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Chapter 1

Introduction

In this thesis, we study identifying and locating-dominating codes. We begin
the introduction by considering the background and history of these codes in
Section 1.1. The mathematical definitions needed in the thesis are presented
in Section 1.2. Finally, in Section 1.3, we describe the structure of the thesis.

1.1 Background

The concept of identifying codes was introduced in 1998 by Karpovsky,
Chakrabarty and Levitin [60]. The original motivation for studying these
codes comes from fault diagnosis in multiprocessor systems. In multipro-
cessor systems, where processors are linked to the other ones, identifying
codes can be defined as follows. Assign to a set of processors the following
task: each processor outputs a single value true if the processor itself or
one of the neighbouring ones are malfunctioning, and otherwise false is out-
putted. We say that this set of chosen processors forms an identifying code if
the malfunctioning processor(s) can be located using solely the information
provided by the selected processors. In addition to fault diagnosis in mul-
tiprocessor systems, identifying codes find their motivation also in various
other applications such as environmental monitoring [5], routing in wireless
networks [61], sensor networks [69], and fire and intruder alarm systems [71].

Besides the motivating applications above, identifying codes also form a
mathematically interesting and rich field for basic research. The previous
definition of identifying codes in the case of multiprocessor systems can be
generalized in a natural way to graphs by considering processors and links
between them as vertices and edges of a graph, respectively. Since the semi-
nal paper by Karpovsky et al. [60], the study in the field has been intensive.
In particular, identifying codes have been studied in various graphs such as
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• binary Hamming spaces [8, 9, 34,35,38,51,62,67],

• infinite grids such as the square grid, triangular grid, hexagonal grid,
and king grid [4, 14–16,21,23–25,44,45,52],

• trees [1, 7, 10,13], cycles [6, 36,77], and paths [6, 70].

Identification has also been considered in general graphs. For example,
various extremal cardinalities for identifying codes have been studied in [19].

Locating-dominating codes are closely related to the identifying codes.
In the literature, they are also called locating-dominating sets. The only
difference in the definition is that in the case of locating-dominating codes
the reporting vertices (or processors) — instead of just outputting the value
true or false — can also distinguish whether the processor itself or one of the
neighbouring ones is faulty. The concept of locating-dominating codes was
introduced by Slater [68,71,72]. As can be expected, the motivating appli-
cations for locating-dominating codes are similar to the ones of identifying
codes.

The research on locating-dominating codes has been active. Location-
domination has been studied, for example, in the following graphs: binary
Hamming spaces [50], infinite grids [40, 46, 73], trees [10, 11], cycles [6, 20]
and paths [6, 41]. Moreover, locating-dominating codes have also been con-
sidered in general graphs, for example, in [18, 19]. For an extensive listing
of papers concerning identifying and locating-dominating codes, we refer to
the internet bibliography [64] maintained by Antoine Lobstein.

An identifying or locating-dominating code with the smallest cardinality
in a given finite graph is called optimal. In the case of infinite graphs a more
sophisticated method is required to measure the sizes of codes. However, in
this case, the concept of optimal codes is defined analogously. Determining
optimal codes in graphs is one of the most natural questions in the field.
However, it is usually difficult to determine these optimal codes. In fact,
in [17], it is shown that algorithmically finding an optimal identifying or
locating-dominating code in a given graph is an NP-hard problem in general.
However, there exist graphs in which this problem can be efficiently solved.
For example, in [1] and [71], it has been shown that an optimal identifying
and locating-dominating code, respectively, can be found in trees in linear
time. Moreover, in [74], efficient algorithms for finding approximations of
optimal codes have been presented.

In the literature, several variations of identifying and locating-dominating
codes have also been studied. For example, strongly identifying codes (see
[42, 49]), robust identifying codes (see [39, 43, 48, 63]) and fault-tolerant
locating-dominating codes (see [73]) are among these variations. However,
in the thesis, we concentrate on the original versions of the identifying and
locating-dominating codes.
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It should also be noted that identifying and locating-dominating codes
are closely related to the subjects of covering codes (see [22]) and dominating
sets (see [37]) in coding and graph theory, respectively. The definitions of
covering codes and dominating sets are similar to the ones of identifying
and locating-dominating codes, although now it is enough to detect that
faulty vertices exist instead of actually locating them. Hence, identification
and location-domination can be viewed as subclasses of covering codes and
dominating sets, respectively.

1.2 Definitions

Let G = (V,E) be a simple, connected and undirected graph with V as the
set of vertices and E as the set of edges. Let u and v be vertices in V . If
u and v are adjacent, then the edge joining u and v is denoted by uv. The
distance d(u, v) is the number of edges on any shortest path from u to v.
For the rest of the thesis (unless otherwise stated), we assume that r is a
non-negative integer. We say that u r-covers v if the distance d(u, v) is at
most r. The ball of radius r centered at u is defined as

Br(u) = {x ∈ V | d(u, x) ≤ r}.

Furthermore, if X is a subset of V , then we define

Br(X) =
⋃

x∈X

Br(x).

A nonempty subset of V is called a code, and its elements are called
codewords. Let C ⊆ V be a code. An I-set (or an identifying set) of the
subset X of V with respect to the code C is defined as

Ir(C;X) = Ir(X) = Br(X) ∩ C.

If X = {x1, x2, . . . , xℓ}, then we denote Br(X) = Br(x1, x2, . . . , xℓ) and
Ir(X) = Ir(x1, x2, . . . , xℓ). For a positive integer µ, we say that a code
C ⊆ V is a µ-fold r-covering code (or in short a µ-fold r-covering) in G if
|Ir(C;u)| ≥ µ for every vertex u ∈ V . If µ = 1, then we say in short that C
is an r-covering code (or an r-covering) in G.

The following definition of identifying codes is from [60].

Definition 1.2.1. Let ℓ be a positive integer. A code C ⊆ V is said to
be (r,≤ ℓ)-identifying if for all X,Y ⊆ V such that |X| ≤ ℓ, |Y | ≤ ℓ and
X 6= Y we have

Ir(C;X) 6= Ir(C;Y ).
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Although we defined the concept of identifying codes also for sets of
vertices (ℓ > 1), in this thesis we focus on the case with single vertices
(ℓ = 1). For the various results concerning the case ℓ > 1, we refer the
interested reader to the papers listed in [64]. If ℓ = 1, then we simply say
that C is an r-identifying code in G. Furthermore, if r = ℓ = 1, then C is
said to be identifying.

If A and B are subsets of V , then the symmetric difference of A and B
is defined as A△B = (A \ B) ∪ (B \ A). We say that the vertices u ∈ V
and v ∈ V are r-separated by a codeword of C (or in short by a code C) if
the symmetric difference Ir(C;u)△ Ir(C; v) is nonempty. Now, in the case
ℓ = 1, the definition of r-identifying codes can be reformulated as follows:
a code C ⊆ V is r-identifying if each vertex is r-covered by at least one
codeword and each pair of vertices is r-separated by C.

Let G = (V,E) be a finite graph. The smallest cardinality of an (r,≤ ℓ)-
identifying code in G is denoted by M(r,≤ℓ)(G). Furthermore, if ℓ is equal
to one, then we write in short M(r,≤1)(G) = Mr(G). Notice that the value
M(r,≤ℓ)(G) is not always defined since any (r,≤ ℓ)-identifying codes in G
do not necessarily exist. As an example of such a case, one can consider
a complete graph. An (r,≤ ℓ)-identifying code in G attaining the smallest
cardinality is called optimal.

The following definition of locating-dominating codes was first intro-
duced by Slater in [68, 71, 72] (for r = 1) and later generalized by Carson
in [11] (for r > 1).

Definition 1.2.2. A code C ⊆ V is said to be r-locating-dominating in G
if for all distinct vertices u, v ∈ V \ C the set Ir(C;u) is nonempty and

Ir(C;u) 6= Ir(C; v).

If r = 1, then we simply say that C is a locating-dominating code.

The definition of locating-dominating codes can also be generalized for
sets of vertices (as in the case of identifying codes). In fact, there exist two
different, natural generalizations of locating-dominating codes for sets of
vertices. However, in this thesis, only the case of single vertices is considered.
For the more general definitions, the interested reader is referred to [50].

For a finite graph G = (V,E), the smallest cardinality of an r-locating-
dominating code is denoted by MLD

r (G). Notice that the value MLD
r (G)

is always defined since there exists an r-locating-dominating code in any
graph. Indeed, the whole vertex set V is always an r-locating-dominating
code in G. An r-locating-dominating code attaining the smallest cardinality
is called optimal.

Besides finite graphs, we can also study identification and location-
domination in infinite graphs. Namely, in Chapters 5 and 6, we consider

4



infinite grids with the vertex set Z2. Naturally, we also need a way to mea-
sure codes in these infinite grids. For this purpose, we first denote

Qn = {(x, y) ∈ Z2 | |x| ≤ n, |y| ≤ n},

where n is a positive integer. The density of a code C ⊆ Z2 is then defined
as

D(C) = lim sup
n→∞

|C ∩ Qn|
|Qn|

.

The notion of density can now be used to measure sizes of codes in infinite
grids. Furthermore, we say that an r-identifying or r-locating-dominating
code is optimal in infinite grid, if there do not exist, respectively, any r-
identifying or r-locating-dominating codes with smaller density.

1.3 Structure of the thesis

In Chapter 2, which is based on the papers [29], [30], [31], [32] and [33],
we consider r-identifying codes in binary Hamming spaces. In Section 2.2,
we present new lower bounds, which are currently the best known ones,
for r-identifying codes with r ≥ 2. Then, in Sections 2.3, 2.4 and 2.5, we
consider three conjectures, which have been stated in the papers [9] and
[60]. In these sections, we show various results related to these conjectures.
Finally, in Section 2.6, we give some new constructions for r-identifying
codes (improving the known upper bounds).

In Chapter 3, which is based on the paper [59], r-identifying codes in
cycles and paths are considered. Previously, r-identifying codes have been
studied in [6], [36], [70] and [77]. In Sections 3.2 and 3.3, the optimal car-
dinalities of r-identifying codes, respectively, in cycles and paths are deter-
mined in all the remaining open cases.

In Chapter 4, which is based on the papers [27] and [28], we consider
r-locating-dominating codes in cycles and paths. In the case of paths, it has
been shown by Bertrand et al. in [6] that for a path Pn of length n we have
MLD

r (Pn) ≥ (n + 1)/3. Furthermore, they conjectured that for any r ≥ 2
there exists an infinite family of n for which the lower bound can be attained.
In Section 4.1, we show that this conjecture holds. In fact, we prove a
stronger result according to which MLD

r (Pn) = ⌈(n + 1)/3⌉ for all n ≥ nr

when r ≥ 3 and nr is large enough (nr = O(r3)). In Section 4.2, for cycles Cn

of length n, we prove similar results stating that n/3 ≤ MLD
r (Cn) ≤ n/3+ 1

if n ≡ 3 (mod 6) and MLD
r (Cn) = ⌈n/3⌉ otherwise. Moreover, it is shown

for r = 3 and r = 4 that we have MLD
r (Cn) = n/3 + 1 if n ≡ 3 (mod 6).

Furthermore, in Conjecture 4.2.17, we conjecture that the previous result
also holds for general r.
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Previously, a 2-identifying code in the hexagonal grid with density 4/19
has been presented in [16]. Improving the previously known lower bounds,
Martin and Stanton [66] proved that the density of any 2-identifying code
in the hexagonal grid is at least 1/5. In Chapter 5, which is based on
the papers [57] and [58], we improve this lower bound by showing that the
2-identifying code with density 4/19 is actually optimal.

In Chapter 6, which is based on the papers [55] and [56], we introduce
a new way to consider identification in infinite grids with the vertex set Z2.
Namely, we consider identifying codes in infinite grids where the neighbour-
hood of a vertex is determined by a Euclidean ball with a given radius. In
addition, we give lower bounds for identifying codes in these grids as well
as general code constructions. We also find optimal identifying codes for a
couple of infinite grids with small radii. We end the chapter by determining
optimal identifying codes in the king grid with slightly modified balls.

Previously, a sequential version of identification called adaptive identifi-
cation has been introduced in [2] and [3]. In these papers, adaptive identifi-
cation is considered in torii of finite square and king grids, and as a further
research it is suggested to study adaptive identification in different graphs.
In Chapter 7, which is based on the paper [54], we consider this in the case
of binary Hamming spaces.
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Chapter 2

Identification in binary

Hamming spaces

In this chapter, which is based on the papers [29], [30], [31], [32] and [33], we
consider r-identifying codes in binary Hamming spaces. These papers also
contain results concerning (r,≤ ℓ)-identifying codes with ℓ > 1. However,
as mentioned in the introduction, in this thesis we concentrate on the case
with ℓ = 1. We begin the chapter by presenting some preliminary definitions
and results in Section 2.1. Then, in Section 2.2, a new lower bound for r-
identifying codes with r ≥ 2 is presented. In Sections 2.3, 2.4 and 2.5, we
consider three conjectures which have gathered interest in the past. Finally,
in Section 2.6, we present some code constructions for r-identifying codes
with the smallest known cardinalities.

2.1 Preliminaries

For the rest of the chapter, let n be a positive integer. The binary Hamming
space Fn is the n-fold Cartesian product of the binary field F = {0, 1}. The
elements of Fn are called words. A nonempty subset of Fn is called a code
of length n. Let x and y be words belonging to Fn. The Hamming distance
d(x,y) between words x and y is the number of coordinate places in which
they differ. The set of non-zero coordinates of the word x is called the
support of x and is denoted by supp(x). The weight of x is the cardinality
of the support of x and is denoted by w(x). The Hamming ball of radius r
centred at x is denoted by Br(x) and consists of the words that are r-covered
by x. The set Sr(x) consists of the words that are exactly at distance r from
x, i.e. Sr(x) = Br(x) \ Br−1(x). The size of a Hamming ball of radius r in
Fn does not depend on the choice of the centre and it is denoted by V (n, r).
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Furthermore, we have

V (n, r) =

r∑

i=0

(
n

i

)
.

Assuming x = (a1, a2, . . . , an) = a1a2 · · · an and y = (b1, b2, . . . , bn) =
b1b2 · · · bn, we can define the concatenation of the words as follows:

(x,y) = (a1, a2, . . . , an, b1, b2, . . . , bn) = a1a2 · · · anb1b2 · · · bn.

The sum of the vectors x and y is defined as

x + y = (a1 + b1, a2 + b2, . . . , an + bn).

Let C1 ⊆ Fn and C2 ⊆ Fn be codes. Then their direct sum

C1 ⊕ C2 = {(x,y) |x,y ∈ Fn}

is a code in Fn+m. We also denote x + C = {x + c | c ∈ C}. The function
π(u) is used for denoting the parity of u as follows:

π(u) =

{
0 if w(u) is even
1 if w(u) is odd.

In this chapter, the size Mr(F
n) of an optimal r-identifying code in Fn is

written in short as Mr(n).
Let us then present some auxiliary results that will be needed in the

chapter. The following estimation for M1(n) proves valuable in Sections 2.3
and 2.4.

Theorem 2.1.1. For n ≥ 2, we have

M1(n) ≤ 9

2
· 2n

n + 1
.

Proof. Let n = 3·2s−1 with s being a non-negative integer. Then according
to [34, Corollary 1] there exists a code C such that it is 1-identifying and a
2-fold 1-covering with cardinality

|C| =
9

4
· 2n

n + 1
.

Therefore, the claim clearly holds for all n = 3 · 2s − 1 with s ≥ 0.
Consider now the length 3 · 2s − 1 + k with k being an integer such that

0 < k < 3 · 2s, i.e. 3 · 2s − 1 < 3 · 2s − 1 + k < 3 · 2s+1 − 1. Because C
is a 2-fold 1-covering, we know by [9, Theorem 1] that the code C ⊕ Fk is
1-identifying. Now the number of words in the 1-identifying code C ⊕ Fk is

2k|C| ≤ 9

2
· 2n+k

(n + k) + 1

Thus, the claim holds for all n ≥ 2.
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The following upper bound for Mr(n) has previously been shown in [34,
Theorem 3].

Theorem 2.1.2 ([34]). For i = 1, 2, . . . , r, let ni be a positive integer. Then
we have

Mr(
r∑

i=1

ni) ≤
r∏

i=1

M1(ni).

2.2 Lower bounds for r-identifying codes

In what follows, we are going to improve the known lower bounds on r-
identifying codes for r ≥ 2. The main underlying idea in the earlier results
presented in [9] and [35] was to find values as small as possible for m =
max{|Ir(x)| : x ∈ Fn} using partial constructions. (Besides these results,
there is also a bound by Karpovsky et al. [60]; see Theorem 2.2.5.) In
this section, we approach the problem in a different manner. Namely, for
r ≥ 2, we improve the lower bound by concentrating on the function Pr(n, i)
defined below instead of the value m.

Let x ∈ Fn and i be an integer such that i ≥ 3. Define then

Pr(n, i,x) = max
C⊆Fn

|{y ∈ Fn | C is an r-identifying code satisfying

|Ir(C;x)| = i, Ir(C;y) ⊆ Ir(C;x), |Ir(C;y)| = 2}|.

In other words, Pr(n, i,x) denotes the maximum number of words y such
that Ir(C;y) ⊆ Ir(C;x) and |Ir(C;y)| = 2, where C is an r-identifying
code satisfying |Ir(C;x)| = i. Clearly, Pr(n, i,0) = Pr(n, i,x) for every x ∈
Fn because Fn is vertex transitive. Therefore, we can denote Pr(n, i,0) =
Pr(n, i). The definition of Pr(n, i) is somewhat complicated. However, it
arises naturally from the proof of the following theorem (see the inequality
(2.1)). We will examine the function more closely after Theorem 2.2.1.

Theorem 2.2.1. Define

a = min
i=3,...,V (n,r)

{
2 +

(i − 2)(
(
2r
r

)
− 1)

(2r
r

)
+ Pr(n, i) − 1

}
.

Then we have

Mr(n) ≥ a · 2n

V (n, r) + a − 1
.

Proof. Let C ⊆ Fn be an r-identifying code. Denote by Vi the words which
are r-covered by exactly i codewords. Let x ∈ Fn be a word r-covered by
exactly two codewords (if any such words x exist). By [22, Theorem 2.4.8]
we know that there are at least

(2r
r

)
words in Fn covering both of these

9



codewords (and one of them is x). Therefore, for each word which is r-
covered by exactly two codewords there are at least

(2r
r

)
−1 words which are

r-covered by at least three codewords, since the code C is r-identifying. On
the other hand, if y ∈ Fn is r-covered by i ≥ 3 codewords, then there are at
most Pr(n, i) words z ∈ Fn such that Ir(z) ⊆ Ir(y) and |Ir(z)| = 2. Hence,
by counting in two ways the number of pairs {x,y} such that x ∈ V2, y ∈ Vi

(i ≥ 3) and Ir(x) ⊆ Ir(y), we have

((
2r

r

)
− 1

)
|V2| ≤

V (n,r)∑

i=3

Pr(n, i)|Vi|. (2.1)

Denoting |C| = K, it is immediate that at most K words are r-covered by
a single codeword. In other words, we have |V1| ≤ K.

Now, by counting in two ways the number of pairs {x, c}, where x ∈ Fn

and c ∈ C is r-covered by x, and by using the inequality (2.1), we have

K · V (n, r) =

V (n,r)∑

i=1

i|Vi|

= a · 2n − (a − 1)|V1| − (a − 2)|V2| +
V (n,r)∑

i=3

(i − a)|Vi|

≥ a · 2n − (a − 1)K +

V (n,r)∑

i=3

(
i − a − a − 2(2r

r

)
− 1

Pr(n, i)

)
|Vi|.

By the definition of a, we know that i − a − a−2

(2r

r )−1
Pr(n, i) ≥ 0 for all

3 ≤ i ≤ V (n, r). Thus, we have

K · V (n, r) ≥ a · 2n − (a − 1)K.

The claim immediately follows from this inequality.

In applying Theorem 2.2.1, we need to find as good upper bounds for
Pr(n, i) as possible. Since we are considering r-identifying codes, we imme-
diately know that Pr(n, i) ≤

(
i
2

)
. This estimate provides useful upper bound

for small i. On the other hand, it is also clear that Pr(n, i) ≤ V (n, 2r), since
only words in B2r(0) are able to r-cover codewords in Br(0). (Actually, we
can further say that Pr(n, i) ≤ V (n, 2r)−1, since the word 0 is r-covered by
i(≥ 3) codewords.) This upper bound works better with bigger i. Together
these two estimates imply that

Pr(n, i) ≤ min

{(
i

2

)
, V (n, 2r)

}
. (2.2)

10



In what follows, we present two ways to improve the bound V (n, 2r) for
Pr(n, i). The first approach, which is based on Theorem 2.2.2, concentrates
on bounding the number of words of weight 2r − 1 and 2r that contribute
to the value Pr(n, i). For the second method, assume that w is an integer
such that r ≤ w ≤ 2r. Theorem 2.2.4 provides then an upper bound for the
number of words in Bw(0) that are r-covered by at most two codewords of
Br(0) when there are exactly i codewords in Br(0). These two approaches
will then be combined (as explained later).

In the following, we define two auxiliary functions, namely Fr(n,w) and
fr(n,w). The relation between these functions and the considered func-
tion Pr(n, i) is examined after Theorem 2.2.2. Let now C ⊆ Fn be an
r-identifying code and w be an integer such that 2r − 1 ≤ w ≤ 2r. Then
define

Fr(n,w) = Fr(C;n,w) = {a ∈ Sw(0) ⊆ Fn | Ir(a) ⊆ Ir(0), |Ir(a)| = 2}.

In other words, Fr(n,w) consists of the words a ∈ Sw(0) such that Ir(a) is
a subset of Ir(0) with exactly two codewords. Define also

fr(n,w) = max
D⊆Br(0)

|{Ir(D;x) | x ∈ Sw(0) ⊆ Fn,

Ir(D;x) ⊆ Ir(D;0), |Ir(D;x)| = 2}|.

Clearly, for any r-identifying code C ⊆ Fn we have |Fr(n,w)| ≤ fr(n,w).
(Notice also that the value fr(n,w) remains unchanged if the word 0 is
replaced by an arbitrary word y ∈ Fn.)

Theorem 2.2.2. Let C ⊆ Fn be an r-identifying code. If k and w are
integers such that 2r + 1 ≤ k ≤ n and 2r − 1 ≤ w ≤ 2r, then

|Fr(n,w)| ≤ fr(k,w)(k
w

)
(

n

w

)
.

Proof. Let y ∈ Fn be a word of weight k. Define

H(y) = {x ∈ Fn | supp(x) ⊆ supp(y)}.

Let us now consider pairs {y,x}, where y is a word of weight k and x ∈
H(y)∩Fr(n,w). Since 2r−1 ≤ w ≤ 2r, each word in Br(0) that is r-covered
by a word in Sw(0) ∩ H(y) belongs to H(y). Therefore, for each word y of
weight k, there exists at most fr(k,w) different words in H(y) ∩ Fr(n,w).
Thus, by counting in two ways the number of pairs {y,x}, we have

(
n − w

k − w

)
|Fr(n,w)| ≤

(
n

k

)
fr(k,w).

11



Furthermore, we have

|Fr(n,w)| ≤ fr(k,w)

(
n
k

)
(
n−w
k−w

) = fr(k,w)

(
n
k

)(
k
w

)
(
n−w
k−w

)(
k
w

)

= fr(k,w)

(n
w

)(n−w
k−w

)
(
n−w
k−w

)(
k
w

) =
fr(k,w)(

k
w

)
(

n

w

)
.

Theorem 2.2.2 tells us that the ratio of |Fr(n,w)| to |Sw(0)| =
(n
w

)
is at

most fr(k,w)/
(k
w

)
when n ≥ k and 2r − 1 ≤ w ≤ 2r. Therefore, the value

fr(k,w) for small k(< n) provides an upper bound for the number of words
in Fr(n,w). Furthermore, the number of words of weight w that contribute
to the value Pr(n, i) is at most

max
C⊆Fn

|{Fr(C;n,w) | C is r-identifying}|

and, therefore, is bounded from above by
(
fr(k,w)/

(
k
w

)) (
n
w

)
. Thus, if we

know the values fr(k1, 2r − 1) and fr(k2, 2r) with k1 and k2 being positive
integers, then we have for n ≥ max{k1, k2} that

Pr(n, i) ≤
2r−2∑

j=0

(
n

j

)
+

fr(k1, 2r − 1)( k1

2r−1

)
(

n

2r − 1

)
+

fr(k2, 2r)(k2

2r

)
(

n

2r

)
. (2.3)

The following theorem gives an easy upper bound for fr(2r + 1, 2r).

Theorem 2.2.3. We have

fr(2r + 1, 2r) ≤ 2r.

Proof. Assume to the contrary that fr(2r + 1, 2r) ≥ 2r + 1, i.e. fr(2r +
1, 2r) = 2r + 1 since fr(2r + 1, 2r) ≤

(
2r+1
2r

)
= 2r + 1. Let D ⊆ Br(0) be a

set such that it attains this value. Now there exist at least three codewords in
Sr(0) (or we are done). Therefore, there exist two codewords c1, c2 ∈ Sr(0)
such that supp(c1) ∩ supp(c2) is nonempty, i.e. |supp(c1) ∪ supp(c2)| < 2r.
Hence, there exist words x1,x2 ∈ S2r(0) such that {c1, c2} is included in
Ir(D;x1) and Ir(D;x2). This is a contradiction, since we assumed that each
word in S2r(0) is r-covered by a different set of codewords of size two.

It should be remarked that the upper bound for fr(2r + 1, 2r) in the
previous theorem can be attained. For example, when r = 2, it is easy
to verify that the set D = {00101, 00110, 01001, 01010} attains the value
fr(5, 4) =

(5
4

)
− 1 = 4.
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Notice that (when n grows) most of the words in B2r(0) belong to S2r(0).
Hence, it is natural to concentrate on the values fr(n, 2r) needed in applying
Theorem 2.2.2. The following values provide significant improvements over
Theorem 2.2.3:

f2(9, 4) = 60, f3(9, 6) = 42 and f4(10, 8) = 24. (2.4)

These values have been obtained by extensive computer searches. The
method used in the computations is explained in [33].

Using the previous values, we are able to significantly decrease the last
term in the equation (2.3). When r = 2, it is also straightforward to check
that f2(5, 3) ≤ 9. Thus, when r = 2 and n ≥ 9, we have by the equation
(2.3) that (k1 = 5, k2 = 9)

P2(n, i) ≤ min






(
i

2

)
,

2∑

j=0

(
n

j

)
+

9

10

(
n

3

)
+

60

126

(
n

4

)

 . (2.5)

Actually, this inequality together with Theorem 2.2.1 provides the best
known lower bounds for Mr(n) when r = 2 and n ≥ 9 (see Table 2.1).

The considerations above provided an efficient way to estimate the num-
ber of words of weight 2r − 1 and 2r contributing to the value Pr(n, i). The
following theorem, on the other hand, gives an upper bound for the number
of words in Bw(0) (r ≤ w ≤ 2r) that are r-covered by at most two codewords
in Br(0) when there are exactly i codewords in Br(0).

Theorem 2.2.4. Assume that C is an r-identifying code in Fn. Let w be
an integer such that r ≤ w ≤ 2r and i be the number of codewords in the
ball Br(0). Define

fr,b(n, i) = min






r∑

k=b

⌊k−b
2

⌋∑

j=0

(
r + b

k − j

)(
n − r − b

j

)
, i




 and

Dn,r,w(i1, . . . , ir) = V (n,w) +

w−r∑

b=1

2
( n
r+b

)

fr,b(n, i1 + · · · + ir) − 2

−
w−r∑

b=1




∑r

k=b

(
ik
∑⌊(k−b)/2⌋

j=0

( k
n−k

)( n−k
r+b−k+j

))

fr,b(n, i) − 2



 .

Then the number of words in Bw(0) that are r-covered by at most two code-
words in Br(0) is at most

max{Dn,r,w(i1, . . . , ir) | i1 + · · · + ir = i and 0 ≤ ij ≤
(

n

j

)
for 1 ≤ j ≤ r}.
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Proof. Let C ⊆ Fn be an r-identifying code. Let k and b be integers such
that 1 ≤ k ≤ r and 1 ≤ b ≤ k. Let us then count the number of words of
weight r + b that a word of weight k r-covers. If a word x ∈ Fn of weight
k r-covers a word y ∈ Fn of weight r + b, then there are at most ⌊k−b

2 ⌋
positions such that the bits in x and y in the corresponding positions are 1
and 0, respectively. Thus, each word of weight k now r-covers

⌊k−b
2

⌋∑

j=0

(
k

j

)(
n − k

r + b − k + j

)

words of weight r + b. In a similar way, it can be showed that each word of
weight r + b r-covers

⌊k−b
2

⌋∑

j=0

(
r + b

k − j

)(
n − r − b

j

)

words of weight k. Therefore, each word of weight r + b r-covers

fr,b(n) =
r∑

k=b

⌊k−b
2

⌋∑

j=0

(
r + b

k − j

)(
n − r − b

j

)

words in Br(0).

Define

Tr(j, w) = |{x ∈ Sw(0) | Ir(x) ⊆ Ir(0), |Ir(x)| = j}|,

and denote

ik = |Ir(0) ∩ Sk(0)|, where 1 ≤ k ≤ r.

Notice that i = i1 + · · ·+ ir. Now denote fr,b(n, i) = min{fr,b(n), i}. Notice
that the value fr,b(n, i) now tells us the maximum number of codewords in
Br(0) that each word of weight r + b r-covers. (Actually, here the integer i
could be replaced by the sum ib+· · ·+ir, but it would complicate the analysis
of the function Dn,r,w(i1, . . . , ir) and did not provide any improvements in
the numerical cases we considered.)

By counting in two ways the number of pairs {x, c} with x ∈ Sr+b(0)
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and c ∈ Ir(x) ∩ Br(0), we have

r∑

k=b



ik

⌊(k−b)/2⌋∑

j=0

(
k

j

)(
n − k

r + b − k + j

)

 =

fr,b(n,i)∑

j=0

jTr(j, r + b)

≤ 2
2∑

j=0

Tr(j, r + b) + fr,b(n, i)

fr,b(n,i)∑

j=3

Tr(j, r + b)

= 2




(

n

r + b

)
−

fr,b(n,i)∑

j=3

Tr(j, r + b)



+ fr,b(n, i)

fr,b(n,i)∑

j=3

Tr(j, r + b)

= 2

(
n

r + b

)
+ (fr,b(n, i) − 2)

fr,b(n,i)∑

j=3

Tr(j, r + b).

Consequently, we obtain that

fr,b(n,i)∑

j=3

Tr(j, r + b) ≥
∑r

k=b

(
ik
∑⌊(k−b)/2⌋

j=0

(k
j

)( n−k
r+b−k+j

))
− 2
( n
r+b

)

fr,b(n, i) − 2
.

Now we have

V (n, 2r) −
w−r∑

b=1

fr,b(n,i)∑

j=3

Tr(j, r + b)

≤ V (n, 2r) −
w−r∑

b=1




∑r

k=b

(
ik
∑⌊(k−b)/2⌋

j=0

( k
n−k

)( n−k
r+b−k+j

))
− 2
( n
r+b

)

fr,b(n, i) − 2





= Dn,r,w(i1, . . . , ir).

For given i1, . . . , ir the above inequality provides an upper bound for the
number of words in Bw(0) which are r-covered by at most two codewords.
Hence, when we maximize the function Dn,r(i1, . . . , ir) over all different
choices of i1, . . . , ir such that i1 + · · · + ir = i and ij ≤

(n
j

)
, the claim

immediately follows.

In applying Theorem 2.2.4, we have to be able to solve the following
optimization problem for fixed i (3 ≤ i ≤ V (n, r)):

max{Dn,r,w(i1, . . . , ir) | i1 + · · · + ir = i and ij ≤
(

n

j

)
for j = 1, . . . , r}.

Indeed, this problem can be solved quite efficiently using the following pro-
cedure:
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1. Calculate the coefficients of ik in Dn,r,w(i1, . . . , ir). (Notice that the
sum i1 + · · · + ir is equal to the fixed constant i.)

2. Sort ik in decreasing order regarding the coefficients of ik. Let the
sorted list be ij1 , . . . , ijr .

3. Let s be the largest integer such that

s−1∑

k=1

(
n

jk

)
≤ i.

Now the function Dn,r,w(i1, . . . , ir) is maximized by choosing ijs =
i −∑s−1

k=1

(n
jk

)
, ijk

=
(n
jk

)
for k = 1, . . . , s − 1 and ijs+1

= · · · = ir = 0.

We have now presented two ways (Theorem 2.2.2 and 2.2.4) to improve
the upper bound (2.2) for Pr(n, i). When r = 2, the best known lower
bounds are obtained by using only Theorem 2.2.2 (see the equation (2.5)).
However, when r > 2, to obtain the best lower bounds we combine the two
methods explained above. For example, when r = 3, we obtain the following
inequality by combining Theorem 2.2.2 and 2.2.4:

P3(n, i) ≤ min

{(
i

2

)
, max
i1+i2+i3=i

Dn,3,5(i1, i2, i3) +
42

84

(
n

6

)}
, (2.6)

where 0 ≤ ij ≤
(n

j

)
for all j = 1, 2, 3. This inequality improves the known

lower bounds, when n ≥ 19 (see Table 2.1).
When r = 4 and r = 5, the known lower bounds are improved in a

similar way to the inequality (2.6), i.e. we use Theorem 2.2.2 to estimate
the number of words of weight 2r contributing to the value Pr(n, i) and
Theorem 2.2.4 for smaller weights. This method improves the known lower
bounds for r = 4 when n ≥ 28 and for r = 5 when n ≥ 37. (Notice that
when r = 4 we have the value f4(10, 8) = 24 by extensive computer searches
and when r = 5 we have the estimate f5(11, 10) ≤ 10 by Theorem 2.2.3.) In
particular, we have M5(37) ≥ 542868 (the best previously known bound is
539088).

As we have seen, Theorem 2.2.1 improves lower bounds when r ≥ 2 and n
is large enough. With small n the best known lower bounds are provided by
the third part of Theorem 1 in [60] (by Karpovsky et al). For completeness
and to cover efficiently also the case r ≥ n/2 (see [8]) this result is rephrased
in the following theorem.

Theorem 2.2.5. Let C ⊆ Fn be an r-identifying code. Then we have

|C| · V (n, r) ≥
s∑

i=1

i

(|C|
i

)
+ (s + 1)

(
2n −

s∑

i=1

(|C|
i

))
, (2.7)
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where s is the largest integer such that

s∑

i=1

(|C|
i

)
≤ 2n. (2.8)

If n/2 ≤ r ≤ n − 1, then we have

|C| · V (n, n − r − 1) ≥
s∑

i=1

i

(|C|
i

)
+ (s + 1)

(
2n −

s∑

i=0

(|C|
i

))
, (2.9)

where s is the largest integer such that

s∑

i=0

(|C|
i

)
≤ 2n. (2.10)

Proof. Denote again by Vi the words which are r-covered by exactly i code-
words. Let C ⊆ Fn be an r-identifying code. Counting the number of pairs
{x, c} where x ∈ Fn, c ∈ C and d(x, c) ≤ r, we get

|C| · V (n, r) =

V (n,r)∑

i=0

i|Vi|.

Clearly, |V0| = 0. To bound from below the right hand side of the equation,
we make for small i = 1, 2, . . . the cardinalities |Vi| as large as possible.
Trivially, |Vi| ≤

(|C|
i

)
. But up to which i can we do this? Clearly, up to s

defined in (2.8). The rest of the words (i.e. the words in Vi with i ≥ s + 1)
are covered by at least s + 1 times. This yields (2.7).

Suppose then n/2 ≤ r ≤ n − 1. By [8], we know that an r-identifying
code has the property that also the sets In−r−1(x) are different, but (exactly)
one can be empty. Hence, for the radius n − r − 1, we can count exactly as
above, but now |V0| ≤ 1 and we use s as defined in (2.10).

The previous theorem can be used to compute lower bounds for r-
identifying codes in the following way: we start our computation from a
known lower bound and then increase the size of the code until the equation
(2.7) is satisfied. The first value satisfying the equation is then our new
lower bound.

In particular, Theorem 2.2.5 gives us that M3(5) ≥ 9. On the other
hand, we know by [38] that M3(5) ≤ 10. The following theorem shows that,
indeed, M3(5) = 10.

Theorem 2.2.6. We have M3(5) = 10.
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Proof. By the considerations above, we know that 9 ≤ M3(5) ≤ 10. Assume
then to the contrary that there exists a 3-identifying code C ⊆ F5 of size 9.
By [8], the code C has the property that also the sets I1(C;x) are different
for all x ∈ F5 (although one of these sets can be empty). As before, let Vi

denote the set of words which are 1-covered by exactly i codewords of C.
If |Vj| ≥ 1 for some j = 4, . . . , V (5, 1), then as in (2.9) we get

54 = |C| · V (5, 1) ≥ 1 · 0 + 9 · 1 + 21 · 2 + 1 · 4 = 55,

which is a contradiction. Hence, |Vj | = 0 for every j = 4, . . . , V (5, 1).
Assume now that |V3| ≤ 1. Then, as in the proof of Theorem 2.2.1, we

have

|V2| ≤
V (5,1)∑

i=3

Pr(5, i)|Vi| ≤ Pr(5, 3) ≤
(

3

2

)
= 3.

Since |V3| ≤ 1, the number of words in V2 is at least 21. This observation
together with the previous inequality leads to a contradiction. Therefore,
|V3| ≥ 2. However, this implies that

54 = |C| · V (5, 1) ≥ 1 · 0 + 9 · 1 + 20 · 2 + 2 · 3 ≥ 55,

which is a contradiction. Thus, there does not exist a 3-identifying code of
length 5 with 9 codewords. Hence, we have M3(5) = 10.

In Table 2.1 we have listed the best known lower bounds for r = 2, 3
and 2 ≤ n ≤ 30. For the best known upper bounds, we refer to [12] and
Section 2.6.

2.3 Results related to the conjecture Mr+t(n+m) ≤
Mr(n)Mt(m)

In [9], the question whether the inequality

Mr+t(n + m) ≤ Mr(n)Mt(m) (2.11)

holds is stated as an open problem. For r = t = 1, it has been shown
in [34] that this inequality indeed holds. In what follows, we approach this
conjecture with two different methods. The first method is based on code
constructions using direct sums and the second one estimates the sizes of
the optimal codes in the inequality. In particular, with the first method we
are able to show that Mr+1(n + m) ≤ 4Mr(n)M1(m) and using the second
approach we obtain that the inequality holds when m is relatively small
compared to n.

Let us first start by presenting a theorem that considers the structure
of r-identifying codes. For the theorem, recall that a pair of vertices x and
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Table 2.1: Lower bounds (the best previously known bounds in the paren-
theses) on the cardinalities of r-identifying codes for r = 2 and r = 3

n M2(n) M3(n)

2 - -
3 f 7 -
4 f 6 f 15
5 a 6 d 10
6 a 8 a 7
7 e 14 a 8
8 a 17 a 10
9 b 27 (a 26) a 13
10 b 43 (c 41) a 18
11 b 71 (c 67) a 25
12 b 118 (c 112) a 39
13 b 199 (c 190) a 61
14 b 341 (c 326) a 95
15 b 590 (c 567) a 151
16 b 1033 (c 995) a 241
17 b 1824 (c 1761) a 383
18 b 3244 (c 3141) a 608
19 b 5809 (c 5638) b 974 (a 959)
20 b 10465 (c 10179) b 1656 (c 1593)
21 b 18949 (c 18471) b 2839 (c 2722)
22 b 34487 (c 33674) b 4909 (c 4731)
23 b 63029 (c 61647) b 8549 (c 8276)
24 b 115664 (c 113288) b 14985 (c 14562)
25 b 213004 (c 208921) b 26420 (c 25899)
26 b 393602 (c 386520) b 46833 (c 45784)
27 b 729508 (c 717218) b 83425 (c 81749)
28 b 1356002 (c 1334510) b 149271 (c 146575)
29 b 2526996 (c 2489423) b 268200 (c 263829)
30 b 4721086 (c 4654848) b 483728 (c 478179)

Key to the table

a Theorem 2.2.5 by Karpovsky et al. [60]
b Theorem 2.2.1
c Theorem 2 in [35]
d Theorem 2.2.6
e By computer search in [34]
f Blass et al. in [8]
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y in Fn are r-separated by a code C if the intersection of the symmetric
difference Br(x)△Br(y) and the code C is nonempty.

Theorem 2.3.1. Let C ⊆ Fn be an r-identifying code and k be an integer
such that 1 ≤ k ≤ r. Assume that x ∈ Fn and the set (∪r

i=r−k+1Si(x)) ∩ C

is empty. Then all the pairs of words in ∪k
i=1Si(x) are r-separated by the

codewords of (∪k
i=1Sr+i(x)) ∩ C.

Proof. Assume that y ∈ ∪k
i=1Si(x). We first show that Ir(y)∩(∪k

i=1Sr+i(x))
is nonempty. Assume to the contrary that Ir(y)∩ (∪k

i=1Sr+i(x)) = ∅. Then,
by the assumption (∪r

i=r−k+1Si(x)) ∩ C = ∅, it follows that

Ir(y) = Ir(y) ∩ Br−k(x) = Ir(x),

which is a contradiction since it was assumed that the code C is r-identifying.
Now it remains to be shown that all the pairs of words in ∪k

i=1Si(x)
are r-separated by the codewords of (∪k

i=1Sr+i(x)) ∩ C. Assume to the
contrary that there exist words y1 and y2 in ∪k

i=1Si(x) such that Ir(y1) ∩
(∪k

i=1Sr+i(x)) = Ir(y2)∩(∪k
i=1Sr+i(x)). Then, by the assumption, it follows

that

Ir(y1) = (Ir(y1) ∩ (∪k
i=1Sr+i(x))) ∪ (Ir(y1) ∩ Br−k(x))

= (Ir(y2) ∩ (∪k
i=1Sr+i(x))) ∪ (Ir(y2) ∩ Br−k(x)) = Ir(y2),

which is again a contradiction with the fact that the code C is r-identifying.

Choosing k = 1 in the previous theorem, we obtain the following essential
consequence.

Corollary 2.3.2. Let C ⊆ Fn be an r-identifying code. Then for all x ∈ Fn

there exists c ∈ C such that d(c,x) = r or r + 1.

For the rest of the section, let t be a positive integer. In the subsequent
considerations, we often refer to the following condition for a given code C:

∀x,y ∈ Fn : It(C;x) \ It−1(C;y) 6= ∅. (2.12)

A code C ⊆ Fn is said to be t-separating if all the pairs of words in Fn are
t-separated by C. Notice that the only difference between the definitions of
t-identifying and t-separating codes is the fact that one I-set is allowed to
be empty in the case of t-separating codes. We will also use the following
notations:

• The smallest cardinality of a t-identifying code satisfying the condition
(2.12) is denoted by M̂t(n).
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• The smallest cardinality of a t-identifying code which is also (t − 1)-

separating and satisfies the condition (2.12) is denoted by M̂t,t−1(n).

• The smallest cardinality of a t-identifying code such that for every
x ∈ Fn there exists a codeword exactly at distance t from x, i.e.
Sr(x) ∩ C 6= ∅, is denoted by M ′

t(n).

• We denote by M ′′
1 (n) the smallest cardinality of a 1-identifying and

2-fold 1-covering code. We have M ′′
1 (n) ≤ 2M1(n). Indeed, if C ⊆ Fn

is a 1-identifying code, then |{x ∈ Fn | |I1(C;x)| = 1}| ≤ |C|. Hence,
we need to add at most |C| codewords to the code C to get a 2-fold
1-covering.

Theorem 2.3.3. For r ≥ 0 and t ≥ 1 we have

Mr+t(n + m) ≤
{

Mr(n)M̂t,t−1(m),

M ′
r(n)M̂t(m)

(2.13)

and

Mr+1(n + m) ≤ M ′
r(n)M ′′

1 (m). (2.14)

Moreover,

M ′
r(n) ≤






2Mr(n),
2r+1Mr(n − r − 1),
Mr(n) + 2rK(n − r, r).

(2.15)

Especially,

Mr+t(n + m) ≤ 2Mr(n)M̂t(n) (2.16)

Mr+1(n + m) ≤ 4Mr(n)M1(m). (2.17)

Proof. Let us first prove the inequalities (2.13). Let C1 ⊆ Fn be an r-
identifying code, and C2 ⊆ Fm be a t-identifying and (t−1)-separating code
satisfying the condition (2.12). We will first show that C = C1⊕C2 ⊆ Fn+m

is an (r + t)-identifying code. It is easy to see that C is an (r + t)-covering
code. Therefore, in order to prove that C is (r + t)-identifying, it is enough
to show that Ir+t(x)△ Ir+t(y) 6= ∅ for all x,y ∈ Fn+m (x 6= y). Let
x = (x1,x2), y = (y1,y2) ∈ Fn+m, where x1,y1 ∈ Fn, x2,y2 ∈ Fm and
x 6= y.

• Suppose first x1 6= y1. Then there exists c1 ∈ Ir(C1;x1) △ Ir(C1;y1).
Without loss of generality, we may assume that c1 ∈ Ir(C1;x1) \
Ir(C1;y1). Since the code C2 satisfies the condition (2.12), there exists
a codeword c2 ∈ C2 such that c2 ∈ It(C2;x2)\It−1(C2;y2). Hence, we
have d((c1, c2), (x1,x2)) ≤ r + t and d((c1, c2), (y1,y2)) ≥ r + 1 + t.
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• Suppose then x1 = y1. By Corollary 2.3.2, there exists c1 ∈ C1 such
that d(c1,x1) = r or r + 1. Assume first that d(c1,x1) = r. Since C2

is a t-identifying code and x2 6= y2, there exists a codeword c2 ∈ C2

such that c2 ∈ It(x2)△ It(y2). Therefore, (c1, c2) ∈ Ir+t(x)△ Ir+t(y).
Assume then that d(c1,x1) = r+1. Since C2 is also a (t−1)-separating
code and x2 6= y2, there exists a codeword c2 ∈ C2 such that c2 ∈
It−1(x2)△ It−1(y2). Hence, (c1, c2) ∈ Ir+t(x)△ Ir+t(y). Thus, we
have proved that C1 ⊕ C2 is an (r + t)-identifying code. This proves
the first part of (2.13).

Let C3 ⊆ Fn be an r-identifying code such that for every x ∈ Fn there
exists a codeword at distance exactly r from it and C4 ⊆ Fm a t-identifying
code satisfying the condition (2.12). Showing that C3 ⊕ C4 ⊆ Fn+m is an
(r + t)-identifying code is similar to the proof described above. However,
in the second part of the proof we can assume that there exists a codeword
c1 ∈ Fn such that d(x1, c1) = r.

Let us now move on to the inequality (2.14). It is easy to see that a 1-
identifying and 2-fold 1-covering code satisfies the condition (2.12) for t = 1.

Hence, we have M̂1(n) ≤ M ′′
1 (n). Therefore, the result immediately follows

from (2.13).

In considering the inequalities (2.13) and (2.14), the estimates (2.15) for
M ′

r(n) prove to be useful. Let us prove the first upper bound M ′
r(n) ≤

2Mr(n). Let C ⊆ Fn be an r-identifying code attaining Mr(n) and e ∈ Fn

be a word of weight 1. We will show that the code C ′ = C ∪ (C + e) is an
r-identifying code such that for every x ∈ Fn the set Sr(x)∩C ′ is nonempty.
Since C is an r-identifying code, the code C ′ is also r-identifying. Thus, it
remains to prove that for every x ∈ Fn the set Sr(x) ∩ C ′ is nonempty.

Assume then x ∈ Fn. If the set Sr(x)∩C 6= ∅, then trivially Sr(x)∩C ′ 6=
∅. Assume now that Sr(x) ∩ C = ∅. Consider then the word y = x + e.
By Theorem 2.3.1, we know that Ir(C;y) ∩ Sr+1(x) 6= ∅. Therefore, there
exists a codeword c ∈ C such that

d(x, c) = r + 1 and d(y, c) = r.

Now for the codeword c + e ∈ C ′ we know that

d(x, c + e) = d(x + e, c) = d(y, c) = r.

Thus, Sr(x) ∩ C ′ 6= ∅ and the claim M ′
r(n) ≤ 2Mr(n) follows.

The second estimate for M ′
r(n) comes from the following observation.

If C ⊆ Fn−r−1 is an r-identifying code, then Fr+1 ⊕ C is an r-identifying
code by [34, Theorem 4] and it clearly has the property that every word is
r-covered (by a codeword) at distance exactly r.
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For the last inequality concerning M ′
r(n), we take the union of an r-

identifying code C1 ⊆ Fn and C2 ⊕ Fr, where C2 ⊆ Fn−r is an r-covering
code. As above, we get the desired code.

The inequalities (2.16) and (2.17) are immediate corollaries of the in-
equalities (2.13), (2.14) and (2.15).

The inequalities (2.13) resemble the conjecture (2.11), although here we
need to require more than just r- and t-identification from the underlying
codes. However, it should be noted that there exist optimal t-identifying
codes which automatically are (t − 1)-separating and satisfy the condition
(2.12). For example, the words 0000, 0011, 0100, 0110, 1000, and 1001 in F4

form an optimal 2-identifying code which is also 1-separating and satisfy the
condition (2.12). The same also holds for the optimal 3-identifying code in
F6 formed by the words 000010, 001111, 010100, 011001, 101000, 110011, and
111110.

In [12, Theorem 3] it is proved that when 1 ≤ t < m ≤ r we have

Mr+t(n + m) ≤ 2mMr(n). (2.18)

Assume first that t = 1. Since C = Fm \ {1m} is clearly a 1-identifying
and 0-separating code satisfying the condition (2.12), we obtain by (2.13)
that Mr+1(n + m) ≤ (2m − 1)Mr(n). Then, using (2.17), we have further
improvements to (2.18). Namely, by Theorem 2.1.1, we have

M1(m) ≤ 9

2
· 2m

m + 1
< 2m−2 − 1

when m ≥ 18 and, by the tables in [12], this also holds for m ≥ 8.
In the next theorem we improve (2.18) using (2.16) when t ≥ 2 and

m ≥ 2t. This is done by giving an upper bound for M̂t(m) using a method
inspired by Delsarte and Piret [22, p. 320].

Theorem 2.3.4. Let m ≥ 2t.

Mr+t(n + m) ≤ 2

⌈
2m

min{
(m

t

)
, 2
(m−1

t

)
}
2m ln 2

⌉
Mr(n).

Proof. We first prove that there exists a t-identifying code in Fm satisfying
the condition (2.12) of the cardinality

K ≤
⌈

2m

min{
(
m
t

)
, 2
(
m−1

t

)
}
2m ln 2

⌉
.

Then, by combining this result with (2.16) we get the desired inequality.
We first need two preliminary observations. If x,y ∈ Fm and x 6= y, then

by [22, Theorem 2.4.8] |Bt(x)△Bt(y)| ≥ 2
(m−1

t

)
. If x,y ∈ Fm (here x can
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be equal to y), then |Bt(x) \ Bt−1(y)| ≥
(m

t

)
because |Bt(x)| − |Bt−1(y)| =(m

t

)
.

Let C be a subset of Fm. Denote by Pt(C) the number of (unwanted)
pairs {x,y} (x,y ∈ Fm) such that

It(C;x) \ It−1(C;y) = ∅, if x = y, or (2.19)

It(C;x) \ It−1(C;y) = ∅ or It(C;x)△ It(C;y) = ∅, if x 6= y. (2.20)

We further denote by CK the set of all codes of size K in Fm. Now we have

∑

C∈CK

Pt(C) =
∑

C∈CK

∑

x∈Fm

∑

y∈F
m

(2.19) or (2.20)

1

=
∑

x∈Fm

∑

y∈Fm

∑

C∈CK

(2.19) or (2.20)

1

≤
∑

x∈Fm

∑

y∈F
m

x 6=y

(
2m − min{|Bt(x)△Bt(y)|, |Bt(x) \ Bt−1(y)|}

K

)

+
∑

x∈Fm

(
2m − |Bt(x) \ Bt−1(x)|

K

)

≤
∑

x∈Fm

∑

y∈Fm

(
2m − min{2

(m−1
t

)
,
(m

t

)
}

K

)

≤ 22m

(
2m − min{2

(
m−1

t

)
,
(
m
t

)
}

K

)
.

Choose now

K =

⌈
2m

min{2
(m−1

t

)
,
(m

t

)
}

ln 22m

⌉
.

Then, using the fact that (1 − 1/x)x < 1/e for x ≥ 1, we have

∑
C∈CK

Pt(C)

|CK | ≤
22m

(2m−min{2(m−1

t ),(m

t )}
K

)
(
2m

K

)

= 22m
K−1∏

i=0

2m − min{2
(
m−1

t

)
,
(
m
t

)
} − i

2m − i

≤ 22m

(
1 − min{2

(m−1
t

)
,
(m

t

)
}

2m

)K

< 1.
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The previous inequality now implies that there exists C ∈ CK such that
Pt(C) = 0. This means that C is a t-identifying code satisfying the condi-
tion (2.12). Thus, the claim follows.

Assume then that in the previous theorem we have m = 2t. Using
Stirling’s inequality, we get M̂t(m) < 2.24m3/2. By [8, Section 3], we also
know that now a t-identifying code in Fm is also (t−1)-separating. Therefore,
by the equation (2.13), Mr+t(n + m) < 2.24m3/2 · Mr(n) when m = 2t. On
the other hand, by [60, Theorem 1(1)] we know that Mt(m) ≥ m, so the
coefficient which we have is at most 2.24m1/2 times bigger than what it
could be at the best if the conjecture (2.11) holds.

Let us then consider the second approach, which is based on estimating
the sizes of optimal identifying codes. The proof of the following theorem is
based on this idea.

Theorem 2.3.5. Let r and t be integers such that r ≥ 2 and t ≥ 2, and let
n ≥ 2(t + r). If

2t ≤ a ≤ 2n

9(t + r)

(
2r+3(t − 1)!(r − 1)!

9(9(t + r))r

) 1

t

,

then we have
Mt+r(n) ≤ Mt(a)Mr(n − a).

Proof. Let q and q0 be integers such that n = q(t+r)+q0 and 0 ≤ q0 < t+r.
Suppose first that q0 = 0. By Theorem 2.1.2, we have

Mt+r(n) ≤ M1(q)
t+r.

By Theorem 2.1.1, we have

M1(q)
t+r ≤

(
9

2

)t+r ( 2q

q + 1

)t+r

≤
(

9

2
(t + r)

)t+r 2n

nt+r
.

If 2 ≤ q0 < t + r, then there exists a 1-identifying code of length q0. Hence,
by Theorems 2.1.2 and 2.1.1, we obtain that

Mt+r(n) ≤ M1(q)
t+rM1(q0) ≤

(
9

2

)t+r+1

(t + r)t+r 2n

nt+r
.

Finally, assume that q0 = 1. Now there does not exist a 1-identifying code
of length q0. However, we can write n = q(t + r − 1) + q + 1 and, as above,
obtain that

Mt+r(n) ≤ M1(q)
t+r−1M1(q + 1) ≤

(
9

2

)t+r 2n

(q + 1)t+r−1
· 1

q + 2

≤
(

9

2

)t+r

(t + r)t+r 2n

nt+r
.
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On the other hand, by [60], we have

Mr(n) ≥ 2n+1

V (n, r) + 1
.

Furthermore, if r ≥ 2 and n ≥ 2r, we have

Mr(n) ≥ 2n+1

V (n, r) + 1
≥ 2n+1

r
(n

r

) ≥ 2n+1(r − 1)!

nr
. (2.21)

Therefore, by the assumption of a, we have

Mt+r(n) ≤
(

9

2

)t+r+1

(t + r)t+r 2n

nt+r

≤ 2n+2(t − 1)!(r − 1)!

atnr
≤ Mt(a)Mr(n − a).

(2.22)

For example, the previous theorem gives M5(507) ≤ M3(7)M2(500) as
predicted by the conjecture (2.11). In the previous theorem, it is assumed
that r ≥ 2 and t ≥ 2. However, the arguments go through also when r = 1
or t = 1 — the estimate (2.21) just has to be replaced with the lower bound

M1(n) ≥ n2n+1

n2 + n + 2
, (2.23)

which is presented in [60].

2.4 Results related to the conjecture Mr+1(n) ≤
Mr(n)

The monotonicity of the size of an optimal r-identifying code in Fn with
respect to the radius r is discussed in the seminal paper [60]. In particular,
it is conjectured that the function Mr(n) is increasing with respect to r
when n is large enough. The following theorem proves that this conjecture
indeed holds. The proof of the theorem is based on ideas similar to the ones
of Theorem 2.3.5.

Theorem 2.4.1. Let r ≥ 1 be a fixed integer. Then there exists a positive
integer nr such that

Mr+1(n) ≤ Mr(n) ∀n ≥ nr.
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Proof. Assume first that r ≥ 2. When n ≥ 2r, we obtain by the inequal-
ity (2.21) that

Mr(n) ≥ 2(r − 1)! · 2n

nr
. (2.24)

On the other hand, by (2.22), we have

Mr+1(n) ≤
(

9

2

)r+2

(r + 1)r+1 2n

nr+1
.

Clearly, there exists a positive integer nr such that

9
2

(
9
2(r + 1)

)r+1

n
≤ 2(r − 1)! ∀n ≥ nr.

Thus, by combining the two inequalities above, the claim follows. For r = 1,
the claim can similarly be proved by replacing (2.24) with (2.23).

2.5 Results related to the conjecture M1(n + 1) ≤
2M1(n)

In [9], it has been stated as an open problem whether M1(n + 1) ≤ 2M1(n)
holds. In the same paper, a weaker result, which says that M1(n + 1) ≤
3M1(n), is shown. The following theorem improves this result by showing
that M1(n + 1) ≤ (2 + εn)M1(n), where εn → 0 as n → ∞.

Theorem 2.5.1. Assume that n ≥ 2. Then we have

M1(n + 1) ≤
(

2 +
1

n + 1

)
M1(n).

Proof. Let C ⊆ Fn be an optimal 1-identifying code attaining M1(n). Define

C1 = {x | x ∈ C , |I1(x)| = 1} and

N1 = {x | x ∈ Fn, x /∈ C, |I1(x)| = 1}.

Clearly, |C1 ∪ N1| ≤ M1(n). Assume first |C1| ≤ M1(n)/(n + 1). Let D1 =
C ⊕ F ⊆ Fn+1. Denote Op = Fn ⊕ {p} where p ∈ F. Assume x = (x′, a) ∈
Fn+1 with x′ ∈ Fn and a ∈ F. Since C is 1-identifying, the set I1(D1;x) can
coincide only with the I-sets of words in Oa+1. If |I1(C;x′)| ≥ 2, then the
word x is uniquely identified by its I-set I1(D1;x) since each word in Oa+1

1-covers a unique word in Oa. It can now be assumed that |I1(C;x′)| = 1.
Assume that x′ ∈ N1, i.e. I1(C;x′) = {x′ + e}, where e ∈ Fn is a word

of weight 1. The only word in Oa+1 which 1-covers the codeword (x′ + e, a)
is the word (x′ + e, a + 1). However, |I1(C;x′ + e)| ≥ 2 and therefore, as
above, it can be said that x is uniquely identified. If x′ ∈ C1, then clearly
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I1(D1; (x
′, a)) = I1(D1; (x

′, a + 1)). But such a problematic case can be
solved by adding one codeword to the code D1 for each such x′. Thus, we
have

M1(n + 1) ≤
(

2 +
1

n + 1

)
M1(n).

Assume then |C1| > M1(n)/(n + 1). Let z ∈ Fn be a word of weight 1.
Consider then a code D2 ⊆ Fn+1 defined as

D2 = (C ⊕ {0}) ∪ ((C + z) ⊕ {1}).

Assume that x = (x′, a) ∈ Fn+1 with x′ ∈ Fn and a ∈ F. If there is at least
two codewords in the intersection of I1(D2;x) and Oa, then (as above) the
word x is uniquely identified by its I-set I1(D2;x).

Assume now that I1(D2;x) ∩ Oa = {x}. Since C is a 1-identifying code
in Fn, it is clear that the word x and all the words of Fn+1 except (x′, a+1)
are 1-separated by D2. Furthermore, since (x′ +z, a+1) belongs to D2, also
the words (x′, a) and (x′, a + 1) are 1-separated by D2. Thus, x is uniquely
identified by its I-set.

Assume then that I1(D2; (x
′, a)) ∩Oa = {(x′ + e, a)}, where e ∈ Fn and

w(e) = 1. In order to show that x is uniquely identified by its I-set, it is
enough to show that the words (x′, a) and (x′ + e, a + 1) are 1-separated by
D2. If e 6= z, then (x′+e+z, a+1) ∈ D2 belongs to the symmetric difference
B1(x

′, a)△B1(x
′ + e, a + 1) and we are done. Hence, we may assume that

e = z. Although we now have I1(D2; (x
′, a)) = I1(D2; (x

′ + e, a + 1)), each
of these problematic cases can be handled by adding one suitable codeword
to the set D2. Moreover, there exists a word e′ ∈ Fn of weight 1 such that

|{x ∈ Fn| x /∈ C, I1(C;x) = {x + e′}}| ≤ |N1|
n

.

Therefore, if we choose z = e′, then we obtain that

M1(n + 1) ≤ 2M1(n) +
|N1|
n

≤ 2M1(n) +
M1(n) − |C1|

n

≤ 2M1(n) +
M1(n) − M1(n)

n+1

n
=

(
2 +

1

n + 1

)
M1(n).

2.6 Constructions with locating-dominating codes

In this section, we introduce a new direct sum method to find constructions
for r-identifying codes with the smallest known cardinalities. This approach
is based on the following theorem.
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Theorem 2.6.1. Let C1 ⊆ Fn be a 1-identifying code which is also a 2-
fold 1-covering and has the property that it is k-locating-dominating for all
1 ≤ k ≤ r + 1 ≤ n − 2. Let C2 ⊆ Fm be an r-identifying code. Then
C1 ⊕ C2 ⊆ Fn+m is an (r + 1)-identifying code.

Proof. It is clear that C1 ⊕ C2 is an (r + 1)-covering. Let x = (x1,x2),y =
(y1,y2) ∈ Fn+m, where x1,y1 ∈ Fn, x2,y2 ∈ Fm, and x 6= y.

1) If x2 = y2, then we have x1 6= y1. Thus, there exists c1 ∈ I1(C1;x1) △
I1(C1;y1). Without loss of generality, we may assume that c1 ∈ I1(C1;x1) \
I1(C1;y1). Suppose c2 ∈ Ir(C2;x2) and d(c2,x2) ≥ d(c,x2) for all c ∈
Ir(C2,x2).

• If d(x2, c2) = r, then (c1, c2) ∈ Ir+1(C1 ⊕ C2;x) \ Ir+1(C1 ⊕ C2;y).

• If 0 ≤ d(c2,x2) ≤ r − 1, then, by Corollary 2.3.2, there exists c′2 ∈ C2

such that d(c′2,x2) = r + 1. If x1 ∈ C1 (or similarly if y1 ∈ C1),
then (x1, c

′
2) ∈ Ir+1(C1 ⊕ C2;x) \ Ir+1(C1 ⊕ C2;y). Suppose then

x1,y1 /∈ C1 and denote h = d(c2,x2). Because C1 is (r−h+1)-locating-
dominating, there exists c′1 ∈ Ir−h+1(C1;x1) △ Ir−h+1(C2;y1), and we
have (c′1, c2) ∈ Ir+1(C1 ⊕ C2;x) △ Ir+1(C1 ⊕ C2;y).

2) Assume then that x2 6= y2. Because C2 is an r-identifying code there
exists c2 ∈ Ir(C2;x2) △ Ir(C2;y2). Without loss of generality, we may
assume that c2 ∈ Ir(C2;x2) \ Ir(C2;y2). Because C1 is a 2-fold 1-covering,
there exists c1 ∈ I1(C1;x1) such that d(c1,y1) ≥ 1. Now we have (c1, c2) ∈
Ir+1(C1 ⊕ C2;x) \ Ir+1(C1 ⊕ C2;y).

The condition that the identifying code C1 is a 2-fold 1-covering increases
the cardinality only slightly (as can be seen in [34]). The extra requirement
that C1 is also k-locating-dominating for 1 ≤ k ≤ n − 2 is not demanding
cardinality-wise either. Indeed, the best known 1-identifying codes which
are also 2-fold 1-coverings given in Table 2.2, are immediately k-locating-
dominating for all 1 ≤ k ≤ n−2 as well. However, in the following example,
it is shown that not every 1-identifying and 2-fold 1-covering code is k-
locating-dominating for all 1 ≤ k ≤ n − 2.

Example 2.6.2. The code F6 \ ({000000, 100000} ∪ {(0,v) ∈ F6 | w(v) =
3} ∪ {(1,u) ∈ F6 | w(u) = 3}) is 1-identifying and 2-fold 1-covering but
it is not 3-locating-dominating. However, the smallest known 1-identifying
and 2-fold 1-covering code of length 6, which has been presented in [34], has
cardinality 22 and it is also k-locating-dominating for all 1 ≤ k ≤ 4.

Regardless of the previous example, in the following theorem, it is shown
that 1-identifying code is always also 1-, 2- and (n−2)-locating-dominating.

Theorem 2.6.3. Let n ≥ 4. A 1-identifying code C ⊆ Fn is always k-
locating-dominating for k = 1, k = 2 and k = n − 2.
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Proof. By the definition, 1-identifying code is also 1-locating-dominating.
By [38], we know that 1-identifying code is also (n − 2)-identifying and
hence also (n − 2)-locating-dominating.

Let x,y ∈ Fn be two different non-codewords. We will show that
I2(x)△ I2(y) is nonempty. There exists c ∈ I1(x)△ I1(y). Without loss
of generality, we may assume that c ∈ I1(x) \ I1(y). If d(c,y) > 2, we are
done. Suppose then that d(c,y) = 2. This implies that d(x,y) = 1 or 3.

a) Suppose d(x,y) = 3. Because n ≥ 4, there is z ∈ S1(x) \ S2(y). There
exists a codeword c′ ∈ C such that d(c′, z) ≤ 1 and hence d(c′,y) ≥ 3.
Thus, we have c′ ∈ I2(x) \ I2(y).

b) Suppose d(x,y) = 1. If there is c′ ∈ (C ∩ S2(x)) \ S1(y), then we are
done. Thus, suppose that if c′ ∈ S2(x) ∩ C, then d(c′,y) = 1. Denote
by z the unique word in (S1(c) ∩ S1(y)) \ {x}. Now I1(z) = I1(c)
unless there is a codeword c∗ (c∗ 6= c) such that d(c∗, z) = 1 and so
d(c∗,y) = 2 and d(c∗,x) = 3. This completes the proof.

In Theorem 2.6.1, we could let k run until n− 1, or even more. If k ≥ n,
then C1 = Fn \ {0}, and if k = n− 1, then the code C1 can be (at the best)
a half space as the following theorem shows.

Theorem 2.6.4. The code C = {0} ⊕ Fn−1 ⊆ Fn is k-locating-dominating
for all 1 ≤ k ≤ n − 1. When k = n − 1, the code C is optimal.

Proof. For all 1 ≤ k ≤ n − 1 and x ∈ Fn−1, we have

Ik(C; (1,x)) = Ik−1(C; (0,x)) = {0} ⊕ (Fn−1 ∩ Bk−1(x)).

Hence, it is clear that for all 1 ≤ k ≤ n − 1 and x,y ∈ Fn \ C, x 6= y we
have Ik(x) 6= Ik(y).

Let us then prove the optimality for k = n−1. Let C ⊆ Fn be any (n−1)-
locating-dominating code. Let us consider a word x and its complement
word x + 11 . . . 1. One of them has to be a codeword otherwise these two
words cannot be separated. Because this is true for all words, at least half
of the words belong to the code.

In order to find codes as small as possible satisfying the conditions of C1

in Theorem 2.6.1, we have used extensive computer searches. For detailed
explanation on the computations, we refer the interested reader to [32].
The found codes, which are 1-identifying, 2-fold 1-covering and k-locating-
dominating for 1 ≤ k ≤ n − 2, are presented in Table 2.2. In addition to
these codes, it is also easy to verify that the smallest known 1-identifying
and 2-fold 1-covering code of length 9 and of cardinality 128 from [34] is
k-locating-dominating for k = 1, . . . , 7. Therefore, by applying these codes
to Theorem 2.6.1, we obtain the following result.
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Table 2.2: The codes, which are 1-identifying, 2-fold 1-covering and k-
locating-dominating for 1 ≤ k ≤ n − 2, presented. The codewords are
binary representations of the listed integers.

n |C| codewords

7 38 84 7 53 15 89 68 8 119 76 34 59 6 112 32 74 45 38 127 97 82
67 22 60 95 102 69 111 17 104 51 120 61 90 24 25 62 65 43

8 70 208 118 128 232 92 215 114 108 66 63 205 204 74 209 24 181
142 231 9 90 101 42 189 15 220 167 6 131 34 75 51 244 203 149
127 110 154 129 85 44 64 164 69 241 226 173 25 155 214 186
121 178 37 56 97 234 20 190 22 228 43 48 199 169 249 255 19
31 115 140

10 249 334 793 723 447 197 569 385 139 450 107 466 430 829 250 487
70 649 1003 171 403 322 401 959 865 561 674 344 939 406 871
935 15 621 790 692 432 705 315 832 35 249 483 452 40 309 359
777 797 976 429 479 773 1014 864 222 601 605 433 272 369
926 213 617 512 517 888 152 109 374 671 582 332 588 932 500
727 8 550 1021 886 763 28 524 786 164 714 712 768 337 883
114 505 276 143 702 488 762 127 89 818 629 1010 179 559 652
1002 224 751 37 667 529 853 328 258 323 632 22 527 826 966
23 564 819 1011 973 142 231 707 163 349 65 952 631 474 680
86 681 133 489 647 801 211 453 238 475 812 112 168 934 26 75
57 189 858 689 710 908 183 852 405 855 936 917 538 814 165
414 558 162 62 384 351 988 985 903 130 5 922 876 220 602 720
694 1020 638 34 69 247 396 262 508 642 106 899 265 252 539
740 669 523 356 442 68 778 446 660 60 610 1013 546 749 410
383 975 592 656 290 19 308 362 304 567 847 157 100 287 921
297 395 969 737 283 606 295 891 144 494 205 933 376 779 230
200 455 792 579 113 736 301
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Theorem 2.6.5. We have M4(n) ≤ 38M3(n − 7), M5(n) ≤ 70M4(n − 8),
M6(n) ≤ 128M5(n − 9) and M7(n) ≤ 249M6(n − 10).

By the previous theorem, for example, we get that M5(27) ≤ 70M4(19) ≤
58450 and M5(28) ≤ 70M4(20) ≤ 120400 since M4(19) ≤ 835 and M4(20) ≤
1720 by [12]. The best previously known bounds are 83840 and 167680,
respectively.

The codes of Table 2.2 can also be used for bounding M1(n) from above.
Namely, it has been proved in [34] that if a code C ⊆ Fn is 1-identifying
and 2-fold 1-covering, then the code D = {(π(u),u,u + v) | u ∈ Fn,v ∈
C} ⊆ F2n+1 is 1-identifying and 2-fold 1-covering. (Recall that π(u) is
used to denote the parity check bit of u.) Combining this result with the
codes from our table, we obtain the following improvements on the previous
records.

Theorem 2.6.6. We have M1(17) ≤ 17920 and M1(21) ≤ 254976.

The best previously known upper bounds for the cardinalities of 1-
identifying codes of lengths 17 and 21 are 18558 and 262144, respectively;
these results are from [12].
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Chapter 3

Identification in cycles and

paths

In this chapter, which is based on the paper [59], we consider r-identifying
codes in cycles and paths. The chapter begins with some preliminary defi-
nitions. In Section 3.1, we also summarise known results, which have pre-
viously been presented in [6], [36], [70] and [77]. Then, in Sections 3.2 and
3.3, we determine in the remaining cases the sizes of optimal r-identifying
codes in cycles and paths, respectively. The remaining cases have also inde-
pendently been determined in [20] (using methods different from ours).

3.1 Preliminaries

Let n be an integer such that n ≥ 3. A cycle Cn = (Vn, En) is a graph such
that the set of vertices is defined as Vn = {vi | i ∈ Zn} and the set of edges
is defined as

En = {vivi+1 | i = 0, 1, . . . , n − 2} ∪ {vn−1v0}.

Recall that the size of an optimal r-identifying code in a given finite graph
G is denoted by Mr(G). The exact values of M1(Cn) and M2(Cn) have been
presented in [36] and [70], respectively. For general r, the following results
are known:

• By Bertrand et al. [6], we know that if n is even and n ≥ 2r + 4, then
Mr(Cn) = n/2. Moreover, they showed that Mr(C2r+2) = 2r + 1.

• In [36], it is shown that if n = 2r + 3, then Mr(Cn) = ⌊2n/3⌋.

• If n is odd, 3r + 2 ≤ n ≤ 8r + 1, n 6= 4r + 3 and gcd(2r + 1, n) = 1,
then Mr(Cn) = (n + 1)/2. Moreover, we have Mr(C4r+3) = 2r + 3.
These results are also from [36].
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• If n is odd, n ≥ 3r + 2 and gcd(2r + 1, n) > 1, then by [36]

Mr(Cn) = gcd(2r + 1, n)

⌈
n

2 gcd(2r + 1, n)

⌉
.

• Assume that n is odd, n ≥ 3r+2 and gcd(2r+1, n) = 1. Then, by [77],
we know that if n = 2m(2r+1)+1 or n = (2m+1)(2r+1)+2r for an
integer m ≥ 1, then Mr(Cn) = (n + 1)/2 + 1, else Mr(Cn) = (n + 1)/2.

In conclusion, what remains to be shown is the exact values of Mr(Cn) when
n is odd and 2r + 5 ≤ n ≤ 3r + 1. (Notice that there are no r-identifying
codes in Cn when n ≤ 2r + 1.) These remaining cases are solved in Section
3.2.

Let n be a positive integer. For n ≥ 3, a path Pn = (Vn, E′
n) is a graph

such that the set of vertices Vn is the same as with the cycles and the set of
edges E′

n = En \ {vn−1v0}. Furthermore, we define the path P1 = (V1, E
′
1),

where E′
1 = ∅, and the path P2 = (V2, E

′
2), where E′

2 = {v1v2}. The
exact values of M1(Pn) and M2(Pn) have been presented, respectively, in
[6] and [70]. An infinite family of optimal r-identifying codes have been
introduced in [6, Theorem 5] giving the following values: Mr(P2k(2r+1)+1) =
k(2r + 1) + 1, where k is a non-negative integer and r ≥ 2. In Section 3.3,
we solve the exact values of Mr(Pn) for general r and n.

In the following sections, we need the concept of a transversal of a graph,
which was found useful in considering identification in cycles in [36]. As can
be seen from Section 3.3, it also proves valuable in the case of paths. We
say that a code T ⊆ V is a transversal of G if for each edge e = uv ∈ E the
vertex u or the vertex v belongs to T . In the literature, a transversal is also
known as a vertex cover [76, p. 102] or an edge-covering set [77] of G.

3.2 Optimal identifying codes in cycles

Let r be a positive integer. In this section, we study r-identifying codes in
cycles Cn = (Vn, En), where n is an odd integer and 2r + 5 ≤ n ≤ 3r + 1.
Throughout the thesis, the indices of the vertices vi of Cn are calculated
modulo n. Let t be a positive integer. For the following considerations, we
define a graph C′

(n,t) = (Vn, Fn), where Fn = {vivi+t | i ∈ Zn}. Notice that if

C is an r-identifying code in Cn, then C is also a transversal of C′
(n,2r+1) since

the adjacent vertices vi and vi+1 (i ∈ Zn) are r-separated by C. We also
define Qt(i) = {vi, vi+1, . . . , vi+t−1}. In other words, the set Qt(i) consists
of t consecutive vertices of the cycle Cn starting from the vertex vi.

The following lower bound on identifying codes in cycles Cn has been
presented in [36, Theorem 1].
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Theorem 3.2.1 ([36]). Let r be a positive integer and n ≥ 2r + 2. Then

Mr(Cn) ≥ gcd(2r + 1, n)

⌈
n

2 gcd(2r + 1, n)

⌉
.

Let n be an odd integer such that 2r + 5 ≤ n ≤ 3r + 1. Then n can
be written as follows: n = 2r + 1 + p, where p is an even integer such that
4 ≤ p ≤ r. The following lemma provides a new way to characterize r-
identifying codes in cycles with small order (for a given r). Notice that in
the following lemma for all i ∈ Zn we have Vn \ Br(vi) = Qp(i + r + 1), i.e.
that the set Qp(i + r + 1) denotes the complement of the ball Br(vi).

Lemma 3.2.2. Let r be a positive integer and n = 2r +1+ p, where p is an
even integer such that 4 ≤ p ≤ r. Let T be a transversal of C′

(n,2r+1). If u

and v are vertices of Cn such that d(u, v) ≤ p, then u and v are r-separated
by T . Moreover, the transversal T is an r-identifying code in Cn if and only
if there do not exist i, j ∈ Zn such that

Qp(i) ∩ Qp(j) = ∅ and T ∩ (Qp(i) ∪ Qp(j)) = ∅. (3.1)

Proof. Let u and v be vertices of Cn such that d(u, v) = d ≤ p. Without loss
of generality, we may assume that u = vk and v = vk+d for some k ∈ Zn.
Clearly, vk−r ∈ Br(u) \ Br(v) and vk+r+1 ∈ Br(v) \ Br(u). Since T is a
transversal of C′

(n,2r+1), then vk−r ∈ T or vk+r+1 ∈ T . Hence, the vertices u
and v are r-separated by T .

Assume first that the transversal T is an r-identifying code in Cn. Assume
to the contrary that there exist i, j ∈ Zn such that Qp(i) ∩ Qp(j) = ∅
and T ∩ (Qp(i) ∪ Qp(j)) = ∅. Since Br(vi−r−1)△Br(vj−r−1) = Qp(i) ∪
Qp(j), then Ir(T ; vi−r−1)△ Ir(T ; vj−r−1) = ∅ (a contradiction). Recall from
the observation above that Qp(i) and Qp(j) denote the complements of the
balls Br(vi−r−1) and Br(vj−r−1), respectively. Therefore, the condition (3.1)
holds.

Assume then that the condition (3.1) holds. Let u = vi (i ∈ Zn). Let us
then show that vi is r-covered by a vertex of T . Assume to the contrary that
Ir(T ; vi) = ∅. Now T∩(Qp(i−p)∪Qp(i)) ⊆ Ir(T ; vi) and Qp(i−p)∩Qp(i) = ∅
(a contradiction). Hence, we have Ir(T ;u) 6= ∅. In addition, the first part of
the proof shows that vertices u, v ∈ Vn are r-separated by T if d(u, v) ≤ p.
Let then u ∈ Vn and v ∈ Vn be vertices such that d(u, v) > p. Now we have
Br(u)△Br(v) = Qp(i) ∪ Qp(j) for some i, j ∈ Zn. Since Qp(i) ∩ Qp(j) = ∅,
we obtain by the condition (3.1) that Ir(T ;u)△ Ir(T ; v) 6= ∅. Thus, T is an
r-identifying code in Cn.

The following theorem provides exact values for Mr(Cn) when 2r + 5 ≤
n ≤ 3r + 1 and gcd(2r + 1, n) = 1.
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Theorem 3.2.3. Let r be a positive integer and n = 2r + 1 + p, where p
is an even integer such that 4 ≤ p ≤ r. Assume that gcd(2r + 1, n) = 1. If
n = 2mp+1 or n = (2m+1)p+p−1 with m ≥ 2, then Mr(Cn) = (n+1)/2+1,
else Mr(Cn) = (n + 1)/2.

Proof. Recall first that Mr(Cn) ≥ (n + 1)/2, by Theorem 3.2.1. As stated
earlier, each r-identifying code in Cn is also a transversal of C′

(n,2r+1). Since

the graph C′
(n,2r+1) is a cycle and C′

(n,2r+1) = C′
(n,p), the code

T = {vip | 0 ≤ i ≤ n − 1, i is even}

is a transversal of C′
(n,p). Moreover, the set T is, up to rotations, the unique

transversal of C′
(n,p) with (n + 1)/2 vertices.

The proof now divides into the following five cases depending on n.
(Notice that the cases n = 2mp or n = (2m + 1)p are impossible since n is
odd.) In the first three cases, it is shown that T is actually an r-identifying
code in Cn implying that Mr(Cn) = (n+1)/2. In the last two cases, we then
show that T is not r-identifying in Cn and, therefore, due to the uniqueness
of T we have Mr(Cn) ≥ (n + 1)/2 + 1. Furthermore, in these cases, we
present a code attaining this improved lower bound.

1) Assume first that n ≤ 4p − 1. Let us then show that there do not
exist i, j ∈ Zn such that Qp(i) ∩ Qp(j) = ∅ and T ∩ (Qp(i) ∪ Qp(j)) = ∅.
Assume to the contrary that such i and j exist. Since T ∩ Qp(i) = ∅ and
T is a transversal of C′

(n,p), the sets Qp(i − p) ⊆ T and Qp(i + p) ⊆ T .

The fact that n ≥ |Qp(i − p) ∪ Qp(i) ∪ Qp(i + p) ∪ Qp(j)| = 4p implies a
contradiction. Therefore, by Lemma 3.2.2, T is an r-identifying code in Cn.
Hence, Mr(Cn) = (n + 1)/2 when n ≤ 4p − 1.

2) Assume then that n = 2mp + x with m ≥ 2 and 2 ≤ x ≤ p − 1. Let
us then show that T ∩ Qp(i) 6= ∅ for any i ∈ Zn. Assume to the contrary
that k ∈ Zn is such that T ∩ Qp(k) = ∅. Since vk /∈ T and vk+1 /∈ T , then
vk+p ∈ T and vk+p+1 ∈ T . If the vertex vk+p is such that vk+p+ip 6= v0 for any
i = 0, 1, . . . , 2m, then vk+p+2mp = vk+p−x ∈ T (a contradiction). Otherwise,
the vertex vk+p+1 is such that vk+p+1+ip 6= v0 for any i = 0, 1, . . . , 2m.
Then vk+p+1+2mp = vk+p+1−x ∈ T (a contradiction). Thus, there does not
exist k ∈ Zn such that T ∩ Qp(k) = ∅. Hence, by Lemma 3.2.2, T is an
r-identifying code in Cn and Mr(Cn) = (n + 1)/2.

3) Assume now that n = (2m+1)p+x, where m ≥ 2 and 1 ≤ x ≤ p− 2.
Since n = (2m + 2)p − (p − x), we can write n = (2m + 2)p − x′, where
2 ≤ x′ ≤ p − 1. In what follows, we show that T ∩ Qp(i) 6= ∅ for any
i ∈ Zn. Assume to the contrary that k ∈ Zn is such that T ∩ Qp(k) = ∅.
Then, clearly, vk−1 ∈ T and vk−2 ∈ T . If the vertex vk−1 is such that
vk−1+ip 6= v0 for any i = 0, 1, . . . , 2m+2, then vk−1+(2m+2)p = vk−1+x′ ∈ T (a
contradiction). Otherwise, the vertex vk−2 is such that vk−2+ip 6= v0 for any
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i = 0, 1, . . . , 2m + 2. Then vk−2+(2m+2)p = vk−2+x′ ∈ T (a contradiction).
Hence, by Lemma 3.2.2, T is an r-identifying code in Cn and Mr(Cn) =
(n + 1)/2.

4) Consider then the case n = 2mp+1 with m ≥ 2. It is easy to conclude
that

T = {v0} ∪
m⋃

i=1

Qp((2i − 1)p + 1).

Therefore, Vn\T =
⋃m−1

i=0 Qp(2ip+1). Thus, by Lemma 3.2.2, the transversal
T is not an r-identifying code in Cn. Since T is the unique transversal (up
to rotations) of C′

(n,p) with size (n + 1)/2 and every r-identifying code of Cn

is also a transversal of C′
(n,p), we have Mr(Cn) ≥ (n + 1)/2 + 1.

Define first sets Ak = {vk+1, vk+2, . . . , vk+p−2} ∪ {vk+p, vk+2p−1}, where
k is an integer such that 0 ≤ k ≤ 2(m − 1)p. Define then a code

C1 = {v0, v2mp} ∪
m−1⋃

i=0

A2ip.

It is straightforward to verify that C1 is a transversal of C′
(n,p) and that

C1 ∩ Qp(i) 6= ∅ for any i ∈ Zn. Hence, C1 is an r-identifying code in Cn.
Since |C1| = (n + 1)/2 + 1, we have Mr(Cn) = (n + 1)/2 + 1.

5) Finally, assume that n = (2m+1)p+ p− 1 with m ≥ 2. Now we have

T =
m⋃

i=0

Qp(2ip) and Vn \ T =
m−1⋃

i=0

Qp((2i + 1)p) ∪ Qp−1((2m + 1)p).

Then, using similar arguments as in the previous case, we have Mr(Cn) ≥
(n+1)/2+1. Define first sets Bk = {vk+p−3}∪{vk+p, vk+p+1, . . . , vk+2p−4}∪
{vk+2p−2, vk+2p−1}, where k is an integer such that 0 ≤ k ≤ 2(m − 1)p. De-
fine also a set B′ = {v(2m+1)p−3}∪ {v(2m+1)p, v(2m+1)p+1, . . . , v(2m+1)p+p−2}.
Then define a code

C2 = {v0} ∪ B′ ∪
m−1⋃

i=0

B2ip.

It is straightforward to verify that C2 is a transversal of C′
(n,p) and that the

set C2 ∩ Qp(i) is nonempty for any i ∈ Zn. Hence, C2 is an r-identifying
code in Cn. Since |C2| = (n + 1)/2+ 1, we have Mr(Cn) = (n + 1)/2+ 1.

The following theorem provides exact values for Mr(Cn) when 2r + 5 ≤
n ≤ 3r + 1 and gcd(2r + 1, n) > 1. The proof of the theorem is similar to
the one of [36, Theorem 9].
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Theorem 3.2.4. Let r be a positive integer and n = 2r + 1 + p, where p is
an even integer such that 4 ≤ p ≤ r. If gcd(2r + 1, n) > 1, then

Mr(Cn) = gcd(2r + 1, n)

⌈
n

2 gcd(2r + 1, n)

⌉
.

Proof. Let d = gcd(2r + 1, n) = gcd(p, n) and n′ = n/d. Notice that n′ is
odd and d ≥ 3 since 2 ∤ n. Recall that C′

(n,2r+1) = C′
(n,p). The graph C′

(n,p)

consists of the disjoint union of d cycles on n′ vertices. For all j ∈ Zd define
the sets

Tj = {vj+kp | 0 ≤ k ≤ n′ − 1, k is even}
and

T ′
j = {vj} ∪ {vj+kp | 0 ≤ k ≤ n′ − 1, k is odd}.

Since n′ is odd, we have |Tj | = |T ′
j | = ⌈n′/2⌉. Now define

T = T0 ∪ T ′
1 ∪

d−1⋃

j=2

Tj .

Since each Tj and T ′
j is a transversal of one of the disjoint subcycles of

C′
(n,p), which together form the whole C′

(n,p), the union T of these sets is a

transversal of C′
(n,p). Furthermore, the number of vertices in T is equal to

gcd(2r + 1, n) ⌈n/(2 gcd(2r + 1, n))⌉.
Let us then show that there does not exist i ∈ Zn such that T∩Qp(i) = ∅.

Notice that d ≤ p. Hence, there exists k ∈ Zn′ such that {vkp, vkp+1} ⊆
Qp(i) or {vkp+1, vkp+2} ⊆ Qp(i). Thus, by the construction of T , we have
T ∩ Qp(i) 6= ∅ for any i ∈ Zn. Therefore, by Lemma 3.2.2, T is an r-
identifying code in Cn. Thus, the claim follows.

In conclusion, this completes the work of determining the sizes of optimal
r-identifying codes in cycles Cn.

3.3 Optimal identifying codes in paths

In this section, we study r-identifying codes in paths Pn = (Vn, E′
n). For

the following considerations, we define a graph P ′
(n,t) = (Vn, F ′

n), where t is

a positive integer and F ′
n = {vivi+t | 0 ≤ i ≤ n − t − 1}. Define also sets

A1(n) = {vr+1, vr+2, . . . , v2r} and A2(n) = {vn−2r−1, vn−2r, . . . , vn−r−2}.
The following lemma characterizes identifying codes in paths.

Lemma 3.3.1. Let r be a positive integer and n ≥ 2r + 1. A code C ⊆ Vn

is r-identifying in Pn if and only if the following conditions hold:

(i) All vertices of Vn are r-covered by a codeword of C.
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(ii) The code C is a transversal of P ′
(n,2r+1).

(iii) The sets A1(n) and A2(n) are subsets of C.

Proof. Assume first that C is an r-identifying code in Pn. Clearly, each
vertex of Vn is r-covered by a codeword of C. For i = r, r + 1, . . . , n− r − 2,
the vertices vi ∈ Vn and vi+1 ∈ Vn are r-separated by C. Therefore, C is a
transversal of P ′

(n,2r+1). For i = 0, 1, . . . , r− 1, we have Br(vi)△Br(vi+1) =

{vi+r+1}. Hence, A1(n) is a subset of C. Analogously, we have A2(n) ⊆ C.
Assume then that C is a code satisfying the conditions (i), (ii) and (iii).

Let u and v be vertices of Vn. In order to prove that C is an r-identifying
code in Pn, it is enough to show that the vertices u and v are r-separated
by C. Without loss of generality, we may assume that Br(u) ∩ Br(v) is
nonempty and that u = vi and v = vj with i < j. If 0 ≤ i ≤ r − 1, then
the codeword vi+r+1 belongs to Br(vi)△Br(vj). If n − r ≤ j ≤ n − 1,
then the codeword vj−r−1 belongs to Br(vi)△Br(vj). Therefore, we may
assume that r ≤ i < j ≤ n− r− 1. Now the vertices vi−r and vi+r+1 belong
to Br(vi)△Br(vj). Since C is a transversal of P ′

(n,2r+1), then vi−r ∈ C or
vi+r+1 ∈ C. Thus, u and v are r-separated by C.

For any path Pn = (Vn, E′
n), define the following subsets of Vn:

K1(Pn) = {vi | 0 ≤ i ≤ n − 1, i is even}

and
K2(Pn) = {vi | 0 ≤ i ≤ n − 1, i is odd}.

The following lemma provides a lower bound on the size of a transversal of
Pn. The proof of the lemma is trivial.

Lemma 3.3.2. Let n be a positive integer. If T is a transversal of Pn, then

|T | ≥
⌊n

2

⌋
.

Moreover, if n is odd, then the unique transversal of Pn attaining the lower
bound is K2(Pn).

The following theorem provides exact values for Mr(Pn) when n ≥ 4r+3.

Theorem 3.3.3. Let r be a positive integer and n = q(2r + 1) + p, where
q ≥ 2 and 1 ≤ p ≤ 2r + 1. Then we have the following results:

(i) Assume that q is even. If 1 ≤ p ≤ r+1, then Mr(Pn) = q(2r+1)/2+p,
else Mr(Pn) = q(2r + 1)/2 + p − 1.

(ii) Assume that q is odd. If 1 ≤ p ≤ 2r, then Mr(Pn) = (q +1)(2r+1)/2,
else Mr(Pn) = (q + 1)(2r + 1)/2 + 1.
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Proof. Let C be an r-identifying code in Pn. For a lower bound on |C|, we
first consider more closely the graph P ′

(n,2r+1). Rename the vertices of Vn

as follows: w
(j)
k = vj+k(2r+1), where j and k are non-negative integers such

that 0 ≤ j ≤ 2r and 0 ≤ j + k(2r +1) ≤ n− 1. For j = 0, 1, . . . , p− 1, define

Wj(n) = {w(j)
k | 0 ≤ k ≤ q} \ (A1(n) ∪ A2(n))

and, for j = p, p + 1, . . . , 2r, define

Wj(n) = {w(j)
k | 0 ≤ k ≤ q − 1} \ (A1(n) ∪ A2(n)).

Let j be an integer such that 0 ≤ j ≤ 2r. Define then a graph Sj(n) =
(Wj(n),Hj(n)), where the set of edges

Hj(n) = {uv ∈ F ′
n | u ∈ Wj(n), v ∈ Wj(n)}.

In other words, Sj(n) is an induced subgraph of P ′
(n,2r+1) determined by the

vertex set Wj(n). Since only the first or the last vertex of {w(j)
k | 0 ≤ k ≤ q}

or {w(j)
k | 0 ≤ k ≤ q−1} can belong to A1(n)∪A2(n), the induced subgraph

Sj(n) is actually a path.
By Lemma 3.3.1, the r-identifying code C is a transversal of P ′

(n,2r+1).

Therefore, C ∩ Wj(n) is a transversal of Sj(n). Since Sj(n) is a path, we
have that |C ∩ Wj(n)| ≥ ⌊|Wj(n)|/2⌋ by Lemma 3.3.2. Since the pairwise
intersections of the vertex sets Wj(n) are empty, we have

|C| ≥ |A1(n)| + |A2(n)| +
2r∑

i=0

⌊ |Wi(n)|
2

⌋
= 2r +

2r∑

i=0

⌊ |Wi(n)|
2

⌋
. (3.2)

Thus, in order to provide a lower bound for Mr(Pn), we need to calculate
the number of vertices in the sets Wj(n).

Let n = q(2r + 1) + p, where q ≥ 2 and 1 ≤ p ≤ 2r + 1. Now we have
the following two cases to consider.

1) Assume first that 1 ≤ p ≤ r + 1. By straightforward calculations, we
now have the following results:

(a) For i = 0, . . . , p − 1, we have Wi(n) = {w(i)
0 , . . . , w

(i)
q } and |Wi(n)| =

q + 1.

(b) For i = p, . . . , r, we have Wi(n) = {w(i)
0 , . . . , w

(i)
q−2} and |Wi(n)| = q−1.

(c) For i = r + 1, . . . , p + r − 1, we have Wi(n) = {w(i)
1 , . . . , w

(i)
q−2} and

|Wi(n)| = q − 2.

(d) For i = p+ r, . . . , 2r, we have Wi(n) = {w(i)
1 , . . . , w

(i)
q−1} and |Wi(n)| =

q − 1.
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A1(n) A2(n)

S0(n)

S4(n)

v0

Figure 3.1: The code D1 illustrated when r = 3, q = 6, p = 2 and n = 44.
The black dots represent the codewords of D1.

Notice that the cases (b) and (d) are empty when p = r + 1 and the case
(c) is empty when p = 1. These facts do not affect the calculations of the
equation (3.2). Notice also that Lemma 3.3.2 still applies when q is equal to
2 or 3, even though the lengths of the paths Sj(n) might be equal to 0 or 1.

Assume then that q is even. By the equation (3.2) and the previous
calculations, we have |C| ≥ q(2r + 1)/2 + p− 1. Assume that C attains this
lower bound. Then the sets C ∩Wi(n) are uniquely determined in the cases
(a), (b) and (d), by Lemma 3.3.2. Therefore, it is immediate that the vertex
v0 ∈ Vn cannot be r-covered by a codeword of C (a contradiction). Hence,
|C| ≥ q(2r + 1)/2 + p.

Let us then construct an r-identifying code in Pn attaining the lower
bound. Define

D1 = A1(n) ∪ A2(n) ∪ K1(S0(n)) ∪
2r⋃

i=1

K2(Si(n)).

The code D1 is illustrated in Figure 3.1 when n = 44 and r = 3. Clearly,
the code D1 satisfies the conditions (ii) and (iii) of Lemma 3.3.1. Therefore,
it is enough to show that each vertex of Vn is r-covered by a codeword of
D1. By the definitions of K1(S0(n)), K2(Sr+1(n)) and K2(S1(n)), we know
that k(4r + 2) ∈ D1, k(4r + 2) + r + 1 ∈ D1 and k(4r + 2) + 2r + 2 ∈ D1,
respectively, when k is an integer such that 1 ≤ k ≤ q/2 − 1. Thus, each
vertex vi ∈ Vn with 3r + 2 ≤ i ≤ (q − 2)(2r + 1) + 3r + 2 is r-covered by
a codeword. Since A1(n) and A2(n) are subsets of D1, we also obtain that
vi ∈ Vn is r-covered by a codeword when 0 ≤ i ≤ 3r or n − 3r − 1 ≤ i ≤
n− 1, respectively. Hence, we have shown that all the vertices of Vn except
v3r+1 are r-covered by a codeword of D1. Thus, since v3r+1 is r-covered
by v2r+2 ∈ K2(S1(n)) ⊆ D1, the condition (i) of Lemma 3.3.1 is satisfied.
Hence, D1 is an r-identifying code in Pn. Moreover, D1 attains the lower
bound. Hence, we have Mr(Pn) = q(2r + 1)/2 + p.

Assume now that q is odd. By the equation (3.2) and the results listed
above, we have |C| ≥ (q + 1)(2r + 1)/2. The code D1 again satisfies the
conditions (ii) and (iii) of Lemma 3.3.1. By considering the set of codewords
K1(S0(n)), K2(S1(n)) and K2(Sr+1(n)) as in the previous case, it can be
shown that each vertex of Vn is r-covered by a codeword of D1. Thus, D1 is
an r-identifying code in Pn and it attains the obtained lower bound. Hence,
we have Mr(Pn) = (q + 1)(2r + 1)/2.
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2) Assume then that r+2 ≤ p ≤ 2r+1. By straightforward calculations,
we have the following results:

(a) For i = 0, . . . , p − r − 2, we have Wi(n) = {w(i)
0 , . . . , w

(i)
q−1} and

|Wi(n)| = q.

(b) For i = p−r−1, . . . , r, we have Wi(n) = {w(i)
0 , . . . , w

(i)
q } and |Wi(n)| =

q + 1.

(c) For i = r+1, . . . , p−1, we have Wi(n) = {w(i)
1 , . . . , w

(i)
q } and |Wi(n)| =

q.

(d) For i = p, . . . , 2r, we have Wi(n) = {w(i)
1 , . . . , w

(i)
q−2} and |Wi(n)| =

q − 2.

The fact that the case (d) is empty when p = 2r + 1 does not affect the
calculation of the equation (3.2).

Assume first that q is even. By the equation (3.2) and the results above,
we have |C| ≥ q(2r + 1)/2 + p − 1. Define

D2 = A1(n) ∪ A2(n) ∪
p−r−2⋃

i=0

K1(Si(n)) ∪
p−1⋃

i=p−r−1

K2(Si(n)) ∪
2r⋃

i=p

K1(Si(n)).

Clearly, the conditions (ii) and (iii) of Lemma 3.3.1 are satisfied by D2.
Since K1(S0(n)), K2(Sp−r−1(n)) and K2(Sr+1(n)) are subsets of D2, it can
be shown using similar arguments as before that Ir(D2; vi) 6= ∅ for each
i = 0, 1, . . . , n − 1. Thus, D2 is an r-identifying code and it attains the
obtained lower bound. Hence, we have Mr(Pn) = q(2r + 1)/2 + p − 1.

Assume then that q is odd. Now we have |C| ≥ (q + 1)(2r + 1)/2.
Furthermore, assume that r + 2 ≤ p ≤ 2r. Define

D3 = A1(n) ∪ A2(n) ∪
p−r−2⋃

i=0

K2(Si(n)) ∪ K1(Sp−r−1(n)) ∪
2r⋃

i=p−r

K2(Si(n)).

Clearly, the conditions (ii) and (iii) of Lemma 3.3.1 are satisfied by D3.
Since K2(S0(n)), K1(Sp−r−1(n)) and K2(Sp−r(n)) are subsets of D3, it can
be shown that Ir(D3; vi) 6= ∅ for each i = 0, 1, . . . , n − 1. Thus, D3 is an
r-identifying code attaining the lower bound. Therefore, we have Mr(Pn) =
(q + 1)(2r + 1)/2.

Finally, let q be odd and p = 2r + 1. Assume that the r-identifying code
C attains the previously obtained lower bound, i.e. |C| = (q + 1)(2r + 1)/2.
Then the sets C ∩ Wi(n) are uniquely determined in the cases (a) and (c),
by Lemma 3.3.2. Since p = 2r + 1, the only graph contained in the case
(b) is Sr(n) and the case (d) is empty. Hence, the only case that may
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contribute a codeword of C to the balls Br(v0) and Br(vn−1) is the case
(b). Since C attains the lower bound, we have |C ∩ Wr(n)| = |Wr(n)|/2.
Therefore, at least one of the sets Ir(C; v0) and Ir(C; vn−1) is empty. Thus,
|C| ≥ (q + 1)(2r + 1)/2 + 1. Define then

D4 = A1(n) ∪ A2(n) ∪ K1(S0(n)) ∪
2r⋃

i=1

K2(Si(n)).

Clearly, the conditions (ii) and (iii) of Lemma 3.3.1 are satisfied by D4.
Since K1(S0(n)), K2(S1(n)) and K2(Sr+1(n)) are subsets of D4, it can be
shown that Ir(D4; vi) 6= ∅ for each i = 0, 1, . . . , n − 1. Thus, D4 is an r-
identifying code in Pn and it attains the obtained lower bound. Hence, we
have Mr(Pn) = (q + 1)(2r + 1)/2 + 1.

Consider the r-identifying codes in Pn with n ≤ 4r + 2. Trivially,
Mr(P1) = 1 for any positive integer r. If 2 ≤ n ≤ 2r, then there are
no r-identifying codes in Pn. The following theorem provides exact values
for Mr(Pn) when 2r + 1 ≤ n ≤ 4r + 2.

Theorem 3.3.4. Let r be a positive integer. Then we have Mr(P2r+1) = 2r
and Mr(P4r+2) = 2r + 2. If 2r + 2 ≤ n ≤ 4r + 1, then Mr(Pn) = 2r + 1.

Proof. Let C be an r-identifying code in Pn. Assume first that n = 2r + 1.
By Lemma 3.3.1, we have A1(n) ∪ A2(n) ⊆ C. Since A1(n) ∪ A2(n) =
Vn \ {vr}, then |C| ≥ 2r. Furthermore, it is easy to conclude that the set
A1(n) ∪ A2(n) is actually an r-identifying code in Pn. Therefore, we have
Mr(P2r+1) = 2r.

Let then n = 2r + 1 + p, where 1 ≤ p ≤ r. Now we have

A1(n) ∪ A2(n) = {vp, vp+1, . . . , v2r}.

Hence, we obtain that |A1(n) ∪ A2(n)| = 2r − p + 1. The set of edges of
P ′

(n,2r+1) is equal to F ′
n = {v0v2r+1, v1v2r+2, . . . , vp−1v2r+p}. Therefore, by

Lemmas 3.3.1 and 3.3.2, we have

|C| ≥ |A1(n) ∪ A2(n)| + |F ′
n| = 2r + 1.

By Lemma 3.3.1, the code A1(n)∪A2(n)∪{v0, v1, . . . , vp−1} is r-identifying
in Pn attaining the lower bound. Thus, we have Mr(Pn) = 2r + 1.

Let now n = 3r + 1 + p, where 1 ≤ p ≤ r. We have

A1(n) ∪ A2(n) = {vr+1, vr+2, . . . , v2r+p−1}.

Therefore, |A1(n)∪A2(n)| = r + p− 1. For i = p− 1, p, . . . , r, we know that
the edges vivi+2r+1 are such that vi /∈ A1(n) and vi+2r+1 /∈ A2(n). Hence,
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by similar arguments as before, we have |C| ≥ |A1(n)∪A2(n)|+(r−p+2) =
2r +1. By Lemma 3.3.1, the set A1(n)∪A2(n)∪{vp, vp+1, . . . , vr}∪{v2r+p}
is an r-identifying code in Pn attaining the obtained lower bound. Thus, we
have Mr(Pn) = 2r + 1.

Finally, assume that n = 4r + 2. We have

A1(n) ∪ A2(n) = {vr+1, vr+2, . . . , v3r}.

Notice that the sets Br(v0)∩(A1(n)∪A2(n)) and Br(v4r+1)∩(A1(n)∪A2(n))
are empty. Hence, we have |C| ≥ |A1(n) ∪ A2(n)| + 2 = 2r + 2. On the
other hand, the set {vr, v3r+1} ∪ A1(n) ∪ A2(n) is an r-identifying code in
Pn attaining the lower bound. Thus, we have Mr(P4r+2) = 2r + 2.

It is obvious that a cycle Cn and a path Pn are closely related to each
other. Indeed, the path Pn only misses the edge vn−1v0. Therefore, a natural
question arising is whether there is a link between an optimal r-identifying
code in Cn and Pn. The following theorem concentrates on this question.

Theorem 3.3.5. Let n ≥ 4r + 2. Then we have Mr(Pn) ≥ Mr(Cn) − 1.

Proof. Let C be an r-identifying code in a path Pn of the optimal size
Mr(Pn). Join the ends v0 and vn−1 of the path with an edge forming a cycle
Cn. Now consider the code C in the cycle; we obtain that Ir(x) 6= Ir(y)
for any x 6= y except x = v0 and y = vn−1. Indeed, any two vertices
x, y ∈ {vr, . . . , vn−r−1} have distinct I-sets; their balls are not affected by
the new edge. Any vertex x = vi ∈ {v0, . . . , vr−1} is also distinguished from
any y = vj as long as i < j and j 6= n − 1 since Ir(y) contains a codeword
not belonging to Ir(x). Therefore, by symmetry, Ir(x) = Ir(y) implies that
x = v0 and y = vn−1. These can be distinguished by adding (if necessary)
one more codeword to vr or vn−1−r giving an r-identifying code of size at
most Mr(Pn) + 1 in a cycle. Thus, the assertion follows.

The bound of the previous theorem can be met (infinitely many times)
with equality when n is odd and gcd(2r+1, n) = 2r+1. However, we usually
have Mr(Pn) > Mr(Cn) − 1.
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Chapter 4

Location-domination in

cycles and paths

In this chapter, which is based on the papers [27] and [28], we consider r-
locating-dominating codes in cycles and paths. We begin the chapter by
considering r-locating-dominating codes in paths in Section 4.1. As a main
result of the section we solve a conjecture stated in [6]; even in a more general
form. In Section 4.2, locating-dominating codes in cycles are considered. In
this chapter, we focus on location-domination of single vertices in cycles
and paths. For the case of sets of vertices, the interested reader is referred
to [26].

4.1 Locating-dominating codes in paths

Throughout the section (unless otherwise stated), assume that n is a positive
integer. Recall that the size of an optimal r-locating-dominating code in a
given finite graph G is denoted by MLD

r (G). Previously, locating-dominating
codes in paths have been studied in the papers [6], [41] and [71]. By Slater
[71], it is known that MLD

1 (Pn) = ⌈2n/5⌉ for any n. In [6], Bertrand et al.
provided the following lower bound for r ≥ 2.

Theorem 4.1.1 ([6]). Let n and r be integers such that n ≥ 1 and r ≥ 2.
Then we have

MLD
r (Pn) ≥

⌈
n + 1

3

⌉
. (4.1)

Moreover, in [6], it is conjectured that for any fixed r ≥ 2, there exist
infinitely many values of n such that MLD

r (Pn) attains the previous lower
bound. In [41], it is shown that MLD

2 (Pn) = ⌈(n + 1)/3⌉ for any n. Hence,
the conjecture holds when r = 2. In Sections 4.1.3 and 4.1.4, we prove that
the conjecture also holds when r ≥ 3. Moreover, we show a stronger result
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stating that for any r ≥ 3 we have MLD
r (Pn) = ⌈(n + 1)/3⌉ for all n ≥ nr

when nr is large enough (nr = O(r3)).
In Section 4.1.1, we begin by introducing some basic results concerning

r-locating-dominating codes in paths. In Section 4.1.2, we continue by con-
sidering r-locating-dominating codes in paths Pn with small n (for a given
r). As a main result concerning locating-dominating codes in paths, we
solve the proposed conjecture (in a stronger form) in Section 4.1.3. Finally,
in Section 4.1.4, we present optimal 3- and 4-locating-dominating codes in
Pn for all n.

4.1.1 Basics on location-domination in paths

Let C be a nonempty subset of Vn. We first present a useful characterization
of r-locating-dominating codes in paths. For this, we need the concept of
C-consecutive vertices introduced in [6]. Let i and j be positive integers
such that 0 ≤ i < j ≤ n − 1. We say that (vi, vj) is a pair of C-consecutive
vertices in Pn if vi, vj ∈ Vn \ C and vk ∈ C for all integers k such that
i < k < j. Now we are ready to present the following characterization,
which was introduced in [6, Remark 3].

Lemma 4.1.2 ([6]). Let r be a positive integer. A code C ⊆ Vn is r-locating-
dominating in Pn if and only if each vertex u ∈ Vn \ C is r-covered by a
codeword of C and for each pair (u, v) of C-consecutive vertices in Pn the
vertices u and v are r-separated by a codeword of C.

The following theorem provides a convenient property on the size of the
optimal r-locating-dominating codes in Pn.

Theorem 4.1.3. Let n and r be positive integers. Then we have

MLD
r (Pn) ≤ MLD

r (Pn+1) ≤ MLD
r (Pn) + 1.

Proof. Consider first the inequality MLD
r (Pn) ≤ MLD

r (Pn+1). Let C ⊆
Vn+1 = {v0, v1, . . . , vn} be an r-locating-dominating code in Pn+1. Assume
first that the vertex vn /∈ C. Now it is obvious that C is also an r-locating-
dominating code in Pn.

Assume then that vn ∈ C. Denote by X the set of pairs of C-consecutive
vertices in Pn. There exists at most one pair (u, v) ∈ X such that the
codeword vn belongs to the symmetric difference of Ir(u) and Ir(v). If
there is no such pair of C-consecutive vertices, then it is clear that (C \
{vn}) ∪ {vn−1} is an r-locating-dominating code in Pn. Assume then that
(vi, vj) with i < j is the unique pair of C-consecutive vertices such that
vn ∈ Ir(vi)△ Ir(vj). Now define C ′ = (C \ {vn}) ∪ {vj}. Since all the pairs
of C-consecutive vertices belonging to X \ {(vi, vj)} are r-separated by a
codeword of C ′, then it is easy to conclude that all the pairs of C ′-consecutive
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vertices are r-separated by a codeword of C ′ in Pn. Notice that if a vertex is
r-covered by vn, then it is also r-covered by vj . Therefore, each vertex in Vn

is r-covered by a codeword of C ′. Thus, by Lemma 4.1.2, C ′ is an r-locating-
dominating code in Pn. In conclusion, we have MLD

r (Pn) ≤ MLD
r (Pn+1).

Let then C ⊆ Vn be an r-locating-dominating code in Pn. Since C ∪
{vn} is an r-locating-dominating code in Pn+1, we immediately obtain that
MLD

r (Pn+1) ≤ MLD
r (Pn) + 1.

In what follows, we present a couple of lemmas that are useful in de-
termining the smallest cardinalities of r-locating-dominating codes in paths
with a small number of vertices in Section 4.1.2. The first lemma says that
if we have an r-locating-dominating code in Pn, then at least r of both the
first and the last 2r + 1 vertices of the path are codewords.

Lemma 4.1.4. Let C be an r-locating-dominating code in Pn and n be an
integer such that n ≥ 2r + 1.

(i) The intersection C ∩ {v0, v1, . . . , v2r} contains at least r vertices.

(ii) The intersection C∩{vn−2r−1, vn−2r, . . . , vn−1} contains at least r ver-
tices.

Proof. Let C be an r-locating-dominating code in Pn. Denote the set
{v0, v1, . . . , vr} by Qr+1(0). Assume that there are k codewords in C ∩
Qr+1(0) with 0 ≤ k ≤ r− 1. (Notice that if k ≥ r, then the case (i) immedi-
ately follows.) Now there are r−k pairs (u, v) of C-consecutive vertices such
that u ∈ Qr+1(0) and v ∈ Qr+1(0). Notice that if (u, v) and (u′, v′) are such
(distinct) pairs of C-consecutive vertices, then the symmetric differences
Ir(u)△ Ir(v) and Ir(u

′)△ Ir(v
′) are subsets of {vr+1, vr+2, . . . , v2r} and the

intersection of the symmetric differences Ir(u)△ Ir(v) and Ir(u
′)△ Ir(v

′) is
empty. Hence, there are at least r − k codewords in {vr+1, vr+2, . . . , v2r}.
Thus, the claim (i) follows. The case (ii) follows by symmetry.

The second lemma says that if we have an r-locating-dominating code
in Pn, then any set of 3r + 1 consecutive vertices in a path contains at least
r codewords.

Lemma 4.1.5. Let C be an r-locating-dominating code in Pn and n be an
integer such that n ≥ 3r + 1. For i = 0, 1, . . . , n − 3r − 1, the set

{vi, vi+1, . . . , vi+3r} ⊆ Vn

contains at least r codewords of C.

Proof. Let C be an r-locating-dominating code in Pn and i be an inte-
ger such that 0 ≤ i ≤ n − 3r − 1. Denote {vi+r, vi+r+1, . . . , vi+2r} by
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Qr+1(i + r). Assume that there are k codewords in C ∩ Qr+1(i + r) with
0 ≤ k ≤ r − 1. Now there are r − k pairs (u, v) of C-consecutive vertices
such that u ∈ Qr+1(i + r) and v ∈ Qr+1(i + r). Notice that if (u, v) and
(u′, v′) are such (distinct) pairs of C-consecutive vertices, then it is easy
to see that the symmetric differences Ir(u)△ Ir(v) and Ir(u

′)△ Ir(v
′) are

subsets of {vi, vi+1, . . . , vi+r−1} ∪ {vi+2r+1, vi+2r+2, . . . , vi+3r} and the in-
tersection of the symmetric differences Ir(u)△ Ir(v) and Ir(u

′)△ Ir(v
′) is

empty. Hence, there are at least r − k codewords in {vi, vi+1, . . . , vi+r−1} ∪
{vi+2r+1, vi+2r+2, . . . , vi+3r}. Thus, the claim follows.

4.1.2 Paths with a small number of vertices

In this section, we determine the exact values of MLD
r (Pn) when 1 ≤ n ≤

7r + 3. We also present a new lower bound on MLD
r (Pn) (improving the

previous lower bound of Theorem 4.1.1) for some specific lengths n of the
paths.

Consider then the exact values of MLD
r (Pn) when 1 ≤ n ≤ 7r + 3.

Clearly, we have MLD
r (P1) = 1. The exact values of MLD

r (Pn), when 2 ≤
n ≤ 7r+3, are given in the following theorem. Previously, in [6], it has been
shown that MLD

r (P3r+1) = MLD
r (P3r+2) = r + 1 and MLD

r (P3r+3) = r + 2.

Theorem 4.1.6. Let r be an integer such that r ≥ 2. Then we have the
following results for 2 ≤ n ≤ 7r + 3:

1) If 2 ≤ n ≤ r + 1, then MLD
r (Pn) = n − 1.

2) If r + 2 ≤ n ≤ 2r + 1, then MLD
r (Pn) = r.

3) If 2r + 2 ≤ n ≤ 3r + 2, then MLD
r (Pn) = r + 1.

4) If n = 3r + 3, then MLD
r (Pn) = r + 2.

5) If 3r + 4 ≤ n ≤ 4r + 2, then MLD
r (Pn) = n − 2(r + 1).

6) If 4r + 3 ≤ n ≤ 5r + 2, then MLD
r (Pn) = 2r.

7) If 5r + 3 ≤ n ≤ 6r + 2, then MLD
r (Pn) = 2r + 1.

8) If 6r + 3 ≤ n ≤ 6r + 5, then MLD
r (Pn) = 2r + 2.

9) If 6r + 6 ≤ n ≤ 7r + 3, then MLD
r (Pn) = n − 4r − 3.

Proof. Let C be an r-locating-dominating code in Pn.
1) Assume that 2 ≤ n ≤ r + 1. Now it is obvious that Br(u) = Vn for all

u ∈ Vn. Hence, it is immediate that Mr(Pn) = n − 1.
2) Assume that r + 2 ≤ n ≤ 2r + 1. Now, by Theorem 4.1.3, we have

MLD
r (Pn) ≥ MLD

r (Pr+1) = r. On the other hand, using Lemma 4.1.2,
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it is easy to verify that D2 = {v0, v1, . . . , vr−2} ∪ {v2r} is an r-locating-
dominating code in P2r+1 with r codewords. Therefore, by Theorem 4.1.3,
MLD

r (Pn) = r when r + 2 ≤ n ≤ 2r + 1.

3) Assume that 2r + 2 ≤ n ≤ 3r + 2. Consider first the path P2r+2.
It is easy to conclude that each codeword can r-separate at most one pair
of C-consecutive vertices in P2r+2. The number of pairs of C-consecutive
vertices in P2r+2 is equal to 2r+2−|C|−1. Therefore, we have the following
inequality:

|C| ≥ 2r + 1 − |C| ⇐⇒ |C| ≥ 2r + 1

2
.

Thus, by the previous inequality and Theorem 4.1.3, we have MLD
r (Pn) ≥

MLD
r (P2r+2) ≥ r+1. The code D3 = {vr, vr+1, . . . , v2r−1}∪{v3r} introduced

in [6] is r-locating-dominating in P3r+2. Therefore, MLD
r (Pn) = r + 1 when

2r + 2 ≤ n ≤ 3r + 2.

4) In [6], it is shown that D4 = {v0} ∪ {vr+1, vr+2, . . . , v2r} ∪ {v3r+2} is
an r-locating-dominating code in P3r+3. Hence, by Theorem 4.1.1, we have
MLD

r (P3r+3) = r + 2.

5) Assume that 3r + 4 ≤ n ≤ 4r + 2. Now we can denote n = 3r +
3 + p, where 1 ≤ p ≤ r − 1. By Lemma 4.1.4, subsets {v0, v1, . . . , v2r} and
{vr+p+2, vr+p+3, . . . , v3r+p+2} both contain at least r codewords of C. The
number of vertices in the intersection of these subsets is equal to r − p − 1.
Therefore, we have

|C| ≥ r − p − 1 + 2(r − (r − p − 1)) = r + p + 1.

On the other hand, using Lemma 4.1.2, it is straightforward to verify that
D5 = {v1} ∪ {vr+2, vr+3, . . . , v2r+p} ∪ {v3r+p+1} is an r-locating-dominating
code in Pn. Thus, MLD

r (P3r+3+p) = r + p + 1 = n− 2(r + 1) when 3r + 4 ≤
n ≤ 4r + 2.

6) Assume that 4r + 3 ≤ n ≤ 5r + 2. By Theorem 4.1.3, we have
MLD

r (Pn) ≥ MLD
r (P4r+2) = 2r. Then define

D6 = {v0} ∪ {vr+2, vr+3, . . . , v2r} ∪ {v3r+1, v3r+2, . . . , v4r−1} ∪ {v5r+1}.

The number of vertices in D6 is equal to 2r and, by Lemma 4.1.2, it can be
easily verified that D6 is an r-locating-dominating code in P5r+2. Therefore,
by Theorem 4.1.3, MLD

r (Pn) = 2r when 4r + 3 ≤ n ≤ 5r + 2.

7) Assume that 5r+3 ≤ n ≤ 6r+2. Let us first show that MLD
r (P5r+3) ≥

2r + 1. Assume to the contrary that C is an r-locating-dominating code
in P5r+3 with at most 2r codewords. By Lemma 4.1.4, we know that both
{v0, v1, . . . , v2r} and {v3r+2, v3r+3, . . . , v5r+2} contain at least r codewords of
C. Hence, there are no codewords of C in {v2r+1, v2r+2, . . . , v3r+1}. There-
fore, since all the pairs (u, v) of C-consecutive vertices in P5r+3 such that
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u, v ∈ {v0, v1, . . . , v2r+1} are r-separated by a codeword of C, then the code-
words of C belonging to {v0, v1, . . . , v2r+1} form an r-locating-dominating
code in P2r+2 with r codewords. This is a contradiction with the case 3).
Thus, by Theorem 4.1.3, MLD

r (Pn) ≥ MLD
r (P5r+3) ≥ 2r + 1. Define then

D7 = {vr, vr+1, . . . , v2r−1} ∪ {v3r} ∪ {v4r+2, v4r+3, . . . , v5r} ∪ {v5r+2}.

Using Lemma 4.1.2, it is easy to verify that D7 is an r-locating-dominating
code in P6r+2 with 2r + 1 codewords. Thus, MLD

r (Pn) = 2r + 1 when
5r + 3 ≤ n ≤ 6r + 2.

8) Assume that 6r + 3 ≤ n ≤ 6r + 5. By Theorem 4.1.1, we have
MLD

r (Pn) ≥ 2r + 2. Define then

D8 = {v1, vr+1} ∪ {vr+3, vr+4, . . . , v2r} ∪ {v3r+1, v3r+3}
∪ {v4r+4, v4r+5, . . . , v5r+1} ∪ {v5r+3, v6r+3}.

By Lemma 4.1.2, D8 is an r-locating-dominating code in P6r+5 with 2r + 2
vertices. Thus, MLD

r (Pn) = 2r + 2 when 6r + 3 ≤ n ≤ 6r + 5.

9) Assume that 6r + 6 ≤ n ≤ 7r + 3. Now we can denote n = 6r + 5 + p,
where 1 ≤ p ≤ r − 2. Consider first the path P7r+3. By Lemma 4.1.4, the
subsets {v0, v1, . . . , v2r} and {v5r+2, v5r+3, . . . , v7r+2} of V7r+3 both contain
at least r codewords of C. By Lemma 4.1.5, the same also holds for the sub-
set {v2r+1, v2r+2, . . . , v5r+1}. Therefore, MLD

r (P7r+3) ≥ 3r. Thus, by Theo-
rem 4.1.3 and the fact that MLD

r (P6r+5) = 2r+2, we have MLD
r (P6r+5+p) =

2r +2+ p when 1 ≤ p ≤ r− 2. In other words, MLD
r (Pn) = n− 4r− 3 when

6r + 6 ≤ n ≤ 7r + 3.

By generalizing the lower bound in the last case of the previous proof,
the following theorem is immediately obtained.

Theorem 4.1.7. Let r be a positive integer and n = 2(2r + 1) + p(3r + 1)
where p ≥ 0 is an integer. Then we have

MLD
r (Pn) ≥ (p + 2)r.

Using the notations of the previous theorem, the lower bound of Theo-
rem 4.1.1 implies that

MLD
r (Pn) ≥

⌈
n + 1

3

⌉
= (p + 1)r + 1 +

⌈
r + p

3

⌉
.

By routine calculations, it can be shown that (p + 2)r > (p + 1)r + 1 +
⌈(r + p)/3⌉ if and only if 0 ≤ p ≤ 2r − 6. Thus, the previous theorem gives
improvements on the previously known lower bound when n = 2(2r + 1) +
p(3r + 1) and 0 ≤ p ≤ 2r − 6.
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By applying Theorem 4.1.3 to the previous lower bound, we also obtain
new lower bounds for some other values of n. For example, by Theorem 4.1.1,
we have MLD

5 (P56) ≥ 19. However, by Theorem 4.1.7, we have MLD
5 (P54) ≥

20 and, therefore, MLD
5 (P56) ≥ MLD

5 (P54) ≥ 20.
The values given by the lower bound of Theorem 4.1.7 are sometimes

optimal. For example, when r = 5 and p = 4, we have MLD
5 (P86) ≥ 30. On

the other hand,

D86 = {v2, v6, v8, v9, v10, v12, v17, v21, v24, v25, v27, v29, v33, v37, v41, v43,

v45, v46, v53, v55, v59, v61, v62, v63, v71, v75, v76, v78, v79, v83}

is a 5-locating-dominating code in P86. Therefore, MLD
5 (P86) = 30.

4.1.3 Solving a conjecture in long paths

Let r be an integer such that r ≥ 5. In this section, we show that the size of
an optimal r-locating-dominating code in Pn is equal to ⌈(n + 1)/3⌉ for all
n ≥ nr when nr is large enough (nr = O(r3)). The proof of this is based on
the result of Theorem 4.1.10 saying that if n = 3r + 2 + p((r − 3)(6r + 3) +
3r + 3) + q(6r + 3), where p and q are non-negative integers, then we have
MLD

r (Pn) ≤ ⌈(n + 1)/3⌉. The proof of Theorem 4.1.10 is illustrated in the
following example when r = 5.

Example 4.1.8. Assume that r = 5. Let p and q be non-negative integers.
In what follows, we show that if n = 3r+2+p((r−3)(6r+3)+3r+3)+q(6r+
3) = 17 + 84p + 33q, then MLD

5 (Pn) ≤ ⌈(n + 1)/3⌉. In Figures 4.1 and 4.2,
first consider the pattern D (the upper dashed box in the figures), which is
formed by concatenating the patterns K1, K2 and K3, which are of lengths
6r+3, 6r+3 and 3r+3, respectively. The pattern D is of length (r−3)(6r+
3) + 3r + 3 = 84 and contains ((r − 3)(6r + 3) + 3r + 3)/3 = 28 codewords,
i.e. 1/3 of the vertices of D are codewords. Moreover, it is easy to verify
that D is a 5-locating-dominating code in a cycle of length 84 (compare
this with Lemma 4.1.9). Similarly, the pattern (the lower dashed box in the
figures) formed by K1 and L2, which is of length 2(6r+3) = 66 and contains
(2(6r + 3))/3 = 22 codewords, is a 5-locating-dominating code in a cycle of
length 66.

The actual 5-locating-dominating code in Pn depends on the parity of q.
Assume first that q is even, i.e. q = 2q′ for some integer q′. The code C1 is
now defined as in Figure 4.1, where the pattern D is repeated p times and the
pattern formed by K1 and L2 is repeated q′ times. Since the patterns D and
the one formed by K1 and L2 are 5-locating-dominating codes, respectively,
in cycles of lengths 84 and 66, it is straightforward to verify that C1 is
a 5-locating-dominating code in Pn (by Lemma 4.1.2). Similarly, it can
be shown that the code C2 defined in Figure 4.2 is 5-locating-dominating
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Figure 4.1: The r-locating-dominating code C1 illustrated when r = 5.
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Figure 4.2: The r-locating-dominating code C2 illustrated when r = 5.

in Pn when q is odd, i.e. q = 2q′ + 1 for some integer q′. Therefore, if
n = 17 + 84p + 33q, we have MLD

r (Pn) ≤ 6 + 28p + 11q = ⌈(n + 1)/3⌉.

For the proof of Theorem 4.1.10, we first need to introduce some prelim-
inary definitions and results. Let i and s be non-negative integers. First,
for 1 ≤ i ≤ r − 2, define

Mi(s) =




r−1⋃

j=0
j 6=r−i−1

{vs+j}


 ∪ {vs+2r−i}

and M ′
i(s) = Mi(s) \ {vs+2r−i}. Notice that |Mi(s)| = r. Furthermore, for
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1 ≤ i ≤ r − 3, define

Ki(s) = M ′
i(s) ∪ {vs+2r, vs+3r−i} ∪




4r⋃

j=3r+2
j 6=4r−i

{vs+j}


 ∪ {vs+5r−i, vs+5r+2},

and Kr−2(s) = M ′
r−2(s)∪{vs+2r, vs+2r+2}. Notice that for i = 1, 2, . . . , r−3,

we have |Ki(s)| = 2r + 1 and |Kr−2(s)| = r + 1. Finally, define

L1(s) = M1(s) ∪




4r−1⋃

j=3r+1

{vs+j}



 ∪ {vs+4r+1, vs+6r+1}

∪




7r+1⋃

j=6r+3

{vs+j}



 ∪ {vs+8r+3}

and, for 2 ≤ i ≤ r − 2, define

Li(s) = Mi(s) ∪




4r+1⋃

j=3r+1
j 6=4r−i+1

{vs+j}


 ∪ {vs+6r−i+2}.

Notice that |L1(s)| = 3r + 1 and |Li(s)| = 2r + 1 when 2 ≤ i ≤ r − 2.

As in Example 4.1.8, denote by Ki, Li and Mi the patterns {vs, vs+1, . . . ,
vs+ℓ−1} where the codewords are determined by Ki(s), Li(s) and Mi(s),
respectively. The length ℓ of each pattern Ki and Li is equal to three times
the number of codewords in the pattern. For example, the length of the
pattern L1 is equal to 9r + 3 (see the case (iv) below). The length of the
pattern Mi is equal to 2r + 1. The following lemma says for general r ≥ 5
that the patterns Ki, Li and Mi can be concatenated to form r-locating
dominating codes as in Example 4.1.8 (because the beginning of each of
them contains M ′

i(s)).

Lemma 4.1.9. Let n and s be positive integers, and let r be an integer such
that r ≥ 5. Let C be a code in Pn.

(i) Let i be an integer such that 1 ≤ i ≤ r−3. If Ki(s)∪M ′
i+1(s+6r+3) ⊆

C, then each pair (vj1 , vj2) of C-consecutive vertices in Pn such that
s ≤ j1 ≤ s+7r+2 and s ≤ j2 ≤ s+7r+2 is r-separated by a codeword
of C.

(ii) If Kr−2(s) ∪ M ′
1(s + 3r + 3) ⊆ C, then each pair (vj1, vj2) of C-

consecutive vertices in Pn such that s ≤ j1 ≤ s + 4r + 2 and s ≤
j2 ≤ s + 4r + 2 is r-separated by a codeword of C.
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(iii) Let i be an integer such that 2 ≤ i ≤ r−2. If Li(s)∪M ′
i−1(s+6r+3) ⊆

C, then each pair (vj1 , vj2) of C-consecutive vertices in Pn such that
s ≤ j1 ≤ s+7r+2 and s ≤ j2 ≤ s+7r+2 is r-separated by a codeword
of C.

(iv) If L1(s) ∪ M ′
r−2(s + 9r + 3) ⊆ C, then each pair (vj1, vj2) of C-

consecutive vertices in Pn such that s ≤ j1 ≤ s + 10r + 2 and s ≤
j2 ≤ s + 10r + 2 is r-separated by a codeword of C.

Proof. (i) Let i be an integer with 1 ≤ i ≤ r− 3 and C ⊆ Vn be a code such
that Ki(s)∪M ′

i+1(s+6r +3) ⊆ C. Consider then the symmetric differences
Br(vj1)△Br(vj2), where (vj1 , vj2) are pairs of C-consecutive vertices such
that s ≤ j1 ≤ s + 7r + 2 and s ≤ j2 ≤ s + 7r + 2. For the following
considerations, notice that

M ′
i+1(s + 6r + 3) =

7r+2⋃

j=6r+3
j 6=7r−i+1

{vs+j}.

Let k be a positive integer. If s + r ≤ k ≤ s + 2r − i − 2, s + 2r − i ≤
k ≤ s + 2r − 2, s + 4r + 2 ≤ k ≤ s + 5r − i − 2 or s + 5r − i + 1 ≤ k ≤
s + 5r, then it is straightforward to verify that the vertex vk−r belongs to
the symmetric difference Ir(vk)△ Ir(vk+1). If s+2r+1 ≤ k ≤ s+3r− i−2,
s + 3r − i + 1 ≤ k ≤ s + 3r − 1, s + 5r + 3 ≤ k ≤ s + 6r − i − 1 or
s + 6r − i + 1 ≤ k ≤ s + 6r + 1, then it can be seen that the vertex vk+r+1

belongs to the symmetric difference Ir(vk)△ Ir(vk+1). Moreover, we have
that

vs+2r ∈ Ir(vs+r−i−1)△ Ir(vs+r),

vs+3r−i ∈ Ir(vs+2r−i−1)△ Ir(vs+2r−i),

vs+r−1 ∈ Ir(vs+2r−1)△ Ir(vs+2r+1),

vs+4r−i+1 ∈ Ir(vs+3r−i−1)△ Ir(vs+3r−i+1),

vs+2r ∈ Ir(vs+3r)△ Ir(vs+3r+1),

vs+5r−i ∈ Ir(vs+3r+1)△ Ir(vs+4r−i),

vs+3r−i ∈ Ir(vs+4r−i)△ Ir(vs+4r+1),

vs+5r+2 ∈ Ir(vs+4r+1)△ Ir(vs+4r+2),

vs+4r−i−1 ∈ Ir(vs+5r−i−1)△ Ir(vs+5r−i+1),

vs+6r+3 ∈ Ir(vs+5r+1)△ Ir(vs+5r+3),

vs+5r−i ∈ Ir(vs+6r−i)△ Ir(vs+6r−i+1) and

vs+5r+2 ∈ Ir(vs+6r+2)△ Ir(vs+7r−i+1).
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In conclusion, all the pairs (vj1, vj2) of C-consecutive vertices in Pn such
that s ≤ j1 ≤ s + 7r + 2 and s ≤ j2 ≤ s + 7r + 2 are r-separated by a
codeword of C.

The proofs of the cases (ii), (iii) and (iv) are analogous to the first
one.

For a non-negative integer s, define

C(s) =
r−3⋃

i=0

Ki+1(s + i(6r + 3)).

Notice that when r = 5, C(s) corresponds to the pattern D in Example 4.1.8.
The following theorem now proves the conjecture stated in [6, Conjecture 1]
when r ≥ 5.

Theorem 4.1.10. Let r be an integer such that r ≥ 5 and n = 3r + 2 +
p((r−3)(6r+3)+3r+3)+q(6r+3), where p and q are non-negative integers.
Then we have

MLD
r (Pn) ≤

⌈
n + 1

3

⌉
.

Proof. Let r ≥ 5 be an integer and n = 3r + 2 + p((r − 3)(6r + 3) + 3r +
3) + q(6r + 3), where p and q are non-negative integers. Assume that q is
even, i.e. q = 2q′ for some integer q′. Define then

C1 = {vr−2} ∪
p−1⋃

j=0

C(r + 1 + j((r − 3)(6r + 3) + 3r + 3))

∪
q′−1⋃

j=0

K1(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q′−1⋃

j=0

L2(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3))

∪ M1(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + q(6r + 3)).

Notice that if r = 5, this definition of C1 coincides with the one of Exam-
ple 4.1.8. (Recall also the length of the patterns Ki, Li and Mi as described
earlier.) As in the previous example, C1 is formed by concatenating the pat-
terns Ki, Li and Mi. Since M ′

i(s) ⊆ Ki(s) and M ′
i(s) ⊆ Li(s), Lemma 4.1.9

applies to each occurrence of Ki(s) and Li(s) in C1. Therefore, each pair
(vj, vk) of C1-consecutive vertices in Pn such that r + 1 ≤ j ≤ n − r − 2
and r + 1 ≤ k ≤ n − r − 2 is r-separated by a codeword of C1. Hence, it
is easy to see that each pair of C1-consecutive vertices in Pn is r-separated
by C1. Since there are no 2r + 1 consecutive vertices belonging to Vn \ C1
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in Pn, all the vertices in Pn are r-covered by a codeword of C1. Thus, by
Lemma 4.1.2, it is easy to conclude that C1 is an r-locating-dominating code
in Pn with ⌈(n + 1)/3⌉ vertices.

Assume then that q is odd, i.e. q = 2q′ + 1 for some integer q′. Define
then

C2 = {vr−2} ∪
p−1⋃

j=0

C(r + 1 + j((r − 3)(6r + 3) + 3r + 3))

∪
q′⋃

j=0

K1(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q′−1⋃

j=0

L2(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3))

∪ M2(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + q(6r + 3)).

Similarly, as in the previous case, it can be shown that C2 is an r-locating-
dominating code in Pn with ⌈(n + 1)/3⌉ vertices.

In [53, Theorem 8.3], the following theorem is presented. This theorem
turns out useful in future considerations.

Theorem 4.1.11 ([53]). Let a and b be positive integers such that the
greatest common divisor of a and b is equal to 1. Then, for any integer
n > ab−a−b, there exist such non-negative integers p and q that n = pa+qb.

The length of the path in Theorem 4.1.10 can be written as follows:

n = 3r + 2 + p((r − 3)(6r + 3) + 3r + 3) + q(6r + 3)

= 3r + 2 + 3(p((r − 3)(2r + 1) + r + 1) + q(2r + 1)).

The greatest common divisor of (r − 3)(2r + 1) + r + 1 and 2r + 1 is equal
to 1. Thus, by Theorem 4.1.11, if n′ is an integer such that n′ ≥ 2r((r −
3)(2r + 1) + r), then there exist non-negative integers p and q such that
n′ = p((r − 3)(2r + 1) + r + 1) + q(2r + 1). Therefore, if n is an integer such
that n ≥ 3r + 2 + 3 · 2r((r − 3)(2r + 1) + r) and n ≡ 2 (mod 3), then there
exist integers p ≥ 0 and q ≥ 0 such that n = 3r + 2 + p((r − 3)(6r + 3) +
3r + 3) + q(6r + 3).

Assume that n ≥ 3r+2+6r((r−3)(2r+1)+r) and n = 3k+2, where k
is an integer. Combining the lower bound of Theorem 4.1.1, Theorem 4.1.3
and Theorem 4.1.10 with the previous observation, we obtain that

k + 1 ≤ MLD
r (P3k) ≤ MLD

r (P3k+1) ≤ MLD
r (P3k+2) ≤ k + 1.

Therefore, MLD
r (P3k) = MLD

r (P3k+1) = MLD
r (P3k+2) = k + 1. Thus, the

following theorem immediately follows.
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Theorem 4.1.12. Let r be a positive integer such that r ≥ 5. If n ≥
3r + 2 + 6r((r − 3)(2r + 1) + r), then we have

MLD
r (Pn) =

⌈
n + 1

3

⌉
.

Theorem 4.1.10 provides one approach to form r-locating-dominating
codes in paths using Lemma 4.1.9. However, this lemma can also be applied
in other ways. For example, when k is an integer such that 0 ≤ k ≤ r − 3,

D(k) = {vr−2} ∪ L1(r + 1) ∪




k−1⋃

j=0

Lr−2−j(10r + 4 + j(6r + 3))





∪ Mr−2−k(10r + 4 + k(6r + 3))

is an optimal r-locating-dominating code in Pn with n = 12r + 5 + k(6r +
3). Notice that the optimal r-locating-dominating codes in paths of these
lengths cannot be obtained using Theorem 4.1.10.

4.1.4 The exact values of M
LD
3 (Pn) and M

LD
4 (Pn)

In this section, we solve the exact values of MLD
3 (Pn) and MLD

4 (Pn) for all
n. In order to do this, we first need to present some preliminary definitions
and results.

Define an infinite path P∞ = (V∞, E∞), where V∞ = {vi | i ∈ Z} and
E∞ = {vivi+1 | i ∈ Z}. Define then

C = {vi ∈ V∞ | i ≡ 0, 2 mod 6}.
In [41], it is stated that if r is an integer such that r ≥ 2 and r ≡ 1, 2, 3 or
4 (mod 6), then C is an r-locating-dominating code in P∞. This result is
rephrased in the following lemma when r = 3 and r = 4.

Lemma 4.1.13. Let n and k be integers such that

D = {vk, vk+2, vk+6, vk+8, vk+12, vk+14} ⊆ Vn.

If a pair (vi, vj) of D-consecutive vertices in Pn is such that k+5 ≤ i ≤ k+13
and k +5 ≤ j ≤ k +13, then vi and vj are 3- and 4-separated by a codeword
of D. Moreover, each vertex vi ∈ Vn \ D such that k + 6 ≤ i ≤ k + 11 is 3-
and 4-covered by a codeword of D.

Consider then r-locating-dominating codes in Pn when r = 3. By The-
orem 4.1.6, the exact values of MLD

3 (Pn) are known when 1 ≤ n ≤ 24. Let
p be an integer such that p ≥ 1. Define

D1(p) = {v1} ∪
(

p⋃

i=0

{v4+6i, v6+6i}
)

∪ {v9+6p, v14+6p, v15+6p, v17+6p}
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and

D2(p) = {v1}∪
(

p⋃

i=0

{v4+6i, v6+6i}
)
∪{v10+6p, v12+6p, v16+6p, v18+6p, v21+6p}.

It is easy to verify that D1(1) and D2(1) are 3-locating-dominating codes
in P26 and P29, respectively. Therefore, using Lemma 4.1.13, it is easy to
conclude that D1(p) and D2(p) are 3-locating-dominating codes in P20+6p

and P23+6p, respectively, when p ≥ 2. Moreover, by Theorem 4.1.1 and
Theorem 4.1.3, we have

|D1(p)| ≥ MLD
3 (P20+6p) ≥ MLD

3 (P19+6p) ≥ MLD
3 (P18+6p) ≥ 7 + 2p

and

|D2(p)| ≥ MLD
3 (P23+6p) ≥ MLD

3 (P22+6p) ≥ MLD
3 (P21+6p) ≥ 8 + 2p.

Since |D1(p)| = 7+2p and |D2(p)| = 8+2p, we have MLD
3 (Pn) = ⌈(n+1)/3⌉

for any n ≥ 24. In conclusion, all the values of MLD
3 (Pn) are determined.

Consider then r-locating-dominating codes in Pn when r = 4. By The-
orem 4.1.6, the exact values of MLD

4 (Pn) are known when 1 ≤ n ≤ 31.
Assume now that p ≥ 0. Define

D3(p) = {v1, v5, v7, v8} ∪
(

p⋃

i=0

{v13+6i, v15+6i}
)

∪ {v20+6p, v21+6p, v23+6p, v27+6p}

and

D4(p) = (D3(p) \ {v27+6p}) ∪ {v28+6p, v31+6p, v34+6p, v36+6p}
∪ {v39+6p, v42+6p, v47+6p, v49+6p, v50+6p, v53+6p}.

It is straightforward to verify that D3(0), D3(1), D4(0) and D4(1) are 4-
locating-dominating codes in P29, P35, P56 and P62, respectively. Therefore,
using Lemma 4.1.13, it is easy to conclude that D1(p) and D2(p) are 4-
locating-dominating codes in P29+6p and P56+6p, respectively, when p ≥ 2.
Moreover, by Theorem 4.1.1 and Theorem 4.1.3, we have

|D3(p)| ≥ MLD
4 (P29+6p) ≥ MLD

4 (P28+6p) ≥ MLD
4 (P27+6p) ≥ 10 + 2p

and

|D4(p)| ≥ MLD
4 (P56+6p) ≥ MLD

4 (P55+6p) ≥ MLD
4 (P54+6p) ≥ 19 + 2p.

Since |D3(p)| = 10 + 2p and |D4(p)| = 19 + 2p, we obtain that MLD
4 (Pn) =

⌈(n + 1)/3⌉ when 27 + 6p ≤ n ≤ 29 + 6p and 54 + 6p ≤ n ≤ 56 + 6p (p ≥ 0).
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In conclusion, the values of MLD
4 (Pn) are determined except when n = 32,

36 ≤ n ≤ 38, 42 ≤ n ≤ 44 or 48 ≤ n ≤ 50.
By Theorem 4.1.6, we have MLD

4 (P31) = 12. Therefore, by Theo-
rem 4.1.3, since MLD

4 (P35) = 12, we obtain that MLD
4 (P32) = 12. Define

then

D37 = {v2, v3, v5, v6, v13, v16, v17, v19, v23, v29, v30, v31, v33},

D43 = {v2, v3, v5, v8, v10, v16, v18, v21, v23, v24, v31, v34, v35, v37, v41}
and

D49 = {v2, v5, v6, v8, v13, v16, v19, v20, v26, v27, v30, v33, v38, v40, v41, v42, v48}.

It is easy to verify that D37, D43 and D49 are 4-locating-dominating codes,
respectively, in P37, P43 and P49 attaining the lower bound of Theorem 4.1.1.
Therefore, by Theorem 4.1.3, we also have the optimal 4-locating-dominating
codes for the paths P36, P42 and P48. By Theorem 4.1.7, we obtain that
MLD

4 (P44) ≥ 16. On the other hand, we have MLD
r (P44) ≤ MLD

r (P45) = 16.
Hence, MLD

4 (P44) = 16.
Now the only open values are MLD

4 (P38) and MLD
4 (P50). By the previous

constructions, we know that MLD
4 (P38) ≤ MLD

4 (P39) = 14 and MLD
4 (P50) ≤

MLD
4 (P51) = 18. By an exhaustive computer search, we have been able to

prove that there are no 4-locating-dominating codes in P38 and P50 with 13
and 17 codewords, respectively. Hence, MLD

4 (P38) = 14 and MLD
4 (P50) =

18. In conclusion, all the values of MLD
4 (Pn) are determined.

4.2 Locating-dominating codes in cycles

For the rest of the section (unless otherwise stated), let n be a positive
integer such that n ≥ 3. Previously, locating-dominating codes in cycles
have been studied in the papers [6], [20] and [72]. By Slater [72], we know
that MLD

1 (Cn) = ⌈2n/5⌉ for any n ≥ 3. For radius r ≥ 2, Bertrand et al. [6]
(see Theorem 4.2.3) provide the lower bound

MLD
r (Cn) ≥

⌈n

3

⌉
. (4.2)

In [6, Theorem 14], it is also shown that for each r ≥ 2 there exists an infinite
family of n such that MLD

r (Cn) = ⌈n/3⌉. In particular, it is shown that if r
is even, n > 6 and n ≡ 0 (mod 3r), or if r is odd and n ≡ 0 (mod 3r + 3),
then the lower bound is attained.

The exact values of MLD
r (Cn) are determined in [20] for r = 2. In

particular, it is shown that for n > 6 we have

MLD
2 (Cn) =

{
n/3 + 1 if n ≡ 3 (mod 6)
⌈n/3⌉ if n 6≡ 3 (mod 6).
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In Section 4.2.4, we determine the exact values of MLD
3 (Cn) and MLD

4 (Cn).
For the summary of the results in these cases, we refer to Theorem 4.2.19. In
Section 4.2.3, we prove that for any r ≥ 5 and n ≥ nr when nr is large enough
(nr = O(r3)) we have constructions according to which MLD

r (Cn) ≤ n/3+1
if n ≡ 3 (mod 6) and MLD

r (Cn) ≤ ⌈n/3⌉ otherwise. The latter constructions
are optimal by the lower bound (4.2). Using the evidence provided in Sec-
tions 4.2.2 and 4.2.4, we conjecture that also the constructions in the case
n ≡ 3 (mod 6) are optimal.

In what follows, we begin by introducing some basic results concerning r-
locating-dominating codes in cycles in Section 4.2.1. Then, in Section 4.2.2,
we proceed by considering r-locating-dominating codes in cycles Cn with
small n (for a given r). In Section 4.2.3, we present constructions for r-
locating-dominating codes in cycles for general r and, in Section 4.2.4, we
consider r-locating-dominating codes in cycles when 2 ≤ r ≤ 4.

4.2.1 Basics on location-domination in cycles

We first present some useful observations concerning r-locating-dominating
codes in cycles. Recall the concept of C-consecutive vertices defined in the
case of paths in Section 4.1.1. In the case of cycles, we again say that two
vertices form a pair of C-consecutive vertices if all the vertices between them
are codewords. Formally, assuming i and j are non-negative integers, we say
that (vi, vj) is a pair of C-consecutive vertices in Cn if vi, vj ∈ Vn \ C and
vk ∈ C for all k = i + 1, i + 2, . . . , j − 1 or for all k = j + 1, j + 2, . . . , i − 1.
Recall that the indices of the vertices in Cn are calculated modulo n. The
following lemma is previously presented in [6, Remark 4].

Lemma 4.2.1 ([6]). If C ⊆ Vn is a code in Cn, then each codeword of C
can r-separate at most two pairs of C-consecutive vertices.

In Lemma 4.1.2, a useful characterization of r-locating-dominating codes
in paths is presented. The following lemma provides similar characterization
in the case of cycles.

Lemma 4.2.2. A code C ⊆ Vn is r-locating-dominating in Cn if and only if

(i) each vertex u ∈ Vn \ C is r-covered by a codeword of C,

(ii) each pair (u, v) of C-consecutive vertices in Cn is r-separated by C and

(iii) there exists at most one vertex u ∈ Vn \ C such that Ir(u) = C.

Proof. If C is an r-locating-dominating code in Cn, then the conditions (i),
(ii) and (iii) immediately follow. Assume then that C ⊆ Vn is a code satis-
fying these three conditions. By the assumption, all the vertices of Vn are
r-covered by a codeword of C. Let then u and v be two distinct vertices
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of Vn. If Ir(u) = C, then by the condition (iii), the vertices u and v are
r-separated by a codeword.

Hence, we may assume that Ir(u) 6= C and Ir(v) 6= C. If the intersection
of Ir(v) and C \Ir(u) is nonempty, then the vertices u and v are r-separated
by a codeword of C. Otherwise, we have Ir(v) ⊆ Ir(u). Then there exists a
non-codeword w ∈ Vn such that (u,w) is a pair of C-consecutive vertices and
the symmetric difference Ir(u)△ Ir(w) is a subset of Ir(u)△ Ir(v). (Notice
that if (u, v) is pair of C-consecutive vertices, then v = w.) Therefore, by
the condition (ii), we have Ir(u) 6= Ir(v).

In the previous characterization, the condition (iii) is necessary. Indeed,
consider a code {v0, v2} in C6 when r = 2. Now the conditions (i) and (ii)
clearly hold. However, the code is not 2-locating-dominating in C6 since
Ir(v1) = Ir(v4) = {v0, v2}. Notice also that if n ≥ 4r + 2 and the condition
(i) holds, then there is no vertex u ∈ Vn \ C such that Ir(u) = C.

The following lower bound is presented in [6, Theorem 13]. In order to
prove Lemma 4.2.4, we include the proof of the lower bound here.

Theorem 4.2.3 ([6]). For all integers n ≥ 3 and r ≥ 2, we have

MLD
r (Cn) ≥

⌈n

3

⌉
.

Proof. Let C be an r-locating-dominating code in Cn. By Lemma 4.2.1, each
codeword of C can r-separate at most two pairs of C-consecutive vertices.
On the other hand, by Lemma 4.2.2, each pair of C-consecutive vertices has
to be r-separated by at least one codeword. Hence, we have 2|C| ≥ n− |C|.
This implies the assertion.

The next lemma immediately follows from the previous proof.

Lemma 4.2.4. Let n be divisible by three and r ≥ 2. If C is an r-locating-
dominating code in Cn with n/3 codewords, then

(i) each codeword r-separates exactly two pairs of C-consecutive vertices
and

(ii) each pair of C-consecutive vertices is r-separated by exactly one code-
word of C.

For future considerations, we introduce the concept of C-block of code-
words. Let t be a positive integer. As in Section 3.2, we denote Qt(i) =
{vi, vi+1, . . . , vi+t−1} (i ∈ Zn). Let then C ⊆ Vn be a code. We say that
Qt(i) is a C-block (of codewords) if the vertices vi, vi+1, . . . , vi+t−1 ∈ C and
vi−1, vi+t /∈ C. Moreover, if Qt(i) is a C-block of codewords, then the length
of the C-block is t. Notice that if Qt(i) is a C-block, then (vi−1, vi+t) is a
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pair of C-consecutive vertices. Notice also that if vi−1, vi+1 /∈ C and vi ∈ C,
then we say that {vi} is a C-block of length one.

Now we are ready to present the following two lemmas.

Lemma 4.2.5. Let n be divisible by three and r ≥ 2. If C is an r-locating-
dominating code in Cn with n/3 codewords, then the length of any C-block
of codewords is at most r − 1.

Proof. Let C be an r-locating-dominating code in Cn with n/3 codewords.
Assume that there exists a C-block Qt(i) of length t ≥ r + 1. Then it
is immediately clear that vi (and vi+t−1) r-separate at most one pair of
C-consecutive vertices. This is a contradiction with Lemma 4.2.4 (i).

Assume then that Qr(i) is a C-block of length r. Since (vi−1, vi+r) is a
pair of C-consecutive vertices, the symmetric difference Ir(vi−1)△ Ir(vi+r)
contains exactly one codeword of C by Lemma 4.2.4 (ii). Therefore, without
loss of generality, we may assume that Ir(vi+r)\Ir(vi−1) = ∅. Since the pairs
(vj, vj+1) of C-consecutive vertices, where j = i+r, i+r+1, . . . , i+2r−1, are
r-separated by exactly one codeword of C and vj−r ∈ Ir(vj) \ Ir(vj+1), the
vertices vi+2r+1, vi+2r+2, . . . , vi+3r /∈ C. Hence, the set Ir(vi+2r) is empty (a
contradiction). Thus, the claim follows.

Lemma 4.2.6. Let n be divisible by three and r ≥ 2. If C is an r-locating-
dominating code in Cn with n/3 codewords, then the number of C-blocks of
codewords is even.

Proof. Let C be an r-locating-dominating code in Cn with n/3 codewords.
Assume that Qt(i) is a C-block (for appropriate integers i and t). Hence,
(vi−1, vi+t) is a pair of C-consecutive vertices. This pair is r-separated by
a unique codeword. Assume that this codeword belongs to the C-block
Qt′(i

′) (for some appropriate integers i′ and t′). Now the pair (vi′−1, vi′+t′)
of C-consecutive vertices is clearly r-separated by a unique codeword that
belongs to the C-block Qt(i). Therefore, each C-block can be uniquely
paired to another C-block. Thus, the number of C-blocks is even.

4.2.2 Cycles with a small number of vertices

In this section, we consider r-locating-dominating codes in Cn with small
n (for a given r). The following easy theorem gives the exact values of
MLD

r (Cn) when 3 ≤ n ≤ 2r + 1.

Theorem 4.2.7. Let n and r be positive integers such that 3 ≤ n ≤ 2r + 1
and r ≥ 2. Then we have

MLD
r (Cn) = n − 1.
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Proof. Let C be an r-identifying code in Cn. Assume that |C| ≤ n−2. Then
there exist u, v ∈ Vn\C such that u 6= v. Since Br(u) = Br(v) = Vn, we have
Ir(u) = C and Ir(v) = C (a contradiction). Therefore, we have |C| ≥ n− 1.
On the other hand, {v0, v1, . . . , vn−2} is an r-locating-dominating code in Cn

with n − 1 codewords. Thus, we have MLD
r (Cn) = n − 1.

The following two theorems consider r-locating-dominating codes in the
cycles of length 2r + 2 and 2r + 3.

Theorem 4.2.8. Let r ≥ 2. Then we have

MLD
r (C2r+2) = r + 1.

Proof. Let C be an r-locating-dominating code in Cn with n = 2r + 2. For
vi ∈ Vn \ C, consider sets B′

r(vi) = Vn \ Br(vi) = {vi+r+1}. Since C is an
r-locating-dominating code in C2r+2, the sets B′

r(vi) ∩ C are unique for all
vi ∈ Vn \ C. Assume then that |C| ≤ r. Since now |Vn \ C| ≥ r + 2, there
exist (by the pigeonhole principle) vertices vi, vj ∈ Vn \ C such that vi 6= vj

and B′
r(vi) ∩ C = B′

r(vj) ∩ C (a contradiction). Thus, we have |C| ≥ r + 1.
By Lemma 4.2.2, it is straightforward to verify that {v0, v1, . . . , vr} is

an r-locating-dominating code in C2r+2. Therefore, we have MLD
r (C2r+2) =

r + 1.

Theorem 4.2.9. Let r ≥ 2. Then we have

MLD
r (C2r+3) ≥

⌈
2(2r + 2)

5

⌉
.

Proof. Let C be an r-locating-dominating code in Cn with n = 2r + 3. For
vi ∈ Vn \C, consider again the sets B′

r(vi) = Vn \Br(vi) = {vi+r+1, vi+r+2}.
Since C is an r-locating-dominating code in C2r+3, the sets B′

r(vi) ∩ C are
unique for all vi ∈ Vn\C. Hence, at most one of the sets B′

r(vi) can be empty
and at most |C| of them contains only one codeword of C. On the other
hand, each codeword can belong to at most two sets B′

r(vi). Therefore, we
have the inequality |C|+2(n−2|C|−1) ≤ 2|C|. Thus, the claim immediately
follows.

Let r = 5r′ + 1, where r′ is a positive integer. Now, by the previous
theorem and the fact that 2r + 3 = 5(2r′ + 1), we have MLD

r (C2r+3) =
MLD

r (C5(2r′+1)) ≥ 2(2r′ + 1). Define then

C =
2r′⋃

i=0

{v5i, v5i+1}.

It is straightforward to deduce that C is an r-locating-dominating code in
C2r+3 attaining the lower bound of Theorem 4.2.9. Thus, we have an infinite
family of radii r for which MLD

r (C2r+3) = ⌈2(2r + 2)/5⌉.
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Let us then determine the exact values of MLD
r (C3r) and MLD

r (C3r+3).
The following theorem, which solves the exact values of MLD

r (C3r) when r is
even and MLD

r (C3r+3) when r is odd, have previously been presented in [6].

Theorem 4.2.10 ([6]). Let r be an integer such that r ≥ 3.

(i) If r is odd, then MLD
r (C3r+3) = r + 1.

(ii) If r is even, then MLD
r (C3r) = r.

The remaining cases are solved in the following theorem.

Theorem 4.2.11. Let r be an integer such that r ≥ 3.

(i) If r is even, then MLD
r (C3r+3) = r + 2.

(ii) If r is odd, then MLD
r (C3r) = r + 1.

Proof. (i) Let r ≥ 3 be an even integer. Assume that C is an r-locating-
dominating code in C3r+3 with r + 1 codewords. Let us first show that now
each C-block of codewords is of length one. Assume to the contrary that
Qt(i) is a C-block of codewords with t ≥ 2 (for an appropriate integer i).
Now (vi−1, vi+t) is a pair of C-consecutive vertices. The symmetric differ-
ence Br(vi−1)△Br(vi+t) = Qt+1(i−r−1)∪Qt+1(i+r) contains at most one
codeword, by Lemma 4.2.4 (ii). Without loss of generality, we may assume
that Qt+1(i − r − 1) ∩ C is empty. Since the pairs (vi−r+t−2, vi−r+t−1) and
(vi−r+t−3, vi−r+t−2) of C-consecutive vertices are r-separated, respectively,
by the codewords vi+t−1 and vi+t−2, the vertices vi−2r+t−2 and vi−2r+t−3 do
not belong to C, by Lemma 4.2.4 (ii). By the considerations above, the sym-
metric difference Br(vi−2r+t−3)△Br(vi−2r+t−2) = {vi−3r+t−3, vi−r+t−2} =
{vi+t, vi−r+t−2} does not contain codewords of C (a contradiction). Hence,
each C-block is of length one.

By Lemma 4.2.6, we know that the number of C-blocks is even. There-
fore, by the fact that each C-block is of length one, it immediately follows
that the number of codewords in C is even. However, this contradicts the
assumption that the number of vertices in C is equal to r + 1. Thus, there
does not exist an r-locating-dominating code in C3r+3 with r +1 codewords.
Hence, we have MLD

r (C3r+3) ≥ r + 2. On the other hand, it is straight-
forward to verify (using Lemma 4.2.2) that {v0, v1, . . . , vr, v2r+1} is an r-
locating-dominating code in C3r+3 with r + 2 codewords. Thus, we have
MLD

r (C3r+3) = r + 2.
(ii) Let r ≥ 3 be an odd integer. Assume that C is an r-locating-

dominating code in C3r with r codewords. Using similar ideas as in the
case (i), it can be shown that each C-block is of length one. Then a contra-
diction again follows using Lemma 4.2.6. Thus, we have MLD

r (C3r) ≥ r + 1.
On the other hand, it is easy to verify that {v0, v1, . . . , vr} is an r-locating-
dominating code in C3r. Therefore, we have MLD

r (C3r) = r + 1.
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4.2.3 Cycles with a large number of vertices

Let r be an integer such that r ≥ 5. In this section, we prove that for any
n ≥ nr when nr is large enough we have constructions showing MLD

r (Cn) ≤
n/3 + 1 if n ≡ 3 (mod 6) and MLD

r (Cn) ≤ ⌈n/3⌉ if n 6≡ 3 (mod 6). By
Theorem 4.2.3, the latter constructions are optimal.

The following theorem provides a useful relation between the optimal
r-locating-dominating codes in cycles and paths.

Theorem 4.2.12. Let n ≥ 4r + 2. Then we have MLD
r (Cn) ≤ MLD

r (Pn+1).

Proof. Let C be an r-locating-dominating code in Pn+1. Recall that the
vertex sets of Pn+1 and Cn are equal to Vn+1 and Vn = Vn+1 \ {vn}, respec-
tively. Assume first that vn /∈ C. Now each pair of C-consecutive vertices
in Cn is r-separated by C, since each pair of C-consecutive vertices in Pn+1

is r-separated by C. It is also easy to see that all the vertices of Cn are r-
covered by a codeword of C and that there does not exist a vertex u ∈ Vn\C
such that Br(u) = C (since n ≥ 4r + 2). Therefore, by Lemma 4.2.2, C is
an r-locating-dominating code in Cn.

If v0 /∈ C, then the proof is analogous to the previous case. Hence, as-
sume that v0 and vn both belong to C. Let then vi, vj , vk ∈ Vn\C be vertices
such that v0, v1, . . . , vi−1 ∈ C, vj+1, vj+2, . . . , vn ∈ C and vi+1, vi+2, . . . , vk−1

∈ C. In other words, (vj , vi) and (vi, vk) are pairs of C-consecutive ver-
tices. Consider then the code C ′ = C \ {vn} in Cn. It is straightforward
to verify that all the pairs except (vj , vi) of C ′-consecutive vertices in Cn

are r-separated by C ′. Moreover, the symmetric difference of Br(vj) and
Br(vk) contains a codeword of C ′. Therefore, by Lemma 4.2.2, C ′ ∪ {vi}
is an r-locating dominating code in Cn. Thus, in conclusion, we have
MLD

r (Cn) ≤ MLD
r (Pn+1).

Assume that r ≥ 5 and n ≥ 3r + 2 + 6r((r − 3)(2r + 1) + r). Now, by
Lemma 4.1.12, we have MLD

r (Pn) = ⌈(n + 1)/3⌉. Hence, if n ≡ 1 (mod 3),
then ⌈n

3

⌉
≤ MLD

r (Cn) ≤ MLD
r (Pn+1) =

⌈
n + 2

3

⌉
.

Therefore, MLD
r (Cn) = ⌈n/3⌉. If n ≡ 3 (mod 6), we similarly obtain that

n/3 ≤ MLD
r (Cn) ≤ MLD

r (Pn+1) = n/3 + 1. We also conjecture that
MLD

r (Cn) = n/3+1 (see Conjecture 4.2.17). In what follows, we give optimal
constructions for the remaining cases when n ≡ 0, 2 or 5 (mod 6).

For this, first recall the definitions of Ki(s), Li(s), Mi(s) and M ′
i(s),

and the corresponding patterns Ki, Li and Mi from Section 4.1.3. Notice
that Lemma 4.1.9 can also be used in the case of cycles by replacing each
occurrence of Pn with Cn. Finally, recall the definition of the set C(s) (from
Section 4.1.3).
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Figure 4.3: The r-locating-dominating code C0 illustrated when r = 5. The
pattern C, which is obtained by concatenating the patterns K1, K2 and K3,
is repeated p times and the concatenation of K1 and L2 is repeated q times.

The following constructions in the case of cycles are quite similar to the
ones in the case of paths. However, attention needs to be paid to details.
First let m = p((r − 3)(6r + 3) + 3r + 3) + q · 2(6r + 3), where p and q are
non-negative integers. Define then

C0 =

p−1⋃

j=0

C(j((r − 3)(6r + 3) + 3r + 3))

∪
q−1⋃

j=0

K1(p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q−1⋃

j=0

L2(p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3)).

The code C0 is illustrated in Figure 4.3 when r = 5. Notice that
M ′

i(s) ⊆ Ki(s) and M ′
2(s) ⊆ L2(s) for any s. Therefore, by Lemma 4.1.9,

it is immediate that each pair (vj , vk) of C0-consecutive vertices in Cm is r-
separated by C0. It is also obvious that all the vertices in Cm are r-covered
by a codeword of C0 and that there does not exist a vertex u ∈ Vm \C0 such
that Ir(u) = C0. Thus, by Lemma 4.2.2, it is easy to conclude that C0 is an
r-locating-dominating code in Cm with m/3 codewords.

Notice further that the greatest common divisor of (r−3)(6r+3)+3r+3
and 2(6r+3) is equal to 6. Hence, the greatest common divisor of 1/2 · ((r−
3)(2r +1)+ r +1) and 2r +1 is equal to 1. Thus, by Theorem 4.1.11, if n′ is
an integer such that n′ ≥ r((r− 3)(2r + 1)+ r− 1), there exist non-negative
integers p and q such that n′ = p/2 · ((r − 3)(2r + 1) + r + 1) + q(2r + 1).
Therefore, if n is an integer such that n ≥ 6r((r − 3)(2r + 1) + r − 1)
and n ≡ 0 (mod 6), then there exist integers p ≥ 0 and q ≥ 0 such that
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n = p((r − 3)(6r + 3) + 3r + 3) + q · 2(6r + 3). Thus, if n is an integer such
that n ≥ 6r((r−3)(2r+1)+r−1) and n ≡ 0 (mod 6), then by the previous
construction we have MLD

r (Cn) ≤ n/3.
Let m = 6r + 2 + p((r − 3)(6r + 3) + 3r + 3) + q · 2(6r + 3), where p and

q are non-negative integers. Define

C2 = Kr−2(r − 1) ∪
p−1⋃

j=0

C(4r + 2 + j((r − 3)(6r + 3) + 3r + 3))

∪
q−1⋃

j=0

K1(4r + 2 + p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q−1⋃

j=0

L2(4r + 2 + p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3))

∪ M1(4r + 2 + p((r − 3)(6r + 3) + 3r + 3) + 2q(6r + 3)).

By Lemma 4.1.9, it is immediate that if (vi, vj) is a pair of C2-consecutive
vertices in Cm such that r − 1 ≤ i ≤ m − r − 1 and r − 1 ≤ j ≤ m − r − 1,
then (vi, vj) is r-separated by C2. Consider then the remaining pairs of
C2-consecutive vertices. For the following considerations, we first recall
that M1(m− 2r) = {v−2r, v−2r+1, . . . , v−r−3, v−r−1, v−1} and Kr−2(r− 1) =
{vr−1, vr+1, vr+2, . . . , v2r−2, v3r−1, v3r+1}. Now it is easy to see that the
pairs (v−r−2, v−r) and (vr−2, vr) are r-separated by the codeword v−1 and
the pair (v−2, v0) is r-separated by the codeword vr−1. Furthermore, for
all i = −r,−r + 1, . . . ,−3 and j = 0, 1, . . . , r − 3 the pairs (vi, vi+1) and
(vj, vj+1) are r-separated by the codewords vi−r and vj+1+r, respectively.
Thus, each pair of C2-consecutive vertices in Cm is r-separated by C2. There-
fore, by Lemma 4.2.2, it is straightforward to verify that C2 is an r-locating-
dominating code in Cm with ⌈m/3⌉ codewords. Thus, as in the previous case,
if n is an integer such that n ≥ 6r +2+6r((r−3)(2r +1)+ r−1) and n ≡ 2
(mod 6), then by the construction above we have MLD

r (Cn) ≤ ⌈n/3⌉.
Let m = 12r + 5+ p((r− 3)(6r + 3)+ 3r + 3)+ q · 2(6r + 3), where p and

q are non-negative integers. Define

C5 = Kr−2(r) ∪
p−1⋃

j=0

C(4r + 3 + j((r − 3)(6r + 3) + 3r + 3))

∪
q⋃

j=0

K1(4r + 3 + p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q−1⋃

j=0

L2(4r + 3 + p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3))

∪ M2(4r + 3 + p((r − 3)(6r + 3) + 3r + 3) + (2q + 1)(6r + 3)).
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Again, using Lemmas 4.1.9 and 4.2.2, it can be shown that C5 is an r-
locating-dominating code in Cm with ⌈m/3⌉ codewords. Thus, if n is an
integer such that n ≥ 12r + 5 + 6r((r − 3)(2r + 1) + r − 1) and n ≡ 5
(mod 6), then by the previous construction MLD

r (Cn) ≤ ⌈n/3⌉.
Combining the previous results with the lower bound of Theorem 4.2.3,

we immediately obtain the following theorem.

Theorem 4.2.13. Let r ≥ 5 and n ≥ 12r + 5 + 6r((r − 3)(2r + 1) + r − 1).

(i) If n 6≡ 3 (mod 6), then MLD
r (Cn) = ⌈n/3⌉.

(ii) If n ≡ 3 (mod 6), then n/3 ≤ MLD
r (Cn) ≤ n/3 + 1.

In the latter case of the previous theorem, we conjecture that actually
MLD

r (Cn) = n/3 + 1 (see Conjecture 4.2.17). Furthermore, if r is an odd
integer such that r ≥ 5, it has been shown in [26] that for the previous
theorem to hold it is enough that n ≥ 6r+1+(r−1)(3r+3) (i.e. n = O(r2)).

4.2.4 The exact values of M
LD
r (Cn) when 2 ≤ r ≤ 4

In this section, we consider r-locating-dominating codes in Cn when 2 ≤ r ≤
4. The exact values of MLD

2 (Cn) are determined in [20]. In particular, it
is shown that for n > 6 if n ≡ 3 (mod 6), then MLD

2 (Cn) = n/3 + 1, else
MLD

2 (Cn) = ⌈n/3⌉. In the following theorem, we provide an alternative (and
shorter) proof for the lower bound in the case n ≡ 3 (mod 6).

Theorem 4.2.14 ([20]). Let n ≡ 3 (mod 6). Then we have

MLD
2 (Cn) ≥ n/3 + 1.

Proof. Let C be a 2-locating-dominating code in Cn with n/3 vertices. Now,
by Lemma 4.2.5, each C-block is of length one. By Lemma 4.2.6, the number
of C-blocks is even. Hence, by combining these two observations, the number
of codewords of C is even. This contradicts with the fact that |C| = n/3 (an
odd integer since n ≡ 3 (mod 6)). Thus, we have MLD

2 (Cn) ≥ n/3 + 1.

With our new approach, a lower bound similar to the previous theorem
can also be proved when r = 3 and r = 4. The following theorem shows the
result for 3-locating-dominating codes.

Theorem 4.2.15. Let n ≡ 3 (mod 6). Then we have

MLD
3 (Cn) ≥ n/3 + 1.

Proof. Let C be a 3-locating-dominating code in Cn with n/3 vertices.
Notice that each C-block of codewords is now at most of length 2 (by
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Lemma 4.2.6). In what follows, we show that the number of C-blocks of
length two is even.

Recall that according to Lemma 4.2.4 each pair of C-consecutive ver-
tices is 3-separated by exactly one codeword of C. Assume then that
{vi, vi+1} is a C-block of length two. By the previous observation, the
set Br(vi−1)△Br(vi+2) contains exactly one codeword of C. Without loss
of generality, we may assume that vi−4, vi−3 and vi−2 do not belong to
C. Then either vi+3 or vi+5 belongs to C. (Notice that if vi+4 ∈ C, then
the pair (vi+3, vi+5) of C-consecutive vertices is 3-separated by at least two
codewords.)

Assume first that vi+5 ∈ C. If now vi+6 /∈ C, then the pair (vi+2, vi+3)
of C-consecutive vertices is not r-separated by any codeword of C. Hence,
vi+6 ∈ C and further vi+7 /∈ C. Therefore, {vi+5, vi+6} is also a C-block
of length two. Since the neighbourhoods of the C-blocks {vi, vi+1} and
{vi+5, vi+6} are symmetrical to each other, these C-blocks of length two can
be paired with each other.

Assume then that vi+3 ∈ C. Considering now the pairs (vi+2, vi+4),
(vi+4, vi+5) and (vi+6, vi+7), we obtain that vi+6, vi+7, vi+8 and vi+10 do not
belong to C. The pairs (vi+5, vi+6) and (vi+7, vi+8) of C-consecutive vertices
imply that vi+9 and vi+11 belong to C. By the fact that now (vi+8, vi+10)
is a pair of C-consecutive vertices, we know that either vi+12 or vi+13 is a
codeword of C. If vi+12 ∈ C, then {vi+11, vi+12} is a C-block and the neigh-
bourhoods of the C-blocks {vi, vi+1} and {vi+11, vi+12} are symmetrical to
each other. Therefore, these C-blocks of length two can be paired with each
other. Assume then that vi+13 ∈ C. Consider then the symmetric differ-
ence Br(vi+10)△Br(vi+12), where (vi+10, vi+12) is a pair of C-consecutive
vertices. Now either vi+14 or vi+15 belongs to C. If vi+14 ∈ C, then the
pair (vi+12, vi+15) of C-consecutive vertices is 3-separated by at least two
codewords (a contradiction). Therefore, vi+15 belongs to C. Using similar
arguments as above, we obtain that vi+16, vi+17, vi+18, vi+19, vi+20, vi+22 /∈ C
and vi+21, vi+23 ∈ C. The situation is now analogous to the one in which we
considered the pair (vi+8, vi+10) of C-consecutive vertices instead that here
we have the pair (vi+20, vi+22).

The previous reasonings can now be repeated. However, since we are
operating in a cycle, at some point the repetition has to end. Therefore, for
some integer k ≥ 0 we have that {vi, vi+1} and {vi+11+12k, vi+12+12k} are
C-blocks with symmetrical neighbourhoods. Clearly, the sets {vi, vi+1} and
{vi+11+12k, vi+12+12k} do not coincide. Thus, these C-blocks of length two
can be paired with each other. In conclusion, each C-block of length two
can be uniquely paired to another C-block of length two. Therefore, the
number of C-blocks of length two is even.

By Lemma 4.2.6, the number of C-blocks is even. Hence, by the previous
considerations, the number of C-blocks of length one is also even. Thus, the
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number of codewords of C is even. This contradicts with the fact that
|C| = n/3 is odd. Therefore, we have MLD

3 (Cn) ≥ n/3 + 1.

In the following theorem, a lower bound similar to the one in Theo-
rems 4.2.14 and 4.2.15 is presented for 4-locating-dominating codes in cy-
cles.

Theorem 4.2.16. Let n ≡ 3 (mod 6). Then we have

MLD
4 (Cn) ≥ n/3 + 1.

Proof. Let C be a 4-locating-dominating code in Cn with n/3 vertices. As
earlier, we start by showing that the number of C-blocks of length two is
even.

Let {vi, vi+1} be a C-block of length two. Without loss of generality,
we can again assume that vi−5, vi−4 and vi−3 do not belong to C. As in
the previous proof, we can also conclude that vi+5 does not belong to C.
Moreover, since vi−1 and vi+2 are 4-separated by C, either vi+4 ∈ C or
vi+6 ∈ C by Lemma 4.2.4.

In what follows, we are going to classify C-blocks of length two into
different types depending on their neighbourhood. If {vi+6, vi+7, vi+8} is a
C-block of length three, then we say that C-block {vi, vi+1} is of type A1. If
{vi+6, vi+7} is a C-block of length two, then a contradiction follows since the
pair (vi+3, vi+4) of C-consecutive vertices is not 4-separated by a codeword.
Assume that {vi+6} is a C-block of length one. Then vi+4 does not belong
to C. If vi+3 /∈ C, then the C-block {vi, vi+1} is said to be of type A2.
Assume further that vi+3 ∈ C. If now vi−2 /∈ C, then we say that {vi, vi+1}
is of type A3, else it is of type A4.

If {vi+3, vi+4} is a C-block of length two, then (vi+6 /∈ C and) {vi, vi+1}
is of type A5. Assume now that {vi+4} is a C-block of length one. Then
vi+6 does not belong to C. If vi−2 ∈ C, then the C-block {vi, vi+1} is of
type A6, else it is of type A7.

For each of the previous types Ai we also have a symmetrical pair A′
i

which is considered as a reflection of the neighbourhood of type Ai (between
the vertices vi and vi+1). For example, if vi−4, vi+4, vi+5, vi+6 /∈ C and
{vi−7, vi−6, vi−5} is a C-block of length three, then we say that C-block
{vi, vi+1} is of type A′

1. By the previous considerations, it is straightforward
to verify that each C-block of length two is one of the types Ai or A′

i.
Assume that the C-block {vi, vi+1} is of type A′

1. Then vi−2, vi−1,
vi+2, vi+3, vi+4, vi+5 and vi+6 do not belong to C. Considering the pairs
(vi+2, vi+3), (vi+3, vi+4), (vi+4, vi+5) and (vi+5, vi+6) of C-consecutive ver-
tices, we have that vi+7, vi+8 ∈ C and vi+9, vi+10 /∈ C. The pair (vi+9, vi+10)
of C-consecutive vertices imply that vi+14 ∈ C. Therefore, considering
the pair (vi+6, vi+9) of C-consecutive vertices, we obtain that the C-block
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{vi+7, vi+8} of length two is either of type A1 or A7. The proof of the fol-
lowing symmetrical result is analogous: if the C-block {vi, vi+1} is of type
A1, then the C-block {vi−7, vi−6} of length two is either of type A′

1 or A′
7.

Assume that the C-block {vi, vi+1} is of type A2. Then the vertices vi+2,
vi+3, vi+4 and vi+5 do not belong to C. Considering the pairs (vi+2, vi+3),
(vi+3, vi+4) and (vi+4, vi+5) of C-consecutive vertices, it immediately fol-
lows that vi+7, vi+9 /∈ C and vi+8 ∈ C. Since vi+1 ∈ B4(vi+5)△B4(vi+7),
then vi+10, vi+11 /∈ C. Considering the pair (vi+7, vi+9) of C-consecutive
vertices, we know that either vi+12 or vi+13 belong to C. If vi+13 ∈ C,
then it is straightforward to conclude (using similar arguments as before)
that {vi+13, vi+14} is a C-block of type A′

2. Otherwise, it can be seen that
vi+12, vi+14 ∈ C and vi+13, vi+15, vi+16, vi+17 /∈ C. The situation is now anal-
ogous to the one in which we considered the pair (vi+7, vi+9) of C-consecutive
vertices instead that here we have the pair (vi+13, vi+15). The previous rea-
sonings can be repeated. However, since we are operating in a cycle, at some
point the repetition has to end. Therefore, for some non-negative integer k
we have that {vi, vi+1} and {vi+13+6k, vi+14+6k} are C-blocks of type A2 and
A′

2, respectively. The following symmetrical result also holds: if {vi, vi+1}
is a C-block of type A′

2, then for some non-negative integer k we have that
{vi−13−6k, vi−12−6k} is a C-block of type A2.

In the following, we list the results of the previous two paragraphs and
other analogous ones, which can be obtained using similar arguments:

• If {vi, vi+1} is a C-block of type A′
1, then {vi+7, vi+8} is a C-block

either of type A1 or A7.

• If {vi, vi+1} is a C-block of type A2, then for some non-negative integer
k we know that {vi+13+6k, vi+14+6k} is a C-block of type A′

2.

• If {vi, vi+1} is a C-block of type A′
3, then either {vi+11, vi+12} is a

C-block of type A′
6 or {vi+13, vi+14} is a C-block of type A′

4.

• If {vi, vi+1} is a C-block of type A4, then {vi+13, vi+14} is a C-block
either of type A3 or A5.

• If {vi, vi+1} is a C-block of type A′
5, then either {vi+11, vi+12} is a

C-block of type A′
6 or {vi+13, vi+14} is a C-block of type A′

4.

• If {vi, vi+1} is a C-block of type A6, then {vi+11, vi+12} is a C-block
either of type A3 or A5.

• If {vi, vi+1} is a C-block of type A′
7, then {vi+7, vi+8} is a C-block

either of type A1 or A7.

The obvious symmetrical results also hold. For example, if {vi, vi+1} is a
C-block of type A′

4, then {vi−13, vi−12} is a C-block either of type A′
3 or A′

5.
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The results listed above provide an approach to pair C-blocks of length
two. The C-block {vi, vi+1} depending on its type is paired with the C-
block of length two suggested by the previous results. For example, the
C-block {vi, vi+1} of type A′

3 is paired with {vi+11, vi+12} or {vi+13, vi+14}
depending on which one of these sets is a C-block. Using the results listed
above, it is straightforward to verify that this way each C-block of length
two is uniquely paired with another such one. Therefore, the number of
C-blocks of length two is even.

By Lemma 4.2.6, the number of C-blocks is even. Hence, since the
number of C-blocks of length two is even, the number of C-blocks that are
of length one or three is also even. Thus, the number of codewords of C is
even. This contradicts with the fact that |C| = n/3. Therefore, we have
MLD

4 (Cn) ≥ n/3 + 1.

Theorems 4.2.11, 4.2.14, 4.2.15 and 4.2.16 suggest the following conjec-
ture.

Conjecture 4.2.17. Let n be a positive integer such that n ≡ 3 (mod 6).
Then for any r we have

MLD
r (Cn) ≥ n/3 + 1.

Notice that when n is large enough (with respect to r), we believe that
the conjecture holds with equality, i.e. that MLD

r (Cn) = n/3 + 1 (recall
the constructions from the previous section). However, we do not have the
equality with small n. For example, by Theorem 4.2.7, we have MLD

4 (C9) =
8 > 4.

In what follows, we construct optimal r-locating-dominating codes in Cn

when 3 ≤ r ≤ 4. The following lemma, which is analogous to Lemma 4.1.13,
is needed in the constructions.

Lemma 4.2.18. Let n and k be integers such that

D = {vk, vk+2, vk+6, vk+8, vk+12, vk+14} ⊆ Vn.

If a pair (vi, vj) of D-consecutive vertices in Cn is such that k+5 ≤ i ≤ k+13
and k + 5 ≤ j ≤ k + 13, then vi and vj are 3- and 4-separated by D.
Moreover, for each vertex vi ∈ Vn \ D such that k + 6 ≤ i ≤ k + 11 we have
∅ ( I3(D; vi) ( D and ∅ ( I4(D; vi) ( D.

Consider then 3-locating-dominating codes in Cn. The exact values of
MLD

3 (Cn) when 3 ≤ n ≤ 8 are determined in Theorems 4.2.7 and 4.2.8. Let
p be a non-negative integer. Define then

D(p) =

p⋃

i=0

{v6i, v6i+2}.
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It is straightforward to verify that D(1) and D(2) are 3-locating-dominating
codes in C9, C10, C11, C12 and C15, C16, C17, C18, respectively. Therefore,
by combining Lemmas 4.2.2 and 4.2.18, it can be concluded that D(p) is a
3-locating-dominating code in C6p+3, C6p+4, C6p+5 and C6p+6 with 2(p + 1)
codewords when p ≥ 1. Similarly, it can be shown that D(p) ∪ {v6p+5} is
a 3-locating-dominating code in C6p+8 with 2p + 3 codewords when p ≥ 1.
Furthermore, D(p) ∪ {v6p+5, v6p+8, v6p+10} is a 3-locating-dominating code
in C6p+13 with 2p+5 codewords when p ≥ 0. In conclusion, the constructions
given above attain the lower bounds of Theorems 4.2.3 and 4.2.15. Thus,
the exact values of MLD

3 (Cn) are determined for all n.

Consider now 4-locating-dominating codes in Cn. By Theorems 4.2.7
and 4.2.8, the exact values of MLD

4 (Cn) are known when 3 ≤ n ≤ 10. By
Lemma 4.2.18, D1(p) is a 4-locating-dominating code in C6p+6 when p ≥ 2.
Using analogous arguments as above in the case r = 3, the following results
can be shown:

• The code D(p)∪{v6p+5, v6p+7, v6p+8} is 4-locating-dominating in C6p+13

with 2p + 5 codewords when p ≥ 0.

• The code D(p)∪{v6p+7} is 4-locating-dominating in C6p+8 with 2p+3
codewords when p ≥ 1.

• The code D(p) ∪ {v6p+4, v6p+7, v6p+9, v6p+10} is 4-locating-dominating
in C6p+15 with 2p + 6 codewords when p ≥ 0.

• The code D(p)∪{v6p+4, v6p+6} is 4-locating-dominating in C6p+10 with
2p + 4 codewords when p ≥ 1.

• For p ≥ 0, the code D(p)∪{v6p+7, v6p+8, v6p+10, v6p+15, v6p+18, v6p+21}
is 4-locating-dominating in C6p+23 with 2p + 8 codewords.

In conclusion, by Theorems 4.2.3 and 4.2.16, the exact values of MLD
4 (Cn)

are determined for all n except 11, 12 or 17. The missing values can be
easily determined since it is straightforward to verify that {v0, v1, v3, v4},
{v0, v2, v4, v6} and {v0, v1, v4, v7, v10, v11} are 4-locating-dominating codes in
C11, C12 and C17, respectively, attaining the lower bound of Theorem 4.2.3.

The following theorem summarizes the previous results on 3- and 4-
locating-dominating codes.

Theorem 4.2.19. Let n ≥ 3 and 3 ≤ r ≤ 4. Then we have the following
results:

(i) MLD
r (Cn) = n − 1 if 3 ≤ n ≤ 2r + 1.

(ii) MLD
r (C2r+2) = r + 1.
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(iii) MLD
r (Cn) = n/3 + 1 if n > 2r + 2 and n ≡ 3 (mod 6).

(iv) MLD
r (Cn) = ⌈n/3⌉ if n > 2r + 2 and n 6≡ 3 (mod 6).

In finding the optimal families of r-locating-dominating codes in the cases
r = 3 and r = 4, some computer searches were applied to obtain the initial
codes. A brief explanation of the used algorithms can be found in [27].
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Chapter 5

Optimal 2-identifying code in

the hexagonal grid

Previously, a 2-identifying code in the hexagonal grid with density 4/19 has
been constructed in [16]. In this chapter, which is based on the papers [57]
and [58], we show that this 2-identifying code is optimal, i.e. that there do
not exist any 2-identifying codes in the hexagonal grid with density smaller
than 4/19. In Section 5.1, we first start by presenting some preliminary
definitions and summarising known results. Then, in Section 5.2, we define
the notion of share and explain how it is used in obtaining lower bounds for
r-identifying codes. Finally, in Section 5.3, the proof of the lower bound is
presented.

5.1 Preliminaries

We define the hexagonal grid GH = (VH , EH) using the brick wall represen-
tation as follows: the set of vertices VH = Z2 and the set of edges

EH = {{u = (i, j),v} | u,v ∈ Z2,u − v ∈ {(0, (−1)i+j+1), (±1, 0)}}.

This definition is illustrated in Figure 5.1(a). The hexagonal grid can also
be illustrated using the honeycomb representation as in Figure 5.1(b). In
both illustrations, lines represent the edges and intersections of the lines
represent the vertices of GH . The labeling of the vertices in the brick wall
representation is self-explanatory. This labeling can also be applied to the
honeycomb representation, if we visualize the honeycomb to be obtained
from the brick wall by squeezing it from left and right. For an example of
the labeling of the vertices, we refer to Figure 5.1.

Previously, r-identifying codes in GH have been studied in various pa-
pers. The first results concerning r-identifying codes in GH have been pre-
sented in the seminal paper [60] in the case r = 1. Later these results have
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(0,0)
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(a) Brick wall
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(3,2)

(b) Honeycomb

Figure 5.1: The brick wall and the honeycomb representations illustrated.

been improved by showing that there exists a 1-identifying code with density
3/7 (see Cohen et al. [23]) and that there do not exist 1-identifying codes in
GH with density smaller than 12/29 (see Cranston and Yu [25]). For general
r ≥ 2, Charon et al. [14] showed that each r-identifying code C in GH has
D(C) ≥ 2/(5r + 3) if r is even and D(C) ≥ 2/(5r + 2) if r is odd. They also
presented a construction for each r ≥ 2 giving an r-identifying code C ⊆ VH

with D(C) ∼ 8/(9r).

For small values of r, the previous constructions have been improved
in [16] by Charon et al. In particular, it is shown that there exists a 2-
identifying code in GH with density 4/19. In the case r = 2, the lower bound
2/11 from [16, Equation (1)] (and the aforementioned general lower bound)
is improved in Martin and Stanton [66] by showing that the density of any
2-identifying code in GH is at least 1/5. In this chapter, we further improve
this lower bound to 4/19. In other words, we show that the previously
presented 2-identifying code with density 4/19 is optimal.

5.2 Lower bounds using share

Let G = (V,E) be a simple, connected and undirected graph. Assume also
that C is a code in G. The following concept of the share of a codeword has
been introduced by Slater in [73]. The share of a codeword c ∈ C is defined
as

sr(C; c) = sr(c) =
∑

u∈Br(c)

1

|Ir(C;u)| .

The notion of share proves to be useful in determining lower bounds of
r-identifying codes (as explained in the following paragraph).

Assume that G = (V,E) is a finite graph and D is a code in G such that
Br(u) ∩ D is non-empty for all u ∈ V . Now we have

∑
c∈D sr(D; c) = |V |,

since each vertex u ∈ V such that |Ir(u)| = k contributes the summand
1/k to sr(D; c) for each of the k codewords c ∈ Br(u). Assume further that
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there exists a positive real number α such that sr(D; c) ≤ α for all c ∈ D.
Then we have |V | ≤ α|D|, which immediately implies that

|D| ≥ 1

α
|V |.

Assume then that for any r-identifying code C in G we have sr(C; c) ≤ α
for all c ∈ C. By the aforementioned observation, we then obtain the lower
bound |V |/α for the size of an r-identifying code in G. In other words,
by determining the maximum share for any r-identifying code, we obtain a
lower bound for the minimum size of an r-identifying code.

The previous reasoning can also be generalized to the case when an in-
finite graph is considered. In particular, if for any r-identifying code C in
GH we have sr(C; c) ≤ α for all c ∈ C, then it can be shown that the
density of an r-identifying code in GH is always at least 1/α (compare to
Theorem 5.3.5). The main idea behind the proof of the lower bound (in Sec-
tion 5.3) is based on this observation, although we use a more sophisticated
method by showing that for any 2-identifying code the share is on average
at most 19/4. In Theorem 5.3.5, we present a formal proof to verify that
this method is indeed valid.

In the proof of the lower bound, we need to determine upper bounds for
shares of codewords. To formally present a way to estimate shares, we first
need to introduce some notations.

Let D ⊆ V be a code and c be a codeword of D. Consider then the I-sets
Ir(D;u) when u goes through all the vertices in Br(c). (Notice that all of
these I-sets do not have to be different.) Denote the different identifying
sets by I1, I2, . . . , Ik, where k is a positive integer. Furthermore, denote the
number of identifying sets equal to Ij by ij (j = 1, 2, . . . , k). Now we are
ready to present the following lemma, which provides a method to estimate
the shares of the codewords.

Lemma 5.2.1. Let C be an r-identifying code in G and let D be a non-
empty subset of C. For c ∈ D, using the previous notations, we have

sr(C; c) ≤
k∑

j=1

(
1

|Ij |
+ (ij − 1)

1

|Ij | + 1

)
.

Proof. Assume that c ∈ D. Then, for each j = 1, 2, . . . , k, define Ij = {u ∈
Br(c) | Ij = Ir(D;u)}. Now it is obvious that for at most one vertex u ∈ Ij

we have Ij = Ir(C;u) and the other vertices of Ij are r-covered by at least
|Ij| + 1 codewords of C. Hence, the claim immediately follows.

The previous lemma will be used numerous times in the following presen-
tation. The computations needed in applying this lemma may sometimes be
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Figure 5.2: The cases of Example 5.2.2 illustrated. The black dots represent
codewords of C.

a little bit tedious, but always very straightforward. It is also quite easy to
implement an algorithm to compute the upper bound given by the lemma.
Furthermore, the use of the previous lemma is illustrated in the following
example.

Example 5.2.2. Let C be a 2-identifying code in the hexagonal grid GH .
For the first case (see Figure 5.2(a)), assume that D = {(0, 0), (0, 1), (1,−1)}
is a subset of C. Now we have the following facts:

• I2(D;u) = {(0, 0), (1,−1)} for u = (−1,−1), (1,−1) and (2, 0) (the
vertices labeled with 1 in the figure),

• I2(D;u) = {(0, 1), (0, 0), (1,−1)} for u = (0, 0) and (1, 0) (the vertices
labeled with 2 in the figure),

• I2(D;u) = {(0, 0), (0, 1)} for u = (−1, 1), (0, 1), (1, 1) and (−1, 0) (the
vertices labeled with 3 in the figure),

• I2(D;u) = {(0, 1)} for u = (−2, 1), (−1, 2), (1, 2) and (2, 1) (the ver-
tices labeled with 4 in the figure), and

• I2(D; (−2, 0)) = {(0, 0)} (the vertex labeled with 5 in the figure).

Thus, by Lemma 5.2.1, we obtain that

s2(C; (0, 0)) ≤
(

1

2
+ 2 · 1

3

)
+

(
1

3
+

1

4

)
+

(
1

2
+ 3 · 1

3

)
+ 1 =

17

4
.

Similarly, we also have

s2(C; (0, 1)) ≤ 1 + 4 · 1

2
+ 4 · 1

3
+

1

4
=

55

12
.
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For the second case, which is illustrated in Figure 5.2(b), we assume that
D = {(0, 0), (0, 1), (2, 0)} is a subset of C. As in the previous case (with the
aid of the figure), it can be concluded that

s2(C; (0, 0)) ≤ 13

3

and

s2(C; (0, 1)) ≤ 9

2
.

It should be noted that the results of this example will be later used in the
proof of Lemma 5.3.3.

5.3 The proof of the lower bound

For the rest of the section, assume that C is a 2-identifying code in GH . It
can be shown that s2(c) ≤ 5 for all c ∈ C (see the proof of Lemma 5.3.4).
This provides another approach to obtain the lower bound D(C) ≥ 1/5,
which was previously shown in [66]. In order to improve this lower bound,
we need to consider the shares of codewords on average. Indeed, we can
show that on average the share of a codeword is at most 19/4. Therefore,
as shown in Theorem 5.3.5, we obtain that the density D(C) ≥ 4/19.

The averaging process is done by introducing a shifting scheme designed
to even out the shares among the codewords of C. (Notice that the shifting
scheme can also be understood as a discharging method.) The rules of the
shifting scheme are defined in Section 5.3.1. In Section 5.3.2, we introduce
three lemmas, which state the following results:

• If s2(c) > 19/4 for some c ∈ C, then at least s2(c) − 19/4 units of
share is shifted from c to other codewords. (Lemma 5.3.4)

• If share is shifted to a codeword c ∈ C, then s2(c) ≤ 19/4 and the
codeword c receives at most 19/4−s2(c) units of share. (Lemmas 5.3.2
and 5.3.3)

In other words, after the shifting is done, the share of each codeword is
at most 19/4. Using this fact, we are able to prove the main theorem
(Theorem 5.3.5) of the paper according to which D(C) ≥ 4/19. Finally, in
Section 5.3.3, we provide the proofs of the three lemmas.

5.3.1 The rules of the shifting scheme

The rules of the shifting scheme are illustrated in Figure 5.3. Translations,
rotations and reflections (over the line passing vertically through u) can be
applied to each rule in such a way that the structure of the underlying graph
GH is preserved. In the rules, share is shifted as follows:
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Figure 5.3: The rules of the shifting scheme illustrated. The black dots
represent codewords and the white dots represent non-codewords. In the
rules 7 and 8, at least one of the vertices marked with a white square is a
codeword.
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Figure 5.4: An example of the use of the shifting rules.

• In the rules 1, 2, 4 and 7, we shift 1/4 units of share from u to v.

• In the rule 3, we shift 1/6 and 1/12 units of share from u to v and v′,
respectively.

• In the rule 5, we shift 1/6 units of share from u to v.

• In the rules 6, 8, 9 and 10, we shift 1/12 units of share from u to v.

We also have the following modifications to the previous rules:

• If in the rules 1, 2 and 7 we have u + (0,−1) ∈ C, then we only
shift 1/12 units of share from u to v and denote these new rules
(respectively) by 1.1, 2.1 and 7.1. Moreover, in the rule 1.1, we shift
1/12 units of share to v whether (−3, 2) belongs to C or not.

• If in the rule 1 we have u + (−3, 2) ∈ C, then then we shift 1/4 units
of share from u to u + (−1, 2) (no share is shifted to v) and denote
this new rule by 1.2.

• If in the rule 2 we have u + (−3, 1) ∈ C, then we shift 1/6 units of
share from u to v and denote this new rule by 2.2.

• If in the rule 2 we have u + (1, 2) ∈ C, then we shift 1/12 units of
share from u to v and denote this new rule by 2.3.

The modified share of a codeword c ∈ C, which is obtained after the
shifting scheme is applied, is denoted by s̄2(c). The use of the rules is
illustrated in the following example.

Example 5.3.1. Consider the codeword c with the surroundings as illus-
trated in Figure 5.4. The share of the codeword c is equal to 5. The rules
6, 8 and 9 apply to the codeword c and according to the rules 1/12 units
of share is shifted from c to u1, u2 and u3, respectively. (Recall that re-
flections and rotations can be applied to the constellations in Figure 5.3.)
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Hence, after the shifting scheme is applied, we have s̄2(c) = 19/4 for the
modified share. In order to ensure that also s̄2(ui) ≤ 19/4 for any i = 1, 2, 3,
we refer to the proofs of Lemmas 5.3.2 and 5.3.3.

5.3.2 The main theorem

The following three lemmas show that s̄2(c) ≤ 19/4 for all c ∈ C. The
proofs of the lemmas are postponed to Section 5.3.3.

Lemma 5.3.2. Let c ∈ C be a codeword such that c is not adjacent to
another codeword and share is shifted to c according to the previous rules.
Then we have s̄2(c) ≤ 19/4.

Lemma 5.3.3. Let c ∈ C be a codeword such that c is adjacent to another
codeword and share is shifted to c according to the previous rules. Then we
have s̄2(c) ≤ 19/4.

Lemma 5.3.4. Let c ∈ C be a codeword such that no share is shifted to c

according to the previous rules. Then we have s̄2(c) ≤ 19/4.

As stated in the previous lemmas, we have s̄2(c) ≤ 19/4 for any c ∈ C.
Now we are ready to prove the main theorem of the paper.

Theorem 5.3.5. If C is a 2-identifying code in the hexagonal grid GH , then
the density

D(C) ≥ 4

19
.

Proof. Assume that C is a 2-identifying code in GH . Since each vertex
u ∈ Qn−2 with |I2(u)| = i contributes the summand 1/i to s2(c) for each of
the i codewords c ∈ B2(u), we have

∑

c∈C∩Qn

s2(c) ≥ |Qn−2|. (5.1)

Furthermore, we have
∑

c∈C∩Qn

s2(c) ≤
∑

c∈C∩Qn

s̄2(c) +
19

4
|Qn+6 \ Qn|, (5.2)

because shifting shares inside Qn does not affect the sum and each codeword
in Qn+6 \Qn can receive at most 19/4 units of share (by Lemmas 5.3.2 and
5.3.3). Notice also that codewords in Qn cannot shift share to codewords
outside Qn+6. Therefore, combining the equations (5.1) and (5.2) with the
fact that s̄2(c) ≤ 19/4 for any c ∈ C, we obtain

|C ∩ Qn|
|Qn|

≥ 4

19
· |Qn−2|

|Qn|
− |Qn+6 \ Qn|

|Qn|
.

Since |Qk| = (2k + 1)2 for any positive integer k, it is easy to conclude from
the previous inequality that the density D(C) ≥ 4/19.
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5.3.3 The proofs of the lemmas

In what follows, we provide the proofs of Lemmas 5.3.2, 5.3.3 and 5.3.4.

Proof of Lemma 5.3.2. Notice first that share can be shifted to the codeword
c only according to the rules 3, 7, 7.1, 8, 9 and 10 since c is not adjacent
to another codeword. The main idea of the following proof is to show that
c cannot receive share according to two different rules. In each case, this
observation then straightforwardly implies the claim.

Assume first that c receives share according to the rule 10. Without
loss of generality, we may assume that the rule is applied as in Figure 5.3(j)
(when c = v). Now the vertices c + (−2,−1), c + (0, 1) and c + (2,−1)
belong to the code C. Since this is not the case with the other rules (see
Figure 5.3), they cannot be applied to c. Moreover, choosing D = {c, c +
(−2,−1), c+(0, 1), c+(2,−1)} in Lemma 5.2.1, we have s2(c) ≤ 9/2. Thus,
since according to the rule 10 share can be shifted to c only from c+(−2,−1),
c + (0, 1) and c + (2,−1) and at most once for each of these codewords, we
obtain that s̄2(c) ≤ s2(c) + 3 · 1/12 ≤ 19/4.

Assume then that share is shifted to c according to the rule 9. First of
all, by the previous paragraph, the rule 10 cannot be applied to c. Since now
we have I2(c) = {c}, it is immediate that c cannot receive share according
to the rules 3, 7, 7.1 or 8. Moreover, it is easy to see that the rule 9 can be
applied only once. Therefore, since we have s2(c) ≤ 14/3 by Lemma 5.2.1,
we obtain that s̄2(c) ≤ s2(c) + 1/12 ≤ 19/4.

Assume that c receives share according to the rule 8 and that the rule
is used as in Figure 5.3(h). Now, if the rule 7 or 7.1 was used, then there
would exist two codewords in B2(c) such that the distance between them
is equal to 4. By the constellation of the rule 8, this is impossible. Let us
then show that neither the rule 3 can be used. Assume to the contrary that
share is shifted to c according to the rule 3. Since there is a pair of adjacent
codewords in the constellation of the rule 3, the vertex c + (0, 1) belongs
to C. Furthermore, we have either c + (−1, 1) ∈ C or c + (1, 1) ∈ C (but
not both). If c + (−1, 1) ∈ C, then we have a contradiction since share is
shifted from c + (3, 0), which is not a codeword in the constellation of the
rule 8. On the other hand, if c + (1, 1) ∈ C, then share is received from
c + (−3, 0). This again leads to a contradiction since c + (−2,−1) ∈ C.
In conclusion, only the rule 8 can be applied to c. Moreover, the rule 8
can be used at most once. If c + (−1, 1) ∈ C or c + (1, 1) ∈ C, then
s2(c) ≤ 55/12 or s2(c) ≤ 23/6 by Lemma 5.2.1, respectively. Hence, we
have s̄2(c) ≤ s2(c) + 1/12 ≤ 56/12 ≤ 19/4.

Assume that c receives share according to the rule 3 and that the rule is
used as in Figure 5.3(c) (when c = v′). By the previous considerations, we
know that share cannot be shifted to c according to the rules 8, 9 and 10.
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Let us then show that neither the the rules 7 or 7.1 can be applied to c.
Assume to the contrary that c receives share according to the rule 7. Now c

can receive share only from the vertices c + (−1,−2), c + (1,−2), c+ (3, 0),
c+(2, 1), c+(−3, 0) and c+(−2, 1). Now we have the following observations:

• Since c+ (−1,−2) /∈ C share cannot be shifted from c+ (−1,−2) and
c + (1,−2).

• Since c + (−2, 0) ∈ C share cannot be shifted from c + (−3, 0) and
c + (−2, 1).

• Since c + (−1,−1) /∈ C and c + (1,−1) /∈ C share cannot be shifted
from c + (3, 0) and c + (2, 1).

A contradiction now follows from these facts. Hence, only the rule 3 can be
applied to c. Moreover, it is easy to see that share can be shifted to c at
most twice according to the rule 3. Therefore, since we have s2(c) ≤ 9/2 by
Lemma 5.2.1, we obtain that s̄2(c) ≤ s2(c) + 2 · 1/12 ≤ 19/4.

Finally, assume that c receives share according to the rule 7 or 7.1 and
that the rule is used as in Figure 5.3(g). As shown above, other rules cannot
be applied to c. Moreover, the rules 7 and 7.1 can be applied to c only once.
Furthermore, if c + (2, 0) ∈ C or c + (1, 1) ∈ C, then we have s2(c) ≤ 23/6
or s2(c) ≤ 53/12 by Lemma 5.2.1, respectively. Thus, we have s̄2(c) ≤
s2(c) + 1/4 ≤ 14/3 ≤ 19/4.

Proof of Lemma 5.3.3. Since c is adjacent to another codeword, it is imme-
diate that c can receive share only according to the rules 1, 1.1, 1.2, 2, 2.1,
2.2, 2.3, 3, 4, 5 and 6. The proof of the lemma is now divided into three
cases depending on the number of codewords adjacent to c.

1) Assume first that c is adjacent to exactly one codeword. Without loss
of generality, we may assume that c = (0, 0) and the adjacent codeword is
(0, 1). Hence, we have (−1, 0) /∈ C and (1, 0) /∈ C. Now the only possibilities
for c to receive share is from the vertices (−3, 0) or (3, 0) (the rule 1.2)
and from the vertices that belong to S1 = {(5, 1), (4, 1), (3, 1), (3, 2), (2, 2)}
and S2 = {(−5, 1), (−4, 1), (−3, 1), (−3, 2), (−2, 2)}. These observations are
illustrated in Figure 5.5(a).

Consider then more closely the set S1. In what follows, we show that at
most 1/4 units of share is shifted from the vertices of S1 to c. Notice that if
share is shifted only from one vertex of S1, then we are immediately done.
Observe then that if u ∈ S1 shifts share to c according to the rules 1–6 or
their modifications, then we have I2(u) = {u}. Therefore, if two vertices of
S1 shift share, then one of these vertices is (4, 1) or (5, 1). Assume that share
is shifted from (4, 1) according to the rule 5 (see Figure 5.3(e)). Now we
have C ∩ S1 = {(2, 2), (4, 1)} and (4, 3) ∈ C. Therefore, since at most 1/12
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Figure 5.5: The cases of the proof of Lemma 5.3.3 illustrated.

units of share is shifted from (2, 2) according to the rule 2.1, we obtain that
no more than 1/6 + 1/12 = 1/4 units of share can be shifted from S1 to c.
Similarly, if share is shifted from (5, 1) according to the rule 6, then it can be
shown that c receives at most 1/4 units of share from S1. In conclusion, at
most 1/4 units of share is shifted from the vertices of S1 to c. Analogously,
this statement also holds for the vertices of S2.

Assume that the rule 1.2 is used. (Clearly, this rule can be used only
once.) Without loss of generality, we may assume that (−3, 0) ∈ C and
(1,−1) ∈ C. Therefore, since we can choose D = {c, (0, 1), (−3, 0), (1,−1)}
in Lemma 5.2.1, we obtain that s2(c) ≤ 15/4. Thus, since the codewords
in each of the sets S1 and S2 can shift at most 1/4 units of share to c, we
have s̄2(c) ≤ s2(c) + 3 · 1/4 ≤ 9/2. Assume then that the rule 1.2 cannot be
applied to c. Since c and (0, 1) are 2-separated by C, there exists at least
one codeword in the symmetric difference B2(c)△B2(0, 1). Thus, without
loss of generality, we may assume that (1,−1) ∈ C, (1, 2) ∈ C, (2, 0) ∈ C
or (2, 1) ∈ C. The first part of the proof is then concluded by the following
four cases:

• Assume that (1,−1) ∈ C. Now, by the first case of Example 5.2.2, we
know that s2(c) ≤ 17/4. Therefore, since share is shifted to c only from
the vertices of the sets S1 and S2, we have s̄2(c) ≤ s2(c)+2·1/4 ≤ 19/4.

• Assume that (1, 2) ∈ C. It is straightforward to verify that share can
be shifted to c only from (−3, 1), (−2, 2), (−3, 2), (−4, 1) and (−5, 1)
according to the rules 1.1, 2.3, 3, 5 and 6, respectively. Moreover, it is
easy to see that at most one of these rules can be used (and only once).
Thus, the codeword c receives at most 1/6 units of share. Hence, we
have s̄2(c) ≤ s2(c) + 1/6 ≤ 19/4 since s2(c) ≤ 55/12 by the first case
of Example 5.2.2 (and obvious symmetrical argument).

• Assume that (2, 0) ∈ C. Consider then more closely the vertices of
S1. Now it is easy to conclude that the vertices (5, 1), (4, 1) and (3, 1)
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cannot shift share to c. Hence, only either (3, 2) according to the
rule 3 or (2, 2) according to the rule 2.2 (but not both) is capable of
shifting share to c. In each case, c receives at most 1/6 units of share.
By the second case of Example 5.2.2, we know that s2(c) ≤ 13/3.
Therefore, since at most 1/4 units of share is received from S2, we
have s̄2(c) ≤ s2(c) + 1/4 + 1/6 ≤ 19/4.

• Assume that (2, 1) ∈ C. By the second case of Example 5.2.2 (and
symmetry), we obtain that s2(c) ≤ 9/2. Since now share can be shifted
to c only from S2, we obtain that s̄2(c) ≤ s2(c) + 1/4 ≤ 19/4.

2) Assume that c is adjacent to exactly two codewords. Without loss of
generality, we may assume that c = (0, 0) and that the adjacent codewords
are (−1, 0) and (0, 1). Let then S3 and S4 be sets which are obtained by
rotating respectively the sets S1 and S2 by 2π/3 (counter-clockwise in the
honeycomb representation) around the origin. Again the codewords in each
of these sets Si can shift at most 1/4 units of share to c. In addition to the
previous ones, at most 1/4 units of share can also be shifted to c from either
(2,−1) or (3, 0) (but not both) according to the rule 1.2. These observations
are illustrated in Figure 5.5(b).

Assume first that share is shifted to c according to the rule 1.2. Without
loss of generality, we may assume that c receives share from the vertex
(3, 0). Then we immediately have (3, 0) ∈ C and (−1,−1) ∈ C. Therefore,
we have s2(c) ≤ 15/4 by Lemma 5.2.1. Furthermore, since (−1,−1) ∈ C,
the codeword c does not receive share from the set S4. Thus, we have
s̄2(c) ≤ s2(c) + 4 · 1/4 ≤ 19/4.

Assume then that the rule 1.2 is not used. Since the vertices c and
(0, 1) are 2-separated by C, there exists a codeword in Br(c)△Br(0, 1). If
(1,−1) ∈ C or (2, 0) ∈ C, then s2(c) ≤ 53/15 (by Lemma 5.2.1) and we
are immediately done since at most 1 unit of share can be shifted to c from
the union of the sets Si. If (−2, 1) ∈ C, then s2(c) ≤ 21/5 and we are
done since share cannot be shifted to c from S2 and S3. If (−1,−1) ∈ C or
(−2, 0) ∈ C, then s2(c) ≤ 79/20 (by Lemma 5.2.1) and we are again done
(since share is not shifted from S3). Hence, we may assume that (−1, 2) ∈ C,
(1, 2) ∈ C or (2, 1) ∈ C. Analogously, it can also be assumed that (−3, 0) ∈
C, (−2,−1) ∈ C or (0,−1) ∈ C since c and (−1, 0) are 2-separated by
C. Thus, at most two of the sets Si can shift share to c. Therefore, since
s2(c) ≤ 17/4 (choose D = {c, (−1, 0), (0, 1)} in Lemma 5.2.1), we have
s̄2(c) ≤ s2(c) + 2 · 1/4 ≤ 19/4.

3) Finally, assume that all the vertices adjacent to c are codewords, i.e.
(−1, 0) ∈ C, (0, 1) ∈ C and (1, 0) ∈ C (see Figure 5.5(c)). Notice that
now the rule 1.2 cannot be used. Since there again exists a codeword in
Br(c)△Br(0, 1), it is easy to conclude as above that at most 5 · 1/4 units
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c

Figure 5.6: The symmetric difference B2(c)△B2(1, 0) consists of the
squared vertices. At least one of these vertices is a codeword.

of share is shifted to c. Therefore, since s2(c) ≤ 67/20 by Lemma 5.2.1, we
have s̄2(c) ≤ s2(c)+5/4 ≤ 19/4. This completes the proof of the lemma.

Proof of Lemma 5.3.4. Without loss of generality, we may assume that c =
(0, 0). Assume first that |I2(c)| ≥ 2. If now c is adjacent to another code-
word, then s̄2(c) ≤ s2(c) ≤ 19/4 (by Lemma 5.2.1). Hence, we may assume
that (−1, 0), (1, 0), (0, 1) /∈ C. Let then (2, 0) be a codeword of C. Since the
vertices c and (1, 0) are 2-separated by C, there is at least one codeword
in the symmetric difference B2(c)△B2(1, 0) (see Figure 5.6). Therefore, by
Lemma 5.2.1, it is straightforward (albeit tedious) to verify that in all the
possible cases s̄2(c) ≤ s2(c) ≤ 19/4. Indeed, we can choose in Lemma 5.2.1
the set D to consist of the vertices c, (2, 0) and a codeword in the symmetric
difference B2(c)△B2(1, 0).

From now on, we may assume that I2(c) = {c}. In what follows, we use
the notations: A1 = {(−1, 1), (0, 1), (1, 1)}, A2 = {(−2, 0), (−1, 0), (−1,−1)},
A3 = {(1,−1), (1, 0), (2, 0)}, A′

1 = {(−1, 2), (1, 2)}, A′
2 = {(−3, 0), (−2,−1)}

and A′
3 = {(2,−1), (3, 0)}. These sets are illustrated in Figure 5.7. The

proof of the lemma now divides into three cases depending on the number
of codewords in the set {(−2, 1), (2, 1), (0,−1)}

1) Assume first that (−2, 1), (2, 1), (0,−1) /∈ C. Since the vertices c,
(−1, 0), (1, 0) and (0, 1) are 2-separated by C, each one of the sets A′

1, A′
2

and A′
3 contains at least one codeword. Hence, each of the sets A1, A2 and

A3 contains a vertex whose I-set contains at least three codewords. Indeed,
if for example (−1, 2) ∈ C, then (−1, 1) or (0, 1) is such a vertex in A1.
Therefore, we obtain that s2(c) ≤ 1 + 6 · 1/2 + 3 · 1/3 = 5.

Consider then the set A′
1 that contains at least one codeword as stated

above. Assume first that both (−1, 2) ∈ C and (1, 2) ∈ C. If the vertex (0, 2)
also belongs to C, then the I-sets of all the vertices in A1 have size at least 3.
Then there are at least 5 vertices in B2(c) which are 2-covered by at least 3
codewords. Therefore, we have s̄2(c) ≤ s2(c) ≤ 1+4·1/2+5·1/3 = 14/3 (and
we are done). Hence, suppose that (0, 2) /∈ C. Furthermore, assume first
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A’1
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A3

A’3A’2

A2
c

Figure 5.7: The sets A1, A2, A3, A′
1, A′

2 and A′
3 illustrated.

that (−2, 2) ∈ C. If also (−3, 1) ∈ C, then |I2(0, 1)| ≥ 3 and |I2(−1, 1)| ≥ 4.
Thus, we have s̄2(c) ≤ s2(c) ≤ 1+5 ·1/2+3 ·1/3+1/4 = 19/4. On the other
hand, if (−3, 1) /∈ C, then the rule 2.3 can be applied to c and we obtain
that s̄2(c) ≤ s2(c)−1/12 ≤ 29/6−1/12 ≤ 19/4. Hence, we may assume that
(−2, 2) /∈ C and (2, 2) /∈ C (by symmetry). Since the vertices (−1, 2) and
(1, 2) are 2-separated by C, at least one of the vertices (−3, 2), (−2, 3), (2, 3)
and (3, 2) belongs to C. Hence, we can shift at least 1/4 units of share from
c according to the rule 7. Therefore, we have s̄2(c) ≤ s2(c) − 1/4 ≤ 19/4.

By the considerations above, we may without loss of generality assume
that (−1, 2) ∈ C and (1, 2) /∈ C. If (0, 2) ∈ C, then 1/4 units of share can
be shifted from c according to the rule 1 or 1.2, and we are done. Thus,
suppose that (0, 2) /∈ C. Assume then that (−2, 2) ∈ C. If the rule 2 applies
to c, then we are immediately done (1/4 units of share is shifted from c).
On the other hand, if (−3, 1) ∈ C, then by the fact that |I2(−1, 1)| ≥ 4 we
have s2(c) ≤ 59/12 and we are again done since at least 1/6 units of share
is shifted from c according to the rule 2.2. Hence, assume that (−2, 2) /∈ C.
Since (0, 1) and (−1, 1) are 2-separated by C, the vertex (−3, 1) belongs
to C. Now, if (−3, 2) ∈ C, then 1/4 units of share can be shifted from
c according to the rule 3 and we are done. Thus, we may assume that
(−3, 2) /∈ C. If (−4, 1) ∈ C and (−3, 0) /∈ C, then the rule 4 can be applied
to c and we are done. Furthermore, if (−4, 1) ∈ C, and (−3, 0) ∈ C, then
instead of the set A′

1 consider the set A′
3. Repeating the previous arguments

for the set A′
3, we obtain that s̄2(c) ≤ 19/4 also in this case. Thus, we may

assume that (−4, 1) /∈ C. The surroundings of the codeword c (obtained
above) is illustrated in Figure 5.8(a).

The previous reasoning also applies when we consider the sets A′
2 and

A′
3 instead of A′

1. This leads straightforwardly to the observation that we
have only two different neighbourhoods of c (up to rotations and reflections).
These neighbourhoods are illustrated in Figure 5.9.

88



c

(a) The first case

c

(b) The second case

Figure 5.8: The surroundings of the codeword c illustrated in (a) the first
and (b) the second part of the proof of Lemma 5.3.4.

c

(a)

c

(b)

Figure 5.9: Two cases of the proof of Lemma 5.3.4 illustrated.
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Consider first the case in Figure 5.9(a). In what follows, we show that c

shifts 1/12 units of share to (−1, 2) or (1, 3), or that we originally have at
least 2 vertices in A1 such that their I-sets have at least 3 codewords. In
both cases, the (maximum) share of c is reduced by at least 1/12. (Actually,
in the latter case, the share is reduced by 1/6.) This observation can then
be generalized to the (other two) symmetrical cases implying that s̄2(c) ≤
5 − 3 · 1/12 = 19/4. If (2, 2) ∈ C, then (−1, 1) ∈ A1 and (1, 1) ∈ A1 are
2-covered by three codewords. Hence, we may assume that (2, 2) /∈ C. If we
can shift 1/12 units of share from c to (−1, 2) according to the rule 8, then
we are immediately done. Therefore, we may assume that (−2, 3) /∈ C and
(0, 3) /∈ C. Since (−1, 2) and (1, 2) are 2-separated by C, the vertex (2, 3)
belongs to C. Furthermore, since (−1, 2) and (0, 2) are 2-separated by C,
at least one of the vertices (−1, 3) and (1, 3) is a codeword. Therefore, at
least 1/12 units of share can shifted from c according to the rule 6 or 9.

Consider then the case in Figure 5.9(b). Let us now show that c shifts
at least 1/6 units of share to (−1,−2) or (1,−2), or that we originally have
more than 2 vertices in A2 ∪ A3 such that their I-sets are at least of size
3. In both cases, the (maximum) share of c is reduced by at least 1/6.
This result together with the observation in the previous paragraph, then
implies that s̄2(c) ≤ 5 − 1/6 − 1/12 = 19/4. If now (0,−2) ∈ C, then
we know that (−2, 0) ∈ A2, (2, 0) ∈ A3, and at least one of the vertices
(−1,−1) ∈ A2 and (1,−1) ∈ A3 are such that their I-sets are at least of
size 3. Hence, we may assume that (0,−2) /∈ C. Since c, (−1,−1) and
(1,−1) are 2-separated by C, the vertices (−2,−2) and (2,−2) belong to
C. Furthermore, since (0,−1) is 2-covered by a codeword of C, we have
(−1,−2) ∈ C or (1,−2) ∈ C. Therefore, we can shift at least 1/6 units of
share to (−1,−2) or (1,−2) according to the rule 5. In conclusion, if c is
a codeword such that I2(c) = {c} and (−2, 1), (2, 1), (0,−1) /∈ C, then we
have s̄2(c) ≤ 19/4.

2) Assume then that c is a codeword such that I2(c) = {c}, and exactly
one of the vertices (−2, 1), (2, 1) and (0,−1) is a codeword. Without loss
of generality, we may assume that (−2, 1) /∈ C, (2, 1) /∈ C and (0,−1) ∈ C.
Now, by considering the vertices (−1,−1) ∈ A2, (−1, 0) ∈ A2, (1,−1) ∈ A3

and (1, 0) ∈ A3, we obtain that there are at least 3 vertices in A2 ∪ A3

which are 2-covered by at least 3 codewords. Thus, since there is also one
such vertex in A1, we have s2(c) ≤ 1 + 5 · 1/2 + 4 · 1/3 = 29/6. Assume
first that both (−1, 2) and (1, 2) belong to C. If (−2, 2) ∈ C, (0, 2) ∈ C or
(2, 2) ∈ C, there are at least 2 vertices in A1 with the I-set of size at least 3
and, therefore, we have s2(c) ≤ 19/4. Hence, according to the rule 7.1, 1/12
units of share can be shifted from c (since (−1, 2) and (1, 2) are 2-separated
by C) and we are done. Thus, without loss of generality, we may assume
that (−1, 2) ∈ C and (1, 2) /∈ C. If now (−3, 1) ∈ C and (−2, 2) ∈ C, then
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|I2(−1, 1)| ≥ 4 and there is no problem since s2(c) ≤ 1+5·1/2+3·1/3+1/4 =
19/4. Furthermore, if the rules 1.1 or 2.1 can be used, then we are again
done. Thus, we may assume that (−2, 2) /∈ C and (0, 2) /∈ C. Therefore,
since (−1, 1) and (0, 1) are 2-separated by C, we obtain that (−3, 1) ∈ C.
We have now arrived at the constellation illustrated in Figure 5.8(b). If now
one of the vertices (−4, 0), (−3, 0), (−3,−1), (−2,−1), (0,−2) and (2,−1)
belongs to C, then by Lemma 5.2.1 we immediately have s2(c) ≤ 19/4.
Hence, we may assume that none of these vertices belongs to C. Thus, since
(−1, 0), (−1,−1) and (1, 0) are 2-separated by C, we have (−2,−2) ∈ C and
(3, 0) ∈ C. If now (3,−1) ∈ C or (4, 0) ∈ C, then again s2(c) ≤ 19/4 and
we are done. Therefore, since (−1, 0) and (1,−1) are 2-separated by C, we
have (2,−2) ∈ C and 1/12 units of share can be shifted from c to (0,−1)
according to the rule 10. Hence, we have s̄2(c) ≤ 19/4.

3) Finally, assume that c is a codeword such that I2(c) = {c}, and that
at least two of the vertices (−2, 1), (2, 1) and (0,−1) belong to C. Then, by
Lemma 5.2.1, we have s2(c) ≤ 14/3. This observation completes the proof
of the lemma.
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Chapter 6

Identification in Z2 using

Euclidean balls

In this chapter, which is based on the papers [55] and [56], we consider iden-
tification in the infinite grid Z2 with Euclidean balls. In Section 6.1, we first
present some preliminary definitions and results. Then, in Section 6.2, we
proceed by introducing some code constructions and lower bounds. Finally,
we end the chapter with a discussion on identifying codes in the king grid
with slightly modified balls.

6.1 Preliminaries

Let G = (V,E) be a simple, connected and undirected graph. Let r be a non-
negative integer. Previously, we have denoted a ball of radius r centred at a
vertex u ∈ V simply by Br(u) since there has not been a reason to specify the
underlying graph in the notation. However, in this chapter, we sometimes
need to specify the underlying graph. Therefore, we more precisely write
Br(u) = Br(G;u) if there is a possibility of confusion. Furthermore, if r is
equal to 1, then we write in short as follows: B1(G;u) = B(G;u) = B(u).
We use analogous notations also for the identifying sets Ir(G,C;u).

Assume now that the vertex set V is equal to Z2. Let then t be a positive
integer and u = (x, y) be a vertex in Z2. The graph St with the ball (i.e.
the closed neighbourhood)

B(St;u) = {(x′, y′) ∈ Z2 | |x − x′| + |y − y′| ≤ t}

is called the square grid. The graph Kt with the ball

B(Kt;u) = {(x′, y′) ∈ Z2 | |x − x′| ≤ t, |y − y′| ≤ t}

is called the king grid. The graphs St and Kt are illustrated in Figure 6.1.
Notice that now we have Bt(S1;u) = B1(St;u) and Bt(K1;u) = B1(Kt;u).
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(0,0)

(a) E√
5

(0,0)

(b) S3

(0,0)

(c) K3

Figure 6.1: (a) The ball B(E√5; (0, 0)) and the code C2 (defined in Sec-
tion 6.3) illustrated. (b) The ball B(S3; (0, 0)) illustrated. (c) The ball
B(K3; (0, 0)) illustrated.

Therefore, also the t-identifying codes in S1 and K1 coincide with the 1-
identifying codes in St and Kt, respectively.

Recall that identifying codes in St and Kt have been studied, for example,
in [14,45,52] and [15,44], respectively. Notice that in these graphs for larger
values of t the shape of the ball B(u) resembles a square as can be seen
in Figure 6.1. However, this kind of behaviour is not always desired. For
example, when applying identifying codes to sensor networks (see [69, 73]),
it would seem to be more natural for a sensor to check an area with the
shape of a Euclidean ball. Hence, in this chapter, we focus on identifying
codes in grid graphs, where Euclidean balls are used to define the edges of
the graphs.

For the rest of the chapter, assume that r is a positive real number. Let
again V = Z2. The graph Er = (V,E) is defined by the edge set E for which
the vertices u and v in Z2 are adjacent if the Euclidean distance of u and
v is at most r. Moreover, if the vertices u and v in Fn are adjacent, then
we say that u covers v. If u = (x, y) ∈ Z2, then we have

B(Er;u) = {(x′, y′) ∈ Z2 | (x − x′)2 + (y − y′)2 ≤ r2}.

Obviously, we have S1 = E1, K1 = E√2, S2 = E2 and K2 = E2
√

2. Further-
more, the graph E√5 is illustrated in Figure 6.1.

In the sequel, we will need the following result from [14, Proposition 1].

Theorem 6.1.1 ( [14]). Let G = (V,E) be a simple, connected and undi-
rected graph. Let u1,u2,u3 ∈ V be three vertices of G and C be an identify-
ing code in G. Then the set

H(u1,u2,u3) = (B(u1)△B(u2)) ∪ (B(u1)△B(u3)) ∪ (B(u2)△B(u3))

contains at least two codewords.
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6.2 Identifying codes in the graphs Er

In what follows, we construct a 1-identifying code for the graph Er, when
r ≥ 1 is an arbitrary real number, and also provide a lower bound on the
density of such codes. For the considerations, we define the horizontal line

as L
(h)
i = {(x′, i) | x′ ∈ Z} and the vertical line as L

(v)
i = {(i, y′) | y′ ∈ Z},

where i is an integer. If u is a vertex in Z2 and X is a subset of Z2, then the
sum of u and X is defined as u + X = {u + v | v ∈ X}. We first present
the following lemma.

Lemma 6.2.1. Let u = (x, y) be a vertex in Z2 and r ≥ 1 be a real number.
In B(x, y)\B(x, y−1) there exist 2⌊r⌋+1 vertices, which lie on consecutive

vertical lines L
(v)
i with i = x − ⌊r⌋, . . . , x + ⌊r⌋.

Proof. Moving the center u = (x, y) of a ball to (x, y − 1) means that for

i = x− ⌊r⌋, . . . , x + ⌊r⌋ the vertex u covers on L
(v)
i exactly one vertex of Z2

which is not covered by (x, y − 1), since the second coordinate decreases by
one. The claim immediately follows from this observation.

Notice that analogous results to the previous lemma hold when the con-
sidered pattern is rotated by π/2, π and 3π/2. For example, when the pat-
tern of the lemma is rotated counter-clockwise by π/2, we obtain that the
set B(x, y) \B(x + 1, y) contains vertices on 2⌊r⌋+ 1 consecutive horizontal
lines.

For the construction of the identifying codes in Er, we first introduce the
following sets of vertices

C(h) = {(j, 0) ∈ Z2 | j ≡ 0 mod 2} and C(v) = {(0, j) ∈ Z2 | j ≡ 0 mod 2}.

Then define a code Ck as follows:

Ck =
⋃

i∈Z

(
(C(h) + (0, i · 2k)) ∪ (C(h) + (1, k + i · 2k))

)

⋃

i∈Z

(
(C(v) + (i · 2k, 0)) ∪ (C(v) + (k + i · 2k, 1))

)
,

where k ∈ Z and k ≥ 1. The following theorem shows that the previous
code Ck provides a 1-identifying code for the graph Er.

Theorem 6.2.2. Let r ≥ 1 be a real number.

(i) If r2 − ⌊r⌋2 ≥ 1, then the code C2⌊r⌋+1 is identifying in Er.

(ii) If r2 − ⌊r⌋2 < 1, then the code C2⌊r⌋ is identifying in Er.
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Proof. (i) Let u = (x, y) be a vertex in Z2. Assume first that r2 − ⌊r⌋2 ≥ 1.
This assumption implies that the vertices (x − ⌊r⌋, y − 1), (x − ⌊r⌋, y + 1),
(x + ⌊r⌋, y − 1) and (x + ⌊r⌋, y + 1) belong to B(u). Therefore, the set
{(i, j) ∈ Z2 | x − ⌊r⌋ ≤ i ≤ x + ⌊r⌋, y − 1 ≤ j ≤ y + 1} is a subset of B(u).
By the construction of C2⌊r⌋+1, one of the 2⌊r⌋+1 consecutive vertical lines
is such that every other vertex in the line is a codeword. Hence, the ball
B(u) contains a codeword. In other words, each vertex in Z2 is covered by
a codeword.

Let v = (x + x′, y + y′) be a vertex in Z2 such that v 6= u. Consider
then the symmetric difference B(u)△B(v). In order to prove that C2⌊r⌋+1

is an identifying code in Er, we have to show that this symmetric difference
always contains a codeword. Without loss of generality, we can assume that
x′ ≥ 0 and y′ ≥ 0. (Other cases are analogous.) If B(u) ∩ B(v) = ∅, then
we are done. Hence, assume that B(u) ∩ B(v) 6= ∅.

Assume first that x′ ≥ 2 or y′ ≥ 2. Let y′ ≥ 2 (the other case is
analogous). Denote then u′ = (x, y + y′) and v′ = (x+ x′, y′). Using similar
arguments as in the proof of Lemma 6.2.1, we conclude that each vertical

line L
(v)
i with x − ⌊r⌋ ≤ i ≤ x + ⌊x′/2⌋ contains two consecutive vertices in

B(u) \ B(u′). (Recall that r2 − ⌊r⌋2 ≥ 1.) Clearly, these same points are
also included in B(u) \B(v). By symmetry, we can show that each vertical

line L
(v)
i with x+ ⌈x′/2⌉ ≤ i ≤ x+x′ + ⌊r⌋ contains two consecutive vertices

in B(v) \ B(u). Thus, we have shown that each vertical line L
(v)
i with

x−⌊r⌋ ≤ i ≤ x+x′ + ⌊r⌋ contains two consecutive vertices in B(u)△B(v).
Therefore, we conclude that there exists a codeword in B(u)△B(v).

Assume now that x′ ≤ 1 and y′ ≤ 1. Then we have the following cases
to consider:

1) Assume that x′ = 0 and y′ = 1. Let L
(v)
k be a vertical line with

x−⌊r⌋ ≤ k ≤ x+ ⌊r⌋. By Lemma 6.2.1, the set L
(v)
k ∩ (B(v)\B(u)) is

nonempty. Let w = (k, y+1+a) ∈ Z2 be a vertex in B(v)\B(u). Then,
by symmetry, a vertex w′ = (k, y−a) ∈ Z2 belongs to B(u) \B(v). It
is immediate that the parity of the second coordinates of the vertices

w and w′ are different. Therefore, since one of the vertical lines L
(v)
i

with x − ⌊r⌋ ≤ i ≤ x + ⌊r⌋ is such that every other vertex in the
line is a codeword, the symmetric difference B(u)△B(v) contains a
codeword.

2) If x′ = 1 and y′ = 0, the proof goes exactly like in the previous case;
just replace the vertical lines by horizontal ones.

3) Assume now that x′ = 1 and y′ = 1. Let w = (k, y + 1 + a) ∈ L
(v)
k ,

where x−⌊r⌋ ≤ k ≤ x, be a vertex such that w ∈ B(x, y+1)\B(x, y).
By symmetry, the vertex w′ = (k, y−a) belongs to B(x, y)\B(x, y+1).

96



Since k ≤ x, the vertex w′ ∈ B(x, y)\B(x+1, y+1). If w ∈ B(x+1, y+

1) \ B(x, y), then the vertical line L
(v)
k contains two vertices (w and

w′) in B(u)△B(v) such that the parity of their second coordinates
are different. Assume then that w /∈ B(x + 1, y + 1) \B(x, y). Hence,
by symmetry, the vertex w′′ = (k, y+1−a) ∈ B(x, y)\B(x+1, y+1).
Clearly, the parity of the second coordinates of w′ and w′′ are different.
Analogous arguments also apply, when we are considering the vertical

lines L
(v)
k with x + 1 ≤ k ≤ x + 1 + ⌊r⌋. Hence, each line L

(v)
i with

x − ⌊r⌋ ≤ i ≤ x + 1 + ⌊r⌋ contains two vertices in B(u)△B(v) such
that the parity of the second coordinates of the vertices are different.
Thus, there exists a codeword in B(u)△B(v).

In conclusion, we have shown that C2⌊r⌋+1 is an identifying code in Er when
r2 − ⌊r⌋2 ≥ 1.

(ii) Let again u = (x, y) be a vertex in Z2. Assume then that r2−⌊r⌋2 <
1. Define the set A = {(i, j) ∈ Z2 | x − ⌊r⌋ ≤ i ≤ x + ⌊r⌋, y − 1 ≤ j ≤
y}\{(x−⌊r⌋, y−1), (x+⌊r⌋, y−1)}. Let us then show that the set A contains

a codeword of C2⌊r⌋. If a vertical line L
(v)
i with x−⌊r⌋+1 ≤ i ≤ x+ ⌊r⌋− 1

is such that every other vertex in the line is a codeword, then we are clearly

done. Otherwise, we know that the vertical lines L
(v)
x−⌊r⌋ and L

(v)
x+⌊r⌋ are such

that every other vertex in the lines is a codeword. Hence, by the construction
of C2⌊r⌋, either the vertex (x − ⌊r⌋, y) or (x + ⌊r⌋, y) is a codeword. Since
A ⊆ B(u), the word u is covered by a codeword.

Let v = (x + x′, y + y′) be a vertex in Z2 and v 6= u. We need to
show that the symmetric difference B(u)△B(v) contains a codeword (when
B(u) ∩ B(v) 6= ∅). Without loss of generality, we can assume that x′ ≥ 0
and y′ ≥ 0. If x′ = 0 and y′ = 1, or x′ = 1 and y′ = 0, then the proof goes
exactly as in the cases 1) and 2) of the part (i), respectively. Assume that

x′ = 0 and y′ ≥ 2. If now a vertical line L
(v)
i with x−⌊r⌋+1 ≤ i ≤ x+⌊r⌋−1

is such that every other vertex in the line is a codeword, then we are done.
Otherwise, either the vertex (x − ⌊r⌋, y) or (x + ⌊r⌋, y) in B(u)△B(v) is a
codeword. Therefore, I(u)△ I(v) 6= ∅. Similar arguments also apply when
x′ ≥ 2 and y′ = 0. If x′ = 1 and y′ = 1, then the proof goes exactly as
previously in the case 3), but we just consider the 2⌊r⌋ consecutive vertical

lines L
(v)
i with x − ⌊r⌋ + 1 ≤ i ≤ x + ⌊r⌋. If x′ ≥ 1 and y′ ≥ 2, then the

proof is similar to the third paragraph of the proof of the part (i), but we

just consider the vertical lines L
(v)
i with x − ⌊r⌋ + 1 ≤ i ≤ x + x′ + ⌊r⌋ − 1.

The case with x′ ≥ 2 and y′ ≥ 1 goes the same way as the previous one.
In conclusion, we have shown that C2⌊r⌋ is an identifying code in Er when
r2 − ⌊r⌋2 < 1.

It is easy to conclude that the density of the code Ck satisfies D(Ck) ≤
1/k. Therefore, by the previous theorem, we have shown that for any real
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number r ≥ 1 there exists an identifying code C in Er such that the density

D(C) ≤ 1

2⌊r⌋ .

For small values of r, there exist identifying codes with smaller densities.
Indeed, since E√2 = K1 and E2

√
2 = K2, we have optimal identifying codes

in E√2 and E2
√

2 with densities 2/9 and 1/8, respectively (see [15]). Recall
that E1 = S1 and E2 = S2. It has been shown in [21] that there exists an
identifying code with density 7/20 in S1. Moreover, it was proved in [4] that
there are no identifying codes in S1 with smaller density. There exists an
identifying code in S2 with density 5/29 (see [52]). In [14], it has been shown
that there does not exist an identifying code in S2 with density smaller than
3/20. Later, this lower bound has been improved to 6/37 in [66].

Consider then a lower bound on the density of an identifying code in
Er. In order to provide a lower bound, we first need to present an auxiliary
theorem. This theorem is a rephrased version of [47, Theorem 5]. For
completeness, we have also included the proof.

Theorem 6.2.3. Assume that C ⊆ Z2 is a code. Let S = {s1, s2, . . . , sk}
be a subset containing k different points of Z2. For each i = 1, 2, . . . , k we
choose a real number wi ≥ 0, which we call the weight of si and denote by
w(si). For all subsets A of S we define

w(A) =
∑

a∈A

w(a).

If for all v ∈ Z2 we have w((v + C)∩S) ≥ 1, then the density of C satisfies

D(C) ≥ 1

w1 + w2 + · · · + wk
.

Proof. Since S is finite, we can choose a constant h such that S ⊆ Qh.
(Recall the definition of Qn from Section 1.2.) Consider then the sum∑

v∈Qn−h
w((v + C) ∩ S), where n > h. Now we have

|Qn−h| ≤
∑

v∈Qn−h

w((v + C) ∩ S) ≤
k∑

i=1

wifi(n), (6.1)

where fi(n) denotes the number of pairs (c,v) such that c ∈ C, v ∈ Qn−h

and si = v+c. Since v ∈ Qn−h and si ∈ Qh, we know that c = si −v ∈ Qn.
Hence, there are at most |C ∩ Qn| choices for c. Furthermore, for every c

there is at most one possible choice for v ∈ Qn−h such that si = c + v.
Therefore, fi(n) ≤ |C ∩ Qn|.
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Combining this result with the inequality (6.1), we have

|Qn−h| ≤ (w1 + w2 + · · · + wk)|C ∩ Qn|.

Thus,
|C ∩ Qn|
|Qn|

≥ |Qn−h|
|Qn|

· 1

w1 + w2 + · · · + wk
.

Now the claim immediately follows, since |Qn−h|/|Qn| → 1 when n → ∞.

In what follows, we prove a lower bound on the density of an identifying
code in Er. The lower bound can actually be attained for some graphs Er as
can be seen from Theorem 6.3.3.

Theorem 6.2.4. If C ⊆ Z2 is an identifying code in Er, then the density
satisfies

D(C) ≥ 3

4⌊r⌋ + 4⌊b⌋ + 4
⌊√

r2 − (⌊b⌋ + 1)2
⌋

+ 8
,

where b = −1/2 + 1/2 ·
√

2r2 − 1.

Proof. Let C ⊆ Z2 be an identifying code in Er. Denote u1 = (0, 0), u2 =
(−1, 0), u3 = (0,−1) and u4 = (−1,−1). Then define the set

H = (B(u1)△B(u2)) ∪ (B(u1)△B(u3)) ∪ (B(u1)△B(u4))

∪ (B(u2)△B(u3)) ∪ (B(u2)△B(u4)) ∪ (B(u3)△B(u4)).

Let H ′ be the set of vertices that belong to H and are covered by exactly
two of the vertices u1, u2, u3 and u4.

Notice that if v ∈ H \ H ′, then v is covered by exactly one or three of
the vertices u1, u2, u3 and u4. If a codeword c ∈ C belongs to H \H ′, then,
by Theorem 6.1.1, there exist at least three codewords in H. On the other
hand, if there does not exist any codeword in H \H ′, then there clearly exist
at least two codewords in H ′.

Using the notations of Theorem 6.2.3, we choose S = H. The weight of
a vertex s ∈ H is now defined as follows: if s ∈ H ′, then w(s) = 1/2, else
w(s) = 1/3. By the considerations in the previous paragraph, we conclude
that for every v ∈ Z2 we have w((v + C) ∩ H) ≥ 1. By Theorem 6.2.3, we
have

D(C) ≥ 1

1/2 · |H ′| + 1/3 · (|H| − |H ′|) =
3

|H| + 1/2 · |H ′| .

For the lower bound, it is now enough to calculate the number of vertices in
H and H ′.
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For the calculations, define the set T = {(x, y) ∈ Z2 | x ≥ 0, y ≥ 0}. It
is clear that a vertex u ∈ T ∩ H if and only if u ∈ B(0, 0) \ B(−1,−1) and
u ∈ T . Now, by straightforward calculations, we obtain that the number of
vertices in T ∩ H is equal to

⌊r⌋−1∑

i=0

(⌊√
r2 − i2

⌋
−
⌊√

r2 − (i + 1)2 − 1
⌋)

+
⌊√

r2 − ⌊r⌋2
⌋

+ 1 = 2⌊r⌋ + 1.

Therefore, by symmetry, the number of vertices in H is equal to 4(2⌊r⌋+1) =
8⌊r⌋ + 4.

Consider then the number of vertices in H ′. It is easy to see that the
circles of radius r centered at the points (−1, 0) and (0,−1) intersect each
other in the point (b, b), where b = −1/2 + 1/2 ·

√
2r2 − 1. Then define the

set Tb = {(x, y) ∈ Z2 | 0 ≤ x ≤ b, y ≥ 0}. It is clear that a vertex u ∈ Tb∩H ′

if and only if u ∈ (B(0, 0) ∪B(−1, 0)) \ (B(0,−1) ∪B(−1,−1)) and u ∈ Tb.
Hence, by straightforward computations, we have

|Tb ∩ H ′| =

⌊b⌋∑

i=0

(⌊√
r2 − (i + 1)2

⌋
−
⌊√

r2 − i2 − 1
⌋)

=
⌊√

r2 − (⌊b⌋ + 1)2
⌋

+ ⌊b⌋ − ⌊r⌋ + 1.

Therefore, by symmetry, the number of vertices in H ′ is equal to

8
(⌊√

r2 − (⌊b⌋ + 1)2
⌋

+ ⌊b⌋ − ⌊r⌋ + 1
)

.

Thus, we have the lower bound on the density

D(C) ≥ 3

4⌊r⌋ + 4⌊b⌋ + 4
⌊√

r2 − (⌊b⌋ + 1)2
⌋

+ 8
.

Let us then consider more closely the lower bound given by the previous
theorem. As in the theorem, let C ⊆ Z2 be an identifying code in Er and
denote b = −1/2 + 1/2 ·

√
2r2 − 1. Denote further ⌊b⌋ = k ∈ Z. Since now

b < k + 1, we have that r <
√

1/2 · (2k + 3)2 + 1/2. Therefore, we have

√
r2 − (⌊b⌋ + 1)2 ≤

√(√
1/2 · (2k + 3)2 + 1/2

)2
− (⌊b⌋ + 1)2 = k + 2.

Hence, we further obtain that
⌊√

r2 − (⌊b⌋ + 1)2
⌋

≤ ⌊b⌋ + 1. Thus, the

denominator of the lower bound can be estimated as follows:

4⌊r⌋+4⌊b⌋+4
⌊√

r2 − (⌊b⌋ + 1)2
⌋
+8 ≤ 4⌊r⌋+8⌊b⌋+12 ≤ 4(

√
2+1)r+12.
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Therefore, we have the following approximation for the lower bound on the
density of an identifying code C in Er:

1

3.22r + 4
≤ 3

4(
√

2 + 1)r + 12
≤ D(C).

Recall also the previous result stating that for any r there exists an r-
identifying code C in Er such that

D(C) ≤ 1

2⌊r⌋ .

6.3 Identifying codes in the king grids without

corners

In this section, we consider identification in a graph closely related to the
king grid. These considerations provide two optimal identifying codes in Er,
as is shown in Theorem 6.3.3. The vertex set V is again equal to Z2. Let
then t be a positive integer and u = (x, y) be a vertex in Z2. The edge set
E of the considered graph K′

t is such that

B(K′
t;u) = B(Kt;u)\{(x+ t, y + t), (x+ t, y− t), (x− t, y + t), (x− t, y− t)}.

The graph K′
t is called the king grid without corners. Notice that K′

1 = S1.
As mentioned in Section 6.2, there exists an optimal identifying code in S1

with density 7/20.
Define a code

Ct =
⋃

i∈Z

{(2t · i + α,α) | α ∈ Z and α is even}.

The code Ct is illustrated in Figure 6.1(a) when t = 2. Clearly, the density
D(Ct) is equal to 1/(4t). It has been shown in [15] that Ct is an optimal
identifying code in Kt. The following theorem shows that Ct is also an
identifying code in K′

t. Notice that now the ball in K′
t is smaller than the

one in Kt. In Theorem 6.3.2, we prove that identifying codes in K′
t with a

lower density do not exist.

Theorem 6.3.1. Let t be an integer such that t ≥ 2. Then the code Ct is
identifying in K′

t.

Proof. Let w = (x, y) be a vertex in Z2. Then define sets

Ah(w) = {(i, j) ∈ Z2 | x ≤ i ≤ x + 2t − 1, y ≤ j ≤ y + 1}

and
Av(w) = {(i, j) ∈ Z2 | x ≤ i ≤ x + 1, y ≤ j ≤ y + 2t − 1}.
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Let i be an integer. If i is even, then the horizontal line L
(h)
i is such that one

of the 2t consecutive vertices in the line is a codeword of Ct. The same also
holds for the vertical lines. Thus, the sets Ah(w) and Av(w) both contain
at least one codeword.

Let u = (x1, y1) and v = (x2, y2) be vertices in Z2. The I-set I(u)
is nonempty, since the ball B(u) contains the set Ah(w) with a suitable
choice of w, when t ≥ 2. In order to prove the claim, we have to show that
the symmetric difference B(u)△B(v) always contains a codeword. Assume
first that |x1 − x2| ≥ 3 or |y1 − y2| ≥ 3. Then the symmetric difference
B(u)△B(v) contains the set Av(w) or Ah(w). Thus, I(u)△ I(v) 6= ∅.

Assume now that |x1 − x2| ≤ 2 and |y1 − y2| ≤ 2. Then we have the
following cases to consider (other cases are analogous):

1) Assume that v = (x1 + 1, y1) or v = (x1 + 2, y1). Denote X1 =
{(x1− t, y1− t+1), (x1− t, y1− t+2), . . . , (x1− t, y1 + t−1)} and X2 =
{(x1+t+1, y1−t+1), (x1+t+1, y1−t+2), . . . , (x1+t+1, y1+t−1)}. It
is easy to see that X1,X2 ⊆ B(u)△B(v) and (x1− t+1, y1− t), (x1 +
t, y1+t) ∈ B(u)△B(v). Assume first that x1−t is even. Then, by the
previous considerations, either X1 contains a codeword or the vertex
(x1 − t, y1 − t) is a codeword. If X1 contains a codeword, we are done.
Otherwise, the vertex (x1 − t, y1 − t) is a codeword. Therefore, by the
construction of Ct, the vertex (x1− t+2t, y1− t+2t) = (x1 + t, y1 + t),
which belongs to B(u)△B(v), is a codeword. Assume then that x1−t
is odd. Now x1 + t + 1 is even. The proof in this case is similar to the
previous one.

2) Assume that v = (x1+1, y1+1) or v = (x1+2, y1+2). Denote Y1 = X1

and Y2 = (0, 1) + X2. It is easy to see that Y1, Y2 ⊆ B(u)△B(v)
and (x1 − t + 1, y1 − t + 1), (x1 + t, y1 + t) ∈ B(u)△B(v). Assume
first that x1 − t is even. If Y1 contains a codeword, we are done.
Otherwise, the vertex (x1 − t, y1 − t) is a codeword. Therefore, the
vertex (x1 − t+2t, y1− t+2t) = (x1 + t, y1 + t) is a codeword. If x1− t
is odd, then x1 + t+1 is even and the proof is similar to the first case.

3) Assume that v = (x1 + 2, y1 + 1). The proof is now analogous to the
previous case 2).

In conclusion, we have shown that the symmetric difference I(u)△ I(v) is
always nonempty. Hence, the claim follows.

The following theorem provides a lower bound on the density of an iden-
tifying code in K′

t.

Theorem 6.3.2. If C is an identifying code in K′
t, then the density

D(C) ≥ 1

4t
.
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Proof. Let C be an identifying code in K′
t. Define the vertices u1,u2,u3,u4 ∈

Z2 and the sets H,H ′ ⊆ Z2 as in the proof of Theorem 6.2.4. Using similar
arguments as in the proof of Theorem 6.2.4, we have

D(C) ≥ 3

|H| + 1/2 · |H ′| .

It is easy to calculate that |H| = 8t + 4 and |H ′| = 4(2t − 2). Therefore,

D(C) ≥ 3

8t + 4 + 1/2 · 4(2t − 2)
=

1

4t
.

In conclusion, we have shown that Ct is an optimal identifying code in
K′

t. Hence, we have the following theorem concerning identifying codes in
Er when r =

√
5 or r =

√
13.

Theorem 6.3.3. The codes C2 and C3 are optimal identifying codes in E√5
and E√13, respectively.

Proof. The claim immediately follows from the fact that E√5 = K′
2 and

E√13 = K′
3.
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Chapter 7

Adaptive identification

Recently, a new concept of adaptive identification has been introduced in [3].
In this chapter, which is based on the paper [54], we consider adaptive
identification in binary Hamming spaces. We begin the chapter with some
preliminary definitions in Section 7.1 and then proceed with the results in
Section 7.2.

7.1 Preliminaries

Let G = (V,E) be a simple, connected and undirected graph. First recall
(from Section 1.2) that a code in G is said to be an r-covering if each vertex
of G is r-covered by a codeword. The minimum cardinality of an r-covering
in G is denoted by γr(G). Furthermore, a code C is called an r-packing in
G, if the number of vertices in Ir(C;u) is at most one for all u ∈ V . In other
words, the r-balls centered at the vertices of C are all pairwise disjoint. The
maximum cardinality of an r-packing in G is denoted by cr(G). If a code C
is both an r-covering and r-packing in G, then C is called an r-perfect code.

Assume that a given graph G may contain faulty vertices and that we
can ask whether there is a faulty vertex (or faulty vertices) in Br(u) for
all u ∈ V . The query Qr : V −→ {0, 1} is equal to 1 for u ∈ V , if there
is a faulty vertex in Br(u), else Qr(u) is equal to 0. We also say that a
vertex v ∈ V is r-covered by a query Qr(u) (u ∈ V ), if v belongs to the
r-ball Br(u). Now the problem is to locate the faulty vertices using the
queries Qr(u). The definition of identifying codes guarantees that if C ⊆ V
is an (r,≤ ℓ)-identifying code in G, then by asking simultaneously all the
queries Qr(c) for c ∈ C we can locate in one step all the faulty vertices in
G (assuming there are at most ℓ faulty vertices in G).

The definition of identifying codes is based on the fact that all the queries
have to be asked simultaneously. However, adaptive identification, which was
recently introduced in [3], is based on the idea that the queries can be asked
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one after the other, i.e. that a new query may depend on the answers given
by the previous ones. In what follows, we call the identifying codes (in the
sense of Definition 1.2.1) regular to distinguish them from the adaptive ones.

Let ℓ be the maximum number of faulty vertices in a graph G. Recall
that the minimum cardinality of an (r,≤ ℓ)-identifying code in G is then
denoted by M(r,≤ℓ)(G). In adaptive identification, the corresponding value
is the minimum of the maximum number of queries required to identify the
(at most ℓ) faulty vertices and it is denoted by a(r,≤ℓ)(G). We also say that
an algorithm (or a series of queries) A is adaptive (r,≤ ℓ)-identifying, if it
can identify the at most ℓ faulty vertices in G using only the queries Qr(u)
(u ∈ V ).

In Ben-Haim et al. [2] and [3], adaptive (r,≤ 1)-identification is consid-
ered in torii of square and king lattices. They suggest that further study
would be needed in these torii when ℓ > 1 and also in various other graphs
such as binary Hamming spaces. In this chapter, we study adaptive identifi-
cation in binary Hamming spaces Fn when ℓ = 1. For the results in various
graphs in the case ℓ > 1, the interested reader is referred to [54].

7.2 Adaptive identification in Hamming spaces

First recall the basic definitions concerning binary Hamming spaces Fn from
Section 2.1. We also need the following lemma, which can be easily proven.

Lemma 7.2.1. Let x,y ∈ Fn. Then

|B1(x) ∩ B1(y)| =






n + 1 if x = y,
2 if 1 ≤ d(x,y) ≤ 2,
0 otherwise.

The following lemma is needed in the proof of Theorem 7.2.3, which
provides a lower bound for a(1,≤1)(F

n).

Lemma 7.2.2. Let X be a nonempty subset of Fn. Assume that there are
0 or 1 faulty words in X. Then an adaptive (1,≤ 1)-identifying algorithm
needs at least ⌈√

|X|
2

⌉

queries, which are centered at a word in Fn, to locate the faulty word in X
or to conclude that there is none.

Proof. Let X be a nonempty subset of Fn and let A be an algorithm that
identifies the faulty word in X using queries from Fn. Define then k as the
maximum number of words in X that are 1-covered by a 1-ball of Fn, i.e.

k = max
x∈Fn

|B1(x) ∩ X|.
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Now we have two approaches for the lower bound on the number of queries
used in A:

(1) By the previous definition, a query Q1(x) with x ∈ Fn can 1-cover
at most k words of X. Assume that the first ⌊|X|/k⌋ − 1 queries of
A output value 0. Now there still exist at least k words in X that
are not 1-covered by any of the previous queries, and we need at least
⌈log2(k + 1)⌉ queries to locate the faulty word among these uncovered
words or to conclude that there is none. Thus, the number of queries
used in A is at least ⌊|X|/k⌋ − 1 + ⌈log2(k + 1)⌉. If k = 1, then the
claim clearly follows. Otherwise, we need at least |X|/k queries in the
algorithm A.

(2) On the other hand, we know by Lemma 7.2.1 that the number of words
in the intersection of two different 1-balls of Fn is at most 2. Let then
x ∈ Fn be a word such that the number of words in B1(x)∩X is equal
to k. Assume that there exists a faulty word in B1(x) ∩ X. Using
similar arguments as in the first lower bound from (1), we obtain that
the number of queries used in A is at least

{
⌊k/2⌋ − 1 + ⌈log2 2⌉ if 2 | k,
⌊k/2⌋ − 1 + ⌈log2 3⌉ if 2 ∤ k.

Therefore, the number of queries needed is at least k/2.

By the considerations above, the number of queries needed in A is at
least max{|X|/k, k/2}. Therefore, by straightforward analysis, it can be
concluded that (with any choice of k) the number of queries needed is at
least ⌈√

|X|
2

⌉
.

The following theorem provides a lower bound for a(1,≤1)(F
n).

Theorem 7.2.3. We have

a(1,≤1)(F
n) ≥ c1(F

n) +

⌊
n + 1

8

⌋
.

Proof. Let algorithm A be an adaptive (1,≤ 1)-identifying code (in Fn).
(Notice that the size of a ball of radius 1 in Fn is equal to n + 1.) Assume
then that the first c1(F

n)−⌈(n+1)/8⌉ queries of A output value 0. (Here the
number of queries c1(F

n)−⌈(n+1)/8⌉ is chosen in such a way that it gives the
best possible lower bound using this approach.) Then the number of words
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that are not 1-covered by the previous queries is at least ⌈(n + 1)/8⌉(n + 1).
Therefore, by Lemma 7.2.2, the number of queries used in A is at least

c1(F
n) −

⌈
n + 1

8

⌉
+

⌈√
⌈(n + 1)/8⌉(n + 1)

2

⌉
≥ c1(F

n) +

⌊
n + 1

8

⌋
.

The following theorem provides an upper bound for a(1,≤1)(F
n).

Theorem 7.2.4. We have

a(1,≤1)(F
n) ≤ γ1(F

n) +

⌈
n + 1

2

⌉
.

Proof. Let C = {x1,x2, . . . ,x|C|} be a 1-covering code in Fn attaining
γ1(F

n). Denote then by ei the word in Fn that has value 1 in the ith
coordinate place and value 0 in all other places, i.e. supp(ei) = {i}. Now
the following algorithm is adaptive (1,≤ 1)-identifying:

1. For i = 1, . . . , |C| − 1 ask the query Q1(xi). If Q1(xi) = 1 for any
i = 1, . . . , |C| − 1, then the faulty word in B1(xi) can be located as in
the following step 2.

2. Assume then that all the previous queries output value 0, meaning that
any of these queries do not 1-cover a faulty word. Now we can assume
without loss of generality that x|C| = 0. For i = 1, . . . , ⌈n/2⌉ − 1 ask
the query Q1(e2i−1+e2i). Now, if for any i we have Q1(e2i−1+e2i) = 1,
then the faulty word can be located using one more suitably chosen
query. Hence, assume that any of the previous queries do not 1-cover
a faulty word. Now it can be easily seen that we only need two more
queries to locate the faulty word in the remaining words or to conclude
that there are none.

In conclusion, the previous algorithm uses at most γ1(F
n) + ⌈n/2⌉ + 1 =

γ1(F
n) + ⌈(n + 1)/2⌉ queries.

Let s and n be integers such that s ≥ 3 and n = 2s − 1. Consider then
the binary Hamming space Fn. By [65, Chapter 6] and [75, Chapter 3],
we know that now there exists a 1-perfect covering in Fn. Hence, we have
c1(F

n) = γ1(F
n). Therefore, for the previous lengths, Theorems 7.2.3 and

7.2.4 can be written as follows:

c1(F
n) +

n + 1

8
≤ a(1,≤1)(F

n) ≤ c1(F
n) +

n + 1

2
.

Hence, we know the order of growth for a(1,≤1)(F
n).
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Chapter 8

Conclusion

In this thesis, we have considered various topics in the fields of identifying
and locating-dominating codes. In what follows, we summarise some of the
obtained results as well as give suggestions for future research.

In Chapter 2, we studied identifying codes in binary Hamming spaces
Fn. First, in Section 2.2, we were able to improve known lower bounds
for the sizes of r-identifying codes in Fn when r ≥ 2. The main tool in
achieving these improvements was the study of the function Pr(n, i,x). More
precisely, by providing a good upper bound for this function, we managed
to improve known lower bounds on Mr(F

n). However, there still seems
to be room for significant improvement concerning the lower bound and
a viable approach in doing so could be to obtain a better understanding
of the function Pr(n, i,x). In Sections 2.3, 2.4 and 2.5, we studied three
conjectures, which have been stated in the papers [9] and [60], and although
we were not able to completely solve these problems, we managed to present
several results related to these conjectures. Hence, there is still work to do
concerning these conjectures as well as some other ones such as whether
Mr(F

n) ≤ Mr(F
n+1) holds for general r when n is large enough (the case

with r = 1 is shown to be true; see [67]).

In Chapters 3 and 4, we considered identifying and locating-dominating
codes in cycles Cn and paths Pn. In the case of identifying codes, we de-
termined the exact values of Mr(Cn) and Mr(Pn) in all the remaining open
cases. Concerning locating-dominating codes in paths, we solved a con-
jecture, which states that there exists an infinite family of n such that
MLD

r (Pn) = ⌈(n+1)/3⌉, by showing that this equality actually holds always
when n is large enough. Although this result determines the majority of the
exact values of MLD

r (Pn), there is still room for future research when n is
small. In the case of locating-dominating codes in cycles, we were able to
prove a result similar to the one of the paths according to which n/3 ≤
MLD

r (Cn) ≤ n/3 + 1 if n ≡ 3 (mod 6) and MLD
r (Cn) = ⌈n/3⌉ otherwise. In
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the latter case, we also conjectured that the equality MLD
r (Cn) = n/3 + 1

actually holds. It is obvious that a proof for this conjecture would be wel-
comed.

In Chapter 5, we showed that a 2-identifying code in the hexagonal grid
GH with density 4/19 is optimal by proving that there are no 2-identifying
codes in GH with smaller density. The main idea of the proof in the improved
lower bound was to show that on average the share of each codeword in a
2-identifying code in GH is at most 19/4. This approach, which is based
on the concept of share, can also be used for improving lower bounds of
r-identifying codes (with small r) in other infinite grids such as square and
triangular grids. Indeed, in a forthcoming paper, we have been able to
improve known lower bound on 2-identifying code in the square grid.

In Chapter 6, we studied identification in the infinite grid Z2 using Eu-
clidean balls. We obtained a general lower bound stating that the density of
any identifying code C in Er satisfies D(C) ≥ 1/(3.22r + 4). Furthermore,
we also presented a construction according to which we have an identifying
code C in Er (for any positive real number r) such that D(C) ≤ 1/(2⌊r⌋). As
a future research subject, it would be interesting to obtain improvements for
both the lower and upper bounds above. In addition to the general results,
we also proved that the densities of optimal identifying codes in E√5 and
E√13 are 1/8 and 1/12, respectively. Improvements over the general results
might also be possible in other cases with small radius.

Finally, in Chapter 7, we briefly discussed adaptive identification, which
is a sequential variant of regular identification. In particular, we obtained
the following bounds for the maximum number of queries a(r,≤1)(F

n) needed
in an adaptive (r,≤ 1)-identifying algorithm:

c1(F
n) +

n + 1

8
≤ a(1,≤1)(F

n) ≤ c1(F
n) +

n + 1

2
.

More extensive coverage on adaptive identification can be found in [54].
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