The thesis consists of an introduction and 6 reprints of papers published
earlier.

Springer-Verlag is the copyright hol der of papers | and VI.
You can find the original publications (LNCS volunmes 1343 and 1799) via
the |ink:

http://ww. springer. de/ comp/ | ncs/i ndex. ht m

| EEE is the copyright holder of the paper Il and the foll ow ng notice
applies to that paper:

The material is presented to ensure tinely dissem nation of scholarly
and techni cal work. Copyright and all rights therein are retained by

t he copyright holder. Al persons copying this information are expected
to adhere to the terns and constraints invoked by the copyright hol der.
In nost cases, these works may not be reposted without the explicit
perm ssion of the copyright hol der

( see http://www.leee.org/about/documentation/copyright )



New Techniques in Generic Programming —

C++ is more Intentional than Intended

Jaakko Jarvi

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in the
Auditorium of the Computer Science Department on June 9th, 2000,

at 12 noon.

University of Turku
Department of Computer Science
Turku, Finland
2000



ISBN 951-29-1721-1
ISSN 1239-1883
Painosalama Oy
Turku, Finland



Abstract

Traditionally generic programming is about parameterising containers and
algorithms with respect to the types of the elements they contain or operate
on. Recent findings have demonstrated that the expressive power of generic
programming reaches beyond this. This thesis explores these new capabilities
of generic programming; the main emphasis is in the template model of the
programming language C+-+.

The thesis demonstrates that C++ templates form a sublanguage of their
own. This static metalanguage operates on types and constants, and is inter-
preted by the compiler. The existence of such a metalanguage is accidental,
but it has turned out to be a powerful feature, allowing non-trivial computa-
tions to be performed at compile time. Programming with this metalanguage
is known as template metaprogramming.

The thesis discusses the abstraction mechanisms in common program-
ming languages and points out some of their inadequacies. Particularly, it
may be difficult to achieve high intentionality and efficiency simultaneously.
The thesis shows that template metaprogramming can be of help, provid-
ing more freedom and fine-grained control in the definition of abstractions.
With template metaprograms, the programmer can define how abstractions
are transformed into compileable code. All this aims at better intentionality
of programs.

In a concrete level, the thesis discusses the characteristics of the C++
template model and describes the template metalanguage. It shows how data
structures can be defined and manipulated with template metaprograms. As
applications, efficient sparse vector and matrix abstractions are presented;
the compiler takes care of the bookkeeping of zeroes and nonzeroes. These
matrices are further applied in automatic differentiation. The power of the
C++ template model and template metaprogramming is demonstrated by
template libraries which extend the C++ language itself with tuple types
and a mechanism for partial function application.



Acknowledgements

This work was carried out at the Department of Computer Science, Uni-
versity of Turku and at the Turku Centre for Computer Science during the
years 1995-2000. I am indebted to many who have helped along the way.

The work started with biomedical signal analysis and gradually shifted
closer to software engineering. Not much of the early work with NMR spec-
tra quantification found its way to the final thesis. Nevertheless, I enjoyed
working with Samuel Nyman, NMR expert in chemistry, and Markku Komu,
physicist in the Turku University Central Hospital as well as with Docent
Jari Forsstrom, who set off the NMR project and arranged financing for the
most part of my work. I have had the privilege to work with Jari in many
interesting projects, not always directly related to my thesis. I am thankful
for his support and confidence; as well as for frequently reminding me to
keep the Ph.D. thesis at the highest priority.

I am grateful to my supervisors, Assistant Professor Timo Knuutila and
Professor Olli Nevalainen. The first years were easy for you, since I was
rather self-supported and didn’t bother you much. I guess I have taken
that back with interest during the last year or so. Thank you for both the
guidance and the freedom to go where my enthusiasm was.

Professors Johan Lilius and Jukka Paakki kindly accepted the task of
reviewing the thesis. I believe their feedback helped to improve the thesis
and I wish to thank them for their time and effort.

I wish to thank all my colleagues and coworkers in TUCS. Special thanks
to Harri Hakonen for many fruitful discussions and for reading and comment-
ing my manuscripts. I would also like to thank Antti Koski, Mauno Rénkko,
Jan-Christian Lehtinen, Timo Raita, Timo Kestild and Joonas Lehtinen for
their comments, opinions and technical help. I would also like to thank Leila
Roti and Jouni Smed for spell-checking and correcting the grammar of some
of the articles in the thesis.

I also want to thank Gary Powell, Senior Software Engineer at Sierra Ltd.
Gary saw the value of my work, and together we have built upon it. With
Gary’s help, many of the results of the thesis have become very concrete
and are available for C++ programmers to be used in every day work. Gary
also made me believe in (code) fairies again: It is magical to notice in the
morning that new code has been written and bugs have been fixed during
the night! Seriously, working with a 9-hour time difference is a big benefit.

My warm thanks are due to the head of the Department of Computer



Science, Professor Timo Jarvi, who is my father as well. To save space I
choose one, the most concrete and laborious, of the vast amount of reasons
to thank him — and my mother: it is not always easy to combine intensive
work and family life with small children - and two dogs! Thank you for
lessening our load by providing a good home for our dogs Eemu and Valpo.

I want to express my gratitude to Antero Jérvi for the help and support
he has given as a colleague, as a brother and as a friend.

I am thankful for my friends and relatives for providing me with a life
outside work. Most importantly, I want to express my loving thanks to my
family. Thank you Leena for your unconditional love and encouragement,
and thank you Osmo, Vilja and Viivi for just being there.

This work has been supported by grants from Tekes, the National Tech-
nology Agency, from the Academy of Finland and from TUCS.






Contents

1 Introduction 9
1.1  Motivation . . . . . ... 10
1.1.1  Striving for high intentionality . . . . . . . ... ... 10

1.1.2  Unsolved problems . . .. .. ... ... ....... 11

1.1.3  Proposed solutions . . . . .. ... ... ... ..., 12

1.2 Generative programming and active libraries . . . . . . . .. 14
1.3 Outline . . . . . ... 14
1.4 Theroleof C++ . . . ... .. oo 15
2 Generic programming 16
2.1  Generic programming in different languages . . . . . . ... 16
2.2 Generic features in C++ . . . . . ... 19
2.2.1  Class templates . . . . ... ... ... ... ... 19
2.2.2  Class template specialisation . . . . ... .. .. ... 20
2.2.3  Function templates . . . . .. ... ... ... ... 21
2.2.4  Specialising and overloading function templates . . . 22
2.2.5  Compile-time polymorphism . . . . ... .. .. ... 22
2.2.6  Miscellaneous template features . . . . . .. .. ... 23

3 Contemporary generic programming 24
3.1  Template metaprogramming . . . . . . . ... ... .. ... 24
3.1.1  C++ basics for template metaprogramming . . . . . 24
3.1.2  Numerical compile-time computations . . . . . . ... 25
3.1.3  Metaprogramming with types . . . .. .. ... ... 26
3.1.4  Compile-time data structures . . .. ... ... ... 27
3.1.5  Generatingcode . . . . ... ... L. 27

3.2 Applications of template metaprogramming . . . . . . . . . . 28
3.2.1  Object synthesis and configuration repositories . . . . 29
3.2.2  Generic programming in linear algebra . . . . . . .. 29
3.2.3  MTL — The Matrix Template Library . . . .. ... 30
3.2.4  The Generative Matrix Computation Library . . . . . 31
3.2.5  Expression templates and Blitz++ . ... ... ... 31
3.2.6  Miscellaneous applications . . . . . . ... ... ... 32

7



CONTENTS

3.3  Restrictions of template metaprogramming . . . . . . .. .. 32
Summary of publications 34
I Processing Space Vectors during Compile Time in C++ . . . 35
II Compile Time Recursive Objects in C++ . . . . . . . . . .. 35
IIT  Object-Oriented Model for Partially Separable Functions in
Parameter Estimation . . . . . . ... ... 36
IV/V Tuple typesin C++ . . . . . . ... .. o 36
IV/V.1 Compilation tests . . . . .. ... ... .. ...... 37
VI  C++ Function Object Binders Made Easy . . . ... .. .. 39
Conclusion 41
51  Summary . . . ... 41
5.2 The Lambda Library . . . . ... ... ... ... ...... 42
5.3 Future Work . . . . . ... ..o 42
References 44

Publication Reprints 51



Chapter 1

Introduction

Parameterisation is a natural abstraction mechanism for common real-world
concepts. For example, the relation between a list of words and a list of
numbers is through the common concept of list. A list parameterised with
the element type is capable of representing both of the above concrete list
types, and several others as well. Generic programming is the programming
methodology for writing parameterised programs or subprograms.

The definition of containers and algorithms parameterised with respect
to the types of the elements they contain and operate on is a traditional and
typical use of generic programming. Generic container libraries implemented
with different programming languages commonly provide abstract data types
for lists, vectors, stacks etc., as well as generic procedures for manipulating
and traversing the elements of these containers. [SL94, Mey95, MN99|

Recently, the picture of generic programming has started to change. The
development in the generic programming facilities of some widespread pro-
gramming languages, mainly C++, has brought generic programming into
spotlight. Parameterisation has replaced class hierarchies and inheritance
as the foremost abstraction mechanism in several object oriented class li-
braries. The container and algorithm library in the standard C++ [C-++98]
is a prime example of this development, taking traditional generic program-
ming into extremes: the library consists of small parameterised orthogonal
pieces of code, which can be assembled together to form concrete subpro-
grams. However, it is possible to go beyond that. Novel programming tech-
niques exploit generic programming in somewhat non-traditional tasks, such
as code generation, partial evaluation and static configuration of software
elements [Cza98, Eis97, Vel95b, Vel99|. A common denominator in this new
line of work is the generative nature of the parameterised definitions. A con-
crete subprogram is not formed by just filling holes of a fixed skeleton code
but literally generated from an abstract description.

This thesis focuses on the recent advances and new possibilities in generic
programming, accentuating particularly the generative aspects. The publi-



10 CHAPTER 1. INTRODUCTION

cations constituting the main body of this thesis propose concrete program-
ming techniques, designs and fully functional generic libraries, which take
advantage of the generative capabilities of parameterisation. They provide
solutions for numerical programming as well as to programming in general;
the last three publications describe generic libraries which, in effect, extend
the C++ language with new constructs. The implementation language in
the publications is C++ and the results are to some extent specific to this
language. This introductory part aims at giving a broader picture of the
current research activity in the area of generic programming in general.

1.1 Motivation

Programming is about implementing concepts of some real-world domain in
a programming language. Ideally, the domain-specific real-world concepts
can be naturally translated to the implementation language. In such a case,
the conceptual distance between the domain-specific and implementation
language concepts, known as the semantic gap, is small. An implementation
language (or environment) with a small semantic gap to the domain language
is said to be highly intentional [CEGT98|. An implicit requirement for high
intentionality is that the abstractions for domain-specific concepts written
in the implementation language do not compromise efficiency.

Unfortunately, it is not rare that the implementation language lacks
means to express the domain-specific concepts in an abstract fashion. As
a result, the domain specific representation may be lost in the implemen-
tation details and render the implementation difficult to adapt or reason
about. As a very simple and concrete example of this problem, consider
the language of mathematics as the real-world domain and an implementa-
tion language, say Java [AG96], lacking operator overloading capabilities. A
domain language expression, such as ¢ = =2y —dac W, where z,a,b,c € C,
looses the intuitiveness in the conversion to the implementation language
representation:

Complex b2 = Complex.multiply(b,b);

Complex ac4 = Complex.multiply(4,Complex.multiply(a,c));
Complex discrim = Complex.sqrt(Complex.subtract(b2,ac4));
Complex x = Complex.divide(Complex.subtract(discrim,b)),

Complex.multiply(2,a)));

1.1.1 Striving for high intentionality

There is an unbound number of different domains with different concepts,
different notations and different abstractions. Consequently, a single pro-
gramming language cannot support the concepts for every domain directly.



1.1. MOTIVATION 11

To cope with this diversity, general purpose programming languages allow
the programmer to define new abstractions and compose these abstractions
to produce programs.

The tools for defining abstractions differ between languages. As object
oriented programming (OOP) is the dominating programming paradigm to-
day, we take a closer look at the most characteristic abstraction mechanisms
offered by OOP:

o Abstract data types and encapsulation: The programmer can encap-
sulate a user defined data type and an accompanying set of opera-
tions. The implementation of the operations can be separated from
their specifications. The encapsulation unit is called a class in most
object oriented languages.

e Inheritance: A class can inherit attributes and operations from another
class and redefine or complement some of the inherited operations.

e Polymorphism and dynamic binding: Polymorphic operations can be
defined to perform different actions for different types of objects. Dy-
namic binding allows the selection of the operation to be made safely
at run time.

This is an impressive set of abstraction tools. Hierarchical real-world con-
cepts can be implemented via inheritance. Inheritance and dynamic binding
are crucial for flexible designs and reuse. The usefulness of the abstrac-
tion mechanisms is evident, which is demonstrated by the success of OOP.
Improvement of understandability, better management of complexity, exten-
sibility, adaptability, reusability and maintainability are identified as some
of the main contributions of the OO paradigm [CES97]|. However, despite
some enthusiastic argumentation [Cox90] it is also evident that OOP has not
fulfilled all of its expectations [Web95].

1.1.2 Unsolved problems

Object oriented software is not inherently reusable or adaptable, rather
the software must be designed having reusability and adaptability aspects
in mind. The wvariation points, that is, the locations for adaptation and
reuse, must be explicitly built to the program. Design patterns and frame-
works [GHJT95] have become extensively popular in software industry and
proven to be useful in this respect. They provide sophisticated and well
thought designs with clear variation points and allow the reuse of designs for
commonly reappearing problems. Ironically, besides being excellent show-
cases of the power of the object oriented methodology, design patterns also
demonstrate many of the problems in OO abstraction mechanisms:



12 CHAPTER 1. INTRODUCTION

e Scattered designs: Design patterns are typically implemented as small
code fragments in several collaborating classes. Domain specific con-
cepts are commonly participating at several patterns in different roles.
As a result the domain specific concepts, and the patterns themselves,
are scattered throughout the code rather than being cleanly encapsu-
lated. This leads to the loss of design information and hinders reuse
and adaptation. [Bos98]

e Performance: Variation points are typically implemented with dy-
namic binding as a layer of indirection. This may have a significant
negative effect on performance. Another source for performance degra-
dation is that the structure of the compositional abstractions is pre-
served in the running code, though the structure of an efficient imple-
mentation might be totally different. This is particularly apparent in
areas involving heavy numeric computations, such as scientific com-
puting and image processing [Han94, MKL97|.

e ‘Nom-object oriented’ concepts, aspects: There are many concepts which
do not fit well to the OO view of the world. Such concepts are gen-
erally called aspects [KLM194]. Synchronisation, error-handling and
performance-related issues are examples of aspects. It is characteristic
to aspects that their implementation cannot be encapsulated neatly
into a single class or function, rather the implementation spreads to
several methods of many classes. This leads to ‘tangled’ code, where
design decisions are scattered throughout the code.

These problems boil down to a single more general problem: a program-
ming language lacks means to intentionally and efficiently represent certain
domain specific concepts. Basically the abstractions in conventional general
purpose programming languages support substitution-based compositions:
predefined software elements can be assembled into the final application in
a fixed pattern but there are no possibilities to alter the internal structure
of the assembled software elements or the way they are assembled.

1.1.3 Proposed solutions

There are basically two ways to approach the above problem. The first is
to provide a domain-specific programming language (DSL) for each domain.
The other is to redesign the abstraction mechanisms a programming language
should provide.

The obvious disadvantage of the first approach is the high cost and dif-
ficulty of developing new languages and compilers. Also, using two or more
separately developed domain-specific languages in a single application might
lead to conflicts. The advantage is the complete freedom in the design of the
abstractions for domain specific concepts.



1.1. MOTIVATION 13

While figuring out how to retain this freedom in the second approach
the first approach still seems to be necessary in part; in order to cover the
unlimited set of domain specific abstractions the abstraction mechanisms
must be somehow generative in nature. The problem is how to avert the
drawbacks of the first approach.

Several approaches have been proposed and are in use to provide genera-
tive abstraction mechanisms for programming languages and environments.
These approaches include:

e Program generation systems: configurable systems for implementing
domain-specific languages. Such tools can generate compileable pro-
grams from specifications written in a predefined DSL. The generation
phase may include arbitrary computations, which distinguishes gener-
ators from standard compilers. See [Cza98, chapter 6] and [Big97| for
summaries of available program generators.

e Open compilers: compilation systems with predefined hooks and vari-
ation points for modifying and adapting the compiler functionality,
e.g for introducing syntactic extensions, optimisations etc. Exam-
ples of such systems are Vanilla [DNW'99|, Open C++ [Chi95]| and
DCO [Bos97]. The Intentional Programming environment (IP) [Sim95,
IP99] developed at Microsoft takes this approach to its extremes, mak-
ing the whole programming environment (language constructs, debug-
ging, means for editing etc.) configurable and extensible. The IP
system is actually a program generator as well.

e Program weavers: This item refers mainly to aspect oriented program-
ming environments. A special language processor, the aspect weaver,
combines the component language program, the basic application logic,
and a set of aspect language programs into a tangled compileable code.
The key idea is that even though the code of the final application is
complicated and contains a lot of implementation details in a non-
localised way, this does not break the encapsulation in the source pro-
grams. [KLM™94]

A related programming paradigm is literate programming. Literate
programming systems contain a weaver as well. The main focus is,
however, in generating a high-quality documentation in addition to the
tangled compileable program from a single literate program. [Knu92,
KL93].

o Multilevel languages: programming languages that allow code to have
different binding times. A program written in a two-level language can
contain static code evaluated at compile-time and dynamic code, which
is compiled and executed. Static code can be used for code generation,
optimisation etc. The genericity model of C++ makes C++ a two-level



14 CHAPTER 1. INTRODUCTION

language. Computations with constants and types can be performed
during the template instantiation phase of compilation. This corre-
sponds to the static code evaluation. [Vel99].

1.2 Generative programming and active libraries

The line of work just described falls within a newly proposed programming
paradigm, generative programming, defined as: ‘designing and implementing
software modules which can be combined to generate specialised and highly
optimised systems fulfilling specific requirements [Eis97]. The common idea
can be seen as ‘opening up’ the compiler to some extent, and also to load
some more work to the compiler, or generator. The compiler has to po-
tentially perform some non-trivial computations to map the domain-specific
abstractions to executable code.

The spectrum of different implementation technologies for generative pro-
gramming range from full-scale program generators and open compilers to
modest meta-programming capabilities of existing programming languages.
While there are demonstrations of the success of true meta-level process-
ing systems, the supporting tools are complex. Adopting such a tool re-
quires long-term commitment [Big97|. On the other end of the spectrum the
metaprogramming capabilities of existing programming languages are read-
ily available albeit their expressiveness is restricted. There are a number of
successful applications which exploit the metaprogramming facilities of C++,
particularly in the field of scientific computing (see section 3.2).

The concept of active libraries is closely related to generative program-
ming: they are libraries which implement generative programming ideas.
Such libraries extend the compiler by defining domain specific abstractions
and the means to transform the abstractions to compileable code. Active
libraries may generate components, specialise algorithms, optimise code,
tune themselves for a given machine architecture etc. Conceptually they
lie somewhere between a compiler and a traditional subroutine or class li-

brary. [CEGT98]

1.3 Outline

The preceding discussion describes the general background of the thesis. The
rest of the thesis is on a more concrete level, concentrating on a particular
aspect of this framework: active libraries and metaprogramming in C++.
New metaprogramming techniques and a set of active libraries which utilise
the metaprogramming facilities of C++ are described in the six included
articles.

Prior to dwelling on the rather detailed and concrete C++ specific arti-
cles, the next chapter continues with a discussion of generic programming in



1.4. THE ROLE OF C++ 15

general. The differences and commonalities of the generic programming con-
structs adopted in some popular programming languages are examined. We
focus on the metaprogramming capabilities, and explain why C++ is unique
in this sense among the discussed languages.

Chapter 3 discusses C++ templates as a metaprogramming tool and intro-
duces programming techniques typical for metaprogramming. Some promi-
nent work and applications of metaprogramming with C++ templates are
reviewed.

Chapter 4 gives an outline of the included publications. In the sequel,
we use the numbering adopted in chapter 4 (Roman numerals I-VI) to refer
to these publications.

Chapter 5 concludes the thesis and introduces a C++ template library
which is largely based on the results of the thesis. Also a brief description
of ongoing and future work, which generalises and extends the results of the
papers IV-VI, is included.

1.4 The role of C+-+

Templates were introduced to C++ in order to support conventional generic
programming but, quite by accident, they serve as a metaprogramming lan-
guage as well. As these features were unintentional, the syntax of this sub-
language is awkward. Nevertheless, the existence of such metaprogramming
capabilities in a popular programming language, even though in a primitive
form, has gained comparatively wide attention (see chapter 3). It is impor-
tant to explore the capabilities of metaprogramming features in C++ for two
reasons: First, they solve real-world problems. Second, metaprogramming
features should really be designed properly and added to a programming
language intentionally, not by accident. The experience with C++ templates
hopefully helps to clarify the requirements for reasonable and useful metapro-
gramming features in programming languages in general. Naturally this ap-
plies to future development of C++ as well.



Chapter 2

(Generic programming

Non-generic data structures and algorithms are expressed in terms of un-
substitutable fixed types and constants. Generic software elements' are pa-
rameterised with respect to some of these types and constants. By binding,
i.e. instantiating, these formal generic parameters in different ways, several
concrete software elements can be generated from a single generic defini-
tion. Hence, generic software elements are schemata which express common
behaviour and structure, invariant of the actual values the formal generic
parameters are bound to.

2.1 Generic programming in different languages

Several programming languages are equipped with generic programming fa-
cilities. CLU [LAB"81] was among the first representatives of such lan-
guages, while Ada [TDT97|, Eiffel [Mey92, Mey97| and C++ [Str97] are
probably the most widely known ones. ML [Pau9l] is a well-known func-
tional language with generic features. The support for genericity appears in
somewhat varying forms in different languages. Below, the main points of
divergence are summarised, briefly describing also the approaches adopted
by the five languages mentioned above.

1. The compilation model of generic software elements.

In C++ and Ada mere generic definitions are not compiled but rather
the instantiation results in a more or less textual expansion of the
generic code. The outcome is a non-generic compileable version of
the code. FEiffel, CLU and ML compilers, on the other hand, com-
pile a common skeleton code from the generic definition of a software
element. This implies the necessity of some run-time mechanisms (dy-
namic binding) for ensuring correct behaviour of the instantiations.

!The general term software element here refers to any unit of program code, such as a
function, subroutine, class or package.

16



2.1.

GENERIC PROGRAMMING IN DIFFERENT LANGUAGES 17

. Generic parameters.

In addition to type parameters, some languages support also non-type
generic parameters, basically compile-time constants. FEiffel has only
type parameters, whereas CLU allows constants of any built-in type as
generic parameters. Ada supports constant objects of any type, func-
tions and even other generic packages® as formal generic parameters.
C++ supports integral non-type generic parameters, but also references
or pointers to objects and functions, pointers to class members and
as Ada, other generic classes. The formal generic parameters in ML
are signatures, which are analogous to class interfaces, and the actual
generic arguments are structures, implementations of signatures.

. Generic software elements.

There is some discrepancy on what software elements can be defined
generic. All of the five languages support generic abstract data types
(generic classes in Eiffel and C++, packages in Ada, clusters in CLU and
functors in ML). Except for Eiffel and ML, the same is true for generic
subroutines. C++ and CLU allow even individual member functions
(procedures in CLU) of a class (cluster) to be generic. In some respect,
ML supports generic subroutines via polymorphic functions. Usually
no explicit types are given in ML function parameters. ML infers the
types from the usage of the parameters. If no type-specific operations
are performed with a given function argument the inference system
leaves the type of that argument open.

. Constrains on generic parameters.

It varies, whether the possible values of generic parameters are re-
stricted explicitly in the generic definition or not. In CLU and Ada,
the constrains on the generic parameters are declared in the generic
definition. The same approach is taken in Eiffel, where generic pa-
rameters are explicitly required to inherit from a given class or classes.
ML functors are analogous in this respecet, the generic parameter of
a functor must match a predefined signature. Moreover, ML functor
definitions may require constrains between different generic parame-
ters. In C++, however, the constrains are implicit. The validity of the
values of generic parameters is verified during the compilation of the
instantiation.

. Explicit vs. implicit instantiation.

Among the five languages, C++ and ML are the only ones supporting
implicit instantiation. In ML, a polymorphic function (say an identity

?Package is an encapsulated program module in Ada.



18 CHAPTER 2. GENERIC PROGRAMMING

function) can be applied to any type. The application does not re-
quire the type of the arguments to be specified and thus polymorphic
functions are implicitly instantiated.

Similarly in C++, no explicit type declarations are required to instan-
tiate a generic function, rather the generic parameters are deduced
from the types of the actual parameters of the function. For example,
suppose we have the following generic subprogram declaration in Ada:

generic
type T is private;
procedure Swap(U, V :in out T);

Prior to using the subprogram it must be explicitly instantiated and an
appropriate actual generic parameter must be provided for the formal
generic parameter T. Supposing a and b are variables of type Integer,
the generic subprogram can be instantiatiated and used as follows:

procedure Exchange is new Swap(Integer);
Exchange(a, b);

In C++ the corresponding declaration is
template<class T> void swap(T& a, T&b);

The instantiation takes place implicitly as a byproduct of a call to the
generic function, e.g.:

swap(a,b)

There are good arguments against any implicit behaviour in program-
ming languages. It may be considered as trading safety for flexibility.
However, implicit instantiation is, in essence, a form of polymorphism,
which is seldom considered harmful.

6. Specialisation of generic software elements.

A feature found exclusively in C++ is the possibility to specialise generic
classes and functions with respect to the actual values of the generic
parameters. In other words, the values of the generic parameters de-
termine which implementation, among a set of alternative implemen-
tations, is instantiated (see sections 2.2.2 and 2.2.4).

The primary reason for including generic features to these languages has
been to support the implementation of traditional generic containers. If
not expressed directly by the language designers [Str94, chapter 15|, this
becomes clear by the examples demonstrating the use of genericity in the
language descriptions |[TDT97, LAB"81, Mey97]. As the foremost objec-
tive is the same, it can be argued whether the somewhat subtle differences



2.2. GENERIC FEATURES IN C++ 19

listed above bear any significance. While comparing the genericity models of
C++, Eiffel and the programming language BETA [MMPN93| (mostly with
respect to the 4th item above), it has been suggested that in practice all
these three languages can express the same, despite the different approaches
chosen [Mad95, section 4.3]. The author’s perception is, however, that the
differences are important and have unexpected consequences. Particularly,
the combination of the features selected to C++ result in a genericity mech-
anism with expressive power surpassing its original intent.

2.2 Generic features in C+-+

Several language features and design choices contribute to a highly versatile
— and complex — genericity model of C++. In addition to ordinary generic
containers and algorithms, there is a whole range of possibilities for exploiting
genericity. The archetype of this development is the Standard Template
Library (STL) [SL94|, now part of the C++ Standard Library. For example,
various novel generic constructs of STL, such as functors and binders, provide
C++ with higher order functions and a currying mechanism (e.g. [Pau91])
common in functional programming languages, albeit in a restricted form.
The use of these constructs with generic STL algorithms can actually be
seen as a small shift towards functional programming style. This issue is
discussed in paper VI more thoroughly.

Recently, other sophisticated template techniques have emerged, stretch-
ing the boundaries of generic programming. It has proven out that templates
can, for instance, be used to selectively generate program code, perform non-
trivial computations, carry out type mappings and construct data structures
at compile time. The remainder of this chapter summarises the template fea-
tures of C++ that are relevant for understanding these techniques. The most
prominent of the techniques are reviewed in chapter 3.

2.2.1 Class templates

Class templates are the parameterised abstract data types of C++. For ex-
ample, a generic array can be defined as follows (showing only the internal
structure and omitting all the methods):

template<class T, int N>
class array {
T rep[N];

+

The template keyword is followed by the list of formal template parameters.
T is a type parameter, N is a non-type parameter, here of type int. The



20 CHAPTER 2. GENERIC PROGRAMMING

formal parameters can be used as such in the template definition: T and N
specify the type and number of the elements in the array.
To use the array template, it must be instantiated:

class A;
array<A, 10> anArray;

The instantiation with the class A and constant 10 generates a class definition
array<A, 10> basically by substituting each occurrence of T and N with A
and 10 respectively. A generated version of a template is called an instance
or instantiation. The term specialisation is also often used. The first terms
are used throughout this thesis, the last term being ambiguous in the C++
template vocabulary. The alternative meaning for specialisation adopted
here is explained below.

2.2.2 Class template specialisation

Specialisation is a means to provide alternative definitions for class tem-
plates to be used with a specific set of arguments. The syntax for defining
specialisations is:

template<template parameter list>
class class name<specialisation _pattern> { ... };

The template parameter list declares the template paremeters used in the
specialisation pattern and is thus not related to the template parameter list
of the primary template.

A specialisation is instantiated instead of the general primary template,
if the values of the template arguments match the specialisation pattern of
the specialisation. In an explicit specialisation, the specialisation pattern
consists of non-generic types and constants. The value of every template
parameter is specified exactly, hence the template parameter list is empty.
In partial specialisation the specialisation pattern defines a set of matching
values for some template parameters. As an example, consider the following
three specialisations for the array template:

template<class T, int N> class array { ... }
// The primary template

template<class T> class array<T, 0> { ... }
// #1, partial specialisation for zero-length arrays

template<> class array<bool, 8> { ... }
// #2, explicit specialisation for 8-element bool-arrays

template<class T, int N> class array<T*, N> { ... }
// #3, partial specialisation for pointer type elements



2.2. GENERIC FEATURES IN C++ 21

To determine which definition is used to generate a particular instantiation,
the compiler tries to match the argument list of the instantiation with each
specialisation pattern. The specialisations form a partially ordered set, the
ordering being defined by the degree of specialisation:

Definition 2.1 If every template argument list that matches one speciali-
sation also matches another specialisation, but not vice versa, then the first
spectalisation is said to be more specialised than the other, otherwise the two
specializations are unordered.

Based on this partial ordering, a matching specialisation that is more spe-
cialised than any other matching specialisation, is instantiated. The detailed
rules [C++98, Section 14.5.4] determining the matching and ordering are
somewhat complex but nevertheless intuitive. Basically the selection mech-
anism corresponds to the type unification mechanism in compilers [ASUSG6,
chapter 6]. As an example, consider the following instantiations of the pre-
ceding array templates:

array<A, 10> a; // primary template
array<bool, 8> b; // explicit specialisation #2
array<bool*, 8> c; // partial specialisation #3
array<double*, 0> d; // error, ambiguous

The last instantiation is an error, since there are two matching specialisations
(1 and 3), neither of which is more specialised than the other.

2.2.3 Function templates

Analogously to classes, functions can be generic as well. A generic function
to compute a minimum of two variables can be defined as follows:

template<class T> T min(T a, T b) {
if (a < b) return a; else return b;

b

Note, that the type T is not explicitly restricted in any way, though obviously
it must have the ‘<’ operator defined. As explained in section 2.1 (item 4),
the constrain is implicit and enforced by the compiler during instantiation.
If a template function invocation is encountered in the compilation process,
the instantiation occurs as a side effect. The values of the generic parameters
can be explicitly specified within the invocation, but if they can be deduced
from the types of the function arguments, this is not necessary. The template
argument deduction succeeds, if the function argument list identifies the set
of template arguments uniquely. For example:



22 CHAPTER 2. GENERIC PROGRAMMING

float pi = 3.14, e = 2.72;
float e _or pi = min<float>(e, pi);
float pi_or e = min(pi, e);

In the first call to the min function template, the value of the generic param-
eter T is explicitly specified, whereas in the second invocation the compiler
deduces it from the types of pi and e. Both cases generate the same instan-
tiation:

float min(float a, float b);

2.2.4 Specialising and overloading function templates

Function templates can be given explicit specialisation definitions as well as
be owverloaded, just as ordinary functions. The former is roughly equivalent
with explicit specialisation of class templates, the latter corresponds to par-
tial specialisation. For example (min_element is a function template in the
Standard Library):

// explicit specialisation definition for C-style strings

template<> const char* min(const char* a, const char* b) {
if (strcmp(a,b)<0) return a; else return b;

}

// overloaded definition template<class T>
T min(T* array, int size) {

return std::min__element(array, array+size);
}

The overload resolution is relatively complex and rich in details as over-
loaded templates, explicitly specialised templates and ordinary functions all
take part in the resolution. However, the intuitive workings of the mecha-
nism are clear. The template arguments of each candidate template function
are deduced from the argument types of the function call. A partial order
among all matching function templates is defined and the most specialised
unique instance is selected to take part to the overload resolution with or-
dinary functions. Hence, if two or more overloaded templates match, none
of which is more specialised than the others, a compile-time error results.
See [LL98, chapter 10] for a thorough description of the overload resolution
mechanism.

2.2.5 Compile-time polymorphism

The various specialisation capabilities result in compile-time polymorphism,
the term introduced in [KS95]. Every template instantiation offers a choice,



2.2. GENERIC FEATURES IN C++ 23

which is made during compilation. Based on the values of the generic pa-
rameters, the compiler chooses a particular instantiation among a set of
alternative definitions, which may be entirely unrelated.

2.2.6 Miscellaneous template features

Apart from compile-time polymorphism, the C++ template mechanism also
draws power from several additional features worth mentioning:

e Types and constants (using typedef, enum and static integral constants)
can be defined in class templates.

e Static members, being equivalent to class level variables and functions,
are allowed in class templates.

e Template parameters can have default values.

e Member functions of ordinary classes and template classes can be tem-
plates.

e Template parameters can be templates.

These features are all important contributors to the versatile, but admit-
tedly also very complex, genericity model of C++.



Chapter 3

Contemporary generic
programming in C++

As mentioned in section 2.2, C++ templates extend beyond ordinary generic
containers and algorithms. E. Unruh was the first to discover the lurking
computational power of templates. He demonstrated it with a program gen-
erating prime numbers as a part of compiler’s error messages [Unr94].

Rather than being especially planned, the ability to perform computa-
tions during compile-time seems to have crawled into the language quite
incidentally. Since Unruh’s finding, the computational and expressive power
of C++ templates has been further explored. Some of the results of this
exploration are introduced in this chapter.

3.1 Template metaprogramming

Computations carried out by a compiler can not use dynamic data, rather
the inputs, outputs and variables of such computations are constants and
types. The template instantiation phase of the C++ compilation process
provides a rudimentary mechanism for manipulating these constants and
types and controlling program flow. Looping is achieved with recursive tem-
plate instantiations and selection with template specialisations. With these
constructs we can write programs to be executed by the compiler. This type
of programming is known as template metaprogramming [Vel95b].

3.1.1 C++ basics for template metaprogramming

This section describes the syntax of C++ constructs which are typical in
template metaprogramming. A reader familiar with C++ may safely skip
the section, comprehensive texts describing C++ include [Str97, LL98|.
Integral constants within classes, or instantiated class templates, can be
defined either as enumerations with the enum construct or as static constants.

24



3.1. TEMPLATE METAPROGRAMMING 25

Types are defined using the typedef keyword. For example, the following
template defines integral constants valuel, value2, value3 and defines a name
(a_type) for the type T:

template<class T, int N>

class A {

public:

enum { valuel =1, value2 = N };
static const int value3 = 100;
typedef T a_ type;

¥

The scope resolution operator :: is used to refer to such constants and types.
For example:

A<int, 10>::valuel
A<string, 0>::a_ type

The first line refers to the constant valuel in the instantiation A<int, 10>,
the second to the type a_type in A<string, 0>.

The conditional operator cond 7 el : e2 is often used in template meta-
programs. It corresponds to if (cond) then el; else e2; with the distinction of
being an expression, and thus having a value, rather than being a statement.

Inline expansion is crucial for efficiency in template metaprograms. The
inline keyword in front of a function definition instructs the compiler to ex-
pand the function body in the call site rather than generate code for calling
the function. If a member function is defined directly within the class defini-
tion, the inline keyword is not used; the function is inlined by default. Inline
expansion is beneficial for small functions, where the performance penalty
of the function call and return instructions is significant compared to the
function body itself. Template metaprograms typically contain calls to very
small (even empty) functions.

For brevity, template metaprograms tend to favor struct definitions for
class definitions. Most of the classes in template metaprograms contain only
type defintions, constants or static functions and thus do not have a state
which could change. There is seldom reason to restrict the access to the
members of such classes. The access protection of the members of a struct
is public by default, opposed to a class where the default protection level is
private.

3.1.2 Numerical compile-time computations

The simplest examples of template metaprograms are compile-time compu-
tations of numeric constants. For example, the following template definitions
comprise a template metaprogram for computing the greatest common divi-
sor of two integer constants.



26 CHAPTER 3. CONTEMPORARY GENERIC PROGRAMMING

template<int A, int B>
class ged {
static const int newA = A<B 7 B : A-B;
static const int newB = A<B ? A : B;
public:
static const int value = gcd<newA, newB>::value;

h
template<int A> class gcd<A,0> { public: static const int value = A; };

The primary template is the general case of the recursive definition, the base
case is defined in the partial specialisation for B = 0. The parameters of the
metaprogram are the template parameters A and B, the result resides in the
value constant. An instantiation, such as const int x = gcd<45,36>::value;
instantiates the primary template, computing the static constants newA = 9
and newB = 36. The evaluation of the value constant triggers recursively the
instantiation gcd<9,36>::value, which in turn requires gcd<36,9>::value to
be instantiated, and so on. At some point, B becomes 0, the specialisation
is instantiated and the recursion ends. This all occurs at compile time. The
result is the single constant 9 in the executable code.

Numeric template parameters are restricted to integral types; floating
point numbers are not allowed. However, even though it may not be directly
apparent, it is possible to compute floating point constants at compile time
as well. The basic idea is to use rational numbers and series expansions as
approximations [GG98, Vel95b].

In principle, the expressive power of the template metaprogramming
mechanism allows arbitrary computations (say, a Turing machine simula-
tion) to be performed with a C++ compiler. However, there are of course
practical limitations induced by the finite resources available to the compiler.

3.1.3 Metaprogramming with types

Template metaprogramming is not restricted to computations with numbers.
Types can be manipulated as well. For example, the following metaprogram
implements a compile-time if statement resulting in a selective type defini-
tion:

template<bool Cond, class Then, class Else>
struct IF { typedef Then RET; };

template<class Then, class Else>
struct IF<false, Then, Else> { typedef Else RET; };

Both templates define a type RET which acts as a result of the program.
Depending on the value of the boolean constant Cond, either the primary



3.1. TEMPLATE METAPROGRAMMING 27

or the specialised template is instantiated, giving RET either the type Then
or Else. As an example of the usage of such a construct, the expression
IF< sizeof(A)>sizeof(B), A, B>::RET selects the larger of two types A and
B. Using similar techniques, other control structures (case structures, loops)
can be defined to guide type and constant selections. The above IF template
is an excerpt from [Cza98|. Templates that implement type functions are
known as traits templates [Mye95].

3.1.4 Compile-time data structures

Compile-time data structures, such as lists and trees, can be represented as
nested template instantiations. Such data structures are then manipulated
with template metaprograms.

Compile-time lists are in central role in papers II, IV, V and VI. Trees
come across, for instance, in expression templates that are used to represent
parse trees of vector and matrix expressions [Vel95a|. The skeleton of such
a template can be written as:

template<class Node, class T1, class T2>
struct tree {

Node node;

T1t1; T2 t2;

b

class plus; class times; ... // sample operator types

The Node type represents the operator, types T1 and T2 the arguments. As
an example, the instantiation tree<plus, tree<times, int, int>, double> could
be used to represent the expression type (int*int)+double.

Recursive bind expressions, explained in paper VI, lead to tree structures
as well.

3.1.5 Generating code

The result of ‘executing’ any of the preceding template metaprograms is ei-
ther a type or a constant. In addition to performing computations, template
metaprograms can generate code as well. Code generation is based on se-
lective inlining code along the execution of the metaprogram. The building
block code fragments are commonly static member functions, but can be
non-member functions or function templates as well. Consider the following
template metaprogram:

struct check {
static void execute(int i) { if (i==0) throw Exception; }

+



28 CHAPTER 3. CONTEMPORARY GENERIC PROGRAMMING

struct nocheck {
static void execute(int i) { }

h
IF<check flag, check, nocheck>::RET::execute(i);

check and nocheck are structs, which both contain a member function execute
with different definitions. IF<check flag, check, nocheck>::RET expands ei-
ther to the type check or nocheck depending on the value of check flag (see
section 3.1.3). Consequently, the value of check flag determines which of
the execute functions the last line invokes. Note that in the case where
check flag == false the empty function does not yield any code.

To perform code generation in a larger scale, there must be some kind
of iteration involved. The following example, taken from [Vel99| generates a
specialised dot product algorithm:

template<int I>

inline float dot(float a[], float b[]) {
return dot<I-1>(a,b) + a[l]*b[l];

h

template<>

inline float dot<0>(float a[], float b[]) {

return a[0]*b[0];
h
// Example:

float x[3], y[3];
float z = dot<2>::f(x,y);

The last line generates code that is equivalent to:
float 2 = x[0]*y[0] + x[1]*y[1] + x[2]*[2];

Hence, the template metaprogram was used to achieve loop unrolling.
Iteration can of course be over types in trees and lists etc. The articles I,
II, IV, V and VI show several examples of such code generation.

3.2 Applications of template metaprogramming

The publications in this thesis describe generative programming techniques
and active libraries. The underlying implementation technology is template
metaprogramming. This section reviews some of the related work describing
successful active libraries using template metaproramming.



3.2. APPLICATIONS OF TEMPLATE METAPROGRAMMING 29

3.2.1 Object synthesis and configuration repositories

Czarnecki and Eisenecker [CE99b| have proposed a method for synthesis-
ing objects from implementation components. These components implement
certain functionalities and can be configured to yield different systems. The
functionalities can be aspects (see section 1.1.2), i.e., such that they can not
be encapsulated into a single procedure or object. An example from [CE99b]
presents a configurable list container consisting of implementation compo-
nents for basic list functionality, logging insertions and deletions, element
counting, element copying, element ownership etc. These implementation
components can be composed and configured to yield concrete list imple-
mentations with desired characteristics.

Without going into further details, template metaprograms map an ab-
stract configuration description to a concrete configuration repository, which
guides the object synthesis. For example, the abstract specification

LIST GENERATOR<A, copy, with counter, with logging>::RET

defines a list type that contains elements of type A, stores them as copies
(instead of references), keeps count of the number of elements and logs in-
sertions and deletions.

3.2.2 Generic programming in linear algebra

Three articles in this thesis (papers I, IT and IIT) deal with sparse matrix
computations. To get a broader insight into the area, three other matrix
computation libraries that utilise template metaprogramming are discussed
in this section.

Linear algebra is a fruitful application area for the new generic program-
ming techniques. The domain specific language of matrix expressions is
well-understood and the need for high performance is characteristic for these
libraries. There is a loose community with an interest on linear algebra and
scientific computing using OOP and generic programming (see The Object
Oriented Numerics home page [OONO0).

Traditional high performance linear algebra and matrix computation li-
braries, such as LAPACK [ABB199] are typically written in Fortran or C.
Such libraries are very large; there are different versions of the same routines
for several precision types (single and double precision real, single and dou-
ble precision comblex), few dense storage types (general, banded, packed),
and a large number of sparse storage types [SL98|. Covering all these cases
is a combinatorial issue. Furthermore, to achieve high performance several
special algorithms are provided for commonly encountered simple expres-
sions. For example, instead writing Y = A*X + Y to multiply the vector
X with the constant A and add another vector Y to the result, a FOR-
TRAN programmer would call the BLAS (basic linear algebra subroutines)



30 CHAPTER 3. CONTEMPORARY GENERIC PROGRAMMING

library [LHKK79, DDHH88, DDDH90| routine SAXPY, DAXPY, CAXPY or
ZAXPY (depending on the precision) as SAXPY(N, A, X, 1, Y, 1). To compli-
cate things more, the processor characteristics and the memory architecture
have a significant effect on performance. This is why processor manufactur-
ers commonly supply specially tuned versions of the BLAS libraries.

There are a number of numerical libraries for OO languages (C++ [P0z99,
Mat99|, Java [JAM99, JNL|). These libraries provide some improvement
over the C and FORTRAN libraries, e.g. by parameterising the precision
of elements, but they still more or less retain the structure of the original
libraries: each special case (different matrix formats etc.) requires a special
algorithm.

Straightforward attempts to use OO principles to abstract matrix com-
putations lead to very inefficient solutions. For example, creating an abstract
superclass for all types of matrices and binding the element access function
dynamically is not acceptable on most cases. Another source of inefficiency
are the temporary variables created during the pairwise evaluation of ex-
pressions. In a straightforward implementation with operator overloading,
an expression likea = b + ¢ + d (where a, b, c and d are vectors or matrices)
sets off the construction of two unnecessary temporary variables for holding
the results of the subexpressions b + c and b + ¢ + d.

The semantic gap between the mathematical abstract matrix notation
and the efficient implementation is wide. The knowledge that is needed
to transform the mathemathical expressions to an effient implementation is
considerable. To aid these tasks, several active libraries have been developed
demonstrating the strength of generic, and generative, programming in this
field.

3.2.3 MTL — The Matrix Template Library

MTL [SL98] is a high-performance generic linear algebra library written in
C++. It borrows its structure form STL, consisting of generic functions, con-
tainers, interators, adaptors, and function objects. MTL does not currently
provide operator overloading abstractions. It implements the functionality
of BLAS libraries plus some more.

The main focus of the library is in covering different precisions, dif-
ferent storage types and different memory layouts with the same config-
urable algorithms and containers. This is achieved with the configuration
repository mechanism discussed in section 3.2.1. The element precision,
storage types etc. are configuration parameters for the matrix type. E.g.
matrix<double, rectangle<>, dense<>, column_major>::type defines a dou-
ble precision dense rectangular matrix with column major storage order.
This configuration information can be used while instantiating the generic
matrix algorithms to provide specialised algorithms for certain types of ma-
trices. However, for the most part, each algorithm is implemented with just



3.2. APPLICATIONS OF TEMPLATE METAPROGRAMMING 31

one generic algorithm, which takes advantage of the configuration informa-
tion to generate an efficient implementation. This results in very high degree
of code reuse. The size of the MTL library is only 15 KLOC! compared to the
150 KLOCs of the FORTRAN BLAS while providing greater functionality
and better performance.

Another interesting feature in MTL is the use of template metaprograms
to tune itself for different memory hierarchies. To obtain high-performance,
elementary matrix algorithms must take advantage of the memory hierarchy
of the underlying processor. This is achieved by careful loop blocking and
structuring (e.g. [DS98]). Optimal block sizes depend on the number of
registers and cache sizes. Based on these few simple constants MTL can
generate matrix-matrix multiplication code with performance on par with
the vendor-tuned routines.

3.2.4 The Generative Matrix Computation Library

The Generative Matrix Computation Library (GMCL) |Cza98] is somewhat
similar in structure to the MTL; the configuration scheme of matrices is
analogous. The GMCL clearly separates the domain specific configuration
language and the implementation language: however, both are written as
C-++ templates and executed by the compiler.

The concrete matrix types are specified using the configuration language.
The set of configurable features is even more complete than in the MTL in-
cluding for example error bounds checking and various memory allocation
schemes. GMCL overloads arithmetic operations for matrices efficiently us-
ing expression templates (see section 3.2.5).

The GMCL implementation comprises of 7500 lines of code but is able
to cover more than 1800 different matrix types. The performance of the
generated code is comparable with the performance of the manually coded
variants.

3.2.5 Expression templates and Blitz{+

The results of the pioneering work by Veldhuizen [Vel95b, Vel95a| with tem-
plate metaprogramming and expression templates is the basis of the Blitz++
library [Bli99, Vel98]. The library solves the problem of unnecessary tempo-
rary creation in vector and matrix expressions with the expression templates
technique. Template metaprogramming is exploited to generate specialised
algorithms for small vectors and matrices. In addition to these, the library
performs several domain and architecture specific optimisations.
Expression templates break the normal pairwise evaluation of the arith-
metic expressions. Arithmetic operators are overloaded for vectors and ma-
trices to build parse trees. For example, the result of the expression a + b,

! Thousand lines of code



32 CHAPTER 3. CONTEMPORARY GENERIC PROGRAMMING

where a and b are vectors, is not a vector but rather an expression object
(see section 3.1.4) holding pointers to a and b. Hence, the evaluation of an
arbitrary matrix or vector expression creates a parse tree of the expression.
When such a parse tree is assigned to some vector or matrix, the actual com-
putation is performed without creating any temporaries. This is possible,
since the assignment operation can use metafunctions to analyse the parse
tree and generate efficient code for evaluating the expression of such a type.
For recent work on expression templates, see [Fur97, HCKS99|.

3.2.6 Miscellaneous applications

Template metaprograms have been used to provide various small-scale ab-
stractions. For example, computing the required memory space for an n-
dimensional array, while n is a generic parameter, can be done with a tem-
plate metaprogram [Vel99]. Another example is the selection of the most
appropriate integral type for representing a given number of bits. The C++
standard does not fix (entirely) the sizes of integral types, such as char, int,
long etc. Hence, the most efficient type may vary from platform to plat-
form. A template metaprogram can perform this selection in a portable
way [Pes97].

As a demonstration of the expressive power of template metaprogram-
ming, a rudimentary LISP implementation has been written with C++ tem-
plates [CE99a]. Common compile-time control structures (if, while, switch
etc.) have been defined to make template metaprogramming easier [CE99al].
The compile-time if-structure was described in section 3.1.3.

3.3 Restrictions of template metaprogramming

Template metaprogramming has gained popularity as an implementation
mechanism for generative programming. An important reason for this is the
wide availability of the mechanism: a standard C++ compiler is enough for
interpreting template metaprograms. However, template metaprogramming
suffers from many deficiencies:

e There is no support for debugging.

e The diagnostic systems of compilers do not usually cope well with ex-
tensive usage of templates [Ale99]. Particularly the error messages from
template metaprograms tend to be lengthy and difficult to interpret.

e Compilation times increase (see papers IV and V).

e Though template metaprogramming strives for highly intentional ab-
stractions, template metaprogramming itself is far from intentional.



3.3. RESTRICTIONS OF TEMPLATE METAPROGRAMMING 33

The syntax is sometimes unwieldy, metaprograms are formed by non-
encapsulated fragmented pieces of template definitions, interactions
with the core language are complex etc. The compile-time control
structures referred to in section 3.2.6 are of some help in this respect.

e At the time of writing this, some widely used compilers are still far
from standard conforming. The non-conformant features are typically
related to templates and thus template metaprogramming.

e There are some language details, which restrict the mechanism. For
example, the size of an arbitrary expression can be queried with the
sizeof operator, but there is no means to query the type of an expression.

Despite the obvious shortcomings, a number of successful applications
using template metaprogramming have been built and there is a growing
interest towards the technique. This is an indication of the importance and
usefulness of metaprogramming facilities in programming languages in gen-
eral.



Chapter 4

Summary of publications

The thesis constitutes of six publications. They present template metapro-
gramming techniques and their applications in a rather technical and detailed
level. The first three communications provide efficient abstractions for nu-
merical domain. The latter three papers describe active libraries which de-
fine new constructs for the C++ language itself. This chapter outlines the
contents of the included articles. The publications are:

L

II.

I11.

Iv.

VI

[J&r97] Jaakko Jarvi. Processing Sparse Vectors During Compile Time
in C++. In Scientific Computing in Object-Oriented Parallel Enuvi-
ronments, volume 1343 of Lecture Notes in Computer Science, pages
41-48. Springer-Verlag, 1997.

[J&r98] Jaakko Jarvi. Compile Time Recursive Objects in C++. In
Technology of Object-Oriented Languages and Systems, pages 66—77.
IEEE Computer Society Press, 1998.

[J&r99a] Jaakko Jarvi. Object-Oriented Model for Partially Separable
Functions in Parameter Estimation. Acta Cybernetica, 14(2):285-302,
1999.

[J&r99b] Jaakko Jarvi. Tuples and Multiple Return Values in C-++.
Technical Report 249, Turku Centre for Computer Science, March
1999.

[J&r99c| Jaakko Jarvi. ML-style Tuple Assignment in Standard C-++
— Extending the Multiple Return Value Formalism. Technical Report
267, Turku Centre for Computer Science, March 1999.

[J&r99d| Jaakko Jarvi. C++ Function Object Binders Made Easy. In
Proceedings of the Generative and Component Based Software Engi-
neering 99, September 1999. To appear in volume 1799 of Lecture
Notes in Computer Science.

34



I. PROCESSING SPACE VECTORS DURING COMPILE TIME 35

The combined results of the papers IV and V have been presented in the
Nordic Workshop on Programming Theory’99 and published as an extended
abstract in the workshop proceedings [J&ar99e|. Further, a combined and
revised version of the two papers is to appear in the Ct++ Report journal.

I Processing Sparse Vectors during Compile Time

in C+-+

The paper describes a novel programming technique for performing sparse
vector index computations at compile time. The technique uses the bits of
integral template parameters to express the sparseness structure of vectors in
the type of the vector objects, i.e., vectors with different sparseness structures
are of different types.

The technique is best suited for small vectors where the sparseness struc-
ture is known at compile time. The paper outlines an active library that,
under the above conditions, allows the programmer to write programs which
use abstract vector expressions and still reach equal performance to hand op-
timised low-level C-code. The user gains a higher intentionality level without
sacrificing performance.

Template metaprograms define the mapping from the vector expressions
to an efficient implementation. More concretely, template metaprograms un-
roll the loops over vectors and eliminate multiplications with zero. The paper
describes forward mode automatic differentiation (AD) as an application of
the library. Automatic differentiation relieves the programmer from writing
explicit derivative code for mathematical expressions but still retains better
precision compared to approximated difference values. The use of the pro-
posed vector presentation in AD computations gave superior performance
compared to more conventional vector representations. Furthermore, the
execution speed was very close to that of the corresponding symbolically
differentiated expressions.

II Compile Time Recursive Objects in C++

The article is a generalisation of the paper I in several ways. The sparse vec-
tor templates in paper I are basically lists, where a certain bit of a template
parameter determines the type of a list element. Hence, for each element
there is a binary choice between two predefined types. This paper describes
a more general list structure, where each element type can be chosen freely
from the set of all possible types. Compile-time indexing of sparse vectors,
as presented in paper I, is thus a special case of such compile-time lists. Re-
garding this application, the data structures generalise directly to matrices
and higher dimensional arrays as well.



36 CHAPTER 4. SUMMARY OF PUBLICATIONS

The paper describes how to define compile-time lists using recursive tem-
plates, that is, templates which refer to other instantiations of the same tem-
plate. The paper shows how to manipulate such data structures and how
to use them in code generation. The presented results lay an important
foundation for the later articles IV-VI.

III Object-Oriented Model for Partially Separable
Functions in Parameter Estimation

The perspective of the paper differs somewhat from that of the five other
papers in the thesis; generic or generative programming is not particularly
accentuated. However, generic programming plays an important role in the
core of the computational kernel described in the paper. The kernel uses au-
tomatic differentiation in derivative computations. In this task the template
metaprogramming approach to sparse vector indexing described in paper I
is used. The efficient indexing scheme had a significant effect on the perfor-
mance results reported in the article.

Parameter estimation is an optimisation process where a model function
depending on modifiable parameters is fitted to a set of data points. To
assess the goodness of the fit, we must be able to compute the values of
the model function. Further, for the optimisation process to be efficient,
we commonly need a means to compute the derivatives with respect to the
modifiable parameters. The paper describes an object oriented framework
for representing partially separable model functions. Such functions are com-
monly encountered, e.g. in spectroscopy. The framework provides an efficient
computational kernel for computing the model function values and deriva-
tives. The model functions are represented in a structured and intuitive
way, resembling the mathematical structure of the functions. The formulae
of the model function are clearly encapsulated into few very simple classes.
Furthermore, the framework utilises automatic differentiation in derivative
computations. We thus attain a highly intentional, yet efficient, representa-
tion for model functions.

The paper includes a case study of nuclear magnetic resonance (NMR)
spectral fitting. See [JNKF97]| for details of this problem domain, as well as a
description of an NMR analysis program based on the presented framework.

IV/V  Tuple types in C++

A tuple (or n-tuple) type is the cartesian product of its element types. In a
programming language, a tuple is a data object containing a fixed number of
other objects as elements. These element objects may be of different types.
Tuples are convenient in many circumstances, in particular they make it easy
to define functions that return more than one value.



IV/V. TUPLE TYPES IN C++ 37

Unlike some programming languages, such as Python [Pyt99, Lut96|,
ML [Pau91] and Haskell [Tho99], C++ does not provide the user with built-
in tuple types. The fourth and fifth paper propose a tuple construct for C++.
This construct is a generalisation of the C++ Standard Library pair template
from two to arbitrary number of elements.

The tuple abstraction is based on compile-time lists. Template metapro-
grams aid at constructing tuples and accessing tuple elements. The two
papers IV and V together outline an active library which implements a do-
main specific abstraction — here the domain is the programming language
itself.

The papers compare different ways of passing multiple results out of a
function and stress the conciseness and clarity of tuple typed return values
compared to extra output parameters of pointer or reference types. As a
concrete example, let foo be a function with two inputs (of some types A
and B) and three outputs (of some types C, D and E). A typical prototype
and a corresponding call for such a function could be:

void foo(A, B, C&, D&, E&)

foo(a, b, ¢, d, €);

Here a, b, ¢, d and e are of types A, B, C, D and E respectively. The proposed
tuple abstraction allows a more intentional definition and use:

tuple<C, D, E> foo(A, B);

tie(c, d, e) = foo(a, b);

The papers discuss the performance of different design alternatives at
compile and run time and show that with an optimising C++ compiler the
extra runtime cost arising from the abstraction is negligible, and that the
extra compile time cost is notable, but not significant on real programs.

IV/V.1 Compilation tests

Since writing the papers IV and V, advances in compiler technology have
been introduced. Specifically, the inlining analysis in the GCC C++ com-
piler is performed at an earlier phase of the compiling process. As a result,
compilation times decrease in programs that make heavy use of inline func-
tions.

This is an important improvement, since programs using STL containers
and algorithms fall in this category. A frequent use of inline functions is
even more typical for the template techniques described in this thesis. To
assess the effect of the new inliner the compilation tests of the paper V were
rerun with a new version of the GCC C++ compiler (development snapshot



38 CHAPTER 4. SUMMARY OF PUBLICATIONS

20000426 of gce version 2.96). The version in paper V was egces 1.1.1. Despite
the different names, gcc and egces are different versions of the same compiler.

The goal of the compilation tests was to measure the relative cost of us-
ing tuples as function return types compared to using reference parameters
to pass values out of functions. Hence, five pairs of programs were generated
for different tuple lengths. Each pair contained a program using tuples and
a program using reference parameters as the return mechanism. More con-
cretely, the two-elemement case consisted of repeated function definitions of
the following form:

// Reference parameters

struct A {};
void f(A& a0, A& al) { a0=A(); al=A(); }
A g() { A a0; A al; f(a0,al); return al; }

// Tuples

struct A {};

tuple<A,A> () { return make tuple(A(),A()); }
A g() { A a0; A al; tie(a0, al) = f(); return al; };

The rationale behind these definitions is as follows. In both cases, the
function f has many return values (two in this case) and function g calls f, a
function with many return values. Hence, we cover both the definition and
invocation. The functions f and g should be as simple as possible, yet forcing
the compiler to really compile the functions rather than avoid a significant
deal of the compilation by detecting that some code is not used at all.

The test programs and settings were identical to the ones described in
section 4.1.2 of paper V (optimisation flag -O2, Intel 133 Mhz Pentium).
The test results are illustrated in Fig. 4.1. To eliminate the effect of any
constant costs the compilation time of a program containing an empty main
function was subtracted from the actual compilation times to get Tiet values.
The compilation time of a program containing an empty main function and
including the tuple header file was substracted to get Tijer values (on the
target machine, the compilation of the tuple header took 0.41 seconds). The
standard deviations in repeated tests were negligible (below 1 %) and are
not shown.

The tests show a significant reduction in the cost of compiling tuple
constructs. This is in accordance with the experiences reported at GCC
homepages [GCCO0, follow the link: News, Dec 05] and thus indicates that
the reduced compilation costs are not limited to specific constructs but are
of benefit to a wide range of generic programming techniques.



VI. C++ FUNCTION OBJECT BINDERS MADE EASY 39

25 -

Ttier/Tref

[ | | |
24 8 16 32
Tuple length

Figure 4.1: The relative compilation times of programs using tuples to equiv-
alent programs using reference parameters to pass multiple values out of
functions. Tijer is the compilation time of the tuple program, Ties the com-
pilation time of the reference parameter program. The solid line represents
the results with the gcc 2.96 20000426 compiler, the dashed line the results
with the egcs 1.1.1. compiler.

VI C++ Function Object Binders Made Easy

The last paper describes an active library which extends C++ with another
new construct. The C++ Standard Library provides a very rudimentary par-
tial function application (argument binding in C++ vocabulary) mechanism
with several unnecessary constrains and restrictions. This paper describes
a novel argument binding mechanism resembling the partial function ap-
plication semantics of Theta |[LCD'95]. In this mechanismm, the actual
arguments to a function can contain explicit free pseudo-variables, called
placeholder objects, allowing thus arbitrary arguments to be bound or left
unbound. For example, assume again that a, b, ¢, d and e are variables of
some types A, B, C, D and E, and that E foo(A, B, C, D) is some function.
Now foo can be invoked partially as follows:

bind(foo, a, freel, c, free2);

The first and third parameter are bound to a and c, respectively. The sec-
ond and fourth parameters are left unbound (freel and free2 are predefined
placeholders). The result of the expression is a function of type E foo2(B, D).
When invoked with, say b and d, this function eventually calls the original
function as foo(a, b, ¢, d).



40 CHAPTER 4. SUMMARY OF PUBLICATIONS

The proposed new binding technique removes several constrains and spe-
cial cases from argument binding. The bind expressions retain the resem-
blance to a normal non-bound call of the underlying function, unlike in the
binding mechanism in the Standard Library. Further, the new binding syn-
tax and semantics is more expressive allowing function composition.

The paper presents the technique from the users point of view and de-
scribes the general layout of the library that implements it.



Chapter 5

Conclusion

5.1 Summary

High intentionality of a programming language is of utmost importance while
pursuing for maintainable, reusable and adaptable software. We argued that
the currently established abstraction mechanisms in general purpose pro-
gramming languages tend to fall short in this respect. In an ideal case
programming could be done with a language suited best for a particular do-
main. We stated the problems of providing such domain specific languages
and compilers and identified generative programming as a more tractable
alternative. Compilation process is opened up to some extent to allow the
programmer to define new language constructs, optimisations etc. to attain
higher intentionality.

From different implementation technologies for generative programming
we focused on generic programming and particularly on template metapro-
gramming in C++. The basics of template metaprogramming were described
and the most prominent applications were reviewed. The individual articles
constituting the main body of the thesis explored the template metapro-
gramming mechanism and demonstrated that generic programming is more
than just parameterising the element types in a container library. The arti-
cles presented new results in the field of linear algebra and object oriented
numerics, as well as provided extensions to the C++ language itself.

Template metaprogramming is obviously not a final solution while at-
tempting to attain high intentionality. This becomes clear from the im-
mediate problems that we identified (awkward syntax, lack of debugging
tools, unwieldy error messages etc.). Nevertheless, template metaprogram-
ming solves practical problems today and is readily usable as a byproduct
of a standard-conforming C++ compiler. Further, the success and relative
popularity of a somewhat awkward, limited and complex metaprogramming
facility, such as C++ templates, is an encouragement for equipping program-
ming languages with well-thought generative abstraction tools. The goal of

41



42 CHAPTER 5. CONCLUSION

such a facility is obviously not to make all programmers define their own
language prior to writing an application program but rather to bring the
degree of difficulty of writing domain specific abstractions from the level of
compiler development closer to that of writing a class library.

5.2 The Lambda Library

The results of the last three papers IV-VI have been combined to a template
library, together with some new results. This library, called The Lambda
Library (LL), is available for users at the LL home page [LL00]. The source
code and documentation are downloadable from the home page.

The library is written entirely in standard C++. The library contains
some improvements, particularly in the tuple implementation, which are not
described in the papers included in this thesis. For instance, the library
implementation unifies the cons template of paper IV and the ref cons tem-
plate of paper V resulting in a single tuple construct, which is capable of
storing elements of practically any valid C++ type. The parts of the func-
tionality of LL not covered in this thesis are described in the documentation
accessible from the library home page.

5.3 Future Work

The work with the Lambda Library continues. It builds on the ideas from
this thesis and on the work of G. Powell and P. Higley [PH00]. At the
time of writing this, we (joint work with Powell) have generalised the partial
function application mechanism from paper VI and extended it to cover
operator invocations. In effect, this adds unnamed functions, or lambda
functions, to C++. A description of the functionality and implementation of
this part of the LL is planned to be published later. Here we summarise the
main features of the lambda abstraction part of the library.

Free variables can be used not only in functions but in arbitrary expres-
sions as well. As an example, the expression freel * 10 evaluates to a unary
function. When invoked, this function returns its argument multiplied with
10. Hence, (freel * 10)(5) evaluates to 50.

The library supports almost all overloadable operators of C++. For ex-
ample, to compute the dot product of two containers a and b, one could
write:

double sum = 0;
for _each(a.begin(), a.end(), b.begin(), sum += freel * free2);

In addition to operators, common control structures can be emulated.
Consequently, this provides a means to pass fragments of code as parameters
to functions. The following code prints those elements of a that are even



5.3. FUTURE WORK 43

and smaller than 100 (&& is the logical and operator, % is the remainder
operator):

for _each(a.begin(), a.end(),
if _then(freel < 100 && (freel % 2) == 0,
cout << freel << endl));

Furhermore, constructor and destructor calls can be written as lambda func-
tions, as well as memory allocation and deallocation requests. Lambda func-
tions can even throw exceptions and contain try and catch blocks for excep-
tion handling.

Lambda expressions can be combined arbitrarily with the bind expres-
sions described in paper VI. Furthermore, the bind expressions themselves
have been generalised from paper VI. As stated above, a function such as
E foo(A, B, C, D) can be invoked partially:

bind(foo, a, freel, c, free2);
The current LL allows the target function to be left open as well:
bind(freel, a, b, ¢, d);

The result of this expression is a unary function, which takes a four-argument
function as its parameter. Hence, the expression

bind(freel, a, b, ¢, d)(foo)

invokes foo(a, b, ¢, d). A bound or unbound target function can be a pointer
or reference to a function, a function object (a class object with a function
call operator member) or a pointer to a member function.

The current LL provides an alternative for the Standard C++ Libary
binders. It is fair to say, that the LL binding mechanism is more intentional
and less constrained of these two. There is no performance difference between
the two approaches.

With the current Standard Library, particularly with the function objects
and binders, C++ has taken a firm step towards an entirely new programming
style. The LL is another step in the same direction. The C++ standard is
currently frozen but will be reopened for changes after some years. The au-
thor believes that some of the features of the LL would be worthy candidates
for additions to future revisions of the C++ Standard Library.



References

[ABBT99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

[AG96]

[Ale99)

[ASUS6]

[Big97]

[B1i99]

[Bos97]

[Bos98|

[C++98]

[CE99a|

[CE99D]

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA,
3rd edition, 1999.

K. Arnold and J. Gosling. The Java™™ Programming Language.
Addison-Wesley, Reading, MA, 1996.

A. Alexandrescu. Better template error messages. C/C++ Users
Journal, March 1999.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

T. J. Biggerstaff. A perspective of generative reuse. Technical
Report MSR-TR-97-26, Microsoft Reserarch, December 1997.

The Blitz++ library home page.
http://www.oonumerics.org/blitz/, 1999.

J. Bosch. Delegating compiler objects: Modularity and reusabil-
ity in language engineering. Nordic Journal of Computing,
4(1):66-92, 1997.

J. Bosch. Design patterns as language constructs. Journal of
Object-Oriented Programming, 11(2):18-32, May 1998.

International Standard, Programming Languages — C++,
ISO/IEC:14882, 1998.

K. Czarnecki and U. Eisenecker. Meta-control structures for
template metaprogramming, 1999.
http://home.t-online.de /home/Ulrich.Eisenecker /meta.htm.

K. Czarnecki and U. Eisenecker. Synthesizing objects. In
R. Guerraoui, editor, ECOOP’99 — Object-Oriented Program-
ming, volume 1628 of Lecture Notes in Computer Science, pages
18-42, June 1999.

44



REFERENCES 45

[CEG 98]

[CES97]

[Chi95]

[Cox90]

[Cza98]

[DDDHI0]

[DDHHSS]

[DNW99]

[DS98]

|Eis97]

[Fur97]

K. Czarnecki, U. Eisenecker, R. Gliick, D. Vandevoorde, and
T. Veldhuizen. Generative programming and active libraries.
Lecture Notes in Computer Science, April 1998. To appear, also
in http://extreme.indiana.edu/~tveldhui/.

K. Czarnecki, U. Eisenecker, and P. Steyaert. Beyond objects:
Generative programming, a position paper. In Proceedings of the
Aspect-Oriented Programming Workshop at ECOOP’97, June
1997. http://wwwtrese.cs.utwente.nl/aop-ecoop97.

S. Chiba. A metaobject protocol for C++. In Proceedings of
the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’95), pages 285-299, Oc-
tober 1995.
http://www.hlla.is.tsukuba.ac.jp/~chiba/openc++.html.

B. J. Cox. There is a silver bullet. Byte, pages 209218, October
1990.

K. Czarnecki. Generative Programming: Principles and Tech-
niques of Software Engineering Based on Automated Configura-
tion and Fragment-Based Component Models. PhD thesis, Tech-
nische Universitat [lmenau, Germany, 1998.

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set
of level 3 basic linear algebra subprograms. ACM Transactions
on Mathematical Software, 16(1):1-17, 1990.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Han-
son. Algorithm 656: An extended set of FORTRAN Basic Lin-
ear Algebra Subprograms. ACM Transactions on Mathematical
Software, 14(1):18-32, 1988.

S. Dobson, P. Nixon, V. Wade, S. Terzis, and J. Fuller. Vanilla:
an open language architecture. In Generative and component-
based software engineering, volume 1799 of Lecture Notes in
Computer Science. Springer-Verlag, 1999. To appear.

K. Dowd and C. Severance. High Performance Computing.
O’Reilly & Associates, 2nd edition, 1998.

U. Eisenecker. Generative programming (GP) with C++. In
H. Méssenbock, editor, Modular Programming Languages, Pro-
ceedings of JMLC’97, pages 351-365, Linz, Austria, March 1997.
Springer-Verlag.

G. Furnish. Disambiguated glommable expression templates.
Computers in Physics, 11(3):263-269, May/June 1997.



46

[GCCO0]
[GGOS]

[GHJ*95]

[Han94]

[HCKS99]

[TP99]

[JAM99)

[INKF97|

[INL]

[J&r97|

[J&r9s8|

[J&r99a|

[J&r99b]

[J&r99c|

REFERENCES

The GCC home page. http://www.gnu.org/software/gcc, 2000.

J. Gil and Z. Gutterman. Compile time symbolic derivation
with C+-+ templates. In COOTS 98, 4th USENIX Conference
on Object Oriented Technologies and Systems, April 1998.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch.
Design Patterns : Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Reading, MA, 1995.

S. W. Haney. Is C++ fast enough for scientific computing?
Computers in Physics, 8(6):690-694, November 1994.

S. W. Haney, J. Crotinger, S. Karmesin, and S. Smith. Pete, the
portable expression template engine. Dr. Dobb’s Journal, pages
88-95, October 1999. http://www.acl.lanl.gov/pete.

Intentional Programming home page.
http://www.research.microsoft.com /research /ip, 1999.

Mathworks, Inc. and the National Institute of Standards and
Technology (NIST). JAMA: A Java Matriz Package, 1999.
http://math.nist.gov/javanumerics/jama,/.

J. Jéarvi, S. Nyman, M. Komu, and J. J. Forsstrom. A PC-
program for automatic analysis of NMR spectrum series. Com-
puter Methods and Programs in Biomedicine, 52:213-222, 1997.

JNLI" 1.0 - A numerical Library for Java™™

J. Jarvi. Processing sparse vectors during compile time in C++-.
In Scientific Computing in Object-Oriented Parallel Environ-
ments, volume 1343 of Lecture Notes in Computer Science, pages
41-48. Springer-Verlag, 1997.

J. Jarvi. Compile time recursive objects in C++. In Technology
of Object-Oriented Languages and Systems, pages 66-77. IEEE
Computer Society Press, 1998.

J. Jarvi. Object-oriented model for partially separable functions
in parameter estimation. Acta Cybernetica, 14(2):285-302, 1999.

J. Jarvi. Tuples and multiple return values in C++. Technical
Report 249, Turku Centre for Computer Science, March 1999.

J. Jarvi. ML-style tuple assignment in standard C+-+ — extend-
ing the multiple return value formalism. Technical Report 267,
Turku Centre for Computer Science, March 1999.



REFERENCES 47

[J5r99d]|

[J&r99e]

[KL93)|

[KLM+94]

[Knu92]

[KS95]

[LAB*81]

[LCD*95]

[LHKKT9]

[LL98|

[LLOO]
[Lut96]

J. Jarvi. C++ function object binders made easy. In Pro-
ceedings of the Generative and Component-Based Software Engi-
neering’99, volume 1799 of Lecture Notes in Computer Science,
September 1999. To appear.

J. Jarvi. Incorporating tuple types to C+-+. In Proceedings of
the Nordic Workshop on Programming Theory’99, October 1999.
Extended abstract.

D. E. Knuth and S. Levy. The CWEB System of Structured
Documentation. Addison-Wesley, Reading, MA, 1993. Also at
www-cs-staff.Stanford. EDU /~knuth /cweb.html.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira
Lopes, J-M. Loingtier, and J. Irwin. Aspect-oriented program-
ming. In M. Aksgit and S. Matsuoka, editors, FCOOP’97 -
Object-Oriented Programming, volume 1241 of Lecture Notes in
Computer Science, pages 220-242, June 1994.

D. E. Knuth. Literate Programming. Number 27 in Center for
the Study of Language and Information Lecture Notes. CLSI
Publications, Stanford University, 1992.

A. Koenig and B. Stroustrup. Foundations for native C++
styles. Software — Practice and Ezperience, 25(S4):S4/45-54 /86,
December 1995.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert,
R. Scheifler, and A. Snyder. CLU Reference Manual. Num-

ber 114 in Lecture Notes in Computer Science. Springer-Verlag,
NY, 1981.

B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. John-
son, and A. C. Myers. Theta reference manual, preliminary ver-
sion. Programming Methodology Group Memo 88, MIT Labo-
ratory for Computer Science, 1995.
http://www.pmg.lcs.mit.edu/Theta.html.

C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Ba-
sic Linear Algebra Subprograms for FORTRAN usage. ACM
Transactions on Mathemathical Software, 5(3):308-323, 1979.

S. B. Lippman and J. Lajoie. C++ Primer. Addison-Wesley,
Reading, MA, 3rd edition, 1998.

The Lambda Library home page. http://lambda.cs.utu.fi, 2000.

M. Lutz. Programming Python. O’Reilly & Associates, 1996.



48

[Mad95]

[Mat99|

[Mey92]

[Mey95]

[Mey97]

[MKL97]

[MMPN93]

[MN99]

[Mye95]

[OONOO]

[Pau9l]

[Pes97]

[PHOO|

[Poz99]

REFERENCES

O. L. Madsen. Open issues in object-oriented programming - a
Scandinavian perspective. Software - Practice and Ezperience,
25(54):54/3-S4/43, December 1995.

Math.h-++: Object-oriented library for numerical computation,
1999. Rogue Wave Software Inc., Boulder, CO,
http://www.roguewave.com.

B. Meyer. FEiffel: The Language. Prentice Hall, 1992.

B. Meyer. Reusable software: The base object-oriented com-
ponent libraries (ISE Eiffel, The Libraries). Technical Report
TR-EI-44/L, Interactive Software Institute (ISE), 1995.

B. Meyer. Object Oriented Software Construction. Prentice Hall,
2nd edition, 1997.

A. Mendhekar, G. Kiczales, and J. Lamping. RG: A case-study
for aspect-oriented programming. Technical Report SPL97-009
P9710044, Xerox PARC, February 1997.
http://www.parc.xerox.com/csl/groups/sda.

O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard. Object Ori-
ented Programming in the BETA Programming Language. Ad-
dison-Wesley, June 1993.

K. Mehlhorn and S. Naher. The LEDA Platform of Combina-
torial and Geometric Computing. Cambridge University Press,
1999. http://www.mpi-sb.mpg.de/ mehlhorn.

N. C. Myers. A new and useful template technique: ’traits’.
C++ Report, 7(5):32-35, 1995.

The object-oriented numerics page.
http://www.oonumerics.org, 2000.

L. C. Paulson. ML for the working programmer. Cambridge
University Press, 1991.

C. Pescio. Template metaprogramming, make parameterized in-
tegers portable with this novel technique. C-++ Report, 9(7),
July /August 1997.

G. Powell and P. Higley. Expression templates as a replacement
for simple functors. C++ Report, 2000. To appear.

R. Pozo. Template Numerical Toolkit - a numeric library for
scientific computing in C++, 1999. http://math.nist.gov/tnt/.



REFERENCES 49

[Pyt99]
[Sim95]

[SL94|

[SLOS]

[Str94]

[Str97]

[TDTY7]

[Tho99)]

[Unr94]

[Vel95a]

[Vel95b]

[Vel98|

[Vel99]

The Python homepage. http://www.python.org, 1999.

C. Simonyi. The death of computer languages, the birth of in-
tentional programming. Technical Report MSR-TR-95-52, Mir-
crosoft Research, September 1995.

A. A. Stepanov and M. Lee. The standard template library.
Technical Report HPL-94-34(R.1), Hewlett-Packard Laborato-
ries, April 1994. (http://www.hpl.hp.com/techreports).

J. G. Siek and A. Lumsdaine. The matrix template library: A
generic programming approach to high performance numerical
linear algebra. In D. Caromel, R. R. Oldehoeft, and M. Thol-
burn, editors, Computing In Object-Oriented Parallel Environ-
ments, volume 1505 of Lecture Notes in Computer Science, 1998.
http://www.lsc.nd.edu/research /mtl.

B. Stroustrup. The Design and Evolution of C++. Addison-
Wesley, Reading, MA, 1994.

B. Stroustrup. The C++ Programming Language. Addison-Wes-
ley, Reading, MA, 3rd edition, 1997.

S. Tucker Taft, Robert A. Duff, and T. Taft, editors. Ada95
Reference Manual : Language and Standard Libraries : Interna-
tional Standard ISO/IEC 8652;1995(E). Number 1246 in Lec-
ture Notes in Computer Science. Springer, November 1997.

S. Thompson. Haskell: The Craft of Functional Programming.
Addison-Wesley, Reading, MA, 2nd edition, 1999.

E. Unruh. Prime number computation. Distributed in the ANSI
X3J16-94-0075/ISO WG21-426 meeting, 1994.

T. L. Veldhuizen. Expression templates. C+-+ Report,
7(5):26-31, June 1995.

T. L. Veldhuizen. Using C+-+ template metaprograms. C++
Report, 7(4):36-43, May 1995.

T. L. Veldhuizen. Arrays in Blitz++. In D. Caromel, R. R. Old-
ehoeft, and M. Tholburn, editors, Computing In Object-Oriented
Parallel Environments, volume 1505 of Lecture Notes in Com-
puter Science, 1998.

T. L. Veldhuizen. C-++ templates as partial evaluation. In
ACM SIGPLAN Workshop on Partial Evaluation and Seman-
tics-Based Program Manipulation (PEPM), 1999.



50 REFERENCES

[Web95]  B. F. Webster. Pitfalls of Object-Oriented Development. M & T
Books, NY, 1995.



Publication reprints

o1



Processing Sparse Vectors
During Compile Time in C4++

Jaakko Jarvi

Turku Centre for Computer Science, Finland

Abstract. A C++ template library for a special class of sparse vectors
is outlined. The sparseness structure of these vectors can be arbitrary
but must be known at compile time. In this case it suffices to store only
the nonzero elements of the vectors, and no indexing information about
the sparseness pattern is required. This information is contained in the
type of the vector as a non-type template parameter. It is shown how
common vector operators can be overloaded for these vectors. When
compiled the operators yield code which performs only the necessary
elementary operations between the nonzero elements with no run-time
penalty for indexing. All indexing is performed at compile time, resulting
in very fast execution speed. The vector classes are best suited for short
vectors up to few dozens of elements.

Automatic differentiation of expressions is given as an example appli-
cation. It is shown how classes for automatically differentiable numbers
can be defined with the library. A comparison against other vector rep-
resentations gave superior results in execution speed of differentiating a
few common expressions, and came very close to the calculation speed
of symbolically differentiated expressions.

1 Introduction

Templates are a powerful feature of C++-. They are usually used to write generic
classes and functions, but we can go beyond that. It is possible to make the
compiler perform as an interpreter at compile time. For instance, compile-time
bounded loops and branching statements can be written using recursive tem-
plate definitions and template specialisation. These templates are called tem-
plate metaprograms [1]. The use of non-type template parameters is a key factor
behind template metaprograms.

In this article template metaprograms are used in the definition of compile-
time sparse vector (CTSV) classes. The term compile-time here means that the
sparseness pattern of the vectors (the positions of zero and non-zero elements)
is known at compile time. Due to this restriction CTSVs do not serve as general
purpose sparse vectors, but they are very efficient in special applications where
the above requirement can be satisfied.

The definitions for CTSV template classes are given. It is shown how common
operations can be overloaded for CTSV types. Automatic differentiation [2] is
presented as an application of CTSVs. The techniques presented take advantage

Copyright 1998 Springer-Verlag (Lecture Notes in Computer Science, vol. 1343)



of the new template features present in the current draft standard of C++ [3],
but are not yet implemented in all compilers. A more detailed discussion can be
found in [4].

2 Class Templates for Compile-Time Sparse Vectors

A vector is called sparse if only a few of its elements are nonzero. In sparse
storage schemes only the nonzero elements are stored, along with some auxiliary
information to determine the logical positions of the elements in the vector.
Hence space is saved and computational speed gained since some elementary
operations are performed only on nonzero elements. An arbitrary sparse vector
can be written as a set of value-position pairs

T = (< wiuil >;<wi2;i2 >;---;<win;in >)'

With this notation we can write the sum of two sparse vectors (1,0,1,0,0) and
(0,0,2,0,2) as

(<1,1>,<1,3>)+(<2,3>,<2,5>)=(<1,1>,<3,3>,<2,5>).

As can be seen, instead of five additions between the elements, only one addition
and two value copy operations are needed to compute the result. To perform only
the necessary elementary operations, some kind of indexing scheme must be used
to find the right operands. This bookkeeping causes extra overhead which we
want to minimise. In CTSVs the bookkeeping can be avoided totally, since it
is done by the compiler with no run-time penalty. The indexing information is
contained in the template parameters of CTSV classes. In other words, each
vector with a different sparseness pattern is a type of its own.

Template definitions can become lengthy, so the code in this article is given
for floating-point vectors instead of generic vectors. It is straightforward to gen-
eralise the class definitions by making the element type a template parameter.

A special representation for a vector element is needed:

template <unsigned int N> class Elem {
public:

Elem<N> (float v) {}

Elem<N> () {}

template<> class Elem<1> {
public:
float value;
Elem<1>(float v) : value(v) {}
Elem<1>() {};

The class Elem has a template parameter N, and the class definition for any N is
a class having no data members, just two constructors. For N=1 a specialisation



is provided containing a data member for storing a value. So Elem<0> is an
empty class, and Elem<1> is a class containing a single floating-point value.
Other values than 0 or 1 for N are not meant to be used. The default constructor
does nothing. The constructor taking a floating-point parameter initialises the
element with a value. To give a uniform interface, the class Elem<0> also has a
constructor taking a floating-point value, though it performs no action.

The class representing a CTSV is a collection of Elem<N> objects: Elem<1>
objects in nonzero positions and Elem<0> in zero positions. With this kind of
element type definitions, we are able to store empty classes as the zero elements.
Note however that an object of an empty class may not be totally empty. It is
common for a single unused byte to be allocated.

The sparseness pattern of a vector @ can be characterised with a bit sequence
b, where 1 corresponds to a nonzero element and 0 to a zero element. Since
integral types can be manipulated as bit patterns in C++, an unsigned integer
template parameter can be used to represent the bit sequence in the generic
CTSV class definition. The bit pattern of this template parameter determines
the nonzero positions of the CTSV. The class definition is:

template <unsigned int N> class CTSV {
public:

Elem< N&1 > head;

CTSV< N>>1 > tail;

CTSV<N>(float v) : head(v), tail(v) {}

CTSV<N>() {}:

CTSV< N>>1 >& GetTail() { return tail; }
I3
template<> class CTSV<0> {
public:

Elem<0> head;

CTSV<0>(float v) : head() {};

CTSV<0>(){};

CTSV<0>& GetTail() { return *this; }
5
The definition is recursive. The head member holds the value of an element.
Whether it will be of type Elem<0> (zero element) or Elem<1> (nonzero ele-
ment) is determined by the least significant bit of the template parameter N. This
can be examined by taking the bitwise AND operation with 1. The tail member
holds the remaining part of the CTSV. The value of the template parameter
for the next step of the recursion is given by right-shifting N one bit. This will
eventually result in the template parameter being zero, and the specialisation
for N = 0 ends the recursion.

The default constructor is defined to do nothing. In addition, a constructor
taking a single float argument is provided for initialising a vector with a given
value. It will pass the same argument to the head and tail members. In the case
of Elem<1> type head, the value is stored, otherwise nothing is done, since the
respective Elem<0> constructor is empty. The recursion is ended with the empty



constructor of CTSV<0>. Since CTSV<0> objects have no tail member, GetTail
functions are provided. They are needed in the operator definitions to allow
uniform access to the vector tail. We may need to get the tail of a CTSV<0>
object, and a tail of a tail of a CTSV<0> object, and so on.

The above class definition generates many function calls. Thus it is crucial
that all functions be inlined, so empty functions are discarded from the compiled
code.

2.1 CTSV Operations

The most common mathematical operations defined for vectors (addition, sub-
traction, unary negation, multiplication by a scalar, and dot product) can be
implemented easily. The definition of addition for CTSVs is given below. Con-
sider two sparse vectors  and y with bit sequences b, and b,. Vector 4+ y
has then characteristic bit sequence b, OR by,. In C++ this is:

template <unsigned int N, unsigned int M>

inline CTSV<N|M> operator+(const CTSV<N>& a, const CTSV<M>& b) {
CTSV<N|M> ¢; plus<N,M>::add(a,b,c); return c;

b

This template can be instantiated with two CTSVs having arbitrary bit se-
quences. The resulting type is a CTSV having a characteristic bit sequence
formed by bitwise OR. The operator+ serves as an interface to the actual addition
operation implemented as a static member function add of a generic class plus.
The template parameters of the plus class are the characteristic bit sequences of
the operands of the addition. The code for the plus class is:

template<unsigned int N, unsigned int M> class plus {
public:
static inline void
add(const CTSV<N>& a, const CTSV<M>& b, CTSV<N|M>& c) {
add(a.head, b.head, c.head);
plus< N>>1, M>>1 >::add(a.GetTail(), b.GetTail(), c.GetTail() );

}

1

template<> class plus<0,0> {

public:
static inline void add(const CTSV<0>& a, const CTSV<0>& b,
CTSV<0>& c){}

In the body of the operator+, an object of the resulting CTSV type is created and
passed to the function plus<N,M>::add along with the vectors to be added. This
function adds the heads of the vectors with the add function of the Elem<N>
classes (defined below) and calls the plus<N>>1 ,M>>1 >::add function recur-
sively with the tails of the operands. The template parameters are shifted right



during the recursion, leading eventually to a call to plus<0,0>::add, which ends
the recursion. The add functions for the Elem classes are:

inline void add
inline void add
inline void add
inline void add

const Elem<0>& a, const Elem<0>& b, Elem<0>& c){}

const Elem<0>& a, const Elem<1>& b, Elem<1>& c){c.v=b.v;}
const Elem<1>& a, const Elem<0>& b, Elem<1>& c){c.v=a.v;}
const Elem<1>& a, const Elem<1>& b, Elem<1>& ¢)
{cv=a.v+b.v;}

Py

The resulting type is “promoted” from Elem<0> to Elem<1> if an Elem<1>
type object is involved in the operation. In this way the types are handled
correctly. It is easy to see that the compilation of these definitions yields optimal
code: for addition of two Elem<0> objects, no code is produced, the addition
of Elem<0> and Elem<1> results in a single move, and the addition of two
Elem<1> objects generates a single addition.

2.2 Generated Code

To clarify how the above works, we examine the previous example more closely.
Vectorsz = (< 1,1 >,< 1,3 >)and y = (< 2,3 >,< 2,5 >) can be constructed
and added with the code: CTSV<5> x(1); CTSV<20> y(2); x+y; Note that
5 = 001015 and 20 = 10100,. Compilation® with Borland C++ 5.01 for Intel
80486 using no optimisation resulted the assembly language code:

mov dword ptr [ebp-12],1 // create x mov ecx,dword ptr [ebp-169] // 5th
mov dword ptr [ebp-7],1 mov dword ptr [ebp-182],ecx
mov dword ptr [ebp-174],2 // create y mov eax,dword ptr [ebp-192] // ret
mov dword ptr [ebp-169],2 mov dword ptr [ebp-208],eax
mov eax,dword ptr [ebp-12] // x+y: Ist  mov edx,dword ptr [ebp-187]
mov dword ptr [ebp-192],eax mov dword ptr [ebp-203],edx
mov edx,dword ptr [ebp-7] // 3rd mov ecx,dword ptr [ebp-182]
add edx,dword ptr [ebp-174] mov dword ptr [ebp-198],ecx

mov dword ptr [ebp-187],edx

The initialisations are the two inevitable move commands for x an y, both having
two nonzero elements. Two moves (1st and 5th position) and one addition (3rd)
are needed to carry out x + y, which can be seen from the resulting code. The
last six lines of the assembly language code originate from the return statement
and the implicit invocation of the copy constructor. A clever compiler may avoid
this by creating the object directly on the caller’s stack. Even without a compiler
supporting this named return-value optimisation technique, the extra copy can
be avoided if we content ourselves with a bit more awkward syntax and use the
add function of the plus class directly.

! Template operator+ was instantiated manually due to limited template support.



3 An Application: Automatic Differentiation

As an alternative to symbolic calculation of derivatives or using approximate
difference values, automatic differentiation can be used to obtain derivatives. The
derivatives are computed using the well-known chain rule. The function value
and the derivatives are evaluated simultaneously with the same expression, but
instead of scalars we compute using automatically differentiable numbers (ADN).
These are objects consisting of a function value and a vector of partial derivatives
at the same point. To implement the method, we code the differentiation rules
for elementary mathematical operations. In C++ this is done by overloading
these operations for ADN objects. There are several texts describing automatic
differentiation [2, 5] and also software packages available [6, 7].

The derivative vectors of ADNs are usually sparse. Typically there is only
one nonzero derivative at the leaves of an expression tree. When approaching
the root, the derivative vectors become more dense. CTSVs are ideally suited
for ADN derivative vectors.

A class definition for ADNs using CTSVs as the derivative vectors can be
easily constructed. Two data members are needed: a floating-point number for
the value of the ADN, and a CTSV for the derivatives. So an ADN class is also
generic and shares the template parameter of the derivative CTSV. The over-
loading of elementary mathematical functions and operators for ADN objects is
also simple, with vector addition and scalar multiplication of CTSVs defined. To
use ADNs in expressions, a certain element position 7 is chosen for each variable.
Then the characteristic bit sequences having only the ith bit set corresponds
to the ith variable. The expression is written using ADN objects with these bit
sequences: ADN<1>, ADN<2>, ADN<4> and so forth.

Since CTSVs have no run-time penalty for indexing, ADN expression cal-
culations can be further improved. At the leaf level of the expression tree, the
derivatives are either 0 or 1, leading to many multiplications by 1. These can
be avoided by keeping track of the positions of 1’s. Instead of having zero and
nonzero elements, we then have zero, unity and arbitrary elements. There is of
course no point in tracking the unity elements at run time just to replace a few
multiplications with value moves. But since with CTSVs the tracking is done at
compile time, it is perfectly feasible and will in some cases produce significant
savings in computation time. Since we now distinguish between three types of
elements, there must be three specialisations of the Elem class, so two bits of
the characteristic bit sequence of the CTSV are needed for each element. See
[4] for C++ code and a more detailed discussion about CTSVs in automatic
differentiation.

4 Test Runs

The speed of CTSV operations was compared with ordinary dense vectors (reg-
ular C arrays) and sparse vectors with indexing performed at run time (vectors
of value/index pairs). The speeds of the addition operations were measured with



Fig. 1. CPU Time of Vector Addition. Solid line: CTSVs; Dashed line: dense vectors;
Dotted line: run-time sparse vectors. Number of nonzero elements is on the x-axis.

10-element vectors, and the number of nonzero elements ranged from 0 to 10.
The code was compiled with Borland C++ 5.01 for Intel Pentium processor and
optimised for speed. Since the optimiser could not perform return-value optimi-
sation, we used the more awkward syntax to avoid the extra copy constructor
invocations. The sparse vectors were allocated statically. Consequently the run-
time penalty originates only from indexing, not from memory allocation. The
addition functions were called in a loop, and the operand parameters were passed
by reference. The CTSV addition for 0 nonzero elements yielded no code. Hence
the cost of the function call and looping should approximately equal the cost of
the CTSV<0> case. The results are shown in Fig. 1.

The speed of ADN expressions was compared to manually optimised sym-
bolically differentiated code. The ADN derivative vectors were implemented as
CTSVs (using the refinement described above), as ordinary dense vectors and
as ordinary sparse vectors. Results of the test runs are shown in Fig. 2.

800 Y

— [ sparse

400 %
0% = A =i =7 W symbolic

(@ (b) (©) (d)

Fig. 2. Relative CPU Time (symbolic = 100%) for Computing Expressions and their
Derivatives. (a,b): a multiplication of five variables differentiated with respect to all
variables. (c,d): 221 a;eb? differentiated with respect to a; and b;. (a,c): double vari-
ables. (b,d): complex variables.



5 Discussion

A collection of classes for representing sparse vectors in C++ was described.
The sparseness pattern of the vector must be known at compile time. For special
applications where this restrictive precondition is met, very efficient code can be
generated. It was shown how common vector operators can be overloaded for
the presented CTSV classes to generate this minimal code from abstract vector
expressions.

The classes rely heavily on C++ templates, especially on recursive definitions
with non-type template parameters. The sparseness pattern of each vector is
represented as a template parameter, i.e. as part of the type information. The
sparseness pattern changes in vector operations. Each operation may potentially
produce a new vector type. These new template instances are automatically
generated from the vector templates by the compiler when encountered. Some of
the template features used are quite new and not yet available at all compilers.
The features are however part of the standard proposal for C++ [3].

Execution of selected vector operations was compared with dense vectors and
ordinary sparse vectors. The speed of CTSVs outperforms both alternatives. The
execution speed depends to some extent on the compilers optimisation capabili-
ties; for best results the compiler should be capable of return-value optimisation.

Automatic differentiation was presented as an application of CTSVs. It was
shown how to define template classes for automatically differentiable numbers
using CTSVs as the derivative vectors. Speed of evaluation for some common
expressions was compared with ADNs having alternative vector representations.
With our examples, ADNs with CTSV derivatives required CPU time ranging
from 20% to 50% of the time used by ADNs with alternative vector represen-
tations. The execution speed was only slightly slower than the speed of the
symbolically differentiated code.

References

1. Veldhuizen, T.: Using C++ template metaprograms. C++ Report 7 (1995) 36-43.

2. Rall, L. B.: Automatic Differentiation: Techniques and Applications. Lecture Notes
in Computer Science 120 (1981) Springer-Verlag, Berlin.

3. 1997 C++ Public Review Document: Working Paper for Draft Proposed Interna-
tional Standard for Information Systems — Programming Language C++. ANSI
X3J16/96-0225 ISO WG21/N1043.

4. Jarvi J.: Compile Time Sparse Vectors in C++. Turku Centre for Computer Science
Technical Report No. 107 (1997) (http://www.tucs.abo.fi/publications).

5. Barton, J. J., Nackman L.R.: Scientific and Engineering C++. Ch. 19, Addison-
Wesley, Reading Massaschusetts, 1994.

6. Griewank, A.; Juedes, D., Utke, J.: ADOL-C: A Package for the Automatic Differ-
entiation of Algorithms Written in C/C++. ACM Transactions on Mathematical
Software 22 (1996) 131-167.

7. Bischof, C. H., Carle, A., Corliss, G. F., Griewank, A., Hovland, P.. ADIFOR:
Generating derivative codes from Fortran programs. Sci. Prog. 1 (1992) 1-29.



Compile Time Recursive Objects in C++

Jaakko Jarvi
Turku Centre for Computer Science, Finland
jaakko.jarvi@cs.utu. fi

Abstract

This article explores the possibilities of generic programming offered by the template fea-
tures of C++. We define compile time recursive objects as instances of class templates
which contain other instances of the same template as member variables. With such tem-
plates we can define containers that contain objects of arbitrary types, but where the type
of each element is known at compile time. The structure of the container is therefore fixed.
The technique mimics the polymorphism achieved with dynamic binding and inheritance
using static binding and template specialisation. It is obviously less flexible but offers con-
siderable performance gains at runtime.

We give the template definitions for compile time recursive lists and explain how to
perform operations on these lists. As an example application, we use compile time lists
in the definition of templates for special sparse vectors and matrices. In these wvectors
and matrices, the sparseness pattern can be arbitrary but must be known at compile time.
The tracking of zero and nonzero elements is performed at compile time. This allows the
programmer to use abstract vector and matriz expressions and still reach performance equal
to hand-coded operations. This is possible since the compiler can locate the elementary
expressions between zero entries and discard them entirely from the resulting code.

Keywords: generic programming, C++ templates, template metaprogramming, sparse
matrices

1: Introduction

In C++4, generic classes and functions can be written using templates. The template
formalism is very rich in the new C++ standard [1] and allows complicated type structures.
For instance, compile time bounded loops and branching statements can be written using
recursive template definitions and partial specialisation of class and function templates.
Template usage of this type is called template metaprogramming. This novel technique
has been previously used to speed up algorithms by program specialisation [2, 3], calculate
binary constants at compile time [4] and define portable integral types [5].

In this article the idea of template metaprogramming is developed further and applied to
compile time recursive objects. By compile time recursive objects we mean template classes
which have other instances of the same template class as data members. Such objects are
not so rare, e.g., a two-dimensional array can be implemented as a generic array class, where
the elements themselves are arrays. Recursive tree-like objects are encountered in expression

This work was supported by the Academy of Finland, grant 37178.

© 1998 IEEE. Personal use of this material is permitted. However, permission to

reprint /republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.



templates [6], which are templates representing expression trees. This technique aims at
avoiding the creation of temporary vector objects in the evaluation of vector expressions.

This article examines the nature of compile time recursive objects more profoundly. We
define templates which can be used as containers where the type of each element can be
arbitrary but statically bound, being thus fixed at compile time. We show how to perform
operations with them.

The most basic construct is a recursive list class, which is discussed in detail. We
show the template definitions and describe how different operations for these types can be
written. From a general approach we move to a specific application. We show how efficient
operations for sparse vectors and matrices can be written using compile time recursive lists
and template metaprogramming,.

The foremost benefits achieved with the techniques presented are evidently computa-
tional speed and, to some extent, type safety. The concept of compile time recursive
objects as such is intriguing and needs to be explored more.

At the moment, some of the template features used in this article are not implemented
in all of the currently available C++ compilers. All features are, however, part of the new
standard for C++ and will therefore most likely be implemented by major compiler vendors
soon.

1.1: Template metaprogramming

As an introduction to a reader not familiar with the newest C++ template features,
we briefly describe the concept of template specialisation and give an example of a simple
template metaprogram. Using template specialisation, partial or total, alternative defini-
tions for a primary template class can be given. During the instantiation of a template,
the types of the template parameters determine whether the instance is generated using
the primary template or one of the specialisations. The template arguments are matched
with the template argument lists of each specialisation and the most specialised definition
is selected. This is done according to a set of partial order rules. Note that the selection
must be unambiguous. Basically the same mechanism applies both to class and function
templates. In function templates the template arguments can be deduced from the function
arguments.

Template metaprograms utilise template specialisation. The primary template is defined
as recursive and specialisations are used to end the recursion. As an example of a simple
template metaprogram, consider the following code calculating the factorial at compile
time:

template<int N> struct F { enum { val = N * F<N-1>:val }; };
template<> struct F<0> { enum { val =1 }; };

In the primary template, the enumeration constant val is intended to contain the factorial
of the template parameter N. In the definition of the constant val of the class F<N>,
the constant val of the class F<N-1> is used. Hence, the instantiation of F<N> triggers
recursively the instantiation of F<N-1>. A specialisation for F<0> is given to end the
recursion. All this occurs at compile time and val gets the value N! at compile time.

The above is an example of compile time recursion with respect to integral template
parameters. In the remainder of this article, the recursion takes place with respect to
normal type parameters.



2: Compile time lists

Consider the traditional LISP view of a list as a record consisting of a head and tail,
which is itself a list. Such a list can be written with the following template definitions:

template <typename HT, typename TT>
class list {
public:

typedef HT head_type;

typedef TT tail_type;

head_type head;
tail_type tail;

h
class nil() {};

The list contains only two member variables, head and tail. The typedefs are provided
to allow reference to the types of the variables in a uniform way. The definitions allow
considerable freedom in instantiation, as HT and TT can be of arbitrary types. The template
is, however, not intended to be instantiated arbitrarily. HT can be an arbitrary type but TT
should be another instance of the list template or the nil class, which is the end mark of the
recursive list. It would be easy to constrain the template to allow only such instantiations
where the tail is of type list or nil. This would, however, complicate the syntax and for
simplicity is not shown.

Note that the elements of the list may be of arbitrary types, so the class is a heterogeneous
statically bound container. As an example consider the following:

class A; class B; class C;
list<A, list<B, list< A, list< C, nil >>>> x;

According to this definition, x is an object which has objects of types A, B, A, C and nil as
nested member variables. These variables can be accessed using the common notation (e.g.
x.tail.tail.head) but also using generic functions and classes. E.g., the nth item of the list can
be accessed at compile time, a certain operation can be performed on each element in the
list and generic operations between these structures can be defined. To clarify how compile
time lists can be manipulated, we give two examples. The first shows how to perform a
certain operation for each object in the list and the second describes the concatenation of
two compile time lists.

2.1: Operations of compile time lists

Let us assume that each element class X has a function void apply(X&) defined, which
performs some action on the element. Each element is passed to the correct apply function
with a call to the following function:

template<typename T> inline void traverse(T& a) {

apply(a.head);
traverse(a.tail);

h
void traverse(nil&) {};



Note that this seemingly recursive function is not really recursive. Although it calls a
traverse function, it is another instance of the same function template and thus a different
function.

This is the basic scheme for processing objects in the list. Operations can be more
complicated and they may potentially produce new instances of the list template, i.e.,
new types. These types must be expressed using the template parameters of the generic
function. This is achieved by using a C++ idiom known as traits [7]. Note that these trait
templates can also be recursive. The concatenation illustrates this point:

template<typename L1, typename L2>
inline type_concat<L1, L2>::t concat(const L1& listl, const L2& list2) {
type_concat<L1, L2>::t result;
tr_concat(listl, list2, result);
return result;
b
This is the interface function, which creates an object to be returned, passes it along
the input parameters to a compile time recursive traversing function tr_concat and finally
returns the result. The resulting type is given by type_concat<L1, L2>::t, which is a type
definition in a generic class type_concat. The sole purpose of this trait class is to define the
type of the concatenation given the types of the lists to be concatenated. The generic class
is defined as

template<typename L1, typename L2>
struct type_concat {
typedef list<L1::head_type, type_concat<L1::tail_type, L2>::t> t;

b
template<typename L2> struct type_concat<nil, L2> { typedef L2 t;}

The type of the concatenation of two lists is thus a list, where the head is of the same type
than the head of the first list. The type of the tail is given by concatenating the tail of the
first list with the second list recursively. The partial specialisation is for ending the compile
time recursion in the case where the first list is empty.

To traverse the lists and perform the actual concatenation, a template function and two
partial specialisations are needed:

template<typename L1, typename L2, typename L3>

inline void tr_concat(const L1& a, const L2& b, L3& result) {
result.head = a.head;
tr_concat(a.tail, b, result.tail);

b

template<typename L2, typename L3>

inline void tr_concat(const nil& a, const L2& b, L3& result) {
result.head = b.head;
tr_concat(a, b.tail, result.tail);

h

template<typename L3> inline void tr_concat(const nil&, const nil&, L3&) {};

The given templates for lists and list manipulation illustrate the basic mechanisms of



class definitions and operations for compile time recursive objects. To be feasible, the
usage of these templates must be reasonably convenient. The programmer should not
have to write such declarations as list<x, list<y, ... >> or access elements using such
notation as alist.tail.tail.tail.head. For better syntax, special templates for element access
and initialisation of objects are needed, even macro definitions may prove useful. Since
these needs and possibilities may be application dependent, they will be discussed more
with the matrix example below.

2.2: About compilation

In order to understand the potential benefits offered by the above described techniques,
some issues concerning compilation and optimisation must be discussed. One can notice
that traversing the list structures produces many functions calls. These functions are,
however, very small. They commonly perform some operation on the list heads and pass the
tails to another function. This means that the functions can be effectively inlined and thus
their overhead eliminated. With this in mind, it can be seen that traversing these compile
time structures and accessing their elements include no runtime cost. Inlined traversal
functions produce unrolled loops when compiled and only the operations performed on the
individual elements of the lists yield any code. Another important aspect is the static
binding of the elements. Though the elements in the container can be of arbitrary types,
the functions called for each object in the container are bound statically. This makes the
inlining possible here as well. To illustrate the use of the recursive compile time objects,
we proceed with a concrete example concerning sparse vectors and matrices.

3: Sparse vectors and matrices as compile time recursive objects

A vector or matrix is called sparse, if a considerable degree of its elements are zero.
The sparseness of vectors and matrices can be exploited when performing computations
with them. Vector and matrix operations can be defined to perform only those elementary
operations which yield nonzero results. To exploit the sparseness, some indexing scheme
must be used to find the right operands for the elementary operations. This bookkeeping
causes extra overhead. If the vectors and matrices are small or contain relatively many
nonzero elements, sparse techniques may become costly due to this overhead. As an ex-
ample, consider the sparse vectors a = (1,0,1,0,0) and b = (0,0,2,0,2) and let ¢ = a + b.
To calculate the resulting vector ¢ = (1,0, 3,0,2), only one addition and two value copy
operations are needed. However, due to the indexing overhead, it would probably be much
faster to perform all five additions than to apply some sparse scheme.

If the sparseness patterns of the vectors and matrices are known beforehand, the pro-
grammer may eliminate the indexing cost by writing specialised code which performs only
the necessary operations. Hence the programmer in effect performs the indexing himself.
This is of course very tedious and error-prone. Using compile time recursive objects the
sparseness pattern can be expressed in the type of a vector or matrix. It is then possible to
make the compiler generate this specialised code from abstract vector and matrix opera-
tions and thus avoid the bookkeeping cost entirely. To accomplish the task, we first define
template classes for compile time sparse vectors.



3.1: Compile time sparse vectors

Compile time sparse vectors (CTSV) are basically compile time lists and can be derived
from the list template classes given above:

template <typename HT, typename TT>
class ctsv : public list<HT, TT> {};

class zero { public: zero(const zero&) {} }

For simplicity, no members are given for the ctsv class here. It would, however, be worth-
while to define various assignment operations and constructors. Objects of the class zero
are used as the zero elements in the ctsv. Note that the zero class has a copy constructor
defined. Even though the class zero is totally empty, the objects of this class reserve some
memory. This is to guarantee that each object has an identity. By defining explicitly the
copy constructor to be empty, we prevent the copying of this extra memory, which might be
performed by the compiler-generated default copy constructor. With this class definition
the creation and copying of the zero objects bears no runtime cost.
With the above definitions, the type of a vector (1.1,0,0,2.2) would be

ctsv<double, ctsv<zero, ctsv<zero, ctsv<double,nil>>>>.

The type clearly contains the information about the sparseness pattern of the vector.

The intention is that the programmer can write abstract vector expressions with CTSVs
and the types are deduced automatically leading to more complex types as the computation
advances. To define operations between these vectors, we need to define the resulting type
of the operation, how to find the matching elements within each vector, and how to apply
the operation between matching elements. We give the definition of the addition operation,
since it is illustrative. Other operations can be defined using the same principles.

3.1.1: Addition of two vectors

To define the result type of addition, we deal with the type changes between the element
types. Again, this is done with trait classes:

template<typename T1, typename T2> struct type_sum {};
template<> struct type_sum<double, double> { typedef double t; };
template<> struct type_sum<double, zero> { typedef double t; };
template<> struct type_sum<zero, double> { typedef double t; };
template<> struct type_sum<zero, zero> { typedef zero t; };

These only state that whenever a double is involved in the addition, the result is of type
double. The templates could also be defined in a more general fashion using partial spe-
cialisation.

The type of the whole addition is defined as a recursive trait class, analogously to the
type deduction of the list concatenation:

template<typename H1, typename T1, typename H2, typename T2>
struct type sum<ctsv<H1, T1>, ctsv<H2, T2> > {
typedef ctsv<type_sum<H1, H2>:t, type_sum<T1, T2>:t> t;

I

template<> struct type_sum<nil, nil> { typedef nil t;};



The addition operator is itself just an interface function. It creates the object to be
returned, lets the actual work be done by the traversing function add and finally returns
the result:

template<typename HT1, typename TT1, typename HT2, typename TT2>
inline type_sum<ctsv<HTL1, TT1>, ctsv<HT2, TT2> >::t
operator+(const ctsv<HT1, TT1>& a, const ctsv<HT2, TT2>& b) {
type_sum<ctsv<HTL, TT1>, ctsv<HT2, TT2> >::t result;
add(a, b, result);
return result;
b
template<typename V1, typename V2, typename V3>
inline void add(const V1& a, const V2& b, V3& result) {
add(a.head, b.head, result.head);
add(a.tail, b.tail, result.tail);

h
template<> void add(const nil&, const nil&, nil&) {};

The add functions call the elementary add functions to add the heads and then the tails
recursively. The elementary add functions are defined as

inline void add (const double& a, const double& b, double& c) { c =a + b; };
inline void add (const double& a, const zero& b, double& c) { ¢ = a; };

inline void add (const zero& a, const double& b, double& c) { ¢ = b; };

inline void add (const zero& a, const zero& b, zero& c) {};

These functions obey the type promotions defined with the type_sum traits. It is easy to
see that when compiled, these functions yield the minimal instructions for summation. To
add two zero objects, no code is produced, the addition of a double and a zero results in a
single value copy operation and the addition of two doubles in a single addition. These are
the functions which perform the additions optimally, the rest of the definitions are actually
only for determining the correct function to be called at compile time.

As an example, consider the previous vectors a,b and c¢. The sparseness patterns of the
vectors are (1,0,1,0,0), (0,0,1,0,1) and (1,0, 1,0, 1), respectively. The following assembly
language code is the result of the compilation of the statement ¢ = a 4+ b using KAI C++
3.2.d compiler under Linux for Intel Pentium processor.

movl -16(%ebp), %eax // move 1st element of a
movl %eax,-64(%ebp)
flds -8(%ebp) // add the 3rd elements

fadds -32(%ebp)

fstps -56(%ebp)

movl -24(%ebp), %eax // move the 5th element of b
movl %eax,-48(%ebp)

As can be seen, the code is minimal, performing only the elementary operations needed
without any control instructions.



3.2: Compile time sparse matrices

A matrix is a vector of vectors, hence we can use the ctsv template for matrices as well.
E.g., the matrix

O QU O
SO o O
S O
~- O O O

is of type

ctsv< ctsv< double, ctsv< zero, ctsv< double, ctsv< zero, nil >>>>,
ctsv< ctsv< zero, ctsv< double, ctsv< zero, ctsv< zero, nil >>>>,
ctsv< ctsv< double, ctsv< zero, ctsv< double, ctsv< zero, nil >>>>,
ctsv< ctsv< zero, ctsv< zero, ctsv< zero, ctsv< double, nil >>>>,
nil >>>>

The previously defined vector operations can be used directly. For instance, the addition
was defined to first add the heads and then the tails recursively. Now the addition of
heads is a vector operation instead of a scalar operation and it is performed by adding
first the heads and then the tails recursively. New operations, such as matrix transpose
and multiplication, must of course be defined. The type deduction classes tend to become
rather complicated and they are not shown here.

3.3: Declaring types and initialising variables

The vector and matrix types are rather tedious to write as such. Various helper templates
can be defined to ease this task. We can achieve such notation as V<1,0,1,0,0>::t for defining
vector types and

typedef M< V<1, 0, 1, 0>::t,
V<0, 1, 0, 0>::t,
V<1, 0,1, 0>::t,
V<0, 0, 0, 1>::t>::t matrix_type_1;

for matrix types. The syntax is fairly reasonable. The assignment of values to vectors and
matrices can also be simplified by using the operator overloading capabilities of C++. The
comma operator can be overloaded to provide a means to initialise the vectors and matrices
with values.

matrix_type_l m; double a, b, ¢, d, e, f; zero z;
m= a, z b, z
z, ¢ z, z

d z e z
z z z, f;
This is quite convenient, particularly since an attempt to set a zero to a nonzero position or
vice versa results in an error at compile time. For vectors the initialisations are as effective
as normal assignments to named variables. For matrices there may be some overhead. It
is, however, easy to initialise matrices rowwise.

Usually the sparseness patterns of the initial vectors or matrices are simple and more
complicated types result from expressions between them. These complicated types need



not be specified, since they are automatically deduced. A good example of this is auto-
matic differentiation [8]. It is a technique for computing derivatives without the need to
symbolically differentiate the function, but avoiding the use of divided difference approxi-
mations as well. CTSVs have proved useful in this application as shown in [10, 11], where
they are used to represent the vector of partial derivatives in automatically differentiable
numbers. These vectors are initially canonical unit vectors, consequently their types are
easy to define. These vectors are used as variables in mathematical expressions. During the
evaluation several intermediate temporary vectors and finally a dense vector are produced.
The intermediate vectors may have arbitrarily complex sparseness patterns, but as pointed
out, they are automatically deduced and need not be specified.

3.3.1: Transformation matrix example

As an example of the usage of CTSVs, consider the type matrix_type_1 defined above. It
defines the sparseness pattern of a transformation matrix in the homogeneous coordinate
system. When a vector is multiplied with the matrix

cos(@) 0 —sin(f) O
0 1 0 0
sin(@) 0 cos(f) O
0 0 0 1

it is rotated around the y-axis [9]. Using CTSVs, a subroutine to perform this transforma-
tion can be written as follows:

void rotatel(double theta, const dense_vec<4>::t& v, dense_vec<4>::t& result) {
matrix_type_1 m; zero z;
double cost = cos(theta), sint = sin(theta);

row<0>:get(m) = cost, z, -sint, z;
row<1l>:get(m) = z, 1, =z z;
row<2>:get(m) = sint, z, cost, z;
row<3>:get(m) = z, z, z, 1;

result = v¥*m;

dense_vec<4>::t gives the type of a dense four-element vector, and the odd-looking code
row<N>::get(m) is just an invocation of a template metaprogram to get the Nth row of the
matrix m for rowwise initialisation.

Despite the syntactical differences, the code has apparent correspondence with the math-
ematical notation of the transformation. This is not the case for a low-level implementation
of the same transformation, where the matrix multiplication is decomposed into elementary
operations by hand:

void rotate2(double theta, double v[ ], double result[ ]) {
double cost = cos(theta), sint = sin(theta);

result[0] = v[0] * cost + v[2] * sint;
result[1] = v[1];
result[2] = v[2] * cost - v[0] * sint;
result[3] = v[3];



4,,

3 =€
Evaluation
time 2 L

Figure 1. The relative evaluation time of the dot product of two vectors of length 40;
dotted lines: CTSVs and hand-coded C (they overlap entirely); dashed line: dense
vectors; solid line: runtime sparse vectors. The number of nonzero elements is
shown on the x-axis.

One might suspect that the low-level implementation would be considerably faster, but
when compiled (again with KAT C++, optimisation flags +K3 -02), the CTSV implemen-
tation produced 45 sequential machine instructions compared with the 44 instructions of
the low-level code. Further, if the traversing function was called directly (replacing the last
line result = v¥*m; of rotatel with the line multiply(v,m,result);) the assembly listings were
exactly identical.

3.4: Speed comparisons

To demonstrate the attainable performance gains of CTSVs, we measured the computing
time of a dot product of two double vectors (Fig. 1). The length of the vectors was 40
elements, and the number of nonzero elements was increased from 4 to 40 with step size
4. The nonzero elements were in the same positions in both vectors, so the number of
multiplications needed was the same as the number of nonzero elements. We used four
different vector representations: ordinary dense vectors, ordinary sparse vectors, CTSVs
and hand-coded C. In the ordinary dense vectors the dot product is a for loop from 1 to 40,
so the cost is not dependent on the number of zeroes. The ordinary (runtime) sparse vectors
were implemented as an array of values and a corresponding array of indices. The CTSVs
were as described in this article, and finally in the hand-coded C version, each elementary
operation was written directly, so the loop was totally unrolled by hand and only the
nonzero elementary operations were computed. To our knowledge, the hand-coded C was
the fastest way to perform the dot product without resorting to any processor-dependent
tricks or inline assembly code.

The test was compiled with the KAT C++ 3.2.d compiler using optimisation flags +K2
and -O2 and it was run under Linux operating system on a Pentium PC. The test shows
that the normal sparse techniques become unattractive quite soon as the number of nonzero
entries increases. The execution speed of the CTSV dot product and the hand coded C
version was almost identical in all cases. This was evident since the assembly code they
produced was essentially the same.

It can also be seen that the unrolled versions were somewhat faster than the for loop
implementation even when the vectors had no zeroes. This lead vanishes if the vector sizes

10



are increased to the point where the code no longer fits in the processor cache.

In [10, 11], more execution speed comparisons between CTSVs, runtime sparse vectors
and dense vectors can be found. The results were very favourable for CTSVs. Also, the
speed of automatic differentiation of various expressions was compared using different imple-
mentations of the partial derivative vector. CTSVs outperformed clearly other alternatives
and came very close to the speed of symbolically differentiated codes. The implementation
of CTSVs was slightly different but the assembly code produced was similar, so the results
are applicable here as well.

4: Restrictions in compilation

Since the template definitions of compile time recursive objects can be deeply recursive,
there will of course be some practical limitations to the depth of the recursion set by the
compiler. Some compilers may have strict limits for the number of nested recursive template
instantiations, but several compilers provide a parameter for controlling this, allowing thus
arbitrarily many nested instantiations. At some point, available resources, such as the
amount of memory or the compilation time needed, set limits to this technique.

However, our experiments show that the technique can be applied to reasonably sized
objects and compiling is fairly rapid. In the case of CTSVs, the compilation of a 100-
element dot product succeeded with no difficulties. The compilation of matrix operations
is somewhat harder since the type deductions are more complicated. However, as CTSV
operations produce a block of sequential (unrolled and inlined) code, it is hardly desirable
to apply the technique for very long vectors or large matrices.

5: Conclusions

This article presents compile time recursive objects as a new technique for generic pro-
gramming in C++. The technique relies heavily on partial template specialisation and
recursive template definitions. It is shown how to define a compile time list structure, and
how to perform operations on it. With this template the programmer can define special
heterogeneous container types which may contain objects of arbitrary types and yet the
types are statically bound. Despite this, the elements of these containers can be accessed
and operated on in a uniform manner, and due to the static binding, also very rapidly. The
application of a certain template function to each element of such container has no run-
time cost of traversing through the collection. The cost originates only from the operations
performed on each element.

This article shows how template classes for special sparse vectors and matrices can be
defined as compile time recursive objects. In these vector objects, the type includes the
information about the positions of the nonzero elements. This makes it possible for the
compiler to decide which elementary operations must be performed and which yield a zero
element and thus can be discarded. It is shown that with compile time recursive objects,
the programmer can write abstract vector and matrix operations and does not lose anything
on performance compared with coding all elementary operations by hand. In our examples,
the compiler generated assembly code essentially equivalent to the hand-coded alternative.

The concept of compile time recursive objects is attractive. The technique can be seen
as an imitation of the polymorphism achieved with dynamic binding and inheritance, by

11



static binding and template specialisation. Since the main advantage offered by this is
speed, scientific computing is the potential application area for compile time recursive
objects. This article demonstrates the usefulness of the technique in the implementation of
special sparse vectors and matrices.

References

RO

[4]
[5]
[6]
[7]
(8]

[9]

ISO/IEC 14882 Standard for the C++ Programming Language.
Veldhuizen, T.: Using C++ template metaprograms, C++ Report 7 no. 4 (1995) 36-43.

Veldhuizen, T.: Linear algebra with C++ template metaprograms, Dr. Dobb’s Journal 21 no. 8 (1996)
38-44.

Pescio, C.: Binary Constants using Template Metaprogramming, C++ Users Journal, February (1997).
Pescio, C.: Template Metaprogramming, C++ Report 9 no. 7 (1997) 22-27.

Veldhuizen, T.: Expression Templates, C++ Report 7 no. 5 (1995) 26-31.

Myers, N. C.: A new and useful template technique: ”traits”, C++ Report 7 no. 5 (1995) 32-35.

Rall, L. B.: Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer Science
120 (1981) Springer-Verlag, Berlin.

Mortenson M. E.: Geometric Modeling, (1985) Wiley, New York.

[10] Jarvi J.: Processing Sparse Vectors during Compile Time in C++, Scientific Computing in Object-

Oriented Parallel Environments, Lecture Notes in Computer Science 1343 (1997) 41-48 Springer, Berlin.

[11] Jarvi J.: Compile Time Sparse Vectors in C++, Turku Centre for Computer Science, Technical Report

No. 107 (1997) (www.tucs.fi/publications).

12



Acta Cybernetica 14 (1999) 1-.

Object-Oriented Model for Partially Separable
Functions in Parameter Estimation®

Jaakko Jarvif

Abstract

In parameter estimation, a model function depending on adjustable pa-
rameters is fitted to a set of observed data. The parameter estimation task
is an optimisation problem, which needs a computational kernel for evalu-
ating the model function values and derivatives. This article presents an
object-oriented framework for representing model functions, which are par-
tially separable, or structural. Such functions are commonly encountered,
e.g., in spectroscopy.

The model is general, being able to cover a range of varying model func-
tions. It offers flexibility at runtime allowing the construction of the model
functions from predefined component functions. The mathematical expres-
sions are encapsulated and a close mapping between mathematics and pro-
gram code is preserved. Also, all interfacing code can be written indepen-
dently of the particular mathematical formula. These properties together
make it easy to adapt the model to different problem domains: only tightly
controlled changes to the program code are required.

The paper shows how derivatives of the model function can be computed
using automatic differentiation relieving the programmer from writing explicit
analytical derivative codes.

The persistence of the objects involved is discussed and finally the com-
putational efficiency of the function and derivative evaluation is addressed.
It is shown that the benefits of the object-oriented model, namely the higher
abstraction level and increased flexibility, are achieved with a very moderate
loss of performance. This is demonstrated by comparing the performance
with low-level tailored C-code.

1 Introduction

Even though object-orientation (OO) has become the dominating programming
paradigm, it is quite slowly adopted to numerical applications, mainly because of
the poor efficiency of OO programs in numerical codes. The progress in program-
ming techniques and compilers is changing this situation and makes it possible to

*This work was supported by the Academy of Finland, grant 37178.
TTurku Centre for Computer Science, Lemminkiisenkatu 14 A, FIN-20520 Turku, Finland,
email: jaakko.jarvi@cs.utu.fi



2 Jaakko Jarvi

take advantage of OO in numerical codes without a significant performance penalty
[16]. This is demonstrated in this paper describing an OO model for parameter es-
timation of structural, partially separable functions.

The task of modelling data is commonly encountered in numerous application
fields. The goal is to fit a model that depends on adjustable parameters to a set of
observed data. A cost function, such as the sum of squared differences, is chosen to
measure the agreement between the model and data. This function is minimised by
adjusting the parameters of the model according to some optimisation algorithm.

The model can be based on some underlying theory about the data or be just a
sum of convenient functions, such as polynomials. This article focuses on partially
separable model functions, where the function is a sum of component functions,
e.g., a spectrum consisting of a sum of spectral lines. The OO model presented
in this article was developed while working on nuclear magnetic resonance (NMR)
spectra estimation. Hence, the article includes a case study of NMR spectral fitting
to make the ideas presented more concrete.

Numerous algorithms have been described for model fitting tasks in the liter-
ature [2, 14]. They are usually presented from the numerical analysis viewpoint,
treating the model as a plain vector of parameters and a function for evaluating
values and derivatives. However, this flat representation of the model function is
not necessarily natural. The model may be structural consisting of several compo-
nent functions, which possibly correspond to some real life entities. The function
representation should be flexible. It should be possible to specify the composition
of the component functions at runtime, rather than fix them in the program code.
Furthermore, the function representation should be able to handle dependencies
between parameters of different component functions. The flat model representa-
tion is therefore inconvenient for the user and it is the application developer’s task
to provide a conversion to and from the structural representation.

This article presents an OO model to serve as an intermediate link between the
two representations described above. The model provides simultaneously an effi-
cient computational kernel for the optimisation algorithms and the structured view
for the user. It is a collection of classes comprising a core to represent structured
model functions. These core classes implement the basic structural and flat views
to the model function, as well as the mechanisms for function value and derivative
calculations.

The extension of the core model for a specific application is done by provid-
ing a simple class for each type of component function. Essentially only member
functions specifying the mathematical formulae of the component functions are re-
quired in these classes. Consequently, the particular mathematical expressions are
encapsulated and the mathematical structures of the problem domain are preserved
in the program code. This means that the necessary changes to program code are
minor and well controlled if the model is applied to a different application area.

The model utilises the concept of automatic differentiation [15] for derivative
computations. This relieves the programmer from writing analytical derivative
codes. Automatic differentiation is made transparent to the programmer with
operator overloading.



Object-Oriented Model for Partially Separable Functions . . . 3

The core classes implement all the functionality needed for constructing compo-
nent functions and their parameters. The user interface for this task can therefore
be built solely based on the core classes. The addition of new classes to the model
hierarchy does not cause any need for changes in the interfacing code. In section
3.5 we give an example of a user interface built in this manner.

This paper also discusses the computational efficiency and shows that the over-
head arising from the higher abstraction level and greater runtime flexibility of
the OO model is very moderate compared with a low-level C-code implementation.
Persistence, i.e., the ability to store and retrieve the objects of the model is also
considered.

The crucial parts of the model are presented using C++ language, but the
model can be implemented in any language supporting inheritance, dynamic bind-
ing and operator overloading. However, the test runs were performed using a C++
implementation.

There are few descriptions of using object orientation together with parameter
estimation in the literature. Related work can be found from [11, 17] containing
general descriptions of computer systems sharing some similarities with our model.
For description of an NMR analysis software built using a variant of the object
oriented model presented here, see [10].

2 Parameter estimation problem

The task of fitting a parametric model function to a set of observed data points
can be seen as minimisation of a cost function describing the distance between the
model and the data. A common choice for the cost function is the sum of squares
function. This least-squares model fitting problem can be stated as follows:

Let y(z;),i = 1,...,m be a set of observed data points, p = (p1,...,pr) be
a vector of model parameters and ¢(z, p) a parameter-dependent model function.
The maximum likelihood estimate of the parameters is obtained by minimising the

chi-square function
m ~ 2
Y\i) =y, p
i) = 35 (o~ haum)) 0

.
i=1 !

where o; is the standard deviation of the measurement error of the ith data point.
This formulation leads to a possibly non-linear optimisation problem which can
be solved with iterative methods, most commonly with Levenberg-Marquardt or
Gauss-Newton algorithms [2, 14]. The idea is to improve iteratively the trial solu-
tion

Pnew = Pcurrent + AP (2)

until an acceptable solution is found. The change Ap is determined using the
gradient and usually an approximation of the Hessian of the cost function. These
in turn require calculation of the partial derivatives %ﬁ’p),s =1,...,k of the

model function. Even though each iteration typically involves additional costs,



4 Jaakko Jarvi

amplitude

frequency

Figure 1: Example of a 3P NMR spectrum (lower curve) and a model function
(upper curve) fitted to the spectrum. «a, 8 and « peak groups originate from ATP
molecules. The measured spectrum is shifted rightwards for clarity.

such as solving a linear system of equations, the calculation of the model function
and derivative values often dominate the overall cost.

The above clarifies the numerical view to the parametric estimation problem.
The algorithms developed for the estimation must be supplied with the parametric
model function, functions for the partial derivatives and the vector of modifiable
parameters. Furthermore, §(z,p) is typically calculated at several points with
constant p. In cases we are interested in, g(z,p) is partially separable, that is, g
can be represented as a sum of component functions g;,j = 1,...,n, each being
dependent on only r; parameters, where r; << k.

2.1 NMR spectroscopy case

In NMR spectroscopy, a signal of damping oscillations (FID) emitted by certain
atomic nuclei (e.g. 3'P) is observed. An NMR spectrum is a Fourier transform
of this signal. The spectrum contains peaks or resonance lines corresponding to
nuclei in various compounds. The amplitude of a single peak is proportional to the
number of equivalent nuclei resonating at that frequency. [6]

A typical »P NMR spectrum is shown in Fig. 1. Signals of inorganic phosphate
(Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) can be identified
from the spectrum. The aim is to find the amplitudes and frequencies of the
identified compounds. This is done by quantifying the spectrum or the FID, which
is represented as a superposition of parametric functions, each corresponding to
a single resonance line. This parametric model function is fitted to the measured
signal and the results, peak intensities and frequencies, are calculated from the
model parameters. Fig. 1 also shows a fitted model.

Basically we have a structural model function consisting of a sum of compo-
nent functions, the resonance lines. Several lineshapes are encountered, the most
common being the Lorenz function described by amplitude A, frequency f, phase
¢ and damping factor d. A model of n reconance lines in a somewhat simplified



Object-Oriented Model for Partially Separable Functions . . . 5

3P NMR spectrum

A

Pi PCr ATP baseline

]

~ ATP o ATP ATP

NN TN

left right left right left mid right
Figure 2: Example of a model function instance.

form in time domain is then

§(t,p) = > _ Ajcos2nfit+ ¢;)e 4, (3)

Jj=1

where p = (A4, f1,d1, b1, .-, An, fn,dn, dn). As can be seen, the sum function
is partially separable. Note that, contrary to this simplified expression, the NMR,
signal can contain different lineshapes and there may be additional terms in the
sum. [5]

Dependencies between parameters of different component functions are typical
for NMR models. Consider the ATP molecule. It is known a priori that 7 peaks
altogether originate from the ATP molecules. The peaks come in three groups: «,
B and 7. These groups have equal amplitudes. The groups a and 7 consist of two
peaks each having again equal amplitudes. The S-group consists of three peaks with
relative amplitudes 1 : 2 : 1. The frequency differences between the peaks inside
the groups are known and it is reasonable to assume that the damping factors of
all the peaks are equal. Taking these into consideration, the amplitudes, damping
factors and frequencies of 7 peaks are actually defined by only one amplitude, one
damping factor and three frequency parameters. The hierarchical structure of ATP
and other peaks in the NMR example spectrum is depicted in Fig. 2.

To sum up the problem setting, the estimation of the parameters of the function
7 is the task to be performed. This is done by minimising the chi-square error with
respect to the measured signal, where the partial derivatives of § must be calculated
repeatedly. Function ¢ has a hierarchical structure corresponding to the peaks in
the spectrum.

3 Object-oriented model

Significant savings in development time can be achieved with careful design of the
model function representation. In the case of structural model functions, the utmost
goal is flexibility. The number and type of the component functions may vary and
there may be common or related parameters between the component functions.



6 Jaakko Jarvi

The model function representation ought to be able to handle these situations with
ease and yet be able to compute the function value and derivatives efficiently.

An important issue is the user interface for managing the model functions. The
user constructs the model functions and observes or edits the model parameters.
The programmer’s task to provide this interface for varying models is considerably
alleviated if the interface can be implemented without the need to know the actual
types or number of the component functions. The term user refers to a human
operator of a computer program whereas by client we denote the programmer or
code calling the functions or using other services of the object-oriented model.

The object-oriented approach provides a convenient means to build a function
representation to meet the requirements detailed above. The model consists of two
separate class hierarchies, the function hierarchy and the parameter hierarchy. An
essential component is also a library for automatic differentiation. The hierarchies
are first discussed accentuating the client view to the classes and then the process
of function value and derivative evaluation is clarified. While reading, the reader
may consult the object diagram in Fig. 6 representing the NMR example as objects
from function and parameter hierarchy.

3.1 Function hierarchy

The classes of the function hierarchy (Fig. 3) represent the component functions
of the structural model function (the nodes of the tree in Fig. 2). The base of
the hierachy is the abstract base class base_model, which defines the interface for
the function classes; each function can compute the value and derivatives at a
given point. The base_class maintains a vector of parameters and defines member
functions for accessing them. Different component functions are derived from the
base_model class. These can be either elementary or composite functions.

Composite functions maintain a list of other component functions. They simply
group other components. A composite function computes its values and derivatives
by calling the evaluation functions of its child functions. Each composite model
owns the models in its child list. The top_model class represents the whole model
function to be fitted and implements the interface to the client code. It also main-
tains the vector of the adjustable parameters used by the optimisation algorithm.

The generic elementary_model class encapsulates the common features of the
component functions to make the derived classes as simple as possible. The tem-
plate parameter of the generic class specifies the number of parameters in the func-
tion. We will return to the details of this template in section 4. Now it suffices to
say that the elementary model holds the parameters of the mathematical function
to be calculated as automatically differentiable numbers in the proxy data member.

Fig. 4 shows a complete class definition of an example class derived from elemen-
tary_model. These derived classes contain the actual mathematical formulae of the
model function (the eval function). In addition, only two simple utility functions
(create and get_class_-name) are needed. These are the only requirements for each
elementary function class and it is thus very easy to extend the function hierarchy
to cover new function types.



Object-Oriented Model for Partially Separable Functions . . . 7

base_model

vector<base_par*> parameters
composite_model* parent

double eval(double x, double ders[])
add(base_model* m)
remove(base_model* m)
get_child(int i)

N\

composite_model
list<base_model*> children
elementary_model<N> eval(x, ders)
ad_numbers<N> proxy add(m)

remove(m)

get_child(i)

top_model
vector<stored_par*> parameters
eval(x, ders)

function 1 function 2
eval(x, ders) eval(x, ders)

Figure 3: Model function class hierarchy.

Gamma et al. [8] have proposed some general methods for representing hierar-
chical structures in an object-oriented language. This model function hierarchy can
be seen as a version of the Composite design pattern. Regarding the implementa-
tion issues of this pattern discussed by Gamma et al. we have chosen to maintain
explicit parent references implemented as a pointer in the base_model class. We
also chose to maximise the interface of the base_model. This means that, e.g., oper-
ations for manipulating the list of children of the composite models (add, remove)
are declared and defined in base_model. This gives transparency for the client but
on the other hand the operations do not have a meaning for elementary models.
Therefore, by default, the operations add and remove fail (e.g. by raising an excep-
tion) and the functions are overridden in the composite_model class to give them
meaningful definitions.

Not all functions are shown in the class diagram of Fig. 3. The base_model class
also defines functions for adding and removing parameters as well as functions for
naming the models. The virtual constructor [8, 1] mechanism is utilised in the
object construction, requiring the two virtual functions, create and get_class_name,
to be overridden in each derived class.



8 Jaakko Jarvi

class lorenz : public elementary_model<4> {
public:

lorenz* create() {return new lorenz(); }

string get_class_name() {return "lorenz"; }

enum {amp, freq, damp, ph };

double eval(double x, vector<double>& ders) {

return store_derivatives( ders,
par(amp)*cos(2*pi*par(freq)*x + par(ph)) * exp(-x*par(damp))); }

¥

Figure 4: Definition of an example function derived from the elementary_model
class.

3.2 The parameter hierarchy

The parameter of a model function is basically just a value of some floating point
type. However, the same parameter value may be shared by several component
functions or there may be other dependencies between parameters. Hence, not
all parameters of the component functions store a value. As a consequence, just
representing a parameter as a floating point number is not sufficient to allow the
component models to use the parameters in a uniform way. Therefore parameters
are represented as classes from the parameter hierarchy (Fig. 5).

The base_par class is the topmost class of the hierachy and provides the com-
mon interface, the functions get_value and get_derivative for retrieving the value and
initial derivative of the parameter. The stored_par class represents actually stored,
adjustable parameters. The dependent_par class is the base class for dependent pa-
rameters and linear_par is for expressing linear relations between parameters. Other
dependencies may be implemented by deriving new classes from the dependent_par
class.

Each dependent parameter holds a pointer to another parameter, a parent pa-
rameter. The value is resolved by asking the value of the parent recursively until
finally an instance of a stored_par class will end the recursion. The same mechanism
applies for derivatives. The get_derivative function evaluates the derivative with re-
spect to the underlying stored parameter. For stored_par this is 1 (the derivative
of a variable with respect to itself is 1), while for linear parameters we get it by
multiplying the derivative of the parent with the linear factor (see the code outlined
in Fig. 5).

All parameters also maintain a child list and a pointer to the model function
owning the parameter. The dependent parameters contain a vector of parame-
ter modifiers such as the coefficients of the linear relation. The number of these
modifiers is fixed for each derived class and given in the constructor.



Object-Oriented Model for Partially Separable Functions . . . 9

base_par

base_model* owner
list<dependent_par*> children
double get_value()

double get_derivative()

dependent_par
base_par* parent stored_par
vector<double> pp //param modifiers double value;
get_value() { get_value() {return value; }
return parent->get_value(); } get_derivative() {return 1; }
get_derivative() { set_value(double)
return parent->get_derivative(); }

linear_par
get_value() {return parent->get_value()*pp[0]+pp[1]; }
get_derivative() {return parent->get_derivative()*pp[0]; }

Figure 5: Parameter hierarchy.

3.3 Enforcing the consistency

The data structure for representing structural functions consists of several objects
from the function and parameter hierarchies (Fig. 6). It is a combination of two
object trees, both maintaining child node lists and parent pointers. In addition,
the nodes of the model tree may own nodes of the parameter tree. This relation
is represented as a list in the model tree node and a corresponding owner pointer
in the parameter tree node. Furthermore, a vector of references to the adjustable
parameters in the parameter hierarchy is maintained in the topmost model function.

To be able to guarantee the consistency of such a complex structure the con-
struction and manipulation of the objects involved in the data structure must be
controlled tightly. Though not shown in the class definitions, the creation and de-
struction of models is not part of the public interface of the classes, instead the
creation of the objects is delegated to a special creator object and the destruction
is performed from within the member functions of the classes of the hierarchy.

The final data structure maintains several invariances. The child list of a com-
posite model is kept consistent with the parent references of the children. The
same applies to child/parent relation in the parameter hierarchy as well as the
parameter/owner relation between model functions and parameters.

The relation between parameters and models is further restricted. A parameter
and its descendant can not be owned by different function hierarchies. Furthermore,
the owner function of a dependent parameter must be a descendant of the owner
of the parent parameter. Some of the invariances are guaranteed automatically by



10 Jaakko Jarvi

T: top
stored parameters

child list A
)l \\ AS N

S: ATP
parameters

<,

N N .
\
‘\ x0.3333
[ (s:~ ATP S: a ATP S: 8 ATP )| '
: parameters parameters parameters :
| LT ] [l [
I | child list child list » child list |
\
: [LP: o ATP amplitude ]
[ SP: o ATP frequency ]
o - - - - - - - V" —-=-"=-"=-=-- N < :
II L: left L: right \I . X.0'5
| parameters parameters | +1'4.7
| | .
\

[ LP: Frequency ]

Figure 6: Instantiated objects and their relations illustrated in the NMR case
(part of the ATP molecule). Solid lines represent ownership relation, while dashed
lines are non-owning pointers. Dotted lines are parent links. The class of each
object is given in parenthesis (C=composite, L=lorenz, LP=linear parameter,
DP=dependent parameter, SP=stored parameter). Along the parent links of the
parameters are the formulas for computing the values of linear parameters.



Object-Oriented Model for Partially Separable Functions . . . 11

the restricted object construction. Others are enforced by raising an exception if a
user tries to perform an operation which conflicts with an invariance condition.

3.4 Constructing model functions

The starting point of a model function is an instance of the top-model class. After
it has been created, component models can be added to its child list.

The construction of objects is delegated to a special creator object implementing
the virtual construction mechanism. The purpose of this is to make the client code,
which initiates the creation of objects, independent of the changes in the elementary
function classes.

The class of the object to be created is specified as a class name string at
runtime. This is a convenient way of initiating object construction. Since the
object creation task is most likely initiated by a user command, it is quite natural
to specify the class as a class name string. The user may, e.g., have selected the
class from a selection list.

The creation mechanism requires each class to register itself (one line of code)
and define the virtual functions get_class_name and create. Otherwise the creation
mechanism is totally independent of the derived classes: e.g., adding new elemen-
tary functions to the model hierarchy does not have any effect on the client code.
For details of the virtual construction mechanism, see [8] describing several cre-
ational design patterns.

3.5 Model editor

As an example of a user interface for specifying structural model functions, Fig.
7 shows a snapshot of the model editor we have written. The structural function
tree is visible on the left and the parameters of the currently selected model on the
right. The names of the functions as well as the parameter names and values can
be edited freely on the spot. There are buttons and menu commands for adding
and removing functions and parameters, defining relations between parameters and
storing and retrieving models. As pointed out above, the code of the model editor
is totally independent of the particular elementary function classes derived from
the model function hierarchy.

3.6 Persistence of model objects

In addition to methods for creating and modifying the structural model functions,
means for their storage and retrieval are needed. In object-oriented systems, the
ability of objects to live beyond the lifetime of the program is called persistence.
It can be achieved using object serialisation, the common approach used in com-
mercial class libraries such as MFC [12] and OWL [13]. This approach relies on
virtual construction mechanism and requires the programmer to specify reading
and writing methods for each persistent class.



12 Jaakko Jarvi

File Edit Search Tools Help
= 1P NMA JaTP-beta
|Lorenz
Anp 24602 linear ATP-beta: Amp 025 |0
Freq 7R3 linear ATP-beta: Freq i} 147
Damp 0.0671 dependent ATP: Damp
- ATP-beta
o left
- middle
Add | Remove | &dd Remove: Replace
| [CAPS [MUM [STRE

Figure 7: Snapshot of our model editor.

Virtual construction is already included in the model and parameter hierarchies.
Furthermore, when the model hierarchy is extended, no new data members need to
be introduced in the derived elementary function classes. Therefore the read and
write functions can be inherited and need not be specified. Consequently, the im-
plementation of persistence can be encapsulated entirely into the core classes of the
model and no changes are required when new classes are added to the hierarchies.

4 Evaluation of function values and derivatives

In this section, the function value and derivative computation in our model is
explained. The concept of automatic differentiation is described and it is shown
how to calculate the derivatives of structural functions easily and yet effectively
with this technique.

4.1 Automatic differentiation

The derivatives are traditionally calculated either symbolically or by using divided
differences. The former may be quite difficult and error-prone while the latter
introduces truncation errors and may be inaccurate and inefficient. Automatic
differentiation provides an appealing alternative.

In automatic differentiation, the derivatives are computed by the well-known
chain rule, but instead of propagating symbolic functions, numerical values are
propagated along the computation. The evaluation of the function and its deriva-
tives are calculated simultaneously using the same expressions. There are several
descriptions about automatic differentiation [15, 1, 3] and also software packages



Object-Oriented Model for Partially Separable Functions . . . 13

available [9, 4]. Some packages preprocess the source code to add the necessary
statements for computing the derivatives. Other packages, using programming lan-
guages that support operator overloading, implement the differentiation as a class
library without the need for a separate precompilation.

There are interesting computational issues concerning the implementation of
automatic differentiation. The chain rule can be used either in forward or backward
mode or in something between. The implementation involves a tradeoff between
time and space complexity. In this article the forward mode automatic differenti-
ation is used. It is simple and fits very well in this particular application as will
become clear below.

In forward mode automatic differentiation, instead of computing with scalar
values, we compute with automatically differentiable numbers (ADN) (f, Vf). An
ADN consists of a value and a vector of partial derivatives of a function at a
given point. When building expressions with these objects, at the leaf level of
the expression tree f is either a variable or a constant. When differentiating with
respect to N variables, the derivative of the ith variable is represented as the ith
canonical unit vector of length N and the derivative of a constant with a zero
vector. For example, when differentiating with respect to three variables z,y, z
the constant 3.14 is expressed as (3.14, (0,0, 0)) and the variable y as (y, (0, 1,0)).
Computation with these objects utilises the chain rule of derivatives.

= <%f(s) » )) (%gw ) ) @

As an example, consider the two-derivative case for function y + sin(x?). Starting
with (y, (0,1)) +sin{z, (1,0))?) by squaring x, we get {(y, (0,1)) +sin((z?2, (2z,0))).
Taking the sine gives (y, (0,1)) + (sin(z?), (2x cos(z?),0)) and finally the addition
with y gives (y + sin(x?), (2x cos #2),1)). For numerical work, the computation is
not done symbolically, rather the actual values of the function and its derivatives
are calculated and propagated through the expression. Given x = 2,y = 4 the same
example becomes

2 1)

(4,(0,1)) +sin((2, (1,0))?) (4,(0,1)) +sin((4, (4,0))) =
(4,(0,1)) + (0.06976, (1.9951,0)) = (4.06976, (1.9951,1)).

The method can be applied to any machine-computable function. All that
is needed is to code the differentiation rules for simple functions and operations.
Then any function composed of those elementary functions can be differentiated
automatically. In C++ this means overloading common functions and operators
for objects described above.

The forward mode automatic differentiation for calculating gradients can be
computationally unattractive if applied blindly. If the gradient has n elements, the
computation may require up to order of n as much time as computating the value
of the same expression. However, in the case of partially separable functions the
forward mode can be applied efficiently. If we consider the model function as a



14 Jaakko Jarvi

whole, it may have quite a number of parameters, but the number of parameters of
the individual elementary functions is typically rather low and known beforehand.
Furthermore, different elementary functions are only related via a summation ex-
pression, which means that also the derivatives are just summed together. Conse-
quently, we use automatic differentiation in computing the local gradients of the
elementary functions and update the calculated values via pointers to the common
derivative vector.

The computing time of the local gradients can be further reduced. By using
C++ templates, moderate size derivative vectors of ADNs can be replaced with
special sparse vectors to yield very efficient code [10]. This method was utilised in
the test runs described in section 4.4.

4.2 The function evaluation process

The model function is evaluated by calling the eval function of the topmost class,
which will traverse all the contained models and calculate their cumulative values
at a given point. The derivatives are computed simultaneously using automatic
differentiation. The derivative vector is passed as a parameter to the eval function.
First the resulting derivative vector or gradient is initialised to zero. Each elemen-
tary function reads the values and initial derivatives of the parameters (with the
get_value and get_derivative functions) and constructs ADNs from them. If the ele-
mentary function has n parameters, ADNs having n-dimensional derivative vectors
are used. The mathematical expression is then evaluated using ADNs and each
elementary function updates the resulting derivative values to the actual gradient
vector. This is accomplished with a call to store_derivatives function defined in the
elementary_model template (see Fig. 4), which adds the derivative values to the
right positions of the gradient.

After the whole function tree has been traversed, the function value is returned
and the gradient is available as the derivative vector passed to the eval function.

4.3 Computational efficiency

With regard to the computational efficiency the evaluation strategy includes a few
pitfalls. Firstly, dynamic binding is applied in the eval function invocations. There
is an inherent additional cost in a call to a dynamically bound virtual function com-
pared with a statically bound function [7]. Furthermore dynamic binding precludes
the use of inlined functions. Inline expansion can speed up function calls and is
beneficial for small functions. However, in this case the computational cost of the
function call is probably minor compared to the cost arising from the evaluation
of the actual mathematical formulae of the elementary functions, recalling that the
derivatives are also calculated in the same function. Considering this, the relative
cost of the slightly slower function call is most likely insignificant in this case.
Secondly, dynamic binding is also applied between parameters in the get_value
and get_derivative functions. In this case the extra cost may be notable. The
evaluation of an elementary function having n parameters would yield at least n



Object-Oriented Model for Partially Separable Functions . . . 15

virtual function calls to fetch the parameter values. The number of calls is larger
if dependent parameters are involved. However, in model fitting tasks the model
function is evaluated repeatedly at several points, without changing the parameter
values. Taken the example from NMR spectroscopy, the region of interest may
contain thousands of points. Therefore the parameter values can be cached and
only when the parameter values are changed, each elementary function reads the
values and derivatives with the virtual get_value and get_derivative functions and
stores the values to local proxy variables (ADNs). With this approach the relative
cost of retrieving the parameter values via virtual functions is of little consequence.
The caching is made transparent to the client code by maintaining a flag in the
topmost class indicating whether the values in the proxy variables are valid or not.

Also, the updating of the local gradients to the global derivative vector must
be efficient. This is implemented in the elementary_model template by maintaining
a mapping from each local parameter index to an index in the global derivative
vector. These mappings can be constructed prior to the first model evaluation. In
this task the function tree must be traversed once, but this causes no efficiency
problems, since the indices only change if the model function changes, i.e., new
component functions are added or removed. At evaluation time the only additional
cost is an extra indirection for each parameter.

Some cost may also arise if the composite models in the function tree contain
many levels (e.g. in the ATP compound). From the computational point of view, it
is not necessary to traverse all composite functions during the evaluation, rather it
is sufficient to call the evaluation functions of the elementary models directly and
save the cost of a few virtual calls. This is easy to implement by maintaining a
separate list of the leaf nodes in the top_model class, which we did in the test runs.

4.4 Test runs

To assess the efficiency of the model some test runs were performed. As a test
case, we used formulae from the NMR case consisting of 10 component functions
having 24 adjustable parameters altogether. Five different alternatives to perform
the function and derivative computations were programmed:

1. A tailored low-level C-code with analytical derivatives.
2. The presented OO model with analytical derivatives.
3. The OO model with automatic differentiation.

4. A straightforward OO implementation, without any caching.

5. A low-level implementation of the function with finite difference value ap-
proximations of the derivatives.

In the tailored low-level implementation, the model function was totally fixed at
design time, so any change in the function requires changes in the code. The code
was hand-optimised to a reasonable level (not making any processor specific tricks).



16 Jaakko Jarvi

Implementation | Relative time
1. Tailored low level C-code 1.00
2. OO0 model with analytical derivatives 1.07
3. OO model with automatic differentiation 1.29
4. Straightforward OO implementation 2.48
5. Divided difference approximations 16.52

Table 1: Relative evaluation times of the different methods for computing the value
and derivatives of the NMR model.

All subexpressions were calculated only once and all relations between parameters
were directly written into the code as effectively as possible. It is fair to say that
the code used was as fast as possible.

In the second case, the OO model presented was used, but the derivatives of the
elementary functions were calculated analytically. This case should roughly repre-
sent the extra cost originating from the dynamic binding of the model functions, as
well as the cost arising from not coding the dependencies between the parameters
directly.

In the third case, the OO model was used with derivatives computed using
automatic differentiation. Table 1 shows the results and confirms the extra cost
being quite acceptable compared with the flexibility the model offers.

In the fourth case, no proxies for parameters were used, rather the initial values
and derivatives were retrieved during each evaluation using the virtual function
invocations. This demonstrates that the performance may drop significantly if the
programmer is not aware of the principles affecting efficiency in OO programs.

In the fifth case, derivatives were approximated with divided difference values.
The benefit of this alternative is that only the code for evaluating the value of
the model function is needed. The performance is, however, very poor requiring
n evaluations of the model function, where n is the number of elements in the
gradient. Also, the accuracy is harder to assess.

The test runs were performed under Linux on Intel Pentium processor. The
C++ compiler used was KAI C++ 3.2.d with optimisation flags +K2 -O3.

5 Conclusions

An object-oriented model for parameter estimation of partially separable function
was described. The model achieves two goals. Firstly it gives an easily extendible
OO framework for representing partially separable functions in a structured way,
resembling the physical real-life interpretation and mathematical structure of the
functions. Secondly, it offers an interface to an optimisation algorithm, namely a
vector of adjustable parameters and a function capable of computing the value and
derivatives of the model function efficiently.

To achieve the first goal, the model separates the commonalities of partially



Object-Oriented Model for Partially Separable Functions . . . 17

separable functions from the specific mathematical formulae. The formulae are
encapsulated to a few very simple classes. It is therefore easy to apply the model
to different problem domains, since changing these classes or adding new ones to
the model does not affect the client code using the model. Furthermore, relations
between parameters are handled by the model and they do not complicate the
mathematical expressions of the component functions.

The derivatives needed in the parameter estimation are obtained using auto-
matic differentiation. Hence, there is no need to hand-code analytical derivatives
or use divided difference values.

Considering the second goal, the calculation of function values and derivatives
is efficient. In our example case from NMR, spectroscopy, the evaluation of the OO
model required only 29% more time than a low-level tailored implementation of
the same function. As a compensation, in the OO model the final function as well
as relations between parameters can be specified at run-time, the model is easily
extendible to cover new component functions and no hand-coded derivatives are
required.

To sum up, the paper gives practical guidelines for implementing an efficient
OO computational kernel for partially separable functions. With an example, we
showed that OO programming offers substantial benefits, such as higher abstraction
level, code reuse, flexibility and handling of complexity for numerical programming
as well. Furthermore, the advantages can be achieved with a moderate loss of
performance.

References

[1] Barton J. J., Nackman L. R.: Scientific and Engineering C++, Addison-Wesley,
Reading Massachusetts 1994.

[2] Bazaraa M.S., Sherali H.D., Shetty C. M.: Nonlinear Programming: Theory
and Algorithms, 2nd Edition, Wiley 1993.

[3] Editors: Berz M., Bischof C. H., Corliss G. F., and Griewank A.: Computa-
tional Differentiation - Techniques, Applications, and Tools, STAM, Philadelphia
Pennsylvania 1996.

[4] Bischof C. H., Carle A., Corliss G. F., Griewank A., Hovland P.: ADIFOR:
Generating derivative codes from Fortran programs, Scientific Programming, 1
(1992) 1-29.

[5] Bovée W. M. M. J.: Quantification in in vivo NMR, Spectral editing, in: Mag-
netic Resonance Spectroscopy in Biology and Medicine, eds. de Certaines J. D.,
Bovée W. M. M. J., Podo F., 181-207, Pergamon, Oxford 1992.

[6] Derome A. E.: Modern NMR Techniques for Chemistry Research, 63-90, Perg-
amon, Oxford 1991.



18 Jaakko Jarvi

[7] Driesen K., Holzle U.: The Direct Cost of Virtual Function Calls in C++, ACM
Sigplan Notices, OOPSLA’96 Proceedings, 31 (1996) 306-323.

[8] Gamma E., Helm R., Johnson R., Vlissides J: Design Patterns, Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading Massachusetts
1995.

[9] Griewank A., Juedes D., Utke J.: ADOL-C: A Package for the Automatic
Differentiation of Algorithms Written in C/C++, ACM Transactions on Math-
ematical Software, 22 (1996) no.2, 31-167.

[10] Jarvi J.: A PC program for automatic analysis of NMR spectrum series, Com-
puter Methods and Programs in Biomedicine 52 (1997) 213-222.

[11] Majoras R. E., Richardson W. M., Seymour R. S.: An object-oriented ap-
proach to evaluating multiple spectral models, Journal of Radioanalytical and
Nuclear Chemistry 193 (1995) 207-210.

[12] Microsoft, Microsoft Foundation Class Library, Microsoft Corporation.
[13] Borland, Borland C++ 5 Programmer’s guide, Borland International, 1996.

[14] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical
Recipes in C: the Art of Scientific Computing, 2nd Edition, Cambridge Uni-
versity Press, New York 1992.

[15] Rall L.B.: Automatic differentiation: Techniques and Applications, Lecture
Notes in Computer Science 120, Springer-Verlag, Berlin 1981.

[16] Robinson A.D.: C++ Gets Faster for Scientific Computing, Computers in
Physics 10 (1996) 458-462.

[17] van Tongeren B. P. O., Boxman R. D. C., Deumens J. W., van Leeuwen J. P.,
Mehlkopf A. F., van Ormondt D., de Beer R.: QUANSIS, An object-oriented
data-analysis system for in vivo NMR signals, Journal of Magnetic Resonance
Analysis, 2 (1996) 75-84.



Tuples and multiple
return values in C++

Jaakko Jarvi

Turku Centre for Computer Science
TUCS Technical Report No 249
March 1999

=0
= = ISBN 952-12-0401-X
TUCS ISSN 1239-1891




Abstract

A generic tuple class, capable of storing an arbitrary number of elements
each being of arbitrary type, is presented. The class offers a concise means to
return multiple values from a function. Instead of using refrerence parameters
to pass data out of functions, the function return type is an instantiation of
the tuple template, grouping the values to be returned. The semantics of the
tuple class is analogous to the pair template in the C++ standard library,
thus the usage of tuples is convenient and intuitive. The implementation is
described in details.

Efficiency considerations are addressed. It is shown that with modern
C++ compilers, there is no extra runtime overhead caused by using tuples.
However, due to excessive template instantiatons, there is some effect on com-
pilation times and memory usage during compilation. This effect is unlikely
to be significant in real programs.

Keywords: generic programming

TUCS Research Group
Algorithmics group



1 Introduction

In most common programming languages (including C++) functions can re-
turn only a single value. This is a reasonable restriction, although quite often
there is a need to pass several related values from a function to the caller.
For example, consider the numerous cases, where in addition to the actual
result, one or more status codes are given. Particularly typical multiple re-
turn values are in numerical libraries, where besides the extensive need for
status codes, the actual results themselves often have several components.
E.g., a common matrix decomposition operation, singular value decomposi-
tion (SVD), takes a matrix and decomposes it to two matrices and a vector.
Still another example is the usage of the pair template with STL maps.

To circumvent the restriction of a single return value, reference or pointer
parameters can be used to pass data out of functions. Alternatively a struct
or class type can be defined to group the values to be returned into a sin-
gle object. In the first approach, the distinction between input and output
parameters is not always obvious and one may need to add extra comment
lines just for clarifying this (although disciplined usage of common idioms,
such as using non-const pointers and references only for output parameters
does help). The second approach is conceptually better: there are no mul-
tiple return values, just a single value, which happens to be a composition
of several related values. All the parameters are input parameters and the
return value is the sole output.

Consider the SVD example. One would either write

void SVD(const Matrix& M, Matrix& U, Vector& S, Matrix& V);

and leave it to the callers responsibility to provide U, S and V suitably ini-
tialized, or use the latter approach:

struct SVD_result {
Matrix U, V;
Vector S;
// possibly a constructor etc.
s

SVD_result SVD(const Matrix& M);

Even though in this case the distinction between input and output values
is clear, it is a burden to write small classes just to serve as a collection of
return values of some individual function. New unnecessary names are added
to the namespace, and in addition to the name and prototype of a function,
the caller must also know the return class and its behavior. In this article,



tuples are proposed as an alternative way of returning multiple values from
a function.

1.1 Tuples

Tuples are fixed size collections of objects of arbitrary types. They provide
a concise means for multi-valued returns. The return type of a function can
simply be defined as a tuple, e.g.:

<Matrix, Vector, Matrix> SVD(Matrix); // pseudo code

The intention of the declaration is instantly clear and there is no need to
specify an artificial wrapper class for the result.

Some programming languages, such as Python[l], Scheme[2] or ML[3],
have tuple constructs or analogous mechanisms for multiple return values.
There is also an ongoing effort to include tuples to Eiffel[4]. C++ has no
direct support for tuples. However, the generic features of the language offer
potential solutions. The pair template in the standard library implements
2-tuples, allowing us to write, for example

pair<Matrix, Matrix> LU(Matrix); // another matriz decomposition

Although the pair suffices for 2-tuples, it does not provide a general solution.
It is of course possible to write templates for triples, quadruples, and so on,
but where to stop?

This article describes a solution, which covers all lengths of tuples with
a single template. The solution is completely type-safe requiring no runtime
checks. Furthermore, with modern optimizing C++ compilers, the usage of
tuples (creation and element access) has no performance penalty compared
with using normal structs as return values. Also, independent of the number
of elements, tuple is the common name for all tuple types (instead of tuple2,
tuple3, etc.). The template definitions set a certain predefined upper limit
for the length of tuples, but in any case tuples of several dozens of elements
are allowed, which should be enough for most of the imaginable uses.

Note that the code presented relies on the new template features of the
C++ standard[5], such as member templates, partial specialization and ex-
plicit specialization of function templates. Not all compilers currently sup-
port these features. The code in this article was successfully compiled with
the Egcs and KAI C++ compilers, both being on the leading edge with
respect to the conformance to the new standard.



2 Tuple Template

A tuple template must be able to store an arbitrary number of elements of
arbitrary types. A template having this capability is surprisingly simple:

struct nil {};

template<class HT, class TT >
struct cons { HT head; TT tail; };

template<class HT>
struct cons<HT,nil> { HT head; };

As the name suggests, the definition corresponds to the LISP dot pair. In-
stantiating TT with a cons recursively leads to a list structure (see [6] for a
more detailed description of these compile time recursive objects). E.g., the
instantiation representing the tuple type <Matrix, Vector, Matrix> is

cons<Matrix, cons<Vector, cons<Matrix, nil> > > aTuple;

This instantiation defines a nested structure of classes, containing the tu-
ple elements as nested member variables. The nil class is just an empty
placeholder class. The elements can be accessed with the usual syntax (e.g.
aTuple.tail.tail.head refers to the third element). This cons template is
the underlying construct for representing tuples.

Even though the cons template is sufficient for representing the structure
of tuples, the syntax is not usable. Directly defining tuples as dot pair lists
with the cons template would be rather awkward, and indeed a better syntax
can be attained. The objective is to be able to write type declarations, such as
tuple<int>, tuple<float, double, A> etc. Since the number of template
parameters of a generic class can not vary and neither is the definition of
several templates with the same name possible, the solution is to use default
arguments for template parameters:

template <class T1,class T2=nil,class T3=nil,class T4=nil>
struct tuple

Now this definition allows between 1 to 4 template arguments. The unspeci-
fied arguments are of type nil. As pointed out above, we need to set an upper
limit for the number of elements in any tuple. To make the code sections
short, the limit of four elements is used here. It is, however, straightforward
to extend the tuple to be able to handle more elements.

Now the tuple template provides the desired interface, whereas the cons
template implements the underlying structure of tuples. The interface and



implementation can be connected via inheritance. A tuple inherits a suit-
able instantiation from the cons template: tuple<float, int, A, nil> for
example inherits from cons<float, cons<int, cons<A, nil> > >. It is
reasonable to assume that a tuple only stores its non-nil elements, hence nil
classes are excluded from the cons instantiation. To be able to implement
this inheritance relation, we need a means to express the type to be inherited
using the template parameters of the tuple.

2.1 Mapping tuple types

A recursive traits (more on traits, see [5]) class is needed to define the map-
ping from tuple parameters to a suitable cons instantiation:

template <class T1, class T2, class T3, class T4>
struct tuple_to_cons {
typedef
cons<T1, typename tuple_to_cons<T2, T3, T4, nil>::U > U;
}s

template <class T1>
struct tuple_to_cons<T1, nil, nil, nil> {
typedef cons<T1, nil> U;

}s
The sole purpose of this class is to define a mapping from the 4 template pa-
rameters of tuple to a corresponding instantiation of the cons template.
This is given by the typedef U in the tuple_to_cons class. It defines
a dot pair, where the head type is the first template parameter T1 and
the tail type is defined recursively. The recursive definition instantiates
the tuple_to_cons template again, with T1 dropped from and nil added
to the parameter list. This is repeated, until the partial specialization of
tuple_to_cons matches.

As an example, consider tuple<float, int, A, nil>. To resolve the
underlying type of the typedef tuple_to_cons<float, int, A, nil>::U,
the following chain of instantiations occurs:

tuple_to_cons<float, int, A, nil>::U

cons<float, tuple_to_cons<int,A,nil,nil>::U >

cons<float, cons<int, tuple_to_cons<A,nil,nil,nil>::U > >
cons<float, cons<int, cons<A,nil> > >.

In the last step, the partial specialization is applied.
Using the tuple_to_cons type mapping the tuple class can now be de-
fined as:



template <class T1,class T2=nil,class T3=nil,class T4=nil>
struct tuple : public tuple_to_cons<T1, T2, T3, T4>::U {...};

Now it is clear that tuple instantiations up to four elements with arbitrary
types are valid and inherit a cons instantiations capable of storing the ele-
ments. For example, the following definitions are all correct instantations of
the tuple template.

tuple<int, int>
tuple<Matrix, Vector, Matrix>
tuple<A, B, tuple<C, D>, E>

3 Construction semantics

The templates above define just the structure of tuple types. For tuples
to be usable, we need convenient mechanisms for constructing tuples and
accessing their individual elements. The construction and element access
semantics can be made consistent of the semantics of the pair template in
the standard library:

template< class T1, class T2>
struct pair {

T1 first; T2 second;

pair() : first(T1()) , second(T2()) {}
pair(const T1& x, const T2& y) : first(x), second(y) {}

template<class U, class V>
pair(const pair<U, V>& p)
: first(p.first), second(p.second) {}
}s
Hence, by default a pair is initialized to the default values of its element
types. The elements may also be given explicitly in the construction. The
member template is a ‘copy constructor’, which allows type conversions be-
tween elements. This is the construction semantics a general tuple template
should have as well. Furthermore, the element access should be as straight-
forward as with pairs (p.first, p.second, etc.). Let us first focus on the
construction semantics.

3.1 Tuple constructor

The tuple template above allows up to four elements. It is therefore obvious
that the tuple constructor should have four parameters. But tuples can also



be shorter. For an n-tuple, there should be a constructor taking n parameters.
To avoid writing a separate constructor for each different length, default
arguments can be used. The definition of the tuple template becomes:

template <class T1,class T2=nil,class T3=nil,class T4=nil>
struct tuple : public tuple_to_cons<T1l, T2, T3, T4>::U {

tuple( const T1& tl=wrap<Ti1>(), const T2& t2=wrap<T2>(),
const T3& t3=wrap<T3>(), const T4& t4d=wrap<T4>())
: tuple_to_cons<T1, T2, T3, T4>::U(t1, t2, t3, t4) {}

}s

The constructor has a distinct parameter for each element to be stored. The
parameters are passed directly to the inherited cons template instantiation.
We have not yet defined any constructors for the cons template, so just as-
sume for now that the constructor works reasonably. Each parameter is given
a default value. Though looking somewhat odd, the default arguments are
expressions that merely create and return a new default object of the current
element type. Given this definition, a constructor for an n-element tuple
can be called with 0 to n parameters and the elements left unspecified are
constructed using their default constructors. Especially, the unused nil ob-
jects are created by the default argument expressions, hiding their existence
entirely from the user of the tuple template.

3.1.1 Default arguments

Why not just use T() instead of wrap<T>() as the default argument? Suppose
A is a class with no public default constructor. Then the constructor of
the tuple<A> instantiation is tuple<A>(const A& t1 = AQ), ...). This
results in a compile time error, since the constructor call A() is invalid. Hence
a type without a default constructor would not be allowed as an element type
of a tuple. This is the case even if the default argument is never used. The
solution is to wrap the default constructor call to a function template':

template <class T> inline const T& wrap() { return T(); }
Now the constructor of tuple<A> becomes:

tuple<A>(const A& t1 = wrap<A>(), ...)

'In the eges version 1.0.2. this is not yet supported. A class template with a static
function: template<class T> struct wrap { static T £f() { return T(); }; must
be used instead of a function template. The call becomes: wrap<T>::f().



If the first parameter is always supplied, the wrap<A> template is never in-
stantiated.? The compiler only checks the semantic constrains of the default
argument and finds out that wrap<A>() is indeed a valid expression. Only if
the default argument is really used, the compiler is allowed to instantiate the
body of the wrap function template (and flag the error if there is no default
constructor for the type in question)[5, section 14.7.1.].

3.2 Constructing dot pairs

The tuple constructor passes all four parameters to the constructor of the
inherited cons instantiation. Hence, the cons constructor also has four pa-
rameters. This constructor is a member template, where only the type of
the first parameter is fixed and the remaining parameter types are deduced.
Here are the definitions of the cons templates:

template<class HT, class TT> struct cons {
HT head; TT tail;

template <T2, T3, T4>
cons(const HT& t1, const T2& t2,
const T3& t3, const T4& t4)
: head(t1), tail(t2, t3, t4, nil()) {}
s
template <class HT> struct cons<HT, nil> {
HT head;
cons(const HT& t1, const nil&, const nil&, const nil&)
: head (t1) {}
}s

The constructor initializes the head with the first parameter and passes the
remaining parameters to the tail’s constructor recursively, until all but the
first parameters are nil. At each level, one element is initialized. Note that
even though only the first parameter’s type is directly bound, the types of
the remaining parameters are in fact also mandated by the instantiation of
the cons template. Hence, a constructor call with erroneous argument types
result in a compile time error at some point during the recursive instantia-
tions.

As an example, let us consider in detail a particular constructor call
tuple<Matrix, Vector, Matrix>(U,S,V). When the call is encountered,

2Version 3.3.c of KAI C++ incorrtecly instantiates the default argument. According
to their support, this is to be addressed in their next major release. For a workaround,
contact the author.



the tuple template is instantiated: the missing fourth template parameter is
first added and tuple<Matrix, Vector, Matrix, nil> becomes the com-
plete instantiated type. The tuple_to_cons traits class computes the list
type cons<Matrix, cons<Vector, cons<Matrix, nil> > > to be inher-
ited. The tuple constructor is called with arguments U, S and V. The fourth
parameter is not given, so the default argument is applied: wrap<nil>() is
used to construct an empty object of type nil. Now the cons constructor
is called with arguments U, S, V and nil (), which recursively initializes the
elements of the tuple with U, S and V.

3.3 Constructor allowing element-wise conversions

The constructors analogous to the third constructor of the pair template are
still to be defined. The intention is to allow 'copy’ construction from another
tuple with different element types, if the elements can be implicitly converted.
For example, tuple<int, double, int> could be initialized with an object
of type tuple<char, int, int>. For pairs, this is useful mostly in situa-
tions, where the pairs are created using the make_pair function template
[8]. There does not seem to be a generic way to implement a corresponding
make_tuple function (other than explicitly writing a function for each tuple
length). It is thus a matter of taste, whether a ’converting’ copy constructor
is needed for tuples, but nevertheless it is not difficult to implement. An
additional member template constructor is required in the tuple template:

template <class T1, class T2, class T3, class T4>
template<class Ul, class U2>
tuple<T1,T2,T3,T4>: :tuple(const cons<Ul, U2>& p)
: base(p) {}

In both of the cons templates (primary and specialization), a new constructor
is needed.

//primary template
template<class HT, class TT>
template<class HT2, class TT2>
cons<HT,TT>::cons(const cons<HT2, TT2>& u)
: head(u.head), tail(u.tail) {}

//specialization
template<class HT>
template<class HT2>
cons<HT, nil>::cons(const cons<HT2, nil>& u)
: head(u.head) {}



The tuple constructor merely delegates the copy to the base class. In the
base class, the copy constructor of each member is called along the recur-
sion. Hence, the converting copy is allowed, if the types are element-wise
compatible. Otherwise a compile time error results.

4 Accessing tuple elements

With the above definitions, the element access is tedious. For example, one
must write aTuple.tail.tail.tail.tail.head to refer to the fifth element
of a tuple. However, as stated above, element access should be as convenient
as with pairs. Since the elements of tuples have no names (such as first,
second, etc.), numbers are used to refer to them. With the aid of some
additional template definitions, the Nth element can be referred with the
expression get<N>(aTuple).?

Here get is a function template, where the index of the element to be
accessed is given as an explicitly specified integral template argument. Ob-
viously, the access mechanism must be recursive. However, the get function
template can not directly be defined recursive. It is not possible to define a
specialization with respect to a template parameter, which must be explic-
itly specified. Therefore, the recursion is implemented as a static member
template of the class nth:

template<int N> struct nth {
template<class HT, class TT>
static voidx get(cons<HT, TT>& t) {
return nth<N-1>::get(t.tail);

}
b
template<> struct nth<1> {
template<class HT, class TT>
static voidx get(cons<HT, TT>% t) { return &t.head; }

}s

Now N is a template parameter of a class and the specialization for N=1is
thus allowed.

Since tuples are inherited from some cons instantiation, the element ac-
cess functions can be defined to operate on cons dot pairs. The invocation

3The access functions can be defined as member templates as well, but since explicit spe-
cialisation is used, the get function must be explicitly qualified as a template. This would
lead to the awkward syntax aTuple.template get<N>() instead of aTuple.get<N>().



nth<N>::get(aTuple) returns a pointer to the Nth element of the object
aTuple. The access function works recursively returning the result of getting
the (N-1)th element of the tail of aTuple. The specialization for N=1 merely
returns the address of the head of the current dot pair. Note, that the access
mechanism is safe with respect to the index parameter N, since an illegal
index leads to a compile time error (no matching templates exist). Now we
have a mechanism for getting the address of a given element, but not yet the
type.

The type can be defined recursively: The type of the nth element of a
tuple a equals the type of the (n — 1)th element of the tail of a. With this
definition in mind, we can write the corresponding recursive traits classes:

template <int N, class T> struct nth_type;

template <int N, class HT, class TT>
struct nth_type<N, cons<HT, TT> > {
typedef typename nth_type<N-1,TT>::U U;

template<class HT, class TT>
struct nth_type<l, cons<HT, TT> > { typedef HT U; };

Now the type of the Nth element of a dot pair type T can be written as
nth_type<N, T>::U. Using this type definition, the actual get function tem-
plate can be written as:

template<int N, class HT, class TT>
nth_type<N, cons<HT, TT> >::U&
get (cons<HT, TT>& c) {
typedef
typename nth_type<N, cons<HT, TT> >::U return_type;
return *static_cast<return_type*>(nth<N>::get(c));

}

The get<N> function calls the nth<N>::get function to get the address of
the Nth element as a void pointer, casts it to the correct type and returns the
result. Note that although the type information is seemingly lost, the cast
from the void pointer is, however, entirely safe.*

As an example of the element access, consider accessing the third element
of the tuple a defined as tuple<Matrix, Vector, Matrix> a(U,S,V); The
invocation get<3>(a) triggers the following chain of instantiations:

1t is possible to carry the type information along in the nth<N>::get functions as
well, but dropping it alleviates the task of the compiler considerably.

10



get<3,Matrix, cons<Vector, cons<Matrix, nil> > >(a)

— nth<3>::get< Matrix, cons<Vector, cons<Matrix, nil> > >(a)
— nth<2>::get<Vector, cons<Matrix, nil> >(a.tail)

— nth<1>::get<Matrix, nil>(a.tail.tail).

Now the specialization nth<1> is used, and the head of a.tail.tail, which
is the matrix V, is returned.

5 Efficiency

The tuple is intended to be an elementary utility template with widespread
usage. Hence, efficiency is of utmost importance. However, the template
definitions do not seem to be very efficient: The construction of tuples and
accessing their elements requires several nested function calls. To access the
Nth element of a tuple with the get<N>(aTuple) function, N+1 functions
altogether are invoked. However, the functions are all inlined ’one-liners’.
In an optimizing C++ compiler, inline expansion eliminates the overhead
of these functions and the address of the Nth element is resolved at compile
time.

The construction is analogous in this respect. Even though the con-
struction of an n-tuple constructs n nested dot pairs, each constructor only
effectively constructs its head and passes rest of the parameters forward. As
the inline expansion is performed, the result is just the code performing the
construction of the individual elements in a tuple. Particularly, the construc-
tion and destruction of the temporary nil objects are optimized away. This
behavior was validated by experiments with the egcs (release-1.0.2, optimiza-
tion flag -O) and KAI C++ (version 3.3c, flags +K3 -O2) compilers.

The obvious alternative for using the tuple template, is to explicitly write
a struct containing an equivalent member variable for each tuple element.
Suppose that a four-element tuple, composed of elements of types A1, A2, A3
and A4, is needed. The alternative for tuple<Al, A2, A3, A4>is:

struct A {
Al first; A2 second; A3 third; A4 fourth;
A(const Al1& al=A1(), const A2& a2=A2(),
const A3& a3=A3(), const A4& a4=A4() )
: first(al), second(a2), third(a3), fourth(ad) {3}
};

The comparisons between programs using these explicitly written structs vs.
programs using tuples confirmed the anticipated behavior with both com-
pilers. The compiled codes of object construction (e.g. the calls A() and

11



tuple<Al, A2, A3, A4>()) were essentially identical for both approaches,
consisting only of the code arising from the construction of the individual
elements. Similarly, both compilers were capable of computing the rela-
tive address of a given element in a tuple at compile time, thus eliminating
all overhead arising from the element access. E.g. in the example above,
get<3>(aTuple) yields no code, just a reference to the third element of the
tuple.

To assess the results, several tests were performed, varying the length and
element types of tuples. Egcs eliminated all overhead in all cases. Even a
tuple of 256 elements was compiled: the compiler eliminated the 257 nested
function calls of the invocation get<256>(aTuple) and resolved the address
of the 256th element of the tuple at compile time!

The optimization capabilities of the KAI C++ depended on whether ex-
ceptions were used or not (the compiler has a flag for turning exceptions on
and off). With exceptions turned on, the compiler only reached the zero over-
head for relatively short tuples. With exceptions off, there were no difficulties
in optimizing longer tuples as well.

5.1 Effect on compilation time

Due to excessive template instantiations, it is inherently slower to compile
tuples than corresponding explicitly written structs. Further, the compilation
requires a greater amount of memory. The compilation speed difference was
measured with some simple tests. All template definitions were included as
a header file (this is natural, since every function is inlined). Four pairs of
test programs were generated. Each pair had a program using tuples and
another equivalent program using explicitly written classes. The intention
was to measure the direct compilation speed difference between tuples and
explicit classes, so the tuple programs consisted of nothing else than tuple
definitions, element access and functions (basically empty) that returned
tuples. The results are shown in Fig. 1.

Another test was performed to evaluate the effect of tuple usage to com-
pilation speed in a realistic program. An existing program was modified and
an’average’ C++ program was generated. It consisted of 120 functions. 25%
of the functions had tuples as return values. The lengths of the tuples varied
from 3 to 8. The program included a few standard headers (iostream and
some STL headers) and used STL containers and algorithms to some ex-
tent. The compilation of this program was now less than 4% slower than the
compilation of an equivalent program, which used explicitly written structs
instead of tuples. The increase in the amount of memory needed in the
compilation was between 5-10%. Consequently, the use of tuples increase

12



Tuple length | Eges (T;/Ts) KAI C++ (T3/Ts)
3 7.70 5.33
d 8.06 5.90
10 10.8 7.40
32 13.4 16.8

Figure 1: The relative compilation time of programs using tuples to equiv-
alent programs using explicitly written structs (7, = compilation time of
tuple implementation, T, = compilation time of explicitly written struct im-
plementation). The times are not comparable across compilers.

compilation times and memory consumption, but the increases are likely to
be insignificant on real programs.

6 Conclusion

Tuples provide a clear and concise means to return multiple values from
a function. Though C++ has no language constructs for tuples, they can
be implemented in standard C++ using templates in a bit inventive fashion.
The solution described requires only a few small generic classes and functions
(and an up to date compiler) to achieve a completely type safe and efficient
tuple implementation.

Up to a certain predefined limit, the proposed tuple template allows tuples
to have an arbitrary number of elements, each element being of arbitrary
type. The usage is simple and intuitive, semantics being analogous to the
pair template in the standard library. The proposed tuple template simplifies
the definition and use of functions which return multiple values and is worth
of adding to the C++ programmer’s basic toolbox.

References

[1] http://www.python.org.

[2] Ashley J. M. and Dybvig R. K.: An Efficient Implementation of Multiple
Return Values in Scheme, Proceedings of the 1994 ACM Conference on
Lisp and Functional Programming, pp. 140-149, Orlando, June 1994.

(3] Paulson L. C.: ML for the working programmer, Cambridge University
Press, 1991.

13



[4] Tuples, routine objects and iterators, A draft proposal to NICE,
http://eiffel.com (link "Papers’).

[5] International Standard, Programming Languages — C++,
ISO/IEC:14882, 1998.

[6] Jarvi J.: Compile Time Recursive Objects in C++, Proceedings of the
TOOLS 27 conference, Beijing Sept. 1998, pp. 66-77, IEEE Computer
Society Press.

[7] Myers, N. C.: A new and useful template technique: ’traits’, C++ Report,
Vol. 7 no 5 pp. 32-35, 1995.

[8] Stroustrup, B.. The C++ programming language, 3rd ed., p. 482,
Addison-Wesley, 1997.

14






Turku Centre for Computer Science
Lemminkaisenkatu 14

FIN-20520 Turku

Finland

http://www.tucs.abo.fi

University of Turku
e Department of Mathematical Sciences

Abo Akademi University
e Department of Computer Science
o Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Science



ML-style Tuple Assignment in
Standard C++

— Extending the Multiple Return
Value Formalism

Jaakko Jarvi

Turku Centre for Computer Science
TUCS Technical Report No 267
April 1999

E=E
" B [SBN 952-12-0434-6
TUCS ISSN 1239-1891




Abstract

It has been shown previously that tuples can be implemented with templates
in standard C++. This article extends the author’s previous work on tu-
ples and multiple return values by defining generic functions and classes to
support a kind of a multivalued assignment. The return values of a function
returning a tuple can be assigned to separate variables with a single state-
ment. E.g., assuming that foo is a function returning a 3-tuple and that a, b
and c are variables of correct type, the expression tie(a, b, c) = foo() assigns
the three returned elements to a, b and c.

The presented template definitions result in a typesafe and intuitive tu-
ple formalism, resembling the the tuple constructs in ML, for defining and
calling functions having multiple return values. The produced code is ef-
ficient. Resource consumption of compiling increases to some extent, but
hardly significantly on real programs.

Keywords: generic programming

TUCS Research Group
Algorithmics group



1 Introduction

In a previous article [1], the problem of multiple return values was addressed.
It was argued that tuples, as found in the programming languages ML[2] or
Python[3], provide a concise and intuitive means for returning multiple values
from functions. To compensate the lack of direct support for tuples in C++,
a set of generic functions and classes implementing a tuple formalism were
described in the article. Instead of using reference parameters to pass data
out of functions, or writing separate classes for grouping return values, the
presented templates definitions make it possible to use tuple types as return
values.

We shortly revisit the SVD example from [1]. SVD is a matrix decompo-
sition operation decomposing a matrix into two matrices U, V' and one vector
S, representing a typical situation, where a function produces several results.
The following code snippets show the am. three possibilities for returning
the three resulting objects.

// 1. Using reference parameters:
void SVD(const Matrix& m, Matrix& U, Vector& S, Matrix& V);

// 2. Using a separate class:
struct SVD _result {
Matrix U, V;
Vector S;
// constructor, etc.
b
SVD_result SVD(const Matrix& m);

// 3. Using tuples:
tuple<Matrix, Vector, Matrix> SVD(const Matrix& m);

As demonstrated by this example, the prototypes of functions returning mul-
tiple values can be defined very naturally using tuples.

Functions returning tuples can called as follows (see [1] for the details of
the element access in tuples):

Matrix U, V; Vector S;

tuple<Matrix, Vector, Matrix> result = SVD(aMatrix);
U = get<1>(result); S = get<2>(result); V = get<3>(result);

This is rather convenient. However, it would be even more convenient to be
able to assign the tuple elements to variables in a single statement. This is



possible, for example, in ML and Python. In numerical programming, a sim-
ilar construct is used extensively in the scripting language of MATLAB [4].
Using these languages, the SVD example could be written as:

(U, S, V) = SVD(aMatrix) # Python
val (U, S, V) = SVD(aMatrix); (* ML *)
[U, S, V] = SVD(aMatrix); % Matlab

Though it may not be apparent, this powerful construct is attainable in
standard C++ as well. In C++ syntax, the above example can be written
as:

Matrix U, V; Vector S;
tie(U,S,V) = SVD(aMatrix);

The idea of redirecting return values in the above manner was originally
presented in a usenet article by Ian McCulloch. The technique was proposed
to be used with functions returning std::pair objects, being thus limited to
only two elements.

This article shows how the techique can be generalised to tuples of ar-
bitrary length and describes the implementation in detail. The implemen-
tation extends the tuple formalism presented in [1]. New class and function
tempates are added to allow the simultaneous assignment of elements. The
existing definitions require no changes.

2 Assigning tuple elements to variables

How does the above example C++ code work? Fig. 1 depicts the workings
of the example graphically. The right-hand side of the assignment expression
tie(U,S,V) = SVD(aMatrix) is an ordinary call to a function returning a tuple
object. In the left-hand side, tie is a function template. The evaluation of the
whole expression comprises of the following steps, where the order of steps 1
and 2 is implementation dependent:

1. The function call SVD(aMatrix) returns a tuple object, the type of which
is tuple<Matrix, Vector, Matrix>.

2. tie(U, S, V) is a call to an instantiation of a generic function. This
generated function creates and returns a tier object, a kind of a tuple

as well. The elements of this tier-tuple are references to variables U, S
and V.



S: D assignment

-

Figure 1: The evaluation of the expression tie(U, S, V) = SVD(aMatrix)
illustrated graphically. The leftmost and rightmost dotted frames outline
the results of the left-hand and right-hand sides of the expression.

3. The assignment operation assigns the tuple object to the tier object,
performing an element-wise assignment from the tuple elements to the
tier elements. Since the tier elements are references, the actual desti-
nations of the assignments are the original variables referred to, that
is, U, S and V.

4. The temporary tier object is destructed.

2.1 About terminology

The tier acts as an intermediary object binding the returned tuple elements
to a set of variables, and indeed, as opposed to tying, binding is a more
conventional term in the programming language literature. However, the
terms tie and tier were chosen, since the C++ standard library contains a
set of binder templates for a different purpose.

3 Tier template definitions

The structure of the tier template definitions correspond to the structure of
the tuple template definitions in [1]. The tuple code is repeated in its relevant
parts in appendix A.

The backbone of the tuple implementation is the cons template, imple-
menting a compile time list structure. Different recursive instantiations of
this template provides tuples the ability to store an arbitrary number of ele-
ments of arbitrary types. Tiers need the same capability, with the distinction



that the elements are references. For this purpose the ref_cons template, a
modifcation of the cons template, is defined:

struct nil {};

template <class HT, class TT> struct ref_cons {
HT& head; TT tail;

}

template <class HT> struct ref_cons<HT, nil> { HT& head; };

The empty nil class represents the end-mark of the list. Now, for example
the instantiation

ref_cons<Matrix, ref_cons<Vector, ref_cons<Matrix, nil> > >

defines a type containing a Vector reference and two Matrix references as
member variables. To evade this unwieldy syntax, the ref_cons template is
not instantiated directly. The tier template defines a more usable interface
and inherits a suitable ref_cons instantiation. The tier template allows a
variable number of template arguments, up to a predefined limit, using the
technique presented in [1]. For terseness, this limit is chosen to be four here,
but it is straightforward to increase it by extending the template parameter
lists:

template <class T1, class T2 = nil, class T3 = nil, class T4 = nil>
struct tier : public tier_to_ref_cons<T1, T2, T3, T4>::U {...};

The tier_to_ref_cons template is a recursive traits class [5] mapping the tier
template parameters to the correct ref_cons instantiation.

template <class T1, class T2, class T3, class T4>
struct tier_to_ref_cons {
typedef ref_cons<T1, typename tier_to_ref_cons<T2, T3, T4, nil>::U > U;

+
template <class T1> struct tier_to_ref_ cons<T1, nil, nil, nil> {
typedef ref_cons<T1, nil> U;

I3

These definitions allow, for example, the previous example to be written as
tier<Matrix, Vector, Matrix>. For a more verbose description of recursive
type mappings, see [1, 6].



3.1 Constructing tiers

The tier and ref_cons constructors are structurally equivalent to the tuple and
cons constructors. First the tier constructor:

template <class T1, class T2 = nil, class T3 = nil, class T4 = nil>
struct tier : public tier_to_ref cons<T1, T2, T3, T4>::U {

tier( T1& t1, T2& t2=wrap_ref<T2>(),
T3& t3=wrap_ref<T3>(), T4& td=wrap_ref<T4>())
: tier_to_ref_cons<T1, T2, T3, T4>:U(tl, t2, t3, t4) {}

The constructor takes four parameters (four being the upper limit chosen),
and delegates them to the base class constructor defined in section 3.1.2.
The intention is not to require four arguments in each constructor call. The
number of arguments accepted by the constructor should equal the number
of actual (non-nil) elements in the tier, ranging from one to the maximum
number of allowed elements in a tuple. This is achieved with the wrap_ref
template used as default arguments.

3.1.1 Default arguments

The actual arguments to the tier constructor are the variables to which the
tuple elements should be assigned. There are thus no reasonable default
values for the actual arguments. On the other hand, default values are needed
for the unspecified arguments of type nil. Since the number of nil-arguments
is not know beforehand, the default argument expressions should return a
suitable default value if the type of the argument is nil, and generate a
compile-time error for other types. The following definitions fulfill these
requirements:

template <class T> struct ct_error {};
namespace { nil dummy_nil; }

template <class T> struct wrap_ref struct {
static T& f() {
return ct_error<T>::missing_argument; // Yields a compile time error

+
template <>
struct wrap_ref_struct<nil> { static nil& () { return dummy_nil; } };

template <class T> T& wrap_ref() { return wrap_ref_struct<T>::f(); }

3



The separation between nil and non-nil template arguments can not be ac-
complished directly with the wrap_ref template, since the template parameter
must be explicitely specified, prohibiting thus specialisations. Consequently,
the function template wrap_ref is just an interface, delegating the task to a
static function f of a template class wrap_ref_struct, which can be specialized.

In the specalisation wrap_ref_struct<nil>, the static function f returns cor-
rectly a reference to a nil object. Since the parameters to the tier constructor
are passed as references, even the nil parameters must refer to some existing
object, hence the dummy_nil object. It is placed in an unnamed namespace to
make it local to a translation unit. As becomes clear in the sequel, the need
for the dummy_nil object is temporary, the final tier object does not contain
any references to this object.

The function f in the primary template is instantiated whenever a default
argument is needed for any other type than nil. This introduces a compile
time error, as required, by referring to a non-existing member of a class
template.

3.1.2 Constructing ref_cons objects

The tier constructor passes its parameters, nil and non-nil ones, directly to
the constructor of its base class:

template <class HT, class TT> struct ref_cons {

template <class T2, class T3, class T4>
ref_cons( HT& t1, T2& t2, T3& t3, T4& t4)
. head(tl), tail(t2, t3, t4, dummy_nil) {}

b

template <class HT> struct ref_cons<HT, nil> {
ref_cons(HT& t1, nil, nil, nil) : head (t1) {}

b

This constructor recursively initializes each element of the tier. At each
recursive call, a reference to the first argument is stored in the current head
and the remaining arguments are passed to the constructor of the tail.

3.2 Tie function templates

The above definitions allow the definition of tier types and construction of
tier objects. For example, tier<Matrix, Vector, Matrix>(U, S, V) creates a

6



tier holding references to U, S and V. The objective was, however, to be
able to construct tier objects using a simpler syntax tie(U, S, V), avoiding
thus the explicit specification of the element types. This can be attained by
wrapping the constructor call inside a function template, analogously to the
make_pair template in the standard library, and letting the compiler deduce
the argument types. However, this is somewhat problematic.

The C++ standard bans default template arguments in function tem-
plates. Neither do default arguments have any effect on the template argu-
ment deduction [7, section 14.8.2.4]. Due to these restrictions, there seems
to be no way to define a tier function template, which would be generic with
respect to the number of arguments. Hence, a separate function template
must be written for each allowed tier length. Albeit not very elegant, this is
however perfectly feasible. In any case, the maximum number of elements in
tuples is not very high. As functions with very long parameter lists tend to
be error-prone and impractical, same is true for very long tuples as return
values. The need for tuples longer than few dozens of elements is hardly
justified. Consequently, the amount of code duplication is quite tolerable.
Futhermore, as the code duplication does not affect the client code in any
way, except of course by providing the desired functionality, the duplication
remains merely as a source of discontent to the author.

As an example, the two and three argument tie function templates are
defined as follows:

template<class T1, class T2>

inline tier<T1, T2> tie(T1& t1, T2& t2) {
return tier<T1, T2>(t1, t2);

b

template<class T1, class T2, class T3>
inline tier<T1, T2, T3> tie(T1& t1, T2& t2, T3& t3) {
return tier<T1, T2, T3>(t1, t2, t3);

b

4 Assigning tuples to tiers

We now have means to conveniently create tier objects, but the assignment
operators from tuples to tiers are yet to be defined. As stated in section
2, these operators perform an element-wise assignment from tuple to tier
elements.

Separate assignment operations are required in the tier template, as well
as in the ref_cons templates. Each of these assignment operations are defined

7



as member templates. The parameter in the tier assignment is constrained
to be a tuple.

template <class T1, class T2 = nil, class T3 = nil, class T4 = nil>
struct tier : public tier_to_ref_ cons<T1, T2, T3, T4>::U {

template <class V1, class V2, class V3, class V4>
void operator=(const tuple<V1, V2, V3, V4>& t) {
tier_to_ref_cons<T1, T2, T3, T4>::U::operator=(t);

}

The tuple is redirected as such to the assignment operator of the base class,
performing the actual assigning. Note, that even though the definition does
not restrict the types of the tuple elements in any way, the assignment is
typesafe. An attempt to assign a tuple with incompatible element types is
caught at some of the assignments of the nested members of the ref_cons base
class.

template <class HT, class TT> struct ref_cons {

template <class HT2, class TT2>
void operator=(const cons<HT2, TT2>& u) { head=u.head; tail=u.tail; }

}

template <class HT> struct ref_cons<HT, nil> {

template <class HT2>
void operator=(const cons<HT?2, nil>& u) { head = u.head; }

b

The assignment operations in the ref_cons templates assign the elements re-
cursively. Again, the parameters are only restricted to be of type cons, the
element types are not confined explicitly. However, the assignment of the
heads fails, if the types HT and HT2 are incompatible. In sum, the assign-
ment leads to a compile time error, if the tuple and tier are not of the same
length and if the types of the corresponding elements are not assignable.

4.1 Performance considerations
4.1.1 Runtime cost

As shown in [1], there is no performance penalty in returning tuples compared
with returning explicitely defined classes from functions. The introduction of



tiers does not change this, since the use of tiers induce no changes to functions
returning tuples. However, the code for calling functions having multiple
return values is different, as tiers add a new mechanism for redirecting the
resulting values. In this section, we focus on the cost of this redirection.
Consider the code:

// A, B, C, D are some classes
tuple<A, B, C, D> foo();

Aa;Bb;Cc: Dd;
tie(a, b, ¢, d) = foo();

The tie function creates the tier object. Since the tie function, tier construc-
tor, and the constructors of the inherited ref_cons classes are all inlined, the
effect of the tier construction process is roughly equivalent to:

A& a_.=a;B&b_=b; C&c_.=c; D& d_=d;

foo is a function returning a tuple. Right after foo has been executed, the
resulting tuple resides somewhere in the memory (generally near the top
of the stack) available for furher use. Now the assignment operator of the
tier object is called. The operator assigns the elements of the tuple to the
tied variables. Again, the assignment operations are all inlined, eliminating
all overhead and leaving only the calls to the assignment operations of the
individual elements. This step corresponds to the statements:

a_ = get<1>(foo_r); b- = get<2>(foo.r);
c_ = get<3>(foo_r); d_ = get<4>(foo_r);

foo_r stands for the temporary tuple object returned from foo. As the left
hand sides are references, the statements are assignments to a, b, ¢ and d.

No destructor was defined for the tier template, the compiler generated
destructor is trivial [7, chapter 12.4] and thus yields no code.

In sum, the cost arising from the tying mechanism is the cost of creating
one reference variable and performing one assignment for each element of the
tuple. The details are obviously dependent on the compiler, but this is more
or less the behaviour one would expect from an optimising C++ compiler.

These assumptions were tested by studying the compiled code of several
test programs. A diverse set of tuples and tiers was used: the elements ranged
from built-in types to rather complex classes and the length of tuples was

varied. Two compilers were used: KAI C++ (verion 3.3c) and Egcs (release
1.1.1).



Both compilers confirmed the expected behaviour. The code produced
by Egcs was constistently in accordance with the above description. KAI
C++ could in some cases even avoid allocating stack space for the reference
variables by locating them into registers; the extra assignment was still per-
formed. As mentioned in [1], KAI C++ was not capable of inlining very long
tuples entirely, unless exceptions were turned off by a compiler switch.

Due to the extra assignment, there is some overhead in the tier mechanism
compared with using reference parameters to pass data out from a function.
For lightweight objects with low assignment cost the overhead is most likely
not significant. For large objects with high copy or assignment semantics, the
extra cost may be notable. However, returning such objects, inside tuples
or otherwise, should be avoided anyhow. Instead, large objects ought to
be wrapped inside auto pointers, reference counted pointers etc. providing
cheap copy and assignment. Hence, tiers can be applied without a significant
performance penalty in vast majority of the cases where multiple values need
to be returned.

4.1.2 Compilation cost

Compiling code containing tuple and tier definitions is somewhat slower and
requires more memory than compiling corresponding code not containing
these definitions. There is discussion on the effect of tuples to compilation
time and memory consumption in [1], showing that this effect is clear but
on real programs probably not significant. The introduction of tiers to the
multiple return value formalism does not change this, which was confirmed
with two compilation tests.

The compilation times of tier constructs were compared with the compila-
tion times of corresponding definitions using reference parameters to 'return’
multiple values. This is a natural choise, since in both cases there is a set of
existing variables to which the results should be bound. To measure the di-
rect compilation speed difference of the constructs, five pairs of test programs
were generated. Each pair contained a program using the tier mechanism and
a functionally equivalent program using reference parameters in multivalued
returns. The tier programs comprised solely of functions returning tuples and
calls to these functions using the tier mechanism, hence the compilation times
reflect the direct compilation cost difference between the two alternatives for
returning multiple values.

The results are shown in Fig. 2, indicating clearly the slower compila-
tion times of tier constructs. However, the compilation of parameter passing
constructs is only a small part of the whole compilation process. Hence, to es-
timate the effect on the compilation times of real C++ programs, an existing

10



Tuple length | Eges (Tyier/Trey) KAI C++ (Thier/Trer)
2 12.9 23.09
4 13 26.27
8 14.83 32.81
16 16.42 55.81
32 22.72 71.43

Figure 2: The relative compilation time of programs using tuples and tiers
to equivalent programs using reference parameters to pass multiple values
from a function (7., = compilation time of tuple implementation, T, =
compilation time of reference parameter implementation). To eliminate the
effect of any constant costs of the compilation process, the compilation time
of a program containing an empty main function was subtracted from the
results. The times are not comparable across compilers.

program was selected to represent an ’average’ C++ program. The program
included a few standard headers and used standard generic containers and
algorithms quite frequently. A reasonable amount of tier constructs were
added to the program. As a result, the program comprised of 150 functions,
20% of which returned tuples and 20% used the tier mechanism to call the
tuple returning functions. The length of tuples ranged from 2 to 8, shorter
tuples being more common than longer ones. The lenghts and percentages
were selected based on the authors estimations about the frequency of func-
tions with multiple return values. The program is intended to represent quite
an extensive use of the tier mechanism.

The compilation of this program was compared with a functionally equiv-
alent program using reference parameters instead of the tier mechanism. The
increase in compilation time was 5% in Egcs and 11% in KAI C++. Memory
consumption increased more, 27% (Egcs) and 22% (KAI C++).

5 Conclusion

An implementation of a generic tuple class was introduced in [1] to alleviate
the definition and calling of functions with multiple return values in C++.
This article extends the tuple implementation, describing the tier mechanism
enabling a kind of a multivalued assignment, i.e., a means to assign the
elements of a tuple to separate variables with a single statement.

Compared with using reference parameters as output parameters, the
presented mechanism has a small performance penalty, basically an extra
assignment is needed for each tuple element. Compiling code using the tier

11



mechanism requires more resources than conventional code. The tests per-
formed suggest that these increases are probably not significant, though pos-
sibly notable with very extensive usage of the mechanism.

Tuples and tiers together provide a convenient and intuitive formalism for
defining and calling functions with multiple return values. The techniques
are efficient and do not compromise type safety.

A Relevant parts of tuple implementation

struct nil {};

template<class HT, class TT> struct cons {
HT head; TT tail;

template <class T2, class T3, class T4>
cons(const HT& t1, const T2& t2, const T3& t3, const T4& t4)
. head(t1), tail(t2, t3, t4, nil()) {}

template <class HT> struct cons<HT, nil> {

HT head;
cons(const HT& t1, const nil&, const nil&, const nil&) : head (t1) {}

¥

template <class T1, class T2, class T3, class T4>
struct tuple_to_cons {
typedef cons<T1, typename tuple_to_cons<T2, T3, T4, nil>::U > U;

}
template <class T1>
struct tuple_to_cons<T1, nil, nil, nil> { typedef cons<T1, nil> U; };

template <class T> inline T wrap() { return T(); };

template <class T1,class T2=nil,class T3=nil,class T4=nil>
struct tuple : public tuple_to_cons<T1, T2, T3, T4>::U {

tuple( const T1& tl=wrap<T1>(), const T2& t2=wrap<T2>(),
const T3& t3=wrap<T3>(), const T4& td=wrap<T4>())

. tuple_to_cons<T1, T2, T3, T4>::U(t1, t2, t3, t4) {}

12



References

[

Jarvi J.: Tuples and multiple return values in C++, TUCS Techincal
Report No 249, http://www.tucs.fi/publications.

Paulson L. C.: ML for the working programmer, Cambridge University
Press, 1991.

http://www.python.org.

The Mathworks Inc. (http://www.mathworks.com): Using MATLAB,
Version 5, 1997.

Myers, N. C.: A new and useful template technique: ’traits’, C++ Report,
Vol. 7 no 5 pp. 32-35, 1995.

Jarvi J.: Compile Time Recursive Objects in C++, Proceedings of the
TOOLS 27 conference, Beijing Sept. 1998, pp. 66-77, IEEE Computer
Society Press.

International Standard, Programming Languages — C++,

ISO/IEC:14882, 1998.

13



Turku Centre for Computer Science
Lemminkaisenkatu 14

FIN-20520 Turku

Finland

http://www.tucs.abo.fi

University of Turku
e Department of Mathematical Sciences

Abo Akademi University
e Department of Computer Science
o Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Science



C++ Function Object Binders Made Easy

Jaakko Jarvi *

Turku Centre for Computer Science
Lemminké&isenkatu 14 A, FIN-20520 Turku, Finland

jaakko. jarvi@cs.utu.fi

Abstract. A novel argument binding mechanism that can be used with
STL algorithm invocations is proposed. Without using any adaptors,
binding can be applied directly to pointers to nonmember functions,
pointers to const and nonconst member functions and STL function ob-
jects. The types and number of arguments in the functions to be bound
can be practically arbitrary; argument list lengths up to few dozens of
elements can be supported.

The unbound arguments are expressed as special placeholders in the
argument list; they can appear for any argument position. Hence, binding
sites preserve the resemblance to the function prototype of the underlying
function, leading to simple and intuitive syntax.

Binding can be applied recursively. This results in a versatile function
composition mechanism. The binding mechanism is efficient in the sense
that it induces very little or no runtime cost.

1 Introduction

The Standard Template Library (STL) [1], now part of the C++ standard li-
brary [2], is a generic container and algorithm library. STL algorithms are func-
tion templates operating on container elements via iterators and function objects.
Any C++ construct which can be called with the ordinary function call syntax is
a function object. This includes pointers and references to nonmember functions
and static member functions, and class objects with a function call operator.
Nonstatic member functions are not function objects, but the STL includes a
set of function adaptors for creating function objects from member functions.
Adaptable function objects are a subset of function objects. They are class
objects which, in addition to the function call operator, define a certain set of
types. New adaptable function objects can be created from adaptable function
objects using function adaptors. For example, function objects can be projected
by binding one argument to a constant. Some STL implementations [3] add func-
tion composition objects and other adaptor extensions to the standard. Superfi-
cially, this seems to provide a great amount of flexibility for adapting functions

* This work has been supported by the Academy of Finland, grant 37178. The author
is grateful to Harri Hakonen and Daveed Vandevoorde for their valuable comments
on the manuscript of this paper.

(© Springer-Verlag (Lecture Notes in Computer Science, vol. 1799)



to satisfy commonly encountered needs. However, a closer look reveals that this
is not the case.

The function objects accepted by STL algorithms are either nullary', unary
or binary. Standard adaptors accept only unary or binary function objects. Con-
sequently, all functions with more than two parameters, and all member func-
tions having more than one parameter, cannot be passed as function objects to
STL algorithms. To be able to pass such functions to STL algorithms, explicit
function object classes must be written. Often this results in considerable pro-
gramming overhead—especially when only a simple operation or algorithm needs
to be supported. This inconvenience in turn discourages the use of an otherwise
compact and intuitive functional programming style, and not infrequently the
STL invocation is expanded by hand.

For example, consider the following two functions for computing values of
exponential and Gaussian distributions:

double exponential(double x, double lambda);
double gaussian(double x, double mean, double standard_deviation);

The computation of the values of the exponential distribution for a set of points
(in vector x) can be programmed as follows:

vector<double> x, result; double lambda;

transform(x.begin(), x.end(), result.begin(),
bind2nd(ptr_fun(exponential), lambda));

The ptr_fun wrapper creates an adaptable binary function object from the expo-
nential function and bind2nd binds the second argument to lambda. The transform
algorithm calls this unary function object for each element in x and places the
result in result.

We should expect the code for computing Gaussian distribution values to
be analogous. However, it turns out that an explicit function object class is
needed:

vector<double> x, result; double mean, std;

class gaussian_caller {
double mean_, std_;

public:
gaussian_caller(double mean, double std) : mean(mean_), std(std.) {};
double operator()(double x) const { return gaussian(x, mean, std); }

}

transform(x.begin(), x.end(), result.begin(), gaussian_caller(mean, std));

This is a consequence of the ptr_fun adaptor only being defined for functions
taking fewer than three arguments. To overcome this limitation, it is possible
to define more ptr_fun templates to cover functions with longer argument lists.

LA function with no arguments.



Unfortunately, this is not enough, since the binder adaptors are defined for binary
function objects only. Hence, n binders (bind1st-bindNth) would be needed for
each argument list of length n. Even with all these k?/2 templates, k being the
longest allowed argument list length, the outcome is not particularly intuitive.
It becomes difficult to see how the gaussian function is actually called:

transform(x.begin(), x.end(), result.begin(),
bind2nd(bind3rd(ptr_fun(gaussian),std),mean));

This article proposes a more general binding mechanism. Instead of specifying
the index of the argument to bind, special placeholder objects are used in the
argument list. For example, the previous example becomes:

transform(x.begin(), x.end(), result.begin(), bind(gaussian, freel, mean, std));

The role of the placeholder freel is to specify the varying argument to be left
unbound. Other arguments are bound to the values given. The binder invocation
syntax preserves a direct resemblance to the original function prototype, reveal-
ing instantly which parameters are bound. This mechanism bears similarities to
the built-in binding mechanism of the programming language Theta [4], as well
as with agents, a recently proposed extension to Eiffel [5]. The technique is also
related to currying, the partial function application mechanism in the functional
programming domain.

This article describes the functionality and design of the generic Binder Li-
brary, BL in the sequel. The BL allows argument binding in the above style for
(almost) any C++ function. The library can be downloaded from the address
www. cs.uty.fi/BL.

2 Binder library functionality

Binding is an operation which creates a k-argument function object, a binder
object, from an n-argument bindable function object, such that k& < n. Some
of the arguments of the original function object are bound to fixed values, the
remaining unbound arguments are called free.

2.1 Bindable function objects

Binding can be applied to nonmember functions and to static member functions,
as well as to pointers to such entities. Pointers to const and nonconst member
functions are bindable as well. Other function objects, i.e., class objects with
a function call member operator, are bindable if they contain a specific set of
member typedefs. For smooth integration with the STL, function objects ad-
hering to the adaptable function object requirements of the STL are bindable.
Constructors are not bindable.

The STL has special wrapper templates for creating adaptable function
objects from nonmember function (ptr_fun) and member function (mem_fun,



mem_fun_ref) pointers. They provide a uniform call syntax for different types
of functions: a wrapped n argument member function can be called with n + 1
arguments, where the first argument is a reference or pointer to the object whose
member is called. In the BL such wrappers are not needed. (A similar mechanism
is used but it is hidden from the client.) Hence, binding can be applied directly
to pointers to member and nonmember functions.

2.2 Function argument list length

As explained in section 1, STL style binders cannot easily be applied to functions
with more than two arguments. The binding mechanism using placeholders, in
turn, does not have this restriction. However, the implementation requires a set
of template definitions for each supported argument list length. This imposes a
predefined upper limit for the number of allowed arguments. The limit is not
particularly restrictive, since argument lists up to a few dozen elements can be
supported—the size of the library grows linearly with the supported argument
list length.

2.3 Argument binding

A binder object is created with a call to an overloaded generic bind function.
The first argument in this call is the bindable function object, henceforth called
the target function. The remaining arguments correspond to the argument list
of the target function.

The argument list can contain free arguments, which are specified with place-
holder objects. Since there are no STL algorithms accepting function objects with
more than two arguments, the BL defines just two placeholder objects. These are
called freel and free2 and refer to the first and second argument of the function
call operator in the resulting function object. Depending on which placeholders
are used, this function call operator is either nullary, unary or binary.

Consider the following examples, where Op is a four-argument bindable func-
tion object callable with arguments of some types A, B, C and D. Further assume
that a, b, c and d are variables of these types, respectively.

bind(Op, a, b, ¢, d);

bind(Op, a, freel, c, d);

bind(Op, freel, b, c, free2);
bind(Op, free2, free2, freel, freel);

The first line creates a nullary function object fixing all arguments. The second
invocation of bind creates a unary function object taking one argument of type
B. The third line results in a binary function object with the first argument of
type A and second of type D. The last use of bind illustrates how several free
arguments can be unified. In this case A and B as well as C and D must be
compatible types. The call results in a function object taking two variables. The
first is of type C, second of type A. An invocation with, say, ¢ and a, results in a



call Op(a, a, ¢, c) of the original function object. Therefore, a must be implicitly
convertible to B and ¢ to D.

To summarise, the argument list can contain an arbitrary number of both
types of placeholders, but if it contains one or more free2 placeholders, it must
contain at least one freel placeholder. A violation of this rule leads to a compile
time error. This is reasonable, since the omission of freel, while free2 is present,
would result in a function object having the second argument but not the first.

2.4 Argument types

The parameter types of target functions can be arbitrary?. However, references
to nonconst objects and to objects which cannot be copied require special treat-
ment.

Arguments to bind functions are passed as reference to const. Thus, if a pa-
rameter of type reference to nonconst object is bound, the actual argument must
be wrapped inside a special object, which creates a temporary const disguise for
the argument. This is achieved with a simple function call. For example:

void up_and_down(int& i, int& j) { i++; j——:}
list<int> a_list; int counter = 0;

for_each(a_list.begin(), a_list.end(), bind(up-and_down, ref(counter), freel));

The example decrements each element of a_list by one and increments counter by
one n times, n being the number of elements in a_list. Since counter is bound to
the nonconst reference parameter i, it is wrapped using the generic ref function.
Although the parameter corresponding to the free argument is a reference to a
nonconst type as well, it need not be wrapped. The wrapping mechanism is safe
with respect to constness: a const reference cannot be wrapped.

The original motivation for requiring the use of the ref wrapper was the
desire to avoid combinatorial explosion of template definitions. However, it is
semantically beneficial as well. As the example above demonstrates, side effects
in bound arguments quickly lead to code that is hard to comprehend. Wrapping
forces the programmer to explicitly state that an argument is susceptible to side
effects.

By default, the binder object stores copies of the bound arguments. If an
argument is of a type which cannot be copied, another wrapper is needed: cref
instructs the binder object to store a reference to the argument instead of a
copy. Array types are exceptions. Although they can not be copied, wrapping is
not necessary: a reference to const array type is stored by default. This ensures
that string literals can be used directly as bound arguments. The cref wrapper
is used similarly to the ref wrapper.

2 Volatile qualified types are not supported in the current version of the BL.



2.5 Member functions

When binding member functions, the object for which the member function is
to be called, is the first argument after the target function. This object argument
can be a reference or pointer to the object; the BL supports both cases with
a uniform interface. Similarly, if the object argument is free, the sequence can
contain either pointers or references. For instance:

bool A::f(int); A a;
vector<int> ints; vector<A> refs; vector<A*> pointers;

find_if(ints.begin(), ints.end(), bind(&A::f, a, freel));
find_if(ints.begin(), ints.end(), bind(&A: f, &a, freel));

(
find_if(refs.befin(), refs.end(), bind(&A::f, freel, 1));
find_if(pointers.begin(), pointers.end(), bind(&A::f, freel, 1));

The first two calls to find_if are equivalent. In the first one, A::f is called using
the .* -operator, whereas in the second the same member is called through the
—>* —operator. The latter two find_if invocations both find the first A for which
A::f returns true. The .* -operator is used in both cases, the library automatically
dereferences object arguments of pointer types.

The call mechanism is safe with respect to constness. A nonconst member
function can only be called via a reference or pointer to a nonconst object. This
holds whether the object argument is bound or free. Note that the ref wrapper
is not needed for the object argument. This is a deliberate design choice. It is
understood that the object’s state may be changed when a nonconst member
function is called—there is no need to explicitly state it.

2.6 Function composition with binders

Binding can be applied recursively, thereby enabling function composition. Con-
sider the following example:

void canvas::point(double x, double y, colour ¢);

canvas* canv; vector<double> x, y;

for_each(x.begin(), x.end(), y.begin(),
bind(&canvas::point, canv, freel, free2, black));

point is a function for drawing points on a canvas using some colour. The for_each
invocation draws the points given by the coordinates in vectors x and y. Note that
this two-sequence for_each algorithm is not part of the C++ standard library, it
is however straightforward to write [6, p. 532].

Now, to represent the y coordinates in logarithmic scale, the standard library
function double log(double) can be bound as follows:

for_each(x.begin(), x.end(), y.begin(),
bind(&canvas::point, canv, freel, bind(log, free2), black));



The resulting binder object invokes canv—>point(*iterl, log(*iter2), black) at each
iteration, where iterl and iter2 are the iterators provided by for_each: they point
to the elements of x and y. Hence, a nested binder object defers the target
function call and acts as the inner function in a function decomposition.

The number of nested recursive bindings can be arbitrary. With respect to
placeholders, the argument lists of all nested binders are treated as one concate-
nated list. This means that the requirements stated at the end of section 2.3
must hold for the concatenated argument list, not for any of the individual lists.

2.7 Nullary functions

For completeness, nullary functions can be bound as well. This may seem super-
fluous, but with function composition, it is a powerful feature. For instance, the
following code creates a vector of 100 random number pairs:

vector<pair<int, int> > pvec;
generate_n(back_inserter(pvec), 100,
bind(&make_pair<int, int>, bind(rand), bind(rand)));

3 Library design

This section describes the general library design and discusses the key program-
ming techniques used in its implementation. Certain technical details have been
omitted from the presented code for clarity.

To begin with, some parts of the binder library cannot be written generically
with respect to the length of the target function parameter list. A set of templates
are repeated with slight modifications for each supported argument list length.
A great deal of this repetition can be avoided using tuples.

3.1 Tuples

The binder library uses a set of templates comprising a tuple abstraction [7].
These template definitions are rather intricate and not presented here. Never-
theless, their usage is intuitive.

The tuple template is basically a generalisation of the pair template in the
standard library. It can be instantiated to contain an arbitrary number (up to
some predefined limit) of elements of arbitrary types. E.g., tuple<int, string, A>
is a valid tuple type, corresponding to a class having three member variables of
types int, string and A. As is the case of standard pairs, tuples can be constructed
directly or using make_tuple (cf. make_pair) helper templates:

tuple<int, string, A>(1, string("foo™), A());
make_tuple(1, string(“foo"), A());



The elements can be accessed in a generic fashion with the syntax get<N>(x),
where x is some tuple and N is an integral constant stating the index of the
element. The get function template is a template metaprogram [8], which resolves
a reference to the given element of a tuple at compile time.

The types of the tuple elements can be expressed generically as well: the
expression tuple_element<N, Y>::type gives the type of the Nth element of a
tuple type Y. This expression is a kind of a type function from the constant N
and type Y to the element type.

The implementation is based on compile time lists [9,10], which are recur-
sively instantiated templates. Consider, for example, how the pair instantiation
pair<int, pair<string, pair<A, nil> > > could represent the preceding tuple. The
compile time lists in the BL are structurally similar, but they are not based on
the pair template.

3.2 The bind function templates

The bind function templates define the binding interface. They are repeated
for each argument list length. For example, the four-argument bind function is
defined as:

template <class Target, class Al, class A2, class A3>
inline binder<Target, 3, tuple<Al, A2, A3> >
bind(Target fun, const A1& al, const A2& a2, const A3& a3) {
return binder<Target, 3, tuple<Al, A2, A3> >
(fun, make_tuple(al, a2, a3));
+

These functions group the actual arguments to the target function into a tuple
and create a binder object. There are two overloaded bind function templates
for each argument list length because nonconst target member functions must
be handled differently.

3.3 Binder objects

An important goal in the design of the BL was to minimise the code repeti-
tion. This has considerably impacted the structure of the binder classes. Binder
objects are instances of class types that fit in the four-level class hierarchy illus-
trated in Fig. 1. Each level in the hierarchy encapsulates some task orthogonal
to the tasks in the other levels. This reduces the amount of partial specialisa-
tions, since only one property must be taken into consideration at a time. It also
avoids the need to repeat the member and type definitions which are generic
with respect to the argument list length.

Target function The base class target_function is a generalisation of the STL
templates unary_function and binary_function:



target_function
target_argument_types
result_type

function_adaptor<target_function_case, arg_count>
target_function
apply(arglist)

binder_base
arguments

[ | | |
binder<both> binder<onlyl> | |binder<only2> binder<neither>|
operator()(freel,free2) | |operator()(freel)| |call()(free2) operator()() |

r——+to

_|apply(combined argument list)|

Fig. 1. Binder class hierarchy. The binder template arguments represent the intuitive
interpretation of the specialisation criteria. The combined argument list in the call to
the inherited apply function refers to the merged argument list where the placeholders
have been substituted with the parameters of the function call operator.

template<class Args, class Result> struct target_function {
typedef Args target_argument_types;
typedef Result result_type;

b

It contains type definitions which specify the argument types and the result type
of the target function. These type definitions are necessary in various type func-
tions presented below. The same template covers all target function argument
lengths, since the template is instantiated with Args substituted by a tuple type.

Function adaptors The purpose of the function adaptors is to unify the func-
tion invocation syntax for different types of functions. For each argument length,
there are four specialisations of the function_adaptor template. They cover const
and nonconst member functions, nonmember functions and other function ob-
jects.

Each specialisation contains an appropriately typed data member for storing
the target function object and defines the apply function, which provides the
uniform call syntax. Another task of the function adaptor templates is to de-



compose the type of the target function and forward the result and argument
types to the target_function template.

For example, the primary template and the function adaptor for pointers to
three-argument nonmember functions are defined as follows:

template <class Target, int ArgsCount> class function_adaptor;

template <class A1, class A2, class A3, class Result>
class function_adaptor<Result (*)(A1, A2, A3), 3>
: public target_function<tuple<Al, A2, A3>, Result> {
Result (*ptr)(Al, A2, A3);
public:
explicit function_adaptor(Result (*x)(A1, A2, A3)) : ptr(x) {}
Result apply(Al al, A2 a2, A3 a3) const { return (*ptr)(al, a2, a3); }

¥

Binder base The binder_base template has one member variable: the tuple
containing the actual arguments of the bind call. This is the sole purpose of
binder_base. One generic definition suffices for all argument lengths.

Binders The classes described in the preceding presentation are for internal use
in the library, whereas the binder template provides the function call operator to
be called from client code. For each target function argument list length, there
are four bind specialisations. Which specialisation is instantiated depends on the
composition of placeholders in the actuals of the bind invocation. For example,
if freel and free2 are both present, a specialisation defining a binary function
call operator is instantiated.

The variables freel and free2 are defined by the library and are of types
placeholder<1> and placeholder<2> respectively. The objects themselves are not
important but their types are. These types serve as tags that can be localised
from the parameter lists using type functions.

The primary binder template is defined as follows:

template<class Target, unsigned int N, class Args,
bool Freel = find_free<1, Args>::value,
bool Free2 = find_free<2, Args>::value>
class binder;

The first parameter is the target function type, the second the number of argu-
ments in the target function and the third a tuple type representing the actual
argument types deduced in the bind function template. The values of the two
bool template parameters Freel and Free2 indicate whether placeholder<1> or
placeholder<2> types are present in Args. These values are deduced with the
find_free type functions specified as default arguments.?

3 In general, such use of default template arguments is a convenient technique. Tt
can be used to specialise templates with respect to some property (of template
arguments) that is not directly usable as a specialisation criterion.

10



One particular binder specialisation, for the case of a three-argument pa-
rameter list including both types of placeholders, is defined as follows:

template<class Target, class Args>
class binder<Target, 3, Args, true, true>
: public binder_base<Target, 3, Args> {
public:
typedef binder_base<Target, 3, Args> inherited,;
typedef typename inherited::target_argument_types TA;
typedef typename deduce_free<1, TA, Args>::type first_argument_type;
typedef typename deduce_free<2, TA, Args>::type second_argument_type;
explicit binder(const Target& fun, const Args& a) : inherited(fun,a) {}
typename inherited::result_type operator()
(first_argument_type a, second_argument_type b) const {
return apply( choose(get<1>(args), a, b),
choose(get<2>(args), a, b),
choose(get<3>(args), a, b));
}
ki

This covers the case where Freel and Free2 template parameters both evaluate
to true and thus the specialisation defines a binary function call operator. The
result type of this function is the result type of the target function, which is
defined in the inherited instantiation of target_function.

The argument types are more intricate because they must be deduced by
comparing the types in the actual argument type tuple Args and the parameter
types of the target function (inherited::target_argument_types). The type function
deduce_free<N, Tuplel, Tuple2>::type defines these deductions. Slightly simpli-
fied, the first argument type is resolved by locating a placeholder<1> type from
Tuplel and then selecting the corresponding element in Tuple2. The second argu-
ment type is deduced in a similar way. These type definitions provide a function
call operation with the correct prototype—the correct functionality is achieved
with the choose function templates. Their task is to provide the right arguments
to the inherited apply function, which invokes the target function. The args tu-
ple contains the actual arguments—some of which are placeholders—of the bind
call. Within each argument position, the choose templates select which argument
is redirected to apply. For placeholders, a or b is chosen. Otherwise the bound
argument, an element of the args tuple, is used.

The choose functions merely return one of their arguments. The types of the
arguments determine which argument is returned. The code below shows the
definitions of two particular choose function templates.

template<class T1, class T2, class T3>
inline T1& choose(T1& a, T2&, T3&) { return a; }

template<class T2, class T3>
inline T2& choose(const placeholder<1>& a, T2& b, T3&) { return b; }

11



3.4 Library design summary

In the interest of brevity, several important issues were omitted from the pre-
ceding description. The implementation of reference wrapping and of recursive
binding was not described. The type functions were not shown in detail. How to
achieve compatibility with STL function objects or ensure correct usage of free
arguments were not addressed either. Crucial techniques for avoiding reference
to reference situations in binder instantiations were not explained. Neverthe-
less, the library contains solutions to these technical aspects and provides the
functionality described in section 2.

The library consists entirely of template definitions. It has a fixed as well
as variable size part. The fixed size part is approximately 700 lines of code.
The variable size part grows linearly with the maximum argument list length
supported for target functions. Each supported argument list length requires
approximately 100 lines of code and that code can be generated mechanically.

4 Performance considerations

An important goal in the design of the STL was to provide a high level of
abstraction without sacrificing efficiency [1]. The BL is compatible with this
objective. The functions in the BL only redirect arguments and function calls.
Every function in the library is inlined so that commercial-grade compilers can
eliminate any overhead arising from these redirections.

In various tests performed with the gcc C++ compiler (version 2.95)[11], the
performance of STL algorithms using BL style binder objects was nearly identical
to algorithms using standard STL binders. Furthermore, compared with code
where the algorithms had been expanded manually to call the target functions
directly, the performance was essentially the same. However, due to the extensive
template instantiations, the compilation of code using the BL requires more
resources than corresponding code that does not use the BL.

5 Conclusions

Using STL algorithms and function objects is a step towards adopting a func-
tional programming style. However, only a subset of C++ function objects can
be used with STL algorithms. Function object adaptors and binders in the STL
provide some means to adapt functions for STL algorithms, but the solution is
insufficient.

This article proposed a novel argument binding mechanism and a generic
binder library based on this mechanism. Unbound arguments are specified di-
rectly in the argument lists as opposed to an index within the function name of
the binder. This allows much greater flexibility in bind expressions. Arguments
of nonmember functions, const and nonconst member functions, as well as STL
function objects can be bound. The types and number of the arguments can be
arbitrary.

12



The binding syntax is very simple and intuitive. In particular, no adaptors
(cf. ptr_fun or mem_fun in STL) are required prior to binding. Moreover, the
library supports recursive binding, which provides a versatile function composi-
tion mechanism.

The library is type safe. Type errors in bind invocations result in compile time
errors. As a downside, these error messages are sometimes lengthy and difficult
to interpret. The proposed binding mechanism does not induce any performance
degradation, it is as efficient as the standard STL binding mechanism.

References

1. Stepanov, A. A.] Lee, M.: The Standard Template Library. Hewlett-Packard Labo-
ratories Technical Report HPL-94-34(R.1) (1994) www.hpl.hp.com/techreports.

2. International Standard, Programming Languages — C++. ISO/TEC:14882 (1998).

3. The SGI Standard Template Library. Silicon Graphics Computer Systems Inc.
www.sgi.com/Technology/STL.

4. Liskov, B., Curtis, D., Day, M., Ghemawat S., Gruber R., Johnson, P., Myers A. C.:
Theta Reference Manual, Preliminary version. Programming Methodology Group
Memo 88 1995, MIT Lab. for Computer Science www.pmg.lcs.mit.edu/Theta.html.

5. Agents, iterators and introspection. Interactive Software Engineering Inc. Technol-
ogy paper www.eiffel.com.

6. Stroustrup, B.: The C++ Programming Language - Third Edition. Addison-Wesley,
Reading, Massachusetts 1997.

7. Jarvi J.: Tuples and multiple return values in C++. submitted for publication, see
TUCS Technical Report 249 (1999) www.tucs.fi/publications.

8. Veldhuizen, T.: Using C++ Template Metaprograms. C++ Report 7 (1995) 36—43.

9. Jarvi J.: Compile Time Recursive Objects in C++. Proceedings of the TOOLS 27
conference (Beijing Sept. 1998) 66-77. IEEE Computer Society Press.

10. Czarnecki, K.: Generative Programming: Principles and Techniques of Software
Engineering Based on Automated Configuration and Fragment-Based Component
Models. Ph.D. Thesis, Technische Universitt Ilmenau, Germany 1998.

11. The GNU Compiler Collection. www.gnu.org/software/gcc/gec.html.

13



