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Chapter 1

Introduction

The information systems introduced by Z. Pawlak [41, 42] are used for represent-
ing properties of objects by means of attributes and their values. For example,
we may express statements concerning the color of objects if the information sys-
tem includes the attribute “color” and a set of values of this attribute consisting of
“green”, “yellow”, etc. The more general nondeterministic information systems
in which an object may have several values of an attribute were introduced by
E. Orłowska and Z. Pawlak in [37].

Several relations reflecting the indiscernibility, similarity or dissimilarity of
objects of a nondeterministic information system have been considered in the lit-
erature (see [38, 39, 40], for example). It seems that these relations have many
properties in common, and here we introduce general strong and weak preimage
relations which are suited for studying such common features.

The information about the objects of an information system yielded by differ-
ent sets of attributes may depend on each other in various ways. For example, it
may turn out that a proper subset of a set of attributes classifies the objects with
the same accuracy as the original set. Dependence spaces were introduced by
M. Novotný and Z. Pawlak [31] as a general abstract setting for studying such
informational dependency. In this thesis we consider cores, dependency relations,
independent sets, and reducts especially in terms of dense families of dependence
spaces. Dependence spaces induced by strong and weak preimage relations are
also studied. In addition to this, we introduce matrices of preimage relations and
show how we can by using a matrix represention of preimage relations determine
families of sets, which are dense in dependence spaces defined by preimage rela-
tions.

In rough set theory it is usually assumed that the knowledge about objects
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is restricted by some indiscernibility relation (see [43, 45], for example). Indis-
cernibility relations are equivalences which are interpreted so that two objects are
equivalent if we cannot distinguish them by using our information. In an informa-
tion system an indiscernibility relation arises naturally when one considers a given
set of attributes: two objects are equivalent when their values of all attributes in
the set are the same.

Some of the natural indiscernibility relations encountered in nondeterministic
information systems are not necessarily transitive. Hence, we shall assume that
the knowledge about objects is given by a similarity relationR, which is a tol-
erance on the given universeU of objects. The lowerR-approximation of a set
X(� U) of objects consists of elements which necessarily belong toX in view
of the knowledge provided byR. The upperR-approximation ofX is formed of
elements which possibly are inX in light of the knowledgeR. Here we study the
properties of the above approximations and investigate the structure of the ordered
set of rough sets. We also characterize the three types of rough equality relations
defined by tolerances (cf. [28, 29]).

Our work is structured as follows. This chapter is concluded by a general
overview of the thesis. In Chapter 2 we recall some notions and notation of lattice
theory and universal algebra. In the following chapter we consider complete con-
gruences and morphisms of semilattices, which provide the basis of our further
study in the subsequent chapters. The fourth chapter is devoted to the study of in-
formation systems and preimage relations. In Chapter 5 we examine dependence
spaces and in the final chapter we investigate rough sets defined by tolerances.

1.1 Complete Congruences and Morphisms of
Semilattices

A closure operatorc:P ! P on an ordered setP = (P;�) is an extensive,
idempotent, and isotone map. Ward [55] has shown that ifP is a complete lattice,
then the pointwise defined meet of any set of closure operators onP is again
a closure operator onP. This implies that the set of all closure operators on a
complete lattice is again a complete lattice with respect to the pointwise order.
Here we generalize this result by showing that ifP is a complete join-semilattice
(i.e.,

W
S exists for all; 6= S � P ), then the set of all closure operators onP is

a complete lattice. Moreover, we describe the joins in this complete lattice in a
novel way by applying the Knaster–Tarski Fixpoint Theorem. As a special case

2



we depict the join of continuous closure operators by applying Kleene’s Fixpoint
Theorem.

Consider a semilatticeP = (P;_). We say that a congruence� onP is com-
plete if each�-class has a greatest element. The set of all complete congruences
onP may be ordered with the inclusion relation. We prove that this ordered set
is isomorphic to the ordered set of all closure operators on(P;�). We note that
if � is a complete congruence onP, then the quotient semilatticeP=�, ordered
by a=� � b=� iff (a _ b)=� = b=�, is isomorphic to the setP� of the greatest
elements of�-classes ordered by the order inherited fromP. We also show that
if (P;�) is a lattice, a complete join-semilattice, a complete meet-semilattice, or
a complete lattice, then so areP=� and(P�;�). We prove that for a complete
join-semilattice(P;�), the complete congruences on(P;_) are exactly the equiv-
alences which are completely_-compatible. In addition to this, we describe for
any complete join-semilattice(P;�) the closure operator�c: Rel(P ) ! Rel(P ),
which maps each binary relationR on P to the least complete congruence on
(P;_) containingR.

Let (P;�) and(Q;�) be ordered sets. A mapf :P ! Q is a complete join-
morphism if for allS � P such that

W
S exists, the join

W
f [S] (=

W
ff(x) j

x 2 Sg) exists and
W
f [S] = f(

W
S). We show that ifP = (P;�) is a complete

join-semilattice, then the kernel�f of any complete join-morphismf :P ! Q is
a complete congruence on(P;_). This means that for a complete join-semilattice
P, each complete join-morphismf :P ! Q induces a complete congruence�f

on(P;_) and a closure operatorcf on(P;�). We note that(f [P ];�), (P=�f ;�),
and(Pf ;�) are isomorphic complete join-semilattices, wherePf is the set ofcf -
closed elements. We also point out that(f [P ];�), (P=�f ;�), and(Pf ;�) are
complete lattices wheneverP is a complete lattice.

Let P = (P;�) be an ordered set andS � P . Novotný [35] has defined an
equivalence�S onP by setting

�S = f(x; y) 2 P
2 j (8z 2 S) x � z () y � zg:

It is known [35] that ifP is a join-semilattice, then�S is a congruence on(P;_).
We show that ifP is a complete join-semilattice, then the congruence�S is com-
plete. Consider a congruence� on a semilattice(P;_). A subsetS(� P ) is said
to be�-dense if�S = � (cf. [34]). We prove that if� is complete, then the
�-dense subsets ofP are exactly the meet-dense (see [5], for example) subsets
of (P�;�). We also show that for any complete congruence� on a complete
join-semilattice there exists at least two�-dense sets. This implies that in a finite
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semilattice(P;_) the number of congruence relations and closure operators is at
most2jP j�1. Furthermore, we point out that this upper bound is the best possible.

In this work a Galois connection(I;J) between(P;�) and(P;�) is called a
dual Galois connection on(P;�). If (P;�) is a complete lattice, thenI:P ! P is
a complete join-morphisms and its kernel�I is a complete congruence on(P;_)
such that the greatest element in the�I-class of anyx 2 P is xIJ. By duality,
the kernel�J of J:P ! P is a congruence on(P;^) such that for anyx 2 P ,
the congruence classx=�J hasxJI as its least element .

1.2 Information Systems and Preimage Relations

A nondeterministic information system [37] consists of a setU of objects, a setA
of attributes, and an indexed setfVaga2A of value sets of attributes. Each attribute
is a mapa:U ! }(Va) � f;g, which assigns to every object a nonempty set of
values of the attributea(2 A). We exclude the empty set because this assumption
guarantees that the similarity relations defined in a nondeterministic information
system are reflexive and that the strong and the weak indiscernibility relations
defined by an attribute set are included in the corresponding similarity relations.

In a nondeterministic information systemS = (U;A; fVaga2A) we may define
several information relations (see [38, 39, 40], for example). These relations are
similar in the following sense. Two objects belong to a certain strong (resp. weak)
relation with respect to an attribute setB if and only if their values of all (resp.
some) attributes inB are in some given relation. For example, objectsx andy are
in the strong relation of similaritysim(B) if and only if a(x) \ a(y) 6= ; for all
a 2 B.

We introduce preimage relations, which allow us to study in a more general
setting the common features of strong and weak relations defined in information
systems. LetU andY be nonempty sets,R 2 Rel(Y ), and letf :U ! Y be a
function. The preimage relation ofR is defined by

f�1(R) = f(x; y) 2 U2 j f(x)Rf(y)g:

The notion of preimage relation may be extended in the following way. For any
setB of functionsU ! Y , the strong and the weak preimage relations ofB are
defined by

SR(B) = f(x; y) 2 U2 j (8f 2 B)f(x)Rf(y)g;
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WR(B) = f(x; y) 2 U2 j (9f 2 B)f(x)Rf(y)g;

Because in a nondeterministic information systemS = (U;A; fVaga2A) each at-
tributea 2 A is a mapa:U ! }(Va)�f;g, strong and weak information relations
are preimage relations.

Skowron and Rauszer introduced discernibility matrices in [52]. They pre-
sented several results concerning cores, dependency relations, and reducts defined
in information systems by applying this notion. Here we introduce matrix repre-
sentations of preimage relations as a generalization of discernibility matrices.

1.3 Dependence Spaces

We present a generalized definition of dependence spaces. According to Novotn´y
and Pawlak [31], a pairD = (A;�) is a dependence space, ifA is a finite
nonempty set and� is a congruence on the semilattice(}(A);[). It can be easily
seen that ifA is finite, then each congruence on(}(A);[) is complete, i.e., each
congruence class has a greatest element. Therefore our following definition of
dependence spaces is justified. We call a pairD = (A;�) a dependence space
if � is a complete congruence on(}(A);[). A family of subsetsH � }(A) is
called dense inD if H is�-dense.

We show that strong and weak preimage relations define dependence
spaces. LetA be a set of mappingsU ! Y and letR be a binary relation
on Y . Then the mapSR:}(A) ! Rel(U), B 7! SR(B), is a complete join-
morphism(}(A);�) ! (Rel(U);�). Similarly, the mapWR:}(A) ! Rel(U),
B 7! WR(B), is a complete join-morphism(}(A);�) ! (Rel(U);�). This
implies that the kernels of those maps, denoted by�S(A;R) and�W (A;R), re-
spectively, are complete congruences on the semilattice(}(A);[). We also show
how we can determine dense families of the dependence spaces(A;�S(A;R))
and(A;�W (A;R)) by applying preimage matrices.

Consider a setB � A. A subsetC � B is said to be a reduct ofB if C is
minimal inB=�. We characterize the reducts of any subset of a dependence space
in terms of dense families.

In a dependence spaceD = (A;�), the�-classB=� = fC � A j B�Cg of
anyB � A has a greatest elementCD(B) =

S
B=�. A subsetC(� A) is said to

be dependent onB(� A), denoted byB ! C, if CD(C) � CD(B). We present a
method based on dense families which for a given dependencyB ! C finds all
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minimal subsetsD of B such thatD! B.

1.4 Rough Sets

We generalize the lower and upper approximations defined by Pawlak [43]. For
any toleranceR onU the lowerR-approximation of a setX(� U) is

XR = fx 2 U j x=R � Xg

and its upperR-approximation is

XR = fx 2 U j x=R \X 6= ;g:

Here x=R is theR-neighborhoodfy 2 U j xRyg of x. The setBR(X) =
XR �XR is referred to as theR-boundary ofX.

The idea is that objects can be observed only by the accuracy given by a tol-
erance relationR. The setXR (resp. XR) consists of elements which surely
(resp. possibly) belong toX with respect to the knowledge provided byR. The
R-boundary is the actual area of uncertainty. It consists of elements whose mem-
bership inX cannot be decided whenR-related objects cannot be distinguished
from each other.

The kernel�R of the mapR:X 7! XR is referred to as the upperR-equality,
and the kernel�R of the mapR:X 7! XR is the lowerR-equality. We show that
the pair(R;R) forms a dual Galois connection on(}(U);�). So,�R is a complete
congruence on(}(U);[) and the greatest element in the�R-class of anyX(� U)
is (XR)R. Furthermore, the setf(x=R){ j x 2 Ug is�R-dense. Similarly,�R is
a congruence on(}(U);\) such that the�R-class of anyX(� U) has(XR)

R as
its smallest element, and the setfx=R j x 2 Ug is�R-dense.

The relation�R \ �R is called theR-equality, and it is denoted by�R. Thus,
two setsX(� U) andY (� U) are�R-related if and only if exactly the same
objects belong surely toX and toY , and precisely the same objects are possibly
in X and inY .

We say that a relation� is a rough bottom equality if there is a toleranceR
such that� = �R. Rough top equalities and rough equalities are defined in a
similar manner.

Here we present a characterization of all three types of rough equalities de-
fined by tolerances. Note that in [28, 29] M. Novotn´y and Z. Pawlak characterized
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the three types of rough equalities defined by equivalences on a finite set of ob-
jects, and in [54] M. Steinby generalized these characterizations by omitting the
assumption of finiteness.

We also generalize Pawlak’s notion of rough sets [43] by defining rough sets in
terms of tolerances. We call the equivalence classes of�R R-rough sets. We also
study in our generalized setting an approach to rough sets introduced by Iwi´nski
[17], which is based on the fact that anyR-rough setC 2 }(U)=�R may be
viewed as a pair(XR; X

R), whereX 2 C. It is known that for any equivalence
E 2 Eq(U) the setf(XE; X

E) j X � Ug ordered by the coordinatewise order is
a Stone lattice (see e.g. [7, 10, 13, 46]). Here we show that the setf(XR; X

R) j
X � Ug, whereR 2 Tol(U), is not necessarily even a semilattice with respect to
the coordinatewise order ifjU j � 5.
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Chapter 2

Preliminaries

All general lattice theoretical and algebraic notions used in this work can be found
in [1, 2, 3, 4, 5, 15, 16], for example.

2.1 General Notation and Conventions

Sets. We assume that the reader is familiar with the following notations:mem-
bership(2), set-builder(f� j �g), subset(�), proper subset(�), union ([),
intersection(\), difference(�), complement({), orderedn-tuples((x1; : : : ; xn)),
andproducts of sets(A1 � � � � � An).

The notationsAi, i 2 I, andfAigi2I refer to afamily of sets indexed by a set
I. Given a familyF of sets, the union ofF ,

S
F , is defined bya 2

S
F if and

only if a 2 A for someA 2 F . Theintersection
T
F of F is defined bya 2

T
F

if and only if a 2 A for all A 2 F . For a setA, let}(A) denote thepower setof
A, that is, the set of all subsets ofA.

Let us writeN = f1; 2; : : :g andN0 = f0g [ N . Thecardinality of a setA is
denoted byjAj. A setA is said to befinite if jAj = n for somen 2 N0 ; otherwise
A is infinite. In particular, the empty set; is finite and its cardinality is0.

Relations. An n-ary relationR on a setA is a subset ofAn. If n = 2, thenR
is called abinary relation. We denote byRel(A) the set of all binary relations
on the setA. We sometimes writeaRb for (a; b) 2 R. The inverseof a relation
R 2 Rel(A) isR�1 = f(b; a) j aRbg. A relationR 2 Rel(A) is

� antisymmetric, if for all a; b 2 A, aRb andbRa imply a = b;
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� irreflexive, if for all a 2 A, (a; a) =2 R;

� reflexive, if for all a 2 A, aRa;

� symmetric, if for all a; b 2 A, aRb impliesbRa;

� transitive, if for all a; b; c 2 A, aRb andbRc imply aRc.

If R is reflexive and symmetric, it is called atolerance relation. The set of
all tolerance relations onA is denoted byTol(A). For R 2 Tol(A), the set
a=R = fb 2 A j aRbg is called theR-neighborhoodof a. A tolerance rela-
tion is anequivalence relationif it is transitive. We denote byEq(A) the set of all
equivalence relations onA. Thediagonal relationof A,

�A = f(a; a) j a 2 Ag;

and theall relation of A,
rA = A� A;

are equivalences onA. LetE 2 Eq(A). For alla 2 A, theE-neighborhooda=E
is called theequivalence class ofa moduloE. Thequotient set ofA moduloE is
the setA=E = fa=E j a 2 Ag.

Functions. A functionf from a setA to a setB, denoted byf :A! B, is a subset
of A�B such that for eacha 2 A, there exists exactly oneb 2 B with (a; b) 2 f ,
in which case we writef(a) = b or f : a 7! b. The termsmapandmappingare
often used instead of function. The set of all functions fromA toB is denoted by
BA. For a functionf :A! B, we write for allS � A,

f [S] = ff(x) j x 2 Sg:

The setf [A] is called therangeof f . Thepreimage setof Y (� B) is

f�1(Y ) = fx 2 A j f(x) 2 Y g:

The mapf :A ! B is injective (or one-to-one) if f(a1) = f(a2) implies
a1 = a2, andf is surjective(or onto) if for every b 2 B, there exists an element
a 2 A with f(a) = b; that is,f [A] = B. Furthermore,f is bijectiveif it is both
injective and surjective. A mapf :A! A is idempotentif f(f(a)) = f(a) for all
a 2 A.
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For two mapsf :A! B andg:B ! C, let g � f :A! C be the map defined
by (g � f)(a) = g(f(a)). The mapg � f is called thecomposition(or product)
of f andg. The map1A:A ! A; a 7! a, is called theidentity mapof A. A map
g:B ! A is the inverse mapof f :A ! B if g � f = 1A andf � g = 1B. It is
well-known thatf :A! B has an inverse map if and only iff is a bijection. The
inverse of a bijectionf is denoted byf�1.

For an equivalenceE 2 Eq(A), thecanonical mapof E is the mapvE:A !
A=E; a 7! a=E. On the other hand, for any mapf :A! B, thekernelof the map
f , which is defined by

�f = f(x; y) 2 A� A j f(x) = f(y)g;

is an equivalence onA.

2.2 Orders and Lattices

Order Relations. Let P be a set. Anorder (or apartial order) onP is a binary
relation� such that, for alla; b; c 2 P ,

(1) a � a,
(2) a � b andb � a imply a = b, and
(3) a � b andb � c imply a � c,

that is to say, the relation� is reflexive, antisymmetric, and transitive. A set
P equipped with an order relation� is said to be anordered set(or a partially
ordered set). Many authors use the shorthandposet. An order-relation� gives
rise to a relation< of strict order: a < b iff a � b anda 6= b. LetP = (P;�) be
an ordered set and letS � P . ThenS inherits the order relation� from P: for
anya; b 2 S, a � b in S if and only if a � b in P .

Let x; y 2 P . We say thatx is coveredby y (or y coversx), and writex �< y,
if x � y andx � z < y impliesx = z. TheHasse diagramof an ordered set
(P;�) represents the elements with small circles�, and the circles representing
two elementsx; y are connected by a straight line if one covers the other. More-
over, if x is covered byy, then the circle representingx is lower than the circle
representingy.
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Example 2.2.1.Let P = fa; b; c; dg and define the order onP so that the cover-
ing relation consists of the pairs(a; b), (a; c), (b; d), (c; d). The Hasse diagram of
(P;�) is presented in Figure 1.

d

dd

d d

cb

a

Figure 1.

Let (P;�) be an ordered set and letS � P . Thena 2 S is amaximal element
of S, if a � x 2 S implies a = x. The set of all maximal elements inS is
denoted bymaxS. Furthermore,a 2 S is thegreatest elementof S, if x � a for
all x 2 S. Minimal elements, the setminS, and theleast elementof S are defined
dually, that is to say, by reversing the order.

The greatest element ofP , if it exists, is called thetop elementof P and writ-
ten>. Similarly, the least element ofP , if such an element exists, is called the
bottom elementand it is denoted by?. If (P;�) has top and bottom elements, it
is bounded.

Lattices and Semilattices as Ordered Sets.If S � P , then an elementx 2 P is
anupper boundof S if a � x for all a 2 S. A lower boundis defined dually. The
set of all upper bounds ofS is denoted bySu, and the set of all lower bounds by
Sl.

If Su has a least element, this is called theleast upper boundof S. Dually,
if Sl has a greatest element, this is called thegreatest lower boundof S. The
least upper bound ofS is also called thesupremumof S and is denoted bysupS.
Similarly, the greatest lower bound ofS is also called theinfimumof S and is
denoted byinf S.

We writea _ b (read as “a join b”) in place of supfa; bg anda ^ b (read as
“a meetb”) in place of inffa; bg. Similarly, we write

W
S (the “join of S”) andV

S (the “meetof S”) instead ofsupS and inf S, respectively. It is sometimes
necessary to indicate that the join or meet is being found in a particular ordered
setP = (P;�), in which case we write

W
P S or

V
P S. Obviously,;u = P andW

; exists if and only ifP has a bottom element?; in this case
W
; = ?. Dually,V

; = > wheneverP has a top element. IfP has a top element, thenP u = f>g
and

W
P = >. By duality,

V
P = ? wheneverP has a bottom element.

11



The next lemma is an immediate consequence of the definitions of least upper
bounds and greatest lower bounds.

Lemma 2.2.2. Let (P;�) be an ordered set and supposeS andT are subsets of
P such that

W
S,
W
T ,
V
S, and

V
T exist inP . If S � T , then

W
S �

W
T andV

T �
V
S. �

Let (P;�) be a nonempty ordered set. Then(P;�) is called ajoin-semilattice,
if for all a; b 2 S, the joina _ b exists. Similarly,(P;�) is ameet-semilattice, if
for all a; b 2 P , the meeta ^ b exists. Furthermore,(P;�) is a lattice if it is both
a join- and a meet-semilattice.

If
W
S exists for all; 6= S � P , then (P;�) is called acomplete join-

semilatticeand if
V
S exists for all; 6= S � P , then(P;�) is called acomplete

meet-semilattice. Moreover,(P;�) is acomplete latticeif
W
S and

V
S exist for

all S � P . It can be easily seen thatP = (P;�) is a complete lattice if and only
if P is both a complete join-semilattice and a complete meet-semilattice. Now the
following lemma holds (see e.g. [5]).

Lemma 2.2.3. If (P;�) is a complete join-semilattice, then
V
S exists inP for

every subsetS ofP which has a lower bound inP ; indeed,
V
S =

W
Sl. �

To show that an ordered set is a complete lattice requires only half as much
work as the definitions would have us to believe. The following lemma (see [3, 4,
5], for example), which follows easily from Lemma 2.2.3, is usually stated in its
dual form.

Lemma 2.2.4. If (P;�) is an ordered set such that
W
S exists inP for every

subsetS of P , then(P;�) is a complete lattice. �

Note that in the above lemma the existence of
W
; guarantees a bottom element

?, and since? 2 P ,
V
S exists for allS � P by Lemma 2.2.3. Hence, adjoining

a bottom element to a complete join-semilattice creates a complete lattice.

Example 2.2.5.The ordered set(N ;�) is a complete meet-semilattice, in whichV
S = minS for all ; 6= S � N . Now (N ;�) is not a complete lattice, since

W
S

does not exist for any infiniteS � N .
Let us consider the setN [ f1g, in which the order� is defined by

n � m () n � m holds inN orm =1:

Obviously,(N [ f1g;�) is a complete lattice.
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Let (P;�) be a lattice and; 6= S � P . We say that(S;�) is a sublattice
of S if a; b 2 S implies a _ b 2 S anda ^ b 2 S. Similarly, if (P;�) is a
complete lattice and; 6= S � P , then(S;�) is acomplete sublatticeof (P;�)
if
W
H 2 S and

V
H 2 S for all H � S. Thesubsemilatticesand thecomplete

subsemilatticesmay be defined similarly.
Let P = (P;�) andQ = (Q;�) be ordered sets. A mapf :P ! Q is said

to be order-preserving(or isotone), if a � b in P implies f(a) � f(b) in Q.
The mapf is anorder-embedding, if a � b in P if and only if f(a) � f(b) in
Q. Note that an order-embedding is always an injection. An order-embeddingf
ontoQ is called anorder-isomorphismbetweenP andQ. When there exists an
order-isomorphism betweenP andQ, we say thatP andQ areorder-isomorphic
and writeP �= Q.

A map f :P ! Q is order-reversing(or antitone) if a � b implies f(a) �
f(b). The mapf is adual order-embedding, if a � b in P if and only if f(a) �
f(b) in Q. A dual order-embedding ontoQ is called adual order-isomorphism;
in such a caseP andQ are said to bedually order-isomorphic. A mapg:P ! P
is extensive, if x � g(x) for all x 2 P .

Each order-isomorphism preserves all existing joins and meets, which fact is
stated in the following lemma.

Lemma 2.2.6. Let (P;�) and(Q;�) be ordered sets. Iff :P ! Q is an order-
isomorphism andS � P is such that

W
S exists inP , then

W
f [S] exists inQ andW

f [S] = f(
W
S), and dual statements hold for

V
S. �

Axiom of Choice, Zorn’s Lemma, and Chain Conditions. The Axiom of
Choice asserts that there always exists a map which picks one element from each
member of a given family of nonempty sets. This can be formally stated as fol-
lows.

Axiom of Choice. Given a nonempty familyH = fAigi2I of nonempty sets,
there exists achoice functionforH, that is to say, a map

f : I !
[
i2I

Ai

such thatf(i) 2 Ai for everyi 2 I.
Let P = (P;�) be an ordered set. ThenS � P is a chain in P if, for all

x; y 2 S, eitherx � y or y � x. For anyn � 1, we denote byn then-element

13



chain obtained by ordering the setf0; 1; : : : ; n� 1g so that0 < 1 < � � � < n� 1.

Zorn’s Lemma. Let H be a nonempty family of sets such that
S
i2I Ai 2 H

wheneverfAigi2I is a nonempty chain in(H;�). ThenH has a maximal ele-
ment.

The following fact is well-known.

Proposition 2.2.7. The Axiom of Choice and Zorn’s Lemma are equivalent.�

LetP = (P;�) be an ordered set. We say thatP hasno infinite chainsif every
chain inP is finite, and thatP satisfies theascending chain condition(ACC), if
given any sequencea1 � a2 � � � � � an � � � of elements ofP , there exists a
k 2 N such thatak = ak+1 = : : : The dual of the ascending chain condition is
thedescending chain condition(DCC). It is obvious that every finite ordered set
satisfies both the ACC and the DCC. A proof of the following lemma can be found
in [5, pp. 38–39], for example.

Lemma 2.2.8. LetP = (P;�) be an ordered set.
(a) P satisfies theACC if and only if every nonempty subsetS of P has a

maximal element.
(b)P has no infinite chains if and only ifP satisfies the ACC and the DCC.�

The next lemma is presented in [5] for lattices, but we show that it holds also
for semilattices. This lemma says that if a join-semilatticeP satisfies the ACC,
thenP is a complete join-semilattice. This implies also that a lattice with no
infinite chains is complete.

Lemma 2.2.9. If P = (P;�) is a join-semilattice which satisfies the ACC, then
every nonempty subsetS ofP has a finite subsetF such that

W
F =

W
S.

Proof. Let S be a nonempty subset ofP . By Lemma 2.2.8(a), the nonempty
subset

B = f
_

F j F is a finite nonempty subset ofSg

of P has a maximal element
W
F for some finite; 6= F � S. If a 2 S, thenW

(F [ fag) 2 B. By Lemma 2.2.2,
W
(F [ fag) �

W
F . Since

W
F is maximal,

this impliesa �
W
(F [ fag) =

W
F and hence

W
S �

W
F . As F � S, we

obtain
W
F �

W
S by Lemma 2.2.2. �
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Closure Operators and Closure Systems.A family L of subsets of a setA is
said to be aclosure systemif L is closed under intersections, which means that
for allH � L, we have

T
H 2 L. If L is a closure system onA, then the ordered

set(L;�) is a complete\-subsemilattice of(}(A);�). According to the dual of
Lemma 2.2.4 it is also a complete lattice but the join need to be[. Therefore,
(L;�) is not usually a[-subsemilattice of(}(A);�).

A closure operatoron a setA is an extensive, idempotent, and order-
preserving mapC:}(A)! }(A), that is to say,

(a)B � C(B),
(b) C(C(B)) = C(B), and
(c)B � C impliesC(B) � C(C)

for all B;C � A. A subsetB of A is closed(with respect toC) if C(B) = B. A
closure systemL onA defines a closure operatorCL onA by the rule

CL(B) =
\
fL 2 L j B � Lg:

Conversely, ifC is a closure operator onA, then the family

LC = fB � A j C(B) = Bg

of closed subsets ofA is a closure system. The relationship between closure
systems and closure operators is bijective. The closure operator induced by the
closure systemLC is C itself, and similarly the closure system induced by the
closure operatorCL isL. In symbols,

C(LC) = C and L(CL) = L.

Note that ifL is a closure system onA, then in the complete lattice(L;�),
W
H =

CL(
S
H) for allH � L.

An interior operatorI:}(A)! }(A) satisfies the following three conditions:
(a) I(B) � B, (b)B � C impliesI(B) � I(C), and (c)I(I(B)) = I(B). It
is known (see e.g. [24]) that each closure operatorC:}(A) ! }(A) defines an
interior operatorIC:}(A) ! }(A) by the ruleIC(B) = C(B{){, and similarly
every interior operator yields a closure operator. A systemN of subsets ofA is
said to be aninterior systemif N is closed under unions. The relationship between
interior systems and interior operators is also bijective. IfN is an interior system,
then the ordered set(N ;�) is a complete lattice such that

W
H =

S
H and

V
H =

IN (
T
H) for allH � N , whereIN is the interior operator corresponding toN .
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A closure operatorC on a setA is calledalgebraicif for all B � A,

C(B) =
[
fC(F ) j F is a finite subset ofBg:

Example 2.2.10.Let A be a set. The set of all equivalences onA is a closure
system because

T
H 2 Eq(A) for all H � Eq(A). The corresponding closure

operator is

E: Rel(A)! Rel(A); R 7!
\
fE 2 Eq(A) j R � Eg:

Hence,(Eq(A);�) is a complete lattice in which^
H =

\
H and

_
H = (

[
H)E:

Moreover, the closure operatorE: Rel(A)! Rel(A) is algebraic.

We can also give the following description ofRE.

Proposition 2.2.11. If A is a set,R 2 Rel(A), andx; y 2 A, then

(x; y) 2 RE iff (9n 2 N0)(9c0; : : : ; cn 2 A)c0 = x; cn = y;

and ciRci+1 or ci+1Rci for all 0 � i � n� 1:

�

2.3 Algebras

General Concepts.For a nonempty setA and a nonnegative integern 2 N0 , we
defineA0 = f;g and forn > 0, An is the set ofn-tuples of elements fromA. An
n-ary operationonA is any mapf from An to A; n is thearity (or rank) off .
A finitary operationis ann-ary operation for somen. The image of(a1; : : : ; an)
under ann-ary operationf is denoted byf(a1; : : : ; an). A mapf onA is called
aconstantif its arity is zero. It is completely determined by the imagef(;) in A.
Hence, it is convenient to identify it with this element ofA. An operationf onA
is unary, binaryor ternaryif its arity is 1, 2, or 3, respectively.

A language(or type) of algebras is a set� of function symbolssuch that a
nonnegative integern is assigned to each memberf of �. This integer is called
thearity (or rank) of f , andf is said to be ann-ary function symbol. The subset
of n-ary function symbols in� is denoted by�n.
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Let � be a set of function symbols. A�-algebra is an ordered pairA =
(A; F ), whereA is a set andF is a family of finitary operations ofA indexed by
the language� such that corresponding to eachn-ary function symbolf 2 �
there is ann-ary operationfA onA. The setA is called theuniverseofA and the
fA’s are called thefundamental operations ofA. Usually we write(A;�) instead
of (A; F ) and we often drop the upper index fromfA.

Let A = (A;�) andB = (B;�) be two�-algebras. Ahomomorphism(or
morphism) fromA to B is a mapping':A! B such that

'(fA(a1; : : : ; an)) = fB('(a1); : : : ; '(an))

holds for alln � 0, f 2 �n anda1; : : : ; an 2 A.
If ' is injective, then it is called anembedding. The map' is anisomorphism

if ' is injective and onto. We say thatA is isomorphicto B, denoted byA �= B,
if there is an isomorphism fromA to B.

Lemma 2.3.1. The composition of homomorphisms is again a homomorphism,
and similar statements apply for embeddings and isomorphisms. Furthermore,
the inverse of an isomorphism is an isomorphism. �

LetA = (A;�) be a�-algebra and let� 2 Eq(A). Then� is acongruence
on A if � satisfies for eachn-ary function symbolf 2 � and any elements
a1; : : : ; an; b1; : : : ; bn 2 A the followingcompatibility property:

if ai�bi for all 1 � i � n, thenfA(a1; : : : ; an)�fA(b1; : : : ; bn).

If � is a congruence on an algebraA, then thequotient algebra ofA modulo
�, denoted byA=�, is the algebra whose universe isA=� and whose fundamental
operations satisfy

fA=�(a1=�; : : : ; an=�) = fA(a1; : : : ; an)=�

wherea1; : : : ; an 2 A andf is ann-ary function symbol in�. Note that the
quotient algebras ofA are of the same type asA. The set of all congruences on
an algebraA is denoted byCon(A).

Proposition 2.3.2. (Con(A);�) is a complete sublattice of(Eq(A);�). �

Thus, the congruence lattice ofA is the lattice whose universe isCon(A), and
joins and meets are the same as when working with equivalence relations.
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Lemma 2.3.3. LetA andB be�-algebras.
(a) The kernel�f of any morphismf :A! B is a congruence onA.
(b) If � is a congruence onA, then the canonical mapv� is a homomorphism

fromA onto the quotient algebraA=�. �

In the literature the following Homomorphism Theorem is also referred to as
“The First Isomorphism Theorem”.

Theorem 2.3.4. (Homomorphism Theorem)LetA = (A;�) andB = (B;�)
be two�-algebras, and letf :A ! B be a homomorphism ontoB. Then the
map':A=�f ! B; a=�f 7! f(a) is an isomorphism betweenA=�f andB.
Furthermore, ifv(�f ) denotes the canonical map fromA toA=�f , then the kernel
of v(�f ) is�f and the diagram in Figure 2 commutes, that is,f = ' � v(�f ). �

-

? �
�
�
�
�
�
�
�
�
�
�
�
�*

A

A=�f

B

v(�f )

f

'

Figure 2.

Lattices and Semilattices as Algebras.In Section 2.2 we saw that for a latticeL
we may define the binary operations join and meet onL by

a _ b = supfa; bg and a ^ b = inffa; bg

for all a; b 2 L. Next we present the algebraic properties of the operations_ and
^. First we note the connections between_, ^, and�.

Lemma 2.3.5. If (L;�) is a lattice anda; b 2 L, then the following are equiva-
lent:

(a)a � b;
(b) a _ b = b;
(c) a ^ b = a. �
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The next proposition presents the characteristic properties of the operations_
and^.

Proposition 2.3.6. If (L;�) is a lattice, then_ and^ satisfy for alla; b; c 2 L,

(L1) (a _ b) _ c = a _ (b _ c)
(L1)@ (a ^ b) ^ c = a ^ (b ^ c) (associative laws)
(L2) a _ b = b _ a
(L2)@ a ^ b = b ^ a (commutative laws)
(L3) a _ a = a
(L3)@ a ^ a = a (idempotency laws)
(L4) a _ (a ^ b) = a
(L4)@ a ^ (a _ b) = b (absorption laws). �

We say that an algebra(L;_;^) is a lattice, if L is nonempty set and_ and^
are binary operations onL which satisfy (L1)–(L4) and (L1)@–(L4)@.

If an ordered set(L;�) is a lattice, then by Proposition 2.3.6 the algebra
(L;_;^) is a lattice. Similarly, if an algebra(L;_;^) is a lattice and we set
a � b if and only if a _ b = b (a; b 2 L), then the ordered set(L;�) is a lat-
tice in which the original operations agree with the induced operations, that is,
a _ b = supfa; bg anda ^ b = inffa; bg.

Let (L;_;^) be a lattice. We say thatL has aunit (or identity) element if
there exists an element1 2 L such thata ^ 1 = a for all a 2 L. Dually, L is
said to have azeroif there exists a0 2 L such thata = a _ 0 for all a 2 L. The
lattice (L;_;^) has a unit if and only if(L;�) has a top element> and in that
case1 = >. A dual statement holds for0 and?. A lattice (L;_;^) possessing a
0 and a1 is obviously bounded.

Also semilattices may be defined both as algebras and as ordered sets. Asemi-
lattice is an algebra(P; �), where� is an associative, commutative and idempotent
binary operation.

The different notions of semilattices are related as follows. Let(P; �) be a
semilattice. The condition

a � b if and only if a � b = b

defines a partial order� onP such that(P;�) is a join-semilattice anda_b = a�b.
Similarly, the condition

a � b if and only if a � b = a
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defines a partial order� onP such that(P;�) is a meet-semilattice anda ^ b =
a � b. Conversely, if(P;�) is a join-semilattice, then(P;_) is a semilattice as
an algebra, and an analogical statement holds for meet-semilattices. Moreover, an
ordered set(P;�) is a join-semilattice if and only if(P;�) is a meet-semilattice.

We adopt the convention that in a semilattice denoted by(P;_) the order re-
lation is defined bya � b iff a _ b = b, but in a semilattice denoted by(P;^) the
order relation is defined bya � b iff a ^ b = a.

Example 2.3.7. If A is a set, then the algebra(}(A);[) is a semilattice. Because
B � C if and only ifB [ C = C, the corresponding join- and meet-semilattices
are(}(A);�) and(}(A);�), respectively. Similarly, the algebra(}(A);\) is a
semilattice and the corresponding join- and meet-semilattices are(}(A);�) and
(}(A);�).

If � is a congruence on a semilatticeP = (P;_), then the quotient semilattice
P=� is a semilattice such that the join ofa=� and b=� is (a _ b)=�. In the
corresponding join-semilattice(P=�;�) the order relation� is defined by

a=� � b=� () (a _ b)=� = b=�:

A subsetS of an ordered set(P;�) is calledconvex, if x � z � y implies
z 2 S wheneverx; y 2 S. It is well-known and obvious that every congruence
class of a congruence on a semilattice is a convex subset.

Example 2.3.8. If � is a congruence on(}(A);[), the operator_ of the quotient
semilattice(}(A)=�;_) is defined byB=� _ C=� = (B [ C)=�. The order
relation� on}(A)=� is defined by

B=� � C=� if and only if (B [ C)=� = C=�:

The following proposition is usually presented for lattices (see [5], for exam-
ple), but it holds also for semilattices.

Proposition 2.3.9. If (P;�) and(Q;�) are join-semilattices and':P ! Q is a
map, then the following are equivalent.

(a)' is an order-isomorphism between the ordered sets(P;�) and(Q;�).
(b) ' is an isomorphism between the algebras(P;_) and(Q;_).
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Proof. Obviously,' is a bijection in both cases. By Lemma 2.2.6 it is clear
that (a) implies (b).

Conversely, suppose (b) holds. Ifa � b, then'(a)_ '(b) = '(a_ b) = '(b).
Thus'(a) � '(b) by Lemma 2.3.5. On the other hand, if'(a) � '(b), then
'(b) = '(a) _ '(b) = '(a _ b). Because' is a bijection, this impliesb = a _ b
anda � b. �
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Chapter 3

Complete Congruences and
Morphisms of Semilattices

3.1 Closure Operators on Ordered Sets

In this section we consider closure operators on ordered sets, and particularly on
complete join-semilattices. Ward [55] has shown that ifP = (P;�) is a complete
lattice, then the pointwise defined meet of any set of closure operators onP is
again a closure operator. This means that the set of all closure operators on a
complete lattice is a complete lattice with respect to the pointwise order. We
generalize this result by showing that ifP is a complete join-semilattice, then the
set of all closure operators onP is a complete lattice. Moreover, we describe the
joins in this complete lattice in a new way by using the Knaster–Tarski Fixpoint
Theorem. We conclude this section by describing as a special case the join of
continuous closure operators by applying Kleene’s Fixpoint Theorem.

Definition. LetP = (P;�) be an ordered set. Then a functionc:P ! P is called
aclosure operatoronP, if for all a; b 2 P ,

(a) a � c(a), (extensive)
(b) c(c(a)) = c(a), and (idempotent)
(c) a � b impliesc(a) � c(b). (order-preserving)

An elementa 2 P is calledclosedif c(a) = a. The set of all closed elements of
P is denoted byPc.

In the next lemma we present some basic properties of closure operators.
Equality (a) can be found in [5] and conditions (d) and (e) are presented in [12, 36].
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Lemma 3.1.1. If c:P ! P andk:P ! P are closure operators on an ordered
set(P;�) andS � Pc, then

(a)Pc = fc(a) j a 2 Pg;
(b) if Pc = Pk, thenc = k;
(c) c(x) =

V
Pfa 2 Pc j x � ag for anyx 2 P ;

(d) if
W
S exists inP , then

W
S exists inPc and

W
Pc
S = c(

W
P S);

(e) if
V
S exists inP , then

V
S exists inPc and

V
Pc
S =

V
P S.

Proof. (b) If Pc = Pk, thenc(x) 2 Pk for all x 2 P , which impliesk(x) �
k(c(x)) = c(x). Similarly, k(x) 2 Pc impliesc(x) � k(x). So,c(x) = k(x) for
all x 2 P .

(c) If x � a 2 Pc, thenc(x) � c(a) = a, which shows thatc(x) is a lower
bound offa 2 Pc j x � ag. Sincec(x) itself is infa 2 Pc j x � ag, this implies
thatc(x) =

V
Pfa 2 Pc j x � ag. �

This lemma has the following immediate consequences.

Corollary 3.1.2. LetP = (P;�) be an ordered set and letc:P ! P be a closure
operator.

(a) If P is a join-semilattice, then(Pc;�) is a join-semilattice such that

a _ b = c(a _P b)

for all a; b 2 Pc.
(b) If P is a meet-semilattice, then(Pc;�) is a meet-semilattice such that

a ^ b = a ^P b

for all a; b 2 Pc.
(c) If P is a complete join-semilattice, then(Pc;�) is a complete join-

semilattice such that W
S = c(

W
P S)

for all ; 6= S � Pc.
(d) If P is a complete meet-semilattice, then(Pc;�) is a complete meet-

semilattice such that V
S =

V
P S

for all ; 6= S � Pc.
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In particular, if(P;�) is a lattice, then(Pc;�) is lattice in which

a _ b = c(a _P b) and a ^ b = a ^P b

for all a; b 2 Pc. Similarly, if (P;�) is a complete lattice, then(Pc;�) is a
complete lattice in whichW

S = c(
W
P S) and

V
S =

V
P S

for all S � Pc (cf. [2, 55], for example).
If X is any set andP = (P;�) is an ordered set, we may order the setPX of

all maps fromX toP by thepointwise order:

f � g in PX if and only if for all x 2 X, f(x) � g(x) in P .

We denote the ordered set(PX ;�) byPX . It inherits some properties ofP listed
in the next obvious lemma.

Lemma 3.1.3. LetX be a set andP = (P;�) an ordered set.
(a) If P is a join-semilattice, thenPX is a join-semilattice such that for all

'1; '2 2 PX andx 2 X,

('1 _ '2)(x) = '1(x) _ '2(x):

(b) If P is a meet-semilattice, thenPX is a meet-semilattice such that for all
'1; '2 2 P

X andx 2 X,

('1 ^ '2)(x) = '1(x) ^ '2(x):

(c) If P is a complete join-semilattice, thenPX is a complete join-semilattice
such that for; 6= f'igi2I � PX the supremum' =

W
i2I 'i is defined so that for

anyx 2 X,
'(x) =

_
i2I

'i(x):

(d) If P is a complete meet-semilattice, thenPX is a complete meet-semilattice
such that for; 6= f'igi2I � PX the infimum' =

V
i2I 'i is defined so that for

anyx 2 X
'(x) =

^
i2I

'i(x):

�
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It is now clear that ifP is a lattice, thenPX is a lattice in which

('1 _ '2)(x) = '1(x) _ '2(x) and ('1 ^ '2)(x) = '1(x) ^ '2(x).

Similarly, if P is a complete lattice, thenPX is a complete lattice in which

(
_
i2I

'i)(x) =
_
i2I

'i(x) and (
^
i2I

'i)(x) =
^
i2I

'i(x):

Let (P;�) be an ordered set. We denote byhP ! P i the set of all extensive
and order-preserving mapsf :P ! P . It is clear that the identity map1P : x 7! x
of P is the least element ofhP ! P i with respect to the order ofPP . On the
other hand, ifP has a top element>, then the mapf>: x 7! > is the greatest
element ofhP ! P i.

Lemma 3.1.4. LetP = (P;�) be an ordered set.
(a) If P is a join-semilattice, thenhP ! P i is a join-subsemilattice ofPP .
(b) If P is a meet-semilattice, thenhP ! P i is a meet-subsemilattice ofPP .
(c) If P is a complete join-semilattice, thenhP ! P i is a complete join-

subsemilattice ofPP . Moreover,(hP ! P i;�) is a complete lattice.
(d) If P is a complete meet-semilattice, thenhP ! P i is a complete meet-

subsemilattice ofPP .

Proof. We prove (c). Statements (a), (b), and (d) can be proved similarly.
Assume that the ordered setP = (P;�) is a complete join-semilattice. Then

by Lemma 3.1.3,PP is a complete join-semilattice. Let; 6= f'igi2I � hP ! P i.
We denote' =

W
PP f'i j i 2 Ig. Because each'i is extensive,x � 'i(x) for all

i 2 I which impliesx �
W
PP f'i(x) j i 2 Ig = '(x). Moreover, it is known that

the join of order-preserving maps is again order-preserving (see [5], for example).
Hence,' 2 hP ! P i. BecausehP ! P i has a bottom element1P : x 7! x,
also

W
; exists inhP ! P i and equals1P . This implies by Lemma 2.2.4 that

(hP ! P i;�) is a complete lattice. �

It is clear that ifP = (P;�) is a lattice, thenhP ! P i is a sublattice ofPP ,
and ifP is a complete lattice, thenhP ! P i is a complete sublattice ofPP .

Let us denote byClo(P) the set of all closure operators onP = (P;�).
BecauseClo(P) � P P , Clo(P) has an order inherited fromPP . Obviously,
1P : x 7! x is the least element inClo(P), and ifP has a top element>, then
f>: x 7! > is the greatest element inClo(P).

As we already mentioned, Ward [55] has shown that for a complete lattice
P, the ordered set(Clo(P);�) is a complete lattice. Our next lemma shows that
analogous statements hold for meet-semilattices and complete meet-semilattices.
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Lemma 3.1.5. LetP = (P;�) be an ordered set.
(a) If P is a meet-semilattice, thenClo(P) is a meet-semilattice with respect

to the pointwise order.
(b) If P is a complete meet-semilattice, thenClo(P) is a complete meet-

semilattice with respect to the pointwise order.

Proof. (b) SupposeP is a complete meet-semilattice and; 6= H � Clo(P).
We will show thatc =

V
PP H belongs toClo(P). By the previous lemmac

is extensive and order-preserving. It is also clear thatc(x) � c(c(x)) for all
x 2 P . Let g 2 H andx 2 P . Thenc(x) =

V
f2H f(x) � g(x). Because

c(c(x)) =
V
f2H f(c(x)), we getc(c(x)) � g(c(x)) � g(g(x)) = g(x). Hence,

c(c(x)) �
V
f2H f(x) = c(x). Thus,c(c(x)) = c(x) and hencec is a closure

operator. Assertion (a) may be proved analogously. �

The ordered set(Clo(P);�) is not necessarily a join-semilattice even ifP is
a lattice and a complete meet-semilattice, as we see in the following example.

Example 3.1.6.Let us consider the ordered setP = (N;�). It is well-known
thatP is a lattice in whichm _ n = maxfm;ng andm ^ n = minfm;ng for all
m;n 2 N . Furthermore,P is a complete meet-semilattice such that

V
S = minS

for any; 6= S � N .
Let us define two closure operatorsc1 andc2 onP by

c1(n) =

�
n+ 1 if n is odd;
n otherwise;

and

c2(n) =

�
n + 1 if n is even;
n otherwise.

It is easy to see thatc1 ^ c2 = 1N in Clo(P), but (Clo(P);�) is not a join-
semilattice because there is noc 2 Clo(P) such thatc1; c2 � c.

Next we intend to present a condition under which(Clo(P);�) is a complete
lattice. It is done with the help of fixpoints. An elementa(2 P ) is afixpointof a
mappingf :P ! P if f(a) = a. If (P;�) is an ordered set andf :P ! P has a
least fixpoint, i.e., a fixpointa such thata � x for all fixpointsx of f , we denote
this by�(f). The following well-known result can be found in [5], for example.
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Theorem 3.1.7. (Knaster–Tarski Fixpoint Theorem) If (P;�) is a complete
lattice, then every order-preserving mapf :P ! P has fixpoints. In particular,f
has a least fixpoint and

�(f) =
^
fx 2 P j f(x) � xg:

�

Let (P;�) be an ordered set. For eachx 2 P , we denote[x) = fy 2 P j
x � yg. If (P;�) is a lattice, then[x) is called aprincipal filter. Obviously,[x)
inherits the order from(P;�) and if (P;�) is a complete join-semilattice, then
([x) ;�) is a complete lattice which has the bottom elementx. For any extensive
mapf :P ! P , let fx: [x)! [x) be the restriction off to [x).

Our next proposition shows how we can find for an extensive and order-
preserving mapf the smallest closure operator abovef .

Proposition 3.1.8. Let P = (P;�) be a complete join-semilattice and suppose
f 2 hP ! P i. The functionf :P ! P defined so thatf(x) = �(fx), for all
x 2 P , is the smallest closure operator abovef in PP .

Proof. Let x 2 P . BecauseP is a complete join-semilattice,([x) ;�) is a
complete lattice. This implies by the Knaster-Tarski Fixpoint Theorem that the
function fx: [x) ! [x) has a least fixpoint�(fx). Next we show thatf :P !
P; x 7! �(fx), is a closure operator.

It is obvious that�(fx) 2 [x), which impliesx � f(x). If x � y, then
fx(a) = fy(a) for all a 2 [y). Since� = f(y) is a fixpoint offy and� 2 [y),
we obtainfx(�) = fy(�) = �. Thus,� is also a fixpoint offx, which implies
f(x) � � = f(y). It is clear thatff(x)(a) = fx(a) for all a 2

�
f(x)

�
andf(x)

is the least element in
�
f(x)

�
. Hence,ff(x)(f(x)) = fx(f(x)) = f(x) and thus

f(x) is the least fixpoint offf(x). This givesf(f(x)) = �(ff(x)) = f(x).

Becausex � f(x), we getf(x) = fx(x) � fx(f(x)) = f(x), which implies
thatf is abovef in PP . Supposec is a closure operator which is abovef , that is,
f(x) � c(x) for all x 2 P . Thus,f(c(x)) � c(c(x)) = c(x) � f(c(x)) which
impliesf(c(x)) = c(x) and especiallyfx(c(x)) = c(x). Thenc(x) is a fixpoint of
fx and hencef(x) � c(x). �

By our next lemma the mapf 7! f is a closure operator.
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Lemma 3.1.9. If P = (P;�) is a complete join-semilattice, then the map

�: hP ! P i ! hP ! P i; f 7! f

is a closure operator.

Proof. It is clear thatf � f andf = f . Supposef � g. Thenf(x) � g(x)
for all x 2 P . Let x 2 P . Becauseg(x) 2 [x), we haveg(x) � fx(g(x)) =
f(g(x)) � g(g(x)) = gx(g(x)) = g(x). Thus,fx(g(x)) = g(x) and henceg(x) is
a fixpoint offx, which impliesf(x) � g(x). Thereforef � g holds. �

Next we present a proposition which generalizes the result of Ward by showing
that(Clo(P);�) is a complete lattice wheneverP is a complete join-semilattice.

Proposition 3.1.10. If P = (P;�) is a complete join-semilattice, then
(Clo(P);�) is a complete lattice in which_

H =
W
PP H and

^
H =

V
PP H

for all ; 6= H � Clo(P). Moreover,1P : x 7! x is the least element andf>: x 7!
> is the greatest element of(Clo(P);�).

Proof.We have seen that(Clo(P);�) has the bottom elementx 7! x. SinceP
is a complete join-semilattice,P has the top element> =

W
P . This implies that

(Clo(P);�) has the top elementf>: x 7! >. If ; 6= H � Clo(P), then
W
PP H

is extensive and order-preserving by Lemma 3.1.4. This implies by Proposition
3.1.8 that

W
H =

W
PP H in (Clo(P);�).

Obviously,H has a lower boundx 7! x in Clo(P). BecauseP and hence
PP are complete join-semilattices,

V
PP H exists by Lemma 2.2.3. By the proof

of Proposition 3.1.5,
V
PP H is a closure operator and hence

V
H =

V
PP H in

Clo(P). �

Next we present two examples concerning closure operators.

Example 3.1.11.If we define the order� on P = f1; 2; 3g so that1 < 3 and
2 < 3, and1 and2 are incomparable, thenP = (P;�) is a finite join-semilattice
andClo(P) contains four elements:

c1: 1 7! 1; 2 7! 2; 3 7! 3;
c2: 1 7! 1; 2 7! 3; 3 7! 3;
c3: 1 7! 3; 2 7! 2; 3 7! 3;
c4: 1 7! 3; 2 7! 3; 3 7! 3:

The Hasse diagram of(Clo(P);�) is given in Figure 3.
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Example 3.1.12.Let us consider the setN1 = N [ f1g, in which the order
relation� is defined by

n � m () n � m holds inN or m =1:

It is clear thatP = (N1 ;�) is a complete lattice. The closure operatorsc1 andc2
are defined onP by

c1(n) =

8<
:

n + 1 if n(2 N) is odd;
n if n(2 N) is even;
1 if n =1;

and

c2(n) =

8<
:

n + 1 if n(2 N) is even;
n if n(2 N) is odd;
1 if n =1:

Now f = c1 _PP c2 is defined by

f(n) =

�
1 if n =1;
n + 1 otherwise:

The mapf is not a closure operator and thusClo(P) is not a join-subsemilattice
of PP . For allx 2 N1 , the functionfx: [x)! [x) is defined by

fx(n) =

�
1 if n =1;
n+ 1 otherwise:

It is obvious that1 is the only fixpoint offx for all x 2 N1 . Thus, the map
f : x 7! 1 is the join ofc1 andc2 in Clo(P).

Next we consider a special type of mapsf 2 hP ! P i such thatf :P ! P
has a more constructive description. Let(P;�) be an ordered set and; 6= S � P .
ThenS is said to bedirectedif F u \ S 6= ; for all finite F � S. The following
lemma appears in [5], for example.
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Lemma 3.1.13.Let (P;�) and(Q;�) be ordered sets. IfD is a directed subset
ofP andf :P ! Q is an order-preserving map, thenf [D] is directed. �

An ordered set(P;�) is a CPO (a complete partially ordered set) if (a) P
has a bottom element and (b)

W
D exists for every directed subsetD of P . If we

disregard (a), we say that(P;�) is apre-CPO. We use the special notation
F
D in

place of
W
D when we want to emphasize that the setD is directed. It is obvious

that each complete join-semilattice is a pre-CPO.
Let (P;�) and(Q;�) be pre-CPOs. Thenf :P ! Q is acontinuousmap if

f(
G

D) =
G

f [D]

for all directedD(� P ).
It is a well-known fact that each continuous map is order-preserving; namely,

if a � b, thenfa; bg andf [fa; bg] are directed, and hencef(a) � f(a) t f(b) =
f(a t b) = f(b).

Let P = (P;�) andQ = (Q;�) be pre-CPOs. We denote by[P ! Q] the
set of all continuous maps fromP to Q. It is now clear that[P ! Q] has an
order inherited fromQP , and ifQ has a bottom element?, thenf?: x 7! ? is the
bottom element of[P ! Q].

It is known that[P ! Q] is a pre-CPO and it is a CPO ifQ is a CPO (see [5],
for example). In the next lemma we present a version of this result for complete
join-semilattices.

Lemma 3.1.14. If P = (P;�) is a complete join-semilattice, then[P ! P ] is a
complete join-semilattice with respect to the pointwise order.

Proof. It suffices to show that' =
W
PP f'i j i 2 Ig is continuous whenever

; 6= f'i j i 2 Ig � [P ! P ]. LetD be a directed subset ofP . Then

'(
G

D) =
_
i2I

'i(
G

D) =
_
i2I

(
G
x2D

'i(x));

because each'i is continuous. It is clear that'i(x) � '(x) �
F
x2D '(x)

for all i 2 I and x 2 D (note thatf'(x) j x 2 Dg is directed, because
' is order-preserving). Thus,

F
x2D 'i(x) �

F
x2D '(x) for all i 2 I and so,W

i2I(
F
x2D 'i(x)) �

F
x2D '(x). Hence,

'(
G

D) =
_
i2I

(
G
x2D

'i(x)) �
G
x2D

'(x) =
G

'[D]:
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Because'(x) � '(
F
D) holds for anyx 2 D,

G
'[D] =

G
x2D

'(x) � '(
G

D):

Now we have proved that'(
F
D) =

F
'[D]; it means that' is continuous. �

The following well-known result can be found in [5], for example.

Theorem 3.1.15. (Kleene’s Fixpoint Theorem)Let (P;�) be a CPO and let
f :P ! P be continuous. Then

�(f) =
G
ff i(?) j i � 0g;

wheref i(x) is defined byf 0(x) = x andf i+1(x) = f(f i(x)) for all i � 0 and
x 2 P . �

By Kleene’s Fixpoint Theorem and Proposition 3.1.8 we can write the fol-
lowing lemma, which describes the smallest closure operator above a continuous
f 2 hP ! P i. Recall that every continuous map is order-preserving and therefore
we may leave out the assumption “f is order-preserving” from our next lemma.

Lemma 3.1.16. If P = (P;�) is a complete join-semilattice andf :P ! P is a
continuous and extensive map, then

f(x) =
G
ff i(x) j i � 0g

for all x 2 P .

Proof. BecauseP is a complete join-semilattice andf 2 hP ! P i, the
function f :P ! P; x 7! �(fx), is the smallest closure operator abovef . Let
x 2 P . It is clear that([x) ;�) is a complete lattice in whichx is the bottom
element, and that the mapfx: [x) ! [x) is continuous. This implies that�(fx)
can be obtained by using Kleene’s Fixpoint Theorem. Sincefx(a) = f(a) for all
a 2 [x), we obtain

f(x) = �(fx) =
G
f(fx)

i(x) j i � 0g =
G
ff i(x) j i � 0g:

�
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The previous lemma and Proposition 3.1.10 have the following corollary
which describes the joins of subsets of continuous closure operators. Note that
by Lemma 3.1.14, the map

W
PP H is continuous for allH � [P ! P ], and by

Lemma 3.1.4,
W
PP H is extensive for allH � hP ! P i.

Corollary 3.1.17. Let P = (P;�) be a complete join-semilattice. IfH is a
nonempty subset ofClo(P) such that eachc 2 H is continuous, then for the
supremum ofH in (Clo(P);�),

(
_

H)(x) =
F
f(
W
PP H)i(x) j i � 0g

for all x 2 P .

Example 3.1.18.It can be seen that the closure operatorsc1 andc2 defined in Ex-
ample 3.1.12 are continuous. We form the join ofc1 andc2 by applying Corollary
3.1.17. The joinc1 _PP c2 is defined by

f(n) =

�
1 if n =1;
n + 1 otherwise:

It is easy to see that for alli 2 N0 ,

f i(n) =

�
1 if n =1;
n + i otherwise:

Then
F
ff i(n) j i � 0g =

F
fn; n + 1; : : :g = 1 for all n 2 N and

F
ff i(1) j

i � 0g =
F
f1g = 1. Thus, the mapN1 ! N1 , x 7! 1 is the join ofc1 and

c2 in (Clo(P);�), as we already saw in Example 3.1.12.

Not every closure operator in a complete join-semilattice is continuous as we shall
see in the next example.

Example 3.1.19.Let us consider the setN [ f>1;>2g in which an order relation
� is defined by

a � b iff a � b holds inN
or a 2 N andb = >1

or b = >2.

Let c be the closure operator on the complete lattice(N [f>1 ;>2g;�) defined by

c(n) =

�
>2 if n = >1 or n = >2;
n if n 2 N :

The mapc is not continuous since for the directed subsetN we getc(
F
N) =

c(>1) = >2 and
F
c[N ] =

F
N = >1.
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3.2 Complete Congruences on Semilattices

We continue now by considering complete congruences on semilattices. These
are congruences� on a join-semilatticeP = (P;_) such that each�-class has a
greatest element. Complete congruence generalize congruences on finite semilat-
tices, since for every congruence� on a finite semilattice(P;_), the congruence
classx=� = fx1; : : : ; xng of anyx 2 P has a greatest elementx1 _ � � � _ xn.
We will show that complete congruences on a complete join-semilattice are ex-
actly the equivalences which satisfy the complete_-compatibility property. The
set of all complete congruences onP may be ordered by the set inclusion relation.
We prove that this ordered set is isomorphic to the set of all closure operators on
(P;�). This implies that if(P;�) is a complete join-semilattice, then the set of
all complete congruences onP is a complete lattice with respect to the inclusion
relation, but it is not necessarily a sublattice of(Con(P);�). We show that if
� is a complete congruence onP, then the quotient semilatticeP=�, ordered
by a=� � b=� if and only if (a _ b)=� = b=�, is isomorphic to the setP� of
the greatest element of�-classes ordered by the same order asP . We also point
out that if(P;�) is additionally a lattice, a complete join-semilattice, a complete
meet-semilattice, or a complete lattice, then so are(P=�;�) and(P�;�). We
end this section by describing the closure operator�c: Rel(P ) ! Rel(P ) which
maps eachR 2 Rel(P ) to the least complete congruence on the complete join-
semilattice(P;�) containingR.

Definition. A congruence� on a semilattice(P;_) is acomplete congruenceif
each congruence classx=� has a greatest elementc�(x).

Example 3.2.1.LetA be a set,x 2 A, and let� be the congruence on the semi-
lattice(}(A);[), which has the congruence classes

C1 = fX � A j x 2 Xg;

C2 = fX � A j x =2 Xg:

The congruence� is complete, sinceC1 has the greatest elementA andC2 has
the greatest elementA� fxg.

Note that� is also a congruence on the semilattice(}(A);\) such that its
congruence classes have a least element;C1 has a least elementfxg and; is the
least element ofC2. In Section 3.5 we consider such congruences on a semilattice
(P;^) that each congruence class has a least element.
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In the next lemma we give some basic properties of complete congruences.

Lemma 3.2.2. If � is a complete congruence on a semilattice(P;_) andx; y 2
P , then

(a) (x; c�(x)) 2 �;
(b) c�(x) =

W
x=�;

(c) x � c�(x);
(d) x�y if and only ifc�(x) = c�(y);
(e) c�(x) = c�(c�(x));
(f) x � y impliesc�(x) � c�(y).

Proof. Statements (a), (b), (c), (d), and (e) are obvious. Becausex�c�(x) and
y�c�(y), also(x _ y)�(c�(x) _ c�(y)) holds. Thusc�(x) _ c�(y) � c�(x _ y).
If x � y, thenc�(x) � c�(x)_ c�(y) � c�(x_ y) = c�(y), which proves (f).�

We denote byConc(P) the set of all complete congruences on a semilattice
P = (P;_). It is obvious thatConc(P) � Con(P), andConc(P) = Con(P) for
every finite semilatticeP = (P;_).

The next proposition generalizes some results presented in [35] for finite join-
semilattices. In particular, we show that the correspondence between the closure
operators and complete congruences on a semilattice is bijective. Statement (a)
follows from Lemma 3.2.2. If we check the proof of the theorem of Novotn´y [35]
corresponding to (b), we see that he uses only the “completeness” property, i.e.,
that every congruence class has a largest element, and not finiteness as such. Thus,
the proof of (b) can be omitted. It is also proved in [35] that� 7! c� andc 7! �c

are mutually inverse bijections. We note that Day presents similar connections for
complete semilattices in the sense of [6]

Proposition 3.2.3. LetP = (P;_) be a semilattice.
(a) If � is a complete congruence onP, thenc�:P ! P; x 7! c�(x), is a

closure operator on(P;�).
(b) If c is a closure operator on(P;�), then its kernel�c is a complete con-

gruence onP such that the greatest element in the�c-class of anyx 2 P is
c(x).

(c) The mappings� 7! c� andc 7! �c form a pair of mutually inverse order-
isomorphisms between the ordered set of closure operators(Clo(P);�) and the
ordered set(Conc(P);�) of complete congruences onP.
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Proof. (c) We show that the maps� 7! c� andc 7! �c are order-preserving.
Let �;
 2 Conc(P) and suppose that� � 
. For anyx 2 P , (x; c�(x)) 2
� � 
 implies thatc�(x) � c
(x), and hencec� � c
 holds inClo(P). Thus,
� 7! c� is order-preserving. On the other hand, assume thatc � k in Clo(P).
If (x; y) 2 �c, thenc(x) = c(y) which impliesx � c(x) = c(y) � k(y) and
furthermore,k(x) � k(k(y)) = k(y). Similarly, y � c(y) = c(x) � k(x) and
k(y) � k(k(x)) = k(x). Thus,k(x) = k(y) which implies(x; y) 2 �k. Hence,
�c � �k holds inConc(P). Thus, alsoc 7! �c is order-preserving.

Because the order-preserving maps� 7! c� andc 7! �c are by [35] mutually
inverse bijections, they are also order-isomorphisms. �

Proposition 3.2.4. Let (P;�) be an ordered set.
(a) If (P;�) is a lattice, then the set of all complete congruences onP =

(P;_) is a meet-semilattice with respect to set inclusion such that for all�1; �2 2
Conc(P),

�1 ^ �2 = �1 \�2:

The greatest element in the(�1 ^ �2)-class of anyx 2 P is c�1
(x) ^ c�2

(x).
(b) If (P;�) is a lattice which also is a complete meet-semilattice, then the set

of all complete congruences onP = (P;_) is a complete meet-semilattice with
respect to set inclusion such that^

H =
\

H

for all ; 6= H � Conc(P). The greatest element in the
V
H-class of anyx 2 P isV

fc�(x) j � 2 Hg.
(c) If (P;�) is a complete join-semilattice, then the set of all complete con-

gruences onP = (P;_) is a complete lattice with respect to set inclusion which
has the bottom element�P , the top elementrP , and for all; 6= H � Conc(P),^

H =
\

H and
_

H = �f ;

wheref =
W
PP fc� j � 2 Hg. The greatest element in the

V
H-class of any

x 2 P is
V
fc�(x) j � 2 Hg and the greatest element in the

W
H-class of any

x 2 P is f(x).

Proof. (b) Let (P;�) be a lattice, which is also a complete meet-semilattice
and let; 6= H � Conc(P), whereP = (P;_). It is clear that

T
H is a congruence

on (P;_) (see [3], for example). Letx 2 P . For any
 2 H, x � c
(x) implies
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thatx �
V
fc�(x) j � 2 Hg � c
(x) and hence(x;

V
fc�(x) j � 2 Hg) 2 
,

because congruence classes are known to be convex. Hence,(x;
V
fc�(x) j � 2

Hg) 2
T
H. Suppose(x; y) 2

T
H. This impliesy � c�(x) for all � 2 H, and

thusy �
V
fc�(x) j � 2 Hg. So,

V
fc�(x) j � 2 Hg is the greatest element in

the
T
H-class ofx. The proof of (a) is analogous.

(c) Let P be a complete join-semilattice,; 6= H � Conc(P), andx 2 P .
Becausex � c�(x) for all � 2 H, the setfc�(x) j � 2 Hg has a lower boundx
in P . So, by Lemma 2.2.3,

V
fc�(x) j � 2 Hg exists inP . It is clear that

T
H is

a congruence on(P;_) and by the proof of (b),
V
fc�(x) j � 2 Hg is the greatest

element in the
T
H-class ofx. Thus,

T
H is a complete congruence and henceV

H =
T
H.

BecauseP is a complete join-semilattice, (Clo(P);�) is a complete lattice by
Proposition 3.1.10. Let us denotef =

W
PP fc� j � 2 Hg. Then by Proposition

3.1.10,
W
fc� j � 2 Hg = f in (Clo(P);�). This implies by Proposition 3.2.3(c)

that
W
H = �f in (Conc(P);�) and Proposition 3.2.3(b) implies that the greatest

element in the
W
H-class ofx is f(x). �

By Example 3.1.6,(Conc(P);�) is not necessarily a join-semilattice, even if
(P;�) is a lattice and a complete meet-semilattice. Moreover, in cases whenP
is a complete join-semilattice, the complete lattice(Conc(P);�) is not always a
sublattice of(Con(P);�).

Example 3.2.5.Let us consider the setR1 = R [ f1g, whereR is the set of
real numbers. The order� is defined onR1 so that

x � y () x � y holds inR or y =1:

In addition, we denote(x; y] = fz 2 R j x < z � yg. Let us define two complete
congruences�1; �2 on the semilatticeP = (R1 ;_), wherem_n = maxfm;ng,
such that

R1=�1 = f: : : (0; 2]; (2; 4]; (4; 6]; : : : ; (2k; 2k + 2]; : : : ; f1gg;

R1=�2 = f: : : (�1; 1]; (1; 3]; (3; 5]; : : : ; (2k � 1; 2k + 1]; : : : ; f1gg:

If we denote byc1:R1 ! R1 andc2:R1 ! R1 the closure operators corre-
sponding to�1 and�2, respectively, then it is easy to see that

c1(x) =

8<
:
dxe + 1 if dxe is odd;
dxe if dxe is even;
1 if x =1;
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and

c2(x) =

8<
:
dxe + 1 if dxe is even;
dxe if dxe is odd;
1 if x =1;

wheredxe is the least integer greater than or equal tox. Now f = c1 _PP c2 is
defined by

f(x) =

�
1 if x =1;
dxe + 1 otherwise:

It is obvious that1 is the only fixpoint off in R1 . Hence, the mapc:R1 !
R1 ; x 7! 1; is the join ofc1 andc2 in (Clo(P);�). We can easily see that the all
relationR1�R1 is the complete congruence corresponding toc. Thus,R1�R1
is the join of�1 and�2 in Conc(P).

Note that the join of�1 and�2 in (Con(P);�) is R � R [ f(1;1)g, which
has two congruence classesR andf1g. This congruence is not complete because
the congruence classR does not have a greatest element.

Let � be a complete congruence on(P;_). In the sequel we shall study the
quotient semilattice(P=�;_) more closely. We denote byP� the set of all great-
est elements of�-classes:P� = fc�(x) j x 2 Pg. In the next lemma we list
some simple properties ofP�.

Lemma 3.2.6. Let� and
 be two complete congruences on(P;_) andx 2 P .
(a)P� = P
 implies� = 
;
(b) c�(x) =

V
Pfz 2 P� j x � zg;

(c) for all z 2 P�, x � z iff c�(x) � z.

Proof. (a) SupposeP� = P
. Then by Lemma 3.1.1(b)c� = c
, which im-
plies� = 
 by Proposition 3.2.3(c). Equation (b) follows from Lemma 3.1.1(c).

(c) Let z 2 P�. If x � z, thenc�(x) � c�(z) = z. On the other hand,
c�(x) � z implies triviallyx � c�(x) � z. �

If � is a complete congruence on a semilattice(P;_), then (P=�;_) is a
semilattice such thata=� _ b=� = (a _ b)=�. Our next proposition shows that
(P=�;_) and (P�;_) are isomorphic. Note that the join inP� is defined by
a _ b = c�(a _P b) for all a; b 2 P�.

Proposition 3.2.7. If P = (P;_) is a semilattice and� is a complete congruence
onP, then the map': a=� 7! c�(a) is an isomorphism between(P=�;_) and
(P�;_).
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Proof. BecauseP� consists of the greatest elements ofP=�-classes,' is
obviously a bijection. Ifa; b 2 P , then

'(a=� _P=� b=�) = '(c�(a)=� _P=� c�(b)=�)

= '((c�(a) _P c�(b))=�)

= c�(c�(a) _P c�(b))

= c�(a) _P� c�(b)

= '(a=�) _P� '(a=�):

So,' is also a homomorphism. �

Recall that the order relation inP=� is defined bya=� � b=� if and only if
(a _ b)=� = b=�. Proposition 3.2.7 implies that

a=� � b=� () c�(a) � c�(b):(3.1)

Next we show that if(P;�) is a lattice, then(P=�;�) is a lattice, and similar
statements hold when(P;�) is a complete join- or meet-semilattice.

Proposition 3.2.8. Let� be a complete congruence on a semilattice(P;_).
(a) If (P;�) is a lattice, then(P=�;�) is a lattice in which

a=� _ b=� = (a _P b)=�;

a=� ^ b=� = (c�(a) ^P c�(b))=�

for all a; b 2 P .
(b) If (P;�) is a complete join-semilattice, then(P=�;�) is a complete join-

semilattice in which W
fx=� j x 2 Sg = (

W
P S)=�

for all ; 6= S � P .
(c) If (P;�) is a complete meet-semilattice, then(P=�;�) is a complete meet-

semilattice in whichV
fx=� j x 2 Sg = (

V
Pfc�(x) j x 2 Sg)=�

for all ; 6= S � P .
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Proof. (a) Of course, the identitya=� _ b=� = (a _P b)=� holds for any
congruence� on a join-semilattice. Suppose now that(P;�) is also a lattice
and consider any elementsa; b 2 P . Becausec�(a) � c�(a) ^P c�(b), we
obtain thata=� = c�(a)=� � (c�(a) ^P c�(b))=�. Similarly, we can show that
(c�(a) ^P c�(b))=� is a lower bound ofb=�.

Supposex=� is a lower bound fora=� and b=�. Thenx=� � a=� and
x=� � b=� imply c�(x) � c�(a) andc�(x) � c�(b) by (3.1). Thus,c�(x) �
c�(a) ^P c�(b) � c�(c�(a) ^P c�(b)), which means thatx=� � (c�(a) ^P
c�(b))=�.

(b) Suppose(P;�) is a complete join-semilattice and; 6= S � P . Because
x �

W
S for all x 2 S, we havex=� � (

W
S)=� for all x 2 S, that is,(

W
S)=�

is an upper bound offx=� j x 2 Sg. If y=� is an upper bound offx=� j x 2 Sg,
thenx=� � y=� andc�(x) � c�(y) for all x 2 S by (3.1). Thus,

c�(y) �
W
P�
fc�(x) j x 2 Sg = c�(

W
Pfc�(x) j x 2 Sg),

which impliesy=� � (
W
Pfc�(x) j x 2 Sg)=� by (3.1). Becausex � c�(x) for

all x 2 S, we get
W
P S �

W
Pfc�(x) j x 2 Sg. Therefore,

(
W
P S)=� � (

W
Pfc�(x) j x 2 Sg)=� � y=�.

Hence,
W
fx=� j x 2 Sg = (

W
P S)=�.

(c) Suppose(P;�) is a complete meet-semilattice and; 6= S � P . If
a 2 S, thenc�(a) �

V
Pfc�(x) j x 2 Sg, which impliesa=� = c�(a)=� �

(
V
Pfc�(x) j x 2 Sg)=�.
Suppose thaty=� is a lower bound forfx=� j x 2 Sg. Theny=� � x=�

and c�(y) � c�(x) for all x 2 S. Thus,c�(y) �
V
Pfc�(x) j x 2 Sg) �

c�(
V
Pfc�(x) j x 2 Sg), which is equivalent toy=� � (

V
Pfc�(x) j x 2 Sg)=�.

�

It is clear that if(P;�) is a complete lattice and� is a complete congruence
on (P;_), thenP=� is a complete lattice in which the joins and the meets of
nonempty subsets are formed as in the previous proposition. Moreover,P=� has
the bottom element?=� and the top element>=�.

Definition. Let P = (P;�) be a complete join-semilattice and let� 2 Rel(P ).
We say that� has thecomplete_-compatibility propertyif for every nonempty
index setI and anyxi; yi 2 P (i 2 I),

xi�yi for all i 2 I implies(
_
i2I

xi)�(
_
i2I

yi):
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In the next proposition we show that in a complete join-semilattice the equiv-
alences having the complete_-compatibility property are exactly the complete
congruences.

Proposition 3.2.9. Let (P;�) be a complete join-semilattice and let� be an
equivalence onP . Then� has the complete_-compatibility property if and only
if � is a complete congruence.

Proof. Suppose that an equivalence� has the complete_-compatibility prop-
erty. Then obviously� is a congruence on(P;_). Consider anyx 2 P and let
x=� = fxi j i 2 Ig for someI 6= ;. Becausexi�x for all i 2 I, we haveW
fxi j i 2 Ig�x. This means thatx=� has the greatest element

W
fxi j i 2 Ig.

Conversely, if� is a complete congruence on(P;_) andI is a nonempty index
set such thatxi�yi for all i 2 I, then by Proposition 3.2.8(b),

(
W
Pfxi j i 2 Ig)=� =

W
P=�fxi=� j i 2 Ig

=
W
P=�fyi=� j i 2 Ig

= (
W
Pfyi j i 2 Ig)=�:

So,(
_
i2I

xi)�(
_
i2I

yi). �

Remark. Day [6] defines complete join-semilattices as ordered setsP = (P;�)
in which

W
S exists for everyS � P ; this means thatP is actually a complete

lattice. Moreover, an equivalence� on P is a congruence on aP according to
Day’s terminology, if(

W
i2I xi)�(

W
i2I yi) for every set(xi; yi) � �, whereI is

an arbitrary index set.
By Proposition 3.2.9 it is easy to observe that in a complete latticeP = (P;�)

a binary relation� 2 Rel(P ) is a complete congruence on(P;_) if and only if�
is a congruence onP in the sense of Day. Of course,? =

W
; is always congruent

with itself. Thus, our concept of complete congruences is a generalization of
Day’s congruences, since it is applicable to all kinds of semilattices.

Consider a complete join-semilatticeP = (P;�). At the end of this section
we intend to describe for anyR 2 Rel(P ) the smallest complete congruence on
P containingR. The following proposition can be found in [3], for example.

Proposition 3.2.10.For any algebraA, there is an algebraic closure operator

�: Rel(A)! Rel(A); R 7!
\
f� 2 Con(A) j R � �g;

such that the closed elements ofRel(A) are precisely the congruences onA. �
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For an algebraA = (A;�) and an arbitraryX � A, let �(X) denote the
congruence generated byX � X, that is, the smallest congruence such that all
elements ofX are in the same congruence class. The congruence�(fa; bg) will
be denoted by�(a; b) and it is called aprincipal congruence. It is known (see
[3, 16], for example) that for allX � A,

�(X) =
_
f�(a; b) j a; b 2 Xg:

LetP = (P;�) be a complete join-semilattice. Since by Proposition 3.2.4(c)T
R 2 Conc(P), for allR � Conc(P), alsoConc(P) is a closure system. Thus,

there exists a closure operator�c onP �P such that the closed elements ofP �P
are exactly the complete congruences on(P;_). Moreover, for anyX � P ,
we denote by�c(X) the smallest complete congruence on(P;_) such that all
elements ofX are in the same congruence class.

Example 3.2.11.Let us consider again the complete join-semilattice(N1 ;_) de-
fined in Example 3.1.12. For any finite subsetS of N ,

�c(S) = �N1 [ f(x; y) j minS � x; y � maxSg:

It is easy to see that�c(N) = N1 � N1 and that

[
f�c(F ) j F is a finite subset ofNg = N � N [ f(1;1)g:

This shows that the closure operator�c: Rel(N) ! Rel(N) is not algebraic.

Let P = (P;�) be a complete join-semilattice and let� be a congruence on
(P;_). Let us consider the function��:P ! P; x 7!

W
x=�. BecauseP is a

complete join-semilattice andx=� 6= ;, �� is a well-defined map. Note that if�
is a complete congruence on(P;_), then�� = c�, i.e.,��(x) = c�(x) for all
x 2 P .

Example 3.2.12.Let us consider the complete lattice(N1 ;�) defined in Exam-
ple 3.1.12. Let� be the congruence onP = (N1 ;�) which has the congruence
classesN and f1g. For all n 2 N ,

W
n=� =

W
N = 1. Hence, the map

��:N1 ! N1 is defined byx 7! 1 for all x 2 N1 .

The following lemma shows that�� 2 hP ! P i.
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Lemma 3.2.13. If P = (P;�) is a complete join-semilattice and� is a congru-
ence on(P;_), then the map��:P ! P is extensive and order-preserving.

Proof. The factx 2 x=� implies thatx � ��(x) for all x 2 P , that is,��

is extensive. Supposex � y. If z 2 x=�, thenz _ y�x _ y = y, which implies
z � z _ y �

W
y=�. Thus,

W
x=� �

W
y=� and��(x) � ��(y). Hence,�� is

order-preserving. �

By the previous lemma the map��:P ! P is extensive and order-preserving.
By Proposition 3.1.8, the map�� is a closure operator. In the next lemma we use
this fact.

Proposition 3.2.14. If P = (P;�) is a complete join-semilattice andR 2
Rel(P ), then�c(R) is the complete congruence induced by the closure operator
��(R).

Proof. Let us denote the complete congruence induced by the closure operator
��(R) simply by�. First we show thatR � �. If (x; y) 2 R, then(x; y) 2 �(R)
and so��(R)(x) = ��(R)(y). Thus, also��(R)(x) = ��(R)(y) and hence(x; y) 2
�.

Suppose
 is a complete congruence which containsR. Then�(R) � �(
) =

, which implies for allx 2 P , x=�(R) � x=
 and so��(R)(x) =

W
x=�(R) �W

x=
 = c
(x). So,��(R)(x) � c
(x) = c
(x) for all x 2 P . Thus,� �
�c
 = 
. �

3.3 Complete Morphisms of Semilattices

In this section we study complete join- and meet-morphisms. A complete join-
morphism is an order-preserving map which preserves every existing join. It is
known that the kernel of a morphism from an algebraA to an algebraB is a
congruence onA. Here we show that in a complete join-semilattice the kernel
of a complete join-morphism is a complete congruence. This means that in a
complete join-semilattice, each complete join-morphismf induces a complete
congruence�f and a closure operatorcf . We shall see that if(P;�) is a complete
join-semilattice,(Q;�) is an ordered set, andf :P ! Q is a complete join-
morphism, then(f [P ];�), (P=�f ;�), and(Pf ;�) are isomorphic complete join-
semilattices;Pf is the set of the greatest elements of the�f -classes. We also note
that if (P;�) is a complete lattice, then(f [P ];�), (P=�f ;�), and(Pf ;�) are
complete lattices.
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Definition. Let (P;�) and(Q;�) be ordered sets. A mapf :P ! Q is acom-
plete join-morphismif wheneverS � P and

W
S exists, then

W
f [S] exists and

f(
W
S) =

W
f [S]. The dual of a complete join-morphism is acomplete meet-

morphism. If f is both a complete join- and a complete meet-morphism, then it is
acomplete morphism.

The next obvious lemma connects complete morphisms to order-
isomorphisms, order-preserving maps, and continuous maps.

Lemma 3.3.1. Every order-isomorphism is a complete morphism and every com-
plete join-morphism is order-preserving. Moreover, a complete join-morphism
from a pre-CPO to a pre-CPO is continuous.

LetP = (P;�) andQ = (Q;�) be ordered sets and letf :P ! Q be a join-
complete morphism. IfP is a join-semilattice, then obviously(f [P ];�) is a join-
semilattice andf is a homomorphism onto(f [P ];�). If Q is a join-semilattice,
thenf is a homomorphism(P;_)! (Q;_). In the next example we see that not
every order-preserving map is necessarily a complete join-morphism.

Example 3.3.2.Let P = f1; : : : ; 7g andQ = fa; : : : ; eg, and suppose(P;�)
and(Q;�) are the ordered sets defined by the Hasse diagrams of Figure 4.

c c c c c c

cccc

5 64 7 d e

cb32

1 ac c

Figure 4.

Let us define an order-preserving mapf from (P;�) to (Q;�) such that1 7!
a, 2 7! b, 3 7! c, 4 7! d, 5 7! e, 6 7! d, 7 7! e. Obviously,(P;�) is a
join-semilattice and sox _ y exists for allx; y 2 P . But in (Q;�) the join of
d = f(4) ande = f(5) does not exists, which implies thatf is not a complete
join-morphism.

In the following proposition we present some properties of the kernel�f of a
join-complete morphismf .
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Proposition 3.3.3. Let P = (P;�) andQ = (Q;�) be ordered sets and let
f :P ! Q be a complete join-morphism.

(a) If P is a join-semilattice, then�f is a congruence on(P;_).
(b) If P is a complete join-semilattice, then�f is a complete congruence on

(P;_).
(c) If P andQ are complete meet-semilattices, then for all; 6= S � P ,

f(
^

S) �
^

f [S]:

Proof. Assertions (a) and (c) are obvious.
(b) Let x 2 P . Because(P;�) is a complete join-semilattice andx=�f is

nonempty,
W
x=�f exists inP and

f(
_

x=�f) =
_

f [x=�f ]

=
_
ff(y) j y 2 x=�fg

=
_
ff(y) j f(y) = f(x)g

= f(x):

Thus,
W
x=�f 2 x=�f and clearly

W
x=�f is the greatest element inx=�f . �

Let (P;_) be a join-semilattice,(Q;�) an ordered set, and letf :P ! Q be a
complete join-morphism. As we have noted,(f [P ];�) is a join-semilattice such
thatf(a) _ f(b) = f(a _ b), and hencef is a homomorphism from(P;_) onto
(f [P ];_). By the Homomorphism Theorem'1: a=�f 7! f(a) is an isomorphism
between(P=�f ;_) and(f [P ];_).

If (P;�) is a complete join-semilattice, then�f is a complete congruence on
(P;_). So,(P=�f ;�) is a complete join-semilattice by Proposition 3.2.8(b). It is
obvious that also(f [P ];�) is a complete join-semilattice.

Let us denote bycf the closure operator corresponding to the complete con-
gruence�f ; that is, cf(x) =

W
x=�f for all x 2 P . Furthermore, the set of

cf -closed elements (i.e., the set of the greatest elements of�f -classes) is denoted
by Pf . By Corollary 3.1.2(c),(Pf ;�) is a complete join-semilattice. Proposi-
tion 3.2.7 implies that the complete join-semilattices(P=�f ;�) and(Pf ;�) are
isomorphic. The isomorphism is'2: a=�f 7! cf (a).

By Lemma 2.3.1, the inverse of an isomorphism is an isomorphism and the
composition of two isomorphisms is an isomorphism. Thus, the map'3: f(a) 7!
cf(a), which is the composition'2 � '

�1
1 , is an order-isomorphism between

(f [P ];�) and(Pf ;�). Figure 5 illustrates the isomorphisms'1; '2; '3.
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Figure 5.

Now we have proved the following proposition.

Proposition 3.3.4. If (P;�) is a complete join-semilattice,(Q;�) is an or-
dered set, andf :P ! Q is a complete join-morphism, then the complete join-
semilattices(f [P ];�), (P=�f ;�), and(Pf ;�) are isomorphic. �

Let (P;�) be a complete lattice and let(Q;�) be an ordered set. Iff :P ! Q
is a complete join-morphism, then by Corollary 3.1.2(Pf ;�) is a complete lattice
in which _

fcf(x) j x 2 Sg = cf (
W
Pfcf(x) j x 2 Sg)

and ^
fcf(x) j x 2 Sg =

V
Pfcf(x) j x 2 Sg

for all S � P . Secondly(P=�f ;�) is by Proposition 3.2.8 a complete lattice
such that _

fx=�f j x 2 Sg = (
W
P S)=�f

and ^
fx=�f j x 2 Sg = (

V
Pfcf(x) j x 2 Sg)=�f

for all S � P . It is also obvious that(f [P ];�) is a complete lattice in which

_
f [S] = f(

W
P S)

for all S � P .
Next we describe the meets

V
f [S] in (f [P ];�).
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Proposition 3.3.5. Let (P;�) be a complete lattice and let(Q;�) be an ordered
set. If f :P ! Q is a complete join-morphism, then in the complete lattice
(f [P ];�), ^

f [S] = f(
V
P cf [S])

for all S � P .

Proof. Let x 2 S. Because
V
P cf [S] � cf(x), we get

f(
^

cf [S]) � f(cf(x))

= f(
_
fy 2 P j f(x) = f(y)g)

=
_
ff(y) j f(x) = f(y)g

= f(x):

Hence,f(
V
P cf [S]) is a lower bound off [S]. Assumef(y) is a lower bound of

f [S]. Thenf(y) � f(x) for all x 2 S. The map'3: f(a) 7! cf(a) is an order-
isomorphism between(f [P ];�) and(Pf ;�). Thus,cf(y) � cf(x) for all x 2 S.
This impliescf(y) �

V
Pf
cf [S] =

V
P cf [S]. Therefore,f(y) = f(cf(y)) �

f(
V
P cf [S]). Hence,

V
f [P ] f [S] = f(

V
P cf [S]). �

3.4 Dense Sets

LetP = (P;�) be an ordered set. In [35] Novotn´y associates with each subsetS
of P an equivalence�S onP (see (3.2) for the definition), which is a congruence
on (P;_) wheneverP is a join-semilattice. We will show that ifP is a complete
join-semilattice, then the congruence�S is complete.

Consider a congruence� on a semilattice(P;_). A subsetS(� P ) is said to
be�-dense if�S = �. On the other hand, a subsetS of an ordered set(P;�) is
said to be meet-dense in(P;�) if for every elementx 2 P there is a subsetQ of S
such thatx =

V
P Q. We prove that if� is a complete congruence on(P;_), then

the�-dense subsets ofP are exactly the meet-dense subsets of(P�;�); recall
thatP� is the set of the greatest elements of�-classes. We also show that every
complete congruence on a complete join-semilattice is defined by at least two
subsets. This implies that in a finite semilattice(P;_) the number of congruence
relations and closure operators is at most2jP j�1. Furthermore, we prove that this
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upper bound is optimal. We conclude this section by some chain conditions which
can be used for identifying dense sets.

Let P = (P;�) be an ordered set andS � P . Let us define an equivalence
relation�S onP by

�S = f(x; y) 2 P
2 j (8z 2 S) x � z () y � zg:(3.2)

By the definition of�S,

S � T implies�T � �S(3.3)

for all S; T � P . For anyS � P andx 2 P , let

( "x)S = fz 2 S j x � zg:

Note that( "x)S = [x) \ S. In the following proposition we give some properties
of �S.

Proposition 3.4.1. LetP = (P;�) be an ordered set andS � P .
(a)The mapS 7! �S is a complete join-morphism(}(P );�)! (Eq(P );�).
(b) If P is a join-semilattice, then�S is a congruence on(P;_).
(c) If P is a complete join-semilattice, then�S is a complete congruence on

(P;_) such that for eachx 2 P , the greatest element inx=�S is
V
( "x)S.

Proof. (a) We show that�(
S
H) =

T
f�S j S 2 Hg for all H � }(P ). If

x; y 2 P , then

(x; y) 2 �(
S
H) () (8z 2

[
H) x � z iff y � z

() (8S 2 H)(8z 2 S) x � z iff y � z

() (8S 2 H) (x; y) 2 �S

() (x; y) 2
\
f�S j S 2 Hg:

Assertion (b) was noted in [35]. It follows directly from the definitions.
(c) We show that the congruence�S is complete. Letx 2 P . It is clear that

for everyS � P , the set( "x)S is bounded from below byx. By Lemma 2.2.3,
this implies that

V
( "x)S exists inP . We denote

V
( "x)S by cS(x). Next we

show that(x; cS(x)) 2 �S. Let z 2 S. If x � z, thenz 2 ( "x)S, which implies
cS(x) � z. Because( "x)S � ( "x)P , we getx =

V
( "x)P �

V
( "x)S = cS(x).

Thus,cS(x) � z impliesx � cS(x) � z and so(x; cS(x)) 2 �S:
If y 2 x=�S, then( "x)S = ( "y)S andy � cS(y) = cS(x). This means that

cS(x) is the greatest element inx=�S. �
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If (P;_) is not a complete join-semilattice, then�S is not necessarily a com-
plete congruence of(P;_), as we see in the next example.

Example 3.4.2.Let us denoteF (N) = fX � N j X is finiteg. Then(F (N);�)
is a lattice, such thatX_Y = X[Y andX^Y = X\Y . Furthermore,(F (N);�)
is a complete meet-semilattice such that

V
H =

T
H for all ; 6= H � F (N). Note

that(F (N);�) is not a complete join-semilattice since
W
F (N), for instance, does

not exist.
If S = fXg for someX 2 F (N), then�S has two congruence classes

C1 = fY 2 F (N) j Y � Xg;

C2 = fY 2 F (N) j Y 6� Xg:

The classC1 has the greatest elementX, but obviouslyC2 does not have a greatest
element.

If P = (P;�) is a complete join-semilattice andS � P , then the map

cS:P ! P; x 7!
^

( "x)S;

is the closure operator corresponding to the complete congruence�S. The set of
cS-closed elements is denoted byPS. Because for allz 2 S, z 2 ( "z)S, we have
cS(z) =

V
( "z)S = z which impliesS � PS.

In our next lemma we present some properties of the mapS 7! �S in a com-
plete join-semilattice(P;�).

Proposition 3.4.3. If P = (P;�) is a complete join-semilattice, thenS 7! �S

is a complete join-morphism from(}(P );�) onto (Conc(P);�). Its kernel is a
complete congruence on(}(P );[) such that the greatest element in the congru-
ence class ofS is PS.

Proof. By Proposition 3.4.1,S 7! �S is a complete join-morphism from
(}(P ) �) to (Conc(P);�).

Suppose� 2 Conc(P). We claim that� = �(P�). Let (x; y) 2 � and
z 2 P�. If x � z, theny � c�(y) = c�(x) � c�(z) = z. Similarly, y � z
implies x � z. Thus, (x; y) 2 �(P�) and� � �(P�) holds. Conversely, if
(x; y) 2 �(P�), then for allz 2 P�, x � z () y � z. In particular,x � c�(x)
impliesy � c�(x). Thus,c�(y) � c�(c�(x)) = c�(x). Similarly, we can show
that c�(x) � c�(y). So, c�(x) = c�(y) and this is equivalent to(x; y) 2 �.
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Hence, also� � �(P�) and thus,� = �(P�). This means thatS 7! �S is onto
Conc(P).

SinceS 7! �S is a complete morphism, its kernel is a complete congruence
on (}(P );[) by Proposition 3.3.3. We just showed that�S = �P�S

and since
P�S = PS, we obtain�PS = �S. If �T = �S, thenT � PT = PS. Thus,PS is
the greatest subset ofP which induces the same complete congruence asS. �

We denote the kernel of the mapS 7! �S by �. If we define the order relation
� in }(P )=� so thatB=� � C=� iff (B [ C)=� = C=�, then(}(P )=�;�) is a
complete lattice by Proposition 3.2.8. By our following proposition, this complete
lattice is dually isomorphic to(Conc(P);�) and to(Clo(P);�).

Proposition 3.4.4. If P = (P;�) is a complete join-semilattice, then

(Conc(P);�) �= (Clo(P);�) �= (}(P )=�;�).

Proof. The isomorphism(Conc(P);�) �= (Clo(P);�) was shown in Propo-
sition 3.2.3. BecauseS 7! �S is a homomorphism from(}(P );[) onto
(Conc(P);\), (}(P )=�;_) and(Conc(P);\) are isomorphic by the Homomor-
phism Theorem. This implies clearly that(}(P )=�;�) �= (Conc(P);�). �

We have seen that in a complete join-semilattice(P;�) each subsetS � P
defines a complete congruence�S on (P;_). Our next lemma shows that for any
S � P , there exists aT 6= S such that�T = �S.

Lemma 3.4.5. If P = (P;�) is a complete join-semilattice, thenjS=�j � 2 for
all S � P .

Proof. Consider anyS � P . If > is the greatest element ofP , then> 2 PS
ascS(>) = >. SincePS � f>g � PS, we get�(PS) � �(PS�f>g) by (3.3). If
(x; y) 2 �(PS�f>g), then for allz 2 PS � f>g, x � z () y � z. Trivially,
x � > andy � > and hence(x; y) 2 �(PS). Thus,�(PS) � �(PS�f>g) and
�S = �(PS) = �(PS�f>g). �

If P = (P;_) is a finite semilattice, then(P;�) is a complete join-semilattice
and each congruence onP is complete, and therefore the previous lemma has the
following corollary.

Corollary 3.4.6. If P = (P;_) is a finite semilattice, then

jClo(P)j = jCon(P)j � 2jP j�1:
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In the next example we show that the upper bound given in the previous corol-
lary is the best possible.

Example 3.4.7.Let P = fx1; : : : ; xn�1g [ f>g and assume that the order� is
defined onP by

x � y () x = y or y = >:

Then(P;�) is a join-semilattice such thatx _ y = > for all x 6= y.
If S; T � fx1; : : : ; xn�1g andS 6= T , then obviously�S 6= �T . This means

that every subset offx1; : : : ; xn�1g defines a different congruence onP = (P;_).
Hence,jCon(P)j � 2jP j�1.

Novotný introduced in [35] the notion of dense sets for dependence spaces.
Here we define dense sets for any congruence on a semilattice(P;_). Note that
we do not require that the corresponding join-semilattice(P;�) is complete.

Definition. Let � be a congruence on a semilattice(P;_). We say thatS(� P )
is�-denseif �S = �.

In the following lemma we present some simple properties of dense sets.

Lemma 3.4.8. Let� be a complete congruence on a semilattice(P;_). If S is
�-dense andx; y 2 P , then

(a)S � P�;
(b) c�(x) =

V
P ( "x)S;

(c) x=� � y=� () for all z 2 S, y � z impliesx � z;
(d) x�y () ( "x)S = ( "y)S;
(e)P� is�-dense.

Proof. (a) Let z 2 S. Since(z; c�(z)) 2 � = �S andz � z, we obtain
c�(z) � z. Hence,c�(z) = z andz 2 P�.

(b) Letx 2 P . If z 2 ( "x)S, thenx � z impliesc�(x) � c�(z) = z by (a).
Thus,c�(x) is a lower bound of( "x)S. Let y 2 P be any lower bound of( "x)S.
If x � z for somez 2 S, thenz 2 ( "x)S and hencec�(x) _ y � z. On the other
hand, ifc�(x) _ y � z for somez 2 S, then triviallyx � z. This implies that
(x; c�(x) _ y) 2 �S = �. Hence,y � c�(x) _ y � c�(x) from which we get
c�(x) =

V
( "x)S.

(c) Assume thatx=� � y=�. By (3.1), this is equivalent toc�(x) � c�(y). If
z 2 S andy � z, thenx � c�(x) � c�(y) � c�(z) = z. Conversely, if for all
z 2 S, y � z impliesx � z, then( "y)S � ( "x)S and thusc�(x) =

V
( "x)S �V

( "y)S = c�(y). Condition (d) is obvious by (c).
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(e) Letx; y 2 P . Since for allz 2 P�, x � z iff c�(x) � z, the assumption
(x; y) 2 � implies c�(x) = c�(y) and (x; y) 2 �P� . On the other hand, if
(x; y) 2 �P� , thenx � c�(x) 2 P� andy � c�(y) 2 P� imply x � c�(y) and
y � c�(x). Hence,c�(x) � c�(y) � c�(x), which means that(x; y) 2 �. �

By Lemma 3.4.8(e), every complete congruence� on a semilattice(P;_)
has at least one�-dense set, namelyP�. Observe that not all congruences on
semilattices have dense sets. For example, ifA is an infinite set and� is the
congruence on(}(A);[), which has the congruence classes

C1 = fB � A j B is finiteg;

C2 = fB � A j B is infiniteg;

then there exists noH � }(A) such that

�H = f(B;C) j (8X 2 H) B � X () C � Xg

equals�.

LetP = (P;�) be an ordered set and letS � P . ThenS is calledmeet-dense
in P if for every elementx 2 P there is a subsetQ of S such thatx =

V
P Q.

The dual of meet-dense isjoin-dense(see [5], for example). Our next proposition
connects�-dense sets to sets meet-dense in(P�;�).

Proposition 3.4.9. Suppose� is a complete congruence on a semilattice(P;_).
If S � P , then the following three conditions are equivalent:

(a)S is�-dense;
(b) S is meet-dense in(P�;�);
(c) z =

V
P ( "z)S for all z 2 P�.

Proof. It is proved in [5], that (b) and (c) are equivalent. Recall that by Lemma
3.1.1(e) all existing meets inP� coincide with the meets formed inP . If S is�-
dense, then by Lemma 3.4.8(b),z = c�(z) =

V
P ( "z)S, for all z 2 P�. Hence,

(a) implies (c).
SupposeS is a meet-dense subset of(P�;�). BecauseS � P� holds by the

definition of meet-dense sets, andP� is �-dense by Lemma 3.4.8(e), we obtain
� = �(P�) � �S by (3.3). If (x; y) 2 �S, then( "x)S = ( "y)S. SinceS � P�,
( "a)S = ( "c�(a))S holds for alla 2 P . Thus, we get by (c) that

c�(x) =
^

( "c�(x))S =
^

( "x)S =
^

( "y)S =
^

( "c�(y))S = c�(y):

Hence,(x; y) 2 �. So,�S � � and� = �S, which means thatS is�-dense.�
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We end this section by presenting some results which help us to determine
dense sets. IfP = (P;_;^) is a lattice, then an elementa 2 P is meet-irreducible
if a = b ^ c impliesa = b or a = c. We denote the set of all meet-irreducible
elementsa 6= 1 (in caseP has a unit) ofP by M(P). The join-irreducible
elements and their setJ (P) are defined dually. The following lemma can be
found in [5], for example.

Lemma 3.4.10. If P = (P;_;^) is a lattice satisfying theACC, then

x =
^
fa 2 M(P) j x � ag;

for all x 2 P . �

Now we can present a proposition which characterizes�-dense sets for a com-
plete congruence� on (P;_) in the caseP = (P;�) is a lattice and the quotient
setP=� has no infinite chains. We denote the ordered set(P�;�) byP�.

Proposition 3.4.11. If (P;�) is a lattice and� is a complete congruence on
(P;_) such that(P=�;�) has no infinite chains, thenS � P is �-dense if and
only if

M(P�) � S � P�:

Proof.Because(P;�) is a lattice,(P=�;�) and(P�;�) are lattices by Propo-
sition 3.2.8 and Corollary 3.1.2, respectively. By our assumption they do not con-
tain any infinite chains. This implies by Lemma 2.2.9 that(P=�;�) and(P�;�)
are in fact complete lattices. By Lemma 3.4.10,

z =
^
fa 2 M(P�) j z � ag

for all z 2 P�, which means thatM(P�) is a meet-dense inP� and so it is�-
dense by Proposition 3.4.9. By Lemma 3.4.8(e),P� is�-dense. HenceM(P�) �
S � P� implies that� = �P� � �S � �M(P�) = �.

LetS be an arbitrary�-dense set. ThenS � P� by Lemma 3.4.8(a). Because
S is�-dense, it is meet-dense inP�. Assumex 2 M(P�). Then there exists an
A � S such thatx =

V
A. If A = ;, thenx = 1, a contradiction! Hence,A 6= ;.

BecauseP� satisfies the DCC, there exists by the dual of Lemma 2.2.9 a finite
F � A such thatx =

V
F . Sincex is meet-irreducible andF (� P�) is finite

and nonempty, this impliesx 2 F . The factF � A � S yieldsx 2 S. Thus,
M(P�) � S. �
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By the next lemma, which appears in [5],�-dense sets can be found from the
Hasse diagram ofP�.

Lemma 3.4.12.LetP = (P;�) be a finite lattice. Thena 2 M(P) if and only if
a is covered by exactly one element ofP . �

We end this section by giving the following example.

Example 3.4.13.Let (P;�) be the lattice defined by the Hasse diagram of Figure
6.

b

b

b

b

b

bb

b

0

b ca

d

1

fe

Figure 6.

Let� be the congruence of the semilattice(P;_) with the congruence classes

f0g; fag; fcg; fb; dg; fe; f; 1g:

The congruence� is naturally complete andP� = f0; a; c; d; 1g. The Hasse
diagram ofP� = (P�;�) is presented in Figure 7.

c

c

c

c

0

a

d

1

c c

Figure 7.

Since(P�;�) is finite, an elementx 6= 1 is meet-irreducible in it if, and only
if, x is covered by exactly one element. The least�-dense setM(P�) is therefore
fa; c; dg, the greatest�-dense isP�, andf0; a; c; dg is a third�-dense set, since
M(P�) � f0; a; c; dg � P�.
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3.5 Dual Galois Connections

In Section 6.1 we will show that for anyR 2 Tol(U), the mapsR:}(U)! }(U)
andR:}(U) ! }(U), which assign to each subset ofU its upper and lowerR-
approximations, respectively, form a Galois connection between(}(U);�) and
(}(U);�).

In this work a Galois connection(I;J) between(P;�) and(P;�) is called
a dual Galois connection on(P;�). We show that ifP = (P;�) is a complete
lattice and(I;J) is a dual Galois connection onP, thenI:P ! P is a complete
join-morphismP ! P. Its kernel�I is a complete congruence on(P;_) such
that the greatest element in the�I-class of anyx 2 P is xIJ. By duality,J:P !
P is a complete meet-morphismP ! P and its kernel�J is a congruence on
(P;^) such that the�J-class of anyx 2 P has a least elementxJI.

The following definition of Galois connections can be found in [5, 12, 36, 51],
for example

Definition. Let P = (P;�) andQ = (Q;�) be ordered sets. A pair(I;J) of
mapsI:P ! Q andJ:Q ! P (which we refer to as theright mapand theleft
map, respectively) is called aGalois connectionbetweenP andQ if

(a)I andJ are order-reversing and
(b) p � pIJ for all p 2 P , andq � qJI for all q 2 Q.

In the following proposition we present some basic properties of Galois con-
nections. Statements (a)–(c) can be found in [36] and (d) in [5], for example.

Proposition 3.5.1. Suppose(I;J) is a Galois connection betweenP = (P;�)
andQ = (Q;�).

(a) For all p 2 P andq 2 Q, pIJI = pI andqJIJ = qJ.
(b) The mapsc:P ! P; p 7! pIJ and k:Q ! Q; q 7! qJI are closure

operators onP andQ, respectively.
(c) If c and k are the mappings defined in (b), then restricted to the sets of

c-closed elementsPc andk-closed elementsQk, respectively,I andJ yield a pair
I:Pc ! Qk, J:Qk ! Pc of mutually inverse dual order-isomorphisms between
(Pc;�) and(Qk;�).

(d) The mapI:P ! Q is a complete join-morphism from(P;�) to (Q;�)
andJ:Q! P is a complete join-morphism from(Q;�) to (P;�). �

We denote by�I and�J the kernels of the mapsI:P ! Q andJ:Q ! P ,
respectively. Now we can write the following lemma.
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Lemma 3.5.2. Let (I;J) be a Galois connection between two complete join-
semilatticesP = (P;�) andQ = (Q;�).

(a)The relation�I is a complete congruence on(P;_) such that the greatest
element in the�I-class of anyp 2 P is pIJ.

(b) The relation�J is a complete congruence on(Q;_) such that the greatest
element in the�J-class of anyq 2 Q is qJI.

Proof. It follows directly from Propositions 3.3.3(b) and 3.5.1(d) that�I is a
complete congruence on(P;_). Let p 2 P . By Proposition 3.5.1(a),pIJI = pI,
which implies(p; pIJ) 2 �I. If (p; x) 2 �I, thenpI = xI and hencex �
xIJ = pIJ. Thus,pIJ is the greatest element ofp=�I. Assertion (b) can be
proved similarly. �

Before we introduce dual Galois connections, we consider shortly interior op-
erators and congruences on semilattices(P;^) such that each congruence class
has a least element.

LetP = (P;�) be an ordered set. Ifi:P ! P is a closure operator onP@ =
(P;�), it is an interior operatoronP. This means thati:P ! P is an interior
operator onP if and only if i(x) � x, x � y impliesi(x) � i(y), andi(i(x)) =
i(x) for all x; y 2 P . We denote byInt(P) the set of all interior operators onP.
The setInt(P) may be ordered with the pointwise order. Obviously,1P : x 7! x is
the greatest element in(Int(P);�), and ifP has a bottom element, thenf?: x 7!
? is the bottom element of(Int(P);�).

Let us consider a semilatticeP = (P;^). As before, we define the order� on
P by

a � b if and only if a ^ b = a.

A congruence� onP is completeif for any x 2 P , the congruence classx=�
has a least elementi�(x). The set of all complete congruences onP is denoted
byConi(P). The letter “i” in i�(x) and inConi(P) suggests the word “interior”.
Obviously,Coni(P) may be ordered with the usual set inclusion. The ordered set
(Coni(P);�) has�P as the bottom element and ifP has a bottom element, then
rP is the top element of(Coni(P);�).

The next proposition follows from Proposition 3.2.3.

Proposition 3.5.3. LetP = (P;^) be a semilattice.
(a) If � is a complete congruence onP, theni�:P ! P; x 7! i�(x), is an

interior operator on(P;�).
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(b) If i is an interior operator on(P;�), then its kernel�i is a complete
congruence onP such that the smallest element in the�i-class of anyx 2 P is
i(x).

(c) The mappings� 7! i� and i 7! �i form a pair of mutually inverse dual
order-isomorphisms between the ordered set of interior operators(Int(P);�) and
the ordered set(Coni(P);�) of complete congruences onP. �

Let P = (P;�) be a complete meet-semilattice. Then(Int(P);�) and
(Coni(P);�) are dually isomorphic complete lattices. LetQ = (Q;�) be an
ordered set and letf :P ! Q be a complete meet-morphismP ! Q. Then the
kernel�f of f is a complete congruence on(P;^) such that the least element of
the�f -class of anyx 2 P is

V
x=�f .

Definition. Let P = (P;�) be an ordered set. A Galois connection betweenP
andP@ = (P;�) is called adual Galois connectiononP.

So,(I;J) is a dual Galois connection onP = (P;�) if and only if I andJ are
order-preserving andpJI � p � pIJ for all p 2 P . We conclude this chapter by
presenting some results concerning dual Galois connections on a complete lattice.

Proposition 3.5.4. Let (I;J) be a dual Galois connection on a complete lattice
P = (P;�).

(a) The mapc:P ! P; p 7! pIJ, is a closure operator onP and k:P !
P; p 7! pJI, is an interior operator onP.

(b) If c and k are the mappings defined in (a), then restricted to the sets of
c-closed elementsPc andk-closed elementsPk, respectively,I andJ yield a pair
I:Pc ! Pk, J:Pk ! Pc of mutually inverse order-isomorphisms between(Pc;�)
and(Pk;�).

(c) The mapI:P ! P is a complete join-morphismP ! P andJ:P ! P
is a complete meet-morphismP ! P.

(d) The relation�I is a complete congruence on(P;_) such that the greatest
element in the�I-class of anyp 2 P is pIJ.

(e) The relation�J is a complete congruence on(P;^) such that the least
element in the�J-class of anyp 2 P is pJI.

Proof. Claim (a) follows easily from Proposition 3.5.1(b).
(b) By Corollary 3.1.2,(Pc;�) and(Pk;�) are complete lattices and the maps

I:Pc ! Pk andJ:Pk ! Pc are mutually inverse order-isomorphisms between
these complete lattices by Proposition 3.5.1(c). Assertion (c) is obvious by Propo-
sition 3.5.1(d) and statements (d) and (e) follow from Lemma 3.5.2. �
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Chapter 4

Information Systems and Preimage
Relations

4.1 Indiscernibility and Similarity in Information
Systems

Here we consider informations systems introduced by Pawlak [41, 42]. Aninfor-
mation systemis a tripleS = (U;A; fVaga2A), whereU is a set ofobjects, A is
a set ofattributes, andfVaga2A is an indexed set ofvalue sets of attributes. Each
attributea 2 A is a mappinga:U ! Va.

Example 4.1.1.An information systemS in which the setsU andA are finite can
be represented by a table. The rows of the table are labeled by the objects and the
columns by the attributes of the systemS. In the intersection of the row labeled
by an objectx and the column labeled by an attributea we find the valuea(x).

Let us consider an information systemS = (U;A; fVaga2A), where the object
setU = f1; 2; 3; 4g consists of four persons called 1, 2, 3, and 4, respectively. The
attribute setA has the attributes Age, Eyes, and Height. The corresponding value
sets areVAge = fYoung;Middle-aged;Oldg, VEyes = fBlue;Brown;Greeng,
VHeight = fShort;Normal;Tallg.

Let the values of attributes be defined as in Table 1.
Age Eyes Height

1 Young Blue Short
2 Old Brown Normal
3 Middle-aged Brown Tall
4 Young Green Short
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Table 1.

In [37] Orłowska and Pawlak defined nondeterministic information systems,
in which attributes assign a nonempty subset of values to every object. In such
systems it is possible to define several kinds of relations on the object set which are
based on the attribute values. The following definition can be found in [38, 39, 40],
for example.

Definition. A nondeterministic information systemis a triple S =
(U;A; fVaga2A), whereU is a nonempty set ofobjects, A is a nonempty set of
attributes, andfVaga2A is an indexed set ofvalue sets of attributes. Each attribute
is a functiona:U ! }(Va)� f;g.

There are two ways to interpret the knowledge represented by a nondetermin-
istic information system. LetS = (U;A; fVaga2A) be a nondeterministic infor-
mation system and leta 2 A andx 2 U .

1. If S is amany-valuedinformation system, thena(x) is the set of all values
of the attributea for the objectx. This means that everyv 2 a(x) is an
actuala-value forx.

2. If S is an approximateinformation system, then the unique value of the
attributea for the objectx is assumed to be in the seta(x). Note that the
complete ignorance is denoted bya(x) = Va.

The use of “nondeterministic information system” is somewhat misleading when
many-valued systems are considered. However, we accept this drawback since the
use of this term is a standard practice in the literature.

An “ordinary” information systemS = (U;A; fVaga2A), where eacha(2 A)
is a mapa:U ! Va, can be considered as a nondeterministic information system
such that alwaysja(x)j = 1 anda(x) = fvg is writtena(x) = v.

Next we present two examples which illustrate the above classification. Both
examples deal with a nondeterministic information systemS = (U;A; fVaga2A),
where the object setU = f1; 2; 3; 4g consists of four persons called 1, 2, 3, and 4,
respectively.

Example 4.1.2. (Many-valued information system)Let S be the nondetermin-
istic information system such thatA has the attributes “Degrees” and “Knowl-
edge of languages”,VDegrees = fBA;BSc;MA;MSc;PhDg, VLanguages =
fEnglish;Finnishg, and the values of the attributes are defined in Table 2.

53



Degrees Languages
1 fBScg fEnglishg
2 fBSc, MSc, PhDg fEnglishg
3 fBA, MAg fEnglish, Finnishg
4 fBA,MAg fEnglish, Finnishg

Table 2.

For example, the person 1 is a Bachelor of Sciences who speaks only English.

Example 4.1.3. (Approximate information system)Let S be the nondetermin-
istic information system in whichA = fHeight, Weightg, VHeight = VWeight = N ,
and let the values for the attributes be given in Table 3.

Height (cm) Weight (kg)
1 f184; : : : ; 187g f80; : : : ; 85g
2 f170; : : : ; 178g N

3 f178; : : : ; 185g f80; : : : ; 85g
4 f170; : : : ; 178g N

Table 3.

The values of attributes are now only approximations. We know, for instance, that
the height of the person 1 is between 184 and 187 and her/his weight is between
80 and 85. Note that we know nothing about the weight of the persons 2 and 4.

Let S = (U;A; fVaga2A) be a nondeterministic information system. The fol-
lowing definitions of strong and weak binary relations of indiscernibility and sim-
ilarity can be found in e.g. [38, 39, 40]. LetB � A andx; y 2 U .

Strong indiscernibility: (x; y) 2 ind(B) iff a(x) = a(y) for all a 2 B.

Weak indiscernibility: (x; y) 2 wind(B) iff a(x) = a(y) for somea 2 B.

Strong similarity: (x; y) 2 sim(B) iff a(x) \ a(y) 6= ; for all a 2 B.

Weak similarity: (x; y) 2 wsim(B) iff a(x) \ a(y) 6= ; for somea 2 B.

Let S be a nondeterministic information system. Two objects are in relation
ind(B) whenever we cannot distinguish them by the values of the attributes inB.
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If there exists at least one attributea in B such thatx andy area-indiscernible
(that is,a(x) = a(y)), thenx and y arewind(B)-related. A pair(x; y) is in
sim(B), if the values of all attributes inB for x andy have at least one common
value, and(x; y) is in wsim(B) if x andy have at least one commona-value for
some attributea in B.

Example 4.1.4. (a) In the many-valued information system of Example 4.1.2,
(3; 4) 2 ind(fDegrees;Languagesg), since3 and 4 have earned the same de-
grees and they speak exactly the same languages. The persons 1 and 2 are in re-
lation ind(fLanguagesg) and in relationwind(fDegrees;Languagesg) because
they both speak only English.

The persons 1 and 2 are in relationsim(fDegrees;Languagesg) be-
cause they have a common degree and a common language. The relation
wsim(fDegrees;Languagesg) = sim(fLanguagesg) is the all relation ofU ,
since all persons have a common language.

(b) In the approximate information system of Example 4.1.3,(2; 3) 2
ind(fHeight;Weightg) since the sets approximating the height and the weight
of the persons 2 and 3 are the same. The persons 1 and 3 are in relation
ind(fWeightg) and in relationwind(fHeight;Weightg) because the sets approx-
imating their weight are equal.

In an approximate information system strong similarity relations can be con-
sidered as indiscernibility relations. Namely, if(x; y) 2 sim(B) for someB � A,
then we cannot certainly distinguish the objectsx and y because it is possible
that their actual values for every attribute inB are the same. The persons 1
and 3 aresim(fHeight;Weightg)-related because the subsets approximating their
height and weight have common values. The relationwsim(fHeight;Weightg) =
sim(fWeightg) is the all relation ofU since all objects have common possible
values for the attribute Weight.

In the next lemma we present some obvious properties of indiscernibility and
similarity relations. Most of them appear in [38, 39, 40].

Lemma 4.1.5. If S = (U;A; fVaga2A) is a nondeterministic information system,
; 6= B � A, anda 2 A, then

(a) ind(B) is an equivalence;
(b)wind(B), sim(B), andwsim(B) are tolerances;
(c) ind(fag) = wind(fag) andsim(fag) = wsim(fag);
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(d) ind(B) � wind(B) andsim(B) � wsim(B);
(e) ind(B) � sim(B) andwind(B) � wsim(B);
(f) ind(;) = sim(;) = rU andwind(;) = wsim(;) = ;. �

4.2 Preimage Relations

In the literature we can find several relations defined in the object set of an infor-
mation system based on relationships between the values of attributes. It seems
that these relations are similar in the following sense. Two objects are in a cer-
tain strong (resp. weak) relation with respect to an attribute setB if and only
if their values of all (resp. some) attributes inB are in a specified relation. For
example, objectsx andy are in relationsim(B) if and only if a(x) \ a(y) 6= ;
for all a 2 B. In this section we introduce the general notion of preimage rela-
tions, which allows us to study the common features of strong and weak relations
defined in information systems.

LetU andY be nonempty sets,R 2 Rel(Y ), and letf :U ! Y be a function.
Thepreimage relationof R is defined by

f�1(R) = f(x; y) 2 U2 j f(x)Rf(y)g:

So, two elements ofU are in relationf�1(R) if and only if their images are in
relationR. In particular, the preimage of the diagonal relation ofY is the kernel
of the mapf , that is to say,f�1(�Y ) = �f .

Our following obvious lemma shows thatf�1(R) inherits many properties
fromR.

Lemma 4.2.1. LetU andY be nonempty sets,f 2 Y U andR 2 Rel(Y ). If R is
reflexive, irreflexive, symmetric, or transitive, then so isf�1(R). �

It is also true that
f�1(R{) = (f�1(R)){:

Example 4.2.2.LetS = (U;A; fVaga2A) be an approximate information system,
in whichU = f1; 2; 3; 4g,A = fAge;Height;Weightg, andVa = N for all a 2 A.
The values of the attributes are defined as in Table 4.

Age (years) Weight (kg) Height (cm)
1 f22; : : : ; 26g f48; : : : ; 54g f154; : : : ; 157g
2 f26; : : : ; 33g f73; : : : ; 78g f170; : : : ; 175g
3 f24; : : : ; 29g f51; : : : ; 58g f159; : : : ; 162g
4 f31; : : : ; 37g f75; : : : ; 82g f157; : : : ; 161g
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Table 4.

We denoteY = }(N) � f;g. Let us define a binary relationSIM on Y by
setting for allW1;W2 2 Y ,

(W1;W2) 2 SIM () W1 \W2 6= ;:

The relationSIM is obviously a tolerance. This implies thata�1(SIM) is a
tolerance for alla 2 A. Two objects are, for example, in relationAge�1(SIM) if
and only if their ages are possibly the same. The preimage relations ofSIM with
respect to the attributes Age, Weight, and Height are represented graphically by
the following graphs.

c c c c c c

cccccc1 2 1 2 1 2

434343
Age�1(SIM) Weight�1(SIM) Height�1(SIM)

Next we shall extend the notion of preimage relation in a natural way. For any
set of functionsB � Y U , thestrongand theweak preimage relations ofB are
defined by

SR(B) = f(x; y) 2 U2 j (8f 2 B)f(x)Rf(y)g;

WR(B) = f(x; y) 2 U2 j (9f 2 B)f(x)Rf(y)g;

respectively. In the next lemma we present some basic properties of strong and
weak preimage relations.

Lemma 4.2.3. LetU andY be nonempty sets andR 2 Rel(Y ). If H � }(Y U),
B;C � Y U , andf 2 Y U , then

(a)SR(ffg) = WR(ffg) = f�1(R);
(b) SR(B) =

T
ff�1(R) j f 2 Bg andWR(B) =

S
ff�1(R) j f 2 Bg;

(c) SR(;) = U � U andWR(;) = ;;
(d)SR(

S
H) =

T
fSR(B) j B 2 Hg andWR(

S
H) =

S
fWR(B) j B 2 Hg;

(e)B � C impliesSR(C) � SR(B) andWR(B) � WR(C);
(f) SR(B) � WR(B) wheneverB 6= ;;
(g) SR(B){ = W(R{)(B) andWR(B)

{ = S(R{)(B).

57



Proof. Claims (a), (b), and (c) are obvious.
(d) For anyx; y 2 U ,

(x; y) 2 SR(
[
H) () (8f 2

[
H) f(x)Rf(y)

() (8B 2 H)(8f 2 B) f(x)Rf(y)

() (8B 2 H) (x; y) 2 SR(B)

() (x; y) 2
\
fSR(B) j B 2 Hg:

The other claim of (d) is proved similarly.
(e) If B � C, then by (d),SR(B) \ SR(C) = SR(B [ C) = SR(C), which

impliesSR(C) � SR(B). The proof for the other inclusion is analogous.
(f) is obvious.
(g) For anyx; y 2 U ,

(x; y) 2 SR(B)
{ () (x; y) =2 SR(B)

() (9f 2 B) (f(x); f(y)) =2 R

() (9f 2 B) (f(x); f(y)) 2 R{

() (x; y) 2 W(R{)(B):

The other equality can be proved in a similar way. �

Our following proposition, which extends Lemma 4.2.1, shows that also strong
and weak preimage relations inherit many properties from the original relation.

Proposition 4.2.4. LetU andY be nonempty sets,R 2 Rel(Y ), and let; 6= B �
Y U be a set of functions. IfR is reflexive, irreflexive or symmetric, then so are
SR(B) andWR(B). Moreover, ifR is transitive, thenSR(B) is transitive. �

In the following we shall present some relations defined in the object set of a
nondeterministic information system based on the values of attributes for objects.
This kind of relations are in general calledinformation relations. The following
relations are defined in [38, 39, 40], for example. LetS = (U;A; fVaga2A) be a
nondeterministic information system andB � A.

Strong inclusion: (x; y) 2 inc(B) iff a(x) � a(y) for all a 2 B.

Weak inclusion: (x; y) 2 winc(B) iff a(x) � a(y) for somea 2 B.
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Strong diversity: (x; y) 2 div(B) iff a(x) 6= a(y) for all a 2 B.

Weak diversity: (x; y) 2 wdiv(B) iff a(x) 6= a(y) for somea 2 B.

Strong orthogonality: (x; y) 2 ort(B) iff a(x) \ a(y) = ; for all a 2 B.

Weak orthogonality: (x; y) 2 wort(B)) iff a(x) \ a(y) = ; for somea 2 B.

Strong negative similarity: (x; y) 2 nim(B) iff a(x) \ a(y){ 6= ; for all a 2 B.

Weak negative similarity: (x; y) 2 wnim(B) iff a(x) \ a(y){ 6= ; for some
a 2 B.

For instance, two objects are weaklyB-diverse if their values for all attributes
in B are not the same, and two objects are stronglyB-orthogonal if they have no
common value for any attribute inB.

Information relations are preimage relations, as we see in the next example.

Example 4.2.5.Let S = (U;A; fVaga2A) be a nondeterministic information sys-
tem. Let us setV =

S
a2A Va andY = }(V ) � f;g. Now we can define the

following relations onY .

(W1;W2) 2 IND () W1 =W2;
(W1;W2) 2 SIM () W1 \W2 6= ;;
(W1;W2) 2 INC () W1 � W2;
(W1;W2) 2 DIV () W1 6=W2;
(W1;W2) 2 ORT () W1 \W2 = ;;
(W1;W2) 2 NIM () W1 \W2

{ 6= ;.

It is obvious thatIND{ = DIV , SIM{ = ORT , andINC{ = NIM .
It is now easy to observe that information relations are preimage relations

and hence we may apply results concerning preimage relations to information
relations. Namely, for any subsetB(� A) of attributes,

ind(B) = SIND(B) and wind(B) =WIND(B);
sim(B) = SSIM(B) and wsim(B) = WSIM(B);
inc(B) = SINC(B) and winc(B) = WINC(B);
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div(B) = SDIV (B) and wdiv(B) = WDIV (B);
ort(B) = SORT (B) and wort(B) =WORT (B);
nim(B) = SNIM(B) and wnim(B) =WNIM(B).

By Lemma 4.2.3,ind(B [ C) = ind(B) \ ind(C) andwind(B [ C) =
wind(B) [ wind(C) for all B;C � A. Moreover,IND{ = DIV implies that
ind(B){ = SIND(B)

{ =W(IND{)(B) =WDIV (B) = wdiv(B), for example.

We can now easily define various relations in information systems as preimage
relations as shown in the next example.

Example 4.2.6.Let S = (U;A; fVaga2A) be an information system in which
U = f1; 2; 3; 4g, A = fHeight;Weightg, andVa = N for all a 2 A. The values
of attributes are given in Table 5.

Height (cm) Weight (kg)
1 186 80
2 157 59
3 172 64
4 166 52

Table 5.

The attributes inA are functionsa:U ! N . Let us now consider the usual or-
der relation> on N . The preimage relations of> with respect to the attributes
“Height” and “Weight” are represented graphically by the following graphs:

c

c

c

c c

c

c

c

?

?

?

?

?

?

Height�1(>) Weight�1(>)

42

4 2

33

1 1

For allB � A,

S>(B) = f(x; y) 2 U2 j (8a 2 B) a(x) > a(y)g;

W>(B) = f(x; y) 2 U2 j (9a 2 B) a(x) > a(y)g:
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Now (x; y) 2 S>(A) if and only if x is taller and heavier thany, and(x; y) 2
W>(A) if and only if x is taller or heavier thany.

c c

c

c c

c

c c

?

	 R� -

?

	 R

1 1

33

2 4 2 4
S>(A) W>(A)

4.3 Matrices of Preimage Relations

Skowron and Rauszer introduced discernibility matrices in [52]. They presented
several results concerning cores, dependencies, and reducts defined in information
systems by applying this notion. Here we introduce matrix representations of
preimage relations as a generalization of discernibility matrices.

Let U = fxigi2I andY be nonempty sets,R 2 Rel(Y ), and letA(� Y U)
be a set of functions. ThematrixM(R) = (cij) of preimage relationsof R with
respect toA is defined so that

cij = ff 2 A j (xi; xj) 2 f�1(R)g;

for all i; j 2 I. Thus, the entrycij consists of those functionsf 2 A for which
f(xi)Rf(xj). Obviously, the following lemma holds.

Lemma 4.3.1. If U = fxigi2I andY are nonempty sets,R 2 Rel(Y ), A � Y U ,
andM(R) = (cij) is the matrix of preimage relations ofR with respect toA, then
for all B � A andi; j 2 I,

(a) (xi; xj) 2 SR(B) iff B � cij;
(b) (xi; xj) 2 WR(B) iff B \ cij 6= ;. �

In the previous section we saw that information relations are actually preimage
relations. Therefore they can be represented by matrices.

SupposeS = (U;A; fVaga2A) is a nondeterministic information system such
thatU = fxigi2I . ThenM(IND)S = (cij) is theindiscernibility matrixof S, if
for all i; j 2 I,

cij = fa 2 A j (xi; xj) 2 a
�1(IND)g:
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Thus, the entrycij consists of those attributesa 2 A such thata(xi) = a(xj).
Let us note that indiscernibility matrices defined here and the discernibility

matrices defined by Skowron and Rauszer are not exactly the same. Namely, the
entries of our indiscernibility matrices are the complements of the entries of their
discernibility matrices.

In a similar manner we may define thesimilarity matrixM(SIM)S , thema-
trix of inclusionM(INC)S , the diversity matrixM(DIV )S , the orthogonality
matrixM(ORT )S, and thematrix of negative similarityM(NIM)S of a nonde-
terministic information systemS.

Example 4.3.2.Let S = (U;A; fVaga2A) be the single-valued and incompletely
defined information system described in Example 4.2.2. Let us denotea = Age,
b = Height, andc = Weight.

The similarity matrixM(SIM)S = (cij)4�4 of S is the following.

0
BB@

A fag fa; cg fbg
fag A fag fa; cg
fa; cg fag A fbg
fbg fa; cg fbg A

1
CCA

It is clear that(1; 3) 2 sim(fAge;Weightg) becausefa; cg � c13 = fa; cg.
On the other hand,(1; 2) =2 wsim(fHeight;Weightg) becausefb; cg \ c12 =
fb; cg \ fag = ;.

We will return to the matrix representation of preimage relations in the next
chapter when we consider dense families of dependence spaces induced by strong
and weak preimage relations.
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Chapter 5

Dependence Spaces

5.1 Closure Operators of Dependence Spaces

Many problems concerning information systems can be formulated in dependence
spaces which are simpler algebraic structures. The study of dependence spaces
started in [30], although the name “dependence space” was introduced later in
[31]. Since then dependence spaces have been the subject of several papers (see
[9, 18, 26, 27, 32], for example). In [35] Novotn´y presented an extensive study of
dependence spaces, and in [34] he showed how the theory applies to contexts (in
the sense of Wille [56]), relational systems, classificatory systems, information
systems, and decision tables.

According to Novotn´y and Pawlak, a pairD = (A;�) is a dependence space,
if A is finite nonempty set and� is a congruence on the semilattice(}(A);[).
We have already seen that each congruence on a finite semilattice is complete, i.e.,
each congruence class has a greatest element. This implies that ifA is finite, then
each congruence on(}(A);[) is complete. Therefore our following generalized
definition of dependence spaces is justified.

Definition. If A is a set and� is a complete congruence on(}(A);[), then the
pairD = (A;�) is called adependence space. A dependence spaceD = (A;�)
is finite if A is a finite set.

For a dependence spaceD = (A;�), the greatest element in the�-class of any
B � A is denoted byCD(B). In [26] the authors presented some properties of the
mapCD:}(A)! }(A); B 7! CD(B), for a finite dependence spaceD = (A;�).
Our next lemma, which follows from Lemma 3.2.2 and Proposition 3.2.3, shows
that these properties hold also for dependence spaces defined more generally.
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Lemma 5.1.1. LetD = (A;�) be a dependence space andB;C � A.
(a)CD:}(A)! }(A); B 7! CD(B), is a closure operator;
(b) CD(B) =

S
B=�;

(c) CD(B) = CD(C) if and only ifB�C. �

We denote byLD the set of the greatest elements of�-classes, that is to say,

LD = fCD(B) j B � Ag:

Thus,LD is the closure system corresponding to the closure operatorCD and so
(LD;�) is a complete lattice such that

_
H = CD(

[
H) and

^
H =

\
H

for allH � LD.
As we noted in Chapter 3, the set of all complete congruences on a semilattice

P = (}(A);[) is a complete lattice with respect to the inclusion order, and it is
isomorphic to the set of all closure operators}(A)! }(A) ordered by the point-
wise order. This means that a dependence space could be equivalently defined as
a pair(A; C), whereC:}(A)! }(A) is a closure operator.

Since(Conc(P);�) is a complete lattice, the set of all dependence spaces on
A

f(A;�) j � is a complete congruence on(}(A);[)g

might be considered as a complete lattice, in which the order is defined by
(A;�1) � (A;�2) () �1 � �2. In this complete lattice the join and the
meet off(A;�i) j i 2 Ig are(A;

W
i2I �i) and(A;

V
i2I �i), respectively. Note

that if A is a finite, then by Corollary 3.4.6 the number of dependence spaces
D = (A;�) is at most22

jAj�1.
Let � be a congruence on a semilattice(}(A);[). As before, we define the

order� on the quotient set}(A)=� by

B=� � C=� if and only if (B [ C)=� = C=�:

Our next proposition, which is presented in [18] for finite dependence spaces,
follows from Propositions 3.2.7 and 3.2.8.
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Proposition 5.1.2. If D = (A;�) is a dependence space, then(}(A)=�;�) is a
complete lattice such that_

fB=� j B 2 Hg = (
[
H)=�;^

fB=� j B 2 Hg = (
\
B2H

CD(B))=�;

for all H � }(A). Moreover, the mapB=� 7! CD(B) is an isomorphism between
the complete lattices(}(A)=�;�) and(LD;�). �

By the previous proposition it is clear that for allB;C � A,

B=� � C=� () CD(B) � CD(C):(5.1)

Note that the congruence� satisfies the complete[-compatibility property,
that is, ifI is a nonempty index set such thatBi�Ci holds for alli 2 I, then also�S

i2I Bi

�
�
�S

i2I Ci

�
holds.

Example 5.1.3.Let A = f1; 2; 3; 4g and let� be the congruence on(}(A);[)
whose congruence classes aref;g, ff1gg, ff2gg, ff3gg, ff4g, f1; 2g, f1; 4g,
f2; 4g, f1; 2; 4gg, ff1; 3gg, ff2; 3gg and ff3; 4g, f1; 2; 3g, f1; 3; 4g, f2; 3; 4g,
f1; 2; 3; 4gg. The closure lattice(LD;�) of the dependence spaceD = (A;�) is
presented in Figure 8.

b f1; 2; 3; 4g

bf1; 2; 4g b f1; 3g b f2; 3g

b

f2g
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f1g
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�
�
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��
�

�
�
�

��

�
�
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�
��

�
�
�

�
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H
H
H
H
HH

H
H
H
H
HH

H
H
H
H
HH

H
H
H
H
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Figure 8.

Next we introduce some types of dependence spaces defined by applying gen-
eral order-theoretical concepts.

Definition. A dependence spaceD = (A;�) is finitary if }(A)=� is finite, and
D satisfies theACC (resp. the DCC), if(}(A)=�;�) satisfies the ACC (resp.
the DCC). Furthermore,D hasno infinite chainsif (}(A)=�;�) has no infinite
chains.
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If D = (A;�) is finite, thenD is finitary, and ifD is finitary, it has no infinite
chains. By Lemma 2.2.8(b) it is clear thatD satisfies the ACC and the DCC if and
only if D has no infinite chains. Our next lemma presents a condition which we
will need especially in Section 5.4.

Lemma 5.1.4. A dependence spaceD = (A;�) satisfies theACC if and only if
for all B � A, there exists a finite subsetF ofB such thatB�F .

Proof. SupposeD satisfies the ACC and letB � A. Then, by Lemma 2.2.8(a),
the nonempty subset

F = fF=� j F is a finite subset ofBg

of }(A)=� has a maximal elementF=� for some finiteF � B. Leta 2 B. Then
(F [ fag)=� � F=� and because(F [ fag) is a finite subset ofB, this implies
(F [ fag)=� = F=�. So,fag=� _ F=� = (F [ fag)=� = F=�, which means
that fag=� � F=�. By Proposition 5.1.2,B=� = (

S
ffag j a 2 Bg)=� =W

ffag=� j a 2 Bg � F=�. SinceF � B, we have alsoF=� � B=�, and
henceF=� = B=�.

On the other hand, suppose that for allB � A there exists a finite subsetF of
B such thatB=� = F=�. Consider any chain

B1=� � B2=� � B3=� � � � �(5.2)

in }(A)=�. Let us denoteB =
S
i�1Bi. Then there exists a finite subsetF =

fa1; : : : ; ang of B such thatF=� = B=�.
For all ai 2 F , there exists aji � 1 such thatai 2 Bji. Because (5.2) is a

chain, there exists ak � 1 such thatBji=� � Bk=� for all 1 � i � n. This
implies that

B=� = F=�

= fa1g=� _ � � � _ fang=�

� Bj1=� _ � � � _Bjn=�

� Bk=�

� B=�:

ThereforeBk=� = B=� and soBk=� = Bk+1=� = : : :Hence,}(A)=� satisfies
the ACC. �
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Our next proposition gives a condition under which the closure operatorCD is
algebraic.

Proposition 5.1.5. If D = (A;�) satisfies the ACC, then the closure operatorCD
is algebraic.

Proof. Let B � A. It is clear thatCD(B) �
S
fCD(F ) j F is a finite subset

of Bg. By Lemma 5.1.4, there exists a finite subsetF of B such thatB�F . This
impliesCD(B) = CD(F ) �

S
fCD(F ) j F is a finite subset ofBg, which means

thatCD is algebraic. �

It is known that a closure operatorC:}(A) ! }(A) is algebraic if and only
if C is continuous map from(}(A);�) to (}(A);�) (see [5], for example). Note
that this implies that the join of algebraic closure operators can be obtained by
applying Corollary 3.1.17. Moreover, in the complete lattice

(f(A;�) j � 2 Conc(}(A);[)g;�),

the join of dependence spaces satisfying the ACC can be formed by using this
result, because by Proposition 5.1.5 the corresponding closure operators are alge-
braic, and thus they are continuous.

We end this section by noting that in [33] M. Novotn´y generalized dependence
spaces by defining them as pairs(P; E), whereP = (P;�) is a complete lattice
andE is an equivalence onP such that each equivalence classx=E has a greatest
elementcE(x). He also showed that the mapCE:P ! P; x 7! cE(x), is extensive
and idempotent, but not necessarily order-preserving. Dependence spaces defined
in [33] may be applied to algebraic linguistics, and reducts are connected with
constructions of pure grammars of languages.

5.2 Dense Families of Dependence Spaces

Novotný introduced dense families of dependence spaces in [34]. In Section 3.4
we defined dense sets of any congruence� on a semilattice(P;_). In this section
we present some results concerning dense families of dependence spaces, which
follow easily from the results we presented in Section 3.4.

By Proposition 3.4.1 each familyH � }(A) defines a complete congruence

�H = f(B;C) j (8X 2 H) B � X () C � Xg
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on (}(A);[) such that the greatest element in the�H-class ofB is\
fX 2 H j B � Xg:

Definition. LetD = (A;�) be a dependence space. A familyH � }(A) is dense
in D if H is�-dense.

The above definition means that a familyH � }(A) is dense inD = (A;�)
if and only if the complete congruence�H defined byH equals�. We also note
that our definition agrees with Novotn´y’s definition of dense families.

Our next lemma, which follows from Proposition 3.4.11 and Lemma 3.4.12,
helps us to recognize dense families of dependence spaces. Note that since
(}(A)=�;�) �= (LD;�), LD is finite wheneverD is finitary. Moreover,LD
has no infinite chains, ifD has no infinite chains.

Lemma 5.2.1. LetD = (A;�) be a dependence space.
(a) If D has no infinite chains, thenH � }(A) is dense inD if and only if

M(LD) � H � LD:

(b) If D is finitary, thenM(LD) consists of the elements ofLD which are
covered by exactly one element ofLD. �

Example 5.2.2.Let us consider the dependence spaceD = (A;�) of Example
5.1.3. The Hasse diagram ofLD was given in Figure 8. NowM(LD) = ff1; 3g,
f2; 3g, f1; 2; 4gg. SinceD is finite, Lemma 5.2.1 applies to it, and hence the dense
families ofD are the 32 familiesH such thatM(LD) � H � LD.

By applying dense families it is easy to decide whether two subsets are con-
gruent, as we can see in our next proposition which ends this section.

Proposition 5.2.3. If D = (A;�) is a dependence space andH(� }(A)) is dense
in D, then the following conditions are equivalent for allB;C � A:

(a)B=� � C=�;
(b) CD(B) � CD(C);
(c) for all X 2 H, C � X impliesB � X;
(d) for all X 2 H, B �X 6= ; impliesC �X 6= ;.

Proof. Conditions (a) and (b) are equivalent by (5.1), and (a) and (c) are equiv-
alent by Lemma 3.4.8(c). BecauseB � X is equivalent toB � X = ;, also (c)
and (d) are equivalent. �
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5.3 Dependence Spaces of Preimage Relations

LetS = (U;A; fVaga2A) be an information system such that each attributea 2 A
is a mappinga:U ! Va andA is finite. It is known [31] that the relation�ind

defined by
(B;C) 2 �ind () ind(B) = ind(C)

is a congruence on the semilattice(}(A);[). Thus, the pair(A;�ind) forms a
finite dependence space. In this section we generalize this observation by show-
ing that also strong and weak preimage relations define dependence spaces. We
also show how we can determine dense families of these dependence spaces by
applying preimage matrices.

Let U andY be nonempty sets,R 2 Rel(Y ), and letA(� Y U) be a set of
functions. Let us now define two binary relations�S(A;R) and�W (A;R) on
}(A) so that, for allB;C � A,

(B;C) 2 �S(A;R) () SR(B) = SR(C);

(B;C) 2 �W (A;R) () WR(B) = WR(C):

By Proposition 3.3.3(b) and Lemma 4.2.3(d) we can write the following
proposition, since�S(A;R) and �W (A;R) are the kernels of the functions
SR:}(A) ! Rel(U); B 7! SR(B), andWR:}(A) ! Rel(U); B 7! WR(B),
respectively.

Proposition 5.3.1. LetU andY be nonempty sets,R 2 Rel(Y ), andA(� Y U) a
set of functions.

(a) The mapSR:}(A) ! Rel(U); B 7! SR(B) is a complete join-morphism
from (}(A);�) to (Rel(U);�) such that the greatest element in the�S(A;R)-
class of anyB � A is

S
B=�S(A;R).

(b) The mapWR:}(A)! Rel(U); B 7! WR(B) is a complete join-morphism
from (}(A);�) to (Rel(U);�) such that the greatest element in the�W (A;R)-
class of anyB � A is

S
B=�W (A;R).

(c) The pairs(A;�S(A;R)) and(A;�W (A;R)) are dependence spaces.�

The relations�S(A;R) and�W (A;R) are referred to as thestrongand the
weak preimage congruencesof R with respect to the set of functionsA.

Our next proposition can be viewed as a generalization of Theorem 6.5 in
[31]. It follows easily from Propositions 3.3.4, 3.3.5 and Lemma 4.2.3(d). In this
proposition the greatest element in the�S(A;R)-class of anyB � A is denoted
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by CS(B), and the greatest element in the�W (A;R)-class of anyB � A is
denoted byCW (B).

Proposition 5.3.2. LetU andY be nonempty sets,R 2 Rel(Y ), andA(� Y U).
(a) The ordered set(fSR(B) j B � Ag;�) is a complete lattice such that

_
i2I

SR(Bi) = SR(
[
i2I

Bi) =
\
i2I

SR(Bi)

and ^
i2I

SR(Bi) = SR(
\
i2I

CS(Bi));

for all fBigi2I � }(A). Moreover, the mapSR(B) 7! B=�S(A;R) is
an isomorphism between the complete lattices(fSR(B) j B � Ag;�) and
(}(A)=�S(A;R);�).

(b) The ordered set(fWR(B) j B � Ag;�) is a complete lattice such that

_
i2I

WR(Bi) =WR(
[
i2I

Bi) =
[
i2I

WR(Bi)

and ^
i2I

WR(Bi) =WR(
\
i2I

CW (Bi));

for all fBigi2I � }(A). Moreover, the mapWR(B) 7! B=�W (A;R) is
an isomorphism between the complete lattices(fWR(B) j B � Ag;�) and
(}(A)=�W (A;R);�). �

In the dependence space(A;�S(A;R)), we denote the relation�S(A;R) by
�S
R and in the dependence space(A;�W (A;R)) the relation�W (A;R) by �W

R .
Next we present a simple condition which guarantees that the dependence spaces
(A;�S

R) and(A;�W
R ) are finitary.

Lemma 5.3.3. LetU andY be nonempty sets,R 2 Rel(Y ), andA(� Y U). If U
or A is finite, then the dependence spaces(A;�S

R) and(A;�W
R ) are finitary.

Proof. If A is finite, then(A;�S
R) and(A;�W

R ) are trivially finitary. On the
other hand, ifU is finite, thenfSR(B) j B � Ag � Rel(U) is finite. By Propo-
sition 5.3.2(a),fSR(B) j B � Ag;�) �= (}(A)=�S

R;�) which implies that also
}(A)=�S

R is finite. The rest may be proved analogously. �
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Let us consider a nondeterministic information systemS = (U;A; fVaga2A).
As we have seen in Example 4.2.5, information relations are preimage relations,
and hence they define dependence spaces.

In the sequel we shall denote the relation�S
IND simply by�ind. The relation

�ind will be called thestrong indiscernibility congruenceof S. The dependence
space(A;�ind) is denoted simply byDind. Similarly, the relation�W

IND is called
the weak indiscernibility congruenceof S and is denoted by�wind. We denote
by Dwind the dependence space(A;�wind). A similar notation is defined for the
other information relations.

Lemma 5.3.3 implies that ifU orA is finite, then the dependence spacesDind,
Dsim, Dinc, Ddiv, Dort, Dnim, Dwind, Dwsim, Dwinc, Dwdiv, Dwort, andDwnim are
finitary.

In the next example we see that even if in an information systemS =
(U;A; fVaga2A) the set

S
a2A Va is finite, the dependence spacesDind,Dsim,Dinc,

Dwdiv,Dwort, andDwnim may have infinite chains.

Example 5.3.4.Let S = (U;A; fVaga2A) be an information system such that
U = N , A = fai j i 2 Ng, andVa = f0; 1g for all a 2 A.

For anyi 2 N , the attributeai is defined by

ai(n) =

�
0 if n � i;
1 otherwise.

The equivalence classes ofind(faig) aref1; : : : ; ig andfi + 1; i + 2; : : :g. It is
easy to see that

ind(fa1g) � ind(fa1; a2g) � � � � � ind(fa1; : : : akg) � � � �

is an infinite chain infind(B) j B � Ag. Because(find(B) j B � Ag;�) �=
(}(A)=�ind;�) by Proposition 5.3.2, we obtain that

fa1g=�ind < fa1; a2g=�ind < � � � < fa1; : : : akg=�ind < � � �

is an infinite ascending chain in(}(A)=�ind;�). Hence, the dependence space
Dind = (A;�ind) does not satisfy the ACC.

On the other hand,

ind(fa1g
{) � ind(fa1; a2g

{) � � � � � ind(fa1; : : : akg
{) � � � �

is also an infinite chain infind(B) j B � Ag, and thus

fa1g
{=�ind > fa1; a2g

{=�ind > � � � > fa1; : : : akg
{=�ind > � � �
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is an infinite descending chain in(}(A)=�ind;�). Thus, the dependence space
Dind does not satisfy the DCC either.

In this information systemind(B) = sim(B) = inc(B) andwdiv(B) =
wort(B) = wnim(B) = ind(B){ for all B � A. Thus, the dependence spaces
Dsim,Dinc,Dwdiv,Dwort, andDwnim do not satisfy the ACC or the DCC.

Similarly, the finiteness of
S
a2A Va does not guarantee that the dependence

spacesDwind,Dwsim,Dwinc,Ddiv,Dort, andDnim do not contain infinite chains.

Example 5.3.5.Let S = (U;A; fVaga2A) be an information system such that
U = N [ f>g, A = fai j i 2 Ng, andVa = f0; 1g for all a 2 A.

For eachi 2 N , the attributeai is defined by

ai(n) =

�
0 if n = i or n = >;
1 otherwise.

The equivalence classes ofwind(faig) arefi;>g andN � fig. Obviously,

wind(fa1g) � wind(fa1; a2g) � � � � � wind(fa1; : : : akg) � � � �

is an infinite chain infwind(B) j B � Ag. Because(fwind(B) j B � Ag;�) �=
(}(A)=�wind;�),

fa1g=�wind < fa1; a2g=�wind < � � � < fa1; : : : akg=�wind < � � �

is an infinite ascending chain in(}(A)=�wind;�).
Similarly,

wind(fa1g
{) � wind(fa1; a2g

{) � � � � � wind(fa1; : : : akg
{) � � � �

is also an infinite chain infwind(B) j B � Ag, and thus

fa1g
{=�wind > fa1; a2g

{=�wind > � � � > fa1; : : : akg
{=�wind > � � �

is an infinite descending chain in(}(A)=�wind;�). Therefore, the dependence
spaceDwind = (A;�wind) does not satisfy the ACC or the DCC.

Because in this information systemwind(B) = wsim(B) = winc(B) and
div(B) = ort(B) = nim(B) = wind(B){ for all B � A, the dependence spaces
Dwsim,Dwinc,Ddiv,Dort, andDnim do not satisfy the ACC or the DCC, either.
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We conclude this section by presenting a proposition which shows how matri-
ces of preimage relations define dense families of dependence spaces.

Proposition 5.3.6. LetU = fxigi2I andY be nonempty sets,R 2 Rel(Y ), A �
Y U , and letM(R) = (cij) be the matrix of preimage relations ofR with respect
to the setA.

(a) The familyfcij j i; j 2 Ig is dense in(A;�S
R).

(b) The familyfcij{ j i; j 2 Ig is dense in(A;�W
R ).

Proof. (a) Let us denoteH = fcij j i; j 2 Ig. We have to show that�H = �S
R.

If (B;C) 2 �S
R, then by Lemma 4.3.1 for alli; j 2 I, B � cij iff (xi; xj) 2

SR(B) iff (xi; xj) 2 SR(C) iff C � cij, which implies(B;C) 2 �H. Hence,
�S
R � �H.

If (B;C) 2 �H, then for alli; j 2 I, (xi; xj) 2 SR(B) iff B � cij iff C � cij
iff (xi; xj) 2 SR(C), which impliesSR(B) = SR(C). Thus,�H � �S

R and so
�H = �S

R.
(b) Let us writeK = fcij{ j i; j 2 Ig. If (B;C) 2 �W

R , then for alli; j 2 I,
B � cij

{ iff B\cij = ; iff (xi; xj) =2 WR(B) iff (xi; xj) =2 WR(C) iff C\cij = ;
iff C � cij

{, which implies(B;C) 2 �K. Hence,�W
R � �K.

If (B;C) 2 �K, then for alli; j 2 I, (xi; xj) 2 WR(B) iff B \ cij 6= ;
iff B 6� cij

{ iff C 6� cij
{ iff C \ cij 6= ; iff (xi; xj) 2 WR(C), which implies

WR(B) = WR(C). So, also�K � �W
R and hence�K = �W

R . �

The next example shows how we may obtain dense families in dependence
spaces defined by information systems by Proposition 5.3.6.

Example 5.3.7.Let S = (U;A; fVaga2A) be the nondeterministic information
system presented in Example 4.2.2. Let us denotea = Age, b = Height, and
c = Weight. The strong and the weak similarity relations of each subset ofA are
the following:

sim(;) = rU ;

sim(fag) = �U [ f(1; 2); (2; 1); (1; 3); (3; 1); (2; 3); (3; 2); (2; 4); (4; 2)g;

sim(fbg) = �U [ f(1; 4); (4; 1); (3; 4); (4; 3)g;

sim(fcg) = sim(fa; cg) = �U [ f(1; 3); (3; 1); (2; 4); (4; 2)g;

sim(fa; bg) = sim(fb; cg) = sim(A) = �U ;

wsim(;) = ;;

wsim(fag) = wsim(fa; cg) = sim(fag);
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wsim(fbg) = sim(fbg);

wsim(fcg) = sim(fcg);

wsim(fa; bg) = wsim(A) = rU ;

wsim(fb; cg) = �U [ f(1; 3); (3; 1); (1; 4); (4; 1); (2; 4); (4; 2); (3; 4); (4; 3)g:

So, the strong similarity congruence�sim has the congruence classesf;g, ffagg,
ffbgg, ffcg; fa; cgg, andffa; bg; fb; cg; Ag. The similarity matrixM(SIM)S =
(cij)4�4 of S is presented in Example 4.3.2. By Proposition 5.3.6, the family

H = fcij j 1 � i; j � 4g = ffag, fbg, fa; cg, Ag

is dense in the dependence space(A;�sim). For example,fcg � X if and only if
fa; cg � X holds for allX 2 H because(fcg; fa; cg) 2 �sim.

On the other hand, the weak similarity congruence�wsim has the congruence
classesf;g, ffag; fa; cgg, ffbggg, ffcgg, ffa; bg; Ag, ffb; cgg. Now the family

K = fcij{ j 1 � i; j � 4g = f;, fbg, fa; cg, fb; cgg

is dense in the dependence space(A;�wsim). Thus,(fag; fa; cg) 2 �wsim implies
that for allX 2 K, fag � X if and only if fa; cg � X.

5.4 Independent Sets and Reducts

In the literature there are many articles which concern independent sets and
reducts in information systems (see e.g. [9, 44, 50]). In this section we review
cores, independent sets and reducts defined in dependence spaces. We compare
the independence defined in dependence spaces with some notions of indepen-
dence studied in universal algebra. Our main result of this section gives a charac-
terization of the reducts of a given subset of a dependence space in terms of dense
families.

Let D = (A;�) be a dependence space. A subsetB(� A) is called inde-
pendentin D if B is minimal with respect to the inclusion relation in its�-class;
otherwise it isdependent. We denote the set of independent subsets inD by
INDD.

The following lemma was stated in [30] for finite dependence spaces.

Lemma 5.4.1. If D = (A;�) is a dependence space, thenB 2 INDD if and
only if (B;B � fag) =2 � for all a 2 B.
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Proof. If B 2 INDD, then obviously(B;B � fag) =2 � for all a 2 B.
Conversely, ifB =2 INDD, then there exists aC 2 B=� such thatC � B. If
a 2 B � C, thenC � B � fag � B, which implies(B;B � fag) 2 �, because
each�-class is convex. �

It is now clear that every subset of an independent set is independent; in partic-
ular, the empty set is independent. In the next example we consider independent
subsets of dependence spaces defined by information systems.

Example 5.4.2.Let S = (U;A; fVaga2A) be a nondeterministic information sys-
tem. Let us consider the dependence spaceDsim = (A;�sim). For anyB � A,

B =2 INDDsim () (B;B � fag) 2 �sim for somea 2 B

() sim(B) = sim(B � fag) for somea 2 B:

Thus, a subsetB is independent inDsim if we cannot omit any attribute fromB
without changing the original strong similarity relation. Analogous statements
hold for dependence spaces defined by other information relations. In the depend-
ence spaceDsim considered in Example 5.3.7 the sets;, fag, fbg, fcg, fa; bg, and
fb; cg are independent.

Next we present some equivalent conditions which can be used for determin-
ing independent sets.

Lemma 5.4.3. If D = (A;�) is a dependence space in whichH(� }(A)) is
dense, then the following conditions are equivalent for allB � A anda 2 B:

(a) (B;B � fag) =2 �;
(b)B �X = fag for someX 2 H;
(c) a =2 CD(B � fag);
(d) fag=� 6� (B � fag)=�.

Proof. LetB � A anda 2 B.
(a)) (b). If (B;B � fag) =2 �, thenB=� 6� (B � fag)=�, which implies

by Proposition 5.2.3 that there exists anX 2 H such thatB � X 6= ; and
(B � fag)�X = ;. This means thatB �X = fag for someX 2 H

(b) ) (c). SupposeB � X = fag for someX 2 H. This implies that
(B � fag) � X = ;, that is,B � fag � X. BecauseCD(B � fag) =

T
fX 2

H j B � fag � Xg anda =2 X we obtaina =2 CD(B � fag).
(c) ) (d). If a =2 CD(B � fag), thenCD(fag) 6� CD(B � fag), which is

equivalent tofag=� 6� (B � fag)=� by (5.1).
(d)) (a). If fag=� 6� (B � fag)=�, thenB=� = (fag [ (B � fag))=� =

fag=� _ (B � fag)=� 6= (B � fag)=�. �
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Remark. This notion of independence is actually equivalent to a general notion
of independence with respect to a closure operator. LetC be a closure operator on
a setA. A setB � A is said to beC-independentif a =2 C(B � fag) for every
a 2 B (see [14], for example). IfD = (A;�) is a dependence space andB � A,
then by Lemmas 5.4.1 and 5.4.3,B 2 INDD () (B;B � fag) =2 � for all
a 2 B () a =2 CD(B � fag) for all a 2 B () CD-independent.

As we have already noted, a dependence space could also be defined as a pair
D = (A; C), whereC:}(A) ! }(A) is a closure operator. By our remark, the
setINDD may be defined in this structure by the means of a general notion of
independence appearing in the literature.

In the literature there can be found several notions of dependence (see [14], for
example). Here we consider abstract dependences studied in universal algebra. As
noted in [45], the dependence in information systems in which the set of attributes
is finite is an abstract dependence. LetA be a set. Anabstract dependenceonA is
a familyD of subsets ofA such thatX 2 D if and only if some finite nonempty
subsetF of X belongs toD. A subsetX of A is said to beD-dependentif
X 2 D, and it is calledD-independentotherwise (see [4, 14], for example).

Now the following lemma holds. Assertion (a) is mentioned in [14] without
proof. Statement (b) is verified by modifying the proof of the well-known Ex-
change Lemma (see [4]).

Lemma 5.4.4. LetC:}(A)! }(A) be an algebraic closure operator.
(a) The set ofC-dependent sets is an abstract dependence onA.
(b) Each setB(� A) contains a maximalC-independent subset.

Proof. (a) SupposeB is C-dependent. It means thata 2 C(B � fag) for some
a 2 B. SinceC is algebraic, there exists a finite subsetF of B � fag such that
a 2 C(F ). Sincea =2 F , this means thatF [ fag is a finiteC-dependent subset of
B.

(b) Consider anyB � A. Let us denote

I = fY � B j Y is C-independentg:

Obviously,I is a nonempty since; 2 I. LetfYigi2I be a nonempty chain inI. It
is clear thatY =

S
i2I Yi is a subset ofB. Assume thatY is C-dependent. Then

by (a), there exists a finiteC-dependent subsetF of Y . BecausefYigi2I is a chain,
there existsk 2 I such thatF � Yk. SinceF is a finiteC-dependent subset of
Yk, alsoYk is C-dependent, a contradiction! Hence,Y belongs toI. By Zorn’s
Lemma this implies thatI has a maximal element. �
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Example 5.4.5.Let C:}(N) ! }(N) be a closure operator such thatC(B) = B
if B is finite andC(B) = N otherwise. It is easy to see thatC is not algebraic.

The setN is C-dependent, but it does not have any finiteC-dependent subsets,
because all finite subsets ofN areC-independent. So, the set of allC-dependent
subsets is not an abstract dependence onN . Furthermore,N does not have a
maximalC-independent subset.

From Proposition 5.1.5 and Lemma 5.4.4 it follows that whenD = (A;�)
satisfies the ACC, the set of all dependent subsets inD is an abstract dependence
onA and each subset ofA has a maximal independent subset.

The following definitions can be found in [4], for example. LetD be an
abstract dependence onA andX � A. An elementa(2 A) is said to bedependent
onX if a 2 X or there exists an independent subsetY of X such thatY [ fag
is dependent. ThespanhXi of X is the set of all elements ofA dependent onX.
The dependenceD is said to betransitiveif hhXii = hXi for everyX � A.

We just mentioned that ifD = (A;�) is a dependence space which satisfies
the ACC, then the set of all dependent subsets inD is an abstract dependence on
A. In the next example we show that this abstract dependence is not necessarily
transitive even ifD is finite.

Example 5.4.6. In the dependence space of Example 5.1.3,hf1gi = f1; 4g and
hhf1gii = f1; 2; 4g.

The notion of reducts is important in the theory of information systems (see
[50], for example). Here we study reducts in the more general setting of depend-
ence spaces. LetD = (A;�) be a dependence space. For anyB � A, a subset
C � B is called areductof B, if B�C andC 2 INDD. The set of all reducts of
B is denoted byREDD(B).

Lemma 5.4.7. LetD = (A;�) be a dependence space andB � A. Each reduct
ofB is a maximal independent subset ofB.

Proof. If C 2 REDD(B), thenC 2 INDD andC � B. Suppose that
C � D � B for someD 2 INDD. The factB�C impliesC�D because each
�-class is convex. So,D =2 INDD, a contradiction! �

In the next example we see that every maximal independent subset in a de-
pendence space is not necessarily a reduct of that set.
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Example 5.4.8.Consider the dependence space defined in Example 5.1.3. The
set f1g is a maximal independent subset off1; 4g, but f1g is not a reduct of
f1; 4g.

Note that results closely related to Lemma 5.4.7 and Example 5.4.8 are pre-
sented in [9] for information systems.

It is possible that some subsets of a dependence space do not have reducts even
if the closure operatorCD is algebraic, as we see in the next example.

Example 5.4.9.Let us define a closure operatorC:}(N) ! }(N) by setting
C(B) = fn 2 N j n � maxBg if B is finite, andC(B) = N otherwise.

SupposeB � N is infinite. If a 2 C(B) = N , then there exists ab 2 B such
thata � b sinceB is infinite. So,a 2 C(fbg) and thusC is algebraic.

Let us now consider the dependence spaceD = (N ; �C ) where�C is the
kernel ofC. The�C-class ofN consists of all infinite subsets ofN . Clearly, this
congruence class has no minimal elements and soN has no reducts. Note that the
maximal independent subsets ofN are the setsfng, n 2 N .

Next we intend to find conditions which guarantee the existence of reducts.
SupposeD = (A;�) is a dependence space andB � A. An elementa 2 B is said
to beindispensablefor B if (B;B � fag) =2 �. The indispensable elements ofB
form thecoreof B, which is denoted byCORED(B). It is clear thatB 2 INDD

if and only if B = CORED(B). By Lemma 5.4.3, ifH is dense inD, then
a 2 CORED(B) if and only ifB �X = fag for someX 2 H.

Example 5.4.10.Let us consider the dependence spaceD = (A;�) defined in
Example 5.1.3. We know that the familyff1; 3g, f2; 3g, f1; 2; 4gg is dense inD.
Now CORED(A) = f3g, sinceA � f1; 3g = f2; 4g, A � f2; 3g = f1; 4g, and
A� f1; 2; 4g = f3g.

Our next proposition is a generalization of theorem appearing in [30].

Proposition 5.4.11.LetD = (A;�) be a dependence space andB � A.
(a) If every subset ofB has a reduct, thenCORED(B) =

T
REDD(B).

(b) If CORED(B) =
T
REDD(B), thenB has reducts.

Proof. (a) Suppose each subset ofB(� A) has a reduct. Assumea 2
CORED(B) anda =2 C for someC 2 REDD(B). SinceC � B�fag � B and
B�C, we obtainB�B�fag, a contradiction! So,CORED(B) �

T
REDD(B).
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If a 2
T
REDD(B) and a =2 CORED(B), thenB�B � fag. By our as-

sumption,B � fag has a reductC. It is clear thatC is also a reduct of
B. Becausea =2 C, we obtaina =2

T
REDD(B), a contradiction! So, also

CORED(B) �
T
REDD(B).

(b) Assume thatCORED(B) =
T
REDD(B) and suppose thatB has no

reducts. Then
T
REDD(B) = fa 2 B j a belongs to all reducts ofBg = B,

which impliesCORED(B) = B. Hence,B 2 INDD andB 2 REDD(B), a
contraction! �

Next we present a proposition which guarantees that each subset of a depend-
ence space has a finite reduct.

Proposition 5.4.12.A dependence spaceD = (A;�) satisfies theACC if and
only if each subset ofA has a finite reduct.

Proof. Suppose thatD = (A;�) satisfies the ACC and consider anyB � A.
By Proposition 5.1.4B has a finite subsetF such thatB�F . SinceF is finite,
we may assume that it is a minimal subset ofB with this property, and thenF
is obviously a finite reduct ofB. The other direction is obvious by Proposition
5.1.4. �

This proposition has the following corollary.

Corollary 5.4.13. If a dependence spaceD = (A;�) satisfies theACC andB �
A, then all reducts ofB are finite.

Next we present a proposition which characterizes the reducts of a given subset
by applying dense families

Proposition 5.4.14.Let H(� }(A)) be a dense family in a dependence space
D = (A;�). If B � A, thenC 2 REDD(B) if and only ifC is a minimal
set with respect to the property of containing an element from each nonempty
differenceB �X, whereX 2 H.

Proof. Suppose thatC 2 REDD(B). ThenC � B, B�C, and especially
B=� � C=�. Thus, by Proposition 5.2.3,C \ (B � X) = (B \ C) � X =
C � X 6= ; for all X 2 H such thatB � X 6= ;. Assume that there exists a
D � C which contains an element from each nonempty differenceB �X where
X 2 H. This impliesD�X = (D\B)�X = D\ (B�X) 6= ; for all X 2 H
which satisfyB � X 6= ;. By Proposition 5.2.3 we obtainB=� � D=�. Since

78



D � B, alsoD=� � B=� holds. So,B�D which implies thatC is not a reduct
of B, a contradiction!

Conversely, letC be a minimal subset ofA with respect to the property of
containing an element from each nonempty differenceB � X, X 2 H. First we
show thatC is a subset ofB. If C 6� B, thenB\C � C and(B\C)\(B�X) =
C \ (B � X) 6= ; wheneverB �X 6= ;, a contradiction! Thus,C � B. Since
C � X = C \ (B � X) 6= ; for all X 2 H such thatB � X 6= ;, we obtain
by Proposition 5.2.3 thatB�C. AssumeC is dependent. Then there is aD � C
such thatC�D. Since� is transitive, we obtainB�D and hence for allX 2 H
such thatB�X 6= ;,D \ (B�X) = D�X 6= ;, a contradiction! So,C is also
independent. �

Let us consider a nondeterministic information systemS = (U;A; fVaga2A).
ThenC is a reduct ofB(� A) in a dependence spaceDsim = (A;�sim) if and
only if C is a minimal subset ofB which defines the same strong similarity re-
lation asB. On the other hand, in a dependence spaceDwsim = (A;�wsim) a
setC is a reduct ofB if and only if C is a minimal subset ofB which defines
the same weak similarity relation asB. Similar statements apply to dependence
spaces induced by other information relations.

Example 5.4.15.In the dependence spaceDsim = (A;�sim) of Example 5.3.7,
the family

H = ffag; fbg; fa; cg; Ag

is dense by Proposition 5.3.6(a). We determine the reducts of the setA by using
this fact. The differencesA�X, whereX 2 H are

A� fag = fb; cg; A� fbg = fa; cg; A� fa; cg = fbg; A� A = ;:

Clearlyfa; bg andfb; cg are the minimal sets which contain at least one element
from each of the three nonempty differences. By Proposition 5.4.14 this implies
thatfa; bg andfb; cg are the reducts ofA in (A;�sim).

By Proposition 5.3.6(b) the family

K = f;; fbg; fa; cg; fb; cgg

is dense in the dependence spaceDwsim defined in Example 5.3.7. The differences

A� ; = A;A� fbg = fa; cg; A� fa; cg = fbg; A� fb; cg = fag

are all nonempty. Obviously,fa; bg is the only minimal set which contains an
element from all of these differences. Thus,fa; bg is the only reduct ofA in
Dwsim.
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5.5 Dependency Relations

J. Novotný and M. Novotn´y [26] started the study of dependency relations defined
in dependence spaces. Here we adopt their definition of dependency relations and
generalize some of their results. Moreover, we introduce a method based on dense
families which for a given dependencyB ! C finds all minimal subsetsD of B
such thatD! C.

Let D = (A;�) be a dependence space. A subsetC(� A) is said to be
dependent onB(� A) in D, which will be denoted byB ! C (D), if CD(C) �
CD(B). The relation! (D) is called thedependency relation ofD. Usually we
write simplyB ! C instead ofB ! C (D) if there is no danger of confusion.

In the next lemma, which follows from Proposition 5.2.3, we present some
equivalent definitions of dependency relations.

Lemma 5.5.1. If H(� }(A)) is dense in the dependence spaceD = (A;�), then
the following conditions are equivalent for allB;C � A:

(a)B ! C;
(b)C=� � B=�;
(c) for all X 2 H, C �X 6= ; impliesB �X 6= ;. �

Example 5.5.2.Let S = (U;A; fVaga2A) be an information system such that
each attributea 2 A is a mapa:U ! Va. Let us consider the dependence space
Dind = (A;�ind). For allB;C � A,

B ! C (Dind) () C=�ind � B=�ind

() ind(B) � ind(C)

by Proposition 5.3.2 and Lemma 5.5.1. Thus, ifB ! C (Dind) and two objects
have the same values for all attributes inB, then they have the same values for all
attributes inC. Hence, the dependencyB ! C (Dind) means that the values of
the attributes inC are determined by the values of the attributes inB.

Note thatC � B impliesB ! C. If we denote by the inverse of!, then
� =! \  . Note also that ifB ! C whenC � B, thenCD(B) = CD(C) and
B�C. The following lemma, which is given in [26] for finite dependence spaces,
expresses the reducts by the means of dependency relation.

Proposition 5.5.3. If D = (A;�) is a dependence space, thenC(� A) is a reduct
ofB(� A) if and only ifC is a minimal subset ofB such thatC ! B.

80



Proof. Assume first thatC is a reduct ofB. ThenC ! B follows from
CD(B) = CD(C). Moreover ifD ! B for sinceD � C, thenCD(B) � CD(D) �
CD(C) = CD(B) would imply B�D contradicting our assumption thatC is a
reduct ofB. �

Let A be a set. We say that a relation9 9 Kon}(A) is a dependency relation
onA if there exists a dependence spaceD = (A;�) such that9 9 Kis its depend-
ency relation. In [26], J. Novotn´y and M. Novotn´y characterized the dependency
relations of a finite setA. Here we generalize their result.

Proposition 5.5.4. Let A be any set. A relation9 9 Kon }(A) is a dependency
relation onA if and only if

(a) 9 9 Kis reflexive and transitive,
(b) 9 9 Kis completely[-compatible, and
(c) for all B;C;X � A,

B 9 9 KC andB � X implyX 9 9 KC:

Proof. Let! be a dependency relation ofD = (A;�). Obviously,B ! B
holds for allB � A. If B ! C andC ! D, thenCD(D) � CD(C) � CD(B);
that is,B ! D. Hence,! is reflexive and transitive.

Let Bi; Ci (i 2 I; I 6= ;) be subsets ofA such thatBi ! Ci for all i 2 I.
ThenCi � CD(Ci) � CD(

S
i2I Bi) for all i 2 I, which impliesCD(

S
i2I Ci) �

CD(
S
i2I Bi) and(

S
i2I Bi) ! (

S
i2I Ci). Thus,! is completely[-compatible.

If B ! C andB � X, thenCD(C) � CD(B) � CD(X) and henceX ! C.
On the other hand, let9 9 Kbe reflexive and transitive binary relation on}(A)

which is completely[-compatible, and such thatB 9 9 KC, B � X imply X 9 9 K

C for all B;C;X � A. Let us denote by� the intersection of9 9 KandL99 ,
whereL99 is the inverse of9 9 K. First we show that� is a complete congruence
on (}(A);[). It can be easily seen that� is an equivalence. SupposeB1�C1 and
B2�C2. ThenB1 9 9 KC1, B2 9 9 KC2, C1 9 9 KB1 andC2 9 9 KB2. This implies
(B1 [ B2) 9 9 K(C1 [ C2) and(C1 [ C2) 9 9 K(B1 [ B2) since9 9 Kis completely
[-compatible. This means that(B1 [B2)�(C1 [C2) and thus� is a congruence
on (}(A);[). LetB � A and supposeB=� = fBigi2I . BecauseB 9 9 KBi and
Bi 9 9 KB for all i 2 I, we getB 9 9 K(

S
i2I Bi) and(

S
i2I Bi) 9 9 KB since9 9 K

is completely[-compatible. Hence,B�(
S
i2I Bi) and thus the congruence� is

complete.
Finally, we show that9 9 Kis the dependency relation ofD = (A;�). If B !

C (D), thenCD(C) � CD(B). By (c), CD(C) 9 9 K CD(C) implies CD(B) 9 9 K
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CD(C). Because(B; CD(B)) 2 � � 9 9 Kand (CD(C); C) 2 � � 9 9 K, we
obtainB 9 9 K C by the transitivity of9 9 K. On the other hand, ifB 9 9 K C,
then (CD(B); B) 2 � � 9 9 Kand (C; CD(C)) 2 � � 9 9 K imply CD(B) 9 9 K
CD(C) by the transitivity of9 9 K. The complete[-compatibility of 9 9 K implies
CD(B) 9 9 KCD(B)[ CD(C). It is obvious thatCD(B)[ CD(C) 9 9 KCD(B). Thus,
CD(B)�CD(B)[CD(C)which impliesCD(C) � CD(B)[CD(C) � CD(CD(B)) =
CD(B), that is,B ! C (D). �

In information systems it is important to find for a dependencyB ! C all
or some minimal subsetsD of B such thatD ! C holds. In the sequel we
characterize these subsets, but first we give some conditions which guarantee that
such aD exists.

Example 5.5.5.Let us consider the dependenceD = (N ; �C ) defined in Example
5.4.9. It is clear thatN ! N (D). But as we have seen, the setN has no reducts
in D. This implies by Proposition 5.5.3 that there exists no minimal subsetD of
N such thatD! N . Note that the closure operatorC is algebraic.

Next we present a proposition which guarantees that for each dependency
B ! C there exists a finite minimal subsetF of B such thatF ! C. This
result is akin to Proposition 5.4.12.

Proposition 5.5.6. LetD = (A;�) be a dependence space. For any dependency
B ! C there exists a finite subsetF of B such thatF ! C if and only ifD
satisfies the ACC.

Proof. Suppose thatD = (A;�) satisfies the ACC and letB;C � A be such
thatB ! C. Then by Proposition 5.1.4, there exists a finite subsetG of B such
thatB�G, and sinceG is finite, it has a minimal subsetF such thatF ! B.

On the other hand, suppose that for any dependencyB ! C there exists a
finite subsetF of B such thatF ! C. Let B � A. BecauseB ! B holds
trivially, then by our assumption there exists a finite subsetF of B such that
F ! B, which is equivalent toB=� � F=�. This impliesB�F sinceF is a
subset ofB. By Proposition 5.1.4 we obtain thatD satisfies the ACC. �

Next we present a proposition which characterizes in terms of dense families
the minimal subsetsD of B which satisfyD ! B for a dependencyB ! C.
Note that this proposition is related to Proposition 5.4.14 which characterizes the
reducts of given set.
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Proposition 5.5.7. LetH(� }(A) be a dense family in a dependence spaceD =
(A;�). If B ! C, thenD is a minimal subset ofB which satisfiesD! C if and
only if D is a minimal set with respect to the property of containing an element
from each differenceB �X, whereX 2 H and satisfiesC �X 6= ;.

Proof. Suppose thatB ! C and letD be a minimal subset ofB such that
D ! C. BecauseD � B, the assumptionD ! C implies by Lemma 5.5.1 that
D\ (B�X) = (D\B)�X = D�X 6= ; for all X 2 H such thatC�X 6= ;.
Assume that there exists anE � D which satisfiesE\(B�X) 6= ; for allX 2 H
such thatC �X 6= ;. ButE � B implies thatE �X = E \ (B �X) 6= ; for
all X 2 H which satisfyC �X 6= ;. ThusE ! C, a contradiction!

Conversely, assumeB ! C and suppose thatD is a minimal set which con-
tains an element from each differenceB�X whereX 2 H satisfiesC �X 6= ;.
If D 6� B, thenD \ B � D and(D \ B) \ (B � X) = D \ (B � X) 6= ; for
all X 2 H such thatC �X 6= ;, a contradiction! Hence,D � B. This implies
D�X = D\ (B�X) 6= ; for allX 2 H which satisfyC�X 6= ;. This means
D ! C. Suppose there exists anE � D such thatE ! C. ThenE � D � B
impliesE �X = E \ (B �X) 6= ; wheneverC �X 6= ;, a contradiction! �

Example 5.5.8.Let S = (U;A; fVaga2A) be an information system such that
U = f1; : : : ; 5g, A = fa; : : : ; fg, Va = Vb = f0; 1; 2g, Vc = f0; 1; 2; 3g, Vd =
Ve = Vf = f0; 1g and the values of the attributes are defined as in Table 6.

a b c d e f
1 0 1 2 0 1 0
2 0 2 3 1 1 1
3 1 0 3 1 1 1
4 2 0 1 0 0 1
5 2 0 0 0 0 1

Table 6.

LetB = fa; b; c; dg andC = fe; fg. It is easy to see that the values ofC are
determined by the values ofB. This means thatB ! C holds inDind. Next we
intend to find all minimal subsetsD of B which satisfyD ! C (Dind).

The indiscernibility matrixM(IND)S = (cij)5�5 of S is the following:
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0
BBBB@

A fa; eg feg fdg fdg
fa; eg A fc; d; e; fg ffg ffg
feg fc; d; e; fg A fb; fg fb; fg
fdg ffg fb; fg A fa; b; d; e; fg
fdg ffg fb; fg fa; b; d; e; fg A

1
CCCCA

By Proposition 5.3.6, the family

H = fcij j 1 � i; j � 5g

= ffa; eg; fa; b; d; e; fg; fb; fg; fc; d; e; fg; fdg; feg; ffg; Ag

is dense inDind. The differencesC � X, X 2 H are nonempty forX = fa; eg,
fb; fg, fdg, feg, ffg. The corresponding differencesB �X are the following:

� fa; b; c; dg � fa; eg = fb; c; dg;

� fa; b; c; dg � fb; fg = fa; c; dg;

� fa; b; c; dg � fdg = fa; b; cg;

� fa; b; c; dg � feg = fa; b; c; dg;

� fa; b; c; dg � ffg = fa; b; c; dg:

Next we must find all such minimal sets which contain an element from all
of the above differences. Becausefa; b; cg, fa; c; dg andfb; c; dg are the minimal
differences, it suffices to consider them only. It is easy to see thatfcg, fa; bg,
fa; dg, fb; dg are the minimal sets which contain an element from all of these
differences. So,fcg, fa; bg, andfa; dg, andfb; dg are the minimal subsetsD of
fa; b; c; dg which satisfyD ! fe; fg.

Note that the setsfcg, fa; bg, fa; dg, and fb; dg are not reducts ofB in
Dind, since they are not�ind-equivalent toB. In fact,REDDind(fa; b; c; dg) =
ffa; cg; fb; cgg.

We conclude this section by discussing briefly a couple of notions closely
related to the dependency concept considered above. In the theory of relational
databases (cf. [11], for example) the concept of a functional dependency between
sets of attributes is of fundamental importance. LetA be a set. Afunctional
dependencyoverA is an ordered pairB ! C, whereB;C � A. An Armstrong
systemonA is a setF � }(A) � }(A) which satisfies the following (modified)
Armstrong Axioms(see [6], for example):
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(A1) B � C impliesB ! C 2 F ;

(A2) B ! C 2 F andC ! D 2 F imply B ! D 2 F ;

(A3) F is completely[-compatible.

It can be easily seen that (A1)–(A3) are equivalent to conditions (a)–(c) of
Proposition 5.5.4. Hence, a relation9 9 Kis a dependency relation onA if and only
if it is an Armstrong system onA.

It is easy to see that the setASys(A) of all Armstrong systems on a setA
forms a complete lattice with respect to the inclusion order. Moreover, Day [6]
observed the following correspondes between Armstrong systems onA and the
closure operators onA. Each Armstrong systemF onA defines a closure operator
CF :}(A)! }(A) if we set

CF(B) =
[
fC � A j B ! C 2 Fg(5.3)

for all B � A. On the other hand, each closure operatorC:}(A)! }(A) defines
an Armstrong systemFC onA by the rule

B ! C 2 FC if and only if C(C) � C(B).

Furthermore, the mapsF 7! CF andC 7! FC form a pair of mutually inverse
order-isomorphisms between(ASys(A);�) and(Clo(}(A));�).

We also discuss shortly knowledge structures (see e.g. [8, 22]). LetA be a
finite set of problems. Aknowledge stateis the set of problems a subject is capable
of solving. Aknowledge structureis a pair(A;K), whereK � }(A). Intuitively
speaking, a knowledge structure consists of the different knowledge states that
can occur within the members of a population. Let us denote byKnowl(A) the set
of all knowledge structures onA. A knowledge structure which is closed under
unions is called aknowledge space.

A relationR 2 Rel(}(A)) is called anentail relationforA if for all B;C � A,

(E1) B � C implies(B;C) 2 R;

(E2) R is transitive;

(E3) (B;Ci) 2 R for all i in an index setI implies(B;
S
i2I Ci) 2 R.
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It is easy to see that (A1)–(A3) and (E1)–(E3) are equivalent. Thus, a relation9 9 K

is a dependency relation onA if and only if 9 9 Kis an Armstrong system onA if
and only if9 9 Kis an entail relation forA, as noted in [8].

Koppen and Doignon [22] have shown that the following correspondences
hold between knowledge structures and binary relations. Every knowledge struc-
ture(A;K) defines an entail relationRK for A by the rule

(B;C) 2 RK () for all X 2 K, C \X 6= ; impliesB \X 6= ;.(5.4)

An interpretation of(B;C) 2 RK is, for example, that if a student masters some
questions inC if he/she also masters some questions inB; or equivalently, if a
student does not master any question inB, he/she does not master any question in
C.

On the other hand, every binary relationR on}(A) defines a knowledge space
(A;KR), whereKR is defined by

KR = fX � A j for all (B;C) 2 R;C \X 6= ; impliesB \X 6= ;g:

Moreover, the mapsR 7! (A;KR) and(A;K) 7! RK form a Galois connection
between(Rel(}(A));�) and(Knowl(A);�).

Let us also note that D¨untsch and Gediga showed in [9] that if(I;J) is a Galois
connection between(}(A);�) and(}(B);�), thenR 2 Rel(}(A)) defined by

(X; Y ) 2 R () XI � Y I

is a dependence relation onA.
We end this chapter by noting the following. Consider an entail relationR

for A. SinceR is a dependency relation onA, the relation�R = R \ R�1 is by
Proposition 5.5.4 a complete congruence on(}(A);[), and this means that the
pair (A;�R) is a dependence space, which has the dependency relationR. By
(5.3), the map

}(A)! }(A); B 7!
[
fX j (B;X) 2 Rg

is the closure operator of this dependence space.
If (A;K) is a knowledge structure, then obviously the relation�K = RK \

R�1K is a complete congruence on(}(A);[) and the pair(A;�K) is a dependence
space. By Lemma 5.5.1 and (5.4),

C=�K � B=�K () (B;C) 2 RK

() (8X 2 K)(C \X 6= ; =) B \X 6= ;)

() (8X 2 K)(B \X = ; =) C \X = ;)

() (8X 2 K)(B � X{ =) C � X{);
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this implies that the familyfX{ j X 2 Kg is dense in(A;�K).

87



Chapter 6

Rough Sets

6.1 Approximations and Definable Sets

Knowledge about objects may be represented as binary relations. For instance, if
we classify all human beings into two disjoint sets consisting of women and men,
respectively, then this classification determines an equivalenceE such thatxEy
wheneverx andy are of the same gender.

In rough set theory it is usually assumed that the knowledge about objects
is restricted by some indiscernibility relation (see [43, 45], for example). Indis-
cernibility relations are equivalences which are interpreted so that two objects are
equivalent if we cannot distinguish them by using our information. This means
that the objects of the given universeU can be classified by the knowledge repre-
sented by an indiscernibility relationE(2 Eq(U)) into three classes with respect
to any subsetX(� U):

1. the objects, which surely are inX;

2. the objects, which are surely not inX;

3. the objects, which possibly are inX.

The objects in class 1 form the lowerE-approximation ofX, and the objects of
type 1 and 3 form together its upperE-approximation. TheE-boundary ofX
consists of objects in class 3. Some subsets ofU are identical to both of their
approximations and they are calledE-definable.

This chapter can be viewed as a generalization of the theory concerning ap-
proximations and rough sets defined by equivalences (cf. [13, 17, 28, 29, 43, 45,
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46, 54]). Here we assume that the knowledge about objects is given by a similarity
relation. We suppose that similarity relations are tolerances. This requirement is
quite natural. Namely, each object is obviously similar to itself, and ifx is sim-
ilar to y, thenx andy are in some sense alike and so alsoy must be similar to
x. Recall that indiscernibility and similarity relations defined in nondeterministic
information systems are at least tolerances.

However, it should be noted that there are cases in which similarity is not
necessarily a symmetric relation. For example in [23, p. 40] it is argued that

“the statementyRx which means ‘y is similar tox’ is directional; it
has asubjecty and areferentx and it is not equivalent in general to
the statement ‘x is similar toy’ as argued by Tversky. For example,
in the following statement: ‘a son resembles his father’ the son is the
subject and the father is the referent; the inverse statement usually
makes much less sense.”

We may also observe that the inclusion relations defined in nondeterministic in-
formation systems may be viewed as directional similarity relations (or even as
directional indiscernibility relations). Namely, ifa(x) � a(y), then we cannot
distinguishx from y only by considering thea-values ofx.

According to Pawlak’s [43] definition, rough sets are�E-classes of some
equivalenceE 2 Eq(U). The idea of rough sets is that if subsets ofU are observed
through the knowledge represented byE, then the sets in the same�E-class look
the same;X �E Y means that exactly the same elements belong certainly toX
and toY , and exactly the same elements belong possibly toX and toY . In Section
6.3 we generalize Pawlak’s notion by defining rough sets in terms of tolerances.

First we study approximations defined by tolerance relations. B. Konikowska
[20, 21] and J.A. Pomykała [49] considered approximation operations defined by
strong similarity relations of nondeterministic information systems. Also J. Niem-
inen [25] has studied approximations induced by tolerances but his definition is
not the same as ours. Furthermore, J.A. Pomykała [47, 48] and W.Żakowski
[57] have investigated approximations defined by covers which can be applied
to tolerances. Recall that for any toleranceR 2 Tol(U) and anyx 2 U ,
x=R = fy 2 U j xRyg.

Definition. Let U be a set ofobjectsand letR be a tolerance onU referred to as
thesimilarity relation. ThelowerR-approximationof a setX(� U) is

XR = fx 2 U j x=R � Xg;

87



its upperR-approximationis

XR = fx 2 U j x=R \X 6= ;g:

The setBR(X) = XR �XR is called theR-boundaryof X.

The lowerR-approximation ofX consists of elements which surely belong
to X in view of the knowledge provided byR. The upperR-approximation of
X is formed of elements which possibly are inX in light of the knowledgeR.
Obviously, theR-boundary is the area of uncertainty.

In the next proposition we give some basic properties of approximations.

Proposition 6.1.1. If R 2 Tol(U) andX � U , then
(a);R = ;R = ; andUR = UR = U ;
(b)XR � X � XR;
(c) (XR)

{ = (X{)R and(XR){ = (X{)R;
(d)BR(X) = BR(X

{);
(e) the pair(R;R ) is a dual Galois connection on(}(U);�);
(f) XR =

S
fx=R j x 2 Xg;

(g) (XR)
R =

S
fx=R j x=R � Xg and(XR)R =

S
fx=R j x=R \X 6= ;g.

Proof. Assertions (a), (b), and (c) can be found in [20, 21, 49], and (d) and (f)
are obvious. Claim (g) follows from (f).

(e) It follows immediately from the definitions that the mapsR:X 7! XR and
R:X 7! XR are order-preserving.

If x 2 (XR)
R, thenx=R \XR 6= ; which implies that there exists ay 2 XR

such thatxRy. Therefore,x 2 X and so(XR)
R � X. Let us denoteY = X{.

Then(YR)R � Y implies

X = Y { � ((YR)
R){ = ((Y {)R)R = (XR)R.

�

By the previous proposition, theR-boundary of a set is equal to theR-
boundary of its complement. It means simply that if we cannot decide when an
objectx is inX, then we obviously cannot decide whetherx belongs toX{ either.
Moreover,(R;R ) is a dual Galois connection on(}(U);�). This fact implies by
Propositions 3.3.3, 3.5.1, and 3.5.4 our following lemma.

Lemma 6.1.2. LetR 2 Tol(U), X � U , andH � }(U).
(a) ((XR)R)

R = XR and((XR)
R)R = XR.

(b) (
S
H)R =

S
fXR j X 2 Hg and(

T
H)R =

T
fXR j X 2 Hg.

(c) (
T
H)R �

T
fXR j X 2 Hg and(

S
H)R �

S
fXR j X 2 Hg. �
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Note that the mapX 7! XR is a complete join-morphism(}(U);�) !
(}(U);�) andX 7! XR is a complete meet-morphism(}(U);�)! (}(U);�).

Let S = (U;A; fVaga2A) be a nondeterministic information system and let
; 6= B � A. Then by Lemma 4.1.5, the relationsind(B), wind(B), sim(B), and
wsim(B) are tolerances.

Example 6.1.3.Let us consider the nondeterministic information systemS =
(U;A; fVaga2A) given in Example 4.2.2. If we denoteR = sim(fHeightg) =
Height�1(SIM), thenR is a similarity relation onU such thatxRy if and only if
x andy are approximately of the same height. By Example 4.2.2,

1=R = f1; 4g; 2=R = f2g; 3=R = f3; 4g; 4=R = f1; 3; 4g:

If X = f2; 3g, thenXR = f2g andXR = f2; 3; 4g. NowBR(X) = f3; 4g and
4 2 BR(X), for example, because both inX and inX{ there is an object which
is similar to4.

Note that the inclusions in Lemma 6.1.2(c) can be proper. Here, for example,

(f3g \ f4g)R = ;R = ;; butf3gR \ f4gR = f3; 4g \ f1; 3; 4g = f3; 4g:

Similarly,

(f3g [ f4g)R = f3; 4gR = f3g; butf3gR [ f4gR = ; [ ; = ;:

Next we compare approximations defined by different similarity relations. The
following lemma means that the approximations of a setX get closer toX, if the
knowledge is more precise.

Lemma 6.1.4. If R; S 2 Tol(U) are such thatR � S, thenXR � XS, XR �
XS, andBR(X) � BS(X) for anyX � U .

Proof. If x 2 XS, thenx=R � x=S � X, i.e.,x 2 XR. If x 2 XR, then
x=S \ X � x=R \ X 6= ;, which means thatx 2 XS. Finally, BR(X) =
XR �XR � XS �XS = BS(X). �

Let I andJ be maps on}(U). We say that(I;J) is apair of approximation
maps, if there exists anR 2 Tol(U) such thatXI = XR andXJ = XR for all
X 2 }(U). Our next proposition characterizes the pairs of approximation maps.
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Proposition 6.1.5. Let I andJ be two maps on}(U). Then(I;J) is a pair of
approximation maps if and only if

(a) (I;J) is a dual Galois connection on(}(U);�),
(b) y 2 fxgI impliesx 2 fygI for all x; y 2 U ,
(c)X � XI for all X � U , and
(d) (X{)I = (XJ){ for all X � U .

Proof. LetR 2 Tol(U). Then(R;R ) is a dual Galois connection on(}(U);�)
by Proposition 6.1.1(e). Condition (b) is satisfied sincey 2 fxgR if and only if
xRy. Conditions (c) and (d) hold by Proposition 6.1.1.

On the other hand, let(I;J) be a dual Galois connection on(}(U);�) which
satisfies (b)–(d). Let us define a binary relationR onU by xRy iff y 2 fxgI. By
(c), x 2 fxg � fxgI, which impliesxRx. If xRy, theny 2 fxgI, which implies
by (b) thatx 2 fygI. Thus,yRx and henceR is a tolerance.

Let X � U . Because by Proposition 3.5.4,I:}(U) ! }(U) is a complete
join-morphism(}(U);�) ! (}(U);�), we obtain(

S
x2Xfxg)

I =
S
x2Xfxg

I

for anyX � U . Hence,

XI = (
S
x2Xfxg)

I =
S
x2Xfxg

I =
S
fx=R j x 2 Xg = XR.

By (d),

XJ = ((XJ){){ = ((X{)I){ = ((X{)R){ = ((XR)
{){ = XR.

�

We conclude this section by consideringR-definable sets.

Definition. Let U be a set andR 2 Tol(U). A setX(� U) is R-definableif
XR = XR.

We denote byDef(R) the set of allR-definable sets. It is obvious that a set
X isR-definable if and only if itsR-boundaryBR(X) is empty. This means that
for any objectx 2 U , we can with certainty decide whetherx 2 X by using the
knowledge provided byR. To show that a set is definable requires only half as
much work as the definition suggests.

Lemma 6.1.6. For anyR 2 Tol(U) andX � U , the following three conditions
are equivalent:

(a)X 2 Def(R);
(b)XR = X;
(c)X = XR.
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Proof. It is obvious that (a) implies (b) and (c). SupposeXR = X. We show
thatX = XR. Trivially, X � XR. If x 2 XR, thenx=R\XR 6= ;, which implies
x 2 X and henceXR � X.

Assume thatX = XR. Clearly,XR � X. If x 2 X, thenxRy implies
y 2 XR = X, and hencex 2 XR andX � XR.

Now we have shown that (b) and (c) are equivalent conditions and from this it
also follows that both of them imply (a). �

Next we characterize theR-definable sets in terms of sets saturated by an
equivalence relation. We say thatX(� U) is saturatedbyE 2 Eq(U), if X is the
union of some equivalence classes ofE orX = ;. The set of all sets saturated by
E is denoted bySat(E).

A family F(� }(U)) is called acomplete field of setsif ;; U 2 F , X{ 2 F
for all X 2 F and

S
H;
T
H 2 F for all H � F . Now the following lemma

holds (see [54], for example).

Lemma 6.1.7. LetE 2 Eq(U) andX � U .
(a)X 2 Sat(E) if and only if for allx 2 X, xEy impliesy 2 X.
(b) Sat(E) is a complete field of sets. �

Next we give a proposition which characterizes definable sets.

Proposition 6.1.8. If R 2 Tol(U), then

Def(R) = Sat(RE):

Proof. SupposeX 2 Def(R). ThenXR = X. Let x 2 X. If (x; y) 2 RE,
then there exists a sequencec0; : : : ; cn such thatx = c0, y = cn, andciRci+1 or
ci+1Rci for all 0 � i � n � 1. BecauseR is symmetric, this means thatciRci+1
for all 0 � i � n � 1. SinceXR = X, it is easy to show by induction that every
ci, 0 � i � n, belongs toX. In particular,y 2 X, which implies by Lemma 6.1.7
thatX is saturated byRE.

Conversely, suppose thatX is saturated byRE. Obviously,X � XR. Let
y 2 XR. Then there exists anx 2 X such thatxRy and hence(x; y) 2 RE.
This implies by Lemma 6.1.7 thaty 2 X. Now we have provedX = XR, which
implies by Lemma 6.1.6 thatX 2 Def(R). �

Corollary 6.1.9. If U is a set andR 2 Rel(U), thenDef(R) is a complete field
of sets.
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Our next lemma is a generalization of a result presented in [46].

Lemma 6.1.10.LetR 2 Tol(U) andX; Y � U . If X isR-definable, then

(X [ Y )R = XR [ YR and(X \ Y )R = XR \ Y R.

Proof. It is obvious thatXR [ YR � (X [ Y )R. Let x 2 (X [ Y )R, i.e.,
x=R � X [ Y . If x=R \ X 6= ;, thenx=R � X andx 2 XR becauseX is
R-definable. Ifx=R \ X = ;, thenx=R � Y andx 2 YR. Hence, in both cases
x 2 XR [ YR.

It is also clear that(X \ Y )R � XR \ Y R. Let x 2 XR \ Y R. Then
x=R \ X 6= ; andx=R \ Y 6= ;. SinceX is R-definable,x=R � X, and
x=R \ (X \ Y ) = (x=R \X) \ Y = x=R \ Y 6= ;. So,x 2 (X \ Y )R. �

Let E 2 Eq(U) be an equivalence relation. By Proposition 6.1.8, theE-
definable sets are the unions of some (or none)E-classes. We note that this is
actually Pawlak’s original definition ofE-definable sets [43]. We also mention
that the setsXE andXE areE-definable for allX � U .

Example 6.1.11.Let R be the tolerance onf1; 2; 3; 4g considered in Example
6.1.3. It is easy to see thatRE has the equivalence classesf2g andf1; 3; 4g. So,
Def(R) = f;; f2g; f1; 3; 4g; Ug.

Note thatR-approximations are not necessarilyR-definable. For instance,
f1gR = f1; 4g andf1; 4gR = f1g.

6.2 Rough Equalities

In this section we characterize the three types of rough equality relations defined
by tolerances. Novotn´y and Pawlak [28, 29] have characterized the rough equali-
ties defined by equivalences on a finite set of objects, and Steinby [54] generalized
these characterizations by omitting the assumption of finiteness. In [25] Niemi-
nen presented a characterization of rough equalities defined by tolerances, but his
notion of rough equalities differ essentially from ours.

Let E be a family of subsets of a setU such that
S
E = U . In [47, 48] J. A.

Pomykała associates with any such familyE five pairs of approximation operators
E i andE i (i = 0; : : : ; 4) onU . We shall show how the operatorsE i andE i, where
0 � i � 2, relate to our work.

First we define different types of equalities based on approximations. For
equivalence relations the corresponding notion were defined in [28, 29].
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Definition. Let R 2 Tol(U). We define in}(U) the lowerR-equality�R, the
upperR-equality�R, and theR-equality�R by the following conditions:

X �R Y () XR = YR;

X �R Y () XR = Y R;

X �R Y () XR = YR andXR = Y R:

Obviously,X �R Y means that the same objects belong for certain toX and
to Y . Similarly,X �R Y whenever the same objects are possibly inX and inY .
The relation�R is the intersection of�R and�R.

Next we study more closely the relations�R and�R. Let U be any set and
H � }(U). Recall that the relation�H is defined on}(U) by the condition:

(X; Y ) 2 �H if and only ifX � Z () Y � Z for all Z 2 H.

A relation
H on}(U) is defined by the condition:

(X; Y ) 2 
H if and only ifZ � X () Z � Y for all Z 2 H.

Note that the relation can
H can be considered as a dual form of�H. The
next lemma, which is obvious by Proposition 3.4.1(c), shows that the relations�H
and
H are complete congruences on(}(U);[) and(}(U);\), respectively.

Lemma 6.2.1. LetH � }(U).
(a)�H is a complete congruence on(}(U);[) such that the greatest element

in the�H-class of anyX(� U) is
T
fZ 2 H j X � Zg.

(b) 
H is a complete congruence on(}(U);\) such that the least element in
the
H-class of anyX(� U) is

S
fZ 2 H j Z � Xg. �

Let � be a congruence on(}(U);[). As in Section 3.4, we say thatH(�
}(U)) is�-dense, if �H = �. Similarly, if 
 is a congruence on(}(U);\), then
H is
-dense, if 
H = 
.

If � is a complete congruence on(}(U);[), we denote byG(�) the set of the
greatest elements of�-classes. Note thatG(�) means the same as the notation
P�, whereP = }(U), introduced in Section 3.2. It is clear thatG(�) is�-dense
and that it is a closure system. On the other hand, if
 is a complete congru-
ence on(}(U);\), we denote byL(
) the set of the least elements of
-classes.
Obviously,L(
) is
-dense and it is an interior system.
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Proposition 6.2.2. If R 2 Tol(U) andX � U , then
(a)�R is a complete congruence on(}(U);[) such that the greatest element

in the�R-class of anyX(� U) is (XR)R;
(b)�R is a complete congruence on(}(U);\) such that the least element in

the�R-class of anyX(� U) is (XR)
R;

(c)X 2 G(�R) iff X{ 2 L(�R) iff X = YR for someY � U ;
(d)X 2 L(�R) iff X{ 2 G(�R) iff X = Y R for someY � U ;
(e) (G(�R);�) �= (L(�R);�);
(f) f(x=R){ j x 2 Ug is�R-dense;
(g) fx=R j x 2 Ug is�R-dense.

Proof. Assertions (a) and (b) follow directly from Proposition 3.5.4.
(c) For allX � U ,

X 2 G(�R) () X = (XR)R () X{ = ((XR)R)
{

() X{ = ((X{)R)
R () X{ 2 L(�R):

Furthermore,X 2 G(�R) implies thatX = YR for Y = XR. On the other hand,
if X = YR for someY � U , then by Lemma 6.1.2,(XR)R = ((YR)

R)R = YR =
X, and soX 2 G(�R). Condition (d) can be proved dually and (e) follows from
Lemma 3.5.4(b).

(f) Let us denoteH = f(x=R){ j x 2 Ug. SupposeX �R Y . ThenX �
(x=R){ iff x=R\X = ; iff x =2 XR iff x =2 Y R iff x=R\Y = ; iff Y � (x=R){.
Hence,(X; Y ) 2 �H. Conversely, if(X; Y ) 2 �H, thenx 2 XR iff x=R\X 6= ;
iff X 6� (x=R){ iff Y 6� (x=R){ iff x=R \ Y 6= ; iff x 2 Y R. Thus,X �R Y and
we have proved that�H = �R.

(g) We writeK = fx=R j x 2 Ug. If X �R Y , thenx=R � X iff x 2 XR iff
x 2 YR iff x=R � Y . Hence,(X; Y ) 2 
K. On the other hand, if(X; Y ) 2 
K,
thenx 2 XR iff x=R � X iff x=R � Y iff x 2 YR. Hence,X �R Y and clearly

K = �R. �

It is possible that different tolerances define the same lower and upper equality,
as shown by the next example.

Example 6.2.3.LetU = fa; b; c; dg and letR andS be tolerances onU such that

a=R = fa; b; dg; b=R = fa; b; cg; c=R = fb; c; dg; d=R = fa; c; dg;

a=S = fa; b; cg; b=S = fa; b; dg; c=S = fa; c; dg; d=S = fb; c; dg:
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The lower and upper approximations defined by these tolerances are presented
in Table 7.

X XR XS XR XS

; ; ; ; ;
fag ; ; fa; b; dg fa; b; cg
fbg ; ; fa; b; cg fa; b; dg
fcg ; ; fb; c; dg fa; c; dg
fdg ; ; fa; c; dg fb; c; dg
fa; bg ; ; U U

...
...

...
...

...
fc; dg ; ; U U
fa; b; cg fbg fag U U
fa; b; dg fag fbg U U
fa; c; dg fdg fcg U U
fb; c; dg fcg fdg U U

U U U U U

Table 7.

Now the relations�R and�S are equal, and they have the following six
congruence classesf;, fag, : : :, fc; dgg, ffa; b; cgg, ffa; b; dgg, ffa; c; dgg,
ffb; c; dgg, andfUg.

Similarly, the relations�R and�S are identical and they have six congruence
classesf;g, ffagg, ffbgg, ffcgg, ffdgg, andffa; bg, : : :, Ug. It can be easily
seen that also�R and�S are the same. They have 11 equivalence classes.

By Proposition 6.2.2,

G(�R) = fXR j X � Ug = f;; fag; fbg; fcg; fdg; Ug

and

L(�R) = fX
R j X � Ug = f;; fa; b; cg; fa; b; dg; fa; c; dg; fb; c; dg; Ug.

The isomorphic complete lattices(G(�R);�) and (L(�R);�) are presented in
Figure 9. For simplicity, we denote subsets ofU , which differ fromU by se-
quences of letters. For instance,fa; b; cg is written asabc.
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Figure 9.

We shall now turn our attention to the approximation operators of J. A.
Pomykała [47, 48] mentioned above.

A family E of subsets ofU is called acoverof U is
S
E = U and for all

B;C 2 E , B � C impliesB = C (see [53], for example). LetR 2 Tol(U). A set
B � U is calledR-elementaryif B is a maximal set which satisfiesB � B � R.
The set of allR-elementary sets is denoted byE (R).

Now the following lemma holds (cf. [47, 48, 53]).

Lemma 6.2.4. If R 2 Tol(U), then E (R) is a cover ofU such thatx=R =S
fB 2 E (R) j x 2 Bg for all x 2 U .

Proof. For anyx 2 U , let

Hx = fB � U j x 2 B andB � B � Rg:

It is clear thatHx is nonempty sincefxg � fxg � R. Moreover, it is easy to see
that the union

S
C of any nonempty chainC � Hx is again inHx. This means

by Zorn’s Lemma that everyHx has a maximal element. Since it is clear that any
setB maximal inHx is also maximal with respect to the propertyB � B � R,
we may infer that

S
E (R) = U . It is obvious thatB � C impliesB = C for all

B;C 2 E (R). Hence,E (R) is a cover ofU .
If y 2 U , then

y 2 x=R () fx; yg � fx; yg � R

() (9B 2 E (R)) fx; yg � B

() y 2
[
fB 2 E (R) j x 2 Bg

�
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Let E be a family of subsets ofU such that
S
E = U . Note that this property

defines the notion of cover used by Pomykała [47, 48]. For allx 2 U , we write

E x =
[
fB 2 E j x 2 Bg:

Let X � U . The operatorsE i:}(U) ! }(U) andE i:}(U) ! }(U), where
0 � i � 2, are defined in [47, 48] as follows:

E 2(X) = fx 2 U j (8y 2 U) (x 2 E y ) E y \X 6= ;)g;

E 2(X) =
[
fE x j E x � Xg;

E 1(X) =
[
fB 2 E j B \X 6= ;g;

E 1(X) = fx 2 U j E x � Xg;

E 0(X) =
[
i�0

(E 1)
i(X);

E 0(X) = E 0(X
{){;

where(E 1)
i(X) =

i�timesz }| {
E 1E 1 � � � E 1(X).

In [47, 48], E i(X
{) = E i(X){ was proved fori = 1 and i = 2. Also the

following lemma holds.

Lemma 6.2.5. If E is a family of subsets ofU such that
S
E = U , then for any

X � U
E 0(X) =

\
i�0

(E 1)
i(X):

Proof. For anyX � U ,

E 0(X) = E 0(X
{){ = (

[
i�0

(E 1)
i(X{)){ =

\
i�0

((E 1)
i(X{)){ =

\
i�0

(E 1)
i(X):

�

Next we can write the following proposition which connects Pomykała’s op-
erators with our work.

Proposition 6.2.6. LetR 2 Tol(U). If E = E (R) andX � U , then
(a) E 2(X) = (XR)R andE 2(X) = (XR)

R,
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(b) E 1(X) = XR andE 1(X) = XR,
(c) E 0(X) =

S
fx=RE j x=RE \X 6= ;g andE 0(X) is the leastR-definable

set which includesX, and
(d) E 0(X) =

S
fx=RE j x=RE � Xg andE 0(X) is the greatestR-definable

set which is included inX.

Proof. (a) By Proposition 6.1.1(g) and Lemma 6.2.4,

E 2(X) =
[
fE x j Ex � Xg =

[
fx=R j x=R � Xg = (XR)

R:

By Proposition 6.1.1(c),

E 2(X) = (E 2(X
{)){ = (((X{)R)

R){ = ((X{)R)
{)R = (XR)R:

(b) Obviously,E 1(X) = fx 2 U j E x � Xg = fx 2 U j x=R � Xg = XR

andE 1(X) = (E 1(X
{)){ = ((X{)R)

{ = XR.
(c) If y 2 U , then

y 2 E 0(X) () (9n 2 N0)(y 2 (E 1)
n(X))

() (9x 2 X)(9n 2 N0)(9c0; : : : ; cn 2 U)

(c0 = x; cn = y andciRci+1 for all 0 � i � n� 1)

() (9x 2 X)(x; y) 2 RE

() y 2
[
fx=RE j x=RE \X 6= ;g:

BecauseE 0(X) is a union ofx=RE-classes, it isR-definable by Proposition 6.1.8.
Suppose thatX � Y for someR-definable setY . ThenE 0(X) � E 0(Y ) =
Y [ Y R [ (Y R)R [ � � � = Y becauseE 0 is obviously order-preserving.

(d) If y 2 U , then

y 2 E 0(X) () y =2 E 0(X
{)

() y =2
[
fx=RE j x=RE \X{ 6= ;g

() y=RE \X{ = ;

() y=RE � X

() y 2
[
fx=RE j x=RE � Xg:

The setE 0(X) isR-definable because it is a union ofx=RE-classes. IfY � X
andY isR-definable, thenE 0(X) � E 0(Y ) = Y \YR\ (YR)R\� � � = Y because
E 0 is clearly order-preserving. �
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By the previous proposition,E 1(X) is the upperR-approximation ofX,
E 2(X) is the greatest element in the�R-class ofX, andE 0(X) is the leastR-
definable set includingX. Similarly, E 1(X) is the lowerR-approximation ofX,
E 2(X) is the least element in the�R-class ofX, andE 0(X) is the greatestR-
definable set included inX.

We call a binary relation� on}(U) a rough bottom equalityif there exists a
toleranceR 2 Tol(U) such that� = �R. As we already mentioned, Novotn´y
and Pawlak [28, 29] have characterized all three types of rough equalities defined
by equivalences, and Steinby [54] generalized these characterizations by omitting
the assumption of finiteness.

Next we will present our proposition, which characterizes rough bottom equal-
ities defined by tolerances.

Proposition 6.2.7. A relation� on}(U) is a rough bottom equality if and only
if � is a complete congruence on(}(U);\) and there exists a�-dense family
fRx j x 2 Ug such that for allx; y 2 U ,

(a)x 2 Rx and
(b) y 2 Rx impliesx 2 Ry.

Proof. Suppose� = �R for someR 2 Tol(U). Then� is a complete
congruence on(}(U);\) by Proposition 6.2.2(b). LetRx = x=R for all x 2 U .
By Proposition 6.2.2(g),fRx j x 2 Ug is�R-dense. Conditions (a) and (b) hold
becauseR is a tolerance.

Conversely, let� be a complete congruence on(}(U);\) and assume that
there exists a�-dense familyfRx j x 2 Ug which satisfies (a) and (b). Let us
define a binary relationR onU so thatxRy if and only ifx 2 Ry. By (a),xRx for
all x 2 X. If xRy, thenx 2 Ry which impliesy 2 Rx andyRx by (b). Hence,R
is a tolerance.

Next we show thatL(�) = L(�R). LetX 2 L(�). BecausefRx j x 2 Ug
is�-dense, it is also join-dense inL(�) by the dual of Proposition 3.4.9. Hence,
there exists anH � fRx j x 2 Ug such thatX =

S
H. Since for allx 2 U ,

Rx = x=R = fxgR, we get by Proposition 6.2.2(d) thatH � L(�R). Because
L(�R) is an interior system,

S
H = X is in L(�R). On the other hand, assume

thatX 2 L(�R). The setfx=R j x 2 Ug is join-dense inL(�R), because by
Proposition 6.2.2(g) it is�R-dense. Hence, there exists anH � fx=R j x 2 Ug
such thatX =

S
H. For allx 2 X, x=R = Rx 2 L(�) by the dual of Lemma

3.4.8(a), sincefRx j x 2 Ug is�-dense. The fact thatL(�) is an interior system
impliesX 2 L(�).
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Now we have shownL(�) = L(�R). This implies by the dual of Lemma
3.2.6(a) that� = �R. �

We say that a binary relation� on}(U) is arough top equalityif there exists
a toleranceR 2 Tol(U) such that� = �R. In our following proposition we
characterize rough top equalities.

Proposition 6.2.8. A relation� on}(U) is a rough top equality if and only if�
is a complete congruence on(}(U);[) and there exists a�-dense familyfDx j
x 2 Ug such that for allx; y 2 U ,

(a)x =2 Dx and
(b) y 2 Dx impliesx 2 Dy.

Proof. If � = �R for someR 2 Tol(U), then� is a complete congruence
on (}(U);[) by Proposition 6.2.2(a). Let us setDx = (x=R){ for all x 2 U . By
Proposition 6.2.2(f),fDx j x 2 Ug is�R-dense. BecauseR is a tolerance (a) and
(b) hold.

On the other hand, let� be a complete congruence on(}(U);[) and suppose
that there exists a�-dense familyfDx j x 2 Ug which satisfies (a) and (b). We
define a binary relationR onU so thatxRy if and only if x =2 Dy. By (a),xRx
for all x 2 U . If xRy, thenx =2 Dy and this impliesy =2 Dx andyRx by (b).
Thus,R is a tolerance.

Next we show thatG(�) = G(�R). LetX 2 G(�). BecausefDx j x 2 Ug
is �-dense, it is meet-dense inG(�) by Proposition 3.4.9. Hence, there exists
anH � fDx j x 2 Ug such thatX =

T
H. Since for allx 2 U , Dx =

(x=R){ = (fxg{)R, this implies by Proposition 6.2.2(c) thatH � G(�R). The
fact thatG(�R) is a closure system impliesX 2 G(�R). Conversely, assume
thatX 2 G(�R). The setf(x=R){ j x 2 Ug is meet-dense inG(�R) since by
Proposition 6.2.2(f) it is�R-dense. Hence, there is anH � f(x=R){ j x 2 Ug
such thatX =

T
H. For anyx 2 U , (x=R){ = Dx 2 G(�) by Lemma 3.4.8

becausefDx j x 2 Ug is �-dense. SinceG(�) is a closure system,
T
H = X

belongs toG(�). Thus,G(�) = G(�R) which implies by Lemma 3.2.6(a) that
� = �R. �

We say that a binary relation� on }(U) is a rough equalityif there exists
a toleranceR 2 Tol(U) such that� = �R. Rough equality relations�R are
equivalences on}(U), but they are not usually congruences on(}(U);[) or on
(}(U);\). Before we characterize the rough equality relations, we introduce a
notion which we shall need.
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Let � be an equivalence on}(U) andH;K � }(U). We say that the pair
(H;K) induces� if � = �H \ 
K. It is possible that not all�-classes have
smallest elements. Let us denote by�(�) the set of the least elements of those
�-classes which have a least element. Similarly, we denote by� (�) the set of the
greatest elements of those�-classes which have a greatest element.

Lemma 6.2.9. LetU be a set and letR 2 Tol(U).
(a)G(�R) � � (�R) andL(�R) � �(�R).
(b) The pair(G(�R);L(�R)) induces�R.

Proof. (a) LetX 2 G(�R), which is equivalent to(XR)R = X. If X �R Y ,
thenXR = Y R andY � (Y R)R = (XR)R = X, which means thatX is the
greatest element in its�R-class. The other part is similar.

(b) Because�G(�R) = �R and
L(�R) = �R, and�R is the intersection of
�R and�R, the claim is obvious. �

For anyH � }(U), we writeH0 = fX{ j X 2 Hg. Next we give a proposi-
tion characterizing the rough equalities.

Proposition 6.2.10.An equivalence� on}(U) is a rough equality if and only if
there exists an interior systemH � �(�) such that the pair(H0;H) induces�
and there exists a join-dense familyfRx j x 2 Ug inH; such that for allx; y 2 U ,

(a)x 2 Rx and
(b) y 2 Rx impliesx 2 Ry.

Proof. Suppose� = �R for someR 2 Tol(U). Let us denoteH = L(�R).
ThenH is obviously an interior system andH � �(�) by Lemma 6.2.9(a). By
Proposition 6.2.2(c),H0 = G(�R) and this implies by Lemma 6.2.9(b) that the
pair (H0;H) induces�. If we setRx = x=R for all x 2 U , then by Propositions
3.4.9 and 6.2.2(g) the familyfx=R j x 2 Ug is join-dense inH. BecauseR is a
tolerance, (a) and (b) hold.

Conversely, suppose� is an equivalence on}(U) and assume that there exists
an interior systemH � �(�) such that the pair(H0;H) induces� and for every
x 2 U , there exists anRx 2 H which satisfies (a) and (b) and the familyfRx j
x 2 Ug is join-dense inH. Let us define a binary relationR on U by xRy if
and only ifx 2 Ry. We have shown in the proof of Proposition 6.2.7 thatR is a
tolerance. It suffices to show thatH = L(�R), since this impliesH0 = G(�R) by
Proposition 6.2.2(d), and furthermore

� = �H0 \ 
H = �G(�R) \
L(�R) = �
R \ �R = �R :
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Let X 2 H. BecausefRx j x 2 Ug is join-dense inH, there exists aK �
fRx j x 2 Ug such thatX =

S
K. For all x 2 U , Rx = x=R = fxgR,

which implies by Proposition 6.2.2(d) thatK � L(�R). The fact thatL(�R)
is an interior system implies that

S
K = X is in L(�R). On the other hand,

assumeX 2 L(�R). The setfx=R j x 2 Ug is join-dense inL(�R), because by
Proposition 6.2.2(g) it is�R-dense. Hence, there exists aK � fx=R j x 2 Ug
such thatX =

S
K. For all x 2 X, x=R = Rx 2 H by the dual of Lemma

3.4.8(a) sincefRx j x 2 Ug is join-dense inH, and thusK � H. BecauseH is
an interior system,X =

S
K is inH. Hence,H = L(�R) which completes the

proof. �

6.3 Structure of Rough Sets

Here we generalize Pawlak’s notion by defining rough sets in terms of tolerances.
Let R 2 Tol(U). We call the equivalence classes of�R R-rough sets. The set
of all R-rough sets is denoted byR(R). We usually talk simply about rough sets,
if R is understood. Now we can define an order� onR(R) by setting for all
B; C 2 R(R),

B � C () XR � YR andXR � Y R;

whereX 2 B andY 2 C.
First we consider rough sets defined by an equivalence relationE 2 Eq(U).

J. Pomykała and J. A. Pomykała [46] have shown that there exists a uniform set
of representatives ofR(E), which forms a complete sublattice of(}(U);�). Get-
ting this uniform set of representatives does require the Axiom of Choice. Let
f :U=E ! U be a choice function which picks an element from eachU=E-class.
We denote byRg(f) the range off .

Let us denote (cf. [13]) for anyX � U ,

Xf = XE [ (X
E \ Rg(f)):

It is clear that(XE)
f = XE and(XE)f = XE for all X � U , and alsoX �E Xf

holds. For every rough setC 2 R(E), there exists a representativeCf which is
defined byCf = Xf , whereX is any member ofC. Note thatCf does not depend
on the particularX 2 C chosen. Now we can write the following lemma.

Lemma 6.3.1. If E 2 Eq(U) andf :U=E ! U is a choice function, then

(R(E);�) �= (fCf j C 2 R(E)g;�):
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Proof. It is obvious that the mapC 7! Cf is ontofCf j C 2 R(E)g. Suppose
B � C holds in(R(E);�), X 2 B, andY 2 C. ThenXE � YE andXE � Y E.
This implies that

Bf = Xf = XE [ (XE \ Rg(f)) � YE [ (Y E \ Rg(f)) = Y f = Cf .

On the other hand, ifBf � Cf , then for allX 2 B andY 2 C,

XE = (Xf)E = (Bf)E � (Cf)E = (Y f )E = YE

and

XE = (Xf)E = (Bf )E � (Cf )E = (Y f)E = Y E.

Hence,B � C. �

Let us consider a familyf(XE; X
E) j X 2 Hg for someH � }(U). It is not

clear that(
S
X2HXE;

S
X2HX

E) and (
T
X2HXE;

T
X2HX

E) are of the form
(YE; Y

E), whereY � U . In particular, it is not generally true that
S
X2HXE =

(
S
X2HX)E and

T
X2HX

E = (
T
X2HX)E. Our next lemma, which appears also

in [46] in a different form describes
S
X2HXE and

T
X2HX

E in the terms of
representatives.

Lemma 6.3.2. Let E 2 Eq(U) be an equivalence andf :U=E ! U a choice
function. For anyH � }(U),

(a) (
S
fXf j X 2 Hg)E =

S
fXE j X 2 Hg, and

(b) (
T
fXf j X 2 Hg)E =

T
fXE j X 2 Hg.

Proof. (a)

(
[
X2H

Xf)E = (
[
fXE [ (X

E \Rg(f)) j X 2 Hg)E

= (
[
fXE j X 2 Hg [

[
fXE \Rg(f) j X 2 Hg)E

= (
[
fXE j X 2 Hg)E [ (

[
fXE \ Rg(f) j X 2 Hg)E

=
[
fXE j X 2 Hg [ (

[
fXE j X 2 Hg \ Rg(f))E:

If x 2 (
S
fXE j X 2 Hg \ Rg(f))E, thenx=E � Rg(f), which impliesx=E =

fxg andx 2
S
fXE j X 2 Hg. Thus, there exists anX 2 H such thatx 2 XE.

Becausex=E = fxg, this impliesx 2 X andx 2 XE. So,x 2
S
fXE j X 2 Hg
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and hence(
S
fXE j X 2 Hg \ Rg(f))E �

S
fXE j X 2 Hg. This implies

(
S
fXf j X 2 H)E =

S
fXE j X 2 Hg.

(b)

(
\
X2H

Xf)E = (
\
fXE [ (X

E \Rg(f)) j X 2 Hg)E

= (
\
f(XE [X

E) \ (XE [Rg(f)) j X 2 Hg)
E

= (
\
fXE j X 2 Hg \

\
fXE [Rg(f) j X 2 Hg)

E

= (
\
fXE j X 2 Hg)E \ (

\
fXE [ Rg(f) j X 2 Hg)

E

=
\
fXE j X 2 Hg \ (

\
fXE j X 2 Hg [ Rg(f))

E

=
\
fXE j X 2 Hg \ U

=
\
fXE j X 2 Hg:

�

It is mentioned in [13] without proof that(fCf j C 2 R(E)g;�) is a sublattice
of (}(U);�). Our next lemma extends this result.

Proposition 6.3.3. If E 2 Eq(U) and f :U=E ! U is a choice function, then
(fCf j C 2 R(E)g;�) is a complete sublattice of(}(U);�).

Proof. It is obvious that;f = ; andUf = U , and hence
S
; and

T
; are in

fCf j C 2 R(E)g. LetfXf j X 2 Hg be a nonempty subset offCf j C 2 R(E)g.
Then by Lemmas 6.1.2 and 6.3.2,[

X2H

Xf =
[
X2H

(XE [ (X
E \ Rg(f))

=
[
X2H

XE [
[
X2H

(XE \ Rg(f))

= (
[
X2H

Xf)E [ (
[
X2H

XE \Rg(f))

= (
[
X2H

Xf)E [ (
[
X2H

(Xf)E \ Rg(f))

= (
[
X2H

Xf)E [ ((
[
X2H

Xf)E \ Rg(f))

= (
[
X2H

Xf)f :
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Hence,
S
X2HX

f 2 fCf j C 2 R(E)g. The other part can be proved in a similar
way:

\
X2H

Xf =
\
X2H

(XE [ (XE \Rg(f))

=
\
X2H

((XE [X
E) \ (XE [Rg(f)))

=
\
X2H

XE \
\
X2H

(XE [Rg(f))

=
\
X2H

XE \ (
\
X2H

XE [ Rg(f))

= (
\
X2H

Xf )E \ (
\
X2H

(Xf)E [Rg(f))

= (
\
X2H

Xf )E \ ((
\
X2H

Xf)E [ Rg(f))

= ((
\
X2H

Xf)E \ (
\
X2H

Xf)E) [ ((
\
X2H

Xf)E \Rg(f))

= (
\
X2H

Xf )E [ ((
\
X2H

Xf)E \ Rg(f))

= (
\
X2H

Xf )f :

�

By Lemma 6.3.1 the previous proposition has the following corollary.

Corollary 6.3.4. If E 2 Eq(U), then(R(E);�) can be completely embedded in
(}(U);�).

Example 6.3.5.Let U = fa; b; cg and letE be an equivalence onU such that
a=E = b=E = fa; bg andc=E = fcg. Let f be the choice functionU=E ! U
which picks from eachE-class its first element. ThenRg(f) = fa; cg. The sets
XE, XE, andXf are presented in Table 8 for allX � U .
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X XE XE Xf

; ; ; ;
fag ; fa; bg fag
fbg ; fa; bg fag
fcg fcg fcg fcg
fa; bg fa; bg fa; bg fa; bg
fa; cg fcg U fa; cg
fb; cg fcg U fa; cg
U U U U

Table 8.

The Hasse diagram of(fCf j C 2 R(E)g;�) is presented in Figure 10.

d

d

dd

d

d

;

fag fcg

fa; cgfa; bg

U

Figure 10.

By Lemma 6.3.1Cf 7! Cf= �E is an order-isomorphism between(fCf j
C 2 R(E)g;�) and(R(E);�). This observation implies by Lemma 6.3.3 the
following proposition, which originally appeared in [46].

Proposition 6.3.6. If E 2 Eq(U), then(R(E);�) is a complete lattice such that
for all H � R(E),

_
H =

[
fCf j C 2 Hg=�E;^

H =
\
fCf j C 2 Hg= �E;

wheref :U=E ! U is an arbitrary choice function. �

Next we consider rough sets defined by tolerances.
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Example 6.3.7.LetU = fa; b; cg and letR be a tolerance onU such that

a=R = fa; bg; b=R = fa; b; cg; c=R = fb; cg:

The lower and upper approximations defined byR are presented in Table 9.

X XR XR

; ; ;
fag ; fa; bg
fbg ; U
fcg ; fb; cg
fa; bg fag U
fa; cg ; U
fb; cg fcg U
U U U

Table 9.

The Hasse diagram of(R(R);�) is presented in Figure 11.

c

c c

c

cc

c

;

fag fcg

fbg; fa; cg

fa; bg fb; cg

U

Figure 11.

The rough sets defined by tolerances differ essentially from the ones defined by
equivalences. For example, it is not possible to pick a representative from the class
ffbg, fa; cgg so that the set of representatives of�R-classes forms a sublattice of
(}(U);�). It is also clear that(R(R);�) cannot be embedded into(}(U);[).
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The previous example shows that ifR(2 Tol(U)) is a tolerance, it is not nec-
essarily possible to pick a representative for each element inR(R) such that this
set of representatives is a sublattice of(}(U);�). Furthermore, we do not yet
know whether(R(R);�) is necessarily a semilattice.

Next we present an another approach to the structure of rough sets introduced
by Iwiński [17]. It is based on a fact that ifE is an equivalence, thenE-rough
sets can be equivalently viewed as pairs(XE; X

E), whereX � U , since each
C 2 R(E) is uniquely determined by the pair(XE; X

E), whereX is any member
of C.

Let R 2 Tol(U). For anyX � U , the pairRhXi = (XR; X
R) is called the

R-approximationof X. The set of allR-approximations of the subsets ofU is
A(R) = fRhXi j X � Ug.

There is a canonical order-relation� on}(U)� }(U) defined by

(X1; X2) � (Y1; Y2) iff X1 � Y1 andX2 � Y2:

BecauseA(R) � }(U) � }(U) for all R 2 Tol(U), the setA(R) may be
ordered by�. The next lemma is a generalization of a result presented in [46] for
equivalences.

Lemma 6.3.8. If R 2 Tol(U), then

(R(R);�) �= (A(R);�)

Proof. Let us denote the mapX=�R 7! RhXi by f . If (B;C) 2 A(R), then
there is anX � U such thatXR = B andXR = C. Obviously,f(X=�R) =
(B;C). Thus,f is onto.

If B; C 2 R(R), X 2 B, andY 2 C, then

B � C inR(R) () XR � YR andXR � Y R () f(B) � f(C) in A(R).

�

It is clear that the ordered set(A(R);�) is bounded; the bottom element is
Rh;i and the top element isRhUi.

Next we present some properties of(A(E);�), whereE 2 Eq(U), which
can be found in the literature. Because(}(U);�) is a complete lattice,(}(U) �
}(U);�) is a complete lattice (see e.g. [5]) such that_

f(Xi; Yi) j i 2 Ig = (
[
fXi j i 2 Ig;

[
fYi j i 2 Ig);^

f(Xi; Yi) j i 2 Ig = (
\
fXi j i 2 Ig;

\
fYi j i 2 Ig)
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for all f(Xi; Yi) j i 2 Ig � }(U) � }(U). The following proposition, which
can be found in [46], shows that(A(E);�) is a complete sublattice of(}(U) �
}(U);�).

Proposition 6.3.9. If E 2 Eq(U), then (A(E);�) is a complete sublattice of
(}(U)� }(U);�).

Proof. Let f(XE; X
E) j X 2 Hg be a subset ofA(E) and letf :U=E ! U

be an arbitrary choice function. Then
_
f(XE; X

E) j X 2 Hg = (
[
fXE j X 2 Hg;

[
fXE j X 2 Hg)

= (
[
fXE j X 2 Hg;

[
f(Xf)E j X 2 Hg)

= ((
[
fXf j X 2 Hg)E; (

[
Xf j X 2 Hg)E):

Hence,
W
f(XE; X

E) j X 2 Hg 2 A(E). Similarly, we can show thatV
f(XE; X

E) j X 2 Hg 2 A(E). �

If E 2 Eq(U) andf :U=E ! U is a choice function, then by Lemmas 6.3.1
and 6.3.8,

(fCf j C 2 R(E)g;�) �= (R(E);�) �= (A(E);�):

It follows from Proposition 6.3.3 that(A(E);�) can be embedded into(}(U);�).
A latticeL = (L;�) is distributiveif it satisfies

(D1) x ^ (y _ z) = (x ^ y) _ (x ^ z)

or

(D2) x _ (y ^ z) = (x _ y) ^ (x _ z)

for all x; y; z 2 L; it is well-known that if a lattice satisfies one of the identities
(D1) and (D2), it satisfies both of them (cf. [15], for example).

Suppose thatL has a zero0. An elementx� is apseudocomplementof x 2 L,
if x ^ x� = 0 and for alla 2 L, x ^ a = 0 impliesa � x�. An element can have
at most one pseudocomplement. A lattice ispseudocomplementedif each element
has a pseudocomplement.

A bounded pseudocomplemented latticeL which satisfies the identityx� _
x�� = 1 is called aStone lattice. It is known [46] that for anyE 2 Eq(U),
(A(E);�) is a Stone lattice such that for anyX � U , the pseudocomplement of
(XE; X

E) is ((XE){; (XE){). Moreover, the lattice(A(E);�) is isomorphic to
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the lattice(2I � 3J ;�), whereI = fa=E j ja=Ej = 1g andJ = fa=E j ja=Ej >
1g (see [13]).

It is now clear that ifE 2 Eq(U), then also(R(E);�) is a Stone lattice
isomorphic to(2I � 3

J ;�) such that for anyX � U , the pseudocomplement
of X=�E is (XE){=�E. Similarly, if f :U=E ! U is a choice function, then
(fCf j C 2 R(E)g;�) is a Stone lattice isomorphic to(2I � 3

J ;�), in whichCf

has a pseudocomplement((Cf )E){.
Next we shall consider the ordered set(A(R);�), whereR 2 Tol(U).

Proposition 6.3.10. If R 2 Tol(U), then (A(R);�) can be embedded into
(2I � 3

J ;�), whereI = fa=R j ja=Rj = 1g andJ = fa=R j ja=Rj > 1g.

Proof. Let us define the map':A(R)! 2
I � 3

J by setting'((XR; X
R)) =

(f; g), where the mapsf : I ! 2 andg: J ! 3 are defined by

f(x=R) =

�
1 if x 2 X;
0 if x =2 X;

and

g(x=R) =

8<
:

2 if x=R � XR andx=R \XR 6= ;;
1 if x=R � XR andx=R \XR = ;;
0 otherwise.

Let us denote'((XR; X
R)) = (f1; g1) and'((YR; Y R)) = (f2; g2). Assume

that (XR; X
R) � (YR; Y

R). We show that(f1; g1) � (f2; g2), which means that
f1(x=R) � f2(x=R) for all x=R 2 I andg1(y=R) � g2(y=R) for all y=R 2 J .

If f1(x=R) = 1 for somex=R 2 I, thenx 2 X, and sincex=R = fxg, we get
x 2 XR � YR. This impliesx 2 Y and hencef2(x=R) = 1. Thus,f1 � f2. If
g1(y=R) = 2 for somey=R 2 J , theny=R � XR andy=R\XR 6= ;. This implies
y=R � Y R andy=R \ YR 6= ; and thusg2(y=R) = 2. If g1(y=R) = 1 for some
y=R 2 J , theny=R � XR and this impliesy=R � Y R. Hence,g2(y=R) � 1 and
thusg1 � g2. We have now shown that(f1; g1) � (f2; g2).

Conversely, assume that(f1; g1) � (f2; g2). We will show that(XR; X
R) �

(YR; Y
R). Let us recall that by the dual of Proposition 3.4.9,

B =
[
fx=R j x=R � Bg(6.1)

for all B 2 L(�R), and

C{ =
[
fx=R j x=R � C{g =

[
fx=R j x=R \ C = ;g(6.2)
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for all C 2 G(�R). Let y 2 XR. If y=R 2 I, theny 2 X andf1(y=R) = 1.
This impliesf2(y=R) = 1 and thusy 2 Y � Y R. If y=R 2 J , theny 2 XR and
XR 2 L(�R) imply by (6.1) that there exists a setx=R such thaty 2 x=R and
x=R � XR. Hence,g1(x=R) � 1 andg2(x=R) � 1. This impliesy 2 x=R �
Y R. Now we have shown thatXR � Y R.

Let y =2 YR. If y=R 2 I, theny =2 Y andf2(Y=R) = 0. Hence,f1(y=R) = 0
andy =2 X, which impliesy =2 XR. If y=R 2 J , theny =2 YR andYR 2 G(�R)
imply by (6.2) that there exists anx 2 U such thaty 2 x=R andx=R \ YR = ;.
This means thatg2(x=R) � 1. If g2(x=R) = 0, then necessarilyg1(x=R) = 0 and
hencex=R 6� XR. This impliesx =2 X and thus for allz 2 XR, (x; z) =2 R. We
get thatx=R \XR = ;. This means that

y 2 (XR)
{ =

[
fx=R j x=R \XR = ;g:

If g2(x=R) = 1, then it suffices to consider the caseg1(x=R) = 1. This implies
directlyx=R \XR = ; and hencey =2 XR. Thus, alsoXR � YR. �

Example 6.3.11.Let us consider the toleranceR of Example 6.2.3. The Hasse
diagram of(A(R);�) is given in Figure 12. For simplicity we denote the subsets
of U , which differ from; andU by sequences of letters. For example,fa; b; cg is
written asabc.

d

d d

d

(;; ;)

(;; abc) (;; bcd)dd(;; abd) (;; acd)

d

d d

d

(a; U) (d; U)

(U;U)

dd(b; U) (c; U)

(;; U)
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Figure 12.

Even though(A(R);�) is a lattice, it is not distributive because, for example,

(;; abc) ^ ((;; abd) _ (;; acd)) = (;; abc) ^ (;; U) = (;; abc);

but

((;; abc) ^ (;; abd)) _ ((;; abc) ^ (;; acd)) = (;; ;) _ (;; ;) = (;; ;):

In addition to this, the lattice(A(R);�) is not pseudocomplemented, since,
for instance, the element(;; abc) does not have a pseudocomplement.

Our next example shows that(A(R);�) is not necessarily even a semilattice.

Example 6.3.12.LetU = f1; 2; 3; 4; 5g and letR be a tolerance onU such that

1=R = f1; 2g; 2=R = f1; 2; 3g; 3=R = f2; 3; 4g; 4=R = f3; 4; 5g; 5=R = f4; 5g:

The lower and upper approximations defined byR are presented in Table 10.

X RhXi X RhXi
; (;; ;) f1; 2; 3g (12; 1234)
f1g (;; 12) f1; 2; 4g (1; U)
f2g (;; 123) f1; 2; 5g (1; U)
f3g (;; 234) f1; 3; 4g (;; U)
f4g (;; 345) f1; 3; 5g (;; U)
f5g (;; 45) f1; 4; 5g (5; U)
f1; 2g (1; 123) f2; 3; 4g (3; U)
f1; 3g (;; 1234) f2; 3; 5g (;; U)
f1; 4g (;; U) f2; 4; 5g (5; U)
f1; 5g (;; 1245) f3; 4; 5g (45; 2345)
f2; 3g (;; 1234) f1; 2; 3; 4g (123; U)
f2; 4g (;; U) f1; 2; 3; 5g (12; U)
f2; 5g (;; U) f1; 2; 4; 5g (15; U)
f3; 4g (;; 2345) f1; 3; 4; 5g (45; U)
f3; 5g (;; 2345) f2; 3; 4; 5g (345; U)
f4; 5g (5; 345) U (U; U)

Table 10.

The Hasse diagram of(A(R);�) is given in Figure 13.
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b

bb b

b b

b

b

b b

bb

b b

b

b

b b

bb b

b

b b

(;; 234)(;; 12)

(;; ;)

(;; 45)

(;; 123) (;; 345)

(;; 2345)(;; 1245)(;; 1234)
(1; 123) (5; 345)

(45; 2345)(12; 1234)

(;; U)

(3; U)(1; U) (5; U)

(45; U)(12; U)

(123; U) (15; U) (345; U)

(U;U)

Figure 13.

Note that(A(R);�) is not a join-semilattice because, for instance, the el-
ements(1; 123) and (;; 1234) do not have a least upper bound. Similarly,
(A(R);�) is not a meet-semilattice since the elements(12; 1234) and(1; U) do
not have a greatest lower bound.

Because(R(R);�) �= (A(R);�) for anyR 2 Tol(U), (R(R);�) is not
always a semilattice. By Example 6.3.11 it is clear that even if(R(R);�) is a
lattice, it is not necessarily distributive or pseudocomplemented.

We end this thesis by noting that(A(R);�) is always a lattice, ifR 2 Tol(U)
andjU j � 4.
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