elements with small ciralesnd the circles representing
two elements:, y are connected by a straight line if one covers the other. More-
over, if z is covered byy, then the circle representingis lower than the circle
representing.
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Example 2.2.1.Let P = {a, b, ¢, d} and define the order oR so that the cover-
ing relation consists of the paifs, b), (a, ¢), (b, d), (c,d). The Hasse diagram of
(P, <) is presented in Figure 1.

N
NS

Figure 1.

Let (P, <) be an ordered set and I8tC P. Thena € S is amaximal element
of S, ifa < z € Simpliesa = z. The set of all maximal elements i is
denoted bymax S. Furthermoreq € S is thegreatest elemerdf S, if z < a for
all x € S. Minimal elementsthe seinin S, and thdeast elemendf S are defined
dually, that is to say, by reversing the order.

The greatest element &f, if it exists, is called theop elemenof P and writ-
ten T. Similarly, the least element @?, if such an element exists, is called the
bottom elemenrand it is denoted by.. If (P, <) has top and bottom elements, it
is bounded

Lattices and Semilattices as Ordered Setdf S C P, then an element € P is
anupper bounf S if a« < z foralla € S. A lower bounds defined dually. The
set of all upper bounds ¢ is denoted by5”, and the set of all lower bounds by
St

If S* has a least element, this is called thast upper bounaf S. Dually,
if S! has a greatest element, this is called gneatest lower boundf S. The
least upper bound df is also called theupremunof S and is denoted byup S.
Similarly, the greatest lower bound 6fis also called thenfimumof S and is
denoted byinf S.

We writea VV b (read as & join b") in place ofsup{a,b} anda A b (read as
“a meetd”) in place ofinf{a,b}. Similarly, we write\/ S (the “join of S”) and
A S (the “meetof S”) instead ofsup S andinf S, respectively. It is sometimes
necessary to indicate that the join or meet is being found in a particular ordered
setP = (P, <), in which case we writ&/, S or A\, S. Obviously,0* = P and
\/ 0 exists if and only ifP has a bottom elemenit; in this case/ ® = L. Dually,
A\ 0 = T wheneverP has a top element. P has a top element, thei* = {T}
and\/ P = T. By duality, A P = 1 wheneverP has a bottom element.

11



The next lemma is an immediate consequence of the definitions of least upper
bounds and greatest lower bounds.

Lemma 2.2.2. Let (P, <) be an ordered set and suppaSeand 7" are subsets of
P suchthaty/ S,\/T, AS,and \ T existinP. If S C T, then\/S <\/T and
AT <A\S. O

Let (P, <) be a nonempty ordered set. Then <) is called goin-semilattice
if for all a,b € S, the joina V b exists. Similarly,( P, <) is ameet-semilatticef
foralla,b € P, the meet A b exists. Furthermord P, <) is alatticeif it is both
a join- and a meet-semilattice.

If \/S exists for all) # S C P, then(P, <) is called acomplete join-
semilatticeand if A S exists for all) = S C P, then(P, <) is called acomplete
meet-semilatticeMoreover,(P, <) is acomplete latticeéf \/ S and A S exist for
all S C P. It can be easily seen th@ = (P, <) is a complete lattice if and only
if P is both a complete join-semilattice and a complete meet-semilattice. Now the
following lemma holds (see e.g. [5]).

Lemma 2.2.3.1f (P, <) is a complete join-semilattice, thely S exists inP for
every subse$ of P which has a lower bound i®; indeed,\ S = \/ S'. O

To show that an ordered set is a complete lattice requires only half as much
work as the definitions would have us to believe. The following lemma (see [3, 4,
5], for example), which follows easily from Lemma 2.2.3, is usually stated in its
dual form.

Lemma 2.2.4.1f (P, <) is an ordered set such thay S exists inP for every
subsetS of P, then(P, <) is a complete lattice. O

Note that in the above lemma the existencg/dfguarantees a bottom element
1,andsincel € P, A\ S exists for allS C P by Lemma 2.2.3. Hence, adjoining
a bottom element to a complete join-semilattice creates a complete lattice.

Example 2.2.5. The ordered sef, <) is a complete meet-semilattice, in which
AS =min S forall ) # .S CN. Now (N, <) is not a complete lattice, sindg S
does not exist for any infinit§ C N.

Let us consider the s& U {oo}, in which the ordek is defined by

n<m <= n <mholdsinN orm = oco.

Obviously,(NU {o0}, <) is a complete lattice.
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Let (P, <) be a lattice and) = S C P. We say thatS, <) is asublattice
of S'if a,b € S impliesaVv b € Sanda Ab € S. Similarly, if (P,<)is a
complete lattice and # S C P, then(S, <) is acomplete sublatticef (P, <)
if VH e Sand/\ H € Sforall H C S. Thesubsemilatticeand thecomplete
subsemilatticemay be defined similarly.

Let? = (P,<) andQ = (@, <) be ordered sets. A mafy P — (@ is said
to be order-preserving(or isotong, if a < b in P implies f(a) < f(b) in Q.
The mapf is anorder-embeddingif « < bin P if and only if f(a) < f(b) in
Q. Note that an order-embedding is always an injection. An order-embedding
onto @ is called anorder-isomorphisnbetweenP and Q. When there exists an
order-isomorphism betweéh and Q, we say tha®® and Q areorder-isomorphic
and writeP = Q.

A map f: P — @ is order-reversing(or antitond if a < b implies f(a) >
f(b). The mapf is adual order-embeddingf « < bin P if and only if f(a) >
f(b) in Q. A dual order-embedding ontQ is called adual order-isomorphism
in such a cas® andQ are said to belually order-isomorphicA mapg: P — P
is extensiveif © < g(z) forall z € P.

Each order-isomorphism preserves all existing joins and meets, which fact is
stated in the following lemma.

Lemma 2.2.6. Let (P, <) and (@, <) be ordered sets. If: P — @ is an order-
isomorphism and C P is such that\/ S exists inP, then\/ f[S] exists inQ and
V fIS] = f(\V S), and dual statements hold f@y S. O

Axiom of Choice, Zorn’s Lemma, and Chain Conditions. The Axiom of
Choice asserts that there always exists a map which picks one element from each
member of a given family of nonempty sets. This can be formally stated as fol-
lows.

Axiom of Choice. Given a nonempty family{ = {A;};c; of nonempty sets,
there exists &hoice functiorfor H, that is to say, a map

1€l

such thatf (i) € A, for everyi € I.
Let P = (P, <) be an ordered set. Thehh C P is achainin P if, for all
x,y € S, eitherr < yory < x. Foranyn > 1, we denote by the n-element
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chain obtained by orderingthe gt 1,...,n — 1} sothal < 1 < --- <n — 1.

Zorn's Lemma. Let # be a nonempty family of sets such thgf_, 4; € H
whenever{ 4;}c; is @ nonempty chain ifi#{, C). Then# has a maximal ele-
ment.

The following fact is well-known.
Proposition 2.2.7. The Axiom of Choice and Zorn’s Lemma are equivalent]

Let? = (P, <) be an ordered set. We say tliahasno infinite chainsf every
chain inP is finite, and thatP satisfies theascending chain conditio(ACC), if
given any sequence, < a; < --- < a,--- Of elements ofP, there exists a
k € N such thatu, = a,,1; = ... The dual of the ascending chain condition is
the descending chain conditigidpCC). It is obvious that every finite ordered set
satisfies both the ACC and the DCC. A proof of the following lemma can be found
in [5, pp. 38-39], for example.

Lemma 2.2.8. LetP = (P, <) be an ordered set.

(a) P satisfies theACC if and only if every nonempty subsgtof P has a
maximal element.

(b) P has no infinite chains if and only ® satisfies the ACC and the DCLC.

The next lemma is presented in [5] for lattices, but we show that it holds also
for semilattices. This lemma says that if a join-semilatiitsatisfies the ACC,
thenP is a complete join-semilattice. This implies also that a lattice with no
infinite chains is complete.

Lemma 2.2.9.1f P = (P, <) is a join-semilattice which satisfies the ACC, then
every nhonempty subsgtof P has a finite subset such that\/ F =/ S.

Proof. Let S be a nonempty subset éf. By Lemma 2.2.8(a), the nonempty
subset
B = {\/ F | F is afinite nonempty subset 6

of P has a maximal elemeny F' for some finite) # F C S. If a € S, then
V(FU{a}) € B.ByLemma2.2.2\/(F U{a}) > \/ F. Since\/ F' is maximal,
this impliesa < \/(F U {a}) = \V F and hence/S < \/F. AsF C S, we
obtain\/ F <\/ S by Lemma 2.2.2. O
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Closure Operators and Closure SystemsA family £ of subsets of a set is
said to be alosure systenf L is closed under intersections, which means that
forall # C £, we havg\H € L. If Lis a closure system oA, then the ordered
set(L, C) is a completen-subsemilattice ofp(A), C). According to the dual of
Lemma 2.2.4 it is also a complete lattice but the join need ta)b& herefore,
(L, C) is not usually aJ-subsemilattice ofp(A), C).

A closure operatoron a setA is an extensive, idempotent, and order-
preserving mag: p(A) — p(A), thatis to say,

(@)B C ¢(B),

(b)c(c(B)) =¢(B), and

(c) B C C'impliesC(B) C C(C)
forall B,C C A. A subsetB of A is closed(with respect t@) if C(B) = B. A
closure systenf on A defines a closure operat@r on A by the rule

Ce(B)=({LeL|BCL}
Conversely, ifC is a closure operator af, then the family
Le={BCA|C(B)=B}

of closed subsets ofl is a closure system. The relationship between closure
systems and closure operators is bijective. The closure operator induced by the
closure systent. is C itself, and similarly the closure system induced by the
closure operata€, is L. In symbols,

C(ﬁc) =C and £(C£) = L.

Note that if( is a closure system a#, then in the complete lattideC, C), \/ H =
Cc(UH)forallH C L.

An interior operatorZ: p(A) — p(A) satisfies the following three conditions:
(@Z(B) C B, (b) B C CimpliesZ(B) C Z(C), and (¢)Z(Z(B)) = Z(B). It
is known (see e.g. [24]) that each closure operétgs(A) — p(A) defines an
interior operatotZy: p(A) — p(A) by the ruleZ.(B) = C(B°)®, and similarly
every interior operator yields a closure operator. A systérof subsets of4 is
said to be ainterior systenif N is closed under unions. The relationship between
interior systems and interior operators is also bijectivé\/lis an interior system,
then the ordered sé\, C) is a complete lattice such thet# = | JH and\ H =
Iy (N H) forall H C N, whereZy is the interior operator correspondinghtt
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A closure operatof on a setA is calledalgebraicif for all B C A,
¢(B) =|J{c(F) | Fis afinite subset of3}.

Example 2.2.10.Let A be a set. The set of all equivalences 4ns a closure
system becausg|H € Eq(A) for all # C Eq(A). The corresponding closure
operator is

:Rel(A) — Rel(A), R — (J{E € Eq(A) | R C E}.

Hence,(Eq(A), C) is a complete lattice in which

AH=* and \/H=(JW?"
Moreover, the closure operatbrRel(A) — Rel(A) is algebraic.
We can also give the following description Bf°.
Proposition 2.2.11.1f Ais a set,R € Rel(A), andz,y € A, then

(r,y) € R¥ iff  (3neNy)(3cop,...,cn € A)co = 2,0, = ¥,
and c¢;Rc; 1 0rc 1 Re; forall0 <i<n-—1.

2.3 Algebras

General Concepts.For a nonempty sed and a nonnegative integerc N;, we
defineA® = {0} and forn > 0, A" is the set ofs-tuples of elements from. An
n-ary operationon A is any mapf from A" to A; n is thearity (or rank) of f.
A finitary operationis ann-ary operation for some. The image ofa, ..., a,)
under ane-ary operationf is denoted byf (a4, ...,a,). Amapf on A is called
aconstantf its arity is zero. It is completely determined by the imag(@) in A.
Hence, it is convenient to identify it with this element4f An operationf on A
is unary, binaryor ternaryif its arity is 1, 2, or 3, respectively.

A language(or type of algebras is a set’ of function symbolsuch that a
nonnegative integet is assigned to each membgof Y. This integer is called
thearity (or rank) of f, andf is said to be am-ary function symbolThe subset
of n-ary function symbols it is denoted by~,,.

16



Let X be a set of function symbols. A'-algebrais an ordered paid =
(A, F), whereA is a set and” is a family of finitary operations oft indexed by
the languager’ such that corresponding to eagkary function symbolf € ¥
there is am-ary operationf“ on A. The setA is called theuniverseof .4 and the
f*'s are called théundamental operations of. Usually we write( A, XJ) instead
of (A, F) and we often drop the upper index frofrt.

Let A = (A, Y) andB = (B, X) be two X-algebras. Ahomomorphisngor
morphisn) from A to B is a mappingp: A — B such that

p(fHar, ... an)) = fPlp(ar),. .. p(an))

holds foralln > 0, f € ¥, anday,...,a, € A.

If ¢ is injective, then it is called aembeddingThe mapy is anisomorphism
if ¢ is injective and onto. We say that is isomorphicto 3, denoted by4 = 3,
if there is an isomorphism from to B.

Lemma 2.3.1. The composition of homomorphisms is again a homomorphism,
and similar statements apply for embeddings and isomorphisms. Furthermore,
the inverse of an isomorphism is an isomorphism. O

Let A = (A, Y) be aX-algebra and le® € Eq(A). Then® is acongruence
on A if © satisfies for each-ary function symbolf € ¥ and any elements
ay,...,a,,by,...,b, € Athe followingcompatibility property

if a;0b; forall1l <i <n,thenfA(a,...,a,)0f4by,...,by).

If @ is a congruence on an algeb#dathen thequotient algebra of4 modulo
©, denoted by4 /6O, is the algebra whose universedg® and whose fundamental
operations satisfy

fA%(a,/0, ... a,/0) = fMay, ... a,)/O

wherea,,...,a, € A and f is ann-ary function symbol in¥. Note that the
guotient algebras aofl are of the same type a$. The set of all congruences on
an algebrad is denoted byCon(.A).

Proposition 2.3.2. (Con(.A), C) is a complete sublattice ¢fq(A), C). O

Thus, the congruence lattice dfis the lattice whose universe@n(.4), and
joins and meets are the same as when working with equivalence relations.
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Lemma 2.3.3. Let A and B be Y-algebras.

(a) The kerneP; of any morphisny: A — B is a congruence onl.

(b) If © is a congruence onl, then the canonical magy is a homomorphism
from A onto the quotient algebral /©. O

In the literature the following Homomorphism Theorem is also referred to as
“The First Isomorphism Theorem”.

Theorem 2.3.4. (Homomorphism Theorem)Let A = (A, ¥) andB = (B, Y)
be two Y-algebras, and letf: A — B be a homomorphism ontB. Then the
mapy: A/©; — B, a/Of — f(a) is an isomorphism between/©; and .
Furthermore, ifvo,) denotes the canonical map fraito A/6;, then the kernel
of ve,) is @, and the diagram in Figure 2 commutes, thatfsz g ov,). 0O

f
A B
Vo)
14
A/O;
Figure 2.

Lattices and Semilattices as Algebrasin Section 2.2 we saw that for a lattide
we may define the binary operations join and meetf doy

aVb=sup{a,b} and aAb=inf{a,b}

for all a,b € L. Next we present the algebraic properties of the operatiozasd
A. First we note the connections betweem\, and<.

Lemma 2.3.5.1f (L, <) is a lattice anda, b € L, then the following are equiva-
lent:

(@a<b;
(b)a Vv b=0b
(©)anb=a. O

18



The next proposition presents the characteristic properties of the operations
andA.

Proposition 2.3.6. If (L, <) is a lattice, thenv and A satisfy for alla, b, ¢ € L,

(L1) (avb)Ve=aV(bVe)

(L1)? (aAb)Ac=aA (bAc) (associative laws)
(L2) avb=bVa

(L2)? aAb=DbAa (commutative laws)
(L3) avVa=a

(L3)? aNa=a (idempotency laws)
(L4) aV(and)=a

(L4)? aA(aVb)=0b (absorption laws)]

We say that an algebid, v, A) is alattice, if L is nonempty set and andA
are binary operations oh which satisfy (L1)—(L4) and (LP)~(L4)°.

If an ordered setL, <) is a lattice, then by Proposition 2.3.6 the algebra
(L,Vv,A) is a lattice. Similarly, if an algebral, \/, A) is a lattice and we set
a < bifand only ifa v b = b (a,b € L), then the ordered séL, <) is a lat-
tice in which the original operations agree with the induced operations, that is,
a Vb =sup{a,b} anda A b = inf{a, b}.

Let (L,V,A) be a lattice. We say that has aunit (or identity) element if
there exists an elememte L such thatu A1 = a for all a € L. Dually, L is
said to have aeroif there exists & € L such thatt = a v 0foralla € L. The
lattice (L, VV, A) has a unit if and only i L, <) has a top element and in that
casel = T. A dual statement holds férand L. A lattice (L, v, A) possessing a
0 and al is obviously bounded.

Also semilattices may be defined both as algebras and as ordered setsi-A
latticeis an algebraP, o), whereo is an associative, commutative and idempotent
binary operation.

The different notions of semilattices are related as follows. (2b) be a
semilattice. The condition

a<bifandonlyifaob=1>

defines a partial ordet on P such that P, <) is a join-semilattice and\vb = aob.
Similarly, the condition

a<bifandonlyifaob=a
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defines a partial ordet on P such that P, <) is a meet-semilattice andA b =
a o b. Conversely, if(P, <) is a join-semilattice, theP, V) is a semilattice as
an algebra, and an analogical statement holds for meet-semilattices. Moreover, an
ordered setP, <) is a join-semilattice if and only ifP, >) is a meet-semilattice.
We adopt the convention that in a semilattice denoted/y) the order re-
lation is defined by, < biff a V b = b, but in a semilattice denoted By, A) the
order relation is defined by < b iff a A b = a.

Example 2.3.7.1f A is a set, then the algebfa(A), U) is a semilattice. Because
B C Cifand only if BU C = C, the corresponding join- and meet-semilattices
are(p(A), C) and(p(A), D), respectively. Similarly, the algebfg(A),N) is a
semilattice and the corresponding join- and meet-semilatticegare), O) and
(9(A), S).

If © is a congruence on a semilattiPe= (P, V), then the quotient semilattice
P/6O is a semilattice such that the join af© andb/O is (a VvV b)/6. In the
corresponding join-semilattiqgd’/©, <) the order relatior< is defined by

a/O < b/O <> (aVbh)/O =b/O.

A subsetS of an ordered setP, <) is calledconvexif x < z < y implies
z € S wheneverr,y € S. It is well-known and obvious that every congruence
class of a congruence on a semilattice is a convex subset.

Example 2.3.8.1f © is a congruence ofp(A), U), the operatox of the quotient
semilattice(p(A)/©, V) is defined byB/© v C'/© = (B U C)/6. The order
relation< onp(A)/© is defined by

B/ < C/@ifandonlyif(BUC)/0 =C/6.

The following proposition is usually presented for lattices (see [5], for exam-
ple), but it holds also for semilattices.

Proposition 2.3.9. If (P, <) and(Q, <) are join-semilattices ang: P — @ is a
map, then the following are equivalent.
(a) ¢ is an order-isomorphism between the ordered $£ts<) and (Q, <).
(b) ¢ is an isomorphism between the algeb(asV) and (Q, V).
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Proof. Obviously,y is a bijection in both cases. By Lemma 2.2.6 it is clear
that (a) implies (b).

Conversely, suppose (b) holdsalf b, theny(a) V ¢(b) = ¢(aV b) = p(b).
Thusp(a) < ¢(b) by Lemma 2.3.5. On the other handfa) < ¢(b), then
o(b) = ¢(a) V ¢(b) = p(a VvV b). Becausep is a bijection, this implie$ = a VV b
anda < b. O
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Chapter 3

Complete Congruences and
Morphisms of Semilattices

3.1 Closure Operators on Ordered Sets

In this section we consider closure operators on ordered sets, and particularly on
complete join-semilattices. Ward [55] has shown th& = (P, <) is a complete
lattice, then the pointwise defined meet of any set of closure operatafsisn
again a closure operator. This means that the set of all closure operators on a
complete lattice is a complete lattice with respect to the pointwise order. We
generalize this result by showing thafffis a complete join-semilattice, then the

set of all closure operators dnis a complete lattice. Moreover, we describe the
joins in this complete lattice in a new way by using the Knaster—Tarski Fixpoint
Theorem. We conclude this section by describing as a special case the join of
continuous closure operators by applying Kleene’s Fixpoint Theorem.

Definition. Let’ P = (P, <) be an ordered set. Then a functier® — P is called
aclosure operatoon?, if for all a,b € P,

(@ a<cla), (extensive)
(b) c(e(a)) = c(a), and (idempotent)
() a<bimpliesc(a) < ¢(b). (order-preserving)

An elementa € P is calledclosedif ¢(a) = a. The set of all closed elements of
P is denoted byP..

In the next lemma we present some basic properties of closure operators.
Equality (a) can be found in [5] and conditions (d) and (e) are presented in [12, 36].
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Lemma3.1.1.If c: P — P andk: P — P are closure operators on an ordered
set(P, <) andS C P, then

@) P = {c(a) | a € P};

(b)if P, = Py, thenc = k;

(€)e(z) = Apla € P. | x < a}foranyz € P;

(d)if \/ S exists inP, then\/ S exists inP. and\/, S = c(\/pS);

(e)if A\ S existsinP, then/\ S exists inP. and A\, S = A, S,

Proof. (b) If P. = P, thenc(z) € Py for all z € P, which impliesk(z) <
k(c(x)) = c(x). Similarly, k(z) € P, impliesc(z) < k(z). So,c(x) = k(z) for
allz € P.

() If x < a € P, thenc(z) < ¢(a) = a, which shows that(z) is a lower
bound of{a € P. | x < a}. Sincec(z) itselfisin{a € P. | x < a}, this implies
thatc(z) = Ap{a € P | x < a}. O

This lemma has the following immediate consequences.

Corollary 3.1.2. LetP = (P, <) be an ordered set and letP — P be a closure
operator.
(@) If P is a join-semilattice, thefP,, <) is a join-semilattice such that

aVb=c(aVpb)

forall a,b € P.,.
(b) If P is a meet-semilattice, thei®., <) is a meet-semilattice such that

aANb=aApb

forall a,b € P..
(c) If P is a complete join-semilattice, thefP., <) is a complete join-
semilattice such that

VS =c(Vp9)

forall) £ S C P..
(d) If P is a complete meet-semilattice, théR., <) is a complete meet-
semilattice such that

NS=NApS
forall) £ S C P..
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In particular, if(P, <) is a lattice, ther{ P, <) is lattice in which
aVb=claVpb) and aAb=aApb

for all a,b € P.. Similarly, if (P, <) is a complete lattice, thefP,, <) is a
complete lattice in which

VS=c\psS) and AS=ApS

forall S C P. (cf. [2, 55], for example).
If X is any setand = (P, <) is an ordered set, we may order the Bet of
all maps fromX to P by thepointwise order:

f <ginPXifandonlyifforallz € X, f(z) < g(z)in P.

We denote the ordered g™, <) by PX. It inherits some properties @ listed
in the next obvious lemma.

Lemma 3.1.3. Let X be a setand® = (P, <) an ordered set.
(a) If P is a join-semilattice, therPX is a join-semilattice such that for all
©Y1, P2 € PX andzx € X,

(p1 V 2)(7) = @1(z) V pa(z).

(b) If P is a meet-semilattice, theR* is a meet-semilattice such that for all
P1, P2 € PX andr € X,

(o1 Ap2) () = @1(x) A @2(),

(c) If P is a complete join-semilattice, thém* is a complete join-semilattice
such that for) # {y;}ic; € PX the supremunp = \/,_; ; is defined so that for

anyr € X,
o(x) =\ i),

(d) If P is a complete meet-semilattice, tien is a complete meet-semilattice
such that for) # {p;};c; € P~ the infimumy = Nics ¥i is defined so that for

anyr € X
p(z) = \ wil2).

el
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It is now clear that ifP is a lattice, therP¥ is a lattice in which

(p1 Vo) (@) = p1(x) Vpa(x)  and (@1 A @2)(x) = @1(x) A pa(z).
Similarly, if P is a complete lattice, theR~ is a complete lattice in which

(Vei)z) =\ eilz) and (Agi)(2) = \wil2).
el el el el
Let (P, <) be an ordered set. We denote {iy — P) the set of all extensive
and order-preserving mags P — P. Itis clear that the identity mapp: z — =
of P is the least element agf — P) with respect to the order . On the
other hand, if? has a top element, then the mapf+:z — T is the greatest
element of P — P).

Lemma 3.1.4. LetP = (P, <) be an ordered set.

(@) If P is a join-semilattice, thekP — P) is a join-subsemilattice gP”.

(b) If P is a meet-semilattice, thei® — P) is a meet-subsemilattice &f".

(c) If P is a complete join-semilattice, thel® — P) is a complete join-
subsemilattice aP”. Moreover,((P — P), <) is a complete lattice.

(d) If P is a complete meet-semilattice, théA — P) is a complete meet-
subsemilattice oP”.

Proof. We prove (c). Statements (a), (b), and (d) can be proved similarly.
Assume that the ordered set= (P, <) is a complete join-semilattice. Then
by Lemma 3.1.3P” is a complete join-semilattice. L&t# {¢;}icr C (P — P).
We denotep = \/,»{¢; | i € I}. Because each; is extensivez < ¢;(x) for all
i € I whichimpliesz < \/,-{pi(z) | i € I} = ¢(z). Moreover, it is known that
the join of order-preserving maps is again order-preserving (see [5], for example).
Hence,p € (P — P). Because P — P) has a bottom element-: z — =,
also\/ 0 exists in(P — P) and equald p. This implies by Lemma 2.2.4 that
((P — P), <) is a complete lattice. O

It is clear that ifP = (P, <) is a lattice, the P — P) is a sublattice ofP”,
and if P is a complete lattice, thef” — P) is a complete sublattice Gt

Let us denote byClo(P) the set of all closure operators gh = (P, <).
BecauseClo(P) C PP, Clo(P) has an order inherited from®”. Obviously,
lp:z — x is the least element iflo(P), and if P has a top element, then
fr:x — T is the greatest element {tio(P).

As we already mentioned, Ward [55] has shown that for a complete lattice
P, the ordered s€iClo(P), <) is a complete lattice. Our next lemma shows that
analogous statements hold for meet-semilattices and complete meet-semilattices.
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Lemma 3.1.5. LetP = (P, <) be an ordered set.

(a) If P is a meet-semilattice, thenlo(P) is a meet-semilattice with respect
to the pointwise order.

(b) If P is a complete meet-semilattice, thé€lo(P) is a complete meet-
semilattice with respect to the pointwise order.

Proof. (b) SupposeP is a complete meet-semilattice afdt H C Clo(P).
We will show thatc = A,» H belongs toClo(P). By the previous lemma
is extensive and order-preserving. It is also clear tha) < c(c(x)) for all
x € P. Letg € Handz € P. Thenc(z) = A;.y f(zr) < g(z). Because
c(c(x)) = Njen flc(x)), we gete(c(z)) < g(c(z)) < g(g(x)) = g(z). Hence,
c(e(x)) < Njer f(x) = c(z). Thus,c(c(z)) = c(z) and hence: is a closure
operator. Assertion (a) may be proved analogously. O

The ordered sefClo(P), <) is not necessarily a join-semilattice everpifis
a lattice and a complete meet-semilattice, as we see in the following example.

Example 3.1.6.Let us consider the ordered sBt= (N, <). It is well-known
thatP is a lattice in whichm VV n = max{m, n} andm A n = min{m, n} for all
m,n € N. FurthermoreP is a complete meet-semilattice such tAaf = min S
forany® # S C N,

Let us define two closure operatessandc, onP by

(n) = n+1 if nisodd
alm=1n otherwise

and o
cz(n):{n+1 if n is even

n otherwise.

It is easy to see that; A ¢ = 1y in Clo(P), but (Clo(P), <) is not a join-
semilattice because there is i@ Clo(P) such thaty, c; < c.

Next we intend to present a condition under whi€ho(P), <) is a complete
lattice. It is done with the help of fixpoints. An elemerfe P) is afixpointof a
mappingf: P — P if f(a) = a. If (P,<) is an ordered setanft P —+ P has a
least fixpointi.e., a fixpointa such that < z for all fixpointsx of f, we denote
this by 1.(f). The following well-known result can be found in [5], for example.
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Theorem 3.1.7. (Knaster—Tarski Fixpoint Theorem) If (P, <) is a complete
lattice, then every order-preserving mg@pP — P has fixpoints. In particularf
has a least fixpoint and

w(f) = Nz eP| fz) <z}
O

Let (P, <) be an ordered set. For eachc P, we denotdz) = {y € P |
z < y}. If (P, <) is a lattice, thenz) is called aprincipal filter. Obviously,[z)
inherits the order from P, <) and if (P, <) is a complete join-semilattice, then
([z), <) is a complete lattice which has the bottom elemerfor any extensive
mapf: P — P, let f,: [x) — [z) be the restriction of to [x).

Our next proposition shows how we can find for an extensive and order-
preserving may the smallest closure operator abgie

Proposition 3.1.8.Let P = (P, <) be a complete join-semilattice and suppose
[ € (P — P). The functionf: P — P defined so thaf(z) = u(f,), for all
x € P, is the smallest closure operator aboyén P”.

Proof. Let x € P. BecauseP is a complete join-semilatticé[z), <) is a
complete lattice. This implies by the Knaster-Tarski Fixpoint Theorem that the
function f,:[x) — [z) has a least fixpoint(f,). Next we show thayf: P —
P,x — p(fz), is a closure operator.

It is obvious thatu(f,) € [z), which impliesz < f(z). If z < y, then
f:(a) = f,(a) for all a € [y). Sincea = f(y) is a fixpoint of f, anda € [y),
we obtainf,(a) = f,(a) = a. Thus,a is also a fixpoint off,, which implies
f(z) < a = f(y). Itis clear thatfs,(a) = f.(a) foralla € [f(z)) and f(z)
is the least element ifif (). Hence,f7,(f(x)) = fu(f(z)) = f(z) and thus
f(x) is the least fixpoint of 7. This givesf (f(z)) = u(f.)) = f(2).

Becauser < f(z), we getf(z) = f.(z) < f.(f(x)) = f(x), which implies
that f is abovef in P”. Suppose is a closure operator which is aboygthat is,
f(z) < c(z)forallz € P. Thus, f(c(z)) < c(c(z)) = c(z) < f(c(zr)) which
implies f (c(z)) = ¢(x) and especially, (c(z)) = ¢(x). Thenc(x) is a fixpoint of
f. and hencef (z) < c(z). O

By our next lemma the map — f is a closure operator.
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Lemma 3.1.9.If P = (P, <) is a complete join-semilattice, then the map
(P Py (P—=P),frf

is a closure operator.

forallz € P. Letz € P. Becausgj(z) € [z), we haveg(z) < f.(9(z))

f(g(x)) < 9(g(z)) = 9.(9(x)) = g(z). Thus,f.(g(x)) = g(x) and hencg(x)
a fixpoint of f,,, which impliesf (x) < g(z). Thereforef < g holds. O

Proof. It is clear thatf < f andf = f. Supposef < g. Thenf(z) < g(z)
IS

Next we present a proposition which generalizes the result of Ward by showing
that(Clo(P), <) is a complete lattice whenev@ris a complete join-semilattice.

Proposition 3.1.10.1f P = (P, <) is a complete join-semilattice, then
(Clo(P), <) is a complete lattice in which

VH=VpH and AH=A\p-H

forall ) # H C Clo(P). Moreover,1p: z — x is the least element anft: z —
T is the greatest element (flo(P), <).

Proof. We have seen thé&€Clo(P), <) has the bottom element— z. SinceP
is a complete join-semilattic® has the top element = \/ P. This implies that
(Clo(P), <) has the top elemerftr:z +— T. If 0 # H C Clo(P), then\/,» H
is extensive and order-preserving by Lemma 3.1.4. This implies by Proposition
3.1.8that\/ H = \/pr H in (Clo(P), <).

Obviously, H has a lower bound +— z in Clo(P). BecauseP and hence
PT are complete join-semilatticed,,» H exists by Lemma 2.2.3. By the proof
of Proposition 3.1.5\ ,» H is a closure operator and henge = A,» H in
Clo(P). O

Next we present two examples concerning closure operators.

Example 3.1.11.If we define the ordeK on P = {1,2,3} so thatl < 3 and
2 < 3, and1 and2 are incomparable, theh = (P, <) is a finite join-semilattice
andClo(P) contains four elements:

ci: 1—1,2—2,3—3;
c: 1—1,2—3,3—3;
c3: 1+—3,2— 2,3~ 3;
cy: 1—3,2—3,3— 3.

The Hasse diagram @€lo(P), <) is given in Figure 3.
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Figure 3.
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Example 3.1.12.Let us consider the sé&f,, = N U {oo}, in which the order
relation< is defined by

n<m <= n<mholdsinN or m = co.

It is clear thatP = (N, <) is a complete lattice. The closure operatarandc;
are defined orP by

n+1 ifn(e N)isodd
ci(n) =< n if n(€ N) is even
00 if n = oo;

and

n if n(e N) is odd

00 if n =o00.

n+1 if n(€ N) is even
c2(n) =

Now f = ¢; Vpr ¢y is defined by

Fn) = 00 if n = oo,
| n+1 otherwise
The mapf is not a closure operator and thi (P) is not a join-subsemilattice

of PY. For allz € N, the functionf,: [z) — [z) is defined by

00 if n = oo,
Je(n) = { n+1 otherwise
It is obvious thatco is the only fixpoint off,, for all z € N,,. Thus, the map

f:x + oo is the join ofc; andc, in Clo(P).

Next we consider a special type of maps (P — P) such thatf: P — P
has a more constructive description. [t <) be an ordered set affic S C P.
ThenS is said to balirectedif F“ N S # ( for all finite F C S. The following
lemma appears in [5], for example.
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Lemma 3.1.13.Let (P, <) and(Q, <) be ordered sets. ID is a directed subset
of Pand f: P — ( is an order-preserving map, thefiD] is directed. O

An ordered setP, <) is a CPO (a complete partially ordered sgtf (a) P
has a bottom element and (§) D exists for every directed subsBtof P. If we
disregard (a), we say thaP, <) is apre-CPQ We use the special notatibf D in
place of\/ D when we want to emphasize that the Beis directed. It is obvious
that each complete join-semilattice is a pre-CPO.

Let (P, <) and(Q, <) be pre-CPOs. Thefi: P — (@ is acontinuousmap if

f(L|p)=| | fID]

for all directedD(C P).

It is a well-known fact that each continuous map is order-preserving; namely,
if a < b, then{a, b} andf[{a,b}] are directed, and hengéa) < f(a) L f(b) =
flaib) = f(b).

LetP = (P,<)andQ = (@, <) be pre-CPOs. We denote by — Q] the
set of all continuous maps frof? to Q. It is now clear thaf? — Q] has an
order inherited fronQ?”, and if Q has a bottom elemert, thenf,:z — L isthe
bottom element of P — Q).

It is known that{P — Q] is a pre-CPO and itis a CPO@ is a CPO (see [5],
for example). In the next lemma we present a version of this result for complete
join-semilattices.

Lemma 3.1.14.1f P = (P, <) is a complete join-semilattice, the® — P]is a
complete join-semilattice with respect to the pointwise order.

Proof. It suffices to show thap = \/,»{¢; | i € I} is continuous whenever
0 # {p;|i€ I} C[P— P].LetD be adirected subset éf. Then

o D)= V‘Pi(u D)= \/(|_| pi(x)),

because each; is continuous. It is clear thap;(z) < ¢(z) < |,cp ()
forall i € I andz € D (note that{e(xz) | x € D} is directed, because
¢ is order-preserving). Thus$,| ., ¢i(z) < |],cp () forall i € I and so,

VieI(UzeD pi(r)) < UzED ¢(r). Hence,

e |D) = V(]| eitx) < | | o(x) =] |elD].

i€l zeD reD
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Becausep(z) < ¢(| | D) holds for anyz € D,

| JelD] = | | e(x) < o( | D).

xeD
Now we have proved that(| | D) = | | ¢[D]; it means that is continuous. [
The following well-known result can be found in [5], for example.

Theorem 3.1.15. (Kleene’s Fixpoint Theorem)Let (P, <) be a CPO and let
f: P — P be continuous. Then

u(f) = | {7 i> o,

where f*(z) is defined byf°(z) = x and f**'(z) = f(f%(z)) for all i > 0 and
x € P. U

By Kleene’s Fixpoint Theorem and Proposition 3.1.8 we can write the fol-
lowing lemma, which describes the smallest closure operator above a continuous
f € (P — P). Recall that every continuous map is order-preserving and therefore
we may leave out the assumptiofifs order-preserving” from our next lemma.

Lemma 3.1.16.1f P = (P, <) is a complete join-semilattice anl P — P is a
continuous and extensive map, then

fx)=| {fi(=)]i=0}
forall z € P.

Proof. BecausepP is a complete join-semilattice anfl € (P — P), the
function f: P — P,z — u(f,), is the smallest closure operator abgte Let
x € P. Itis clear that([z), <) is a complete lattice in whicl is the bottom
element, and that the mgp: [xr) — [z) is continuous. This implies that(f,)
can be obtained by using Kleene’s Fixpoint Theorem. Sjfy¢e) = f(a) for all
a € [x), we obtain

F@) = ulfe) = | () (x) i =0} =| [{fi(=)|i=>0}
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The previous lemma and Proposition 3.1.10 have the following corollary
which describes the joins of subsets of continuous closure operators. Note that
by Lemma 3.1.14, the may ,» H is continuous for alH C [P — P], and by
Lemma 3.1.4)\/,» H is extensive for alH C (P — P).

Corollary 3.1.17. Let P = (P, <) be a complete join-semilattice. H is a
nonempty subset @flo(P) such that eackc € H is continuous, then for the
supremum off in (Clo(P), <),

(\/ H) (@) = L{(Vpr H)i(z) | i > 0}
forall z € P.

Example 3.1.18.It can be seen that the closure operatgrandc, defined in Ex-
ample 3.1.12 are continuous. We form the join:péindc, by applying Corollary
3.1.17. The join; Vpr ¢y is defined by

Fn) = 00 if n = oo,
| n+1 otherwise
It is easy to see that for alle N,

o= {2

n +1 otherwise

Then| [{fi(n) | i >0} = | {n,n+1,...} = coforall n € Nand| |{f(co) |
i >0} =|J{oo} = 0. Thus, the mapN,, — Ny, z — oo is the join ofc; and
¢z in (Clo(P), <), as we already saw in Example 3.1.12.

Not every closure operator in a complete join-semilattice is continuous as we shall
see in the next example.

Example 3.1.19.Let us consider the s&tU { T, T, } in which an order relation
< is defined by

a<b iff a<bholdsinN
or aeNandb=T;
or b=T,.

Let ¢ be the closure operator on the complete lattiSe) { T, T}, <) defined by

()_ Ty ifn:Tlorn:Tg,
=1 n ifneN

The mapc is not continuous since for the directed subSetve gete(] |N) =
C(Tl) =Ty andL] C[N] = |_|N = Ty.
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3.2 Complete Congruences on Semilattices

We continue now by considering complete congruences on semilattices. These
are congruence® on a join-semilatticé® = (P, V) such that eacl®-class has a
greatest element. Complete congruence generalize congruences on finite semilat-
tices, since for every congruen€eon a finite semilatticé P, V), the congruence
classz/© = {z1,...,z,} ofanyz € P has a greatest element \ --- V x,,.

We will show that complete congruences on a complete join-semilattice are ex-
actly the equivalences which satisfy the completeompatibility property. The

set of all complete congruences Brmay be ordered by the set inclusion relation.
We prove that this ordered set is isomorphic to the set of all closure operators on
(P, <). This implies that if( P, <) is a complete join-semilattice, then the set of

all complete congruences @his a complete lattice with respect to the inclusion
relation, but it is not necessarily a sublattice(6fon(P), C). We show that if

O is a complete congruence @n, then the quotient semilattice/©, ordered
bya/© < b/6 if and only if (a \VV b)/© = b/O, is isomorphic to the seby of

the greatest element 6f-classes ordered by the same ordePad\Ve also point

out that if (P, <) is additionally a lattice, a complete join-semilattice, a complete
meet-semilattice, or a complete lattice, then so (@¢O0, <) and (Pg, <). We

end this section by describing the closure operétoRel(P) — Rel(P) which

maps eaclR? € Rel(P) to the least complete congruence on the complete join-
semilattice( P, <) containingR.

Definition. A congruence® on a semilatticé P, \V) is acomplete congruendé
each congruence clasg® has a greatest elemenj(x).

Example 3.2.1.Let A be a sety € A, and let© be the congruence on the semi-
lattice (p(A), U), which has the congruence classes

O, = {XCA|zeX);
Cy = {XCA|z¢X)

The congruenc® is complete, sinc€’; has the greatest elemeAtandC, has
the greatest element — {z}.

Note that® is also a congruence on the semilattigé A), N) such that its
congruence classes have a least elem@&nhas a least elemeft:} and( is the
least element of5. In Section 3.5 we consider such congruences on a semilattice
(P, A) that each congruence class has a least element.

33



In the next lemma we give some basic properties of complete congruences.

Lemma 3.2.2. If © is a complete congruence on a semilattiée\/) andz, y €
P, then

(a) (‘/Ev C@(‘/E)) S 8’

(b) co(z) = V /0,

(©) x < colx);

(d) zOy if and only ifco () = co(y);

(€)co(z) = colco(x));

(f) z < yimpliesce(z) < co(y).

Proof. Statements (a), (b), (c), (d), and (e) are obvious. Becagtigg () and
yOco(y), also(z V y)O(co(x) V co(y)) holds. Thuse(z) V co(y) < co(z V y).
If <y, thence(z) < co(z)Veco(y) < co(zVy) = col(y), which proves (f).

We denote byCon.(P) the set of all complete congruences on a semilattice
P = (P,V). Itis obvious thatCon.(P) C Con(P), andCon.(P) = Con(P) for
every finite semilattic® = (P, V).

The next proposition generalizes some results presented in [35] for finite join-
semilattices. In particular, we show that the correspondence between the closure
operators and complete congruences on a semilattice is bijective. Statement (a)
follows from Lemma 3.2.2. If we check the proof of the theorem of Noy¢8%]
corresponding to (b), we see that he uses only the “completeness” property, i.e.,
that every congruence class has a largest element, and not finiteness as such. Thus,
the proof of (b) can be omitted. It is also proved in [35] that> co andc — O,
are mutually inverse bijections. We note that Day presents similar connections for
complete semilattices in the sense of [6]

Proposition 3.2.3. Let? = (P, V) be a semilattice.

(@) If © is a complete congruence dn, thencog: P — P,z — co(x), is a
closure operator onf P, <).

(b) If ¢ is a closure operator o P, <), then its kerneP, is a complete con-
gruence onP such that the greatest element in tBe-class of anyr € P is
c(x).

(c) The mapping® — co andc — O, form a pair of mutually inverse order-
isomorphisms between the ordered set of closure operéfirgP), <) and the
ordered setCon.(P), C) of complete congruences ¢h
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Proof. (c) We show that the mag3 — co andc — O, are order-preserving.
Let @, 2 € Con.(P) and suppose tha® C (2. For anyx € P, (z,co(x)) €
© C 2 implies thatcg(z) < co(z), and henceo < cp holds inClo(P). Thus,
O — cg is order-preserving. On the other hand, assumedhatk in Clo(P).
If (z,y) € O, thenc(z) = c(y) which impliesz < ¢(z) = ¢(y) < k(y) and
furthermorek(z) < k(k(y)) = k(y). Similarly,y < ¢(y) = ¢(z) < k(x) and
k(y) < k(k(x)) = k(x). Thus,k(x) = k(y) which implies(z,y) € ©,. Hence,
O, C O holds inCon.(P). Thus, alsa: — O, is order-preserving.

Because the order-preserving méps- co andc — @, are by [35] mutually
inverse bijections, they are also order-isomorphisms. O

Proposition 3.2.4. Let (P, <) be an ordered set.

(@) If (P, <) is a lattice, then the set of all complete congruencesPon-
(P, V) is a meet-semilattice with respect to set inclusion such that fé? @,
Con.(P),

O1NBOy =061 N0O,.

The greatest element in thi@; A ©,)-class of anyr € P is ce, (z) A co,(x).

(b) If (P, <) is a lattice which also is a complete meet-semilattice, then the set
of all complete congruences n = (P, V) is a complete meet-semilattice with
respect to set inclusion such that

NH=(H
forall ) # H C Con.(P). The greatest element in tie H-class of any: € P is
N{co(z) | © € H}.
(c) If (P, <) is a complete join-semilattice, then the set of all complete con-

gruences orP = (P, V) is a complete lattice with respect to set inclusion which
has the bottom elementp, the top elemen¥ p, and for allp) # H C Con.(P),

NH=()H and \/H=06;

wheref = \/,r{co | © € H}. The greatest element in thg H-class of any
v € Pis N{co(r) | © € H} and the greatest element in theH-class of any
z € Pis f(x).

Proof. (b) Let (P, <) be a lattice, which is also a complete meet-semilattice
andlet) # H C Con.(P), whereP = (P, V). Itis clear thaf) H is a congruence
on (P, V) (see [3], for example). Let € P. Foranyf? € H, x < cp(x) implies
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thatr < A{co(z) | © € H} < cp(z) and hencéz, A{co(z) | © € H}) € 12,
because congruence classes are known to be convex. Henggco(z) | © €
H}) € (H. Supposéz,y) € () H. Thisimpliesy < co(x) forall® € H, and
thusy < A{co(z) | © € H}. So,A{co(z) | © € H} is the greatest element in
the(") H-class ofz. The proof of (a) is analogous.

(c) Let P be a complete join-semilattic@d, # H C Con.(P), andz € P.
Becauser < co(z) forall © € H, the sef{co(z) | © € H} has a lower bound
in P. So, by Lemma 2.2.3\{co(z) | © € H} existsinP. Itis clear tha{) H is
a congruence ofP, V) and by the proof of (b)A\{ce(z) | © € H} is the greatest
element in th¢) H-class ofz. Thus,(| H is a complete congruence and hence
ANH=(H.

BecauseP is a complete join-semilatticeC{o(P), <) is a complete lattice by
Proposition 3.1.10. Let us denofe= \/,r{co | © € H}. Then by Proposition
3.1.10,\/{co | ©® € H} = fin (Clo(P), <). This implies by Proposition 3.2.3(c)
that\/ H = @5 in (Con.(P), C) and Proposition 3.2.3(b) implies that the greatest
element in they/ H-class ofr is f(z). O

By Example 3.1.6(Con.(P), <) is not necessarily a join-semilattice, even if
(P, <) is a lattice and a complete meet-semilattice. Moreover, in cases ®hen
is a complete join-semilattice, the complete latti€en.(P), <) is not always a
sublattice of Con(P), <).

Example 3.2.5. Let us consider the s@&,, = R U {oo}, whereR is the set of
real numbers. The ordet is defined orR,, so that

r <y <= z <yholdsinR ory = oco.

In addition, we denotér, y| = {z € R | z < z < y}. Let us define two complete
congruence®), O, on the semilattic® = (R, V), wheremVn = max{m, n},
such that
Ro/01 = {...(0,2],(2,4], (4,
Ryo/02 = {...(—1,1],(1,3],(

If we denote byc;: R, — Ry, andes: R, — R, the closure operators corre-
sponding ta®@; and®,, respectively, then it is easy to see that

{ [z] +1 if [z]is odd

6],...,(2k, 2k +2],...,{oo}};
3.5),....(2k — 1,2k +1],..., {oo}}.

[z] if [x] is even
00 if x = oo;

c(z) =
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and
[z] +1 if [z] is even
co(x) = { (2] if [2] is odd

00 if £ = o0,

where[z] is the least integer greater than or equaktdNow f = ¢; Vpr cs IS
defined by

f(x):{oo if z = oo,
[z] +1 otherwise
It is obvious thatxo is the only fixpoint off in R,,. Hence, the map: R,, —
Ry, z — 00, is the join ofc; ande, in (Clo(P), <). We can easily see that the alll
relationR,, x R, is the complete congruence corresponding tohus,R., xR,
is the join of@; and®, in Con.(P).

Note that the join 0B; and®, in (Con(P), <) isR x R U {(o0, c0)}, which
has two congruence clasgésind{oco}. This congruence is not complete because
the congruence clag&does not have a greatest element.

Let © be a complete congruence 0R, V). In the sequel we shall study the
quotient semilatticéP/©, V) more closely. We denote by, the set of all great-
est elements ob-classes:Py = {co(x) | x € P}. In the next lemma we list
some simple properties é%.

Lemma 3.2.6. Let® and {2 be two complete congruences @i V) andz € P.
(a) Po = Py, implies@ = (2,
(b) co(w) = Ap{z € Po | < 2};
(©)forall z € Py, z < ziff co(z) < 2.

Proof. (a) Supposé’s = P,. Then by Lemma 3.1.1(k)y = cq,, which im-
plies® = (2 by Proposition 3.2.3(c). Equation (b) follows from Lemma 3.1.1(c).
(c) Letz € Po. If x < z, thencg(z) < co(z) = z. On the other hand,

co(x) < zimplies trivially x < co(x) < z. O

If © is a complete congruence on a semilatti¢éV), then(P/O,V) is a
semilattice such that/© v b/© = (a Vv b)/©. Our next proposition shows that
(P/O,V) and (Pg, V) are isomorphic. Note that the join iRy is defined by
aVb=cglaVpb)foralla,be Pp.

Proposition 3.2.7.1f P = (P, V) is a semilattice an® is a complete congruence
on P, then the map: a/@ — cg(a) is an isomorphism betwed®/O, V) and
(P@7 \/)
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Proof. BecausePy consists of the greatest elements RfO-classesy is
obviously a bijection. Iz, b € P, then

p(a/OVpob/O) = ¢(co(a)/O Vpe co(b)/O)
= ¢((cola) Vpca(b))/O)
o(co(a) Vp co(b))
o(a) Vpy co(b)
p(a/O) Vp, p(a/O).

|
o

|
o

S0, is also a homomorphism. O

Recall that the order relation if/© is defined bya/© < b/6 if and only if
(aV b)/© = b/O. Proposition 3.2.7 implies that

(3.1) a/O <b/O = cola) < co(b).

Next we show that if P, <) is a lattice, ther{ P/©, <) is a lattice, and similar
statements hold wheP, <) is a complete join- or meet-semilattice.

Proposition 3.2.8. Let© be a complete congruence on a semilattieV).
(@) If (P, <) is a lattice, then(P/©, <) is a lattice in which

a/ONVb/O = (aVph)/O;
a/ONb/O = (cola) Apco(b))/O

forall a,b € P.
(b) If (P, <) is a complete join-semilattice, thé?/©, <) is a complete join-
semilattice in which

V{z/@ |z € S} =(VpS)/O

forall) £ S C P.
(o) If (P, <) is a complete meet-semilattice, thefy ©, <) is a complete meet-
semilattice in which

Mz/O |z € S} = (Aplcolz) |z € 5})/0
forall) £ S C P.
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Proof. (a) Of course, the identity/© v b/© = (a Vp b)/O holds for any
congruence® on a join-semilattice. Suppose now th@, <) is also a lattice
and consider any elemenisb € P. Becauseg(a) > col(a) Ap co(b), we
obtain thata/© = ce(a)/O > (co(a) Ap co(b))/O. Similarly, we can show that
(co(a) Np co(b))/© is alower bound 0b/6O.

Supposer/© is a lower bound for/© andb/©. Thenz/6© < /O and
z/O < b/O imply co(z) < co(a) andco(z) < co(b) by (3.1). Thusge(z) <
co(a) Ap co(b) < colco(a) Ap co(b)), which means that/© < (co(a) Ap
co())/©.

(b) Supposé P, <) is a complete join-semilattice arfid# S C P. Because
x <\/Sforallz € S,we haver/© < (\/S)/O forall z € S, thatis,(\/ S)/©
is an upper bound dfz /@ | = € S}. If y/© is an upper bound dfz /O | z € S},
thenz/© < y/6 andcg(z) < co(y) for all z € S by (3.1). Thus,

co(y) = Vp,{co(r) |z € S} = co(Vp{co(z) |z € 5}),

which impliesy/© > (\/p{cow) | * € S})/O by (3.1). Because < co(z) for
allz € S,we get\/, S < \/p{co(z) | z € S}. Therefore,

(Vp5)/0 < (Vpico() |z € 5})/0 < y/6.

Hence \/{z/O |z € S} = (\/pS5)/6O.

(c) Suppose( P, <) is a complete meet-semilattice afid# S C P. If
a € S, thenco(a) > Ap{co(z) | = € S}, which impliesa/© = co(a)/O >
(Apfco(z) [z € S})/O.

Suppose thay/O is a lower bound fo{z/© | z € S}. Theny/O < z/6
andco(y) < co(x) forall x € S. Thus,co(y) < Ap{co(z) | x € S}) <
co(Ap{co(z) | z € S}), whichis equivalenttg/© < (Ap{co(z) |z € S})/O.

U

It is clear that if( P, <) is a complete lattice an@ is a complete congruence
on (P,V), thenP/© is a complete lattice in which the joins and the meets of
nonempty subsets are formed as in the previous proposition. Mord®t@rhas
the bottom element /© and the top element /6.

Definition. Let P = (P, <) be a complete join-semilattice and ete Rel(P).
We say that® has thecompletev-compatibility propertyif for every nonempty
index set/ and anyz;,y; € P (i € I),

z;:0y; forall i € Iimplies(\/ z:)O(\/ ;).

i€l el
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In the next proposition we show that in a complete join-semilattice the equiv-
alences having the completecompatibility property are exactly the complete
congruences.

Proposition 3.2.9. Let (P, <) be a complete join-semilattice and Iét be an
equivalence orP. Then® has the complete-compatibility property if and only
if © is a complete congruence.

Proof. Suppose that an equivalen®ehas the complete-compatibility prop-
erty. Then obviously is a congruence ofP, V). Consider any: € P and let
z/O = {x; | i € I} for somel # (. Becauser;0z for all i € I, we have
\VA{z; | i € I}Oz. This means that/© has the greatest elemeyi{z; | i € I'}.

Conversely, i© is a complete congruence OR, V) and! is a nonempty index
set such that,;@y; for all i € I, then by Proposition 3.2.8(b),

(Vpi{wi|i€1})/0 = Vpe{ri/O|icl}
= Vplvi/O i€ I}
= (Vplwiliel})/O.

So,(\/ =z:)0(\/ w:). 0
el i€l

Remark. Day [6] defines complete join-semilattices as ordered Bets (P, <)
in which'\/ S exists for everyS C P; this means thaP is actually a complete
lattice. Moreover, an equivalené2 on P is a congruence on R according to
Day'’s terminology, if(\/,.; #:)O(\/,c; ¥:) for every set(z;,y;) C ©, wherel is
an arbitrary index set.

By Proposition 3.2.9 it is easy to observe that in a complete lakiee( P, <)
a binary relatior® € Rel(P) is a complete congruence 6R, V) if and only if ©
is a congruence oR in the sense of Day. Of course,=\/ 0 is always congruent
with itself. Thus, our concept of complete congruences is a generalization of
Day’s congruences, since it is applicable to all kinds of semilattices.

Consider a complete join-semilattige = (P, <). At the end of this section
we intend to describe for anj € Rel(P) the smallest complete congruence on
‘P containingR. The following proposition can be found in [3], for example.

Proposition 3.2.10. For any algebraA, there is an algebraic closure operator
0:Rel(A) — Rel(A), R — [ |{© € Con(A) | R C 6},

such that the closed elementsil(A) are precisely the congruences gh [
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For an algebrad = (A, ¥) and an arbitraryX C A, let §(X) denote the
congruence generated By x X, that is, the smallest congruence such that all
elements ofX are in the same congruence class. The congruéf{eeb}) will
be denoted by)(a,b) and it is called grincipal congruence It is known (see
[3, 16], for example) that for alk C A,

0(X) =\/{0(a.b) | a,b € X}.

LetP = (P, <) be a complete join-semilattice. Since by Proposition 3.2.4(c)
R € Con.(P), for all R C Con.(P), alsoCon,(P) is a closure system. Thus,
there exists a closure operathron P x P such that the closed elementsfk P
are exactly the complete congruences(éhVv). Moreover, for anyX C P,
we denote byd.(X) the smallest complete congruence (@ V) such that all
elements ofX are in the same congruence class.

Example 3.2.11.Let us consider again the complete join-semilattig , ) de-
fined in Example 3.1.12. For any finite subsetf N,

0.(S) = Ay, U{(z,y) | min S < z,y < max S}.
It is easy to see tha@t(N) = N, x N, and that
| J{0.(F) | Fis afinite subset o} = N x NU {(c0,00)}.
This shows that the closure operatiprRel(N) — Rel(N) is not algebraic.

Let P = (P, <) be a complete join-semilattice and {tbe a congruence on
(P,V). Let us consider the functioh®: P — P,z — \/x/©. BecauseP is a
complete join-semilattice and/© # 0, $° is a well-defined map. Note thatéf
is a complete congruence ¢R, V), thend® = cq, i.e.,d°(z) = co(x) for all
r e P.

Example 3.2.12.Let us consider the complete latti(H,,, , <) defined in Exam-
ple 3.1.12. Le® be the congruence oR = (N, <) which has the congruence
classesN and{oc}. Foralln € N, \/n/© = \/N = co. Hence, the map
?9:N,, — N, is defined byr — oo for all v € N.

The following lemma shows th&t® € (P — P).
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Lemma 3.2.13.1f P = (P, <) is a complete join-semilattice ared is a congru-
ence on(P, V), then the ma@®: P — P is extensive and order-preserving.

Proof. The factz € z/6 implies thatr < ¢°(z) for all z € P, that is,®®
is extensive. Suppose< y. If z € /0, thenz vV yOx V y = y, which implies
z<zVy<\y/O.Thus\/z/O < \/y/O andd® (z) < #°(y). Henced® is
order-preserving. O

By the previous lemma thimdi?: P — Pisextensive and order-preserving.
By Proposition 3.1.8, the map® is a closure operator. In the next lemma we use
this fact.

Proposition 3.2.14.1f P = (P, <) is a complete join-semilattice an® €
Rel(P), thenf.(R) is the complete congruence induced by the closure operator
POR),

Proof. Let us denote the complete congruence induced by the closure operator
@0(R) simply by ©. First we show thakk C O. If (z,y) € R, then(z,y) € 6(R)
and sod?(?) () = ¢ (y). Thus, alsab?(®) (z) = $?(R)(y) and hencdz, y) €
O.

Suppose? is a complete congruence which contaiisThend(R) C 6((2)
2, which implies for allz € P, z/0(R) C z/£2 and sod’®) (z) = \/ 2/0(R)
/02 = co(z). So,P/R) () < tn(x) = co(z) forall z € P. Thus,®
O, = 2.

CIINIA I

3.3 Complete Morphisms of Semilattices

In this section we study complete join- and meet-morphisms. A complete join-
morphism is an order-preserving map which preserves every existing join. It is
known that the kernel of a morphism from an algebtao an algebraB is a
congruence od. Here we show that in a complete join-semilattice the kernel
of a complete join-morphism is a complete congruence. This means that in a
complete join-semilattice, each complete join-morphigrmduces a complete
congruenc®; and a closure operatof. We shall see that {fP, <) is a complete
join-semilattice,(Q, <) is an ordered set, anft P — (@ is a complete join-
morphism, thert f[P], <), (P/Oy, <), and( Py, <) are isomorphic complete join-
semilatticesp; is the set of the greatest elements oféheclasses. We also note
that if (P, <) is a complete lattice, thef[P], <), (P/Oy, <), and (P, <) are
complete lattices.
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Definition. Let (P, <) and(Q, <) be ordered sets. A mafs P — () is acom-
plete join-morphisnif wheneverS C P and\/ S exists, ther\/ f[S] exists and
f(VS) =V f[S]. The dual of a complete join-morphism iscamplete meet-
morphism If f is both a complete join- and a complete meet-morphism, then itis
acomplete morphism

The next obvious lemma connects complete morphisms to order-
isomorphisms, order-preserving maps, and continuous maps.

Lemma 3.3.1. Every order-isomorphism is a complete morphism and every com-
plete join-morphism is order-preserving. Moreover, a complete join-morphism
from a pre-CPO to a pre-CPO is continuous.

LetP = (P, <) andQ = (Q, <) be ordered sets and I¢t P — () be a join-
complete morphism. IP is a join-semilattice, then obviously[P], <) is a join-
semilattice and is a homomorphism ontof[P], <). If Q is a join-semilattice,
then f is a homomorphisniP, V) — (@, V). In the next example we see that not
every order-preserving map is necessarily a complete join-morphism.

Example 3.3.2.Let P = {1,...,7} and@ = {a,...,e}, and sSupposépP, <)
and(Q, <) are the ordered sets defined by the Hasse diagrams of Figure 4.

S

Figure 4.

Let us define an order-preserving mafrom (P, <) to (@, <) such thatl —
a,2 b3 —=c4—d 5w e 6+— d 7 e Obviously, (P <)isa
join-semilattice and se V y exists for allz,y € P. Butin (Q, <) the join of
d = f(4) ande = f(5) does not exists, which implies th#tis not a complete
join-morphism.

In the following proposition we present some properties of the ketnedf a
join-complete morphisnf.
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Proposition 3.3.3.Let P = (P, <) and Q = (@, <) be ordered sets and let
f: P — @ be a complete join-morphism.

(a) If P is a join-semilattice, the®, is a congruence oQP, V).

(b) If P is a complete join-semilattice, the, is a complete congruence on
(P.V).

(c) If P and Q are complete meet-semilattices, then forfelt S C P,

FANS) < A\ 18]

Proof. Assertions (a) and (c) are obvious.
(b) Letz € P. BecausgP, <) is a complete join-semilattice ang/©; is
nonempty\/ =/O; exists inP and

f\z/07) = \/ flz/6/]
= \V{fw) lycx/0s}

= VU@ ) = f(2)}
= f(x).
Thus,\ z/0; € /O, and clearly\/ z/O; is the greatest elementin©;. [

Let (P, V) be a join-semilattice), <) an ordered set, and I¢t P — () be a
complete join-morphism. As we have notéd|P], <) is a join-semilattice such
that f(a) vV f(b) = f(a Vv b), and hencef is a homomorphism froniP, V) onto
(f[P], V). By the Homomorphism Theorem: a /O — f(a) is an isomorphism
betweenP/Oy, V) and(f[P], V).

If (P, <) is a complete join-semilattice, théd, is a complete congruence on
(P,V). So,(P/O;, <) is a complete join-semilattice by Proposition 3.2.8(b). Itis
obvious that als@f[P], <) is a complete join-semilattice.

Let us denote by, the closure operator corresponding to the complete con-
gruence®y; that is,cf(z) = \/z/O; for all z € P. Furthermore, the set of
cy-closed elements (i.e., the set of the greatest elemeg-ofasses) is denoted
by P;. By Corollary 3.1.2(c),(Pr, <) is a complete join-semilattice. Proposi-
tion 3.2.7 implies that the complete join-semilatti¢éy O, <) and (P, <) are
isomorphic. The isomorphismis,: a/© — cf(a).

By Lemma 2.3.1, the inverse of an isomorphism is an isomorphism and the
composition of two isomorphisms is an isomorphism. Thus, the gmap(a) —
ct(a), which is the compositionp, o ¢;', is an order-isomorphism between
(f[P], <) and(Py, <). Figure 5 illustrates the isomorphisms, ¢, 3.
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(P, <) (F[P). <)
v(ey) v3
Y1 Cr
(P/Oy, <) (Pr, <)
P2
Figure 5.

Now we have proved the following proposition.

Proposition 3.3.4.1f (P, <) is a complete join-semilattice(@, <) is an or-
dered set, ang: P — (@ is a complete join-morphism, then the complete join-
semilattice§ f[P], <), (P/©y, <), and(Py, <) are isomorphic. O

Let (P, <) be a complete lattice and |9, <) be an ordered set. Jf: P — Q
is a complete join-morphism, then by Corollary 3.11Z, <) is a complete lattice

in which
VAier(@) |z e S} =cp(Vpfes(a) | € SY)
and
Nes(@) |z € S} = Ap{es(a) | = € S}

forall S C P. Secondly(P/O;, <) is by Proposition 3.2.8 a complete lattice

such that
VA{z/6s |z €5}y =(Vp9)/6;
and
Nlz/0; |z € S} = (Aples(a) |2 € 5})/0;
forall S C P. Itis also obvious thatf[P], <) is a complete lattice in which
V 181 = f(Vp 5)

forall S C P.
Next we describe the meefs f[S] in (f[P], <).
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Proposition 3.3.5. Let (P, <) be a complete lattice and 1éf), <) be an ordered
set. If f:P — @ is a complete join-morphism, then in the complete lattice
(f1P], <),

A F181 = F(ApeslSD)

forall S C P.

Proof. Letz € S. Because\ , ¢;[S] < c¢;(z), we get

FAerlS) < flep(@))
— f\{ye Pl @) =1}

= V{fw | fx)=f@w)}
= f(a).

Hence,f(Ap cf[S]) is a lower bound off[S]. Assumef(y) is a lower bound of
f1S]. Thenf(y) < f(x) forall z € S. The mapps: f(a) — cf(a) is an order-
isomorphism betwee(f[P], <) and(Py, <). Thus,cs(y) < cs(z) forall z € S.
This impliescy(y) < Ap, cf[S] = Apcs[S]. Therefore,f(y) = f(cs(y)) <
f(/\P Cf[S])- Hence1/\f[P] f1S] = f(/\P Cf[S])- [

3.4 Dense Sets

LetP = (P, <) be an ordered set. In [35] Novot@associates with each subset
of P an equivalencé®s on P (see (3.2) for the definition), which is a congruence
on (P, V) wheneverP is a join-semilattice. We will show that ¥ is a complete
join-semilattice, then the congruen@g is complete.

Consider a congruene® on a semilatticé P, V). A subsetS(C P) is said to
be®-dense if®s = ©. On the other hand, a subsebf an ordered setP, <) is
said to be meet-dense(i, <) if for every element: € P there is a subsé&} of S
such thatr = A, Q. We prove that i is a complete congruence 0R, V), then
the ©-dense subsets d? are exactly the meet-dense subset$/f, <); recall
that Py is the set of the greatest elements®btlasses. We also show that every
complete congruence on a complete join-semilattice is defined by at least two
subsets. This implies that in a finite semilatt{¢& V) the number of congruence
relations and closure operators is at n8§t—'. Furthermore, we prove that this
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upper bound is optimal. We conclude this section by some chain conditions which
can be used for identifying dense sets.

Let P = (P, <) be an ordered set arftl C P. Let us define an equivalence
relation®@g on P by

(3.2) Os={(z,y) e P*|(Vze€S)z <2z — y<z}
By the definition 0@,
(3.3) S C T implies®r C Og
forall S,7 C P. ForanyS C P andx € P, let
(tz)s ={z€ S|z <z}

Note that( 12)s = [z) N S. In the following proposition we give some properties
of Os.

Proposition 3.4.1. LetP = (P, <) be an ordered set anfl C P.
(a) The mapS — Og is a complete join-morphisiip(P), C) — (Eq(P), D).
(b) If P is a join-semilattice, the®s is a congruence ofP, V).
(c) If P is a complete join-semilattice, theéps is a complete congruence on
(P, V) such that for eaclr € P, the greatest element ifyOg is \(1z)s.

Proof. (a) We show tha®( ) = ({Os | S € H} forall H C p(P). If
x,y € P, then
= (Vzel|JH)z<ziffy<e
— (VMSeH)(VzelS) e <ziff y<z
— (VSeH)(z,y) €O
= (n.y) e[ {Os|S e}

(z,9) € Oun

Assertion (b) was noted in [35]. It follows directly from the definitions.

(c) We show that the congruenés; is complete. Letr € P. Itis clear that
for everyS C P, the sef( 1x)s is bounded from below by. By Lemma 2.2.3,
this implies thatA\ ( Tz)s exists inP. We denote/\(1xz)s by cs(x). Next we
show that(z, cs(z)) € Og. Letz € S. If z < z, thenz € (1z)g, which implies
cs(x) < z. Becausd 1z)s C (1x)p, we getr = A(Tz)p < A(T2)s = cs(x).
Thus,cs(z) < z impliesz < ¢s(z) < z and so(x, cs(z)) € Os.

If y € /Og, then(1z)s = (1y)s andy < cs(y) = cg(x). This means that
cs(x) is the greatest elementin/©s. O
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If (P, V) is nota complete join-semilattice, théfy is not necessarily a com-
plete congruence dfP, V), as we see in the next example.

Example 3.4.2.Let us denote"'(N) = {X C N | X is finite }. Then(F(N), C)
is a lattice, suchthaY VY = XUY andX AY = XNY. Furthermore(F(N), C)
is a complete meet-semilattice such that/ = (| H forall ) # H C F(N). Note
that(#(N), C) is not a complete join-semilattice singeF'(N), for instance, does
not exist.

If S ={X} forsomeX € F(N), then©g has two congruence classes

¢y = {YeFN)|Y CX}
C, = {YeF(N)|Y ¢ X}

The clasg’, has the greatest elemeXit but obviouslyC', does not have a greatest
element.

If P = (P, <) is acomplete join-semilattice atiC P, then the map

cg:P — P x> /\(Tx)g,

is the closure operator corresponding to the complete congrégnc&he set of
cs-closed elements is denoted By. Because for alt € S, z € (12)s, we have
cs(z) = N(12)s = z which impliesS C Ps.

In our next lemma we present some properties of the fap @5 in a com-
plete join-semilatticé P, <).

Proposition 3.4.3.1f P = (P, <) is a complete join-semilattice, theh — O

is a complete join-morphism frofip(P), C) onto (Con.(P), D). Its kernel is a
complete congruence dg(P),U) such that the greatest element in the congru-
ence class of is Ps.

Proof. By Proposition 3.4.15 +— ©Og is a complete join-morphism from
(9(P) C) to (Con(P), D).

Suppose? € Con.(P). We claim that® = Op,. Let (z,y) € © and
z € Po. If z < 2, theny < co(y) = co(r) < co(z) = z. Similarly,y < z
impliesz < z. Thus,(z,y) € Opy) aNd O C O(p,) holds. Conversely, if
(z,y) € Opyy, thenforallz € Py, < 2z < y < z. In particular,y < co(x)
impliesy < co(z). Thus,ce(y) < co(co(x)) = co(x). Similarly, we can show
thatco(z) < co(y). SO,co(x) = co(y) and this is equivalent tor,y) € O.
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Hence, als® 2 Op,) and thus® = Op,). This means tha$ — Oy is onto
Con.(P).

SinceS — Og is a complete morphism, its kernel is a complete congruence
on (p(P), V) by Proposition 3.3.3. We just showed tita = ©p,  and since
Po, = Ps, we obtain@p, = Og. If Oy = Og, thenT C Pr = Pg. Thus,Ps is
the greatest subset #fwhich induces the same complete congruencg.as [

We denote the kernel of the mé&p— O¢ by . If we define the order relation
<inp(P)/ksothatB/x < C/kiff (BUC)/k = C/k, then(p(P)/r,<)is a
complete lattice by Proposition 3.2.8. By our following proposition, this complete
lattice is dually isomorphic tCon.(P), C) and to(Clo(P), <).

Proposition 3.4.4.1f P = (P, <) is a complete join-semilattice, then
(Cone(P), C) = (Clo(P), <) = (p(P)/k, ).

Proof. The isomorphisn{Con,(P), C) = (Clo(P), <) was shown in Propo-
sition 3.2.3. Becaus& — Oy is a homomorphism fromp(P),U) onto
(Cone(P),N), (p(P)/k,V) and(Con.(P),N) are isomorphic by the Homomor-
phism Theorem. This implies clearly thgi(P)/x, >) = (Con.(P), Q). O

We have seen that in a complete join-semilattife<) each subset C P

defines a complete congruen@g on (P, V). Our next lemma shows that for any
S C P, there exists & # S such thaBr = Og.

Lemma 3.4.5.1f P = (P, <) is a complete join-semilattice, thef/x| > 2 for
all s C P.

Proof. Consider any5 C P. If T is the greatest element &f, thenT € Pq
ascg(T) = T. SincePs — {T} C Ps, we getOp,y C Ops_rry) by (3.3). If
(z,y) € Opg—gry, thenforallz € Ps — {T}, 2 < 2 <= y < z Trivially,
¢ < Tandy < T and hencgz,y) € Op,). Thus,Opy O Op,_¢7}) and
Os = O(ps) = Ops—{T}). O

If P = (P, V) is afinite semilattice, the@P, <) is a complete join-semilattice
and each congruence @his complete, and therefore the previous lemma has the
following corollary.

Corollary 3.4.6. If P = (P, V) is a finite semilattice, then

|Clo(P)| = |Con(P)| < 2lFI=1,
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In the next example we show that the upper bound given in the previous corol-
lary is the best possible.

Example 3.4.7.Let P = {zy,...,z,—1} U {T} and assume that the orderis
defined onP by
r<y <= z=yory=T.

Then(P, <) is a join-semilattice such thatv y = T for all x # y.

If S,T C {x1,...,2,1} @andS # T, then obviously®@s # ©;. This means
that every subset dfzy, . .., z,_ } defines a different congruence &n= (P, V).
Hence|Con(P)| > 2IPI-L,

Novotry introduced in [35] the notion of dense sets for dependence spaces.
Here we define dense sets for any congruence on a semil@®ieg. Note that
we do not require that the corresponding join-semilattiee<) is complete.

Definition. Let © be a congruence on a semilattid® /). We say that5(C P)
is ©-densdf ©g = 6.

In the following lemma we present some simple properties of dense sets.

Lemma 3.4.8. Let © be a complete congruence on a semilatfi¢eV). If S is
©-dense and:, y € P, then

(@S C Po;

(0) co () = Ap(T2)s;

(©)z/0 <y/O < forall z € S,y < zimpliesz < z;

(d) 20y = (12)s = (1y)s;

(e) Po is ©-dense.

Proof. (a) Letz € S. Since(z,co(z)) € ©® = Og andz < z, we obtain
co(z) < z. Hencecp(z) = z andz € Pe.

(b) Letz € P. If z € (12)s, thenz < z impliesce(z) < co(z) = z by (a).
Thus,ce(z) is a lower bound of 1z)s. Lety € P be any lower bound of 1z) .
If + <z for somez € S, thenz € (1z)s and henceg(z) V y < z. On the other
hand, ifco(z) Vy < z for somez € S, then triviallyz < z. This implies that
(z,co(z) Vy) € O = O. Hencey < co(z) Vy < co(x) from which we get
co(z) = N(1z)s.

(c) Assume that/© < y/O. By (3.1), this is equivalent tag (z) < co(y). If
z € Sandy < z, thenz < co(z) < co(y) < co(z) = z. Conversely, if for all
z € S,y < zimpliesz < z, then(1y)s C (Tz)s and thusg(z) = A(12)s <
A(1y)s = co(y). Condition (d) is obvious by (c).
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(e) Letz,y € P. Since for allz € Pg, z < ziff co(z) < z, the assumption
(z,y) € © impliesce(z) = co(y) and(z,y) € Op,. On the other hand, if
(z,y) € Op,, thenz < cg(z) € Po andy < cg(y) € Po imply z < co(y) and
y < co(z). Henceco(r) < co(y) < co(x), which means thatz, y) € O. O

By Lemma 3.4.8(e), every complete congrueidzen a semilatticg P, V)
has at least on®-dense set, namel¥fy. Observe that not all congruences on
semilattices have dense sets. For example} i§ an infinite set an® is the
congruence ofp(A), U), which has the congruence classes

C, = {BC A| Bisfinite};
Cy = {BC A| Bisinfinite},

then there exists n& C p(A) such that
O ={(B,C)| (VX eH)BC X < CCX}
equals®.

Let? = (P, <) be an ordered set and I8tC P. ThenS is calledmeet-dense
in P if for every elementr € P there is a subsep of S such thatr = A, Q.
The dual of meet-densejsin-densegsee [5], for example). Our next proposition
connect)-dense sets to sets meet-densefig, <).

Proposition 3.4.9. Suppos® is a complete congruence on a semilatti¢g V).
If S C P, then the following three conditions are equivalent:

(a) S is ©-dense;

(b) S is meet-dense Py, <);

(€)z= Ap(1z)sforall z € Po.

Proof. Itis proved in [5], that (b) and (c) are equivalent. Recall that by Lemma
3.1.1(e) all existing meets iRy coincide with the meets formed iR. If S is ©-
dense, then by Lemma 3.4.8(b)= co(z) = Ap(12)s, forall z € Po. Hence,

(a) implies (c).

SupposeS is a meet-dense subset(d?y, <). BecauseS C Py holds by the
definition of meet-dense sets, afd is ©-dense by Lemma 3.4.8(e), we obtain
O = Op,) C Og by (3.3). If (z,y) € Og, then(Tz)s = (1y)s. SinceS C Po,
(ta)s = (Tco(a))s holds for alla € P. Thus, we get by (c) that

co(r) = N(1co(®)s = \(12)s = N\(19)s = A(Teo(®))s = coly).

Hence,(z,y) € ©. S0,05 C © and® = Og, which means that is ©-dense.[]
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We end this section by presenting some results which help us to determine
dense sets. IP = (P, V, A) is a lattice, then an elememtc P is meet-irreducible
if a =bA cimpliesa = bora = ¢. We denote the set of all meet-irreducible
elementse # 1 (in caseP has a unit) of? by M(P). The join-irreducible
elements and their s¢f (P) are defined dually. The following lemma can be
found in [5], for example.

Lemma 3.4.10.1f P = (P, V, A) is a lattice satisfying th&CC, then
x:/\{aEM(PH:Uga},
forall z € P. O

Now we can present a proposition which characterizetense sets for a com-
plete congruenc® on (P, V) in the caseP = (P, <) is a lattice and the quotient
setP/© has no infinite chains. We denote the ordered Bet <) by Pe.

Proposition 3.4.11.1f (P, <) is a lattice and® is a complete congruence on
(P, V) such that(P/©, <) has no infinite chains, thefi C P is ©-dense if and
only if

M(Po) C S C Po.

Proof. Becausé P, <) is a lattice,(P/©, <) and( Py, <) are lattices by Propo-
sition 3.2.8 and Corollary 3.1.2, respectively. By our assumption they do not con-
tain any infinite chains. This implies by Lemma 2.2.9 th8{©, <) and(Pp, <)
are in fact complete lattices. By Lemma 3.4.10,

z:/\{aEM(P@Hzga}

for all z € Pg, which means that(Py) is a meet-dense iR and so it isO-
dense by Proposition 3.4.9. By Lemma 3.4.8(&) js ©-dense. Hencé1(Pg) C
S C Pe implies that® = Op, C Og C O pp,) = O.

Let S be an arbitrary-dense set. Thefi C Py by Lemma 3.4.8(a). Because
S is ©-dense, it is meet-dense Ry. Assumer € M(Py). Then there exists an
A C Ssuchthatt = A A. If A =0, thenz = 1, a contradiction! Hence4 # 0.
BecausePy satisfies the DCC, there exists by the dual of Lemma 2.2.9 a finite
F C A such thatr = A F. Sincez is meet-irreducible and’(C Pp) is finite
and nonempty, this implies € F. The factF" C A C Syieldsx € S. Thus,
M(Pg) C S. O
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By the next lemma, which appears in [&};dense sets can be found from the
Hasse diagram dPg.

Lemma 3.4.12.LetP = (P, <) be afinite lattice. Then € M (P) if and only if
a is covered by exactly one elementraf O

We end this section by giving the following example.

Example 3.4.13.Let (P, <) be the lattice defined by the Hasse diagram of Figure
6.

d e\ f
a b c
0
Figure 6.

Let © be the congruence of the semilattide \/) with the congruence classes

{0}, {a}, {c}, {b,d}, {e, f,1}.

The congruenc® is naturally complete an®s = {0,a,c¢,d,1}. The Hasse
diagram ofPg = (P, <) is presented in Figure 7.

1
d
C
a
0
Figure 7.

Since(Po, <) is finite, an element # 1 is meet-irreducible in it if, and only
if, = is covered by exactly one element. The lgasiense seM (Pp) is therefore
{a, c,d}, the greatesb-dense isPy, and{0, a, ¢, d} is a third®-dense set, since
M(Pg) C {0,a,c,d} C Pe.
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3.5 Dual Galois Connections

In Section 6.1 we will show that for anfg € Tol(U), the mapst: p(U) — p(U)
andg: p(U) — p(U), which assign to each subset©@fits upper and lowerR-
approximations, respectively, form a Galois connection betweét), C) and
(p(U), 2).

In this work a Galois connectioft, <) between(P, <) and (P, >) is called
a dual Galois connection o, <). We show that ifP = (P, <) is a complete
lattice and(>, ) is a dual Galois connection on, then®: P — P is a complete
join-morphismP — P. Its kernel®, is a complete congruence @, \/) such
that the greatest element in thg -class of any: € P is 2> <. By duality,*: P —
P is a complete meet-morphis® — P and its kernel ( is a congruence on
(P, A) such that the -class of any: € P has a least element®>.

The following definition of Galois connections can be found in [5, 12, 36, 51],
for example

Definition. Let? = (P, <) andQ = (Q, <) be ordered sets. A pajf,*) of
maps”: P — @ and*:QQ — P (which we refer to as thaght mapand theleft
map respectively) is called &alois connectioetweer? and Q if

(a)* and* are order-reversing and

(b)p < p*<forallp € P,andq < q* forall ¢ € Q.

In the following proposition we present some basic properties of Galois con-
nections. Statements (a)—(c) can be found in [36] and (d) in [5], for example.

Proposition 3.5.1. Supposg®™,¥) is a Galois connection betwedh = (P, <)
andQ = (@, <).

(@ Forallp e Pandq € Q, p>** =p» andq*®<* = ¢*.

(b) The maps:: P — P, p — p**tandk:Q — Q, ¢ — ¢q** are closure
operators orfP? and Q, respectively.

(c) If c and £k are the mappings defined in (b), then restricted to the sets of
c-closed elementB, andk-closed element9,, respectivelyy and< yield a pair
. P. — Qp, ©:Qr — P.of mutually inverse dual order-isomorphisms between
(P.. <) and (Qy, <).

(d) The map>: P — @ is a complete join-morphism froif?, <) to (Q, >)
and<*: ) — P is a complete join-morphism frof), <) to (P, >). O

We denote by, and®O ¢ the kernels of the mapgs P — @Q and*.Q — P,
respectively. Now we can write the following lemma.
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Lemma 3.5.2. Let (*,*) be a Galois connection between two complete join-
semilatticesP? = (P, <) andQ = (Q, <).

(a) The relation®, is a complete congruence @, \/) such that the greatest
element in theé, -class of anyp € P is p><.

(b) The relation® ¢ is a complete congruence ¢€), V) such that the greatest
element in thé (-class of any; € Q) is ¢*>.

Proof. It follows directly from Propositions 3.3.3(b) and 3.5.1(d) thgt is a
complete congruence di®, V). Letp € P. By Proposition 3.5.1(ay>*> = p*,
which implies(p,p**) € O,. If (p,z) € O,, thenp> = 2> and hencer <
z®4 = p»<. Thus,p” < is the greatest element pf©,.. Assertion (b) can be
proved similarly. O

Before we introduce dual Galois connections, we consider shortly interior op-
erators and congruences on semilatticBsA) such that each congruence class
has a least element.

Let P = (P, <) be an ordered set. If P — P is a closure operator gR? =
(P,>), it is aninterior operatoron P. This means that P — P is an interior
operator orP if and only ifi(z) < z, z < y impliesi(z) < i(y), andi(i(z)) =
i(x) for all z,y € P. We denote bynt(P) the set of all interior operators dp.
The sefint(P) may be ordered with the pointwise order. Obviously, x +— x is
the greatest element {nt(7P), <), and if P has a bottom element, then: 2 —

1 is the bottom element dint(P), <).

Let us consider a semilattige = (P, A). As before, we define the orderon

P by

a <bifandonlyifa A b= a.

A congruence® on P is completeif for any - € P, the congruence class®
has a least elemeii (z). The set of all complete congruences®ns denoted
by Con;(P). The letter “i” inig(x) and inCon;(P) suggests the word “interior”.
Obviously,Con;(P) may be ordered with the usual set inclusion. The ordered set
(Con;(P), C) hasAp as the bottom element and/f has a bottom element, then
Vp is the top element dofCon;(P), C).

The next proposition follows from Proposition 3.2.3.

Proposition 3.5.3. Let? = (P, A) be a semilattice.

(a) If © is a complete congruence @, thenig: P — P,z +— ig(x), IS an
interior operator on( P, <).

55



(b) If ¢ is an interior operator on(P, <), then its kernelP; is a complete
congruence orP such that the smallest element in #Bgclass of anyr € P is

(c) The mapping® — ig and: — ©; form a pair of mutually inverse dual
order-isomorphisms between the ordered set of interior operétat$P), <) and
the ordered setCon;(P), C) of complete congruences &h O

Let P = (P,<) be a complete meet-semilattice. Thémt(P), <) and
(Con;(P), C) are dually isomorphic complete lattices. L@t = (Q, <) be an
ordered set and let: P — () be a complete meet-morphisfhh — Q. Then the
kernel©; of f is a complete congruence @R, A) such that the least element of
the©®;-class of any: € Pis A\ z/6.

Definition. Let P = (P, <) be an ordered set. A Galois connection betw®en
andP? = (P, >) is called adual Galois connectioonP.

So,(*,%) is a dual Galois connection 61 = (P, <) if and only if > and* are
order-preserving ang*> < p < p*<for all p € P. We conclude this chapter by
presenting some results concerning dual Galois connections on a complete lattice.

Proposition 3.5.4. Let (*,4) be a dual Galois connection on a complete lattice
P = (P <).

(@) The mape: P — P, p — p*4, is a closure operator ofP? andk: P —
P, p — p*>, is an interior operator orp.

(b) If ¢ and k are the mappings defined in (a), then restricted to the sets of
c-closed elementB, and k-closed elementB,,, respectively> and  yield a pair
>. P. — Py, 4: P, — P, of mutually inverse order-isomorphisms betwéén <)
and (P, <).

(c) The map>: P — P is a complete join-morphisrR — Pand*: P — P
is a complete meet-morphisth— P.

(d) The relation®, is a complete congruence @R, \/) such that the greatest
element in theé, -class of any € P is p> <.

(e) The relation® ¢ is a complete congruence @i, A) such that the least
element in thé (-class of any € P isp*>.

Proof. Claim (a) follows easily from Proposition 3.5.1(b).

(b) By Corollary 3.1.2( P., <) and( P, <) are complete lattices and the maps
».P. — P, and*: P, — P, are mutually inverse order-isomorphisms between
these complete lattices by Proposition 3.5.1(c). Assertion (c) is obvious by Propo-
sition 3.5.1(d) and statements (d) and (e) follow from Lemma 3.5.2. O
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Chapter 4

Information Systems and Preimage
Relations

4.1 Indiscernibility and Similarity in Information
Systems

Here we consider informations systems introduced by Pawlak [41, 42pfan
mation systenis a tripleS = (U, A, {V,}.ca), WhereU is a set ofobjects A is
a set ofattributes and{V, }.c 4 is an indexed set ofalue sets of attribute€ach
attributea € A is a mapping: U — V,.

Example 4.1.1. An information systend in which the seté/ and A are finite can
be represented by a table. The rows of the table are labeled by the objects and the
columns by the attributes of the systefn In the intersection of the row labeled
by an object: and the column labeled by an attributeve find the value:(z).

Let us consider an information systen= (U, A, {V, }.c4), Where the object
setU = {1, 2, 3,4} consists of four persons called 1, 2, 3, and 4, respectively. The
attribute setd has the attributes Age, Eyes, and Height. The corresponding value
sets areVag = {Young, Middle-aged, Old}, Viyes = {Blue, Brown, Green},
Viteight = {Short, Normal, Tall}.

Let the values of attributes be defined as in Table 1.

Age Eyes Height
Young Blue Short
Old Brown Normal

Middle-aged Brown  Tall
Young Green  Short

A OWNBE
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Table 1.

In [37] Ortowska and Pawlak defined nondeterministic information systems,
in which attributes assign a nhonempty subset of values to every object. In such
systemsiitis possible to define several kinds of relations on the object set which are
based on the attribute values. The following definition can be found in [38, 39, 40],
for example.

Definition. A nondeterministic information systens a triple S =
(U, A,{V,}aca), WwhereU is a nonempty set afbjects A is a nonempty set of
attributes and{V, }.c 1 is an indexed set ofalue sets of attributesach attribute
is a functiona: U — o(V,) — {0}.

There are two ways to interpret the knowledge represented by a nondetermin-
istic information system. Les = (U, A, {V,}.c4) be a nondeterministic infor-
mation system and letc A andz € U.

1. If S is amany-valuednformation system, thea(z) is the set of all values
of the attributea for the objectz. This means that every € a(x) is an
actuala-value forz.

2. If § is anapproximateinformation system, then the unique value of the
attributeq for the objectr is assumed to be in the sefr). Note that the
complete ignorance is denoted bfr) = V/,.

The use of “nondeterministic information system” is somewhat misleading when
many-valued systems are considered. However, we accept this drawback since the
use of this term is a standard practice in the literature.

An “ordinary” information systens = (U, A, {V,}.ca), Where eaclu(c A)
isamapa: U — V,, can be considered as a nondeterministic information system
such that alway$i(z)| = 1 anda(z) = {v} is writtena(z) = v.

Next we present two examples which illustrate the above classification. Both
examples deal with a nondeterministic information system (U, A, {V,}aca),
where the object séf = {1, 2, 3,4} consists of four persons called 1, 2, 3, and 4,
respectively.

Example 4.1.2. (Many-valued information system)Let S be the nondetermin-
istic information system such that has the attributes “Degrees” and “Knowl-
edge of languages”Vpegees = {BA,BSc,MA, MSc,PhD}, Vianguages
{English, Finnish}, and the values of the attributes are defined in Table 2.
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Degrees Languages
{BSc} {English}
{BSc, MSc, PhD {English}
{BA, MA } {English, Finnish
{BAMA} {English, Finnish
Table 2.

A WN P

For example, the person 1 is a Bachelor of Sciences who speaks only English.

Example 4.1.3. (Approximate information system)Let S be the nondetermin-
istic information system in whickl = {Height, Weigh}, Vireighi = Viveignt = N,
and let the values for the attributes be given in Table 3.

Height (cm)  Weight (kg)

1| {184,...,187} {80,...,85}

2| {170,...,178} N

3| {178,...,185} {80,...,85}

4| {170,...,178} N
Table 3.

The values of attributes are now only approximations. We know, for instance, that
the height of the person 1 is between 184 and 187 and her/his weight is between
80 and 85. Note that we know nothing about the weight of the persons 2 and 4.

LetS = (U, A, {V,}.ca) be a nondeterministic information system. The fol-
lowing definitions of strong and weak binary relations of indiscernibility and sim-
ilarity can be found in e.g. [38, 39,40]. L& C Aandz,y € U.

Strong indiscernibility: (z,y) € ind(B) iff a(z) = a(y) foralla € B.
Weak indiscernibility: (z,y) € wind(B) iff a(z) = a(y) for somea € B.
Strong similarity: (z,y) € sim(B) iff a(z) Na(y) # 0 foralla € B.
Weak similarity: (z,y) € wsim(B) iff a(x) Na(y) # 0 for somea € B.

Let S be a nondeterministic information system. Two objects are in relation
ind(B) whenever we cannot distinguish them by the values of the attribut@s in
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If there exists at least one attributen B such thatr andy are a-indiscernible
(that is,a(x) = a(y)), thenz andy arewind(B)-related. A pair(x,y) is in
sim(B), if the values of all attributes i® for  andy have at least one common
value, andz, y) is in wsim(B) if x andy have at least one commarvalue for
some attribute in B.

Example 4.1.4.(a) In the many-valued information system of Example 4.1.2,
(3,4) € ind({Degrees, Languages}), since3 and4 have earned the same de-
grees and they speak exactly the same languages. The persons 1 and 2 are in re-
lation ind({Languages}) and in relationwind({Degrees, Languages}) because
they both speak only English.

The persons 1 and 2 are in relatiorim({Degrees, Languages}) be-
cause they have a common degree and a common language. The relation
wsim({Degrees, Languages}) = sim({Languages}) is the all relation ofU,
since all persons have a common language.

(b) In the approximate information system of Example 4.1(3,3) <
ind({Height, Weight}) since the sets approximating the height and the weight
of the persons 2 and 3 are the same. The persons 1 and 3 are in relation
ind({Weight }) and in relationvind({Height, Weight }) because the sets approx-
imating their weight are equal.

In an approximate information system strong similarity relations can be con-
sidered as indiscernibility relations. Namely(if, y) € sim(B) for someB C A,
then we cannot certainly distinguish the objectandy because it is possible
that their actual values for every attribute i are the same. The persons 1
and 3 aresim ({Height, Weight })-related because the subsets approximating their
height and weight have common values. The relatieiin ({Height, Weight}) =
sim({Weight}) is the all relation ofU since all objects have common possible
values for the attribute Weight.

In the next lemma we present some obvious properties of indiscernibility and
similarity relations. Most of them appear in [38, 39, 40].

Lemma4.1.5.1f S = (U, A, {V, }.ca) is a nondeterministic information system,
) £ B C A, anda € A, then

(a)ind(B) is an equivalence;

(b) wind(B), sim(B), andwsim(B) are tolerances;

(€)ind({a}) = wind({a}) andsim({a}) = wsim({a});
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(d) ind(B) C wind(B) andsim(B) C wsim(B);
(e)ind(B) C szm( ) andwind(B) C wsim(B);
(f) ind(0) = sim(0) = Vi andwind(0) = wsim(0) = 0. O

4.2 Preimage Relations

In the literature we can find several relations defined in the object set of an infor-
mation system based on relationships between the values of attributes. It seems
that these relations are similar in the following sense. Two objects are in a cer-
tain strong (resp. weak) relation with respect to an attributeBsétand only
if their values of all (resp. some) attributes khare in a specified relation. For
example, objects andy are in relationsim(B) if and only if a(z) N a(y) # 0
for all « € B. In this section we introduce the general notion of preimage rela-
tions, which allows us to study the common features of strong and weak relations
defined in information systems.

Let U andY be nonempty set$} € Rel(Y), and letf: U — Y be a function.
Thepreimage relatiorof R is defined by

fHR) = {(z.y) € U* | f(=)Rf(y)}-

So, two elements df are in relationf~!(R) if and only if their images are in
relationR. In particular, the preimage of the diagonal relatiorvois the kernel
of the mapf, thatis to sayf '(Ay) = 6;.

Our following obvious lemma shows thgt ! (R) inherits many properties
from R.

Lemma 4.2.1. LetU andY be nonempty setg,c YV andR € Rel(Y). If R is
reflexive, irreflexive, symmetric, or transitive, then s@gi$(R). O

It is also true that
fHRY = (FH(R)"

Example 4.2.2.LetS = (U, A, {V,}.c4) be an approximate information system,
inwhichU = {1, 2, 3,4}, A = {Age, Height, Weight}, andV, = Nforalla € A.
The values of the attributes are defined as in Table 4.
Age (years) Weight (kg) Height (cm)
{22,...,26} {48,...,54} {154,...,157}
{26,...,33} {73,...,78} {170,...,175}
{24,...,29} {51,...,58} {159,...,162}
{31,...,37}y {75,...,82} {157,...,161}

A WN P
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Table 4.

We denotel” = o(N) — {0}. Let us define a binary relatiof/ A/ onY by
setting for alllW,, W, € Y,

(Wl,Wz) e SIM <— WlﬁWz;ﬁ@.

The relationSTM is obviously a tolerance. This implies that!(S7M) is a
tolerance for alb € A. Two objects are, for example, in relatidge ™" (S1M) if
and only if their ages are possibly the same. The preimage relatighs\éfwith
respect to the attributes Age, Weight, and Height are represented graphically by
the following graphs.

1 2 1 2 1, o 2
3 4 3 4 37 °
Age ' (SIM) Weight ™' (ST M) Height ™' (ST M)

Next we shall extend the notion of preimage relation in a natural way. For any
set of functionsB C Y, thestrongand theweak preimage relations d8 are
defined by

Sr(B) = {(z,y) € U* | (Vf € B)f(x)Rf(y)};
Wr(B) = {(z.y) €U*| (3f € B)f(2)Rf(y)}.

respectively. In the next lemma we present some basic properties of strong and
weak preimage relations.

Lemma 4.2.3.LetU andY be nonempty sets arfel € Rel(Y). If H C p(YY),
B,C CYY andf € YV, then

@) Sr({f}) = Wr({f}) = 1 (R);

(b) Sr(B) = N{f~'(R) | f € By andWa(B) = U{f~'(R) | f € B};

(€) Sg(0) = U x U andWx(0) = 0;

@) SrR(UH) = ({Sr(B) | B€ H}andWr(UH) = U{Wr(B) | B € H};

(e) B C C'impliesSk(C) C Sg(B) andWr(B) C Wg(C);

(f) Sr(B) € Wx(B) wheneveB # 0;

(9) Sr(B)t = W g, (B) andWg(B)E = S g (B).
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Proof. Claims (a), (b), and (c) are obvious.
(d) Foranyz,y € U,

(z,y) € SeJH) <« (VfelJH) fl@)Rf(y)
— (VBEeH)(Vfe B) f(x)Rf(y)
= (VBem (#,y) € Sr(B)
= (z D{SR ) | B € H}.

The other claim of (d) is proved similarly.

(e) If B C C, then by (d),Sr(B) N Sg(C) = Sg(BUC) = Sg(C), which
impliesSg(C) C Sg(B). The proof for the other inclusion is analogous.

(f) is obvious.

(9) Foranyz,y € U,

(v.y) € Sr(B)® <= (2.y) ¢ Sk(B)
— (3feB)(f(x).fly) ¢ R
= (3feB)(f(x).f(y) € B
= (z,y) € W) (B)
The other equality can be proved in a similar way. O

Our following proposition, which extends Lemma 4.2.1, shows that also strong
and weak preimage relations inherit many properties from the original relation.

Proposition 4.2.4. LetU andY be nonempty set& € Rel(Y'), and let) # B C
YV be a set of functions. IR is reflexive, irreflexive or symmetric, then so are
Sr(B) andWg(B). Moreover, ifR is transitive, therbz(B) is transitive. O

In the following we shall present some relations defined in the object set of a
nondeterministic information system based on the values of attributes for objects.
This kind of relations are in general calledormation relations The following

relations are defined in [38, 39, 40], for example. Set (U, A,{V,}.ca) be a
nondeterministic information system afiC A.

Strong inclusion: (z,y) € inc(B) iff a(z) C a(y) foralla € B.
Weak inclusion: (z,y) € winc(B) iff a(x) C a(y) for somea € B.
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Strong diversity: (z,y) € div(B) iff a(z) # a(y) foralla € B.

Weak diversity: (z,y) € wdiv(B) iff a(z) # a(y) for somea € B.

Strong orthogonality: (z,y) € ort(B) iff a(z) Na(y) =0 foralla € B.

Weak orthogonality: (z,y) € wort(B)) iff a(z) Na(y) = 0 for somea € B.
Strong negative similarity: (z,y) € nim(B) iff a(x) Na(y)® # 0 forall a € B.

Weak negative similarity: (z,y) € wnim(B) iff a(z) N a(y)® # 0 for some
a € B.

For instance, two objects are wealfydiverse if their values for all attributes
in B are not the same, and two objects are strogfgrthogonal if they have no
common value for any attribute iA.

Information relations are preimage relations, as we see in the next example.

Example 4.2.5.LetS = (U, A, {V,}.c4) be a nondeterministic information sys-
tem. LetusseV = |J,., V. andY = p(V) — {0}. Now we can define the
following relations ony".

(Wl,Wg) € IND <~ Wi = Wh;
(Wi, W) € SIM = W, N Wy, #0;
(Wl,Wg) e INC e W, C Ws;
(Wl,Wz) e DIV <~ W, 7£ W,
(Wl, Wz) € ORT <~ WiNWy = @,
(Wy,Wy) € NIM = WinWt£0.

It is obvious thaf ND = DIV, STM® = ORT, andINC® = NTM.

It is now easy to observe that information relations are preimage relations
and hence we may apply results concerning preimage relations to information
relations. Namely, for any subsB{C A) of attributes,

an(B) = S]ND(B) and UJZTLd(B) = W[ND(B);
sim(B) = Ss;y(B)  and wsim(B) = Wsru(B),
’LTLC(B) = S[Nc(B) and ’LU’LTLC(B) = WINC’(B);
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div(B) = Sprv(B) and  wdiv(B) = Wprv(B);
OTt(B) = SORT(B) and ’LUOTt(B) = WORT(B);

By Lemma 4.2.3nd(B U C) = ind(B) Nind(C) andwind(B U C') =
wind(B) U wind(C) for all B,C C A. Moreover, ] ND® = DIV implies that
ind(B)® = S;np(B)E = W ype)(B) = Wpiv(B) = wdiv(B), for example.

We can now easily define various relations in information systems as preimage
relations as shown in the next example.

Example 4.2.6.Let S = (U, A, {V.}.ca) be an information system in which
U ={1,2,3,4}, A = {Height, Weight}, andV, = N for all « € A. The values
of attributes are given in Table 5.

Height (cm) Weight (kg)
1 186 80
2 157 59
3 172 64
4 166 52
Table 5.

The attributes inA are functions:: U — N. Let us now consider the usual or-
der relation> on N. The preimage relations of with respect to the attributes
“Height” and “Weight” are represented graphically by the following graphs:

o1 o1
3 3
4 2
592 54
Height *(>) Weight *(>)

ForallB C A,

S-(B) = {(z,y) €U*| (Ya € B) a(x) > a(y)};
W (B) {(z,y) €U*| (3a € B) a(x) > a(y)}-
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Now (z,y) € S~(A) if and only if = is taller and heavier thap, and(z,y) €
W (A) if and only if z is taller or heavier thap.
I 1

P s

3
2° °4 29—
55 (4) W (4)

4.3 Matrices of Preimage Relations

Skowron and Rauszer introduced discernibility matrices in [52]. They presented
several results concerning cores, dependencies, and reducts defined in information
systems by applying this notion. Here we introduce matrix representations of
preimage relations as a generalization of discernibility matrices.

Let U = {x;};c;r andY be nonempty setsR € Rel(Y), and letA(C YY)
be a set of functions. Thmatrix M (R) = (c;;) of preimage relationsf R with
respect taA is defined so that

cij ={f € A|(ziz;) € fT'(R)},

forall z,7 € I. Thus, the entry;; consists of those functions € A for which
f(zi)Rf(z;). Obviously, the following lemma holds.

Lemma 4.3.1.1f U = {z;};c; andY are nonempty sets} € Rel(Y), A C Y'Y,
and M (R) = (c;;) is the matrix of preimage relations &f with respect ta4, then
forall B C Aandi,j € I,

(a) (l’i,l‘j) € SR(B) iff B - Cijs

(b) (.T)Z', .T)j) € WR(B) iff BN Cij 7é @ O

In the previous section we saw that information relations are actually preimage
relations. Therefore they can be represented by matrices.

SupposeS = (U, A, {V,}aca) is @ nondeterministic information system such
thatU = {z;}ic;. ThenM (IND)s = (c¢;;) is theindiscernibility matrixof S, if
foralli,j €1,

cij={a€A|(zi,z;) €a'(IND)}.
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Thus, the entry;; consists of those attributesc A such that(z;) = a(x;).

Let us note that indiscernibility matrices defined here and the discernibility
matrices defined by Skowron and Rauszer are not exactly the same. Namely, the
entries of our indiscernibility matrices are the complements of the entries of their
discernibility matrices.

In a similar manner we may define teenilarity matrix M (SIM)s, thema-
trix of inclusion M (INC)s, thediversity matrixM (DIV')s, the orthogonality
matrix M (ORT)s, and thematrix of negative similarity/ (N1 M)s of a nonde-
terministic information systers.

Example 4.3.2.Let S = (U, A, {V,}.ca) be the single-valued and incompletely
defined information system described in Example 4.2.2. Let us deneté\ ge,
b = Height, andc = Weight.

The similarity matrixM (STM)s = (c¢;;)ax4 Of S is the following.

A {ap {a,cp {0}
{o} A A} {o¢}

{a,c} {a} A {b}

{ty Ha,cp {0} A

It is clear that(1, 3) € sim({Age, Weight}) becaus€a, c} C ci13 = {a,c}.
On the other hand(l,2) ¢ wsim({Height, Weight}) because{b,c} N ¢ =
{b,c} n{a} = 0.

We will return to the matrix representation of preimage relations in the next

chapter when we consider dense families of dependence spaces induced by strong
and weak preimage relations.
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Chapter 5

Dependence Spaces

5.1 Closure Operators of Dependence Spaces

Many problems concerning information systems can be formulated in dependence
spaces which are simpler algebraic structures. The study of dependence spaces
started in [30], although the name “dependence space” was introduced later in
[31]. Since then dependence spaces have been the subject of several papers (see
[9, 18, 26, 27, 32], for example). In [35] Novotpresented an extensive study of
dependence spaces, and in [34] he showed how the theory applies to contexts (in
the sense of Wille [56]), relational systems, classificatory systems, information
systems, and decision tables.

According to Novoty‘and Pawlak, a palP = (A, ©) is a dependence space,
if A is finite nonempty set an@ is a congruence on the semilattige(A), U).
We have already seen that each congruence on a finite semilattice is complete, i.e.,
each congruence class has a greatest element. This impliesAhatfihite, then
each congruence dp(A), U) is complete. Therefore our following generalized
definition of dependence spaces is justified.

Definition. If A is a set and is a complete congruence ¢p(A), U), then the
pairD = (A, ©) is called adependence spacé dependence spade = (A, O)
isfiniteif A is a finite set.

For a dependence spaPe= (A, ©), the greatest element in theclass of any
B C Ais denoted by (B). In [26] the authors presented some properties of the
mapCpr: p(A) — p(A), B — Cp(B), for a finite dependence spabe= (A, O).
Our next lemma, which follows from Lemma 3.2.2 and Proposition 3.2.3, shows
that these properties hold also for dependence spaces defined more generally.

62



Lemma5.1.1. LetD = (A, ©) be a dependence space aBdC' C A.
(@) Cp: p(A) — p(A), B — Cp(B), is a closure operator;
(b)Cn(B) = U B/6;
() Cp(B) = Cp(C) ifand only if BOC. O

We denote by p the set of the greatest elementsbtlasses, that is to say,
Lp ={Cp(B) | B C A}.

Thus, Ly is the closure system corresponding to the closure opefat@and so
(Lp, C) is a complete lattice such that

VH=C(J#) and AH=(H

forall H C Lp.

As we noted in Chapter 3, the set of all complete congruences on a semilattice
P = (p(A),U) is a complete lattice with respect to the inclusion order, and it is
isomorphic to the set of all closure operatpfsi) — ©(A) ordered by the point-
wise order. This means that a dependence space could be equivalently defined as
a pair(A,C), whereC: p(A) — p(A) is a closure operator.

Since(Con,(P), C) is a complete lattice, the set of all dependence spaces on
A

{(A,©) | ©is a complete congruence ¢p(A),U)}

might be considered as a complete lattice, in which the order is defined by
(A,0;) < (A,0y) < 67 C O,. In this complete lattice the join and the
meet of{(A,0;) | i € I} are(A,\/,.;©;) and(A, \,.; ©;), respectively. Note
that if A is a finite, then by Corollary 3.4.6 the number of dependence spaces
D = (A,0) is at mosp2 'L,

Let © be a congruence on a semilattigg A), U). As before, we define the
order< on the quotient sgb(A)/O by

B/ <C/Oifandonlyif(BUC)/6 =C/6.

Our next proposition, which is presented in [18] for finite dependence spaces,
follows from Propositions 3.2.7 and 3.2.8.
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Proposition 5.1.2.1f D = (A, ©) is a dependence space, thgrn4)/0,<)is a
complete lattice such that

\{B/o|BecH} = (JH)/6;
N{B/O|BeH} = ([)Cn(B))/O,

BeH

forall # C p(A). Moreover, the ma@l/© — Cp(B) is an isomorphism between
the complete latticego(A) /6, <) and(Lp, C). O

By the previous proposition it is clear that for &l C' C A,
(5.1) B/© <(C/O < Cp(B) C Cp(C).

Note that the congruence satisfies the completg-compatibility property,
that is, if  is a nonempty index set such thaf@C; holds for all: € I, then also

(Uics Bi) © (Ui C:) holds.

Example 5.1.3.Let A = {1,2,3,4} and let® be the congruence ofp(A), V)
whose congruence classes &fg, {{1}}, {{2}}, {{3}}, {{4}, {1,2}, {1,4},
{2,4}, {1,2,4}}, {{1,3}}, {{2,3}} and{{3,4}, {1,2,3}, {1,3,4}, {2,3,4},
{1,2,3,4}}. The closure latticéLp, C) of the dependence spate= (4, O) is
presented in Figure 8.

o {1,2,3,4}
{

{1,2,4}0/ \

s L3, {23}

{1} él {22 " {3}
0

Figure 8.

Next we introduce some types of dependence spaces defined by applying gen-
eral order-theoretical concepts.

Definition. A dependence spad@ = (A, ©) is finitary if p(A4)/6O is finite, and
D satisfies theACC (resp. the DCC), ifp(A)/©, <) satisfies the ACC (resp.

the DCC). Furthermore hasno infinite chaingf (p(A)/©, <) has no infinite
chains.
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If D = (A, ©) isfinite, thenD is finitary, and ifD is finitary, it has no infinite
chains. By Lemma 2.2.8(b) it is clear tHatsatisfies the ACC and the DCC if and
only if D has no infinite chains. Our next lemma presents a condition which we
will need especially in Section 5.4.

Lemma 5.1.4. A dependence spad@ = (A, ©) satisfies thedCC if and only if
for all B C A, there exists a finite subsetof B such thatBOF'.

Proof. Supposé satisfies the ACC and |&¢ C A. Then, by Lemma 2.2.8(a),
the nonempty subset

F ={F/O | Fis afinite subset oB}

of p(A)/6 has a maximal elemeift/© for some finiteF' C B. Leta € B. Then
(FU{a})/© > F/O and becauséF’ U {a}) is a finite subset oB, this implies
(FU{a})/© =F/6.S0,{a}/OV F/O = (FU{a})/© = F/O, which means
that{a}/© < F/O. By Proposition 5.1.2B/60 = (| J{{a} | « € B})/6O =
V{{a}/© | « € B} < F/O. SinceF C B, we have alsd#/©® < B/©, and
henceF/© = B/6O.

On the other hand, suppose that forallC A there exists a finite subsgtof
B such thatB/© = F'/©. Consider any chain

(5.2) Bi/O < By/O < B3/O < - -

in p(A)/6. Let us denoteB = J,», B;. Then there exists a finite subget=
{ai,...,a,} of Bsuchthat'/© = B/6O.

For alla; € F, there exists g; > 1 such thats; € B;,. Because (5.2) is a
chain, there exists & > 1 such thatB;,/© < B;/© forall1 < i < n. This
implies that

B/©@ = F/O
{a}/OV---V{a}/O
B;, /©V---V B, /O
By/©

B/6.

VANVANRVAN

ThereforeB;,/© = B/O and soB;,/© = By1/0 = ... Hencep(A)/O satisfies
the ACC. 0
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Our next proposition gives a condition under which the closure opefat®
algebraic.

Proposition 5.1.5. If D = (A, ©) satisfies the ACC, then the closure operatgr
is algebraic.

Proof. Let B C A. lItis clear thatC»(B) 2 |J{Cp(F) | F is a finite subset
of B}. By Lemma 5.1.4, there exists a finite subBedf B such thatBOF. This
impliesCp(B) = Cp(F) C |J{Cp(F) | F is afinite subset o8}, which means
thatCp is algebraic. O

It is known that a closure operat6r p(A) — ©(A) is algebraic if and only
if C is continuous map fron(A), C) to (p(A), C) (see [5], for example). Note
that this implies that the join of algebraic closure operators can be obtained by
applying Corollary 3.1.17. Moreover, in the complete lattice

({(4,0) | © € Conc(p(4),V)}, <),

the join of dependence spaces satisfying the ACC can be formed by using this
result, because by Proposition 5.1.5 the corresponding closure operators are alge-
braic, and thus they are continuous.

We end this section by noting that in [33] M. Novgtgéneralized dependence
spaces by defining them as pai®, F'), whereP = (P, <) is a complete lattice
andZ is an equivalence of such that each equivalence clag® has a greatest
element(x). He also showed thatthe méf: P — P,z — cg(z), is extensive
and idempotent, but not necessarily order-preserving. Dependence spaces defined
in [33] may be applied to algebraic linguistics, and reducts are connected with
constructions of pure grammars of languages.

5.2 Dense Families of Dependence Spaces

Novotry introduced dense families of dependence spaces in [34]. In Section 3.4
we defined dense sets of any congruefiae a semilatticé P, V). In this section
we present some results concerning dense families of dependence spaces, which
follow easily from the results we presented in Section 3.4.

By Proposition 3.4.1 each familjt C p(A) defines a complete congruence

Oy ={(B,C)| (VX eH) BC X += CC X}
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on (p(A),U) such that the greatest element in thg-class ofB is
(X en|BCX}

Definition. LetD = (A, ©) be a dependence space. A fanilyC o(A) is dense
in D if H is ©-dense.

The above definition means that a fantly C ©(A) is dense iD = (A, O)
if and only if the complete congruené, defined by* equals®. We also note
that our definition agrees with Novaotis definition of dense families.

Our next lemma, which follows from Proposition 3.4.11 and Lemma 3.4.12,
helps us to recognize dense families of dependence spaces. Note that since
(p(A)/O0,<) = (Lp,C), Lp is finite wheneverD is finitary. Moreover,Lp
has no infinite chains, D has no infinite chains.

Lemma5.2.1. LetD = (A, ©) be a dependence space.
(@) If D has no infinite chains, thel C ((A) is dense irD if and only if

M(Lp) CH C Lp.

(b) If D is finitary, thenM(Lp) consists of the elements 6f, which are
covered by exactly one element@. O

Example 5.2.2. Let us consider the dependence sp&xe- (A, ©) of Example
5.1.3. The Hasse diagram 6§, was given in Figure 8. NowM (Lp) = {{1, 3},
{2,3},{1,2,4}}. SinceD is finite, Lemma 5.2.1 applies to it, and hence the dense
families of D are the 32 familie${ such thatM (Lp) C H C Lp.

By applying dense families it is easy to decide whether two subsets are con-
gruent, as we can see in our next proposition which ends this section.

Proposition 5.2.3.If D = (A, ©) is adependence space aH{C o(A)) isdense
in D, then the following conditions are equivalent for &1 C C A:

(@B/6 < C/0O;

(b) Cn(B) C Cp(C);

(c)forall X € H,C C X impliesB C X;

(d)forall X € #, B— X # 0 impliesC — X # 0.

Proof. Conditions (a) and (b) are equivalent by (5.1), and (a) and (c) are equiv-
alent by Lemma 3.4.8(c). BecauseC X is equivalent taB — X = (), also (c)
and (d) are equivalent. O
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5.3 Dependence Spaces of Preimage Relations

LetS = (U, A, {V,}.ca) be an information system such that each attrilbute A
is a mapping:: U — V, and A is finite. It is known [31] that the relatio®;,,
defined by

(B,C) € Oig <= ind(B) = ind(C)

is a congruence on the semilattige(A), U). Thus, the pailA, ©;,,) forms a
finite dependence space. In this section we generalize this observation by show-
ing that also strong and weak preimage relations define dependence spaces. We
also show how we can determine dense families of these dependence spaces by
applying preimage matrices.

Let U andY be nonempty sets? € Rel(Y), and letA(C YY) be a set of
functions. Let us now define two binary relatio®s (A, R) and©y (A, R) on
©(A) sothat, for allB,C C A,

(B,C) € 95(14, R) <~ SR(B) = SR(C),

By Proposition 3.3.3(b) and Lemma 4.2.3(d) we can write the following
proposition, sinceds(A, R) and Oy (A, R) are the kernels of the functions
Sr:p(A) — Rel(U),B +— Sg(B), andWg: p(A) — Rel(U), B — Wg(B),
respectively.

Proposition 5.3.1. Let U andY” be nonempty set& € Rel(Y), andA(C YY) a
set of functions.

(@) The mapSk: p(A) — Rel(U), B — Sgk(B) is a complete join-morphism
from (p(A), C) to (Rel(U), D) such that the greatest element in thg(A, R)-
classofanyB C Ais|JB/Os(A, R).

(b) The mapVg: p(A) — Rel(U), B — Wgr(B) is a complete join-morphism
from (p(A), C) to (Rel(U), C) such that the greatest element in B, (4, R)-
classofanyB C Ais|JB/Ow (A, R).

(c) The pairs(A,©s(A, R)) and(A, Oy (A, R)) are dependence spaces.]

The relations9s(A, R) andOy, (A, R) are referred to as th&trongand the
weak preimage congruencetR with respect to the set of functions

Our next proposition can be viewed as a generalization of Theorem 6.5 in
[31]. It follows easily from Propositions 3.3.4, 3.3.5 and Lemma 4.2.3(d). In this
proposition the greatest element in tBe(A, R)-class of anyB C A is denoted
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by C°(B), and the greatest element in tBg, (A, R)-class of anyB C A is
denoted by’ (B).

Proposition 5.3.2. Let U andY” be nonempty set& € Rel(Y), and A(C YY).
(@) The ordered set{ Sr(B) | B C A}, D) is a complete lattice such that

el el el

and
N\ Sr(B;) = Sr(()C(B2)).
el i€l
for all {B;}icr C p(A). Moreover, the mapSg(B) — B/Os(A,R) is
an isomorphism between the complete latticéSz(B) | B C A},D) and
(9(4)/Os(4, R), <).
(b) The ordered set{Wx(B) | B C A}, C) is a complete lattice such that

el el el

and

A\ Wn(B) = Wr(()C" (By)),

el el
for all {B;}icr € p(A). Moreover, the maghVi(B) — B/Ow(A,R) is
an isomorphism between the complete latticEd’z(B) | B C A},C) and
(9(A)/Ow (A, R), <). 0

In the dependence spaté, ©s(A, R)), we denote the relatio@s(A, R) by
©3 and in the dependence spdck Oy (A, R)) the relation@y (A, R) by OF .
Next we present a simple condition which guarantees that the dependence spaces
(A,03) and(A, ©}) are finitary.

Lemma 5.3.3. LetU andY be nonempty set& € Rel(Y), andA(C YY). If U
or A is finite, then the dependence spatésOy) and (A, OF) are finitary.

Proof. If A is finite, then(A, ©3) and (A4, ©F) are trivially finitary. On the
other hand, iU is finite, then{Sr(B) | B C A} C Rel(U) is finite. By Propo-
sition 5.3.2(a){Sr(B) | B C A},2) = (p(A)/O3, <) which implies that also
o(A) /O3 is finite. The rest may be proved analogously. O
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Let us consider a nondeterministic information systra (U, A, {Va}aca)-
As we have seen in Example 4.2.5, information relations are preimage relations,
and hence they define dependence spaces.

In the sequel we shall denote the relati®f, ,, simply by ©;,4. The relation
Onq Will be called thestrong indiscernibility congruencef S. The dependence
space A, ©;,4) is denoted simply bp;,.,. Similarly, the relatior®}Y,, is called
the weak indiscernibility congruencaf S and is denoted b@,,;,.. We denote
by D.inq the dependence spagé, ©,,4). A similar notation is defined for the
other information relations.

Lemma 5.3.3 implies that 7 or A is finite, then the dependence spafgsy,,
Dsima Dinca Ddiv’ Dort’ Dnim’ Dwind’ Dwsim’ Dwinca Dwdiva Dworta andDwnim are
finitary.

In the next example we see that even if in an information system-
(U, A, {V,}aca) the set ., V, is finite, the dependence spa@@sq, Dsim» Dinc,
Dowdivy Dworts aNAD i May have infinite chains.

Example 5.3.4.Let S = (U, A, {V.}.ca) be an information system such that
U=N, A={aq;|ie N} andV, ={0,1}foralla € A.
For any; € N, the attributez; is defined by

ai(n) = 0 ifn<u,
Y1 1 otherwise.

The equivalence classesofd({a;}) are{1,...,i} and{i + 1,i +2,...}. Itis
easy to see that

ind({a1}) D ind({ay,as}) D --- Dind({ay,...ar}) D ---

is an infinite chain in{ind(B) | B C A}. Becausg{ind(B) | B C A},D) =
(9(A)/Bing, <) by Proposition 5.3.2, we obtain that

{a1}/9md < {al,GQ}/de <--- < {al, .. -ak}/Qz‘nd < -

is an infinite ascending chain iip(A)/Oi.4, <). Hence, the dependence space
Dina = (A, Oy,4) does not satisfy the ACC.
On the other hand,

ind({a1}%) C ind({a1,a,}%) C --- Cind({ay,...ax}%) C - -
is also an infinite chain igind(B) | B C A}, and thus

{a1}%/Oima > {a1,a2}%/Osg > -+ > {a1, ... 4}’ /Oipa > - - -
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is an infinite descending chain {ip(A)/©;.4, <). Thus, the dependence space
Dina does not satisfy the DCC either.

In this information systemind(B) = sim(B) = inc(B) andwdiv(B) =
wort(B) = wnim(B) = ind(B)® for all B C A. Thus, the dependence spaces
Dsims Diner Dwdivy Dwort» aNAD ypi do not satisfy the ACC or the DCC.

Similarly, the finiteness of ). , V., does not guarantee that the dependence
spaceD indgs Pwsims Pwines Paivs Port, aNAD,,;,,, do not contain infinite chains.

Example 5.3.5.Let S = (U, A,{V,}.ca) be an information system such that
U=NU{T}, A={a;|ie N}, andV, = {0,1} forall a € A.
For each € N, the attribute:; is defined by

(n) = 0 fn=i0rn=T,

@)= 1 otherwise.

The equivalence classeswind({a;}) are{i, T} andN — {i}. Obviously,
wind({a1}) C wind({a1,a2}) C --- Cwind({ay,...ar}) C ---

is an infinite chain ifwind(B) | B C A}. Becausé{wind(B) | B C A},C) =
(SO(A)/Qwana S)!

{al}/@wind < {a17a2}/@wind <0< {ala .. -ak}/@wind <L e

is an infinite ascending chain {p(A)/Owina, <).
Similarly,

wind({a}%) D wind({a, as}*) > --- > wind({ay, ... a;}*) > -
is also an infinite chain iqwind(B) | B C A}, and thus
{al}c/@wind > {al,GQ}G/@wmd > >{ay, .. -ak}c/@wind >

is an infinite descending chain {ip(A)/Owina, <). Therefore, the dependence
SpaceD,ina = (A, Ouing) does not satisfy the ACC or the DCC.

Because in this information systemind(B) = wsim(B) = winc(B) and
div(B) = ort(B) = nim(B) = wind(B) for all B C A, the dependence spaces
Dowsims Dwines Daivy Dort, @aNAD,,;,,, do not satisfy the ACC or the DCC, either.

71



We conclude this section by presenting a proposition which shows how matri-
ces of preimage relations define dense families of dependence spaces.

Proposition 5.3.6. LetU = {z;};,c; andY be nonempty set® € Rel(Y), A C
YV, and letM (R) = (c;;) be the matrix of preimage relations &f with respect
to the setA.

(@) The family{c;; | i,7 € I} is dense in( 4, O3).

(b) The family{c;,® | i,j € I} is dense i A, OW).

Proof. (a) Let us denoté{ = {c;; | i, j € I'}. We have to show thad;, = O7,.
If (B,C) € O3, then by Lemma 4.3.1forallj € I, B C ¢;; iff (v;,z;) €
Sr(B) iff (x;,z;) € Sg(C) iff C C ¢;, which implies(B,C) € ©y. Hence,
O3 C Oy.

If (B,C) € Oy, thenforalli,j € I, (z;,x;) € Sg(B) iff B C ¢;; iff C' C ¢,
iff (zi,z;) € Sr(C), which impliesSz(B) = Sz(C). Thus,0; C O3 and so
Oy = O3,

(b) Let us writeK = {¢;;® | 4,5 € I}. If (B,C) € O, then for alli,j € I,
B g Cijc iff BﬂCij = @ iff (Z‘i,l'j) §é WR(B) iff (l‘i,ﬂfj) ¢ WR(C) iff CﬂCij = @
iff C' C ¢;;%, which implies(B, C) € Ox. Hence @} C 6.

If (B,C) € Ok, then for alli,j € I, (z;,z;) € Wr(B) iff BN, # 0
iff B¢ c;Ciff C & ¢;,biff C ey # 0iff (v;,7;) € Wr(C), which implies
Wr(B) = Wg(C). So, alsd@x C OF and henc®, = O} . O

The next example shows how we may obtain dense families in dependence
spaces defined by information systems by Proposition 5.3.6.

Example 5.3.7.Let S = (U, A, {V.}.ca) be the nondeterministic information
system presented in Example 4.2.2. Let us denote Age, b = Height, and

¢ = Weight. The strong and the weak similarity relations of each subsdtarie
the following:

) = Vu;

) = ArU{(1,2),(2,1),(1,3), (3,1), (2,3), (3,2), (2,4), (4,2)}
) = Ay U{(1,4),(4,1),(3.4),(4,3)}

sim({c}) = sim({a,c}) = Ay U{(L1,3),(3,1),(2,4),(4,2)};

' ) = sim({b,c}) = sim(A) = Ay;

) = 6
) = wsim({a,c}) = sim({a});
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wsim({b}) = sim({b});
wsim({c}y) = sim({c});
wsim({a,b}) = wsim(A) = Vy;
wsim({b,c}) = Ay U{(1,3),(3,1),(1,4),(4,1),(2,4),(4,2),(3,4),(4,3)}.

So, the strong similarity congruenég;,,, has the congruence clas4ég, {{a}},
{{b}}, {{c},{a, c}}, and{{a, b}, {b, c}, A}. The similarity matrixM (SIM)s =
(cij)axa OF S'is presented in Example 4.3.2. By Proposition 5.3.6, the family

H={cij [ 1<i,5 <4} = {{a}, {b}, {a,c}, A}

is dense in the dependence spaded;;,,,). For example{c} C X if and only if
{a,c} C X holds for allX € # becausé{c}, {a,c}) € Oy.
On the other hand, the weak similarity congrueétg;,, has the congruence

classeq0}, {{a}, {a,c}}, {{b}}}, {{c}}, {{a, b}, A}, {{b, c}}. Now the family
K={c;"|11<4,j <4} ={0,{b}, {a,c}, {b.c}}

is dense in the dependence spaéed ,sim ). Thus,({a}, {a, c}) € Oypsin implies
that for allX € K, {a} C X ifand only if {a,c} C X.

5.4 Independent Sets and Reducts

In the literature there are many articles which concern independent sets and
reducts in information systems (see e.g. [9, 44, 50]). In this section we review
cores, independent sets and reducts defined in dependence spaces. We compare
the independence defined in dependence spaces with some notions of indepen-
dence studied in universal algebra. Our main result of this section gives a charac-
terization of the reducts of a given subset of a dependence space in terms of dense
families.

Let D = (A, ©) be a dependence space. A subBéC A) is calledinde-
pendenin D if B is minimal with respect to the inclusion relation in #sclass;
otherwise it isdependent We denote the set of independent subset® iby
INDp.

The following lemma was stated in [30] for finite dependence spaces.

Lemma5.4.1.1f D = (A, ©) is a dependence space, thBne [N Dy if and
onlyif (B,B —{a}) ¢ ©forall a € B.
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Proof. If B € INDp, then obviously(B,B — {a}) ¢ © for all « € B.
Conversely, ifB ¢ IN Dp, then there exists &@ € B/© such thatC C B. If
a € B—C,thenC C B — {a} C B, which implies(B, B — {a}) € ©, because
each@®-class is convex. O

It is now clear that every subset of an independent set is independent; in partic-
ular, the empty set is independent. In the next example we consider independent
subsets of dependence spaces defined by information systems.

Example 5.4.2.LetS = (U, A, {V,}.c4) be a nondeterministic information sys-

tem. Let us consider the dependence sfagg = (A, Oy ). ForanyB C A,
B ¢ INDp <= (B,B - {a}) € O, forsomea € B

< sim(B) = sim(B — {a}) for somea € B.

sim

Thus, a subseB is independent irD,;,, if we cannot omit any attribute fron®
without changing the original strong similarity relation. Analogous statements
hold for dependence spaces defined by other information relations. In the depend-
ence spac®,;,, considered in Example 5.3.7 the s@tsa}, {b}, {c}, {a,b}, and

{b, ¢} are independent.

Next we present some equivalent conditions which can be used for determin-
ing independent sets.

Lemma5.4.3.1f D = (A,©) is a dependence space in whigh C p(A)) is
dense, then the following conditions are equivalent fozail A anda € B:

(@) (B, B —{a}) ¢ O,

(b) B— X = {a} for someX € H;

(©)a & Cp(B — {a});

(d){a}/© £ (B —{a})/O.

Proof.Let B C A anda € B.

(@)= (b). If (B,B — {a}) ¢ ©,thenB/O© £ (B — {a})/O©, which implies
by Proposition 5.2.3 that there exists &h € # such thatB — X # () and
(B — {a}) — X = 0. This means thaB — X = {a} for someX € H

(b) = (c). SupposeB — X = {a} for someX € . This implies that
(B —{a}) — X =0, thatis,B — {a} C X. Becaus&p(B — {a}) = {X €
H | B—{a} C X}anda ¢ X we obtaina ¢ Cp(B — {a}).

(€)= (). Ifa ¢ Cp(B — {a}), thenCp({a}) Z Cp(B — {a}), which is
equivalentto{a}/© £ (B — {a})/O by (5.1).

(d) = (a). If {a}/O £ (B — {a})/0, thenB/O = ({a} U (B — {a}))/© =
{a}/OV (B —{a})/© # (B - {a})/O. m
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Remark. This notion of independence is actually equivalent to a general notion
of independence with respect to a closure operatorC et a closure operator on
asetA. AsetB C Ais said to beC-independenif a ¢ C(B — {a}) for every

a € B (see [14], for example). ID = (A, ©) is a dependence space aBd- A,

then by Lemmas 5.4.1 and 5.48,€ INDp <= (B,B — {a}) ¢ © for all
a€B <= a¢Cp(B—-{a})foralla e B <= Cp-independent.

As we have already noted, a dependence space could also be defined as a pair
D = (A,C), whereC: p(A) — p(A) is a closure operator. By our remark, the
setI N Dp may be defined in this structure by the means of a general notion of
independence appearing in the literature.

In the literature there can be found several notions of dependence (see [14], for
example). Here we consider abstract dependences studied in universal algebra. As
noted in [45], the dependence in information systems in which the set of attributes
is finite is an abstract dependence. Udbe a set. Arabstract dependenan A is
a family D of subsets ofd such thatX € D if and only if some finite nonempty
subsetF’ of X belongs toD. A subsetX of A is said to beD-dependentf
X € D, and itis calledD-independenbtherwise (see [4, 14], for example).

Now the following lemma holds. Assertion (a) is mentioned in [14] without
proof. Statement (b) is verified by modifying the proof of the well-known Ex-
change Lemma (see [4]).

Lemma 5.4.4. LetC: p(A) — p(A) be an algebraic closure operator.
(a) The set of-dependent sets is an abstract dependencd.on
(b) Each setB(C A) contains a maximal-independent subset.

Proof. (a) Suppose3 is C-dependent. It means thatc C(B — {a}) for some
a € B. SinceC is algebraic, there exists a finite subseof B — {a} such that
a € C(F). Sincea ¢ F, this means that’ U {a} is a finiteC-dependent subset of
B.

(b) Consider anyB C A. Let us denote

Z ={Y C B | Y isC-independerjt

Obviously,Z is a nonempty sincé € Z. Let{Y;}.c; be a nonempty chain in. It

is clear thaty” = | J,, Y; is a subset of3. Assume that” is C-dependent. Then
by (a), there exists a finite-dependent subsétof Y. BecausdY;};c; is a chain,
there exists: € [ such thatF' C Y,. SinceF is a finiteC-dependent subset of
Y, alsoY} is C-dependent, a contradiction! Hendé,belongs taZ. By Zorn’'s
Lemma this implies thal has a maximal element. O
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Example 5.4.5.Let C: p(N) — p(N) be a closure operator such tliqtB) = B
if B is finite andC(B) = N otherwise. It is easy to see thats not algebraic.

The setN is C-dependent, but it does not have any firditdependent subsets,
because all finite subsets BfareC-independent. So, the set of gldependent
subsets is not an abstract dependenc&NonFurthermore N does not have a
maximalC-independent subset.

From Proposition 5.1.5 and Lemma 5.4.4 it follows that wiiegn= (A, ©)
satisfies the ACC, the set of all dependent subsefsiman abstract dependence
on A and each subset of has a maximal independent subset.

The following definitions can be found in [4], for example. LBt be an
abstract dependence drandX C A. An element(e A) is said to belependent
on X if a € X or there exists an independent subsetf X such thaty” U {a}
is dependent. Thepan(X) of X is the set of all elements of dependent orX .
The dependencP is said to baransitiveif ((X)) = (X) for everyX C A.

We just mentioned that iP = (A, ©) is a dependence space which satisfies
the ACC, then the set of all dependent subse® is an abstract dependence on
A. In the next example we show that this abstract dependence is not necessarily
transitive even iD is finite.

Example 5.4.6.In the dependence space of Example 5.443}) = {1,4} and
(({1})) ={1,2,4}.

The notion of reducts is important in the theory of information systems (see
[50], for example). Here we study reducts in the more general setting of depend-
ence spaces. L& = (A, ©) be a dependence space. For &y A, a subset
C C Bis called areductof B, if BOC andC € INDp. The set of all reducts of
B is denoted byRE Dp(B).

Lemma5.4.7.LetD = (A, ©) be a dependence space aBdC A. Each reduct
of B is a maximal independent subset/f

Proof. If C € REDp(B), thenC € INDp andC C B. Suppose that
C Cc D C BforsomeD € INDyp. The factBOC impliesC'©D because each
O-class is convex. Sd) ¢ IN Dp, a contradiction! O

In the next example we see that every maximal independent subset in a de-
pendence space is not necessarily a reduct of that set.
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Example 5.4.8. Consider the dependence space defined in Example 5.1.3. The
set{1} is a maximal independent subset {f, 4}, but {1} is not a reduct of

(1,4},

Note that results closely related to Lemma 5.4.7 and Example 5.4.8 are pre-
sented in [9] for information systems.

It is possible that some subsets of a dependence space do not have reducts even
if the closure operataf,, is algebraic, as we see in the next example.

Example 5.4.9.Let us define a closure operat6rp(N) — (N) by setting
C(B) = {n € N | n < max B} if Bisfinite, andC(B) = N otherwise.

SupposeB C Nis infinite. If a € C(B) = N, then there exists@ac B such
thata < b sinceB is infinite. So,a € C({b}) and thu<’ is algebraic.

Let us now consider the dependence spAce= (N,O.) where®, is the
kernel ofC. The®,-class ofN consists of all infinite subsets &f. Clearly, this
congruence class has no minimal elements arid Bas no reducts. Note that the
maximal independent subsetsiofare the set$n}, n € N.

Next we intend to find conditions which guarantee the existence of reducts.
Suppos® = (A, ©)is adependence space aid- A. An element € B is said
to beindispensabléor B if (B, B — {a}) ¢ ©. The indispensable elementsBf
form thecoreof B, which is denoted b¢’OREp(B). It is clear thatB € INDp
if and only if B = COREp(B). By Lemma 5.4.3, ifH is dense inD, then
a € COREp(B)ifand only if B— X = {a} for someX € H.

Example 5.4.10.Let us consider the dependence sp&ce- (A, ©) defined in
Example 5.1.3. We know that the fami{y{1, 3}, {2, 3}, {1,2,4}} is dense irD.
Now COREp(A) = {3}, sinceAd — {1,3} = {2,4}, A — {2,3} = {1,4}, and
A—{1,2,4} = {3}.

Our next proposition is a generalization of theorem appearing in [30].

Proposition 5.4.11.LetD = (A, ©) be a dependence space aBd_ A.
(a) If every subset oB has a reduct, the®OREp(B) = (| REDp(B).
(b) If COREp(B) = () REDp(B), thenB has reducts.

Proof. (a) Suppose each subset BfC A) has a reduct. Assume €
COREp(B) anda ¢ C forsomeC' € REDp(B). SinceC C B — {a} C B and
BOC, we obtainBO B —{a}, a contradiction! SaC’ORFEp(B) C (\REDp(B).
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If « € YREDp(B) anda ¢ COREp(B), thenBOB — {a}. By our as-
sumption, B — {a} has a reductC. It is clear thatC is also a reduct of
B. Becauser ¢ C, we obtaina ¢ (| REDyp(B), a contradiction! So, also
COREp(B) D (YREDp(B).

(b) Assume thaCOREp(B) = (\REDp(B) and suppose thaB has no
reducts. Theif\REDp(B) = {a € B | a belongs to all reducts aB} = B,
which impliesCOREp(B) = B. Hence,B € INDp andB € REDp(B), a
contraction! O

Next we present a proposition which guarantees that each subset of a depend-
ence space has a finite reduct.

Proposition 5.4.12. A dependence spad@ = (A, ©) satisfies theACC if and
only if each subset of has a finite reduct.

Proof. Suppose thaD = (A, ©) satisfies the ACC and consider aByC A.
By Proposition 5.1.48 has a finite subset’ such thatBOF. SinceF is finite,
we may assume that it is a minimal subsetiith this property, and the#’
is obviously a finite reduct oB. The other direction is obvious by Proposition
5.1.4. O

This proposition has the following corollary.

Corollary 5.4.13. If a dependence spad@ = (A, ©) satisfies thédCC and B C
A, then all reducts oB are finite.

Next we present a proposition which characterizes the reducts of a given subset
by applying dense families

Proposition 5.4.14.Let H(C p(A)) be a dense family in a dependence space
D = (A4,0). If B C A, thenC € REDp(B) if and only if C' is a minimal

set with respect to the property of containing an element from each nonempty
differenceB — X, whereX € H.

Proof. Suppose that’ € REDp(B). ThenC C B, BOC, and especially
B/© < C/O. Thus, by Proposition 5.2.3/) N (B - X) = (BNC) — X =
C — X # Qforall X € H such thatB — X # (. Assume that there exists a
D c C which contains an element from each nonempty differéfce X where
X € H. ThisimpliesD - X = (DNB)—-X =DN(B-X) #0forall X € H
which satisfyB — X # (). By Proposition 5.2.3 we obtaiB/© < D/6. Since
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D c B,alsoD/6® < B/ holds. So,BOD which implies thal” is not a reduct
of B, a contradiction!

Conversely, lelC' be a minimal subset off with respect to the property of
containing an element from each nonempty differeBce X, X € H. First we
showthatC isasubsetoB. If C' Z B,thenBNC C Cand(BNC)N(B—X) =
CN (B - X) # 0 wheneverB — X = (), a contradiction! Thus¢' C B. Since
C—-—X=Cn(B-X) # 0forall X € H such thatB — X # 0, we obtain
by Proposition 5.2.3 thaBe&C'. AssumeC' is dependent. Then there igac C
such thatC©D. Since® is transitive, we obtailBB©® D and hence for alX € H
suchthatB — X #0, DN (B— X) = D — X # (), a contradiction! So' is also
independent. 0

Let us consider a nondeterministic information systra (U, A, {V,}aca)-
ThenC' is a reduct ofB(C A) in a dependence spagg,;,, = (A, O,) if and
only if C'is a minimal subset oB which defines the same strong similarity re-
lation asB. On the other hand, in a dependence spage,, = (4, Opsim) @
setC' is a reduct ofB if and only if C' is a minimal subset o8 which defines
the same weak similarity relation & Similar statements apply to dependence
spaces induced by other information relations.

Example 5.4.15.In the dependence spatg;,, = (A, Oy;,,) of Example 5.3.7,

the family
H = {{a}v {b}v {av C}v A}

is dense by Proposition 5.3.6(a). We determine the reducts of the lsgusing
this fact. The differenced — X, whereX € # are

A—{a} ={b,c},A—{b} ={a,c},A—{a,c} ={b},A—A=0.
Clearly {a,b} and{b, c} are the minimal sets which contain at least one element
from each of the three nonempty differences. By Proposition 5.4.14 this implies
that{a, b} and{b, ¢} are the reducts ofl in (A, Og;,,).

By Proposition 5.3.6(b) the family
K ={0,{b}.{a,c}.{b,c}}

is dense in the dependence spaxg;,, defined in Example 5.3.7. The differences

A-D=AA—-{b} ={a,c},A—{a,c} = {b}, A—{b,c} = {a}

are all nonempty. Obviouslya, b} is the only minimal set which contains an
element from all of these differences. Thys, b} is the only reduct ofA in
Dwsim-
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5.5 Dependency Relations

J. Novotry'and M. Novotry[26] started the study of dependency relations defined
in dependence spaces. Here we adopt their definition of dependency relations and
generalize some of their results. Moreover, we introduce a method based on dense
families which for a given dependengy — C finds all minimal subset® of B
such thatD — C.

Let D = (A, ©) be a dependence space. A subSéC A) is said to be
dependent oB(C A) in D, which will be denoted byB — C' (D), if Cp(C') C
Cp(B). The relation— (D) is called thedependency relation @. Usually we
write simply B — C'instead ofB — C' (D) if there is no danger of confusion.

In the next lemma, which follows from Proposition 5.2.3, we present some
equivalent definitions of dependency relations.

Lemma 5.5.1. If #(C p(A)) is dense in the dependence spare: (A, @), then
the following conditions are equivalent for @, C' C A:

@B —C;

(b)C/e < B/6;

(c)forall X € H,C — X # () impliesB — X # 0. O

Example 5.5.2.Let S = (U, A,{V,}.ca) be an information system such that
each attributes € A is a mapa: U — V,. Let us consider the dependence space
Dina = (A,0;,4). ForallB,C C A,

< ind(B) C ind(C)

by Proposition 5.3.2 and Lemma 5.5.1. ThusBif— C' (D;,4) and two objects
have the same values for all attributesinthen they have the same values for all
attributes inC'. Hence, the dependenéy — C' (D;,q) means that the values of
the attributes irC' are determined by the values of the attributegin

Note thatC' C B impliesB — C. If we denote by— the inverse of—, then
© = — N <. Note also that iB — C' whenC' C B, thenCp(B) = Cp(C') and
BOC. The following lemma, which is given in [26] for finite dependence spaces,
expresses the reducts by the means of dependency relation.

Proposition 5.5.3. If D = (A, ©) is adependence space, théC A) is a reduct
of B(C A) if and only ifC' is a minimal subset aB such thatC' — B.
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Proof. Assume first that” is a reduct ofB. Then(C' — B follows from
Cp(B) = Cp(C). Moreover if D — B for sinceD C C, thenCp(B) C Cp(D) C
Cp(C) = Cp(B) would imply BOD contradicting our assumption thét is a
reduct of B. OJ

Let A be a set. We say that a relatien» on p(A) is adependency relation
on A if there exists a dependence spdte= (A, ©) such that--» is its depend-
ency relation. In [26], J. Novotnand M. Novotry characterized the dependency
relations of a finite setl. Here we generalize their result.

Proposition 5.5.4. Let A be any set. A relatior-+ on p(A) is a dependency
relation onA if and only if

(a) --~» is reflexive and transitive,

(b) --» is completelyJ-compatible, and

(c)forall B,C, X C A,

B --» CandB C X imply X --» C.

Proof. Let — be a dependency relation of = (A, ©). Obviously,B — B
holds for allB C A. If B — C andC — D, thenCp(D) C Cp(C) C Cp(B);
thatis,B — D. Hence,— is reflexive and transitive.

Let B;,C; (1 € I,I # 0) be subsets ofi such thatB; — C; for all i € I.
ThenC; C Cp(C;) C Cp(U,; Bi) for all i € I, which impliesCp(J,; Ci) C
Co(U,e; Bi) and(U;e; Bi) — (U;e; Ci). Thus,— is completelyJ-compatible.
If B— C andB C X, thenCp(C) C Cp(B) C Cp(X) and henceX — C.

On the other hand, let-» be reflexive and transitive binary relation pA)
which is completelyJ-compatible, and such that -+ C', B C X imply X —-»
C forall B,C,X C A. Let us denote by the intersection of-+» and «-—-,
where«— is the inverse of-». First we show tha® is a complete congruence
on (p(A),U). It can be easily seen thétis an equivalence. Suppogg©C; and
B,©@C,. ThenB; -+ Cy, By -+ C5, C1 --+» By andCs --+ B,. This implies
(B U By) -—+ (C; U Cs) and(Cy U Cy) —-» (B; U By) since--+ is completely
U-compatible. This means théB;, U B,)©(C; U Cy) and thusd is a congruence
on(p(A),U). Let B C A and suppos®/© = {B;},c;. BecauseB --» B; and
B; --» Bforalli € I, we getB --» (U,; Bi) and({J;; Bi) --» B since--»
is completelyJ-compatible. Hence3O(lJ,., B;) and thus the congruencégis
complete.

Finally, we show that-» is the dependency relation &f = (A4,0). If B —
C (D), thenCp(C) C Cp(B). By (c),Cp(C) ——» Cp(C) impliesCp(B) --»
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Cp(C). BecauseB,Cp(B)) € © C --» and (Cp(C),C) € © C --», we
obtain B --» C by the transitivity of--+. On the other hand, iB --» C,
then (Cp(B),B) € ©® C —-» and(C,Cp(C)) € © C —-» imply Cp(B) --»
Cp(C) by the transitivity of--+. The completeJ-compatibility of --+ implies
Cp(B) --+ Cp(B) UCp(C). Itis obvious thaCp (B) UCp(C) --+ Cp(B). Thus,
Cp(B), thatis,B — C (D). O

In information systems it is important to find for a dependefty— C' all
or some minimal subset® of B such thatD — C holds. In the sequel we
characterize these subsets, but first we give some conditions which guarantee that
such aD exists.

Example 5.5.5. Let us consider the dependerie= (N, O ) defined in Example
5.4.9. Itis clear thalN — N (D). But as we have seen, the $&tas no reducts
in D. This implies by Proposition 5.5.3 that there exists no minimal subsait
N such thatD — N. Note that the closure operatois algebraic.

Next we present a proposition which guarantees that for each dependency
B — C there exists a finite minimal subsét of B such thatFF — C. This
result is akin to Proposition 5.4.12.

Proposition 5.5.6. LetD = (A, ©) be a dependence space. For any dependency
B — C there exists a finite subsét of B such thatt" — C' if and only if D
satisfies the ACC.

Proof. Suppose thaD = (A, ©) satisfies the ACC and |€8, C' C A be such
that B — C. Then by Proposition 5.1.4, there exists a finite sultsef B such
that BOG, and since? is finite, it has a minimal subsét such thatt" — B.

On the other hand, suppose that for any dependéhey C' there exists a
finite subsetF’ of B such thatF" — C. Let B C A. BecauseB — B holds
trivially, then by our assumption there exists a finite subdsatf B such that
F — B, which is equivalent ta3/© < F/©. This impliesBOF sinceF' is a
subset ofB. By Proposition 5.1.4 we obtain th#&t satisfies the ACC. O

Next we present a proposition which characterizes in terms of dense families
the minimal subset® of B which satisfyD — B for a dependencys — C.
Note that this proposition is related to Proposition 5.4.14 which characterizes the
reducts of given set.
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Proposition 5.5.7. Let #(C p(A) be a dense family in a dependence spRce
(A,0). If B— C, thenD is a minimal subset aB which satisfiedD — C'if and

only if D is a minimal set with respect to the property of containing an element
from each differenc®& — X, whereX € H and satisfie®’ — X # 0.

Proof. Suppose thaB — C and letD be a minimal subset aB such that
D — C. Becausd) C B, the assumptio® — C' implies by Lemma 5.5.1 that
DN(B-—X)=(DNB)—X =D—-X #(forall X € # suchthat' — X # 0.
Assume that there exists @&hC D which satisfied/N(B—X) # @ forall X € H
suchthatC' — X # (). ButE C Bimpliesthatl — X = EN (B — X) # 0 for
all X € H which satisfyC' — X # (). ThusE — C, a contradiction!

Conversely, assumB — C' and suppose thdD is a minimal set which con-
tains an element from each differenBe- X whereX € H satisfies” — X # 0.
If DZ B,thenDNB C Dand(DNB)N(B—-X)=Dn(B-X) # 0 for
all X € H such thatC — X # (), a contradiction! Hencel) C B. This implies
D—X=Dn(B-X) # (forall X € H which satisfyC' — X # (). This means
D — C. Suppose there exists @& C D such thatF — C. ThenE ¢ D C B
impliesE — X = EN (B — X) # 0 whenevelC' — X # (), a contradiction! [

Example 5.5.8.Let S = (U, A, {V,}.ca) be an information system such that
U={1,....5}b A=A{a,....f}, V. =V, ={0,1,2}, V. = {0,1,2,3}, V; =
Ve = V; = {0, 1} and the values of the attributes are defined as in Table 6.

d e

A wN R
NN R OO
OO ON R
OFR wWwN|0
OO Rr RO
COoOR PP
NN N =

Table 6.

Let B = {a,b,c,d} andC = {e, f}. Itis easy to see that the values@fare
determined by the values &f. This means thaB — C' holds inD;,;,. Next we
intend to find all minimal subset® of B which satisfyD — C' (D;yq).

The indiscernibility matrixV/ (IND)s = (c;;)5x5 Of S is the following:
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A {a,e} {e} {d} {d}

{a,e} A {c.d.e, [} {f} {f}
{ey {cde f} A {b.f} {b. 1}
{d} {r} {b. 1} A {a.b.d,e, f}

{d} {/} {b.f}  H{abde f} A
By Proposition 5.3.6, the family
H = {c;|1<14,7<5}
= {Ha.e}.{a,b,d.e, f1.{b, [} {c.d e, [}, {d} {e}, {f} A}

is dense iD;,4. The differences’ — X, X € #H are nonempty foX = {a,e},
{b, f},{d},{e}, {f}. The corresponding differencés— X are the following:

o {a,bc,d} —{a,e} = {b,c d};
e {a,b,c;d} — {b, f} = {a,c,d};
o {a,b,c,d} — {d} = {a,b,c};

e {a,b,c,d} — {e} = {a,b,c,d};
o {a,bc,d} —{f}={a,b,c,d}.

Next we must find all such minimal sets which contain an element from all
of the above differences. Becaugse b, ¢}, {a, ¢, d} and{b, ¢, d} are the minimal
differences, it suffices to consider them only. It is easy to see{itiat{a, b},
{a,d}, {b,d} are the minimal sets which contain an element from all of these
differences. So{c}, {a,b}, and{a,d}, and{b, d} are the minimal subsef® of
{a,b,c,d} which satisfyD — {e, f}.

Note that the set§c}, {a,b}, {a,d}, and{b,d} are not reducts o3 in
Dina, Since they are nab;,s-equivalent toB. In fact, REDp, ,({a,b,c,d}) =

{{a, e}, {b,c}}.

We conclude this section by discussing briefly a couple of notions closely
related to the dependency concept considered above. In the theory of relational
databases (cf. [11], for example) the concept of a functional dependency between
sets of attributes is of fundamental importance. Kebe a set. Afunctional
dependencyver A is an ordered paiB — C, whereB,C' C A. An Armstrong
systenon A is a setF C p(A) x p(A) which satisfies the following (modified)
Armstrong Axiomgsee [6], for example):
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(A1) B D C'impliesB — C € F;
(A2) B—CeFandC — D e Fimply B— D € F;

(A3) Fis completelyJ-compatible.

It can be easily seen that (A1)—(A3) are equivalent to conditions (a)—(c) of
Proposition 5.5.4. Hence, a relatien is a dependency relation ohif and only
if itis an Armstrong system od.

It is easy to see that the saSys(A) of all Armstrong systems on a seit
forms a complete lattice with respect to the inclusion order. Moreover, Day [6]
observed the following correspondes between Armstrong systemsand the
closure operators oA. Each Armstrong systeth on A defines a closure operator
Cr:p(A) — p(A) if we set

(5.3) Cr(B)=(J{ccA|B—CecF}

for all B C A. On the other hand, each closure operétqs(A4) — p(A) defines
an Armstrong systenf: on A by the rule

B — CeF, ifandonlyif C(C)CC(B).

Furthermore, the mapg — Cr andC — F. form a pair of mutually inverse
order-isomorphisms betweéASys(A), C) and(Clo(p(A4)), <).

We also discuss shortly knowledge structures (see e.g. [8, 22])Albet a
finite set of problems. Anowledge statis the set of problems a subject is capable
of solving. Aknowledge structures a pair(A, K), wherelC C p(A). Intuitively
speaking, a knowledge structure consists of the different knowledge states that
can occur within the members of a population. Let us denoféihyw](A) the set
of all knowledge structures oA. A knowledge structure which is closed under
unions is called &nowledge space

ArelationR € Rel(p(A)) is called arentail relationfor Aifforall B,C C A,

(E1) B D Cimplies(B,C) € R;
(E2) Ris transitive;

(E3) (B, ;) € Rforalliinan index sef implies(B,|J,.,; C;) € R.
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It is easy to see that (A1)—(A3) and (E1)—(E3) are equivalent. Thus, a refation
is a dependency relation ohif and only if --» is an Armstrong system oA if
and only if--» is an entail relation for, as noted in [8].

Koppen and Doignon [22] have shown that the following correspondences
hold between knowledge structures and binary relations. Every knowledge struc-
ture (A, K) defines an entail relatioRy for A by the rule

(5.4) (B,C) € Rx < forall X € K,CN X # 0 impliesBN X # (.

An interpretation of B, C') € Ry is, for example, that if a student masters some
questions inC' if he/she also masters some question®&inor equivalently, if a
student does not master any questioirhe/she does not master any question in
C.

On the other hand, every binary relatiron p(A) defines a knowledge space
(A, Kr), whereKr is defined by

Kr={X CA| forall (B,C) e R,CNX #0impliesBN X # (}.

Moreover, the map® — (A, Kr) and(A, £) — Ry form a Galois connection
betweenRel(p(A)), C) and(Knowl(A), C).

Let us also note that itsch and Gediga showed in [9] thatXf, *) is a Galois
connection betweefp(A), C) and(p(B), C), thenR € Rel(p(A)) defined by

(X, Y)eR <— X*CY"*

is a dependence relation agn
We end this chapter by noting the following. Consider an entail relaiion
for A. SinceR is a dependency relation ofy the relation@r, = RN R~! is by
Proposition 5.5.4 a complete congruence(pfA),U), and this means that the
pair (A, ©g) is a dependence space, which has the dependency refati®y
(5.3), the map
p(A) = p(A), B = [ J{X | (B, X) € R}

is the closure operator of this dependence space.

If (A, K) is a knowledge structure, then obviously the relatidn = R N
R'is a complete congruence 6p(A), U) and the paif A, O ) is a dependence
space. By Lemma5.5.1 and (5.4),

C/Ox < B/Ox < (B,C)€ Rx
VX eK)(CNX#0= BnNnX #0)
VX e ) BNX=0=CnNnX=0)

(
(
(
(VX e K)(BC X' = C C XP);

<~
—
—
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this implies that the familf X® | X € K} is dense i 4, Ox).
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Chapter 6

Rough Sets

6.1 Approximations and Definable Sets

Knowledge about objects may be represented as binary relations. For instance, if
we classify all human beings into two disjoint sets consisting of women and men,
respectively, then this classification determines an equivaléhsech thatz E'y
whenever: andy are of the same gender.

In rough set theory it is usually assumed that the knowledge about objects
is restricted by some indiscernibility relation (see [43, 45], for example). Indis-
cernibility relations are equivalences which are interpreted so that two objects are
equivalent if we cannot distinguish them by using our information. This means
that the objects of the given univerSecan be classified by the knowledge repre-
sented by an indiscernibility relatiafi(c Eq(U)) into three classes with respect
to any subseX (C U):

1. the objects, which surely are i;
2. the objects, which are surely notif
3. the objects, which possibly are in.

The objects in class 1 form the lowékapproximation ofX, and the objects of
type 1 and 3 form together its uppé&lapproximation. TheZ-boundary ofX
consists of objects in class 3. Some subset§ @alfre identical to both of their
approximations and they are calléddefinable.

This chapter can be viewed as a generalization of the theory concerning ap-
proximations and rough sets defined by equivalences (cf. [13, 17, 28, 29, 43, 45,

86



46, 54]). Here we assume that the knowledge about objects is given by a similarity
relation. We suppose that similarity relations are tolerances. This requirement is
quite natural. Namely, each object is obviously similar to itself, andig sim-
ilar to y, thenz andy are in some sense alike and so ajsmust be similar to
x. Recall that indiscernibility and similarity relations defined in nondeterministic
information systems are at least tolerances.

However, it should be noted that there are cases in which similarity is not
necessarily a symmetric relation. For example in [23, p. 40] it is argued that

“the statemeny Rz which meansy is similar toz’ is directional; it

has asubjecty and areferentr and it is not equivalent in general to
the statement? is similar toy’ as argued by Tversky. For example,

in the following statement:d son resembles his fathi¢he son is the
subject and the father is the referent; the inverse statement usually
makes much less sense.”

We may also observe that the inclusion relations defined in nondeterministic in-
formation systems may be viewed as directional similarity relations (or even as
directional indiscernibility relations). Namely, if(z) C a(y), then we cannot
distinguishz from y only by considering the-values ofz.

According to Pawlak’s [43] definition, rough sets arg;-classes of some
equivalencer € Eq(U). The idea of rough sets is that if subset$/adre observed
through the knowledge representedBythen the sets in the samsg;-class look
the same;X =5 Y means that exactly the same elements belong certainty to
and toY’, and exactly the same elements belong possibk &md toY". In Section
6.3 we generalize Pawlak’s notion by defining rough sets in terms of tolerances.

First we study approximations defined by tolerance relations. B. Konikowska
[20, 21] and J.A. Pomykata [49] considered approximation operations defined by
strong similarity relations of nondeterministic information systems. Also J. Niem-
inen [25] has studied approximations induced by tolerances but his definition is
not the same as ours. Furthermore, J.A. Pomykata [47, 48] anda®owski
[57] have investigated approximations defined by covers which can be applied
to tolerances. Recall that for any toleranBe € Tol(U) and anyz € U,
z/R={y € U | zRy}.

Definition. Let U be a set obbjectsand letR be a tolerance ofY referred to as
thesimilarity relation Thelower R-approximatiorof a setX (C U) is

Xp={xeU|z/RC X};
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its upper R-approximations
Xt={zreU|z/RNX #0}.
The setBg(X) = X — Xy is called theR-boundaryof X .

The lower R-approximation ofX consists of elements which surely belong
to X in view of the knowledge provided bi. The upperR-approximation of
X is formed of elements which possibly are ¥ in light of the knowledgeR.
Obviously, theR-boundary is the area of uncertainty.

In the next proposition we give some basic properties of approximations.

Proposition 6.1.1.If R € Tol(U) and X C U, then
@0z =08 =0andUp = UR = U,
(b) Xp C X C XF;
(©) (Xr)® = (XB)" and (XH)F = (XO)p;
(d) Br(X) = Br(XF);
(e)the pair (%, ) is a dual Galois connection ofp(U), C);
() X*=U{z/R |z € X}
@ (Xp) =U{z/R | z/R € X} and(X*)F = J{z/R | z/RN X #0}.

Proof. Assertions (a), (b), and (c) can be found in [20, 21, 49], and (d) and (f)
are obvious. Claim (g) follows from (f).

(e) It follows immediately from the definitions that the mapsX — X and
E. X s X1 are order-preserving.

If z € (Xg)E, thenz/R N X # 0 which implies that there existsiae X
such thatzRy. Thereforexz € X and so(Xz)® C X. Let us denotd” = XC,
Then(Y)® C Y implies

X =Y C((Ya)®)t = (YE)H)p = (X).
O

By the previous proposition, th&-boundary of a set is equal to the-
boundary of its complement. It means simply that if we cannot decide when an
objectz is in X, then we obviously cannot decide whethdryelongs taX® either.
Moreover, (%, ) is a dual Galois connection dp(U), C). This fact implies by
Propositions 3.3.3, 3.5.1, and 3.5.4 our following lemma.

Lemma6.1.2.Let R € Tol(U), X C U, andH C p(U).
@) (X™)p)" = X" and((Xz)")r = Xg.
(o) (UH)*=U{X" | X e H}and(NH)r = ({Xr | X € H}.
© (NH)* <X X eHyand(UH)r 2 U{Xr | X € H}. m
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Note that the mapX — X% is a complete join-morphisnip(U), C) —
(p(U),C) andX — Xg is a complete meet-morphisfp(U), C) — (p(U), Q).

Let S = (U, A,{V,}.ca) be a nondeterministic information system and let
0 # B C A. Then by Lemma 4.1.5, the relationsi(B), wind(B), sim(B), and
wsim(B) are tolerances.

Example 6.1.3.Let us consider the nondeterministic information syst&m=
(U, A, {Va}aca) given in Example 4.2.2. If we denot® = sim({Height}) =
Height = (SIM), thenR is a similarity relation o/ such that: Ry if and only if
x andy are approximately of the same height. By Example 4.2.2,

1/R = {1,4},2/R = {2},3/R = {3,4},4/R = {1,3,4}.

If X = {2,3}, thenXy = {2} and X® = {2,3,4}. Now Bx(X) = {3,4} and
4 € Bg(X), for example, because both i and in X there is an object which
is similar to4.
Note that the inclusions in Lemma 6.1.2(c) can be proper. Here, for example,

({3yn {4 =07 =0, but {3} N {4} = {3,4} N {1,3,4} = {3,4}.
Similarly,
{3y U {4} = {3,4}r = {3}, but{3} R U{4}r =0 U0 = 0.

Next we compare approximations defined by different similarity relations. The
following lemma means that the approximations of a’sejet closer taX, if the
knowledge is more precise.

Lemma6.1.4.1f R, S € Tol(U) are such that? C S, thenXp D Xg, X% C
X%, andBg(X) C Bs(X) forany X C U.

Proof. If z € Xg, thenz/R C z/S C X, i.e.,x € Xg. If z € X%, then
r/SNX D x/RNX # 0, which means that € X°. Finally, Bg(X) =
XR_ Xp C X% — Xg= Bg(X). O

Let> and< be maps orp(U). We say that™>,) is apair of approximation
maps if there exists anz € Tol(U) such thatX> = X® and X4 = X}, for all
X € p(U). Our next proposition characterizes the pairs of approximation maps.
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Proposition 6.1.5. Let > and * be two maps op(U). Then(*,4) is a pair of
approximation maps if and only if

(a) (*,4) is a dual Galois connection ofp(U), C),

(b) y € {«}” impliesz € {y}* forall z,y € U,

(c) X C X*forall X CU, and

(d) (X% = (X9 forall X C U.

Proof. Let R € Tol(U). Then(®, ) is a dual Galois connection gp(U), C)
by Proposition 6.1.1(e). Condition (b) is satisfied sipce {z}% if and only if
xRy. Conditions (c) and (d) hold by Proposition 6.1.1.

On the other hand, léF,<) be a dual Galois connection ¢p(U), C) which
satisfies (b)—(d). Let us define a binary relati®mon U by xRy iff y € {z}>. By
(©),z € {z} C {x}", which implieszRz. If 2Ry, theny € {z}>, which implies
by (b) thatz € {y}*. Thus,y Rz and hencer is a tolerance.

Let X C U. Because by Proposition 3.52;,o(U) — p(U) is a complete
join-morphism(p(U), ) — (p(U), €), we obtain(J,. {z})> = U,ex{z}”
forany X C U. Hence,

X* = Upex ()" = Usex ()" = Ula/B| 2 € X} = X7,
BY (@)
X = (X0 = (X0 = (X0 = ((Xp)f = X

We conclude this section by consideriRgdefinable sets.

Definition. Let U be a set and? € Tol(U). A setX(C U) is R-definableif
XR == XR.

We denote byDef(R) the set of allR-definable sets. It is obvious that a set
X is R-definable if and only if itsR-boundaryBg (X ) is empty. This means that
for any objectr € U, we can with certainty decide whetherc X by using the
knowledge provided by?. To show that a set is definable requires only half as
much work as the definition suggests.

Lemma 6.1.6. For any R € Tol(U) and X C U, the following three conditions
are equivalent:

(@) X € Def(R);

(b) X = X;

(c) X = XE,
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Proof. It is obvious that (a) implies (b) and (c). Supposg = X. We show
thatX = X2, Trivially, X C X% If r € X, thenz/RN Xy # 0, which implies
z € X and henceX® C X.

Assume thatX = X%. Clearly, Xz C X. If z € X, thenzRy implies
y € X = X, and hence € Xy andX C Xj;.

Now we have shown that (b) and (c) are equivalent conditions and from this it
also follows that both of them imply (a). O

Next we characterize th&-definable sets in terms of sets saturated by an
equivalence relation. We say th&{C U) is saturatedoy £ € Eq(U), if X isthe
union of some equivalence classesér X = (). The set of all sets saturated by
E is denoted byat(FE).

A family F(C p(U)) is called acomplete field of sei§ 0, U € F, X® ¢ F
forall X € Fand|JH,NH € F forall H C F. Now the following lemma
holds (see [54], for example).

Lemma6.1.7.Let £ € Eq(U) and X C U.
(@) X € Sat(F) ifand only if for allz € X, xEy impliesy € X.
(b) Sat(E) is a complete field of sets. O

Next we give a proposition which characterizes definable sets.
Proposition 6.1.8.If R € Tol(U), then
Def(R) = Sat(RF).

Proof. SupposeX € Def(R). ThenX® = X. Letz € X. If (v,y) € RE,
then there exists a sequenge. . ., ¢, such thatt = ¢y, y = ¢,, andc¢;Rc; 1 oOr
cir1Re; forall 0 < i < n — 1. BecauseR is symmetric, this means thatkc;
forall0 <i < n — 1. SinceX® = X, itis easy to show by induction that every
¢i, 0 <1 < n, belongs taX. In particular,y € X, which implies by Lemma 6.1.7
that X is saturated byz”.

Conversely, suppose that is saturated by?”. Obviously,X C X. Let
y € XE. Then there exists an € X such thatrRy and hencdz,y) € RF.
This implies by Lemma 6.1.7 thgte X. Now we have prove = X%, which
implies by Lemma 6.1.6 that € Def(R). O

Corollary 6.1.9. If U is a set andR € Rel(U), thenDef(R) is a complete field
of sets.
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Our next lemma is a generalization of a result presented in [46].

Lemma 6.1.10.Let R € Tol(U) and X, Y C U. If X is R-definable, then
(XUY)r=XgpUYgand(X NY) = XENYE,

Proof. It is obvious thatXz U Yz C (X UY)g. Letz € (X UY)g, i.e.,
r/RC XUY. If z/RN X # 0, thenz/R C X andx € Xy becauseX is
R-definable. Ifz/R N X = 0, thenz/R C Y andz € Y. Hence, in both cases
S XR U YR.

It is also clear tha{X N Y)?® C XENYZE Letz € XENYE Then
z/RNX # Qandz/RNY # (. SinceX is R-definable,z/R C X, and
r/RN(XNY)=(z/RNX)NY =z/RNY #0. So,x € (X NY)E. O

Let £ € Eq(U) be an equivalence relation. By Proposition 6.1.8, fie
definable sets are the unions of some (or nafielasses. We note that this is
actually Pawlak’s original definition of’-definable sets [43]. We also mention
that the sets{” and X are E-definable for allX C U.

Example 6.1.11.Let R be the tolerance o1, 2, 3,4} considered in Example
6.1.3. Itis easy to see that” has the equivalence classgs and{1, 3,4}. So,
Def(R) = {0, {2},{1,3,4},U}.

Note that R-approximations are not necessarilydefinable. For instance,
{1}% ={1,4} and{1,4} = {1}.

6.2 Rough Equalities

In this section we characterize the three types of rough equality relations defined
by tolerances. Novotnand Pawlak [28, 29] have characterized the rough equali-
ties defined by equivalences on a finite set of objects, and Steinby [54] generalized
these characterizations by omitting the assumption of finiteness. In [25] Niemi-
nen presented a characterization of rough equalities defined by tolerances, but his
notion of rough equalities differ essentially from ours.

Let E be a family of subsets of a sétsuch tha{ JE = U. In [47, 48] J. A.
Pomykata associates with any such fantilfive pairs of approximation operators
E; andE, (i = 0, ...,4) onU. We shall show how the operatdEs andE,, where
0 < i < 2, relate to our work.

First we define different types of equalities based on approximations. For
equivalence relations the corresponding notion were defined in [28, 29].
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Definition. Let R € Tol(U). We define inp(U) the lower R-equalityxp, the
upperR-equality~#, and theR-equality=5 by the following conditions:

X%RY <~ XR:YR;
Xr?Y — XE=YE
X=xY <= Xp=YrpandX?=Y£E

Obviously,X ~r Y means that the same objects belong for certaii @nd
to Y. Similarly, X ~® Y whenever the same objects are possibl)iand inY’.
The relation=y, is the intersection of; and~*~.

Next we study more closely the relations; and~%. Let U be any set and
H C p(U). Recall that the relatio®, is defined onp(U) by the condition:

(X,Y)eOyifandonlyif X CZ < Y C Zforall Z € H.
A relation (23, on p(U) is defined by the condition:
(X,Y)e 2yifandonlyif ZC X < ZCYforall Z € H.

Note that the relation caf?,; can be considered as a dual form@4,. The
next lemma, which is obvious by Proposition 3.4.1(c), shows that the relabigns
and{2;, are complete congruences gnU), U) and(p(U), N), respectively.

Lemma 6.2.1. LetH C p(U).

(a) ©4 is a complete congruence dp(U), U) such that the greatest element
inthe©@y-class of anyX (C U)is(\{Z e H | X C Z}.

(b) £2; is a complete congruence @¢p(U),N) such that the least element in
the (2;-class ofanyX (C U)is|J{Z e H | Z C X }. O

Let © be a congruence ofp(U),U). As in Section 3.4, we say that(C
o(U)) is ©-denseif ©;, = ©. Similarly, if {2 is a congruence ofp(U), N), then
H is (2-denseif 24 = (2.

If © is a complete congruence op(U), U), we denote by (©) the set of the
greatest elements @¢¥-classes. Note thah(©) means the same as the notation
Po, whereP = o(U), introduced in Section 3.2. Itis clear th&t©) is ©-dense
and that it is a closure system. On the other hand} i a complete congru-
ence on(p(U),N), we denote byC((2) the set of the least elements@fclasses.
Obviously,£(£2) is £2-dense and it is an interior system.
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Proposition 6.2.2.If R € Tol(U) and X C U, then
(@)~ is a complete congruence dp(U), U) such that the greatest element
in the~®-class of anyX (C U) is (X ®)g;
(b) =~ is a complete congruence @¢p(U),N) such that the least element in
the~y-class of anyX (C U) is (Xy)®
€)X € 8(=F) iff XCeg
d) X € £(~p) iff XCec&(
(€) (8(="),C) = (L£(=r), C);
() {(z/R)" | z € U} is~F-dense;
@) {z/R |z € U} is~p-dense.

r) iff X =Yg forsomeY C U,
By iff X =YZ® forsomeY C U;

~
~
~
~

Proof. Assertions (a) and (b) follow directly from Proposition 3.5.4.
(c) ForallX C U,

X €8(xF) = X=(XB), = Xxt=(XR)y?"
= X'=((XP)p)" <= XFe &(=p).

Furthermore X € &(~%) implies thatX = Y for Y = X . On the other hand,
if X = Yj for someY C U, then by Lemma 6.1.2X %), = ((Yr)®)r = Yr =
X, and soX € &(~f). Condition (d) can be proved dually and (e) follows from
Lemma 3.5.4(b).

(f) Let us denote” = {(z/R)® | = € U}. SupposeX ~" Y. ThenX C
(z/R)Ciff z/RNX = Qiff z ¢ X®iff 2 ¢ YRiff 2/RNY = 0iff Y C (z/R)C.
Hence,(X,Y) € ©. Conversely, if X,Y) € Oy, thenr € XEiff x/RNX # ()
iff X Z (z/R)\Ciff Y € (z/R)Ciff x/RNY # 0iff 2 € YE Thus,X ~® Y and
we have proved tha®;, = ~*.

(@) WewriteK = {z/R |z € U}. If X ~p Y, thenz/R C X iff z € Xp iff
r € Ygiff /R C Y. Hence,(X,Y) € 2. On the other hand, ifX,Y) € (2,
thenz € Xy iff xt/R C X iff /R C Y iff z € Y. Hence, X ~x Y and clearly
QKZ = XR. O

It is possible that different tolerances define the same lower and upper equality,
as shown by the next example.

Example 6.2.3.LetU = {a,b,c,d} and letR andS be tolerances ofi such that
a/R={a,b,d},b/R = {a,b,c},c/R={b,c,d},d/R = {a,c,d};

a/S ={a,b,c},b/S ={a,b,d}, c/S ={a,c,d},d/S = {b,c, d}.
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The lower and upper approximations defined by these tolerances are presented
in Table 7.

X Xr Xg XFE X°
0 0 0 0 0
{a} 0 0  {a,b,d} {a,b,c}
{b} 0 0  {a,b,c} {a,b,d}
{c} 0 0  {bec,d} {a,cd}
{d} 0 0 {a,c,d} {b,c,d}
{a,b} 0 0 U U
{e,dy | 0 0 U U
{a,b,c} | {b} {a} U U
{a,b,d} | {a} {b} U U
{a,c,d} | {d} {c} U U
{b,e,d} | {c} {d} U U
U U U U U

Table 7.

Now the relations~y and ~s are equal, and they have the following six

congruence classef), {a}, ..., {¢,d}}, {{a,b,c}}, {{a,b,d}}, {{a,c,d}},
{{bv G, d}}’ and{U}
Similarly, the relations=* and~° are identical and they have six congruence

classeq0}, {{a}}, {{b}}, {{c}}, {{d}}, and{{a,b}, ..., U}. It can be easily
seen that alseep and=g are the same. They have 11 equivalence classes.
By Proposition 6.2.2,

&(~") = {Xr | X CU} ={0,{a}, {b},{c},{d}, U}
and
L(=p)={X?| X CU}={0,{a,b,c},{a,b,d},{a,c,d},{b,c,d},U}.

The isomorphic complete latticéss (~%), C) and (£(~r), C) are presented in
Figure 9. For simplicity, we denote subsetslof which differ from U by se-
quences of letters. For instande, b, c} is written asabe.
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a b /O d abc abd acd © bed
o}
0 0
Figure 9.

We shall now turn our attention to the approximation operators of J. A.
Pomykata [47, 48] mentioned above.

A family E of subsets of/ is called acoverof U is |JE = U and for all
B,C € E, B C C impliesB = C (see [53], for example). L&k € Tol(U). A set
B C U is calledkR-elementaryf B is a maximal set which satisfids x B C R.
The set of allR-elementary sets is denoted ByR).

Now the following lemma holds (cf. [47, 48, 53]).

Lemma6.2.4.1f R € Tol(U), thenE(R) is a cover ofU such thatz/R =
U{B€ER)|xecB}forallz € U.

Proof. For anyz € U, let
H,={BCU|xzeBandB x B C R}.

It is clear that?{, is nonempty sincéz} x {x} C R. Moreover, it is easy to see
that the unior JC of any nonempty chaid@ C #, is again inH,. This means
by Zorn’s Lemma that every{, has a maximal element. Since it is clear that any
set B maximal inH,, is also maximal with respect to the propeByx B C R,
we may infer that JE(R) = U. Itis obvious thatB C C impliesB = C for all
B,C € E(R). HenceE(R) is a cover ofU.

If y € U, then

yezr/R <— {z,y} x{z,y} CR
< (@B€KE(R)) {z,y}CB
— ye|J{BEE(R)|zec B}
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Let E be a family of subsets df such that JE = U. Note that this property
defines the notion of cover used by Pomykata [47, 48]. Far a@lU, we write

E, = J{B€E |z < B}.

Let X C U. The operator&;: p(U) — p(U) andE;: p(U) — p(U), where
0 < < 2, are defined in [47, 48] as follows:

ExX) = {z€U|(Wwel) (z€E, =E,NX#0)};
E,(X) = (J{& |E, C X};

E(X) = ({B<€E|BNX #0};

E(X) = {zeU|E, CX};

Eo(X) = U(El)i(X);

B (X) — Eo(xOF,

s _itimes_
Where(El)Z(X) =EE ---E (X)
In [47, 48], E,(X®) = E,;(X)® was proved fori = 1 andi = 2. Also the
following lemma holds.

Lemma 6.2.5.If E is a family of subsets df such thal JE = U, then for any
XCU ’
Ey(X) = [)(E))'(X).
i>0
Proof. For anyX C U,
Ey(X) = Eo(X*)" = (JE)'(X®)" = M(E) (X)) = NE)'(X).
i>0 i>0 i>0
O

Next we can write the following proposition which connects Pomykata’s op-
erators with our work.

Proposition 6.2.6.Let 2 € Tol(U). If E = E(R) and X C U, then
(@) E,(X) = (XT)r andE,(X) = (Xg)",
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(b)E,(X) = X®andE, (X) = Xg,

(©)Eo(X) = U{z/R? | x/RE N X # 0} andEy(X) is the leastRk-definable
set which includes(, and

(AYEy(X) = U{z/R? | z/RF C X} andE,(X) is the greatesfz-definable
set which is included iX.

Proof. (a) By Proposition 6.1.1(g) and Lemma 6.2.4,

E,(X) = | JE: | B, € X} = J{e/R | 2/R C X} = (Xn)™.
By Proposition 6.1.1(c),
By (X) = (Eo(X)* = (XY)r)™)* = (X%)R)%)r = (X®)p.
(b) ObviouslyE,(X) ={z €U |E, C X} ={recU|z/RC X} =Xp
andE; (X) = (E,(X"))" = (X%)p)" = X"
(c) If y € U, then

y € Eo(X) n e Ny)(y € (Er)"(X))
dr € X)(In € Ny) (g, ..., ¢, € U)
co =1x,¢, =yandc;Re;q forall0 <i <n—1)

3z € X)(z,y) € R
y €| J{z/R” | 2/R" N X # 0}

Becausé,(X) is a union ofr/ R-classes, it ist-definable by Proposition 6.1.8.
Suppose thaf{ C Y for someR-definable set. ThenE(X) C Eyo(Y) =
YUYRU(YE)YRU... =Y becausé, is obviously order-preserving.

(d)If y € U, then

(
(
(
(

1y 17

y ¢ Eo(X")

y & (J{e/R" [ /R n X" # 0}

y/REN Xt =0

y/R¥ C X

y €| J{z/R" | /R" C X}.

The setf,(X) is R-definable because it is a uniongfR”-classes. It C X

andY is R-definable, theft,(X) D E,(Y) =Y NYgrN(Yg)rN--- =Y because
E, is clearly order-preserving. O

y € Ey(X)

11117
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By the previous propositionE, (X) is the upperR-approximation ofX,
E,(X) is the greatest element in the/-class of X, andEy(X) is the leastR-
definable set including’. Similarly, E, (X ) is the lowerR-approximation ofX,

E,(X) is the least element in theg-class of X, andE,(X) is the greatesk-
definable set included iX .

We call a binary relatio® on p(U) arough bottom equalityf there exists a
toleranceR € Tol(U) such that? = ~x. As we already mentioned, Novagtn”
and Pawlak [28, 29] have characterized all three types of rough equalities defined
by equivalences, and Steinby [54] generalized these characterizations by omitting
the assumption of finiteness.

Next we will present our proposition, which characterizes rough bottom equal-
ities defined by tolerances.

Proposition 6.2.7. A relation® on p(U) is a rough bottom equality if and only
if © is a complete congruence ap(U),N) and there exists &-dense family
{R, | x € U} such that for allz,y € U,

@xe R, and

(b)y € R, impliesz € R,.

Proof. Suppose® = =j for someR € Tol(U). Then® is a complete
congruence olfip(U),N) by Proposition 6.2.2(b). LeR, = z/R forall z € U.
By Proposition 6.2.2(g{ R, | * € U} is ~p-dense. Conditions (a) and (b) hold
because? is a tolerance.

Conversely, le® be a complete congruence ¢n(U),N) and assume that
there exists @-dense family{ R, | = € U} which satisfies (a) and (b). Let us
define a binary relatiof® onU so thatr Ry if and only ifz € R,,. By (a),z Rz for
allz € X. If xRy, thenz € R, which impliesy € R, andyRz by (b). HenceR
is a tolerance.

Next we show that(®) = £(~g). Let X € £(©). Becausg R, | z € U}
is ©-dense, it is also join-dense £(©) by the dual of Proposition 3.4.9. Hence,
there exists ari{ C {R, | € U} such thatX = (J#. Since for allz € U,
R, = /R = {x}%, we get by Proposition 6.2.2(d) that C £(~y). Because
£(=r) is an interior system{,)JH = X is in £(=g). On the other hand, assume
that X € £(~g). The set{z/R | x € U} is join-dense ing(~xr), because by
Proposition 6.2.2(g) it iscz-dense. Hence, there existsANC {z/R | z € U}
such thatX = |JH. Forallz € X, /R = R, € £(O) by the dual of Lemma
3.4.8(a), sincd R, | z € U} is ©-dense. The fact that(©) is an interior system
impliesX € £(O).
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Now we have showr(©) = £(=g). This implies by the dual of Lemma
3.2.6(a) tha® = ~p. 0

We say that a binary relatioft on p(U) is arough top equalityf there exists
a tolerancel? € Tol(U) such thato9 = ~f. In our following proposition we
characterize rough top equalities.

Proposition 6.2.8. A relation® on p(U) is a rough top equality if and only &
is a complete congruence @p(U),U) and there exists &-dense family{ D, |
x € U} such that for allz, y € U,

@z ¢ D, and

(b) y € D, impliesz € D,.

Proof. If © = =" for someR € Tol(U), then® is a complete congruence
on (p(U),U) by Proposition 6.2.2(a). Let us sBt, = (z/R)¢ forallz € U. By
Proposition 6.2.2(f){ D,, | z € U} is ~®-dense. BecausR is a tolerance (a) and
(b) hold.

On the other hand, |&? be a complete congruence U ), U) and suppose
that there exists &@-dense family{ D, | « € U} which satisfies (a) and (b). We
define a binary relatio® on U so thatzRy if and only ifz ¢ D,. By (a),zRz
forall z € U. If xRy, thenz ¢ D, and this impliesy ¢ D, andyRz by (b).
Thus, R is a tolerance.

Next we show thats(©) = &(~). Let X € &(O). Becausd D, |z € U}
is ©-dense, it is meet-dense #(©) by Proposition 3.4.9. Hence, there exists
anH C {D, | = € U} such thatX = (4. Since for allz € U, D, =
(z/R)® = ({x}%)R, this implies by Proposition 6.2.2(c) that C &(~F). The
fact that®(~%) is a closure system implie§ € &(~f). Conversely, assume
thatX € &(x%). The set{(z/R)" | = € U} is meet-dense i(x") since by
Proposition 6.2.2(f) it iss”-dense. Hence, there is &h C {(z/R)¢ | = € U}
such thatX = . Foranyz € U, (z/R)® = D, € &(0) by Lemma 3.4.8
becausd D, | = € U} is ©-dense. Sinc&(©) is a closure systenfH = X
belongs tos(0). Thus,&(0) = &(~%) which implies by Lemma 3.2.6(a) that

e =", O
We say that a binary relatio® on (U) is arough equalityif there exists
a toleranceR € Tol(U) such that9 = =;. Rough equality relations, are

equivalences op(U), but they are not usually congruences(enl/), U) or on
(p(U),N). Before we characterize the rough equality relations, we introduce a
notion which we shall need.

100



Let © be an equivalence op(U) andH, K C o(U). We say that the pair
(H,K) induces® if © = Oy N 2. Itis possible that not alb-classes have
smallest elements. Let us denote b§©@) the set of the least elements of those
©-classes which have a least element. Similarly, we denofé&(y) the set of the
greatest elements of tho&eclasses which have a greatest element.

Lemma 6.2.9. LetU be a setand leR € Tol(U).
(@) &(=F) C I'(=x) and £(~R) C A(=g).
(b) The pair(&(~f), £(~)) induces=r.

Proof. () LetX € &(~%), which is equivalentt¢X®)r = X. If X =, Y,
thenX® = YR andY C (Y#)p = (X®)r = X, which means thak is the
greatest element in its z-class. The other part is similar.

(b) Becaus®g(nry = ~" and2¢(~,) = ~r, and=p is the intersection of
~® and~y, the claim is obvious. OJ

For anyH C p(U), we writeH’ = {X® | X € H}. Next we give a proposi-
tion characterizing the rough equalities.

Proposition 6.2.10. An equivalenc® on p(U) is a rough equality if and only if
there exists an interior systefd C A(©) such that the paifH’, #) induces®
and there exists a join-dense famfli, | = € U} in H, such that for alkz, y € U,
@ze R, and
(b)y € R, impliesz € R,.

Proof. Suppose? = = for someR € Tol(U). Let us denoté{ = £(xx).
ThenH is obviously an interior system arfd C A(©) by Lemma 6.2.9(a). By
Proposition 6.2.2(c)#' = &(~%) and this implies by Lemma 6.2.9(b) that the
pair (H', H) induces®. If we setR, = z/R for all z € U, then by Propositions
3.4.9 and 6.2.2(g) the famil{z/R | x € U} is join-dense irH. BecauseR is a
tolerance, (a) and (b) hold.

Conversely, suppose is an equivalence op(U) and assume that there exists
an interior systemi{ C A(©) such that the paif#', #) induces® and for every
x € U, there exists a®, € H which satisfies (a) and (b) and the fam{lyz,. |
x € U} is join-dense inH{. Let us define a binary relatioR on U by xRy if
and only ifx € R,. We have shown in the proof of Proposition 6.2.7 tRat a
tolerance. It suffices to show that = £(~z), since this implieg{’ = &(~%) by
Proposition 6.2.2(d), and furthermore

6 = 97.[/ N Q’H = @Qi(mR) N QQ(NR) = %R NXrp==pg.
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Let X € H. Becausg R, | x € U} is join-dense ir, there exists & C
{R, | * € U} suchthatX = (JK. Forallz € U, R, = z/R = {z}7,
which implies by Proposition 6.2.2(d) th&t C £(~g). The fact thatC(~p)
is an interior system implies thaff L = X is in £(~x). On the other hand,
assumeX € £(=r). The se{z/R | x € U} is join-dense int(~p), because by
Proposition 6.2.2(qg) it iscz-dense. Hence, there exist¥aC {z/R | x € U}
such thatX = |JK. Forallz € X, z/R = R, € H by the dual of Lemma
3.4.8(a) sincd R, | © € U} is join-dense ir{, and thusC C . Becauset is
an interior systemX = (JK isin #. Hence, /X = £(~r) which completes the
proof. O

6.3 Structure of Rough Sets

Here we generalize Pawlak’s notion by defining rough sets in terms of tolerances.
Let R € Tol(U). We call the equivalence classes=of; R-rough sets The set
of all R-rough sets is denoted By(R). We usually talk simply about rough sets,
if R is understood. Now we can define an ordeon R(R) by setting for all
B,C € R(R),
B<C < XpCVYrandX®CYE,

whereX € BandY < C.

First we consider rough sets defined by an equivalence relatienEq(U).
J. Pomykata and J. A. Pomykata [46] have shown that there exists a uniform set
of representatives 62 (F), which forms a complete sublattice @§(U), C). Get-
ting this uniform set of representatives does require the Axiom of Choice. Let
f[:U/E — U be a choice function which picks an element from e&gli’-class.
We denote byRg( f) the range off.

Let us denote (cf. [13]) for any C U,

X7 = XpU(X¥ N Rg(f)).

Itis clear that Xp)/ = Xp and(X?)/ = XE forall X C U, and alsaX =5 X/
holds. For every rough sét € R(FE), there exists a representati¢é which is
defined by¢/ = X/, whereX is any member of. Note that’/ does not depend
on the particulatX € C chosen. Now we can write the following lemma.

Lemma 6.3.1.1f E € Eq(U) andf: U/E — U is a choice function, then
(R(E),<) = ({CT | C € R(E)}.©).
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Proof. It is obvious that the mag — C/ is onto{C’/ | C € R(E)}. Suppose
B < Choldsin(R(E),<), X € B,andY € C. ThenXy C Yy andX” C Y¥,
This implies that

Bl =X =XpU(X¥NRy(f)) CYsU (Y NRy(f)=Y=C/.
On the other hand, iBf C ¢/, then for allX € BandY € C,
Xp=X)e=BNeC ()= ¥ )p=Ys
and
XP = (X)P = (BI)F C (¢1)® = (Y)P = V™.
Hence,5 < C. |

Let us consider a famil§(Xz, X¥) | X € H} for someH C p(U). Itis not
clear that(Jy .y Xe:Uxey X7) and (Nyey Xe:(Nxey X ) are of the form
(Yg,Y"), whereY C U. In particular, it is not generally true the},, Xp =
(Uxer X)eandN oy X7 = (Nyey X)”. Our next lemma, which appears also
in [46] in a different form describeb) ., Xr and(y.,, X” in the terms of
representatives.

Lemma 6.3.2.Let £ € Eq(U) be an equivalence anf: U/E — U a choice
function. For anyH C p(U),

@U{XT | XeH)p=U{Xr| X €eH}, and

(b) (N{X7 | X e H})P =N{XP | X € H}.

Proof. (a)

(U xNe = (UXeu(XPnRy(f) | X € H})p

= (Utxel x e HY U X" N Ry(f) | X € HY)i
= (UtXe | X e #hp U (HXPNRy(f) | X € H})p
= Ulxe | X ey u (X [ X e #} 0 Ry(£))e
If z € (U{X" | X € H} N Ryg(f))r, thenz/E C Rg(f), which impliesz/E =

{z} andz € |J{XT | X € H}. Thus, there exists ai € H such thatr € XF.
Because:/E = {z}, this impliesz € X andz € Xg. So,z € | J{Xg | X € H}
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and hencd| J{X” | X € H} N Rg(f))g C U{XEe | X € H}. This implies
(WX | X eH)e=U{Xr | X € H}.
(b)

() XN" = (WXeu(X¥NnRy(f) | X €H}®

= (H(XpuX")n(XgURg(f) | X € H})"
= (X" I X eH}n[ {XeURg(f)| X € H})"
= (UX" | X e U n(({XeURg(f) | X € H})"
= (X" X eH}n(({Xe | X € H}URg(f))"
= (UX* | X en}nU
= (X" | X en}
l

It is mentioned in [13] without proof thd{C/ | C € R(E)}, C) is a sublattice
of (p(U), C). Our next lemma extends this result.

Proposition 6.3.3.1f £ € Eq(U) and f:U/E — U is a choice function, then
({C/ | C € R(E)}, Q) is a complete sublattice ¢f:(U), C).

Proof. It is obvious thaf)/ = ) andU/ = U, and henc¢ J0 and( 0 are in
{¢T|CeR(E)}. Let{X/ | X € H} be anonempty subset{f’ | C € R(E)}.
Then by Lemmas 6.1.2 and 6.3.2,

U x7 = U&euX*nRe(f)

XeH XeH

= |J Xpu |J(XPnRy(f))

XeH XeH

= (Y xNHeu(lJ X" nRe(f))

XeH XeH

= (U x)eu(lJ X" nRy()

XeH XeH

= (U xDeuU X" N Ry(f)

XeH XeH

= (|J x).

XeH
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Hence|Jy. X/ € {C/ | C € R(E)}. The other part can be proved in a similar
way:

N X = () (XpU(XpnRe(h))

= () (XpUX")N(XpU Rg(f)))

XeH

= () X*n () (XpURg(f))

XeH XeH

= [ X"n([) X&URy(f))

XeH XeH

= () X0 () (X)eURe(f)

XeH XeH

= () XHZn(([) X))eURy(f))

XeH XeH

= () XN () XD u () X)) Re(f)

XeH XeH XeH

= () XNeu(() X)) Ry(f)

XeH XeH

= () x/).

XeH

O

By Lemma 6.3.1 the previous proposition has the following corollary.

Corollary 6.3.4. If E € Eq(U), then(R(E), <) can be completely embedded in
(p(U), S).

Example 6.3.5.Let U = {a,b,c} and letE be an equivalence ofi such that
a/E =b/E = {a,b} andc/E = {c}. Let f be the choice functiot//E — U
which picks from eactE-class its first element. TheRg(f) = {a,c}. The sets
X, X, and X/ are presented in Table 8 for &l C U.
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X Xg XF X/

0 0 0 0
{a} | 0 {ab} {a}
{tr | 0 {ab} {a}

[ | {& {0}
{a,b} | {a.0} {a.b} {fa.b}
{ac}| { U fac)
k| {} U {ac)
U U U U

Table 8.

The Hasse diagram ¢fC’ | C € R(E)}, C) is presented in Figure 10.

U
{a,b} {a,c}

Figure 10.

By Lemma 6.3.1C/ — C// =g is an order-isomorphism betwegfiC/ |
C € R(E)},C) and(R(E), <). This observation implies by Lemma 6.3.3 the
following proposition, which originally appeared in [46].

Proposition 6.3.6.If £ € Eq(U), then(R(F), <) is a complete lattice such that
forall H C R(E),

VH = [ Jcen}/=p
A# = (¢ cen}/ =5

wheref:U/E — U is an arbitrary choice function. O

Next we consider rough sets defined by tolerances.
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Example 6.3.7.LetU = {a, b, c} and letR be a tolerance ofi such that
a/R = {a’v b}v b/R = {a, b, C}, C/R = {ba C}-

The lower and upper approximations definedwgre presented in Table 9.

X Xp XE
0 0 0

{a} | 0 {a,b}
{b} 0 U

{cb | 0 {bc}
{a,b} | {a} U
{a,c} | 0 U
{b,c} | {c} U
U U U

Table 9.

The Hasse diagram @R (R), <) is presented in Figure 11.

{a,b} / \o {b,c}

/ \{ N
{a} @ /O {c}

Figure 11.

The rough sets defined by tolerances differ essentially from the ones defined by
equivalences. For example, itis not possible to pick a representative from the class
{{b}, {a, c}} so that the set of representativesof-classes forms a sublattice of
(p(U), C). Itis also clear thatR(R), <) cannot be embedded intp(U), U).
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The previous example shows thatfife Tol(U)) is a tolerance, it is not nec-
essarily possible to pick a representative for each elemeRt i) such that this
set of representatives is a sublattice(pfU), C). Furthermore, we do not yet
know whethe(R(R), <) is necessarily a semilattice.

Next we present an another approach to the structure of rough sets introduced
by Iwinski [17]. It is based on a fact that i is an equivalence, thefA-rough
sets can be equivalently viewed as pdiks:;, X”), whereX C U, since each
C € R(FE) is uniquely determined by the paik », X*), whereX is any member
of C.

Let R € Tol(U). ForanyX C U, the pairR(X) = (Xg, X?) is called the
R-approximationof X. The set of allR-approximations of the subsets Gfis
A(R) = {R(X) | X CU}.

There is a canonical order-relatighon p(U) x o(U) defined by

(X1, X5) < (1, Y,) iff X; CY;andX, C Y.

BecauseA(R) C p(U) x p(U) for all R € Tol(U), the setA(R) may be
ordered by<. The next lemma is a generalization of a result presented in [46] for
equivalences.

Lemma 6.3.8.If R € Tol(U), then
(R(R), <) = (A(R), <)

Proof. Let us denote the mafi/ =r— R(X) by f. If (B,C) € A(R), then
there is anX C U such thatXp = B andX?® = C. Obviously,f(X/ =r) =
(B,C). Thus,f is onto.

If B,C € R(R), X € B,andY € C, then

B<CinR(R) +—= XpCYgandX?CY® «— f(B) < f(C)in A(R).
U

It is clear that the ordered sét(R), <) is bounded; the bottom element is
R(() and the top element B(U).

Next we present some properties (0f(F), <), whereE € Eq(U), which
can be found in the literature. BecauggU), C) is a complete lattice(p(U) x
o(U), <) is a complete lattice (see e.g. [5]) such that

Vixayyliery = (J{xilieny, | J{vilie});
Nxyvyliery = ({Xiliel}((Yiliel})
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forall {(X;,Y;) | i € I} C p(U) x p(U). The following proposition, which
can be found in [46], shows thatd(E), <) is a complete sublattice ¢f(U) x
p(U), <)

Proposition 6.3.9.If E € Eq(U), then(A(E), <) is a complete sublattice of
(p(U) x p(U),<).

Proof. Let {(Xz, X¥) | X € H} be asubset ofAi(E) and letf:U/E — U
be an arbitrary choice function. Then

ViXe, XP) [ x et} = (J(Xe| X en} [ JIXT | X et}
= (Uxe X e #t} [ XN | X e HY)
= (UXT 1 X enthm ((JXT 1 X eHDP).

Hence, \/{(Xg, X?) | X € H} € A(E). Similarly, we can show that
MNM(Xg, XE) | X € H} € A(E). O
If E € Eq(U)andf:U/E — U is a choice function, then by Lemmas 6.3.1
and 6.3.8,
({¢7]C e R(E)}, C) = (R(E), <) = (A(E), <).

It follows from Proposition 6.3.3 thdtd(E), <) can be embedded infep(U ), C).
A lattice £ = (L, <) is distributiveif it satisfies

(D1) zA(yVz)=(xAy)V(xA:z)
or
(D2) zV(yAz)=(xVy AxVz)

forall z,y, z € L; itis well-known that if a lattice satisfies one of the identities
(D1) and (D2), it satisfies both of them (cf. [15], for example).

Suppose thaf has a zer@®. An element:* is apseudocomplement = € L,
if t ANz =0andforalla € L,z Aa = 0impliesa < z*. An element can have
at most one pseudocomplement. A latticpseudocomplementéddach element
has a pseudocomplement.

A bounded pseudocomplemented lattiavhich satisfies the identity* Vv
r** = 1 is called aStone lattice It is known [46] that for anyE € Eq(U),
(A(F), <) is a Stone lattice such that for atiy C U, the pseudocomplement of
(Xg, XP)is (XP)C, (X¥)F). Moreover, the latticé A(FE), <) is isomorphic to
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the lattice(2” x 37, <), wherel = {a/E | |a/E| =1} andJ = {a/E | |a/E| >
1} (see [13)).

It is now clear that ifE € Eq(U), then also(R(E), <) is a Stone lattice
isomorphic to(2! x 37, <) such that for anyX C U, the pseudocomplement
of X/ =y is (XP)t/=p. Similarly, if f:U/E — U is a choice function, then
({C/]C e R(E)}, <) is a Stone lattice isomorphic t@’ x 37, <), in whichC”/
has a pseudocomplemeii€/)”)°.

Next we shall consider the ordered g4t R), <), whereR € Tol(U).

Proposition 6.3.10.1f R € Tol(U), then (A(R),<) can be embedded into
(27 x 37, <), wherel = {a/R | |a/R|=1}andJ = {a/R | |a/R| > 1}.

Proof. Let us define the map: A(R) — 2 x 37 by settingp((Xg, X)) =
(f,9), where the mapg: I — 2 andg: J — 3 are defined by

1 ifze X,
f(x/R):{O if v ¢ X;

and

1 ifz/RC X®andz/RNXp =10,

2 ifz/RC X®andz/RN Xg # 0,
g(z/R) =
0 otherwise.

Let us denoteo((Xx, X%)) = (f1, 1) andp((Yr, YE)) = (f2, g2). Assume
that (Xz, X®) < (Yr, YE). We show that f;, g1) < (f2, g2), Which means that
fi(z/R) < fo(z/R) forallz/R € I andg,(y/R) < g2(y/R) forally/R € J.

If fi(z/R) = 1forsomez/R € I,thenz € X, and sincec/R = {x}, we get
z € Xg C Yg. Thisimpliesz € Y and hencefa(z/R) = 1. Thus,f; < fo. If
g1(y/R) = 2forsomey/R € J,theny/R C X®andy/RNXy # (. Thisimplies
y/R C Y®andy/RNYx # 0 and thusy,(y/R) = 2. If g,(y/R) = 1 for some
y/R € J, theny/R C X% and this implieg// R C Y E. Henceg,(y/R) > 1 and
thusg, < g,. We have now shown thaf,, 1) < (f2, g2).

Conversely, assume thaf;, g1) < (f2, g2). We will show that( Xz, X %) <
(Yr, Y®). Let us recall that by the dual of Proposition 3.4.9,

(6.1) B=|J{z/R|z/RC B}
forall B € £(~g), and
(6.2) ' =\ J{z/R|z/RC C*} =| J{z/R |z/RNC =0}
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forall C € &(~%). Lety € X% If y/R € I, theny € X andf,(y/R) = 1.
This impliesf,(y/R) = landthugy € Y C YE If y/R € J, theny € X% and
X% e g(=~p) imply by (6.1) that there exists a set R such thaty € z/R and
z/R C X% Hence,g (z/R) > 1andgy(z/R) > 1. This impliesy € z/R C
Y. Now we have shown that ® C Y %,

Lety ¢ Yr. If y/R € I, theny ¢ Y andf,(Y/R) = 0. Hence,f,(y/R) =0
andy ¢ X, which impliesy ¢ Xg. If y/R € J, theny ¢ Yz andYy € &(=F)
imply by (6.2) that there exists ane U such thaty € /R andz/R N Yx = 0.
This means thagz(z/R) < 1. If g2(z/R) = 0, then necessarily, (z/R) = 0 and
hencer/R ¢ X%. This impliesz ¢ X and thus for alk € X, (z,2) ¢ R. We
get thatr/R N Xr = 0. This means that

y€ (Xp)° = J{z/R|2/RN Xz =0}.

If g-(x/R) = 1, then it suffices to consider the cagg¢xz/R) = 1. This implies
directlyx/R N Xr = 0 and hencey ¢ Xg. Thus, alsaX, C Y. O

Example 6.3.11.Let us consider the tolerande of Example 6.2.3. The Hasse
diagram of(A(R), <) is given in Figure 12. For simplicity we denote the subsets
of U, which differ from( andU by sequences of letters. For examgdle,b, c} is

written asabc. (U, 0)
(@,U) o (b0) (e,U) 0 (d,U)
0,0)
(0, abe) (0, abd) (0, acd)o (9, bed)
O
(0,0)
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Figure 12.

Even though.A(R), <) is a lattice, it is not distributive because, for example,

(0, abc) A (0, abd) v (0, acd)) = (0, abe) A (0,U) = (0, abe),

but

(0, abe) A (0, abd)) Vv ((0,abe) A (0, acd)) = (0,0) V (0,0) = (0,0).

In addition to this, the latticé A(R), <) is not pseudocomplemented, since,
for instance, the elemefff, abc) does not have a pseudocomplement.

Our next example shows thatl(R), <) is not necessarily even a semilattice.

Example 6.3.12.LetU = {1, 2, 3,4,5} and letR be a tolerance off such that

1/R ={1,2},2/R = {1,2,3},3/R = {2,3,4},4/R = {3,4,5},5/R = {4,5}.

The lower and upper approximations definedigre presented in Table 10.

X R(X) X R(X)
0 (0,0) {1,2,3}  (12,1234)
{1} (0,12) {1,2,4}  (1,U)
{2} (0,123) || {1,2,5}  (1,U)
{3} (0,234) || {1,3,4}  (0,U)
{4} (0,345) || {1,3,5}  (0,U)
{5} (0,45) || {1,4,5}  (5,0U)
{1,2} (1,123) || {2,3,4}  (3,0)
{1,3} (0,1234) || {2,3,5}  (0,U)
{1,4} (0,U) {2,4,5}  (5,U)
{1,5} (0,1245) || {3,4,5}  (45,2345)
{2,3} (0,1234) || {1,2,3,4} (123,0)
{2,4} (0,U) {1,2,3,5} (12,U)
{2,5} (0,0) {1,2,4,5} (15,U)
3,4} (0,2345) || {1,3,4,5} (45,0)
3,5} (0,2345) || {2,3,4,5} (345,U)
{4,5} (5,345) || U (U,U)
Table 10.

The Hasse diagram ¢fA(R), <) is given in Figure 13.
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(U, U)

(123,U) | (15,0 (345,U)
(12,0, S (45,0)
\\\\n 1,0 o5 UQ\\\\\\\\\
(12,1234) _ LY (3,U) ) _(45,2345)
’ %
1,123)° ° (5,345
( ) o (0,1234) 6 (0:1245) ™ (G 9345) ( )
(0,123)° (0, 345)
0,12)° (0, 45)
(0,0)
Figure 13.

Note that(.A(R), <) is not a join-semilattice because, for instance, the el-
ements(1,123) and (0,1234) do not have a least upper bound. Similarly,
(A(R), <) is not a meet-semilattice since the elements 1234) and (1,U) do
not have a greatest lower bound.

BecauseR(R), <) = (A(R),<) for any R € Tol(U), (R(R),<) is not
always a semilattice. By Example 6.3.11 it is clear that evefRIifR), <) is a
lattice, it is not necessarily distributive or pseudocomplemented.

We end this thesis by noting thatl(R), <) is always a lattice, if? € Tol(U)
and|U| < 4.
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