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Chapter 1

Introduction

The motivation to this work comes from the theory of quantum computing,
but the main object studied here is the algebraic representation degree of
Boolean functions. Studying together these two apparently di�erent-looking
objects, quantum computing and Boolean functions, is not a contradictory
idea at all. In fact, there is a very close connection between an algebraic
property of a Boolean function and a quantum query algorithm computing
that function. Anyway it should be mentioned that quantum computing
plays only a minor role in this thesis, the main emphasis is on Boolean
functions.

Boolean functions have, indeed, many aspects to be studied: they have
combinatorial properties which can be used to characterize their complexity
issues, but also their algebraic properties are of great interest. The rela-
tionships between algebraic and combinatorial properties are not, in general,
known well enough. The main purpose of this work is to study the represen-
tation degree of Boolean functions and to introduce some new tools which
may be used to learn more about Boolean functions. Especially, analogues
to the classical theory of continuous functions of many variables may be of
interest. Anyway, I want to welcome the reader into the endless maze of
algebraic properties of Boolean functions.

A very short Chapter 2 is devoted to basic facts of Boolean functions.
Chapter 3 is to explain quantum computing, query algorithms, and the con-
nections between quantum query algorithms and the representation degrees
of Boolean functions. Chapter 4 includes the basic facts of Boolean functions
which will be used throughout this thesis. In that chapter, there are also
some examples which demonstrate the usefulness of the formalism used in
this work. In Chapter 5, a new basis for representing Boolean functions is
introduced. Some of the most important aspects of the basis introduced in
Chapter 5 are also studied in Chapter 6. The interesting topics, like �obvious
analogues� to classical mathematics, are however shattered throughout the
chapters.
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The following words are also worth mentioning: The purpose of this thesis
is to introduce tools for learning about algebraic properties of the Boolean
functions. The degree properties can be used to provide lower bounds for
quantum query complexity, but the other purpose is also important: I hope
that this thesis could be able to serve as a good source for studying the
degree properties of Boolean functions for anyone who is interested in this
area.



Chapter 2

Boolean Functions

The notion of a Boolean function is one of the most fundamental things in
mathematics. By a Boolean variable we mean a variable which assumes only
two di�erent values. Unless explicitly stated otherwise, we will assume that
the domain of the Boolean variables is the binary �eld F2, the �eld of two
elements (see the de�nitions in Chapter 4). Primarily, by a Boolean function
we will understand a function whose domain is the Cartesian product of the
binary �eld, FN

2 , and who has a two-element set as the range, but secondarily,
we will also study more general functions FN

2 → C.
Many things in mathematics can be conceptually regarded as Boolean

functions. For instance, to de�ne a subset of FN
2 is equivalent to de�ning a

Boolean function f : FN
2 → {0, 1}. Therefore, the theory of binary error-

correcting codes, for instance, can be regarded as a subarea of the study of
Boolean functions � not so literally, only because of this very broad de�nition
of Boolean functions.

In fact, any function f : A → B, where A and B are �nite sets, has its
interpretation by Boolean functions. To be more precise, it is always possible
to encode the elements of A and B into bit strings, and to shatter function
f itself into many separate two-valued functions f1, . . ., fk, each of which
are computing a bit of the outcome.

To study the computational complexity, Boolean functions are, because
of their conceptual simplicity, of a great interest. It is traditional to de�ne
a simple set of Boolean functions like {∨,∧,¬} (logical or, and, not) and to
question how many applications of these primitive functions (which will be
also called gates) are needed in order to describe a given Boolean function. It
is a well-known fact that these three gates (in fact, one of ∨, ∧ could be even
omitted) are su�cient to de�ne any Boolean function, see [12], for instance.
A simple counting argument [22] shows that almost all Boolean functions
on N variable need roughly 2N/N of gates to be implemented, but despite
this, we do not know any family of Boolean functions which provably would
require more than a linear number of gates to be implemented!
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The point of view chosen for this thesis is to study several representations
of Boolean functions. The major points of interest are the representation and
approximation degrees of particular Boolean functions.



Chapter 3

Quantum Computing

3.1 On the Development of Physical Theories
To describe, to explain, to predict, and to understand the phenomena in the
nature are fundamental tasks of natural sciences. Mathematical models have
turned out to be successful when traveling from a description to understand-
ing. To illustrate this journey, we will discuss about the development of our
picture of the solar system.

In the geocentric picture, earth remains stagnant and the other heavenly
bodies such as the sun, the moon, the planets and also the sphere of the �xed
stars orbit around the earth. Such a model can relatively well explain some
of the visible e�ects on the earth: sun rises and sets, moon has its phases,
eclipses occur, etc. However, the model was not very successful in explaining
the tracks of the planets: sometimes it seemed that the planets were able to
reverse their traveling direction, move backwards, and then to begin travel
forward again. This e�ect was not understandable nor predictable in the
geocentric model.

Some modi�cations were proposed, but, as the time passed by, it turned
out that the heliocentric view of the universe was more successful and simpler
than the geocentric model. In fact, after replacing the idea of circular planet
orbits by elliptic ones, the predictions of the heliocentric model became rather
precise. We can thus say that the heliocentric model with elliptic planet
orbits described, predicted, and explained very well the motions of heavenly
objects, i.e., it gave a good picture of what is going on in the solar system,
but it did not o�er deeper understanding. Why are the planets orbiting
around the sun? Why are the orbits elliptic?

In his famous work [20], Isaac Newton published his ideas of the grav-
itation and explained how the gravitational e�ects force the planets orbit
elliptically around the sun. It should be emphasized here that he did not
explain the nature of gravitation, but rather the way how gravitation works.
However, the model based on the gravitational force gave a deeper under-
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standing of the solar system behaviour: we can use the principles of the
gravitation to mathematically derive the form of planetary orbits, as well as
to explain the behaviour of many other phenomena such as comets, asteroids,
etc.

As time went on, it turned out that several observations, such as the
drifting of the perihelion of planet Mercury, was not fully explained by the
Newtonian theory of gravitation. Physics, in its very core, is an experimen-
tal science, implying that a theory that does not agree with the observations
must be modi�ed or rejected. Centuries after Newton, Albert Einstein of-
fered, in his general theory of relativity, an explanation for the mechanism
of the gravity. Einstein's theory had two advantages: First, the Newtonian
theory of gravity can be obtained from Einstein's theory as an approxima-
tion, but it seems that Einstein's theory of gravity is much more accurate.
Secondly, Einstein o�ered an explanation for the gravitational e�ects as a
curvature of space-time structure, thus giving, besides the better predic-
tions, a deeper understanding on gravitational e�ects. On the other hand,
Einstein's theory of the gravity has a disadvantage of being mathematically
much more complicated than Newton's theory.

3.2 On the Development of Quantum Physics
Another revolutionary theory was born in the beginning of 20th century.
Several features in the physical world, such as the black body radiation, the
photoelectric e�ect, and the stability of hydrogen atom were not explained �
or were only partially explained by the physical theories developed so far.
For a reader interested in the treatment of these phenomena, we give [27] as
a general source referring to the early work on quantum physics.

To illustrate the reasons leading to the development of quantum physics,
rather a good example is light, or electromagnetic radiation in general. For
over centuries, the nature of light has caused discussion in the scienti�c
community: should we regard light as a �ow of small particles or as an
undulatory phenomenon?

In the beginning of 19th century, Young demonstrated by his famous
two-slit experiment that light indeed has inherently wave-like characteristics.
Several decades after that, Maxwell and Hertz carried out research revealing
that light should be encountered as electromagnetic radiation, which has
good mathematical models describing it as waves of the electromagnetic
�eld.

On the other hand, the theory of electromagnetic radiation was not suf-
�cient to explain the observed frequency spectrum of a radiating black body.
There were two theories, Wien's law of radiation and Rayleigh-Jean's law,
which both attempted to explain the spectrum, but these two contradictory
laws both failed.
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In 1900, Max Planck published his radiation law, which eventually suc-
ceeded in describing the observed spectrum. An outstanding feature in
Planck's radiation law was that it was derived under the assumption that
radiation can be extracted only in discrete packets whose energy E is pro-
portional to the frequency ν:

E = hν, (3.2.1)
where h is the famous Planck's constant, approximately given as

h = 6.62608 · 10−34Js. (3.2.2)

It could be said that the assumption of discrete radiation packets, quanta, re-
opened the old discussion about the nature of the electromagnetic radiation:
apparently, the radiation had also some corpuscular features.

In 1905 Albert Einstein explained the photoelectric e�ect basing on
Planck's quantum hypothesis. The photoelectric e�ect means that nega-
tively charged metal loses its charge when exposed to radiation of a certain
frequency. Previously it was not understood why the e�ect itself depended
on the frequency of the radiation, not on its intensity. Einstein pointed out
that under Planck's quantum hypothesis, the dependency on frequency is
natural: Assuming that the radiation consists on discrete packets, whose
energy is given by Equation (3.2.1), it is plain that the higher the frequency,
the greater is the energy of those radiation packets to extract the electrons.
Einstein also suggested name photon for the light packets.

A former model of the hydrogen atom consisted of an electron spinning
around a proton. The classical theory of Maxwell however suggested that an
electron orbiting around the nucleus should consistently emit electromagnetic
radiation, thus loosing its energy and �nally to collapse to the nucleus. In
1912 Niels Bohr suggested a model where the electron of the hydrogen atom
can have stationary orbits, where it is not loosing its energy, and a gain or
a loss of energy causes it to transfer to lower or higher orbit, respectively.
Bohr's model explained the observed energy spectrum of hydrogen up to the
measurement precision of that time. It turned out that replacing the notion
of a corpuscular electron by that one of an wave-like electron leads into a
model easier to comprehend.

Consequently, Bohr's explanation suggested that electrons, which have
traditionally been regarded as particles, have, in some situations, a more
natural explanation as a wave-like phenomena.

Encouraged by the previous results, Luis de Broglie introduced in 1924
a general hypothesis of the wave-particle duality: each particle can also be
described as waves, whose wavelength λ is

λ =
h

p
,

where p is the momentum of the particle and h the Planck's constant (3.2.2).
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Many famous physicists, such as W. Heisenberg, M. Born, P. Jordan,
W. Pauli, and P. A. M. Dirac have given their substantial impacts on the
development of early quantum physics.

We conclude this section by noticing that quantum physics was devel-
oped, loosely speaking, in order to unify two apparently di�erent views:
objects should be treated both as particles and as waves. Consequently, the
mathematical formalism of quantum physics is di�erent from that one of
classical physics, and the next section is devoted for that formalism. It must
be emphasized here that we intend to describe only the dynamics of so-called
closed quantum systems. The mathematical description of those systems is
somewhat simpler than the general formalism, and for the purposes of this
thesis, the description based on the closed systems is su�cient.

3.3 Mathematical Formalism of Quantum Physics
In this section, we represent, on the level needed to follow this thesis, the
mathematical formalism of so-called �nite-level quantum systems. For a
more accurate representation, see [12]. By a �nite-level quantum system
we understand a quantum physical system which has only �nitely many
pairwisely distinguishable states. We say that system states {s1, . . . , sk} are
pairwisely distinguishable, if we can always tell, with a probability of 1,
which is the state of the system, provided that the system actually is one of
the states s1, . . ., sk.

The mathematical formulation of a �nite-level quantum system becomes
easier to comprehend after the following example concerning a classical prob-
abilistic system.

Example 3.1. Let A = {a1, . . . , an} be a �nite set and consider a physical
system S capable of being in n distinguishable states. Labeling those n
states by [a1], [a2], . . ., [an] we can say that S is capable of representing set
A or that the system is a realization of an element of A.

Whenever system S is in one of states [a1], . . ., [an], it is possible, because
the states were assumed to be distinguishable, to tell with certainty which
is the element of A that S is currently representing. We call the states [a1],
. . ., [an] of S pure.

It is also possible to introduce mixed states of S as convex combinations
of the pure states: a general mixed state of S will be expressed as

p1[a1] + p2[a2] + . . . + pn[an], (3.3.1)

where p1 ≥ 0 and p1 + p2 + . . . + pn = 1. A mixed state (3.3.1) is simply
interpreted as a probability distribution over pure states [ai]: when the sys-
tem in state (3.3.1) is observed, we �nd that the system represents element
ai with a probability of pi.
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It is sometimes useful to understand the pure states [a1], . . ., [an] as
basis vectors of an n-dimensional vector space over real numbers. In this
interpretation, (3.3.1) is simply a vector having nonnegative coordinates that
sum up to 1. Moreover, if some operation performed of the system causes
transformation

[ai] 7→ pi1[a1] + pi2[a2] + . . . + pin[an]

for each [ai], we can express the operation on (3.3.1) as



p1

p2
...

pn


 7→




p11 p12 . . . p1n

p21 p22 . . . p2n
... ... . . . · · ·

pn1 pn2 . . . pnn







p1

p2
...

pn


 .

Matrix P above has nonnegative entries and the sum of each row is 1. Such
matrices are called Markov matrices.

3.4 Mathematical Background
The basic element for treating n-level quantum systems is an n-dimensional
Hilbert space.

A Hilbert space Hn is an n-dimensional vector space over C, the �eld
of complex numbers, equipped with an inner product Hn ×Hn 7→ C which
satis�es the following axioms for each x, y, z ∈ Hn, and α, β ∈ C:

1. 〈x |y〉 = 〈y |x〉∗.
2. 〈x |x〉 ≥ 0 and 〈x |x〉 = 0 if and only if x = 0.

3. 〈x |αy + βz〉 = α〈x |y〉+ β〈x |z〉.
In the Axiom 1, w∗ stands for the complex conjugate of a complex number
w.

The inner product induces a norm in Hn by ||x|| =
√
〈x |x〉. As the norm

is given, we can de�ne the distance of two vectors as d(x,y) = ||x− y||.
A mapping T : Hn → Hn is said to be linear, if T (αx+βy) = αTx+βTy

for each x, y ∈ Hn and α, β ∈ C. For each linear mapping T : Hn → Hn

there exists an adjoint mapping T ∗ satisfying 〈x |Ty〉 = 〈T ∗x |y〉 for each x,
y ∈ Hn. If T = T ∗, we say that T is a self-adjoint mapping and if T ∗ = T−1,
then T is called unitary.

If U : Hn → Hn is unitary, then 〈Ux |Uy〉 = 〈U∗Ux |y〉 = 〈x |y〉, which
is to say that an application of a unitary mapping on two vectors cannot
change their inner product. It follows that a unitary mapping preserves the
norms, and also that all unitary mappings Hn → Hn are bijections.
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3.4.1 Describing the Quantum States
The description we here use for an n-level quantum system is analogous to
that one of a probabilistic system in Example 3.1. Assume that a quantum
system has n pairwisely distinguishable states, denoted by | a1〉, . . ., | an〉
and called the basis states. 1

We also establish an n dimensional vector space Hn over complex num-
bers having {| a1〉, . . . , | an〉} as an orthonormal basis. A �xed orthonormal
basis is usually referred as to a a computational basis. Space Hn is called the
state space of the systems.

A general state of an n-level quantum system is given as

c1 |a1〉+ . . . + cn |an〉, (3.4.1)

where |c1|2 + . . . + |cn|2 = 1. In other words, a state of an n-level quantum
system is described as a unit-length vector in Hn. We say that (3.4.1) is a
superposition of basis state |a1〉, . . ., |an〉 with amplitudes c1, . . ., cn.2

The interpretation of (3.4.1) is as follows: when a quantum system in
state (3.4.1) is observed, then, with a probability of |ci|2 we learn that the
system is state an.

The following two de�nitions are important in quantum computing.

De�nition 3.1. A quantum bit (qubit) is a two-level quantum system. It
is traditional to denote the computational basis of a qubit by |0〉 a and |1〉.
Notice that |0〉 does not refer to the zero vector, but to a unit-length vector
associated to the logical zero.

A general state of a qubit is given as

c0 |0〉+ c1 |1〉, (3.4.2)

where |c0|2 + |c1|2 = 1. An observation of a qubit in state (3.4.2) will give
logical 0 as an outcome with a probability of |c0|2, and logical 1 as an outcome
with a probability of |c1|2.

De�nition 3.2. A called a quantum register of length n is a system of
n quantum bits. Such a system can be described by using 2n-dimensional
Hilbert space H2n as the state space. It is useful to denote the computational
basis as

{|x〉 | x ∈ {0, 1}n},
1Notation | ai〉 is due to P. Dirac, and it is quite useful in some situations (see [12]),

but here we use that notation only because of the tradition.
2In quantum mechanics, state (3.4.1) is not mixed as its probabilistic analogue in Ex-

ample 3.1, but pure. Mixed quantum states are not handled in this thesis, their description
can be found in [12].
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i.e., the �labels� of the basis vectors are the bit strings of length n. A general
state of an n-qubit system is depicted as

∑

x∈{0,1}n

cx |x〉, (3.4.3)

where ∑

x∈{0,1}n

|cx|2 = 1.

An observation of the quantum register in state (3.4.3) will yield value y ∈
{0, 1}n with a probability |cy|2.
Example 3.2. Consider a system of two qubits having H4 as the state space.
As in the above example, we choose {|00〉, |01〉, |10〉, |11〉} as an orthonormal
basis of H4. On the other hand, instead of H4 we could consider the tensor
product H2 ⊗ H2, which is isomorphic to H4. From our point of view, the
tensor products will not be important, and therefore we will not pay much
attention to them, but merely refer to [12] for a more precise treatment.

Here we will only say that states | 00〉, | 01〉, | 10〉, and | 11〉 can be
written as product states | 0〉 | 0〉, | 0〉 | 1〉, | 1〉 | 0〉, and | 1〉 | 1〉, respectively.
Moreover, if we have one qubit in state a0 |0〉+ a1 |1〉, and another in state
b0 |0〉+ b1 |1〉, we can express their compound state as

(a0 |0〉+ a1 |1〉)(b0 |0〉+ b1 |1〉)
= a0b0 |0〉 |0〉+ a0b1 |0〉 |1〉+ a1b0 |1〉 |0〉+ a1b1 |1〉 |1〉
= a0b0 |00〉+ a0b1 |01〉+ a1b0 |10〉+ a1b1 |11〉.

A two-qubit state c0 |00〉+c1 |01〉+c2 |10〉+c3 |11〉 which can be written as
a product of two one-qubit states, is called a decomposable state, otherwise
we say that the state is entangled. For instance, state

1
2
(|00〉+ |01〉+ |10〉+ |11〉)

can be written as
1√
2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉),

and hence it is decomposable, whereas state 1√
2
(|00〉+ |11〉) is entangled, as

easily seen [12].

3.4.2 The Dynamics of the Quantum Systems
In order to handle quantum systems it is, of course, important to know how to
describe those systems mathematically, but so far we have been dealing only
with instantaneous descriptions. That is, we have not yet discussed about
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the time evolution of quantum systems. For a more detailed treatment, we
refer to [12], but here we will only consider so-called closed time evolutions,
which are treated analogously to Example 3.1.

Consider a quantum system having basis states | a1〉, . . ., | an〉 and an
operation which transforms each basis state as

|ai〉 7→ ci1 |a1〉+ ci2 |a2〉 . . . cin |an〉.

Then, the action of that operation on state (3.4.1) can be described as



c1

c2
...

cn


 7→




c11 c12 . . . c1n

c21 c22 . . . c2n
... ... . . . · · ·

cn1 cn2 . . . cnn







c1

c2
...

cn


 ,

where the matrix C above preserves the norm in H2. It can be shown that
a matrix C preserves norm in H2 if and only if C is unitary (see [12] for
example).

Example 3.3. Let
W2 =

1√
2

(
1 1
1 −1

)
.

W2 is called Hadamard-Walsh -transform. Its operation on states | 0〉 and
|1〉 is easy to depict:

W2 |0〉 =
1√
2
|0〉+

1√
2
|1〉

W2 |1〉 =
1√
2
|0〉 − 1√

2
|1〉.

Example 3.4. Let

C =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

The operation of C on the basis vectors is then given by C | 00〉 =| 00〉,
C | 01〉 =| 01〉, C | 10〉 =| 11〉, and C | 11〉 =| 10〉. That is, the second bit
is �ipped if and only if the �rst bit is set to one. Mapping C is called the
controlled not-gate.

3.5 From Classical to Quantum Computing
In 1982, a famous physicist Richard Feynman suggested in his article [7]
that it may be impossible to simulate a quantum mechanical system by an
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ordinary computer without an exponential slowdown in the simulation. He
also proposed that this slowdown could be avoided if we were able to use
a computer running according to the laws of quantum mechanics. As an
implicit statement in that suggestion one can read that a quantum computer
may be exponentially faster than any classical one.

The article of Feynman mentioned above can be seen as a starting point
of the theory of quantum computing. In 1985, David Deutsch re-examined
Church-Turing thesis, stating a physical version of it in his pioneering article
[4]. In his article, Deutsch introduced the notion of a quantum Turing ma-
chine and even more importantly, the notion of a universal quantum Turing
machine.

Despite of the two pioneering articles mentioned above, quantum comput-
ing remained rather a marginal issue in the theory of computing until 1994,
when Peter Shor introduced his celebrated quantum algorithms for factoring
integers and extracting discrete logarithms in polynomial time [24]. After
Shor's work, quantum computing has been an intensively growing research
area, and nowadays the quantum counterpart of theoretical computer science
can be roughly divided at least into two subareas: quantum computing and
quantum information processing.

It is of course somewhat arti�cial to try to draw boundaries restricting
these two subareas, but at least some characteristic features can be men-
tioned. The research area of quantum information processing is mainly con-
centrating on quantum cryptography, quantum communication protocols,
quantum error-correcting, and quantum teleportation, for instance. On the
other hand, the area of quantum computing attempts to concentrate on
quantum counterparts of the traditional computing devices, quantum algo-
rithms, and on the complexity theory based on the quantum computational
machines.

Formally, the way how a quantum counterpart of a classical (�nite-state)
computing machine can be obtained, is quite straightforward. First we have
to think about all the potential con�gurations that the classical machine is
able to possess, and then to establish a quantum physical representation for
those con�gurations. Another thing to do is to �nd a suitable dynamics for
the system: the classical computational operations must be replaced by their
quantum counterparts, which, in the closed systems, means that a unitary
time-evolution must be introduced.

Example 3.5. A deterministic �nite automaton (DFA for short) over an
alphabet Σ is a �ve-tuple (Q,Σ, δ, q0, F ), where Q is a (�nite) set of internal
states, Σ is the alphabet, δ : Q× Σ → Q is the transition function, q0 ∈ Q is
the initial state, and F ⊆ Q is the set of accepting states.

The intended interpretation of a deterministic �nite automaton is that
there is an input word w ∈ Σ∗, which is treated by the automaton in the way
described below.
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The transition function δ : Q × Σ → Q is �rst extended to a function
δ : Q × Σ∗ → Q as follows: for any word w ∈ Σ∗ and any state q ∈ Q we
de�ne

δ(q, w) =
{

q, if w is the empty word
δ(δ(q, a), w′), if w = aw′, where a ∈ Σ.

By using this extension of δ, it is easy to de�ne the intended action of the
automaton: we say that the automaton accepts the word w ∈ Σ∗ if and only
if δ(q0, w) ∈ F .

In order to make a quantum version of a DFA, we have �rst to consider
which would be the underlying physical system representing the con�gura-
tions of the automaton in question. In this case this is an easy task � if
Q = {q0, . . . , qn−1}, then we have to establish a physical system capable of
representing n di�erent states. Therefore, we will consider a quantum system
having n basis states (vectors)

{|q0〉, . . . , |qn−1〉}.

As usual, the vector space spanned by the above vectors will be denoted by
Hn.

The next problem is to �nd the quantum counterpart for the dynamics.
This is naturally resolved in by de�ning a unitary mapping Ua : Hn → Hn

for each letter a ∈ Σ. Finally, the state reached by the automaton when the
input is w = a1 . . . ak ∈ Σk is de�ned as

Uak
. . . Ua1 |q0〉,

which is, in general, a superposition of all states |q0〉, . . ., |qn〉.

To transform a Turing machine into its quantum counterpart is not es-
sentially more di�cult than that one concerning �nite automata � the only
di�erence is that for Turing machines, there are in�nitely many (but count-
ably many) potential con�gurations. A somewhat more severe problem may
be seen in the question associated to closed quantum systems in general:
the time evolution is unitary, and therefore also invertible. On the other
hand, computation can be irreversible, as well. The problem concerning ir-
reversible computations has been accessed by Lecerf, who showed that any
irreversible Turing machine can be simulated by a reversible one [18]. Later,
Lecerf's result has been re-established by Bennett, who showed that a re-
versible simulation of an irreversible Turing machine can be done with a
constant slowdown [2].

The simulation of an irreversible computation by a reversible one estab-
lishes the following fact: whatever is computable by a traditional computer,
is also computable by a quantum computer.



3.6 Query Algorithms 23

3.6 Query Algorithms
The query algorithms are among the simplest algorithmic notions for com-
puting functions de�ned on a Cartesian power of a �nite set. It must be
emphasized that the notion of a query algorithm studied here is equivalent
to that of decision tree. However, in this thesis we choose to use the query
algorithms because their extensions to probabilistic and quantum computing
are relatively straightforward.

In this section we will represent the notions of deterministic, probabilis-
tic, and quantum query complexity, and how these query complexities can
be bounded below by using the degree of the function computed by query
algorithms.

3.6.1 Deterministic Query Algorithms
Let A be a �nite set of variable values, M a �nite set called memory and V
a �nite set of target values.
De�nition 3.3. A deterministic query algorithm with k queries is a k + 4-
tuple

(S, s0, Q, C0, C1, . . . , Ck),

where S = {1, . . . , N} × A × M × V is the set of internal states, s0 =
(i0, a0, m0, v0) ∈ S is the initial state, Q = {Qa | a ∈ AN} is the set of query
operators, and each Ci is a computation operator Ci : S → S.

For each (i, a,m, v) ∈ S and each a = (a1, . . . , aN ) ∈ AN the query
operator Qa must satisfy the following:

Qa(i, a, m, v) = (i, ai,m, v),

that is, when the query operator Qa is applied to triple (i, a, m, v), it re-
turns the ith coordinate ai in the second component and leaves all other
components untouched.
De�nition 3.4. The value computed by the query algorithm with input a
is vk, where

(ik, ak, mk, vk) = CkQa . . . QaC1QaC0s0. (3.6.1)
It is clear that each function f : AN → V can be computed by a query

algorithm. In fact, we can de�ne M = AN , s0 = (1, a0, a
N
0 , v0) (a0 and v0

are arbitrary), C0 as an identity operator, and, for i ∈ {1, . . . , N} Ci as

Ci(i, a, a′, v) = (i + 1, a,a′′, v),

where a′′ is a′ having the ith coordinate replaced by a. That is, Ci writes the
value a called upon by the previous query into the ith memory coordinate
and increases the coordinate number by one. Finally, we de�ne CN as

CN (i, a, a, v) = (i, a,a, f(a)),
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which simply means that CN writes the correct function value into the last
coordinate.

De�nition 3.5. The (deterministic) query complexity of a function f :
AN → V is de�ned to be the minimum number of queries of a query al-
gorithm computing f and denoted by D(f).

As we saw above, D(f) ≤ N for each function f : AN → V . Let us now
assume that |A| = 2. Then we usually �x A = F2 to be the binary �eld. If
we also assume that V = C, the �eld of complex numbers, we can establish
a polynomial representation for any function f : FN

2 → C. In this section, we
will refer to this concept only informally, a more precise study is included
in the next chapter. The only necessary thing we need to know here is that
monomial Xi : FN

2 → C is de�ned as a function which has value 1 ∈ C, if
xi = 1 ∈ F2 and 0 otherwise. Monomials consisting of several variables and
polynomials are built in a natural way. We also emphasize that it turns out
that each function f : FN

2 → C can be uniquely written as a polynomial on
N variables X1, . . ., XN having degree at most N . We de�ne degP (f) as
the degree of the polynomial which represents function f .

The following proposition is well-known, but, for the sake of complete-
ness, we represent its proof.

Proposition 3.1. Let f : FN
2 → C be a function. Then degP (f) ≤ D(f).

Proof. Assume that T is a query algorithm which computes function f on
some input x = (x1, . . . , xN ) and has complexity k = D(f). Let us denote
s1 = C0s0 = (i1, a1,m1, v1). Applying the query operator Qx on s1 results
in state (i1, 1, m1, v1) if xi1 = 1, and in state (i1, 0,m1, v1) if xi1 = 0. We
can now symbolically write the resulting state as

Xi1(i1, 1,m1, v1) + (1−Xi1)(i1, 0, m1, v1). (3.6.2)

Applying C1 results in state

Xi1C1(i1, 1,m1, v1) + (1−Xi1)C1(i1, 0,m1, v1)
= Xi1(i2, a2,m2, v2) + (1−Xi1)(i

′
2, a

′
2,m

′
2, v

′
2).

It is now clear that polynomial

Xi1v2 + (1−Xi1)v
′
2

of degree at most one represents the function computed by the query algo-
rithm having only two computation operators C0 and C1 (and making only
one query). Assume then that if the query algorithm makes l < k queries,
the corresponding function can be represented by a polynomial having de-
gree at most l. Especially, algorithm with initial state (i1, 0, m1, v1) (resp.
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(i1, 1,m1, v1)) with operators C1, C2, . . ., Ck makes k− 1 queries and hence
the corresponding function is represented by some polynomial P0(X) (resp.
P1(X)) on variables X1, . . ., XN of degree at most k− 1. It follows that the
polynomial

Xi1P1(X) + (1−Xi1)P0(X)

has degree at most k and represents the function computed by the query
algorithm.

In this thesis, we are basically interested in decision trees which compute
functions FN

2 → C having only two potential values. Such functions are
called Boolean functions.
Remark 3.1. It has been show that D(f) ≤ 2 deg(f)4 holds for any Boolean
function f [28]. Hence D(f) and deg(f) can be only polynomially apart from
each other, if f is Boolean.
Example 3.6. (Nisan & Szegedy [21]) Let E1 : {0, 1}3 → {0, 1} be de�ned
as

E1(x1, x2, x3) =
{

0, if x1 = x2 = x3 = 0 or x1 = x2 = x3 = 1,
1, otherwise

Then E1 can be represented as

E1(x1, x2, x3) = x1 + x2 + x3 − x1x2 − x1x3 − x2x3.

Clearly deg(E1) = 2, but it is also easy to see that D(f) = 3. If k > 1, we
de�ne function Ek on 3k variables recursively as

Ek(X1, X2, X3) = E1(Ek−1(X1), Ek−1(X2), Ek−1(X3)),

where X1, X2, and X3 are vectors of 3k−1 disjoint variables. It is easy to
see that deg(Ek) = 2k, whereas D(f) = 3k. Denoting N = 3k we have
deg(Ek) = N log3 2 = N0.63....

We say that a function f : FN
2 → V depends on variable Xi, if there exists

a vector x ∈ FN
2 such that f(x) 6= f(x(i)), where x(i) is obtained from x by

�ipping its ith coordinate. If a function f : FN
2 → V depends only on k < N

variables, we say that f is degenerate. If f depends on all its variables, then
f is nondegenerate. If f is degenerate, it is clear that D(f) < N .
Proposition 3.2. Let f : FN

2 → V be a nondegenerate function. Then
D(f) ≥ log2(N + 1).
Proof. Let T be a query algorithm computing f with k = D(f) queries. At
each query, the computation of T splits into at most two branches, and it
follows that there are at most 20 +21 +22 + . . .+2k−1 = 2k−1 variables that
are queried in the computations. Since f depends on all its variables X1,
. . ., XN , each variable must be queried at least once in some computation.
Hence 2k − 1 ≥ N , and the claim follows.
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Example 3.7. (Simon [26]) Let k ≥ 1 and f : {0, 1}k × {0, 1}2k → {0, 1}
be de�ned as follows: For each y ∈ {0, 1}2k , we label the coordinates of
y = (y0, y1, . . . , y2k−1) and de�ne n(x) ∈ {0, 1, . . . , 2k − 1} be the number
represented by the binary string x ∈ {0, 1}k. We de�ne

f(x, y) = yn(x),

It is easy to see that f depends on all its N = k + 2k input variables.
On the other hand, it is easy to see that f can be computed by a query

algorithm making only k + 1 queries: It su�ces to query all the coordinates
of x, and then the coordinate of y referred to by x. Hence D(f) ≤ k+1 and

log2 N = k + log2(1 +
k

2k
) ≥ D(f)− 1,

so D(f) ≤ log2 N + 1, quite sharply matching the lower bound D(f) ≥
log2(N + 1).

3.6.2 Probabilistic Query Algorithms
In this section, we concentrate only on decision trees computing functions
f : FN

2 → S, where S ⊆ C is a set of two elements. Typically we choose
either S = {0, 1} or S = {−1, +1}.

Let A, M , and V be as in the de�nition of the deterministic query algo-
rithm.

De�nition 3.6. A probabilistic query algorithm on N variables with k queries
is a k + 4-tuple

(S, s0, Q, P0, P1, . . . , Pk),

where S, s0, and Q are de�ned exactly in the same way as in the deterministic
case, and each Pi is a probabilistic computation operator associating to each
state s ∈ S a probability distribution over the states.

Let d = |S|. In order to handle the computations of probabilistic query
algorithms, we will de�ne a d-dimensional vector space P over real numbers
with basis S. Hence any vector v ∈ P can be represented as

v =
∑

s∈S

pss, (3.6.3)

where ps ∈ R. If
∑

s∈S ps = 1 and ps ≥ 0 for each s ∈ S, we say that (3.6.3)
is a convex combination of basis vectors s.

A more precise de�nition for probabilistic computation operators Pi can
now be obtained by requiring that each Pi : P → P is a linear mapping which
maps a convex combination of basis vectors into another convex combination.
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The matrices of such mappings are called Markov matrices. Moreover, we
require that each query operator Qa : P → P is a linear operator de�ned as

Qa(i, a, m, v) = (i, ai,m, v).

Our �rst intention is to view a probabilistic query algorithm as a device for
computing a probability distribution on set V , and that will be achieved as
follows: By the assumption on mappings Pi we see that

vk = PkQaPk−1Qa . . . QaP0s0

is a convex combination on basis vectors S. It follows that vk can be repre-
sented as

vk =
∑

s∈S

pss, (3.6.4)

where
∑

s∈S ps = 1 and ps ≥ 0 for each s ∈ S. By using (3.6.4), we de�ne
the distribution computed by the probabilistic query algorithm as

P (vi) =
∑

(i,b,m,v)∈S
v=vi

p(i,b,m,v).

Analogously to Proposition 3.1 we can get the following proposition:

Proposition 3.3. Let P be a query algorithm which makes k queries to
input variable x ∈ FN

2 . Then the probability P (vi) of having vi as outcome
can be represented as a polynomial Pvi(X) of degree at most k. Moreover,

∑

v∈V

Pv(X) = 1

identically.

Assume now that V = {0, 1} is a set of two elements, and that the query
algorithm for computing function f : FN

2 → {0, 1} produces a correct output
with a probability of at least 2

3 . Then P1(x) ≥ 2
3 whenever f(x) = 1, and

P1(x) ≤ 1
3 if f(x) = 0. This means that

|P1(x)− f(x)| ≤ 1
3

holds for any x ∈ FN
2 , which is to say that polynomial P1 approximates

function f within threshold 1
3 . On the other hand, if the query algorithm

makes k queries, we know, by the previous proposition, that deg(P1) ≤ k.

De�nition 3.7. The probabilistic query complexity Rε(f) is the minimal
number of queries that a probabilistic query algorithm makes to compute a
Boolean function f in such a way that the probability of an erratic answer
is at most ε.
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De�nition 3.8. The ε-approximation degree d̃egε(f) of a function f : FN
2 →

C is de�ned as the minimum degree of a polynomial P : FN
2 → C which

satis�es
|f(x)− P (x)| ≤ ε

for each x ∈ FN
2 .

By the previous considerations, the below proposition is evident.
Proposition 3.4. d̃egε(f) ≤ Rε(f).

3.6.3 Quantum Query Algorithms
A quantum query algorithm is a quantum counterpart of the concept of a
deterministic, as well as a probabilistic query algorithm. For the sake of
simplicity, we will concentrate only on functions f : FN

2 → {0, 1} in this
section.
De�nition 3.9. Let A = {0, 1}, M a �nite memory set, and V = {0, 1} the
set of function values. A quantum query algorithm on N variables with k
queries is a k + 4-tuple

(S, s0, Q, U0, U1, . . . , Uk),

where S = {1, . . . , N}×A×M×V and s0 are the same as in the deterministic
and probabilistic case, and each Ui is a unitary computation operator.

Let d = |S|. In order to formulate quantum query algorithms precisely,
we will use a d-dimensional Hilbert space Hd, whose basis vectors will be
denoted by | i, a,m, v〉. We also write | s0〉 for the initial state of the query
algorithm.

We will also make the query operators reversible, which is guaranteed if
we de�ne Qa for each a ∈ AN to be a linear operator Qa : Hd → Hd de�ned
by

Qa | i, a, m, v〉 =| i, a⊕ ai, m, v〉,
where a⊕ ai means the addition modulo 2. Clearly Qa is invertible, and it
is also easy to see that Qa : Hd → Hd is unitary.

The fact that each Ui : Hd → Hd is a unitary computation operator
means that each mapping Ui preserves the norm in Hd. It follows that
vector

|vk〉 = UkQaUk−1 . . . U1QaU0 |s0〉
has unit length, which means that |vk〉 can be written as

|vk〉 =
∑

s∈S

cs |s〉,

where
∑

s∈S |cs|2 = 1.
Analogously to Proposition 3.1 we can get the following proposition,

whose proof has been introduced in [1].
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Proposition 3.5. Let Q be a quantum query algorithm making k queries on
input x = (x1, . . . , xN ). Then the �nal state |vk〉 can be written as

|vk〉 =
∑

s∈S

Ps(X) |s〉,

where ∑

s∈S

|Ps(X)|2 = 1

identically, and each Ps(X) is a polynomial having degree at most k.

As the probabilistic query algorithms, quantum algorithms also compute
probability distributions on potential outputs {0, 1}: The probability that 1
is seen as outcome is given by

P1(X) =
∑

(i,a,m,v)
v=1

∣∣P(i,a,m,v)(X)
∣∣2 ,

and the probability that 0 is the outcome is

P0(X) =
∑

(i,a,m,v)
v=0

∣∣P(i,a,m,v)(X)
∣∣2 .

By the previous proposition it follows that P1(X) and P0(X) are polynomials
with real coe�cients having degree at most 2k.

De�nition 3.10. We de�ne Qε(f) to be the minimum number of queries
that a quantum query algorithm computing f within threshold ε makes.

The following proposition is an easy consequence of the above consider-
ations.

Proposition 3.6. Qε(f) ≥ 1
2 d̃egε(f).

By the above proposition, we can obtain lower bounds for quantum query
complexity by �nding lower bounds for the approximation degrees of func-
tions f : FN

2 → {0, 1}.
The examples below have been discovered in [1] and [6]. Later we will

introduce new machinery to obtain these results.

Example 3.8. Function OR on N variables de�ned as OR(x1, . . . , xN ) = 0
if and only if xi = 0 for each i has representation degree N . On the other
hand, we will see later that it has approximation degree Ω(

√
N) (the constant

included in the Ω-notation depends on the threshold ε), which shows, by the
above proposition, that a quantum query algorithm computing OR must
make Ω(

√
N) queries. The upper bound is known: Lov Grover has devised

an algorithm which can compute OR-function by using O(
√

N) queries [8].
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Example 3.9. The parity function f : FN
2 → F2 de�ned as f(x1, . . . , xN ) =

x1 + . . . + xN has representation degree N . Later we will see that for each
positive threshold ε, its approximation degree is also N . Therefore, a quan-
tum query algorithm computing parity must make at least N/2 queries even
if some error probability is allowed. This is also known to be a matching
upper bound [6].



Chapter 4

Function Space VN � Basic
Properties

In this chapter, we study some basic properties of Boolean functions.

4.1 Notations and Terminology
Notation F2 = {0, 1} will stand for the binary �eld having two elements
with addition and multiplication de�ned obviously but 1 + 1 = 0. An N -
dimensional vector space over F2 is naturally denoted by FN

2 . The cardinality
of a set A is denoted by |A|.

As a Boolean function on N variables we understand a function from FN
2

into a set of two elements. A very natural (and also useful, when thinking
about the compositions) choice for the target set would be F2 itself, but in
order to smoothen the notations in mathematical treatments, we sometimes
choose the target set to be {−1, 1} ⊆ C or {0, 1} ⊆ C. Furthermore, to
introduce the machinery of Fourier analysis, we study functions f : FN

2 → C
in general.
De�nition 4.1. Notation VN stands for the set of all functions f : FN

2 → C,
as well as for the vector space consisting of these functions with addition and
scalar product de�ned pointwise.

For any vector x = (x1, . . . , xN ) ∈ FN
2 we de�ne the support of x to be

the set of indices i such that xi = 1. Formally speaking,

supp(x) = {i ∈ {1, . . . , N} | xi = 1} ⊆ {1, 2, . . . , N}.
The Hamming weight of x is the number of coordinates which equal to one;

wt(x) = |supp(x)| .
For i ∈ {1, . . . , N}, we also de�ne vectors ei ∈ FN

2 such that supp(ei) = {i}.
Vectors ei form the basis of FN

2 , so called natural basis. The terminology
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�natural basis� is easily justi�ed: for any x = (x1, . . . , xN ) ∈ FN
2 , it is easy

to see that x = x1e1 + . . . + xNeN .
The rth Hamming sphere S

(N)
r is de�ned as

S(N)
r = {x ∈ FN

2 | wt(x) = r}.

If there is no danger of confusion, we omit the superscript N , and use no-
tation Sr instead of S

(N)
r . De�ning the addition and scalar multiplication

pointwise, we can give a vector space structure for the set VN of functions
f : FN

2 → C.
Functions Ty : FN

2 → C de�ned by

Ty(x) =
{

1, if x = y
0, otherwise. (4.1.1)

form a basis, the natural basis of VN . Notice that

f =
∑

y∈FN
2

f(y)Ty,

which is to say that the coordinates of the function f with respect to the
natural basis are in fact the values of f . Hence VN is a 2N -dimensional
complex vector space and therefore isomorphic to C2N . Space VN can be
equipped with the standard inner product de�ned by

〈f |g〉 =
∑

x∈FN
2

f(x)∗g(x).

Clearly, the natural basis is orthonormal with respect to the above inner
product.

Ignoring the scalar multiplication, VN can also be viewed as an Abelian
group, thus we can also �nd out the characters of VN

1 It turns out that for
each y ∈ FN

2 there is a character χy de�ned by

χy(x) = (−1)x·y, (4.1.2)

where x · y = x1y1 + . . . + xNyN is computed in F2 and (−1)b for b ∈ F2

is interpreted in the most obvious way. Moreover, it turns out that all of
the characters of VN are of form (4.1.2) [12]. It is also well known that the
characters are orthogonal:

〈χx |χy〉 =
{

2N , if x = y
0, otherwise.

1The characters χ are mappings FN
2 → C satisfying χ(x+ z) = χ(x)χ(z).
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By renormalizing the characters we get so-called Walsh functions. For each
y ∈ FN

2 we de�ne
Wy =

1√
2N

χy,

hence getting another orthonormal basis for VN consisting of the Walsh func-
tions. Evidently, the Walsh functions are symmetric with respect to the
argument and the index: Wy(x) = Wx(y).

4.1.1 Fourier Representation
Each function f ∈ VN has a representation in natural basis:

f =
∑

y∈FN
2

f(y)Ty,

as well as in the basis consisting of the Walsh functions:

f =
∑

y∈FN
2

f̂(y)Wy. (4.1.3)

Representation (4.1.3) will be called the Fourier representation of function
f ∈ VN . The coe�cients in the Fourier representation associate for each
y ∈ FN

2 a complex number f̂(y), which is to say that the coe�cients in
representation (4.1.3) also determine a function f̂ : FN

2 → C. This function
is called the Fourier transform of f . To compute the inner product 〈Wx |f〉
by using representation (4.1.3) is to �nd out, by recalling that the Walsh
functions are orthonormal, that

〈Wx |f〉 = f̂(x),

which can also be written as (the values of Walsh functions are always real)

f̂(y) = 〈Wy |f〉 =
∑

x∈FN
2

f(x)Wy(x) =
∑

x∈FN
2

f(x)Wx(y). (4.1.4)

Equations (4.1.3) and (4.1.4) reveal an interesting fact: representations of f
and f̂ with respect to the Walsh function basis are perfectly symmetric. It
follows also that ̂̂

f = f .
More interesting and important facts are also easily recoverable: by the

very de�nition of the inner product we have that
∑

x∈FN
2

|f(x)|2 = 〈f |f〉

= 〈
∑

y∈FN
2

f̂(y)Wy |
∑

z∈FN
2

f̂(z)Wz〉 =
∑

y∈FN
2

∣∣∣f̂(y)
∣∣∣
2
.
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Equation
∑

x∈FN
2

|f(x)|2 =
∑

y∈FN
2

∣∣∣f̂(y)
∣∣∣
2
. (4.1.5)

is known as the Parseval's identity.
If f ∈ VN has a representation

f =
∑

y∈FN
2

f̂(y)Wy, (4.1.6)

we de�ne the Fourier degree of f to be the maximal Hamming weight of such
y for which f̂(y) 6= 0. In symbols,

degF (f) = max{wt(y) | f̂(y) 6= 0}.

4.1.2 Polynomial Representation
Let S ⊆ {1, 2, . . . , N}, x = (x1, . . . , xN ), and XS : FN

2 → C be de�ned by

XS(x) =
{

1, if xi = 1 for each i ∈ S,
0, otherwise. (4.1.7)

It can be shown that the function XS also form a basis of VN [12]. Thus all
functions f : FN

2 → C can also be uniquely represented as

f =
∑

S⊆{1,...,N}
cSXS . (4.1.8)

Functions XS are called monomials, and representation (4.1.8) is referred as
to the polynomial representation. Especially, when S = {i} is a singleton,
we denote XS = Xi, and have that Xi(x) = xi, when xi ∈ F2 is interpreted
as a real number in the most obvious way. Thus we can represent each XS

as
XS =

∏

i∈S

Xi.

The polynomial degree of function XS is de�ned to be degP (XS) = |S|, and
the polynomial degree of function f , degP (f) is de�ned to be the maximal
degree of a monomial occurring in representation (4.1.8).

Proposition 4.1. For any function f ∈ VN , degP (f) = degF (f).

Proof. Let S = {i1, . . . , id} be the set of nonzero coordinates of y. Then
clearly

χy =
∏

i∈S

(1− 2Xi),
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which shows that that degP (χy) = d = degF (χy). Thus, for each f ∈ VN ,
degP (f) ≤ degF (f).

On the other hand, if S = {i1, . . . , id}, we can express the monomial XS

of degree d as
XS =

1
2
(1− χei1

) · . . . · 1
2
(1− χeid

), (4.1.9)

where ei ∈ FN
2 stands for the vector which has 1 in the ith coordinate and

0 everywhere else. Since χei · χej = χei+ej , expanding (4.1.9) we see that
degF (XS) ≤ d = degP (XS), which implies that degF (f) ≤ degP (f) for any
function f ∈ VN .

By the above proposition, we can give the following de�nition.

De�nition 4.2. The degree of a function f : FN
2 → C which is not identically

zero, is de�ned by deg(f) = degF (f) = degP (f). The degree of f ≡ 0 is
symbolically de�ned to be −∞.

Notice that for any f : FN
2 → C we have that deg(f) ≤ N .

4.2 Zeros of Functions
It is a well-known fact that a non-constant polynomial p with complex co-
e�cients having a degree d can have at most d distinct zeros. Here we
will represent the counterpart of this fact for functions FN

2 → C, known as
Schwartz' lemma [25].

Lemma 4.1 (Schwartz' lemma). Let f : FN
2 → C be a nonzero function

having degree d (see De�nition 4.2). Then
∣∣{x ∈ FN

2 | f(x) = 0}∣∣ ≤ 2N − 2N−d.

Proof. If N = 1, then necessarily deg(f) = 1 (because f is not a constant
function) and f has at most 1 = 21 − 21−1 zeros.

Assume then that N > 1 and that the claim holds for spaces FN ′
2 , where

N ′ < N . Obviously we can write the Fourier representation of f as f =
g + (−1)x1h, where g and h do not depend on x1, and deg(g) ≤ d, deg(h) ≤
d− 1. Since g and h do not depend on x1, we can regard them as functions
FN−1

2 → C, and apply the induction hypothesis. We have now three cases:

1. Substitution x1 = 0 makes f identically zero. In this case, substitution
x1 = 1 cannot make f identically zero (because f is not identically
zero). Now g = −h which means that f = ((−1)x1 − 1)h and therefore
f can have at most 2N−1 + 2N−1 − 2N−1−(d−1) = 2N − 2N−d zeros.

2. The case that substitution x1 = 1 makes f identically zero is analogous
to the above case.
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3. Both f0 = g + h and f1 = g − h are not identically zero. Then f can
have at most 2N−1 − 2N−1−d + 2N−1 − 2N−1−d = 2N − 2N−d zeros.

Unfortunately, the above lemma is generally too weak to provide us any
good estimations for the degrees of the functions in VN . However, some
speci�c results can be obtained.
Corollary 4.1. The natural basis functions (see (4.1.1)) Ty : FN

2 → C have
degree N .
Proof. Each function Ty has 2N − 1 zeros, but the equation 2N − 1 ≤ 2N −
2N−d can be satis�ed only if d = N .

Example 4.1. let S = {1, 2, . . . , d} and consider a function XS (see (4.1.7)).
Function XS has degree d and is nonzero if and only if x1 = . . . = xd = 1.
Therefore, XS has 2N−d nonzeros and 2N − 2N−d zeros. However, if d < N ,
XS is a degenerate function in the sense that it actually does not depend on
all variables x1, . . . xN .

4.3 Discrete Derivatives
For any f ∈ VN and h ∈ FN

2 , we de�ne the discrete derivative (afterwards
called merely derivative) of f onto direction h by

∆hf(x) = f(x + h)− f(x). (4.3.1)

4.3.1 Basic Properties
By the de�nition (4.3.1) it is easy to see that the operator ∆h transforms a
function f ∈ VN into another function ∆hf ∈ VN linearly, that is,

∆h(αf + βg) = α∆hf + β∆hg

for any α, β ∈ C and f, g ∈ VN .
An easily veri�able property of the discrete derivative is given in the

following lemma.
Lemma 4.2. If h, g ∈ FN

2 , then
∆h+gf(x) = ∆h∆gf(x) + ∆hf(x) + ∆gf(x).

Proof. A straightforward computation gives that
∆h∆gf(x) + ∆hf(x) + ∆gf(x)

= ∆gf(x + h)−∆gf(x) + f(x + h)− f(x) + ∆gf(x)
= f(x + h + g)− f(x + h) + f(x + h)− f(x)
= ∆h+gf(x).
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As a direct consequence of the above lemma we have:

Corollary 4.2. ∆h∆gf = ∆g∆hf for each g, h ∈ FN
2 .

Corollary 4.3. For any f ∈ VN and h ∈ FN
2 ,

∆h∆hf(x) = −2∆hf(x)

Proof. Obviously ∆0f = 0 for any f ∈ VN , so the claim follows from the
previous lemma by letting g = h.

Also the following lemma can be proven by straightforward computation:

Lemma 4.3. ∆h(fg)(x) = ∆hf(x)g(x + h) + f(x)∆hg(x).

4.3.2 Derivatives of the Polynomials
Example 4.2. Let ei = (0, . . . , 1 . . . , 0) ∈ FN

2 . If i /∈ S, then clearly

∆eiXS(x) = XS(x + ei)−XS(x) = XS(x)−XS(x) = 0. (4.3.2)

On the other hand, it is easy to see that Xi(x + ei) = 1−Xi(x), so

∆eiXi(x) = Xi(x + ei)−Xi(x) = 1− 2Xi(x).

Thus if i ∈ S, we can write XS = XS\{i}Xi and use Lemma (4.3) to get

∆eiXS = XS\{i}(1− 2Xi) = XS\{i} − 2XS . (4.3.3)

As an application, we show how the Moebius inversion formula can be
obtained by repetitive use of discrete derivatives.

Corollary 4.4 (The Moebius inversion formula). If f ∈ VN has a
representation

f =
∑

S⊆{1,...,N}
cSXS , (4.3.4)

then
cS =

∑

T⊆S

(−1)|S|−|T |f
( ∑

i∈T

ei

)
. (4.3.5)

Proof. By Equations (4.3.2) and (4.3.3) it is clear that

∆eir
. . . ∆ei1

f(0) = c{i1,...,ir}. (4.3.6)



38 Function Space VN � Basic Properties

On the other hand, if we denote S = {i1, . . . , ir}, then it is easy to see, by
using induction, that the left hand side of (4.3.6) can be written as

∆eir
. . .∆ei1

f(0)

= ∆eir
. . .∆ei2

(
f(ei1)− f(0)

)

= ∆eir
. . .∆ei3

(
f(ei2 + ei1)− f(ei1)− f(ei2) + f(0)

)

. . .

=
∑

T⊆S

(−1)|S|−|T |f
(∑

i∈T

ei

)
.

4.3.3 Derivatives of Walsh Functions
Example 4.3. For a Walsh function Wy the derivative becomes

∆hWy(x) = Wy(x + h)−Wy(x)

=
1√
2N

(χy(x + h)− χy(x))

= Wy(x)(χy(h)− 1),

which is to say that a linear operator ∆h : VN → VN has Wy ∈ VN as an
eigenvector belonging to the eigenvalue χy(h)− 1.

Thus, if
f(x) =

∑

y∈Fn
2

f̂(y)Wy(x),

we have that
∆hf(x) =

∑

y∈FN
2

(χy(h)− 1)f̂(y)Wy(x),

i.e.,

∆̂hf(y) = (χy(h)− 1)f̂(y) =
{ −2f̂(y), if y · h = 1,

0, otherwise. (4.3.7)

Notice that the above example introduces restrictions to functions that
can be represented as a directed derivative.

Lemma 4.4. A function g ∈ VN can be represented as g = ∆hf for some
f ∈ VN if and only if ĝ(y) = 0 whenever y · h = 0.

Proof. We use the notations above and assume �rst that g = ∆hf . Then

ĝ(y) = ∆̂hf(y) =
{ −2f̂(y), if y · h = 1,

0, otherwise.
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Assume then that y · h = 0 implies ĝ(y) = 0. Letting f = −1
2g we see that

∆hf = ∆h

(− 1
2

∑

y∈FN
2

ĝ(y)Wy

)

= ∆h

(− 1
2

∑

y·h=1

ĝ(y)Wy

)

=
∑

y·h=1

ĝ(y)Wy = g.

The second-last equality is due to the example above.

De�nition 4.3. If h ∈ FN
2 we de�ne the in�uence of direction h to function

f as the probability that for a uniformly drawn x ∈ FN
2 the value f(x + h)

di�ers from f(x). In symbols:

Infh(f) = P (f(x + h) 6= f(x)) = P (∆hf(x) 6= 0).

Lemma 4.5. For any f ∈ VN and h ∈ FN
2 , Infh(f) = Infh(∆hf).

Proof. By the de�nition of in�uence, Infh(∆hf) = P (∆h∆hf(x) 6= 0). But,
by Example 4.3, we can write

Infh(∆hf) = P (−2∆hf(x) 6= 0) = P (∆hf(x) 6= 0) = Infh(f).

Lemma 4.6. For any f ∈ VN and h ∈ FN
2 there is a representation f =

f1 + f2 such that Infh(f1) = 0.

Proof. If f has Fourier expansion

f =
∑

y∈FN
2

f̂(y)Wy,

de�ne
f1 =

∑

y·h=0

f̂(y)Wy

and
f2 =

∑

y·h=1

f̂(y)Wy.

Then clearly f = f1 + f2 and ∆hf1 = 0 by Example 4.3. Hence Infh(f1) =
P (∆hf1(x) 6= 0) = 0.

Lemma 4.7. If Infh(f) = 0, then f̂(y) = 0 whenever y · h = 1.
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Proof. Infh(f) = 0 means that ∆hf is identically zero. But then also ∆̂hf

is identically zero, and by (4.3.7), ∆̂hf(y) = −2f̂(y), whenever y ·h = 1, so
the claim follows immediately.

Example 4.4. Infei(XS) = P (∆ei(XS) 6= 0). Hence if i /∈ S, then, by
Example 4.2, we have that Infei(XS) = 0. On the other hand, if i ∈ S, then
∆eiXS = XS\{i}(1 − 2Xi). Thus ∆eiXS is nonzero if and only if xj = 1
for each j ∈ S \ {i}. But there are 2N−|S\{i}| = 2N/2|S|−1 such vectors x.
Therefore, in the case i ∈ S, we have that

Infei(XS) =
2N

2N · 2|S|−1
=

2
2|S|

. =
2

2deg(XS)
.

De�nition 4.4. Function f ∈ VN depends on variable Xi, if ∆eif is not
identically zero.

Proposition 4.2. If f ∈ VN does not depend on variables Xi1, . . ., Xik ,
then deg(f) ≤ N − k.

Proof. By Lemma 4.7, f̂(y) = 0 whenever at least one of the coordinates
yi1 , . . ., yik

equals to one, but that happens always if wt(y) > N − k.

Let now f ∈ VN be a two-valued function f : FN
2 → {−1, 1}. Then

the expression |f(x + h)− f(x)|2 is either 0 or 4, depending on whether
f(x + h) equals to f(x) or not. Therefore, for such a function we can
express the in�uence as

Infh(f) =
1

4 · 2N

∑

x∈FN
2

|f(x + h)− f(x)|2 =
1

4 · 2N

∑

x∈FN
2

|∆hf(x)|2 .

By using Parseval's identity we can write

Infh(f) =
1

4 · 2N

∑

y∈FN
2

∣∣∣∆̂hf(y)
∣∣∣
2
,

which, by using (4.3.7), can also be written as

Infh(f) =
1

2N

∑

y∈FN
2

∣∣∣f̂(y)
∣∣∣
2
· 1
2
(1− (−1)y·h).

Consider now a subset T ⊆ FN
2 . Then

∑

h∈T

Infh(f) =
1

2N

∑

y∈FN
2

∣∣∣f̂(y)
∣∣∣
2 ∑

h∈T

1
2
(1− (−1)y·h). (4.3.8)

Next we show how the concepts de�ned above can be used to provide a
lower bound on the degree of a non-degenerate Boolean function, a result by
N. Nisan and M. Szegedy.
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Theorem 4.1 (Nisan and Szegedy [21]). If f : FN
2 → {−1, 1} is a

Boolean function which depends on all N ≥ 3 variables and has degree at
least 2, then deg(f) ≥ log2 N − log2 log2 N .
Proof. Let d = deg(f). Choosing T = S1 (the Hamming sphere of weight
one) in equation (4.3.8) gives

∑

h∈S1

Infh(f) =
1

2N

∑

y∈FN
2

∣∣∣f̂(y)
∣∣∣
2
wt(y)

≤ 1
2N

∑

y∈FN
2

∣∣∣f̂(y)
∣∣∣
2
d

=
d

2N

∑

x∈FN
2

|f(x)|2 = d.

The inequality above follows from the assumption that deg(f) = d and the
second-last equality is due to Parseval's identity (4.1.5). On the other hand,
since f was assumed to depend on all of its variables, all the summands in

∑

h∈S1

Infh(f) =
N∑

i=1

Infei(f) =
N∑

i=1

P (∆eif 6= 0)

are nonzero. In fact, by Schwartz' lemma (4.1) we have that

P (∆eif 6= 0) ≥ 1
2d

for each i ∈ {1, . . . , N}. Combining these inequalities gives us
N

2d
≤ d,

or equivalently,
d2d ≥ N. (4.3.9)

Now that function f(x) = lnx−ln lnx is increasing for each x ≥ e, inequality
(4.3.9) implies that

ln(d2d)− ln ln(d2d) ≥ lnN − ln lnN,

which is equivalent to

d ln 2− ln ln 2− ln
(
1 +

log2 d

d

) ≥ ln N − ln lnN. (4.3.10)

For d ≥ 2, term ln(1+log2 d/d) is nonnegative, and therefore (4.3.10) implies

d ln 2 ≥ ln N − ln lnN + ln ln 2 = lnN − ln log2 N,

which, by dividing by ln 2, gives the desired result.





Chapter 5

More Properties of VN

5.1 Polynomials on one Variable
In the continuation, we will make use of polynomials depending of the Ham-
ming weight of elements of FN

2 . In this section, we will represent some useful
notations.

5.1.1 Discrete Derivatives of Univariate Polynomials
Let f be any complex-valued function de�ned on integers. We de�ne the
discrete derivative1 of f by

∆xf(x) = f(x + 1)− f(x).

If there is no danger of confusion, we omit the subscript x and just write
∆xf(x) = ∆f(x). By the very de�nition, it is clear that ∆ is a linear
operator, i.e.,

∆(αf(x) + βg(x)) = α∆f(x) + β∆g(x).

Discrete derivatives of higher order are de�ned inductively: ∆0f(x) = f(x),
and ∆k+1f(x) = ∆(∆kf(x)) for k ≥ 0. By using induction, it is easy to
conclude that

∆lf(x) =
l∑

k=0

(−1)k

(
l

k

)
f(x+ l−k) = (−1)l

l∑

k=0

(−1)k

(
l

k

)
f(x+k), (5.1.1)

whenever l ≥ 0. If M and N are integers, we can easily verify the following
discrete analogue of the fundamental theorem of calculus:

N∑

k=M

∆f(k) = f(N + 1)− f(M). (5.1.2)

1To be precise, we should say �discrete derivative on unit interval�
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Moreover, di�erentiation of products has also easily veri�able analogue in
the discrete case:

∆
(
f(x)g(x)

)
= ∆f(x) · g(x) + f(x + 1) ·∆g(x). (5.1.3)

Using induction, the above formula generalizes into discrete version of Leib-
niz' rule:

∆l
(
f(x)g(x)

)
=

l∑

k=0

(
l

k

)
∆l−kf(x + k)∆kg(x). (5.1.4)

The formula (5.1.3) together with (5.1.2) easily yields the discrete analogue
for integrating by parts:

N∑

k=M

∆f(k) · g(k)

= f(N + 1)g(N + 1)− f(M)g(M)−
N∑

k=M

f(k + 1)∆g(k), (5.1.5)

which is sometimes more useful in an asymmetric form:

N∑

k=M

∆f(k) · g(k) = f(N + 1)g(N)− f(M)g(M)−
N−1∑

k=M

f(k + 1)∆g(k).

5.1.2 Shifted Power Representation
Here we will consider polynomials having complex coe�cients and degree at
most N . However, the standard power representation

f(x) = c0 + c1x + c2x
2 + . . . + cNxN (5.1.6)

is not very well compatible with the discrete derivative. For a better repre-
sentation we will use shifted power2 de�ned by x(0) = 1, x(1) = x and

x(k) = x(x− 1) · . . . · (x− k + 1),

whenever k ≥ 2. It should be noticed that x(k) is a polynomial of degree k,
having 1 as the leading coe�cient and {0, 1, . . . , k − 1} as zeros. Moreover,
it is trivial to see that the polynomials x(0), x(1), . . ., x(N) form a basis of
the vector space consisting of polynomials having degree at most N : That
is, each polynomial f having degree at most N can be uniquely represented
as

f(x) = d0 + d1x
(1) + d2x

(2) + . . . + dNx(N). (5.1.7)
2Also called factorial polynomial in [19].



5.1 Polynomials on one Variable 45

We call representation (5.1.7) shifted power representation. Using the de�-
nition of x(k), it is easy to see that the following equations hold:

(x + 1)(k) = (x + 1)x(k−1) (5.1.8)
x(k) = x(k−1)(x− k + 1). (5.1.9)

Subtracting (5.1.9) from (5.1.8) we see that

∆x(k) = kx(k−1), (5.1.10)

whenever k ≥ 1. Formula (5.1.10) gives a beautiful analogy to the di�er-
entiation of powers. Together with (5.1.2) it is quite useful for evaluating
sums.

Using the shifted power representation (5.1.7) and formula ∆ 1
k+1x(k+1) =

x(k) we can establish

Proposition 5.1. If f is a polynomial of degree N with leading coe�cient
c, then ∆kf is a polynomial of degree N − k with leading coe�cient N(N −
1) . . . (N − k + 1)c. Moreover, for each polynomial f there is a polynomial g
such that ∆g = f .

5.1.3 Binomial Representation
We will �nd even more convenient basis for polynomials having degree at
most N : For k ≥ 0, we de�ne the generalized binomial coe�cients by

(
x

k

)
=

x(k)

k!
. (5.1.11)

It is easy to see that
(−x

k

)
= (−1)k

(
x + k − 1

k

)
(5.1.12)

and that each
(
x
k

)
is a polynomial of degree k with leading coe�cient 1/k!.

Moreover, any polynomial of degree at most N has a unique representation
as

f(x) = f0 − f1

(
x

1

)
+ f2

(
x

2

)
+ . . . + fN (−1)N

(
x

N

)
. (5.1.13)

We call (5.1.13) a binomial representation of f . The reason for choosing
alternating sign for generalized binomial coe�cients will become apparent
very soon. By (5.1.11) it is clear that

∆
(

x

k

)
=

(
x

k − 1

)
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for k ≥ 1, so binomial representation is very well compatible with discrete
derivative. It is also clear that

∆lf(x) = (−1)lfl + (−1)l+1fl+1

(
x

1

)
+ . . . + (−1)NfN

(
x

N − l

)
, (5.1.14)

whenever 0 ≤ l ≤ N . Equation (5.1.14) gives us

(−1)lfl = ∆lf(0), (5.1.15)

which, using (5.1.1), can be written as

fl = (−1)l∆lf(0) =
l∑

k=0

(−1)k

(
l

k

)
f(k). (5.1.16)

The reason for choosing alternating signs for the generalized binomial coef-
�cients becomes now reasonable:

Since x(k) has zeros at {0, 1, . . . , k− 1}, also (
x
k

)
does. It follows that the

value f(l) at integer point l ∈ {0, 1, . . . , N} depends only on coe�cients f0,
f1, . . ., fl. To be precise,

f(l) =
l∑

k=0

(−1)l

(
l

k

)
fk,

which is gives a beautiful symmetry with (5.1.16). To summarize:

Proposition 5.2. Each polynomial having degree at most N has unique
representation

f(x) =
N∑

k=0

(−1)k

(
x

k

)
fk. (5.1.17)

For each l ∈ {0, 1, . . . , N} the value f(l) and coe�cient fl can be found using
the following symmetric formulae:

f(l) =
l∑

k=0

(−1)k

(
l

k

)
fk (5.1.18)

fl =
l∑

k=0

(−1)k

(
l

k

)
f(k) (5.1.19)

Representation (5.1.17) and the associated formulas (5.1.18) and (5.1.19)
are pretty handy: They can be used to straightforwardly establish the fol-
lowing well-known facts:

Theorem 5.1 (The Interpolation Theorem). Let {v0, v1, . . . vN} be a
set of complex numbers. There exists a polynomial P having degree at most
N such that P (i) = vi for each i ∈ {0, 1, . . . , N}.
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Proof. Polynomial P can be found by using formula (5.1.19).

Theorem 5.2. Let f be a polynomial of degree N with leading coe�cient
c 6= 0 (in the power representation), and

||f ||∞ = max{|f(0)| , |f(1)| , . . . , |f(N)|}.

Then ||f ||∞ ≥ |c| N !
2N .

Proof. If f is represented as

f(x) =
N∑

k=0

(−1)k

(
x

k

)
fk,

then the leading coe�cient of power representation (5.1.6) of f is

c = (−1)NfN/N !.

By triangle inequality and formula (5.1.19),

|fN | =

∣∣∣∣∣
N∑

k=0

(−1)k

(
N

k

)
f(k)

∣∣∣∣∣ ≤
N∑

k=0

(
N

k

)
|f(k)|

≤ ||f ||∞
N∑

k=0

(
N

k

)
= ||f ||∞ 2N .

Thus
||f ||∞ ≥ |fN |

2N
= |c| N !

2N
,

as claimed.

Remark 5.1. The above bound for ||f ||∞ is quite tight: By the interpolation
theorem (Theorem 5.1) one can �nd f such that f(k) = (−1)kc N !

2N , for each
k ∈ {0, 1, . . . , N}. For such a polynomial f , ||f ||∞ = |c| N !

2N , and fN = cN !,
so the leading coe�cient in the power representation is c.

5.2 Character Basis
5.2.1 Krawtchouk Polynomials
Let us de�ne

P (r)(x) =
∑

y∈Sr

χy(x). (5.2.1)

It is rather clear that the value P (r)(x) is invariant under any permutation of
the coordinates of x, which is to say that the value P (r)(x) actually depends
only on the Hamming weight of x. In fact, to count the value P (r)(x), let
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us denote x = wt(x) and let X be the set of indices of nonzero coordinates
of x. To choose a vector y in the rth Hamming sphere, one must choose r
indices for nonzero coordinates. We can choose l coordinates in X and r− l
outside of X. The total number of ways to do so is

(
x

l

)(
N − x

r − l

)
, (5.2.2)

and then (−1)x·y = (−1)l. On the other hand, l can be any number between
0 and r, so

P (r)(x) =
r∑

l=0

(−1)l

(
N − x

r − l

)(
x

l

)
,

when x = wt(x). Notice that we can regard expression (5.2.2) as a product
of generalized binomial coe�cients, de�ned for all real (and also complex)
values of x. Doing so, we notice that (5.2.2) is a polynomial of x having
degree l + r − l = r. Hence the polynomial

Kr(x) =
r∑

l=0

(−1)l

(
N − x

r − l

)(
x

l

)

induced by P (r) ∈ VN , called the rth Krawtchouk polynomial, has degree
at most r. In fact, we can quite easily �nd the Binomial representation of
Kr(x) to notice that

Kr(x) =
r∑

l=0

(−2)l

(
N − l

r − l

)(
x

l

)

actually has degree r. Since
∑

x∈FN
2

P (r)(x)P (s)(x) = 〈P (r) |P (s)〉

= 〈
∑

y∈Sr

χy |
∑

z∈Ss

χz〉

=
{

2N
(
N
r

)
, if r = s,

0 otherwise.

But on the other hand,

∑

x∈FN
2

P (r)(x)P (s)(x) =
N∑

k=0

∑

x∈Sk

Kr(k)Kr(k)

=
N∑

k=0

(
N

k

)
Kr(k)Ks(k).
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Thus the Krawtchouk polynomials satisfy
N∑

k=0

(
N

k

)
Kr(k)Ks(k) =

{
2N

(
N
r

)
, if r = s,

0, otherwise.

It is not di�cult to conclude that polynomials having degree at most N form
a vector space PN , when sum and scalar multiplication are de�ned pointwise.
Also, one can straightforwardly check that

〈P1 |P2〉K =
N∑

k=0

(
N

k

)
P1(k)∗P2(k) (5.2.3)

de�nes an inner product on that vector space. The above formulae can
therefore interpreted as follows: with respect to inner product (5.2.3) the
Krawtchouk polynomials form an orthogonal basis of PN , even such that
deg(Kr) = r for each r ∈ {0, 1, . . . , N}.

5.2.2 Symmetric Functions
Recall that any function f ∈ VN has a Fourier representation

f =
∑

y∈FN
2

f̂(y)Wy.

We say that f is symmetric, if f(x) = f(π(x)), whenever x ∈ FN
2 and π is

a permutation on coordinates of x.

Proposition 5.3. If f is a symmetric function, then f̂(y1) = f̂(y2) when-
ever wt(y1) = wt(y2)

Proof. By (4.1.4),
f̂(y) =

∑

x∈FN
2

f(x)Wx(y). (5.2.4)

Since f is symmetric, the value f(x) depends only on the Hamming weight
of x. We denote fk = f(x) if wt(x) = k, and write (5.2.4) as

f̂(y) =
N∑

i=0

∑

x∈Si

f(x)Wx(y)

=
1√
2N

N∑

i=0

fi

∑

x∈Si

χx(y)

=
1√
2N

N∑

i=0

fiKi(wt(y)),

which shows that f̂(y) depends only on the Hamming weight of y.
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Corollary 5.1. Each symmetric function f : FN
2 → C of degree d can be

expressed as polynomial of wt(x) of degree d.

Proof. By the above proposition, f̂(y) depends only on i = wt(y). We can
write f̂(y) = f̂i, and see that

f(x) =
∑

y∈FN
2

f̂(y)Wy(x)

=
1√
2N

N∑

i=0

∑

y∈Si

f̂iχy(x)

=
1√
2N

N∑

i=0

f̂iKi(wt(x)),

which is the representation required.

5.3 The Hybrid Basis
We have already seen that the character basis, as well as its scaled version,
the Fourier basis consisting of Walsh functions, has some signi�cant proper-
ties, e.g., the symmetric inversion formulae (4.1.3) and (4.1.4) and Parseval's
identity (4.1.5). It is also a well-known fact that the best approximations of
a Boolean function f with respect to so-called L2-norm (which we will de�ne
later) can be obtained by truncating the Fourier representation (represen-
tation in the basis of Walsh functions). On the other hand, we will later
see that the approximations obtained by using the Walsh function basis can
be quite bad with respect to so-called L∞-norm (which we will also de�ne
later). For better approximations and an analogous formula to (5.2.1) we
will study another basis.

5.3.1 Functions B(N)

For each y ∈ FN
2 , let us de�ne a function

B
(N)
y : FN

2 → C

by

B
(N)
y (x) =

(
wt(y)

|supp(x) ∩ supp(y)|
)

χy(x).

A very �rst and evident observation on functions B
(N)
y to be made is that

the value B
(N)
y (x) depends on only those bits of x, which are in supp(y).

Thus we have immediately, by the Proposition 4.2



5.3 The Hybrid Basis 51

Proposition 5.4.

deg(B(N)
y ) ≤ |supp(y)| = wt(y).

Another straightforward but important observation is supplied in the
following proposition.

Proposition 5.5. Assume that d = wt(y) < N and that supp(y) = {i1, . . . ,
id}. Then

B
(N)
y =

(
d

|supp(x) ∩ supp(y)|
)

χy(x) = B
(d)
1 (xi1 , . . . , xid),

where 1 ∈ Fd
2 stands for the vector 1 = (1, 1, . . . , 1).

Example 5.1. For F1
2 = F2 we have two functions B

(1)
0 and B

(1)
1 , which can

be expressed as
{

B
(1)
0 (x) =

(
0

|supp(x)∩∅|
)
χ0(x) = 1,

B
(1)
1 (x) =

(
1

|supp(x)∩supp(1)|
)
χ1(x) = (−1)x.

By the above proposition, to �nd representations for functions B
(N)
y , it

is su�cient to �nd the representations in the case y = 1; all the remaining
cases can be treated recursively in a space with a smaller dimension.

In case y = 1, the functions B become

B
(N)
1 (x) =

(
N

wt(x)

)
χ1(x).

For a small notational simplicity, we �rst consider functions

CN : FN
2 → C

de�ned by
CN (x) =

(
N

wt(x)

)
.

Functions CN are clearly symmetric, and therefore, in their fourier represen-
tation

CN =
1√
2N

∑

y∈FN
2

ĈN (y)χy,

the coe�cient ĈN (y) depends only on the Hamming weight of y. Let us
therefore consider the value

ĈN (11 . . . 10 . . . 0)
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with d 1's and N − d 0's. We have that

ĈN (11 . . . 10 . . . 0)

=
1√
2N

∑

x∈FN
2

(
N

wt(x)

)
(−1)x1+...+xd

=
1√
2N

∑

x′∈Fd
2

∑

x′′∈FN−d
2

(
N

wt(x′) + wt(x′′)

)
(−1)wt(x′)

=
1√
2N

d∑

l=0

∑

x′∈S
(d)
l

∑

x∈FN−d
2

(
N

wt(x) + l

)
(−1)l

=
1√
2N

d∑

l=0

(
d

l

) N−d∑

i=0

∑

x∈SN−d
i

(
N

i + l

)
(−1)l

=
1√
2N

d∑

l=0

(
d

l

)
(−1)l

N−d∑

i=0

(
N − d

i

)(
N

i + l

)

=
1√
2N

d∑

l=0

(−1)l

(
d

l

)(
2N − d

N − l

)
. (5.3.1)

The �nal equality is obtained by using Vandermonde's convolution (see Ap-
pendix).

Lemma 5.1. If wt(y) = d = 2r + 1 is an odd number, then ĈN (y) = 0

Proof. By using the expression above, we see that if d = 2r + 1, then

d∑

l=0

(−1)l

(
d

l

)(
2N − d

N − l

)

=
r∑

l=0

(−1)l

(
2r + 1

l

)(
2N − 2r − 1

N − l

)

+
2r+1∑

l=r+1

(−1)l

(
2r + 1

l

)(
2N − 2r − 1

N − l

)

=
r∑

l=0

(−1)l

(
2r + 1

l

)(
2N − 2r − 1

N − l

)

+
r∑

k=0

(−1)2r+1−k

(
2r + 1

2r + 1− k

)(
2N − 2r − 1

N − 2r − 1 + k

)
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=
r∑

l=0

(−1)l

(
2r + 1

l

)(
2N − 2r − 1

N − l

)

−
r∑

l=0

(−1)l

(
2r + 1

l

)(
2N − 2r − 1

N − l

)
= 0,

which proves the claim.

Lemma 5.2. If wt(y) = d = 2r is an even number, then

ĈN (y) =
(−1)r

√
2N

(
N
r

)(
2N
N

)
(
2N
2r

) .

Proof. By (5.3.1), for d = 2r = wt(y) we can write the coe�cient ĈN (y) as

1√
2N

( r−1∑

l=0

(−1)l

(
2r

l

)(
2N − 2r

N − l

)
+

2r∑

l=r+1

(−1)l

(
2r

l

)(
2N − 2r

N − l

)

+ (−1)r

(
2r

r

)(
2N − 2r

N − r

))

=
1√
2N

( r−1∑

l=0

(−1)l

(
2r

l

)(
2N − 2r

N − l

)

+
r−1∑

k=0

(−1)−k+2r

(
2r

2r − k

)(
2N − 2r

N + k − 2r

)
+ (−1)r

(
2r

r

)(
2N − 2r

N − r

))

=
1√
2N

( r−1∑

l=0

(−1)l

(
2r

l

)(
2N − 2r

N − l

)
+

r−1∑

l=0

(−1)l

(
2r

l

)(
2N − 2r

N − l

)

+ (−1)r

(
2r

r

)(
2N − 2r

N − r

))

=
1√
2N

(
2

r−1∑

l=0

(−1)l

(
2r

l

)(
2N − 2r

N − l

)
+ (−1)r

(
2r

r

)(
2N − 2r

N − r

))

The latest expression can be also rewritten as

1√
2N

(
2

r−1∑

l=0

(−1)l

(
2r

l

)(
2N − 2r

N − l

)
+ (−1)r

(
2r

r

)(
2N − 2r

N − r

))

=
1√
2N

(
2

r−1∑

l=0

(−1)l

(
2r

l

)
(2N − 2r)!

(N − l)!(N − 2r + l)!

+ (−1)r

(
2r

r

)
(2N − 2r)!

(N − r)!(N − r)!

)

=
(2N − 2r)!√

2N

(
2

r−1∑

l=0

(−1)l

(
2r

l

)
N (l)N (2r−l)

N !N !
+ (−1)r

(
2r

r

)
N (r)N (r)

N !N !

)



54 More Properties of VN

=
N (r)(2N − 2r)!

N !N !
√

2N

×
(
2

r−1∑

l=0

(−1)l

(
2r

l

)
N (l)(N − r)(r−l) + (−1)r

(
2r

r

)
N (r)

)
(5.3.2)

To �nish the proof, we will use an auxiliary result.

Lemma 5.3.

2
r−1∑

l=0

(−1)l

(
2r

l

)
N (l)(N − r)(r−l) + (−1)r

(
2r

r

)
N (r) = (−1)r(2r)(r).

Proof. We �rst write

f(x) = 2
r−1∑

l=0

(−1)l

(
2r

l

)
x(l)(x− r)(r−l) + (−1)r

(
2r

r

)
x(r) (5.3.3)

and notice that f(x) is a polynomial of x having degree at most r. As each
(x − r)(r−l) becomes zero by substituting x = r in (5.3.3), it is easy to see
that

f(r) = (−1)r

(
2r

r

)
r(r) = (−1)r(2r)(r).

We will still show that f(0) = f(1) = . . . f(r − 1) = (−1)r(2r)(r), and
the proof is complete, since a polynomial of degree at most r having value
(−1)r(2r)(r) at r + 1 points must be a constant polynomial.

By (5.1.12), f(x) can be written as

f(x) = 2
r−1∑

l=0

(−1)l

(
2r

l

)
x(l)(r − x + r − l − 1)(r−l)(−1)r−l

+ (−1)r

(
2r

r

)
x(r)

= 2(−1)r
r−1∑

l=0

(
2r

l

)
x(l)(2r − x− l − 1)(r−l) + (−1)r

(
2r

r

)
x(r),

which shows that for any 0 ≤ k < r we have that

f(k) = 2(−1)r
r−1∑

l=0

(
2r

l

)
k(l)(2r − k − l − 1)(r−l). (5.3.4)

By writing M = 2r and by noticing that the summands become zero as l
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exceeds k, we can re-express (5.3.4) as

f(k) = 2(−1)r
k∑

l=0

(
M

l

)
k(l)(M − k − l − 1)(r−l)

= 2(−1)r
k∑

l=0

(
M

l

)
k(l)(M − k − l − 1)(k−l)(M − 2k − 1)(r−k)

= 2(−1)r(M − 2k − 1)r−k
k∑

l=0

(
M

l

)
k(l)(M − k − l − 1)(k−l).

To complete the proof of Lemma 5.3, we will investigate the expression

k∑

l=0

(
M

l

)
k(l)(M − k − l − 1)(k−l).

It is useful to notice that
(

M

l

)
k(l) =

(
k

l

)
M (l).

Lemma 5.4.
k∑

l=0

(
k

l

)
M (l)(M − k − l − 1)(k−l) = 2k

k∏

l=1

(M − (2l − 1)).

Proof. Let

g(x) =
k∑

l=0

(
k

l

)
x(l)(x− k − l − 1)(k−l).

Clearly g has degree k, and the coe�cient of the highest term of g is

k∑

l=0

(
k

l

)
= 2k,

so we have

g(x) = 2k
k∏

l=1

(x− αi)

for some numbers αi. It remains to show that g has zeros 2r − 1 for r ∈
{1, 2, . . . , k}. Now

g(2r − 1) =
k∑

l=0

(
k

l

)
(2r − 1)(l)(2r − k − l − 2)(k−l),
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which becomes, (using (5.1.12)) under the condition that k ≥ 2r − 1,

g(2r − 1) =
2r−1∑

l=0

(
k

l

)
(−1)k−l(2r − 1)(l)(2k − 2r + 1)(k−l)

=
r−1∑

l=0

(
2r − 1

l

)
(−1)k−lk(l)(2k − 2r + 1)(k−l)

+
2r−1∑

l=r

(
2r − 1

l

)
(−1)k−lk(l)(2k − 2r + 1)(k−l)

By letting l = −a + 2r − 1 in the latest sum, we can rewrite the above
expression as

=
r−1∑

l=0

(
2r − 1

l

)
(−1)k−lk(l)(2k − 2r + 1)(k−l)

+
r−1∑

a=0

(
2r − 1

−a + 2r − 1

)
(−1)k+a−2r+1k(2r−1−a)(2k − 2r + 1)(k−2r+1+a),

which gives, by again replacing a by l, that

g(2r + 1)

=
r−1∑

l=0

(
2r − 1

l

)
(−1)k−lk(l)(2k − 2r + 1)(k−l)

−
r−1∑

l=0

(
2r − 1

l

)
(−1)k−lk(2r−1−l)(2k − 2r + 1)(k−2r+1+l)

=
r−1∑

l=0

(
2r − 1

l

)
(−1)k−lk(l)(2k − 2r + 1)(k−2r+1+l)(k − l)(2r−2l−1)

−
r−1∑

l=0

(
2r − 1

l

)
(−1)k−lk(l)(k − l)(2r−1−2l)(2k − 2r + 1)(k−2r+1+l)

= 0.

Recall that the above result holds true under the condition k ≥ 2r−1, which
is equivalent to r ≤ k+1

2 . The remaining cases can be handled by noticing
that

g(2k − x) =
k∑

l=0

(
k

l

)
(2k − x)(l)(2k − x− k − l − 1)(k−l),
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which can be rewritten, by replacing l by k − l and using (5.1.12), as

g(2k − x) =
k∑

l=0

(
k

k − l

)
(2k − x)(k−l)(k − x− (k − l)− 1)(l)

=
k∑

l=0

(
k

l

)
(x− k − l − 1)(k−l)x(l)(−1)k

= (−1)kg(x),

which is to say that g(x) = (−1)kg(2k − x).
Thus, if r > k+1

2 , then
g(2r − 1) = g(2k − (2k − 2r + 1))

= (−1)kg(2k − 2r + 1)
= (−1)kg(2(k − r + 1)− 1) = 0,

since k − r + 1 < k+1
2 .

The proof of Lemma 5.3 completed. Now that the identity
k∑

l=0

(
k

l

)
M (l)(M − k − l − 1)(k−l) = 2k

k∏

l=1

(M − (2l − 1))

is known to be true, we can write (5.3.4) as

f(k) = 2(−1)r(M − 2k − 1)(r−k)2k
k∏

l=1

(M − (2l − 1)) (5.3.5)

for any k such that 0 ≤ k < r (recall that M = 2r). We will now demon-
strate that for the appropriate values of k, expression (5.3.5) is equal to
(−1)r(2r)(r).

For k = 0, (5.3.5) just becomes
f(0) = 2(−1)r(2r − 1)(r) = 2(−1)r(2r − 1)(r−1)r = (−1)r(2r)(r).

Assume then that the claim is true for some value k < r − 1. For k + 1 we
write

f(k + 1) = 2(−1)r(2r − 2k − 3)(r−k−1)2k+1
k+1∏

l=1

(2r − (2l − 1))

= 2(−1)r(2r − 2k − 3)(r−k−2)(2r − 2k − 2)(2r − 2k − 1)

× 2k
k∏

l=1

(2r − (2l − 1))

= 2(−1)r(2r − 2k − 1)(r−k)2k
k∏

l=1

(2r − (2l − 1))

= f(k) = (−1)r(2r)(r),
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which shows that f(k) = (−1)r(2r)(r) for each k ∈ {0, 1, . . . , r − 1} and
completes the proof of Lemma 5.3.

The proof of Lemma 5.2 completed. If wt(y) = 2r, we have, by (5.3.2) and
by the above results (Lemmata 5.3 and 5.2) that

ĈN (y) =
N (r)(2N − 2r)!

N !N !
√

2N
(−1)r(2r)(r)

=
(−1)r

√
2N

N (r)

r!
(2N)!
N !N !

(2N − 2r)!(2r)!
(2N)!

=
(−1)r

√
2N

(
N
r

)(
2N
N

)
(
2N
2r

) . (5.3.6)

Corollary 5.2. Function B
(N)
y has degree wt(y).

Proof. By Proposition 5.4 we only have to show that deg(B(N)
y ) cannot be

less than d = wt(y). Writing supp(y) = {i1, . . . , id} we have

B
(N)
y (x) = B

(d)
1 (xi1 , . . . , xid).

But clearly B̂
(d)
1 (1) = Ĉd(0) 6= 0, which proves the claim.

Proposition 5.6. Functions By form a basis of VN .

Proof. By forming the 2N × 2N transformation matrix by using representa-
tions

By =
∑

z∈FN
2

B̂y(z)Wz

we immediately notice that the matrix Byx = B̂y(x) is lower-triangular
having no zeros in the diagonal. Therefore the transformation matrix is
invertible.

Basis {By | y ∈ FN
2 } will be called hybrid basis of VN .

5.3.2 Discrete Chebyshev Polynomials
Choose r ∈ {0, 1, . . . , N} and consider expression

D(r)(x) =
∑

y∈Sr

By(x)
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analogous to (5.2.1). Again it is easy to see that D(r)(x) depends only on
the Hamming weight x = wt(x). In fact, we can write

D(r)(x) =
∑

y∈Sr

(
wt(y)

|supp(y) ∩ supp(x)|
)

χy(x)

=
r∑

i=0

∑
y∈Sr

|supp(x)∩supp(y)|=i

(
r

i

)
(−1)i

=
r∑

i=0

(−1)i

(
r

i

)(
N − x

r − i

)(
x

i

)
.

De�nition 5.1. Polynomial

Dr(x) =
r∑

i=0

(−1)i

(
r

i

)(
N − x

r − i

)(
x

i

)
(5.3.7)

is called the rth Discrete Chebyshev polynomial on interval [0, N ]. If there is
no danger of confusion, the interval [0, N ] is not mentioned explicitly.

Clearly Dr has degree at most r, and after �nding the Binomial repre-
sentation

Dr(x) =
r∑

i=0

(−1)i

(
r + i

r

)(
N − i

r − i

)(
x

i

)
(5.3.8)

we can see that Dr has degree exactly r. By using (5.1.12) and (5.3.7) we
can write

Dr(x) =
r∑

i=0

(−1)r−i

(
r

r − i

)(
N − x

i

)(
x

r − i

)

= (−1)r
r∑

i=0

(
r

i

)(
x−N + i− 1

i

)(
x

r − i

)

= (−1)r
r∑

i=0

(
r

i

)
∆r−i

(
x + i−N − 1

r

)
∆i

(
x

r

)
,

which, by Leibniz' rule (5.1.4) means that

Dr(x) = (−1)r∆r

((
x−N − 1

r

)(
x

r

))
. (5.3.9)

Since each application of ∆ decreases the degree by one, we can again see
that Dr is a polynomial having degree r. Moreover, it is easy to see that, if
l ≤ r, then

∆r−l

((
x

r

)(
x−N − 1

r

))
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is a polynomial having degree r + l and zeros at

{0, 1, . . . , l − 1} ∪ {N + 1, N + 2, . . . , N + l}.

We can use the above observation to prove the following:

Proposition 5.7. If g is a polynomial having degree less than r, then
N∑

i=0

Dr(i)g(i) = 0.

Proof. By using (5.1.5) and the knowledge on zeroes above, we can write

N∑

i=0

Dr(i)g(i)

= (−1)r
N∑

i=0

∆r

((
i

r

)(
i−N − 1

r

))
g(i)

= (−1)r+1
N−1∑

i=0

∆r−1

((
i + 1

r

)(
i + 1−N − 1

r

))
∆g(i)

= (−1)r+1
N∑

i=1

∆r−1

((
i

r

)(
i−N − 1

r

))
∆g(i− 1),

and repeatedly using the above reduction we �nally end up at
N∑

i=0

Dr(i)g(i) = −
N∑

i=r−1

∆
((

i

r

)(
i−N − 1

r

))
∆r−1g(i− r + 1) (5.3.10)

Since we assumed that g as degree at most r − 1, ∆r−1g is a constant, say
C. Now

N∑

i=0

Dr(i)g(i)

= −C
N∑

i=r−1

∆
((

i

r

)(
i−N − 1

r

))

= −C

((
N + 1

r

)(
0
r

)
−

(
r − 1

r

)(
r − 1−N − 1

r

))
= 0,

as claimed.

From the previous proposition it follows that the discrete Chebyshev
polynomials form an orthogonal basis for PN (the vector space of all polyno-
mials with degree no more than N) with respect to the inner product de�ned
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by

〈P1 |P2〉C =
N∑

i=0

P1(i)∗P2(i).

We de�ne L2-norm in PN by

||P ||2 =
√
〈P |P 〉C ,

and it is of course natural to resolve the values

||Dr||22 = 〈Dr |Dr〉C ,

but these can be found by substituting g(x) = Dr(x) in (5.3.10) and once
more applying the �partial integration� to get

〈Dr |Dr〉C =
N∑

i=r

(
i

r

)(
i−N − 1

r

)
∆rDr(i− r).

It is easy to see that ∆rDr =
(
2r
r

)
is a constant, so

〈Dr |Dr〉C =
(

2r

r

) N∑

i=r

(
i

r

)(
i−N − 1

r

)
=

(
2r

r

)(
N + 1 + r

2r + 1

)
, (5.3.11)

as easily veri�ed, see the Appendix.
Representation (5.3.7) can be used to reveal an interesting fact about the

discrete Chebyshev polynomials. By substituting N − x in (5.3.7) shows us
that

Dr(N − x) =
r∑

i=0

(−1)i

(
r

i

)(
x

r − i

)(
N − x

i

)

=
r∑

i=0

(−1)r−i

(
r

r − i

)(
x

i

)(
N − x

r − i

)

= (−1)r
r∑

i=0

(−1)i

(
r

i

)(
N − x

r − i

)(
x

i

)

= (−1)rDr(x),

which is to say that the discrete Chebyshev polynomials (on interval [0, N ])
of even (resp. odd) degree are symmetric (resp. antisymmetric) with respect
to N/2.

The recurrence relations are mathematically always interesting, so it is
worth studying them. The recurrence relation for the discrete Chebyshev
polynomials can be found by using the standard techniques.
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Theorem 5.3. For r ≥ 2, the discrete Chebyshev polynomials satisfy the
following recurrence relation

r2Dr = (2r − 1)D1Dr−1 − (N + r)(N − r + 2)Dr−2.

Proof. Using (5.3.7) we see that D1(x) = N − 2x. Representation (5.3.9)
easily reveals that Dr(x) has (−1)r 1

r!

(
2r
r

)
as the leading coe�cient (in the

standard power representation). It follows that the polynomials r2Dr and
(2r− 1)D1Dr−1 have identical leading coe�cients and therefore polynomial
r2Dr − (2r − 1)D1Dr−1 has degree at most r − 1. Because of that, we have
a representation

r2Dr − (2r − 1)D1Dr−1 =
r−1∑

i=0

αiDi (5.3.12)

for some coe�cients αi.
Since each Dr is orthogonal to any g with degree less than r, taking inner

product of both sides of (5.3.12) with any Dk such that k ≤ r − 3 implies
that αi = 0 for each i ≤ r − 3. Hence

r2Dr − (2r − 1)D1Dr−1 = αr−1Dr−1 + αr−2Dr−2 (5.3.13)

for some numbers αr−1 and αr−2. From (5.3.13) we can deduce that

αr−2 = 〈−(2r − 1)D1Dr−1 |Dr−2〉 ||Dr−2||−2 .

To compute the inner product above, we �rst notice that

〈−(2r − 1)D1Dr−1 |Dr−2〉 = 〈−(2r − 1)D1Dr−2 |Dr−1〉,
and that the degree of −(2r−1)D1Dr−2 is r−1, so we have a representation

−(2r − 1)D1Dr−2 = βr−1Dr−1 + βr−2Dr−2 + . . . + β0D0. (5.3.14)

Clearly
〈−(2r − 1)D1Dr−2 |Dr−1〉 = βr−1 ||Dr−1||2 ,

and comparing the leading coe�cients in (5.3.14) gives that

βr−1 = −2(2r − 1)(r − 1)
(

2r − 4
r − 2

)(
2r − 2
r − 1

)−1

,

which �nally gives us

αr−2 = −(N + r)(N − r + 2).

To �nd αr−1 we notice that representation (5.3.7) shows that Dr(0) =
(
N
r

)
and substituting x = 0 in (5.3.14) gives that αr−1 = 0, and the claim follows
immediately.
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Yet another interesting property can be found by using the discrete ana-
logues of the standard techniques.

Theorem 5.4. The discrete Chebyshev polynomials Dr(x) satisfy the fol-
lowing di�erence equation:

(x + 2)(x−N + 1)∆2Dr(x) + (2x− r2 − r −N + 2)∆Dr(x)
− r(r + 1)Dr(x) = 0.

Proof. Denote
Vr(x) =

(
x

r

)(
x−N − 1

r

)
.

It is easy to verify that

A(x)∆Vr(x) = B(x)Vr(x), (5.3.15)

where A(x) = (x − r + 1)(x − N − r) and B(x) = r(2x − N − r + 1).
Taking discrete derivatives of order r + 1 of the both sides of (5.3.15) by
using Leibniz' rule (5.1.4) we get

r+1∑

k=0

(
r + 1

k

)
∆r+1−kA(x + k)∆k∆Vr(x)

=
r+1∑

k=0

(
r + 1

k

)
∆r+1−kB(x + k)∆kVr(x).

Because deg(A) = 2 and deg(B) = 1, there are only three summands in
the left hand side (corresponding to values k ∈ {r + 1, r, r − 1}) and two
summands in the right hand size (corresponding to values k ∈ {r + 1, r}.
Evaluating the summands yields the claim straightforwardly.

Notice that the statement of Theorem 5.4 can be also written as

∆
(
(x + 1)(x−N)∆Dr(x)

)
= r(r + 1)(∆Dr(x) + Dr(x))
= r(r + 1)Dr(x + 1).

By denoting f(x) = (x+1)(x−N)∆Dr(x) and using (5.1.2) we can conclude
that

f(y) =
y−1∑

x=−1

∆f(x) = r(r + 1)
y−1∑

x=−1

Dr(x + 1) = r(r + 1)
y∑

x=0

Dr(x),

which is to say that

(x + 1)(x−N)∆Dr(x) = (r + 1)
x∑

k=0

Dr(k).
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5.4 Counterparts from Calculus
5.4.1 The Gradient, Paths
De�nition 5.2. Let f ∈ VN be any function (recall from Chapter 4 that
VN is the vector space of all functions f : FN

2 → C) and B = {e1, . . . , eN}
the natural basis of FN

2 . We de�ne the gradient of f as

∇f = (∆e1f, . . . ,∆eN f) ∈ V N
N .

An element of V N
N is referred as to a vector �eld.

De�nition 5.3. A path P in FN
2 is a sequence x0, x1, . . ., xk such that

xi+1 − xi ∈ B for each i ∈ {0, 1, . . . , k − 1}. That is, a member xi ∈ FN
2

of the path P can be obtained from the previous member xi−1 by �ipping a
single bit. The length of the path P : x0, x1, . . ., xk is de�ned to be k. We
also say x0 and xk are the starting and ending points of the path, and that
the path P connects points x0 and xk.

If x, y ∈ FN
2 are any two vectors, it is clear that there exists a path P :

x = x0, x1, . . ., xk = y connecting points x and y such that k = wt(x−y).
Notice that there are k! shortest paths connecting x and y, if k = wt(x−y).

5.4.2 Path Integrals
De�nition 5.4. Let P : x0, x1, . . ., xk be a path in FN

2 such that xi+1 =
xi + eji . Let also g = (g1, . . . , gN ) ∈ V N

N be a vector �eld. We de�ne the
path integral of g along P to be

∫

P
g =

k−1∑

i=0

gji(xi).

De�nition 5.5. Let P : x0, x1, . . ., xk be a path of length k and Q : y0,
y1, . . ., yl a path of length l such that xk = y0. Then the concatenation of
paths P and Q is de�ned as path PQ : x0, x1, . . ., xk, y1, . . ., yl of length
k + l.

The proof of the following lemma is straightforward.

Lemma 5.5. If g is a vector �eld and P and Q are paths such that the
ending point of P is the starting point of Q, then

∫

PQ
g =

∫

P
g +

∫

Q
g.

De�nition 5.6. A vector �eld g is conservative , if
∫

P1

g =
∫

P2

g
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for any paths P1 and P2 which have x and y as the starting and ending
points, respectively. If g is conservative and P a path having x and y as
starting and ending points, we also denote

∫

P
g =

∫ y

x

g.

Proposition 5.8. Let f ∈ VN . Then the gradient ∇f is a conservative
vector �eld.

Proof. Let P : x0, x1, . . ., xk be a path such that xi+1 = xi + eji . Then
∫

P
∇f =

k−1∑

i=0

∆eji
f(xi)

=
k−1∑

i=0

(
f(xi + eji)− f(xi)

)

=
k−1∑

i=0

(
f(xi+1)− f(xi)

)

=
k∑

i=1

f(xi)−
k−1∑

i=0

f(xi)

= f(xk)− f(x0),

which shows that
∫
P ∇f depends only on the ending points of the path

P .

Corollary 5.3. If ∇f ∈ V N
N is identically zero, then f ∈ VN is a constant

function.

Proof. Since ∇f is a conservative vector �eld, function

F (x) =
∫ x

0
∇f = f(x)− f(0). (5.4.1)

is well-de�ned for each x ∈ FN
2 . On the other hand, since ∇f = 0 every-

where, we have that F (x) = 0 for each x ∈ FN
2 . By equation (5.4.1) it

follows that f(x) = f(0) for each x ∈ FN
2 .

Remark 5.2. Equation
∫ x

0
∇f = f(x)− f(0). (5.4.2)

is referred as to the Stoke's theorem hereafter.

Corollary 5.4. If the gradient ∇f is known, then f can be reconstructed,
up to an additive constant.
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Proof. Let F (x) be de�ned as in 5.4.1. Then F and f di�er only by an
additive constant, hence F can be viewed as a reconstruction of f . On
the other hand, if g ∈ VN is another function such that ∇g = ∇f , then
∇(f − g) = 0 and hence f − g is a constant function by Corollary 5.3.

There also exists a counterpart of a well-known fact from traditional
calculus.

Lemma 5.6. Let g = (g1, . . . , gN ) ∈ V N
N be a vector �eld. Then g = ∇f for

some f ∈ VN if and only if ∆eigj = ∆ejgi for each i, j ∈ {1, . . . , N}.
Proof. Assume �rst that g = ∇f for some f ∈ VN . Then

∆eigj = ∆ei∆ejf = ∆ej∆eif = ∆ejgi

by Corollary 4.2.
Let us then assume that the identity ∆eigj = ∆ejgi holds for any i 6= j.

Using the Fourier representations

gi =
∑

y∈FN
2

ĝi(y)Wy

gj =
∑

y∈FN
2

ĝj(y)Wy

and Example 4.3 we �nd out that

∆ejgi = −2
∑

yj=1

ĝi(y)Wy

∆eigj = −2
∑

yi=1

ĝj(y)Wy

Since the two functions above were assumed to be equal, we must have
ĝi(y) = 0 whenever yi = 0. By Lemma 4.4 there exists a function f (i) ∈ VN

such that gi = ∆eif
(i). It remains to be shown that the same function f (i)

can be chosen for each coordinate i, and this can be proven as follows:
We will construct a function f ∈ VN by de�ning f(0) = 0 and f(ei) =

gi(0) for each basis vector ei. So far f has been de�ned on S0 ∪ S1, and

∆eif(0) = f(ei)− f(0) = gi(0).

Assume now that f has been de�ned on S0 ∪S1 ∪ . . .∪Sk, where k ≥ 1, and
that ∆eif(x) = gi(x) whenever wt(x) ≤ k − 1 and i /∈ supp(x). We will
extend the de�nition of f also onto Sk+1 as follows:

If x ∈ Sk+1, we can write

x =
∑

i∈supp(x)

ei.
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Then, for any s ∈ supp(x), we denote

xs =
∑

i∈supp(x)\{s}
ei.

Thus xs ∈ Sk can be written as x = xs + es, and, by the hypothesis, f(xs)
has already been de�ned. Now, we simply de�ne

f(x) = f(xs) + gs(xs), (5.4.3)
but we still have to show that f(x), as de�ned in 5.4.3, is independent of
s ∈ supp(x) chosen. For that purpose, choose r ∈ supp(x) di�erent from s,
and consider vector

xrs =
∑

i∈supp(x)\{r,s}
ei.

Clearly xrs ∈ Sk−1, xrs + es = xr, and xrs + er = xs. Now
f(xs) + gs(xs) = f(xr) + gr(xr)

⇐⇒ f(xrs + er) + gs(xs) = f(xrs + es) + gr(xr)
⇐⇒ f(xrs + er)− f(xrs) + gs(xs) = f(xrs + es)− f(xrs) + gr(xr)
⇐⇒ gr(xrs) + gs(xs) = gs(xrs) + gr(xr)
⇐⇒ gs(xrs + er)− gs(xrs) = gr(xrs + es)− gr(xrs)
⇐⇒ ∆ergs(xrs) = ∆esgr(xrs).

The last line is true because of the assumption. Now if x ∈ Sk and i /∈
supp(x), we have that x + ei ∈ Sk+1 and it follows that

f(x + ei) = f(x) + gi(x),

which implies that
∆eif(x) = gi(x).

On the other hand, if x ∈ Sk but i ∈ supp(x), we have that x + ei ∈ Sk−1.
Then

∆eif(x) = f(x + ei)− f(x)
= f(x + ei)− f(x + ei + ei)
= −∆eif(x + ei) = −gi(x + ei).

We have already seen that gi can be expressed as gi = ∆eif
(i), and therefore

∆eigi = ∆ei∆eif
(i) = −2∆eif

(i) = −2gi

by Corollary 4.3. Hence
∆eif(x) = −gi(x + ei)

= −gi(x + ei) + gi(x)− gi(x)
= −∆eigi(x)− gi(x)
= 2gi(x)− gi(x) = gi(x).





Chapter 6

Approximations

By R≥0 we understand the set of all non-negative real numbers. Let ||·|| :
VN → R≥0 be a norm, ε is a positive number, and f ∈ VN . We say that a
function g ∈ VN ε-approximates f or that g approximates f with threshold ε,
if

||f − g|| ≤ ε.

In this chapter we will study the following question: if f ∈ VN , is it possible
to approximate f by using another function g (such that deg(g) < deg(f))
with some threshold ε.

The norms which we will study here are basically the L2-norm and L∞-
norm, which are formally de�ned as follows:

||f ||2 =
√
〈f |f〉 =

√ ∑

x∈FN
2

|f(x)|2,

and
||f ||∞ = max

x∈FN
2

{|f(x)|}.

It is easy to see that the following inequalities hold:
||f ||2 ≤

√
2N ||f ||∞ ,

||f ||∞ ≤ ||f ||2 .

Remark 6.1. For a constant function f(x) = 1 for each x the �rst inequality
above becomes actually an equality, and so does the second one for the
natural basis functions Ty.

6.1 Easy Restrictions for L∞-norm
In this section we concentrate only on L∞-norm, and the Boolean functions
are assumed to have range {−1, 1}. We will �rst �nd some ultimate bounds
for the threshold, and for that purpose, we begin with the following easy
lemma.
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Lemma 6.1. If f : FN
2 → Z is an integer-valued function, then a nonzero

f̂(y) satis�es
∣∣∣f̂(y)

∣∣∣ ≥ 1√
2N

. Moreover, if f : FN
2 → {−1, 1} is a Boolean

function, then
∣∣∣f̂(y)

∣∣∣ ≥ 2√
2N

for a nonzero f̂(y).

Proof. A Fourier coe�cient f̂(y) can be expressed as

f̂(y) =
1√
2N

∑

x∈FN
2

f(x)χx(y),

but for an integer-valued function f , each summand in the above sum is also
an integer. Therefore, f̂(y) ∈ 1√

2N
Z, and the claim follows. If f is a Boolean

function, then also each summand is either −1 or 1, and if My is the number
of −1's in the above sum, then

f̂(y) =
1√
2N

(2N − 2My) =
2√
2N

(2N−1 −My),

hence f̂(y) ∈ 2√
2N
Z, and the claim follows.

If f : FN
2 → {−1, 1} is a Boolean function, we always assume here that

ε < 1 to exclude the trivialities.
Remark 6.2. The above lower bound for the absolute values of nonzero
Fourier coe�cients is reachable for some quite naturally de�ned Boolean
functions. Consider, for instance so-called or-function de�ned as

f(x) =
{

1, if x = 0,
−1, if x 6= 0.

Then a straightforward computation gives

f̂(y) =

{
1√
2N

(2− 2N ), if y = 0,
2√
2N

, if y 6= 0.

If g approximates f , then also the distance between the Fourier coe�-
cients of g and f can be bounded. The following lemma gives a quantitative
version of this fact.
Lemma 6.2. If g ε-approximates f , then

∣∣∣f̂(y)− ĝ(y)
∣∣∣ ≤

√
2N ε.

Proof. By straightforward computation,
∣∣∣f̂(y)− ĝ(y)

∣∣∣ =

∣∣∣∣∣∣
∑

x∈FN
2

(f(x)− g(x))Wx(y)

∣∣∣∣∣∣

≤
∑

x∈FN
2

|f(x)− g(x)| 1√
2N

≤
√

2N ε,

which was to be shown.
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A restriction for approximations is given in the following proposition

Proposition 6.1 (Exponentially Precise Approximation). If g approx-
imates a Boolean function f with threshold ε < 2

2N , then deg(g) ≥ deg(f).

Proof. Let d = deg(f). Then there is a y such that wt(y) = d and f̂(y) 6= 0.
By Lemma 6.1,

∣∣∣f̂(y)
∣∣∣ ≥ 2√

2N
, and by Lemma 6.2,

∣∣∣ĝ(y)− f̂(y)
∣∣∣ ≤

√
2N ε <

2√
2N

.

Therefore,

|ĝ(y)| =
∣∣∣ĝ(y)− f̂(y) + f̂(y)

∣∣∣
≥

∣∣∣f̂(y)
∣∣∣−

∣∣∣ĝ(y)− f̂(y)
∣∣∣

>
2√
2N

− 2√
2N

= 0.

Thus ĝ(y) 6= 0 and hence deg(g) ≥ d = deg(f).

On the other hand, the following example shows that there are functions
that are not approximable with any threshold ε < 1.

Example 6.1. Let y ∈ FN
2 and f : FN

2 → {−1, 1} be de�ned as

f(x) =
√

2NWy(x).

If now g ∈ VN ε-approximates f , for some ε < 1, then, by Lemma 6.2

|ĝ(y)| ≥
∣∣∣f̂(y)

∣∣∣−
∣∣∣ĝ(y)− f̂(y)

∣∣∣ ≥
√

2N −
√

2N ε > 0,

and therefore ĝ(y) 6= 0, which implies that deg(g) ≥ deg(f) = wt(y).

Remark 6.3. By choosing y = 1 (all components 1) in the previous exam-
ple, we have so-called parity function, which has value −1 if and only if x
has an odd weight. Recall from the previous chapters that a function with
this property can have only a constant speed-up by quantum computers.

6.2 Easy Restrictions for L2-norm
The problem for �nding good approximations with respect to L2-norm has
been mainly resolved long ago (at least for those parts we are here interested
in), and this section is included here merely to make some comparisons be-
tween L2 and L∞ -approximations.
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If f : FN
2 → {−1, +1} is a Boolean function, we de�ne

δ =
{

1, if |{x | f(x) = 1| > |{x | f(x) = −1}|, and
−1, otherwise.

We de�ne the trivial approximation of a Boolean function f to be the function
g : FN

2 → C for which g(x) = δ for each x ∈ FN
2 .

Now if f : FN
2 → C is a Boolean function and g its trivial approximation,

we have that
||f − g||22 =

∑

x∈FN
2

|f(x)− g(x)|2

=
∑

f(x)=δ

|f(x)− g(x)|2 +
∑

f(x)6=δ

|f(x)− g(x)|2

≤ 1
2
· 2N · 4 = 2N+1.

Notice that ||f − g||∞ = 2 always holds if g is the trivial approximation of a
Boolean function f .

One of the most important results concerning L2-approximations can be
summarized as follows: best L2-approximations of a function f ∈ VN can be
found by ignoring the �high-order -terms� in the Fourier representation of f .
To be more precise we present this fact in terms of a well known inequality:
Proposition 6.2. Let

f =
∑

y∈FN
2

f̂(y)Wy

and
f1 =

∑
y∈Fn2

wt(y)≤d

f̂(y)Wy.

If g ∈ Vn is any function of degree d, then
||f − f1||2 ≤ ||f − g||2 .

Proof. Since deg(g) ≤ d, ĝ(y) = 0 whenever wt(y) > d. By Parseval's
identity, we have

||f − g||22 =
∑

y∈FN
2

∣∣∣f̂(y)− ĝ(y)
∣∣∣
2

=
∑

y∈FN2
wt(y)≤d

∣∣∣f̂(y)− ĝ(y)
∣∣∣
2
+

∑

y∈FN2
wt(y)>d

∣∣∣f̂(y)
∣∣∣
2

≥
∑

y∈FN2
wt(y)>d

∣∣∣f̂(y)
∣∣∣
2

= ||f − f1||22 ,

so ||f − g||2 ≥ ||f − f1||2, as claimed.
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Example 6.2. Consider again the or-function f of Remark 6.2. Notice that
already the trivial approximation f1 which is a constant −1 gives

||f − f1||2 = 2.

The best approximating function of f having degree at most d is then given
by

g =
1√
2N

(2− 2N )W0 +
2√
2N

∑

0<wt(y)≤d

Wy,

and

||f − g||22 =
∑

wt(y)>d

4
2N

=
4

2N

N∑

i=d+1

(
N

i

)
.

Since
∑N

i=d+1

(
N
i

) ≤ 2N always, the approximation is of course better than
the trivial one, but not substantially better unless d is large: If d < N/2,
then the sum of the binomial coe�cients is at least 2N−1, and

||f − g||2 ≥
√

2.

Let us then consider how good this approximation is with respect to L∞-
norm. The correct value f(0) = 1, but clearly

g(0) =
1

2N
(2− 2N ) +

2
2N

d∑

i=1

∑

y∈Si

1

= −1 +
2

2N

d∑

i=0

(
N

i

)
,

which shows that if we want g(0) to be closer to 1 than to −1, we must have
d > N/2. In fact, the formula 8.2.5 in the appendix implies that if we want
g(0) ≥ ε for some �xed ε > 0, then we must choose d ≥ N/2 + cε

√
N .

Thus, the approximation which is best with respect to L2-norm cannot
be good with respect to L∞-norm, unless d ≥ N/2 + cε

√
N .

However, as we will see in the next chapter, it is possible to obtain
approximations for the or-function having degree cε

√
N , which are good

with respect to L∞-norm.
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6.3 The OR-function
In this chapter, we will �nd some bounds for approximating a symmetric
function OR. These bounds have been found in [21] by using the ordinary
Chebyshev polynomials. Here we will illustrate how the same bounds can
be found, in a stronger form, by using the discrete Chebyshev polynomials.

The OR-function f : FN
2 → {0, 1} on de�ned as

f(x) =
{

1, if wt(x) = 0,
−1, if wt(x) > 0.

Instead of function f , we will consider function g = 1
2f + 1

2 , which has value
1 if wt(x) = 0, and value 0 otherwise. It is clear that an approximation for
g yields an approximation for f and vice versa.

Now that g is a symmetric function, we can, by Corollary 5.1, instead of
g, study a polynomial polynomial P (x) de�ned as

P (x) =
{

1, if x = 0,
0, if x ∈ {1, 2, . . . N}.

Polynomial P can be represented by using the discrete Chebyshev polyno-
mials (recall Section 5.3.2) as

P =
N∑

n=0

PnDn,

and each coe�cient Pn is revealed easily by taking the inner products of
both sides:

〈P |Dm〉C = Pm〈Dm |Dm〉C = Pm ||Dm||22 ,

so

Pn ||Dn||22 = 〈P |Dn〉C =
N∑

l=0

P (l)Dn(l) = Dn(0),

and therefore
Pn ||Dn||22 =

(
N

n

)
,

by (5.3.7) or (5.3.8). By Equation (5.3.11) we have that

||Dn||22 =
(

2n

n

)(
N + n + 1

2n + 1

)
,

which implies directly that

P 2
n ||Dn||22 =

N !2

n!2(N − n)!2
n!2

(2n)!
(2n + 1)!(N − n)!

(N + n + 1)!

= (2n + 1)
N !2

(N − n)!(N + n + 1)!

=
N !2

(2N + 1)!
(2n + 1)

(
2N + 1
N − n

)
.
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Now if Q is an approximation of P having degree d ≤ N/2, we can express
Q as

Q =
N∑

n=0

QnDn,

where Qn = 0 whenever n ≥ d + 1. Using these notations we can write

||P −Q||22 =
N∑

n=0

|Pn −Qn|2 ||Dn||22

=
d∑

n=0

|Pn −Qn|2 ||Dn||22 +
N∑

n=d+1

|Pn −Qn|2 ||Dn||22

≥
N∑

n=d+1

|Pn −Qn|2 ||Dn||22

with equality if and only if Pn = Qn for each 0 ≤ n ≤ d.
Let us assume hereafter that Qn = Pn if n ≤ d, and Qn = 0, if n ≥ d+1,

i.e., Q is the best degree d approximation of P with respect to L2-norm on
polynomials. It is then plain to see that

||P −Q||22 =
N∑

n=d+1

|Pn|2 ||Dn||2

=
N !2

(2N + 1)!

N∑

n=d+1

(2n + 1)
(

2N + 1
N − n

)

=
N !2

(2N + 1)!

N−d−1∑

n=0

(2N − 2n + 1)
(

2N + 1
n

)
.

Denoting

A(n) =
n∑

k=0

(
2N + 1

k

)

we can write the above sums as

||P −Q||22 =
N !2

(2N + 1)!

N−d−1∑

n=0

(2N − 2n + 1)(A(n)−A(n− 1))

=
N !2

(2N + 1)!

( N−d−1∑

n=0

(2N − 2n + 1)A(n)

−
N−d−1∑

n=1

(2N − 2n + 1)A(n− 1)
)

=
N !2

(2N + 1)!

(
(2d + 3)A(N − d− 1) + 2

N−d−2∑

n=0

A(n)
)
.
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Estimation (8.2.5) in the appendix implies that

∑

i≤ 2N+1
2

−a
√

2N+1

(
2N + 1

i

)
<

22N

4a2
,

so choosing a such that n = 2N+1
2 − a

√
2N + 1 shows that

A(n) ≤ (2N + 1)22N

(2N − 2n + 1)2
. (6.3.1)

It follows that
N−d−2∑

n=0

A(n) ≤ 22N (2N + 1)
N−d−2∑

n=0

1
(2N − 2n + 1)2

= 22N (2N + 1)
N∑

n=d+2

1
(2n + 1)2

≤ 22N (2N + 1)
∫ ∞

d+1

1
(2t + 1)2

dt

= 22N (2N + 1)
1

2(2d + 3)
.

Substituting n = N − d− 1 in (6.3.1) we learn that

A(N − d− 1) ≤ 22N 2N + 1
(2d + 3)2

,

which, together with the above estimates, implies that

||P −Q||22 ≤ N !2

(2N + 1)!

(
22N 2N + 1

2d + 3
+ 22N 2N + 1

2d + 3

)

=
N !2 · 22N

(2N)!
2

2d + 3
,

which is at most √
π

2
· 2
√

2N + 1
2d + 3

by the Wallis inequality (see Appendix). For each N ≥ 1 we obviously have
√

2N + 1 ≤
√

3
√

N,

so √
π

2
· 2
√

2N + 1
2d + 3

<

√
3π

2

√
N

d
,
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which shows that ||P −Q||2 ≤ ε whenever
√

3π

2

√
N

d
≤ ε2,

which happens if and only if

d ≥ 1
ε2

√
3π

2

√
N. (6.3.2)

We have now obtained the result that is d satis�es inequality (6.3.2), then

||P −Q||2 ≤ ε,

but it is clear that
||P −Q||∞ ≤ ||P −Q||2 ,

so the approximation Q also satis�es |Q(i)− P (i)| ≤ ε for each i ∈ {0, 1, . . .,
N}, provided that (6.3.2) holds.

Remark 6.4. It is possible to improve the coe�cient of the above estimate:
Inequality (8.2.7) in the appendix implies that

A(n) ≤ 105(2N + 1)4

(2N + 1− 2n)8
22N

Using this instead of (8.2.5) implies that

||P −Q||22 <

√
π

2
· 840

7

( 1√
2

√
N + 1
d

)7
,

which shows that ||P −Q||2 < ε, if

d ≥
(√

π

2
· 840

7

) 1
7 1√

2
ε−

2
7

√
N + 1 ≈ 1.44717 · ε− 2

7

√
N + 1.

Choosing ε = 1/3 gives approximately 1.9808
√

N + 1 as the degree which
allows us to approximate OR-function with threshold 1

3 .
The approximation degree O(

√
N) is optimal for OR-function (up to the

multiplicative coe�cient), as demonstrated by Nisan and Szegedy in [21].
The proof in article [21] was based on Markov's inequality, cf. [3]:

Theorem 6.1. If P is a real polynomial of degree d such that m ≤ P (x) ≤ M
for each x ∈ [0, N ], then

∣∣P ′(x)
∣∣ ≤ d2(M −m)

N

holds in the interval [0, N ].
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By using the above theorem, it is quite easy to deduce that if p is a
polynomial that approximates (unless otherwise stated, we choose ε = 1

3
as the approximation threshold hereafter) any non-constant polynomial f :
{0, 1, . . . , N} → {0, 1} in the interval [0, N ], then deg(p) = Ω(

√
N).

Much more precise information about the approximation degrees is avail-
able:

Theorem 6.2 (R. Paturi [23]). Let p : {0, 1, . . . , N} → {0, 1} be a real
polynomial and

Γ(p) = min{|2k −N + 1| | p(k) 6= p(k + 1), 0 ≤ k ≤ N − 1}.

Then the approximation degree of p is Θ
(√

N(N − Γ(p))
)
.

Despite of the previous theorems, it would be mathematically desirable
to �nd the bounds for approximation degrees with better constants than
those ones that can be found in the proofs of the previous theorems.

Numerical computations suggest the following.

Conjecture 1. If P is a real polynomial of degree d, then

1
N

N−1∑

l=0

|P (l)| ≥ 1
d + 1

max
l∈{0,1,...,N−1}

|P (l)|

If the previous conjecture were true, then it could be used to establish
so-called discrete version of Markov's inequality ([3]):

Theorem 6.3. If the above conjecture is true, P is a real polynomial of
degree d, and m ≤ P (l) ≤ M for each l ∈ {0, 1, . . . , N}, then

max
l∈{0,1,...,N−1}

|∆P (l)| ≤ d2(M −m)
N

,

where ∆P (l) = P (l + 1)− P (l) is the discrete derivative of P .

Proof. Without loss of generality we can assume that P (0) ≤ P (1), for
otherwise we could consider −P instead of P . We �rst divide the set
{0, 1, 2, . . . , N} into sets I0 = {0, 1, . . . , n1−1}, I1 = {n1, n1 +1, . . . , n2−1},
. . ., Ik = {nk, nk + 1, . . . , N} of consecutive integers as follows: n1 is chosen
such that

P (0) < P (1) < . . . < P (n1 − 1),

but P (n1−1) ≥ P (n1), i.e., n1 is the �rst point where the strict growth of P
ceases (notice that here we are interested only of the values of P at integer
points). Then n2 is chosen such that

P (n1) > P (n1 + 1) > . . . > P (n2 − 1),
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but P (n2−1) ≤ P (n2), i.e, n2 is �rst to indicate the end of strict decreasing.
Then n3 is chosen to indicate the end of strict growth, etc.

Notice that choosing the points like this allows also some of the sets be
singletons. We will now show that each interval induced by sets Ij contain
a zero of polynomial ∆P . Assume that 2 | j (case 2 - j is treated similarly)
and that Ij is not singleton. Then

P (nj) < P (nj + 1) < . . . < P (nj+1 − 1),

and P (nj+1−1) ≥ P (nj+1). But this is to say that ∆P (nj+1−1) ≤ 0. Since
Ij is not a singleton, it contains point nj+1−2, and P (nj+1−2) < P (nj+1−1),
which is to say that ∆P (nj+1 − 2) > 0. It follows that there must be a zero
of ∆P in (nj+1 − 2, nj+1 − 1].

If Ij is singleton, then necessarily nj+1 = nj + 1 and P (nj + 1) = P (nj),
which is to say that ∆P (nj) = 0. As a conclusion we get that for each Ij ,
there is a zero of ∆P , and therefore k ≤ deg(∆P ) = d− 1.

Now if l ∈ {1, . . . , n1 − 1}, then P (l − 1) < P (l), i.e, ∆P (l − 1) > 0,
and if l ∈ {n1, n1 + 1 . . . , n2 − 1}, then P (l− 1) ≥ P (l), i.e., ∆P (l− 1) ≤ 0.
Continuing in the same way, we see that

N−1∑

l=0

|∆P (l)| =
N∑

l=1

|∆P (l − 1)|

=
n1−1∑

l=1

∆P (l − 1)−
n2−1∑

l=n1

∆P (l − 1) + . . . + (−1)k
N∑

l=nk

∆P (l − 1)

= (P (n1 − 1)− P (0))− (P (n2 − 1)− P (n1 − 1))
+ . . . + (−1)k(P (N)− P (nk − 1))

≤ (k + 1)(M −m) ≤ d(M −m).

By the above Conjecture, we have that

N−1∑

l=0

|∆P (l)| ≥ N

d
max

l∈{0,1,...,N−1}
|P (l)| .

Combining the two above estimates yields the claim directly.

The above result (based on an unproven conjecture) could be used di-
rectly for �nding a general bound for the approximation degree.

Theorem 6.4. Let P be a polynomial that ε-approximates a non-constant
function f : {0, 1, . . . , N} → {0, 1}. If Conjecture 1 holds, we have

deg P ≥
√

1− 2ε

1 + 2ε
N.
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Proof. Let d = deg(P ). Since P approximates f within threshold ε, we have
−ε ≤ P (l) ≤ 1 + ε for each l ∈ {0, 1, . . . , N}. Since f is not constant, there
must be some k such that P (k) lies in the proximity of 0 and P (k + 1) in
the proximity of 1 or vice versa. In any case, |∆P (k)| ≥ 1 − 2ε for some
k ∈ {0, 1, . . . , N − 1}. By the previous theorem we have that

1− 2ε ≤ max |∆P (k)| ≤ d2(1 + 2ε)
N

,

and the claim follows directly.
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Open Questions

Many problems still remain open, and the list below is only to mention a
few.

Problem 1. Is Conjecture 1 true?

Problem 2. A more demanding version of Conjecture 1 can be stated as
follows: It P is a real polynomial which satis�es −1 ≤ P (l) ≤ 1 for each
l ∈ {0, 1, 2 . . . , N}, then

∣∣(∆P (l))2((l + 1 + a)(N − l + b))
∣∣ ≤ C deg(P )2

for each l ∈ {0, 1, 2 . . . , N − 1}, where a, b ∈ [0, 1] and C are constants. Is
this true?

Problem 3. Is it true that the cutting the hybrid basis representation

f =
∑

y∈FN
2

fyBy

always gives the �near-optimal� approximation with respect to L∞-norm?
That is, given a threshold ε = 1

3 , we write

f1 =
∑

y∈FN2
wt(y)≤d

fyBy

for smallest d for which ||f − f1||∞ ≤ ε. Is it then true that there exists
a constant C independent of N such that if ||f − g||∞ ≤ ||f − f1||∞, then
deg(g) ≥ Cd = C deg(f1)?

Problem 4. How relevant is a thesis like this one?
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Appendix

8.1 Some Formulae on Binomial Coe�cients
An identity (

N

k

)
=

(
N − 1

k

)
+

(
N − 1
k − 1

)
(8.1.1)

is easy to verify by a direct calculation, but a recursive use of (8.1.1) leads
into a an interesting equation, known as Vandermonde's convolution.

Proposition 8.1 (Vandermonde's convolution). If l is a nonnegative
integer, then (

N

k

)
=

l∑

j=0

(
l

j

)(
N − l

k − j

)
.

Proof. For l = 0 the claim is trivial and for l = 1 the claim is exactly the
identity (8.1.1). Assuming the claim true for some l, we can write, by using
(8.1.1)
(

N

k

)
=

l∑

j=0

(
l

j

)(
N − l

k − j

)

=
l∑

j=0

(
l

j

)(
N − l − 1

k − j

)
+

l∑

j=0

(
l

j

)(
N − l − 1
k − j − 1

)

=
l∑

j=0

(
l

j

)(
N − l − 1

k − j

)
+

l+1∑

j=1

(
l

j − 1

)(
N − l − 1

k − j

)

=
(

N − (l + 1)
k

)
+

l∑

j=1

(
l + 1

j

)(
N − (l + 1)

k − j

)
+

(
N − (l + 1)
k − (l + 1)

)

=
l+1∑

j=0

(
l + 1

j

)(
N − (l + 1)

k − j

)
,
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which proves the claim.

The proof of equation (5.3.11).

N∑

i=r

(
i

r

)(
i−N − 1

r

)
=

N∑

i=r

∆
(

i

r + 1

)
·
(

i−N − 1
r

)

= −
N∑

i=r

(
i + 1
r + 1

)
·∆

(
i−N − 1

r

)
= −

N∑

i=r

∆
(

i + 1
r + 2

)
·
(

i−N − 1
r − 1

)

= . . . = (−1)r
N∑

i=r

∆
(

i + r

2r + 1

)
·
(

i−N − 1
r − r

)

= (−1)r

(
N + 1 + r

2r + 1

)
.

Theorem 8.1 (Wallis inequality).

πN ≤
(

22N (N !)2

(2N)!

)2

≤ π
2N + 1

2
.

The derivation of Wallis inequality is well known, but it is included here
for the sake of completeness.

Proof. Let n be a nonnegative integer and de�ne

In =
∫ π

2

0
sinn t dt.

Clearly I0 = π
2 , I1 = 1, and for n ≥ 2 we can evidently write

In = −
∫ π

2

0
sinn−1 t

d

dt
cos t dt,

which, by partial integration, gives

In = −
π
2/

0

sinn−1 t cos t dt + (n− 1)
∫ π

2

0
sinn−2 t cos2 t dt

= (n− 1)
∫ π

2

0
sinn−2 t(1− sin2 t) dt.

= (n− 1)(In−2 − In),

which implies that
In =

n− 1
n

In−2. (8.1.2)
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For an even n = 2k recursive use of (8.1.2) gives

I2k =
2k − 1

2k
· I2k−2

=
2k − 1

2k
· 2k − 3
2k − 2

· . . . · 3
4
· 1
2
· I0

=
2k

2k
· 2k − 1

2k
· 2k − 2
2k − 2

· 2k − 3
2k − 2

· . . . · 4
4
· 3
4
· 2
2
· 1
2
· π

2

=
(2k)!

22k(k!)2
· π

2
.

Similarly, for an odd n = 2k + 1 we get

I2k+1 =
22k(k!)2

(2k + 1)(2k)!
.

The equations above reveal that

I2kI2k+1 =
π

2(2k + 1)
,

and using (8.1.2) once more gives that

I2kI2k−1 =
π

4k
.

Now that In ≤ In+1, we have
1

I2kI2k−1
≤ 1

I2
2k

≤ 1
I2kI2k+1

. (8.1.3)

substituting the formulae obtained above into (8.1.3) gives

4k

π
≤

( 2
π

)2(22k(k!)2

(2k!)

)2
≤ 2(2k + 1)

π
,

which yields the claim immediately.

Wallis inequality gives directly an estimation for the binomial coe�cient(
2N
N

)
:

22N

√
π(N + 1

2)
≤

(
2N

N

)
≤ 22N

√
πN

8.2 Partial Sums of the Binomial Coe�cients
Substituting x = 1 in expression

(1 + x)N =
N∑

i=0

(
N

i

)
xi (8.2.1)
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gives us a familiar equality

2N =
N∑

i=0

(
N

i

)
,

whereas di�erentiating both sides of (8.2.1) shows that

N(1 + x)N−1 =
N∑

i=1

i

(
N

i

)
xi−1, (8.2.2)

and a substitution x = 1 gives

N

2
2N =

N∑

i=0

i

(
N

i

)
.

On the other hand, multiplying (8.2.2) by x, di�erentiating, and substituting
x = 1 shows that

N(N + 1)
4

2N =
N∑

i=0

i2
(

N

i

)
. (8.2.3)

Continuing the same procedure, we can �nd a closed form for
N∑

i=0

ik
(

N

i

)

for each k ≥ 0. Multiplying (8.2.2) by a, (8.2.2) by b, and (8.2.3) by c, and
adding the equalities together gives us

(a + b
N

2
+ c

N(N + 1)
4

)2N =
∑

i=0

(a + bi + ci2)
(

N

i

)
. (8.2.4)

We attempt to choose a, b, and c in such a way that a + bx + cx2 would
be negative everywhere except in interval [N

2 − k, N
2 + k]. It turns out that

choice a = 4k2−N2

4 , b = N , and c = −1 will do. Then f also attains its
maximum at x = N

2 , where f(N
2 ) = k2. With these choices, the left hand

side of (8.2.4) becomes
4k2 −N

4
2N ,

and therefore
4k2 −N

4
2N <

∑
N
2
−k<i< N

2
+k

k2

(
N

i

)
,

which implies that
∑

N
2
−k<i< N

2
+k

(
N

i

)
> (1− N

2k2
)2N . (8.2.5)
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By applying the same procedure we can also establish the following in-
equalities: ∑

N
2
−k<i< N

2
+k

(
N

i

)
> (1− 3N2

16k4
)2N , (8.2.6)

∑
N
2
−k<i< N

2
+k

(
N

i

)
> (1− 15N3

64k6
)2N , (8.2.7)

when N ≥ 6, and
∑

N
2
−k<i< N

2
+k

(
N

i

)
> (1− 105N4

256k8
)2N . (8.2.8)
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approximation degree, 28
approximations, 69

basis states, 18
binary �eld, 11, 31
binomial coe�cients, 45
binomial representation, 45
black body, 14
Bohr, Niels, 15
Boolean function, 11, 25, 31
Boolean variable, 11
Born, Max, 16

character, 32
Chebyshev polynomials, discr., 58
computational basis, 18
concatenation, 64
controlled not, 20
convex combination, 26

de Broglie, Luis, 15
decision tree, 23
degenerate, 36
degenerate function, 25
degree, 35
Deutsch85, 21
Dirac, Paul, 16
discrete derivative, 36, 43
distance, 17

Einstein, Albert, 14, 15

Feynman, 20
Fourier representation, 33
Fourier transform, 33
fundam. theorem of calculus, 43

gradient, 64

Hadamard Transform, 20
Hamming weight, 31
Heisenberg, Werner, 16
Hertz, 14
Hilbert space, 17
hybrid basis, 58

in�uence, 39

Jordan, Paul, 16

Krawtchouk polynomial, 48

Leibniz' rule, 44

mapping, adjoint, 17
mapping, linear, 17
mapping, self-adjoint, 17
mapping, unitary, 17
Markov matrix, 27
Maxwell, James Clerk, 14
Moebius inversion formula, 37, 38
monomial, 34

natural basis, 31, 32
Newton, Isaac, 13
nondegenerate function, 25
norm, 17
norm L2, 69
norm L∞, 69

parity function, 71
Parseval's identity, 34
path, 64
path integral, 64
Pauli, Wolfgang, 16
Planck, Max, 15
polynomial representation, 34
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power representation, 44

quantum bit, 18
quantum computer, 21
quantum register, 18
quantum system, 16
quantum Turing machine, 21
qubit, 18
query algorithm, deterministic, 23
query algorithm, probabilistic, 26
query algorithm, quantum, 28
query complexity, 24

Rayleigh, John, 14

Schwartz' lemma, 35
shifted power, 44
state, 18
state space, 18
state, decomposable, 19
state, entangled, 19
Stoke's theorem, 65
superposition, 18
support, 31
symmetric function, 49

Vandermonde's convolution, 83
vector �eld, 64
vector �eld, conservative, 64

Walsh functions, 33
Walsh Transform, 20
Wien, Wilhelm, 14
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