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Abstract

Technology developments in semiconductor fabrication along with a rapid expan-
sion of the market for portable devices, such as PDAs and mobile phones, make
the energy consumption of embedded systems a major problem. Indeed the need
to provide an increasing number of computational intensive applications and at the
same time to maximize the battery life of portable devices can be seen as incom-
patible trends.

System simulation is a flexible and convenient method for analyzing and ex-
ploring the performance of a system or sub-system. At the same time, the increas-
ing use of computational intensive applications strengthens the need to maximize
the battery life of portable devices. As a consequence, the simulation of embed-
ded systems for energy consumption estimation is becoming essential in order to
study and explore the influence of system design choices on the system energy
consumption.

The original publications presented in the second part of this thesis propose
several frameworks for evaluating the effects of particular system and software
architectures on the system energy consumption. From a software point of view
Java and C based applications are studied, and from a hardware perspective sys-
tems using general purpose processor and heterogeneous platforms with dedicated
hardware accelerators are analyzed. Papers 1 and 2 present a framework for esti-
mating the energy consumption of an embedded Java Virtual Machine and show
how an accurate energy consumption model of Java opcodes can be obtained. Pa-
per 3 evaluates the cost-effectiveness of Forward Error Correction algorithms in
terms of energy consumption and demonstrates that a substantial energy saving is
achievable in a DVB-H receiver when a FEC algorithm is used for file download-
ing scenarios. Paper 4 and 5 present the simulation of heterogeneous platforms and
point out the drawback of different mechanisms used to synchronize a hardware ac-
celerator used as a peripheral device. Paper 6 shows that the use of a multi-bank
memory architecture can lead to a 20% static energy saving without any software
optimization.
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4. Sébastien Lafond, Jani Boutellier, Johan Lilius and Olli Silvén. Energy ef-
ficiency analysis of multi-stream MPEG-4 decoder systems. In Multimedia
on Mobile Devices 2008, proceedings of SPIE Vol. 6821, 68210G-1. SPIE,
2008
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1 Introduction

Technology developments in semiconductor fabrication [1], along with a rapid ex-
pansion of the market for portable devices, such as PDAs and mobile phones, make
the energy consumption of embedded systems a major problem [2]. Indeed the
need to provide an increasing number of computational intensive applications and
at the same time to maximize the battery life of portable devices can be seen as
incompatible trends. Although energy is solely consumed by the hardware, energy
consumption can be trimmed by adequate software manipulations because the soft-
ware operates the hardware activities. Therefore, for a defined hardware platform
different software implementations providing the same services can have different
performance in terms of energy consumption. Evaluating these performance differ-
ences is essential for determining which implementation is the optimum solution.
System simulation can be an answer to the problem of performance evaluation
when assessing different software implementations on several hardware platforms,
as it provides a flexible and convenient solution for performance evaluation.

Energy consumption

We can often see confusion concerning the use of the terms energy and power. The
electrical energy E of a system having one source of energy is expressed in joule
and is defined by:

E = q.V

where q is the quantity of electric charges expressed in coulomb that has passed
through the cross-section of the electrical conductors connecting the source of
energy, and V is the electric potential expressed in volt between the two poles
of the source of energy. Whereas, the power P is expressed in watt and is defined
as the average rate at which electrical energy is consumed by an electric circuit
during a time t:

P = E
t

Furthermore, the overall power dissipation P can be expressed as:

P = Pstat +Pdyn

where Pstat represents the static power dissipation and Pdyn represents the dy-
namic power dissipation. Pstat is caused by the leakage current Ileak flowing through
turned-off transistors from the supply rail to ground and is expressed for one tran-
sistor as:

Pstat = Ileak.VDS
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where VDS is the electric potential between the drain and the source of a turned-
off transistor. Pdyn is due to the switching activity of the gates constituting the
digital circuit. The dynamic power consumption per transistor is expressed as:

Pdyn = ar. fc.Cl.V 2
DD

Most of the confusion comes from the use of the low power adjective to mean
having a low energy consumption or having a low average power dissipation. For
most of the system the important matter is certainly the energy consumed by the
system, which is driven by its average power dissipation over its life time. Indeed,
it is the energy consumed by a system that will affect its operating cost as well as
its operating lifetime in the case where the system operates on a battery.

When considering a complete system, there are different levels [3, 4] where
issues concerning energy consumption can be addressed:

• Low power electronics

• System architecture

• Code generation

• Software architecture

On each level, there are various ways [5, 3, 4, 6, 7, 8] of evaluating the energy
consumption drained by a system and estimating the influence of a specific level.
The original publications presented in the second part of this thesis focus, in papers
1, 2 and 3, on the simulation of different software architectures and, in papers 4, 5
and 6, on system architectures for embedded system.

Furthermore, as the circuits shrink, leakage currents and thus static power dis-
sipation become increasingly significant [9]. To limit the energy due to the static
power dissipated by RAM memories, paper 6 proposes, models and simulates a
multi-bank memory architecture. All the other papers presented in the second
part of this thesis propose several simulation platforms for estimating the dynamic
energy consumed by the studied system.

Embedded systems and energy consumption

There are several alternatives for defining an embedded system. In [10] an em-
bedded system definition is given based on its development environment as: any
computer system for which the primary development tools do not run on the system
itself. But in [11] an embedded system is defined based on its physical environ-
ment as: information processing systems embedded into enclosing products such
as cars, telecommunication or fabrication equipment.

The union of these two definitions designates a complete system with dedicated
software applications running on a particular hardware platform. Hence it encom-
passes a very large spectrum of systems ranging from small and simple systems
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such as a portable watch, to large and complex stationary industrial installations
such as the control system of an electrostatic accelerator. The scope of this the-
sis targets a restricted set of embedded systems that can be defined as stand-alone
computer based systems operating on a battery for which the primary development
tools can not run on the system itself.

As the definition of an embedded system is rather large we can categorize two
different types of embedded systems when we look at problems resulting from their
energy consumption characteristic: a) portable devices having a strong constraint
on their available energy budget, thus limiting the system average power dissipation
for a defined operating time and b) stationary systems having almost no limitation
concerning available energy but where the level of the heat generated by the system
requires cooling solutions such as heatsink, fan or liquid cooling unit.

A portable device operates on a limited energy budget defined by the capacity
of its battery. As the physical dimension of a portable device is an important design
characteristic, the constraint on the physical size and weight of the battery strongly
limit the available energy capacity of the battery. Therefore, for such a system the
average power dissipated by the device will determine the system operating time
before the battery needs to be changed or recharged. Moreover, in most of portable
systems the instantaneous power dissipation is not an essential characteristic as the
heat conducted and/or radiated to the device surroundings stays below acceptable
limits. Also several properties of a system can be affected by a limited energy
budget. Energy management through voltage and frequency scaling can affect the
system reliability [12, 13], whereas the battery capacity may not cope with the
energy requirement of a cryptographic algorithm [14] and as a result prevents the
implementation of the required security and privacy level.

On the other hand, most of stationary systems do not rely on a battery and
thus do not have strong constraints concerning their energy budget. However, for
such systems the maximum instantaneous dissipated power will define the required
cooling solutions in order to operate within safe temperatures.

The last two decades have seen tremendous growth in the demand for such sys-
tems with the emergence of communicators, mobile phones, PDAs, palmtops, and
so on. At the same time, while the increase in performance of embedded system’s
hardware caused a radical increase in power densities [13], an increasing number of
computational intensive applications (e.g. multimedia steaming applications) are
expected to run on such systems [15]. While introducing more complex applica-
tions and application execution platforms, these parallel trends make energy-aware
system design, and thus system simulation for energy consumption estimation, a
fundamental issue.
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2 System simulation for energy consumption estimation

System simulation is a widely used method for gathering information about system
performances without the need to have the system physically available. The need of
system simulation arose concurrently with the fast development of computer sys-
tems in the seventieth [16, 17]. Compared to the use of a prototype board, system
simulation provides a flexible and convenient solution for performance evaluation
during the system design process. Historically system simulation was principally
developed and used for simulating the execution time and the memory requirement
of a system [18, 19, 20, 21]. However, technology developments in semiconduc-
tor fabrication [1] along with a rapid expansion of the market for portable devices
make the energy consumption a major problem for embedded systems to operate
on a battery [2]. Most of the simulation frameworks for energy consumption es-
timation can be categorized either as, an instruction-level energy simulator or, an
architecture level power simulator.

2.1 Instruction-level energy simulator

The possibility of simulating the energy consumption of a processor based on an
instruction-level power model is first introduced in [5] by Tiwari at al. In [5], they
develop a power analysis technique for two microprocessors, the Intel 486DX2 and
Fujitsu SPARClite 934, and measure the average current drained by the processor
for each instruction from the processor instruction set. These measured values
give the base energy cost for each instruction. In addition to the base energy cost,
inter-instruction effects are also analyzed. Inter-instruction effects are due to cache
misses, resource constraints and circuit state. A cache miss introduces extra latency
when the data is fetched from memory because the data needs to be retrieved from a
lower level memory. In the same way, a resource constraint can cause pipeline and
buffer stalls which lead to an increase in the number of cycles needed to execute
a sequence of instructions. These two inter-instruction effects increase the system
energy consumption by introducing extra time in the software execution. On the
other hand, based on the previous state and the instruction operand values, the
effect of the circuit state will modify the base energy cost for each instruction
execution without introducing any extra cycle penalty.

Several instruction-level energy simulators have been presented since [5] in
[6, 22, 23, 24, 25, 26]. These simulators are all based on the same approach
presented in [5] and illustrated in figure 1: an instruction-level power model is
obtained by physical measurements of the current drained by the processor, and
external memory if a memory model is also given, and the energy consumption of
an application is estimated based on a simulated execution trace containing the list
of executed instructions.

To the author’s knowledge the possibility of establishing an opcode-level energy
model for a Java Virtual Machine was not previously studied. Following a similar
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Figure 1: General approach used by instruction-level energy simulators

approach to that used in [5] to determine an instruction-level energy simulator for a
processor, paper 1 and 2 describe the development of a framework used to establish
an opcode-level energy model for embedded Java Virtual Machines.

Paper 1 proposes a general framework for estimating the energy consumption
of an embedded Java Virtual Machine (JVM). This paper presents a number of
experiments to estimate the constant overhead of the JVM energy consumption
and establishes an energy consumption cost for individual Java Opcodes. The first
author is responsible alone for all the results and contributions of this publication.

Paper 2 extents the results presented in paper 1. In paper 2, a comparison
between the Sun Microsystems K Virtual Machine (KVM) and the simple Real-
Time-Java (simpleRTJ) virtual machine is done. This publication shows that im-
plementation differences between two embedded Java Virtual Machines can lead
to great divergence regarding the JVM energy consumption. The first author is
responsible alone for all the results and contributions of this publication.

Due to space requirement the result tables of papers 1 and 2 were initially only
published on the internet, but they are, in this thesis, included as an appendix at the
end of each paper.

Instead of using the physical measurements of the current drained by the ap-
plications we used the commercial ARMulator [27] as the processor simulator and
the enprofiler tool [28, 29] as the energy simulator. This choice was motivated by
the advantage given by the use of a simulated environment and also the fact that
the enprofiler tool provides satisfactory precision [29] when estimating the energy
consumed by the execution of an application. As for establishing the base energy
cost for processor instructions in [5], the cost of each Java opcode is determined by
looking at the cost differences between the execution of two particular Java classes.
As the generation by hand of a Java class is an extremely tedious task, a Java class
file generator producing particular pairs of Java classes was developed to extract
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the energy consumption of a singular Java opcode.
Nevertheless, the inter-instruction effect due to the circuit state between two

Java opcodes is negligible compared to the one at the processor instruction level.
This can be explained by the corresponding code length in processor instructions
of one Java opcode, ranging from 45 to few thousands processor instructions. As
the inter-instruction effect, due to the circuit state, appears only between the last
and first processor instructions of two consecutive Java opcodes, its value becomes
insignificant in comparison to the cost of execution of the block of processor in-
structions corresponding to one Java opcode.

The opcode-level energy models presented in paper 1 and 2 are validated based
on the execution of benchmarks [30]. For each benchmark execution the total
energy costs given by the established models are compared to the energy cost given
by the enprofiler energy simulator. Based on these observations the opcode-level
energy models give results with an error range of -5% +10% compared to the en-
profiler result. This loss in precision has to be balanced with the considerable gain
in execution speed between both simulations. It takes only few seconds to compute
the total energy cost of an application based on the proposed opcode-level energy
models, compared to several hours needed by the enprofiler simulator.

2.2 Architecture level power simulator

A different approach to the simulation of processor energy consumption is to de-
velop an architecture based energy model [31, 32, 33, 34, 35, 36]. With this ap-
proach each functional unit, also called a micro-architectural block, present in the
processor is modeled, and the total energy consumption is estimated at every clock
cycle by summing up the energy consumed by each functional unit.

Conventional Architecture

In paper 3 the simulation of a conventional architecture, containing a general pur-
pose processor and a standard memory architecture composed by a main memory
and two cache levels, is needed in order to simulate forward error correction (FEC)
algorithms.

Because Sim-panalyzer [37] is a widely used [38, 39, 40, 41] and open-source
cycle-accurate architecture level energy simulator, Sim-panalyzer was chosen for
simulating the FEC algorithm. Sim-panalyzer was developed on top of the sim-
outorder simulator, a component within the SimpleScalar-ARM simulator [42],
and simulates a strongARM SA1100 processor. It computes the energy dissipation
of each micro-architectural block by multiplying the switching capacitance by the
number of micro-architectural accesses [43]. Sim-panalyzer simulates a config-
urable level one and two, data and instruction, cache memories. For each cache the
associativity, the number of blocks and the block size can be configured. Moreover,
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the data and instruction caches from the same level can be unified. Sim-panalyzer
provides accurate results with a 9% error margin in its datapath and execution unit
models and a 7% error margin in its memory power model compared to a gate level
simulation [43].

FEC [44] is a technique used in telecommunication for detecting and recov-
ering errors in the transmitted information without the need to request the sender
for additional data. On the sender side, FEC algorithms add redundant data to the
transmitted information in a way that retransmission of the information can often
be avoided. FEC algorithms have been widely studied across all telecommunica-
tion domains [45, 46, 47, 48]. All these studies analyze the performance of FEC
algorithms by analyzing the algorithm complexity, the size of the redundant data
and the remaining loss probability depending on the erasure rate in the transmis-
sion channel. However, to the author’s knowledge, no analysis was done in order to
evaluate the cost-effectiveness of FEC algorithm in terms of energy consumption
in the receiver.

Paper 3 defines the receiver coding gain, the reduction of energy while using
coding compared to the energy needed without coding, for a DVB-H receiver in
file downloading scenarios. Moreover, an evaluation of the cost-effectiveness of
FEC algorithms in terms of energy consumption in the receiver is presented.

This publication presents a comparative study between two AL-FEC codes, the
HLDPC and the Raptor code, as well as a theoretical analysis of the receiver cod-
ing gain. This paper shows that depending on the AL-FEC code and the erasure
rate the receiver coding gain varies from -9 to 4 dB. It demonstrates that for one of
the studied AL-FEC code, and the present technology for DVB demodulator, the
use of application layer coding leads to a positive receiver coding gain when the
erasure rate is above 2%. The first author contributed to a significant part of the
results and contributions of this publication.

Simulation of heterogeneous platforms

Different solutions have been proposed for simulating heterogeneous platforms. In
[49] Ptolemy, a well-known environment for simulation and prototyping of het-
erogeneous systems, is presented. Ptolemy focuses on particular type of system
domains including synchronous and dynamic dataflow, and discrete-event systems.

In paper 4 and 5 the simulation of an application written in C and running on a
heterogeneous platform is required. The objective of paper 4 and 5 focus only on
the impact of the hardware platform on the system energy consumption. The soft-
ware implementation of the applications existed “as it is”, but the use of Ptolemy
would require a Ptolemy specific re-implementation of them. Therefore, an exten-
sion of the general purpose processor simulator Sim-panalyzer was implemented
instead of re-implementing the existent applications for Ptolemy.

Paper 4 presents an analysis of three systems simultaneously decoding multi-
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ple videos on a dedicated heterogeneous platform. The compared systems consist
of one fully software and two hardware accelerated solutions. One of the hard-
ware accelerated solutions is using flag polling for synchronizing the processing
units, while the other one is using a scheduling-based synchronization approach.
This publication analyzes the differences between the three video decoding sys-
tems in terms of execution speed, energy consumption and cache behaviors. The
first author contributed to a significant part of the results and contributions of this
publication.

In paper 5 a methodology for analyzing the impact of short latency hardware
accelerators on a typical embedded system is proposed. This publication analyzes
the effect of the hardware accelerator granularity on the system performance with
respect to the number of cache misses, the execution time and the system energy
consumption. This paper demonstrates the relative important costs introduced by
the mechanism for suspending a task in a real-time operating system when the
hardware accelerator granularity is decreasing. The first author is responsible alone
for all the results and contributions of this publication.

Memory architecture

The simulation of memories includes the simulation of CPU caches and main mem-
ories, and is relevant for most of the systems if one wants to obtain comprehensive
data about the system performances. For instance papers 1 and 2 show that memory
accesses consume 70% of the total energy consumption of the studied system. This
reflects the importance of memory performances for stack-based machines where
all operand variables and operation results are stored on the stack. Also paper 5
demonstrates the potential negative effect of caches when short latency hardware
accelerators are used. This is due to an increase in the number of cache misses
imputable to the relative short interval between two context switches.

Many studies concerning CPU cache configurations and simulations [50, 51,
52, 53] were done since the 1980s when the performance gap between processors
and memories started to be significant [54]. Also the exploration and the simulation
of different memory architectures have been extensively studied [55, 56, 57, 20,
58, 59]. As well, studies concerning multi-bank memory architectures have been
presented [60, 61]. However, none of these studies propose a model for the static
energy consumed by a multi-bank memory architecture.

Paper 6 establishes the static energy model for a multi-bank memory architec-
ture and introduces the equations governing the optimization problem for decreas-
ing its static energy consumption. The impact of different parameters on the energy
consumption and a performance analysis of such memory architecture in terms of
static energy consumption and execution speed is also presented. This paper shows
that the use of a multi-bank memory architecture can lead to a 20% static energy
saving without any software optimization, nor bank need prediction, nor dedicated
allocation policy. It also highlights the predominant role of the bank occupation
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Figure 2: General view illustrating the measurement system used in paper 3

rate in the multi-bank memory architecture static energy consumption. The first
author is responsible alone for all the results and contributions of this publication.

3 Sim-panalyzer extensions

Sim-panalyzer is the processor simulator used in papers 3, 4 and 5. However,
in order to simulate the desired hardware platforms and/or software components
several extensions were implemented into sim-panalyzer. As these extensions are
not discussed in papers 3, 4 and 5 due to space requirement, the following section
presents them in more detail.

3.1 File handling mechanism

In paper 3, a possible receiver coding gain in terms of energy consumption is stud-
ied when error correction at the application layer (AL-FEC) is used in file down-
loading scenarios over DVB-H. In order to be able to compare the energy consump-
tion of a receiver using AL-FEC with a receiver having no error correction at the
application layer, the execution cost of the AL-FEC codes needs to be evaluated.
In a physical system the encoded data is received in a streaming manner from the
radio receiver via a buffer. However, because AL-FEC codes for DVB-H receiver
are for the moment only at a development stage and not used in real devices, the
simulated algorithms were implemented with file handling mechanism for fetching
the received data. Figure 2 presents the measurement system used in paper 3 where
data files are represented by a rectangle box.

The received data file size being relatively important, fetching the encoded data
from a file would distort the results given by the simulator. Therefore, in order to
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minimize the disturbance from the file handling mechanism in the simulation of
the AL-FEC codes, the Sim-panalyzer and AL-FEC codes were modified. The
process of fetching the received data from a file has been moved to the simulator
and only the size of the received data and a memory address are exchanged between
the simulator and the AL-FEC codes via dedicated system call. Figure 3 shows
the sequence diagram describing the new required operations for execution the
file handling process within the simulator. Basically, in the AL-FEC codes the
following code needs to be used instead of the open file command:

asm volatile ("swi 0x200\n\t"
"mov %0,r0\n\t" /* output */
:"=r"(fsize)
);

encodedData = (unsigned char *) calloc(fsize,sizeof(unsigned char));
register int r0 asm ("r0") = (int)encodedData;
asm volatile ("swi 0x201\n\t"

: /* no output */
:"r"(r0) /* input */

In this code the dedicated system calls are implemented with software inter-
rupt and parameter values are passed via registers. The software interrupt number
0x200 is used to implement the system call requesting the data size and the soft-
ware interrupt number 0x201 is used to implement the system call providing the
start address of the memory space allocated for the received data. On the Sim-
panalyzer side, a switch statement implements the required functionalities for the
software interrupt numbers 0x200 and 0x201. With such implementation the dis-
turbance from the file handling mechanism in the simulation of the AL-FEC codes
is minimized.

3.2 Hardware accelerators as peripheral devices

In papers 4 and 5 the simulated hardware platforms consist of a general purpose
processor and a set of dedicated hardware accelerators used as peripheral devices.
Figures 4 and 5 present the simulated platforms in respectively paper 4 and 5. In
order to simulate the use of a hardware accelerator, a new system call and new
interrupt service routine, in the case the accelerator must be synchronized by inter-
rupt, has to be implemented.

Each hardware accelerator is triggered via a system call (implemented with a
software interrupt) and if needed, signals the completion of its job by setting up the
corresponding hardware interrupt.

Data transfer from the general purpose processor to an accelerator can be done
via the processor registers if only few atomic variable values are passed. A prede-
fined shared memory space is used for transferring several atomic variables or full
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data structures from the general purpose processor to an accelerator. For transfer-
ring the accelerator result(s) to the general purpose processor a second predefined
shared memory space is used.

Sim-panalyzer was modified in order to support the use of these predefined
shared memory spaces. The implementation of dedicated system calls used to trig-
ger the hardware accelerator executions is the same as the one presented in the
previous File handling mechanism subsection. The use of new interrupt service
routines requires few modifications in the Sim-panalyzer simulator and the RTEMS
operating system. Sim-panalyzer was modified in order to assign, for each acceler-
ator generating an interrupt, a distinctive interrupt mask to the current program sta-
tus register (CPSR) when the processor is to be put in interrupt mode. In RTEMS,
the interrupt handler was modified to identify, based on the interrupt mask, the
interrupt source and to call the appropriate interrupt service routine (ISR).

Because the general purpose processor and the hardware accelerators are shar-
ing the same memory space for data transfer, a cache coherency problem may
arise. Figure 6 illustrates the possible problem of cache coherency between the
data stored in level one and two caches and the corresponding data stored in the
shared memory space. Without any mechanism for avoiding cache coherency prob-
lem, the integrity of a data is not insured for a data moved by the GPP to the shared
memory space. Indeed, Sim-Panalyzer implements only the write-back mechanism
for cache operations. Thus, a data value is updated in a shared memory space only
when the corresponding memory location is not present or evicted from the cache
level one or two. The same is true for a data moved by the accelerator to the shared
memory. If the corresponding memory location is present in cache level one or
two when the GPP accesses the data, the outdated data value from the cache will
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be used instead of the value computed by the accelerator.

In order to avoid cache coherency issues, Sim-Panalyzer was modified to sup-
port uncacheable memory locations. Accesses to these uncacheable memory lo-
cations are simulated as they would directly access the shared memory location
without going through the caches. In order to reserve these shared memories in the
simulated memory space, and also to make the simulation of different architectures
possible without the need of re-compiling the simulator, the shared memory spaces
are statically allocated within the RTEMS initialization phase. The start addresses
of the created shared memories are then passed to the simulator via a dedicated
system call.
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Figure 5: The heterogeneous platform simulated in paper 5

14



 

Possible cache 
coherency problem 

 

Shared 
Memory space 

Data 
cache 
Level 2 

Data 
cache 
Level 2 

General 
purpose 
processor 

 

Hardware 
accelerator 

Figure 6: Cache coherency problem on a typical heterogeneous platform

4 Conclusion

The increasing number of computational intensive applications strengthens the
need to maximize the battery life of portable devices. As a consequence, the sim-
ulation of embedded systems for energy consumption estimation is becoming es-
sential if one wants to study and explore the influence of system design choices on
the system energy consumption. The original publications presented in the second
part of this thesis propose several frameworks for evaluating the effects of particu-
lar system and software architectures on the system energy consumption. From a
software point of view Java and C based applications are studied, and from a hard-
ware perspective systems using a general purpose processor or a heterogeneous
platform with dedicated hardware accelerators are analyzed.

Papers 1 and 2 present a general framework for estimating the energy con-
sumption of an embedded Java Virtual Machine (JVM), and establish an energy
consumption cost for individual Java Opcodes. The presented opcode-level energy
models are validated and provide results with an error range of -5% +10% com-
pared to an established processor instruction-level energy simulator. However, this
loss in precision is balanced by the considerable gain in execution speed between
both simulations. Papers 1 and 2 can also guide developers to produce an energy-
aware java application by for example limiting the use of long data type, avoiding
multidimensional array and trying to use consecutive case values inside a switch
statement. Moreover, the results of paper 1 and 2 can be further used for devel-
oping estimation frameworks for profiling and predicting Java application energy
consumption. To the author’s knowledge the results presented in papers 1 and 2
are used in the development of an energy estimation framework in [62, 63, 64].

Paper 3 defines the receiver coding gain for a DVB-H terminal in file download-
ing scenarios, and evaluates the cost-effectiveness of FEC algorithms in terms of
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energy consumption. This publication demonstrates that a substantial energy sav-
ing is achievable in a DVB-H receiver when a forward error correction algorithm
is used for file downloading scenarios. Providing an erasure model for a DVB-H
network, the presented results can be used for estimating the feasible energy gain,
or loss, depending on the position of the DVB-H receiver within the network.

The simulation of heterogeneous platforms is presented in paper 4 and 5. Three
systems simultaneously decoding multiple videos on a dedicated heterogeneous
platform are simulated in Paper 4, while paper 5 proposes a methodology for an-
alyzing the impact of short latency hardware accelerators on a typical embedded
system. Both papers point out the drawback of different mechanisms used to syn-
chronize a hardware accelerator used as a peripheral device. Paper 4 indicates
poor performance when synchronization is performed by pooling the state of a fre-
quently accessed accelerator, and paper 5 indicates poor performance when syn-
chronization of a short latency accelerator is achieved with interrupt. These results
can help choosing the adequate synchronization mechanism for a hardware accel-
erator used as a peripheral device depending on its latency and usage frequency.

Because paper 3, 4 and 5 use the cycle-accurate architecture level energy simu-
lator Sim-Panalyzer, the presented energy consumption results carry the error mar-
gin created by Sim-Panalyzer. However, with a 9% error margin in its datapath
and execution unit models and a 7% error margin in its memory power model [43],
Sim-panalyzer can be considered as an accurate simulator.

The static energy model for a multi-bank memory architecture and the equa-
tions governing the optimization problem for decreasing the static energy con-
sumed by the memory architecture are presented in paper 6. This paper shows
that the use of a multi-bank memory architecture can lead to a 20% static energy
saving without any software optimization, nor bank need prediction, nor dedicated
allocation policy. This static energy model provides the needed model if one wants
to estimate the static energy consumed by a multi-bank memory architecture for a
specific bank size and allocation trace.

All papers in the second part of this thesis present simulation based energy es-
timation approaches. The common benefit of system simulation is the ability to
gather information about system performance without the need to have the sys-
tem physically available. Without a simulation based approach some of the studies
presented in the papers would have been complicated to conduct. This is espe-
cially true for estimating the heterogeneous platforms presented in paper 4 and 5,
as well as the multi-bank memory architecture presented in paper 6. Indeed, man-
ufacturing such platforms or memory architecture is an extremely time consuming
process. During the process of system design, it is evident that the simulation
of such systems is faster and more viable than manufacturing system prototypes.
However, even if using a simulation based approach can be a considerably faster
and cheaper approach than physically manufacturing the system, it can not always
be considered as the ideal solution. First of all, there is always the need of as-
sessing the accuracy of an estimation based approach, which means that the results
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from the simulation tool need to be compared to a reference. But, in most of the
cases the only reliable reference that can be used is the physical system itself. In
papers 1 and 2 we also show that depending on which level the simulation ap-
proach is based, the time needed to actually run the simulation process can vary
considerably. Simulating a small Java application at the processor instruction level
takes several hours, whereas it takes only few second at Java opcode level. This
shows that the choice of using system simulation over physical measurement must
be based on the obtainable simulation speed, the number of needed simulations
and the complexity of manufacturing or obtaining the studied system. However,
with a growing demand for reusable hardware and software feature, mainly due to
a reduction in the design to market time, we can predict that demands for system
simulations performed on a high level of abstraction will most probably grow.
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Abstract. In this paper we establish a general framework for estimating
the energy consumption of an embedded Java virtual machine (JVM).
We have designed a number of experiments to find the constant overhead
of the Virtual Machine and establish an energy consumption cost for
individual Java Opcodes. The results show that there is a basic constant
overhead for every Java program, and that a subset of Java opcodes have
an almost constant energy cost. We also show that memory access is a
crucial energy consumption component.

1 Introduction

In recent years we have seen an explosion of markets for portable electronic de-
vices such as PDAs, personal communicators and mobile phones. These battery-
operated devices provide more and more functionalities and as a consequence
become more and more complex. They have in common strong constraints on
energy consumption, and thus maximizing battery life for such devices is crucial.

Several techniques have been developed to optimize the energy consumption
of embedded systems. Those techniques can be hardware based solutions, as well
as software or co-design solutions [1]. Techniques for low power optimization of
software have been mostly applied on processor instructions level [2, 3] by mainly
using processor specific instructions [4, 5]. Techniques on memory management
have also been widely applied for optimizing energy consumption [6, 7].

At the same time, the size and complexity of applications and development
constraints like getting the product to market on time, make necessary the use
of high-level languages. Due to the wide diversity of hardware and OS used in
the world of handheld devices, portability across systems is not easy and needs
efforts. Java language eases portability by allowing application developments
with an abstraction of the target platform, making the concept “write once, run
it anywhere” possible.

In this paper we establish a general framework for estimating the energy
consumption of an embedded Java virtual machine. We present a number of
experiments to estimate the constant overhead of the JVM energy consumption
and establishe an energy consumption cost for individual Java Opcodes.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 311–325, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The major contributions of this paper are a better understanding of the energy
consumption distribution of an embedded Java virtual machine (JVM) and the
definition of the energy cost for the Java bytecodes.

The remainder of this paper is organized as follows. Section 2 proposes a
methodology scheme used to characterize the energy consumption of an embed-
ded Java Virtual Machine. Section 3 presents several experiments in order to
define some constant overheads of the JVM and comments the repartition of
the JVM energy consumption. Section 4 presents a measurement methodology
used to define the energy cost of Java bytecode by cost comparison between
two appropriate class files. Finally, section 5 concludes the paper and suggests
future possible work. This paper is presenting the main results of [8] where more
example graphs and results can be found.

2 An Energy Consumption Model of Java Applications

The Java Virtual machine is an abstract machine, making the interface between
platform independent applications and the hardware, through a possible operat-
ing system. Thus the use of Java language can be seen as adding one more layer,
the Java virtual machine, between the hardware and software layers. We want to
study how well applying estimation techniques on the virtual machine opcodes
level can be done, similarly to what has been done on processor instructions
level. Figure 1 shows a simple view of the JVM life cycle. An efficient energy
model should characterize each stage of the life cycle model, and thus shows in
which stage(s) effort needs to be concentrated to achieve energy optimization.
It seems obvious that such model needs to consider the system’s hardware and
software configuration and therefore is not directly portable. But the methodol-
ogy used to build it can easily be applied on different configurations by changing
the platform configuration parameters.

As shown in [9] the memory consumption must also be included in the model,
as the memory might represent the biggest source of energy consumption on a
typical embedded system. This is even more important to take into account as
the JVM is a stack machine and will therefore have a relatively high memory
activity.

 Start JVM Initialization of 
the VM

Interpreter loop Exit
Load the class 
containing the 
main method

Fig. 1. Simple view of the JVM life cycle

2.1 Measurements Methodology

We chose to use the Sun Microsystems K Virtual Machine (KVM), CLDC v1.0.3,
as it has been developed for a resource-constrained platform and has its source
code freely available. KVM is a small virtual machine containing about 50-80 Kb
of object code in its standard configuration and has a total memory footprint
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in the range of 128-256 Kb. KVM can run on a 16-bit or 32-bit RISC/CISC
processor clocked from 25MHz.

To build an energy model of the KVM we adapted the energy profiler enpro-
filer [10] developed by the Embedded Systems Groups at Dortmund University.
The adaptation was done in order to integrate the Java environment in the re-
sults provided by the energy profiler. With the adaptation, when summing up
the energy cost for each instruction execution or memory access the enprofiler
checks in which KVM stage the event occurred and increments the correspond-
ing costs variable. Enprofiler is a processor instructions level energy profiler for
ARM7TDMI processor cores operating in Thumb mode [11] and integrating the
consumption of memory accesses. It has been built from physical measurements
done on an Atmel AT91EB01 evaluation board consisting of a AT91M40400
processor clocked at 33MHz and an external 512K bytes SRAM. A detailed de-
scription of the energy model used by enprofiler is given in [12]. According to [12]
enprofiler shows a precision of 1.7% for the cost measurement of 12 instructions
in an endless loop.

Figure 2 shows the measurements methodology scheme used to character-
ize each stage of the KVM life cycle. The Java class generator generates, from
template classes, Java applications with the possibility to modify parameters
inside the class source code. With the Java Code Compact (JCC) we compile
and link together the JVM source code and the generated Java application. The
executable code is run on the ARM7TDMI emulator ARMulator, which traces
instructions, memory accesses and events that occur during the application exe-
cution. From this trace, we extract all information concerning the memory access
addresses, size and type (read, write, sequential, non-sequential), the instruc-
tions addresses and their corresponding processor opcodes. The energy profiler
enprofiler reads the emulator trace and accesses databases providing processor
instruction costs and the cost of a memory access depending of its address, size

Java
Application

(source code)

Java
Virtual Machine

(Source code)

Java Class
generator

Java Code
Compact

(JCC)

Executable
(Application + VM)

Processor
Emulator

(ARM7TDMI)

Processor trace file :
Memory -  Instruction

Event -  Register  -  Bus
Energy profiler

Platform data
(memory mapping)

Energy consumption
per instruction

Battery specification Energy

Max. running time
of the application

Compiler &
Linker

Fig. 2. Measurements methodology scheme
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and type. The energy profiler estimates the energy consumed by the application
and provides information on how the energy is distributed between the processor
and memories for each KVM stage.

2.2 Energy Profiler

The energy profiler provides the number of instructions, memory accesses and
garbage collections that occur during each KVM stage. It needs as input infor-
mation on the JVM stage addresses inside the emulator trace. These addresses
are provided by the linker from which eight useful address symbols are collected:

– main: this symbol represents the main() function of KVM, and is used by
the energy profiler to detect the start of the KVM execution.

– StartJVM: represents the StartJVM(argc, argv) function (in StartJVM.c
source file). This function only checks if the user gave a class name as argu-
ment, and then calls the KVM Start() function.

– KVM Start: represents the KVM Start() function (in StartJVM.c source
file). This function initializes the VM, the global variables, the profiling
variables, the memory system, the hashtable, the class loading interface, the
Java system classes, the class file verifier and the event handling system. It
also initializes the multithreading system after loading the main application
class.

– garbageCollect: represents the garbageCollect() function (in garbage.c source
file) that performs a mark-and-sweep garbage collection.

– ExitGarbage : the ExitGarbage symbol was added into the KVM source code
in order to detect the end of the garbage collector.

– Interpret : represents the Interpret() function (in execute.c source file) that
runs the interpreter loop.

– KVM Cleanup : KVM Cleanup represents the KVM Cleanup() function (in
StartJVM.c source file). It runs several finalization functions when the VM
is shut down.

– ExitVM : This symbol is used to detect the end of the KVM execution.

3 Experiments

We have run the measurement process over several representative benchmarks
to characterize each stage of the KVM life cycle and determine if some stages are
dominant. The benchmarks used are: a) the dhrystone benchmark, b) parts of
The Java Grande Forum Benchmark Suite and the DHPC Java Grande Bench-
marks. In addition to these established benchmarks we also used as reference an
empty application in order to reflect the KVM basic costs. Dedicated intensive
allocation applications was also used in order to study the behavior of the KVM
stage costs. All benchmarks can be retrieve from [13]. For all measurements, if
not explicitly expressed the KVM was compiled with an heap size of 256 Kb.
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3.1 Benchmarks

Empty application: We run the empty application through the measurement pro-
cess in order to find out if overhead constants in the KVM energy consumption
can be determined. We can predict that one or several stage(s), like StartJVM,
will have a constant energy consumption, as they have an application indepen-
dent behavior. Its source code is the following:

public class HelloWord {
public static void main(String arg[])
{
//nothing to do
}

}

Intensive allocation applications: Two intensive allocation applications were used
in order to study a possible application related evolutions in the KVM costs.
The first application, called alloc1, instantiates inside a loop one object of class
MyClass. This class doesn’t contain any field and has just one main method.
Each new class MyClass created by main is stored in the heap, and will contain
only a reference to the class definitions area. Each instantiation will create a
new stack frame and call the MyClass constructor which by default will only
call java/lang/Object constructor method. The stack frame created by the main
method contains two operand stacks and three local variables to store the object
reference, the length and the loop index. This application is used to observe the
evolution of different KVM stage costs with the length of the loop. The source
code for alloc1 is the following:

public class MyClass {
public static void main(String arg[])
{
int length = X;
for(int i=0; i<=length ; i++) {
new Myclass();
}

}
}

The second intensive allocation application, called alloc2, is similar to the prece-
dent one with the difference that MyClass contain one field define by an integer
array of size 500. Alloc2 is used to observe the weight that can take the garbage
collector in comparison to the other KVM stages in extreme allocation rate. As
each new instance takes approximatively 2Kb, with an heap size of 128Kb the
garbage collector needs to be triggered every 64th objects created in the loop to
reclaim the heap space occupied by the unreferenced objects. The source code
for alloc2 is the following:
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public class MyClass {
int[] tab = new int[500];
public static void main(String arg[])
{
int length = X ;
for(int i=0; i<=length ; i++) {
new Myclass();
}

}
}

Dhrystone: Dhrystone tests the system’s integer performance. It is a well es-
tablished benchmark for performance measurement of general purpose system.
We conducted the measurement process with two test executions of 50 and 250
benchmark runs.

Table 1. Benchmarks used from Java Grande Forum Benchmark suite

Low level operation benchmarks
Name Short description

Arith Execution of arithmetic operations
Assign Variable assignment
Create Creating objects and arrays
Exception Exception handling
Loop Loop overheads
Math Execution of maths library operations
Method Method invocation
Generic Local and Static variable handling

Java Grande Benchmarks: We used the sequential benchmarks which are the one
suitable for single processor execution. Several low level operation benchmarks
was used from the Java Grande Forum Benchmark Suite and the DHPC Java
Grande Benchmarks. Table 1 summarize all benchmarks used for our study.

3.2 Results

This section presents the results obtained by the introduced applications and
benchmarks through the measurement process.

Empty application: The empty application has been used in order to find out if
overhead constants in the KVM energy consumption can be determined.

Table 2 shows the obtained results and figure 3 presents the energy consump-
tion distribution among all KVM stages and also the distribution between the
energy consumed by memory accesses and processor instruction execution.

We can make some remarks from figure 3. Even if this application does abso-
lutely nothing, it has to be noticed that the interpreter stage represents about
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Table 2. Empty application - Energy consumption of KVM’s stages in µJ

StartJVM Inst. StartJVM Mem. KVMStart Inst. KVMStart Mem. Interpr. Inst. Interpr. Mem.
9,42 20,08, 748,81 1639,18 3552,28 8273,34

KVM Clean Inst. KVM Clean Mem.
144,92 326,38

4.48%

9.80%

21.24%

49.46%

3.33%

7.13%

Energy distribution

StartJVM Inst

StartJVM Mem

KVM Start Inst

KVM Start Mem

Interpret Inst

Interpret Mem

KVM Clean Instr

KVM Clean Mem

Garbage Inst

Garbage Mem

75.31%

24.69%

Memory / Instructions distribution

Memory

Instructions

Fig. 3. Empty Application - Energy consumption distributions

70 % of the consumed energy from all stages, and memory accesses represent
75% of the total consumed energy. As the application was ′empty′ the values in
table 2 represent the KVM basic costs or the minimal overhead energy cost that
any application will have to dissipate.

Intensive allocation applications: From the alloc1 results in figure 4 we note that
only the energy consumed by the interpreter is dependent on the loop length
value. All other stages of the KVM consume a constant energy including the
garbage collector, as the maximum number of created object was not enough to
fill up the Java heap and trigger off a garbage collection. It is also important
to notice that the energy consumed by the interpreter stage is linear and pro-
portional to the loop length. This can be explain by the fact that the interpreter
is looping over a number of constant Java opcodes. These opcodes are:

4 goto 18
7 new\#2 -> create a new ’MyClass’ object in the heap
10 dup -> duplicate new object reference in the operand stack
11 invokespecial \#3 -> call the constructor
14 pop -> remove the top of the operand stack
17 iinc 2 1 -> increment the second local variable by 1
18 iload\_2 -> load 2nd local variable in operand stack (i)
19 iload\_1 -> load 1st local variable in operand stack (length)
20 if\_icmple 65543

As the energy profiler evaluates the cost of a memory access according to the
memory technology, i.e. have for each memory type (RAM, ROM, Flash, etc.) an
average cost for each access type regardless of its address, and as the new opcode
allocates the same amount of memory for all created (and already resolved)
objects, it will have an identical cost for each execution.
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Fig. 4. Alloc1 - KVM’s stages energy consumption depending of the loop length
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Fig. 5. Alloc1 - Energy distribution for loop length equal to 1000

The energy distribution for a loop length of 1000 presented in figure 5, is
similar to the first experiment with an interpreter stage even more dominant,
representing over 95% of the total energy consumed.

Alloc2 application was used to observe the garbage collector weight in com-
parison to other KVM stages. Several factors can influence the garbage collection
behavior and thus its energy consumption: the size of the heap, the sizes and
numbers of live or dead objects, and heap fragmentation. However, as shown
on figure 6, the garbage collection stage will hardly exceed more than 15% of
the total energy consumed even for application with intensive allocation rate.
Table 3 shows the energy values consumed by the interpreter and garbage collec-
tor for alloc2 application with a loop length of 1000 where the garbage collection
represent 13,65% of the interpreter stage energy consumption.

Benchmarks: Table 4 and 5 gather the results for all benchmarks. Table 4 shows
for the used benchmarks the energy values in µJ for StartJVM, KVMStart and
KVMClean stages. We can notice that the obtained values for each stage are
very similar for all benchmarks, and there values and variations extremely small
compare to the interpreter stage values show in table 5 (in mJ). We can say
that with an average of 98% of the total energy consumption the interpreter
stage is fare ahead the stage where the energy consumption is dissipated in-
side the KVM, and that StartJVM, KVMStart and KVMClean have an almost
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Fig. 6. Garbage collection weight

Table 3. Energy consumption values for a loop length of 1000 in µJ

Interpreter Inst. Interpreter Mem. Garb. Collect. Inst. Garb. Collect. Mem.

54 035 127 949 7 789 17 057

Table 4. Stable energy costs for StartJVM ,KVMStart and KVMClean stages in µJ

StartJvm KVMStart KVMClean
Benchmark Instuction Memory Instuction Memory Instruction Memory

Dhrystone250 9,42 20,08 857,74 1868,40 155,41 350,31
Dhrystone50 9,42 20,08 849,82 1851,51 154,74 348,82

Arith 9,42 20,08 815,78 1776,04 145,67 328,40
Assign 9,42 20,08 823,32 1791,93 145,94 329
Create 9,42 20,08 807,81 1833,57 147,48 335,21

Exception 9,42 20,08 814,08 1772,99 145,94 329
Loop 9,42 20,08 810,01 1764,06 145,67 328,40

Method 9,42 20,08 823,89 1793,72 146,75 330,93
Generic 9,42 20,08 838,76 1828,55 152,78 344,39
Math 9,42 20,08 823,89 1793,72 146,75 330,93

Table 5. Interpreter stage energy cost and weight in mJ

Dhrystone250 Dhrystone50 Arith Assign Create Exception
Inst. 97-29.65% 88-29.30% 877-29.21% 2380-29,87% 1053-26,38% 2250-29,82%
Mem. 850-69.90% 207-68.92% 2121-70.62% 5584-70,05% 2779-69,61% 5475-70,04%

Loop Math Method Generic
Inst. 533-29,32% 2718-29,77% 533-29,86% 611-29,65%
Mem. 228-69,03% 6408-70,17% 1246-69,84% 1445-70,09%

constant and insignificant energy consumption. All measurements were done on
an opteron 244 1.8GHz machine with 4Gb of RAM, and for the slowest bench-
mark JGFMathBench the measurement process took about 36 hours.

From all experiments done it is clear that the interpreter stage is far ahead the
main source of energy consumption and a better comprehension of it is needed if
someone wants to achieve energy optimization on the KVM. As the interpreter
reads and executes the Java bytecode, having a closer view on the interpreter
implies increasing the granularity of its energy consumption model by looking
at the cost of each Java opcode interpreted.
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4 Java Opcode Energy Cost

In order to get a better understanding of the interpreter energy consumption,
an evaluation of each Java opcode energy cost is needed. As a strict class file
structure needs to be respected, it is not possible to only execute one Java
opcode. Thus a cost comparison between two class files is needed to estimate the
cost difference between them. The general measurements methodology scheme
used to characterize each KVM stage life cycle can be re-used with different
inputs. Instead of using Java source code files we will use as input appropriate
byte-code executable class files.

4.1 Measurements Methodology

Figure 7 shows an abstract view of the class files generator used to create two
class files, named ClassFile and ClassFile Ref. The opcode behavior towards
the Java operand stack and the local variables array has to be defined for each
studied Java opcode, i.e. provide the operand stack state needed before and re-
sulting after the studied opcode execution as well as the number of local variables
needed. Figure 8 shows an example of generated bytecode classes for the Java
opcode NOP (0x00). In this example ClassFile method 1, the main method,
executes 256 NOP opcodes when the ClassFile Ref method 1 executes only the

ClassFile_RefClassFile

Java class file
generator

Opcode + (argument)
Opcode behavior with the stack operand

Opcode behavior with the local variables array

Fig. 7. Bytecode executable class file generator

ClassFile
Method 1:
0000d8 0009       access flags = 9
0000da 0008       name = #8<main>
0000dc 0009      descriptor = #9<([Ljava/lang/String;)V>
0000de 0001      1 field/method attributes:
                            field/method attribute 0
0000e0 0006          name = #6<Code>
0000e2 00000119  length = 281
0000e6 0000          max stack: 0
0000e8 0001          max locals: 1
0000ea 00000101  code length: 257
0000ee 00              0 nop
0000ef 00               1 nop
0000f0 00               2 nop
0000f1 00               3 nop
..............
0001ed 00              255 nop
0001ee b1              256 return
0001ef 0000           0 exception table entries:

ClassFile_Ref
Method 1:
0000d8 0009           access flags = 9
0000da 0008           name = #8<main>
0000dc 0009           descriptor = #9<([Ljava/lang/String;)V>
0000de 0001           1 field/method attributes:
                                field/method attribute 0
0000e0 0006                name = #6<Code>
0000e2 00000019        length = 25
0000e6 0000                max stack: 0
0000e8 0001                max locals: 1
0000ea 00000001        code length: 1
0000ee b1                    0 return
0000ef 0000                0 exception table entries:

Fig. 8. Example of generated byte-code class files
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compulsory return opcode in order to return void from the main method. By
comparing the interpreter energy consumption for both class files we can get
the energy consumption estimation for 256 NOP executions and thus the energy
cost of one NOP opcode.

To ensure the estimation quality for each opcode we generate several pairs
of class files executing the studied opcode and also monitor the possible energy
consumption differences between all other KVM stages. All measurements were
done on a Linux 700Mhz Pentium III machine with 256MB of RAM, and on
average the estimation of a Java opcode cost took 3 minutes.

4.2 Results

From all Java opcodes we will not study the 51 opcodes which handle floating
point values as floating point is not supported by the CLDC specification. The
opcode athrow was also omitted from this study, it is not possible to directly
estimate its energy cost using this comparison method as its cost can not be
extracted from the context cost. All the same, in table 5 in [13] we can see from
the opcode checkcast the cost of throwing an ClassCastExeption exception and
exiting the KVM.

Due to space requirement all obtained values for each studied opcode are
published in [13], where the opcodes are divided in six functional groups:

Stack and local variable operations opcodes: Tables 2 and 3 in [13] show the
results concerning opcodes that operate on the operand stack and local variable.
We can notice that loading a value from the local variables array to the operand
stack is lightly more expensive than storing the same value back to the local
variable. It is also interesting to note that the opcode bipush consumes about
9% less energy than iload and 5% less than ilaod x. Thus it is more energy
efficient to load an constant integer lower than 256 into the operand stack using
bipush than initializing the local variable array with the constant and use iload
or ilaod x. The same is true if a constant integer lower than 65536 has to be
loaded into the operand stack, it will be more efficient to use the opcode bipush
instead of iload. But in case the integer constant can be stored in the first 4 local
variables then iload x becomes the most efficient opcode.

Type conversion opcodes: Table 1 in [13] shows the results for opcodes that
convert value from one primitive type to another. The costs are in the same range
as the stack and local variable operations opcodes as the conversion opcodes pop
a value from the stack, perform a right shift or truncate the popped value and
push back the result.

Arithmetic opcodes: Table 4 in [13] shows the costs for arithmetic opcodes. As
it was easy to predict, the cost of an arithmetic operation is dependent on the
type of the operands and the operation. Operations on long types are about 50%
more expensive than on integers, except for the division of types long which is
about two times more expensive than to divide integers.
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Logic opcodes: As for the arithmetic opcodes, the cost of logic opcodes is also
depending of the type of the operand and operations on longs are from 23% to
37% more expensive than operation on integers. Table 9 in [13] shows the costs
for logic opcodes.

Control flow opcodes: The control flow opcodes are the opcodes that implement
the following Java language statements: do-while, while, if, if-else, for and switch.
Table 8 in [13] shows the cost for the 25 control flow opcodes. For all conditional
if opcodes (i.e. opcodes from 0x99 to 0xa6 and ifnull, ifnonnull) the energy
cost depends on a two values comparison success. If the comparison success
the VM jumps to a target defined by the opcode operands, in the other case
the VM continues by executing the following opcodes. The KVM lookupswitch
implementation uses the binary search algorithm to retrieve the branch offsets
associated with the case values of the switch statement. In consequence, the
lookupswitch cost depends on the number of needed iterations through the binary
tree which is determined by the position of the researched case value in the tree.
As on average for a binary tree of size n it takes (log2 n − 1) iterations to found
the researched value, it is possible to determine an lookupswitch average cost
depending on the number of case values included in the switch statement. The
tableswitch opcode performs the same task as lookupswitch, with the difference
that it requires a consecutive list of case values contained between one low and
high endpoint. Thus the VM knows in advance the position of all case values so
that the retrieving cost is the same for all cases. Compared with lookupswitch,
tableswitch has a lower energy cost but generates all the more bigger class file
size as the gape between the case values is great.

Objects and arrays opcodes: Tables 5 and 6 in [13] show the cost of opcodes that
create and manipulate arrays and objects. The creation cost, with newarray,
of a single dimension array of primitive type integer, long, short, byte, char
or boolean is not directly dependent on array type and size, but more on the
memory size that needs to be allocated for its creation. That means that the
creation cost is identical for an integers array of size 8, a shorts array of size 16,
or a longs array of size 4. The creation cost, with multiarray, of multidimensional
arrays is dependent on the array dimensions and dimensions indexes values. Each
dimension adds a basic cost to the array creation cost, thus creating a 2*2*2
integers array will be 70% more expensive than creating a 2*4 integers array,
and especially 18 times more expensive than creating a single dimension integers
array of size 8. Moreover, in order to access to one multidimensional array value
the JVM has to retrieve from the first dimension the second dimension address
and so one until it reaches the last dimension.

The objects creation cost depends on the objects themselves, i.e on the type
and size of their constant pool, interfaces, fields,methods and their super-classes,
and also on their resolution flags inside each class constant pool. A new object is
resolved only once within a same class, and its address is stored in the constant
pool structure of the class. Table 5 in [13] shows as an example the creation cost
of an object of type java.lang.Object and java.lang.String. In addition, table 5
in [13] refers to two objects called Class and subClass which is a empty (none
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interface,field nor method) sub class of nonResolvedClass itself empty sub class
of java.lang.Object.

Method invocation and return opcodes: Because invoking a method implies
returning from it at some point, table 7 in [13] shows the costs of different
invoke/return pairs. They all invoke an empty ’already resolved’ method within
the same class or instance. We can notice from this table that calling a static,
public or private method costs almost the same, and that the type of the returned
value has not a great influence on the overall cost.

It is also important to compare all obtained values with the NOP energy
consumption. As the opcode NOP is the first case statement in the interpreter
switch and doesn’t execute any instruction, its energy consumption represents
the minimum overhead cost due to the interpreter mechanism. For the most
of the stack and local variable operation opcodes the interpreter mechanism
overhead represents about 70% of their energy consumption.

The obtained values allow us to get an estimation of how long the KVM will
run for a given battery. If we suppose that on average the execution of one Java
opcode consumes a total of 3.372µJ and is executed in 200 cycles, the average
power dissipated by the processor (clocked at 33MHz) to execute Java opcodes
is 0.556 Watt. Thus for the processor supply voltage sets at 3.3 Volts, an ideal
3.3 Volts 500 mAh battery will allow the KVM to run for 200 minutes.

4.3 Opcode Costs Verification

In order to verify the obtained opcode costs we calculated for each benchmark
execution the value

∑
(Opcodecost ∗ OpcodeOccurrence). The computed value

was then compared with the cost given by the energy profiler for the interpreter
stage. The occurrence for each opcode was calculated thanks to the KVM tracing
ability. For control flow opcodes we checked if the branch was taken or not
to attribute the correct opcode cost, but to keep the verification simple we
didn’t looked at the type of variable handled by putfield, getfield, putstatic and
getstatic. There respective cost for handling integer was used for all occurrences.
In addition for all other none static opcode costs only the respective basic cost
was used. The benchmark Exception from the Java Grande Forum Benchmark
Suite was not used as we didn’t studied the cost for the opcode athrow.

Table 6 presents the normalized verification results where the value 100 repre-
sent for each benchmark the energy cost given by the energy profiler for the inter-
preter stage. For each benchmark the accuracy obtained by calculating the value∑

(Opcodecost∗OpcodeOccurrence) is staying between -5 and +10% of the cost
given by the energy profiler. But this lost in precision has to be balance with the
time needed to compute it. It takes only few seconds to calculate the occurrence

Table 6. Verification results

Dhrystone50 Arith Assign Loop Create Method Math Generic

103,99 105,31 95,55 100,30 97,95 102,51 96,74 109,43
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for each opcode and compute the value
∑

(Opcodecost ∗ OpcodeOccurrence),
compare to several hours needed by the energy profiler.

5 Conclusion

Several observations have been done in this paper concerning the energy con-
sumption of the KVM. For the hardware configuration fixed by the energy pro-
filer, the distribution between the processor and memories is constant over the
KVM execution with 70% of the energy consumed by memory accesses. This
shows the major importance of the memories for embedded system runtime
performance.

This paper can also guide developers to produce energy-aware java applica-
tion by limiting the use of long data type, avoiding multidimentional array and
trying to use consecutive case values inside a switch statement. Furthermore, the
opcodes energy cost can be helpful for developing a energy-aware Java compiler
as well as optimizing the JVM by pointing out the expensive opcodes. This pa-
per shows the first steps toward an energy aware performance analysis tool for
Java application, as a such tool would ask a more detailed model for a subset of
opcodes.

Also as the interpreter mechanism overhead cost is a predominant factor in
opcode execution cost, it will be interesting in the future to look at the cost
differences between the two possible Java execution modes: interpreted or JIT
compilation. JIT compilation increases significantly the execution speed, but in
the same time increases memory footprint. A trade-off between execution time
and memory footprint size will certainly have to be found to reach the optimum
optimization point for energy consumption.
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Appendix to paper 1

Table 1: Opcodes costs, conversion opcodes
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
i2l 0x85 0.928660 2.200260 198 50
l2i 0x88 0.857440 2.037840 184 47
i2b 0x91 0.928540 2.200260 198.0 50
i2c 0x92 0.928520 2.200260 198 50
i2s 0x93 0.928540 2.200260 198 50



Table 2: Opcodes costs, stack and local variable operations-part 1/2
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
nop 0x0 0.831440 1.989840 178 45
aconst null 0x1 0.890020 2.126940 190 49
iconst m1 0x2 0.899160 2.150940 192 50
iconst 0 0x3 0.890020 2.126940 190 49
iconst 1 0x4 0.890020 2.126940 190 49
iconst 2 0x5 0.890020 2.126940 190 49
iconst 3 0x6 0.890020 2.126940 190 49
iconst 4 0x7 0.889760 2.126940 190 49
iconst 5 0x8 0.890020 2.126940 190 49
lconst 0 0x9 0.922300 2.192040 196 50
lconst 1 0xa 0.930960 2.216040 198 51
bipush 0x10 0.926900 2.214420 198 52
sipush 0x11 0.990360 2.373900 212 58
iload 0x15 1.013700 2.434380 216 55
lload 0x16 1.167820 2.815440 248 63
aload 0x19 1.013700 2.434380 216 55
iload 0 0x1a 0.968120 2.322900 206 51
iload 1 0x1b 0.968120 2.322900 206 51
iload 2 0x1c 0.968120 2.322900 206 51
iload 3 0x1d 0.968120 2.322900 206 51
lload 0 0x1e 1.104800 2.655960 234 57
lload 1 0x1f 1.104800 2.655960 234 57
lload 2 0x20 1.104800 2.655960 234 57
lload 3 0x21 1.104800 2.655960 234 57
aload 0 0x2a 0.968120 2.322900 206 51
aload 1 0x2b 0.968120 2.322900 206 51
aload 2 0x2c 0.968120 2.322900 206 51
aload 3 0x2d 0.968120 2.322900 206 51
istore 0x36 1.004140 2.410380 214 54
lstore 0x37 1.148940 2.767440 244 61
astore 0x3a 1.004140 2.410380 214 54

Table 3: Opcodes costs, stack and local variable operations-part 2/2
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
istore 0 0x3b 0.958800 2.298900 204 50
istore 1 0x3c 0.958800 2.298900 204 50
istore 2 0x3d 0.958800 2.298900 204 50
istore 3 0x3e 0.958800 2.298900 204 50
lstore 0 0x3f 1.086160 2.607960 230 55
lstore 1 0x40 1.086160 2.607960 230 55
lstore 2 0x41 1.086160 2.607960 230 55
lstore 3 0x42 1.086160 2.607960 230 55
astore 0 0x4b 0.958800 2.298900 204 50
astore 1 0x4c 0.958800 2.298900 204 50
astore 2 0x4d 0.958800 2.298900 204 50
astore 3 0x4e 0.958800 2.298900 204 50
pop 0x57 0.857440 2.037840 184 47
pop2 0x58 0.857440 2.037840 184 47
dup 0x59 0.928740 2.200260 198 50
dup x1 0x5a 1.040200 2.451780 220 55
dup x2 0x5b 1.119080 2.638200 236 59
dup2 0x5c 1.026160 2.434680 218 56
dup2 x1 0x5d 1.169000 2.751300 246 62
dup2 x2 0x5e 1.321140 3.100140 276 69
swap 0x5f 0.990280 2.338680 210 52
ldc 0x12 1.022440 2.458380 218 56
ldc w 0x13 1.085880 2.617860 232 62
ldc2 w 0x14 1.203000 2.870700 254 65

Table 4: Opcodes costs, arithmetic opcodes
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
iadd 0x60 0.957860 2.273580 204 51
isub 0x64 0.957360 2.273580 204 51
imul 0x68 0.959500 2.273580 204 51
idiv 0x6c 1.613020 3.851460 348 84
ladd 0x61 1.575480 3.631800 328 76
lsub 0x62 1.575480 3.631800 328 76
lmul 0x69 1.638000 3.865920 348 74
ldiv 0x6d 3.685660 9.344040 820 181
iinc 0x84 1.188360 2.830920 252 63
ineg 0x74 0.920080 2.176260 196 49
lneg 0x75 1.366460 3.136320 286 67
irem 0x70 1.613020 3.851460 348 84
lrem 0x71 3.685660 9.344040 820 181



Table 5: Opcodes costs, object and arrays-Part1/2
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
new 0xbb (java.lang.Object) 5.456560 12.437760 1146 240
new (java.lang.String) 5.508280 12.561060 1158 240
putfield 0xb5 4.201320 9.604260 872 185
putfield (long)0xb5 4.432900 10.139520 918 196
getfield 0xb4 4.156160 9.515160 864 183
getfield 0xb4(long) 4.324340 9.912000 898 192
putstatic 0xb3 4.100420 9.381000 856 185
putstatic (long) 0xb3 4.334720 9.949800 904 195
getstatic 0xb2 4.083360 9.357000 852 184
getstatic (long)0xb2 4.303640 9.901800 898 193
checkcast 0xc0(is String ’castable’ to Object,yes) 3.726300 8.497920 774 156
checkcast 0xc0 3.726300 8.497920 774 156
(is Class ’castable’ to Object,yes)
checkcast 0xc0 4.243800 9.677880 888 191
(is SubClass ’castable’ to Class,yes)
checkcast(is Class ’castable’ to 133.521178 302.378599 28250 7058
subClass,no throws ClassCastException)
checkcast(is Object ’castable’ to String,0 133.292438 301.846638 28200 7044
no throws ClassCastException)
instanceof (is String instanceof Object,yes) 0xc1 3.815760 8.733660 792 160
instanceof (is Object instanceof String,no) 0xc1 4.213440 9.600299 880 186
instanceof (is This instance of Object,yes) 0xc1 3.815760 8.733660 792 160
instanceof (is Object instance of This,no) 0xc1 4.213440 9.600299 880 186
instanceof (is This instance of String,no) 0xc1 4.442180 10.132260 930 200
instanceof 4.442180 10.132260 930 200
(is Class instance of subClass,no)
instanceof 4.333260 9.913620 906 195
(is SubClass instance of Class,yes)
newarray 0xbc (of size 0) 4.417460 10.073760 924 192
newarray 0xbc (of 4 bytes) 4.434700 10.114860 928 192
newarray 0xbc (of 8 bytes) 4.451940 10.155960 932 192
newarray 0xbc (of 16 bytes) 4.486420 10.238160 940 192
newarray 0xbc (of 32 bytes) 4.555380 10.402560 956 192
newarray 0xbc (of 64 bytes) 4.770880 10.928640 1006 196

Table 6: Opcodes costs, object and arrays-Part2/2
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
anearray (size=0 non resolved empty class) 0xbd 34.638980 79.455499 7388 1908
anearray (size=1 non resolved empty class) 0xbd 34.656220 79.496599 7392 1908
anearray (size=5 non resolved empty class) 0xbd 34.725180 79.660999 7408 1908
anearray (size=0 resolved empty class)0xbd 32.7967 75.5584 6996 1803
anearray (size=1 resolved empty class)0xbd 32.8139 75.5995 7000 1803
anearray (size=5 resolved empty class)0xbd 32.8829 75.7639 7016 1803
anearray (size=0 resolved java.lang.Object class) 27.806520 64.268619 5936 1502
anearray (size=1 resolved java.lang.Object class) 27.823760 64.309719 5940 1502
anearray (size=5 resolved java.lang.Object class) 27.892720 64.474119 5956 1502
anearray (size=0 resolved java.lang.String class) 27.754860 64.073619 5928 1502
anearray (size=1 resolved java.lang.String class) 27.772100 64.114719 5932 1502
anearray (size=5 resolved java.lang.String class) 27.841060 64.279119 5948 1502
multiarray (int 1 dimension,size=0/dim.)0xc5 36.323520 83.483859 7700 1872
multiarray (int 2 dimensions,size=4/dim.)0xc5 49.866399 113.914719 10542 2450
multiarray (int 4 dimension,size=2) 84.130479 190.890879 17702 3934
multiarray (nonResolved 1 dimension,size=0) 36.323520 83.483859 7700 1872
multiarray (nonResolved 1 dimension,size=5) 36.409720 83.689359 7720 1872
multiarray (nonResolved 2 dimension,size=5) 53.042079 121.065519 11212 2580
multiarray (Object 1 dimensions,size=8) 36.461440 83.812659 7732 1872
multiarray (Object 2 dimensions,size=4) 49.866399 113.914719 10542 2450
multiarray (Object 4 dimensions,size=2) 84.130479 190.890879 17702 3934
arraylength 0xbe 0.983920 2.297580 210 52
baload 0x33 1.066680 2.554380 228 60
caload 0x34 1.084380 2.610900 232 62
saload 0x35 1.075780 2.586900 230 61
iaload 0x2e 1.077460 2.588220 230 60
laload 0x2f 1.183560 2.846640 252 67
aaload 0x32 1.077460 2.588220 230 60
bastore 0x54 1.155620 2.748520 246 64
castore 0x55 1.164480 2.787420 248 65
sastore 0x56 1.164480 2.787420 248 65
iastore 0x4f 1.158240 2.774640 246 64
lastore 0x50 1.310000 3.123480 276 71
aastore 0x53 2.003000 4.674360 418 100



Table 7: Opcodes costs, method invocation and return
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
invokevirtual+return(empty method)0xb6 12.032760 27.984120 2504 520
invokevirtual+ireturn(empty method) 12.194540 28.380960 2536 529
invokevirtual+lreturn(empty method) 12.363720 28.753800 2570 537
invokevirtual+areturn(empty method,return this)0xb6 12.159580 28.284960 2528 525
invokestatic+return(empty method)0xb8 10.549340 24.648600 2198 455
invokestatic+ireturn(empty method) 10.711120 25.045440 2230 464
invokestatic+lreturn(empty method) 10.880300 25.418280 2264 472
invokespecial+return(empty method)0xb7 10.512680 24.545700 2188 450
invokespecial+ireturn(empty method) 10.674460 24.942540 2220 459
invokespecial+lreturn(empty method) 10.843640 25.315380 2254 467
invokespecial+areturn(empty method,return this) 10.639500 24.846540 2212 455

Table 8: Opcodes costs, control flow
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
ifeq 0x99 (branch not taken) 0.957140 2.255160 206 54
ifeq 0x99 (branch taken) 1.142280 2.617860 246 62
ifne 0x9a (branch not taken) 0.957140 2.255160 206 54
ifne 0x9a (branch taken) 1.142280 2.617860 246 62
iflt 0x9b (branch not taken) 0.957140 2.255160 206 54
iflt 0x9b (branch taken) 1.142280 2.617860 246 62
ifle 0x9e (branch not taken) 0.957140 2.255160 206 54
ifle 0x9e (branch taken) 1.142280 2.617860 246 62
ifgt 0x9d (branch not taken) 0.957140 2.255160 206 54
ifgt 0x9d (branch taken) 1.142280 2.617860 246 62
ifge 0x9c (branch not taken) 0.957140 2.255160 206 54
ifge 0x9c (branch taken) 1.142280 2.617860 246 62
if icmpeq 0x9f (branch not taken) 0.995660 2.352480 214 56
if icmpeq 0x9f (branch taken) 1.180800 2.715180 254 64
if icmpne 0xa0 (branch not taken) 0.995660 2.352480 214 56
if icmpne 0xa0 (branch taken) 1.180800 2.715180 254 64
if icmplt 0xa1 (branch not taken) 0.995660 2.352480 214 56
if icmplt 0xa1 (branch taken) 1.180800 2.715180 254 64
if icmple 0xa4 (branch not taken) 0.995660 2.352480 214 56
if icmple 0xa4 (branch taken) 1.180800 2.715180 254 64
if icmpgt 0xa3 (branch not taken) 0.995660 2.352480 214 56
if icmpgt 0xa3 (branch taken) 1.180800 2.715180 254 64
if icmpge 0xa2 (branch not taken) 0.995660 2.352480 214 56
if icmpge 0xa2 (branch taken) 1.180800 2.715180 254 64
lcmp 0x94 (value1<value2) 1.483220 3.404280 310 72
lcmp 0x94 (value1==value2) 1.693000 3.845520 356 79
lcmp 0x94 (value1>value2) 1.693000 3.845520 356 79
ifnull 0xc6(branch not taken) 0.957140 2.255160 206 54
ifnull 0xc6 (branch taken) 1.124720 2.593860 242 61
ifnonnull 0xc7 (branch not taken) 0.957140 2.255160 206 54
ifnonnull 0xc7 (branch taken) 1.124720 2.593860 242 61
if acmpeq 0xa5 (branch not taken) 0.995660 2.352480 214 56
if acmpeq 0xa5 (branch taken) 1.180800 2.715180 254 64
if acmpne 0xa6 (branch not taken) 0.995660 2.352480 214 56
if acmpne 0xa6 (branch taken) 1.180800 2.715180 254 64
goto 0xa7 1.034380 2.400540 222 55
goto w 0xc8 1.108140 2.551500 238 60
lookupswitch 0xab (1 iteration) 2.077300 4.759140 438 116
lookupswitch 0xab (2 iterations) 2.721600 6.228240 572 151
lookupswitch 0xab (3 iterations) 3.365900 7.697340 706 186
lookupswitch 0xab (4 iterations) 4.010200 9.166440 840 221
tableswitch 0xaa 1.793420 4.205460 384 108

Table 9: Opcodes costs, logic opcodes
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
ishl 0x78 0.976480 2.321580 208 53
ishr 0x7a 0.976360 2.321580 208 53
iushr 0x7c 0.976420 2.321580 208 53
lshl 0x79 1.419040 3.316500 300 72
lshr 0x7b 1.419040 3.316500 300 72
lushr 0x7d 1.545040 3.593340 324 76
iand 0x7e 0.957800 2.273580 204 51
ior 0x80 0.958100 2.273580 204 51
ixor 0x82 0.958120 2.273580 204 51
land 0x7f 1.127820 2.701320 240 63
lor 0x81 1.128420 2.701320 240 63
lxor 0x83 1.128460 2.701320 240 63
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Abstract

In this paper we present a general framework for estimating the energy consumption of an embedded Java virtual
machine (JVM). We have designed a number of experiments to find the constant overhead and establish an energy con-
sumption cost for individual Java opcodes for two JVMs. The results show that there is a basic constant overhead for every
Java program, and that a subset of Java opcodes have an almost constant energy cost. We also show that memory access is
a crucial energy consumption component.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Energy consumption; Embedded java virtual machine; Java opcode

1. Introduction

Several techniques have been developed to opti-
mize the energy consumption of embedded systems.
Those techniques can be hardware based solutions,
as well as software or co-design solutions [1]. Tech-
niques for low power optimization of software have
been mostly applied on processor instructions level
[2,3] by mainly using processor specific instructions
[4,5]. Techniques on memory management have also
been widely applied for optimizing energy consump-
tion [6,7].

At the same time, the size and complexity of
applications and development constraints like get-

ting the product to market on time, make necessary
the use of high-level languages. Due to the wide
diversity of hardware and OS used in the world of
handheld devices, portability across systems is not
easy and needs efforts. Java language eases portabil-
ity by allowing application developments with an
abstraction of the target platform, making the con-
cept ‘‘write once, run it anywhere’’ possible.

In this paper we present a general framework for
estimating the energy consumption of an embedded
Java virtual machine. We present a number of
experiments to estimate the constant overhead of
the JVMs energy consumption and established an
energy consumption cost for individual Java
opcodes.

The major contributions of this paper are a
better understanding of the energy consumption
distribution of an embedded Java virtual machine
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(JVM) and the definition of the energy cost for the
Java bytecodes for two different embedded JVMs.

The remainder of this paper is organized as fol-
lows. Section 2 presents the two JVMs used in this
study, and proposes a methodology scheme used
to characterize the energy consumption of an
embedded JVM. Section 3 presents several experi-
ments in order to define some constant overheads
of the JVMs and comments the repartition of the
JVMs energy consumption. Section 4 presents a
measurement methodology used to define the
energy cost of Java bytecode by cost comparison
between two appropriate class files. Finally, Section
5 concludes the paper and suggests future possible
work. This paper extends [8] with a result compari-
sion between two embedded JVMs.

2. An energy consumption model of Java applications

The Java virtual machine is an abstract machine,
making the interface between platform independent
applications and the hardware, through a possible
operating system. Thus the use of Java language
can be seen as adding one more layer, the Java vir-
tual machine, between the hardware and software
layers. We want to study how well applying estima-
tion techniques on the virtual machine opcodes
level can be done, similarly to what has been done
on processor instructions level. Fig. 1 shows a sim-
ple view of a JVM life cycle. An efficient energy
model should characterize each stage of the life
cycle model, and thus shows in which stage(s) effort
needs to be concentrated to achieve energy optimi-
zation. It seems obvious that such model needs to
consider the system’s hardware and software con-
figuration and therefore is not directly portable.
But the methodology used to build it can easily
be applied on different configurations by changing
the platform configuration parameters. As shown
in [9] the memory consumption must also be
included in the model, as the memory might repre-
sent the biggest source of energy consumption on a
typical embedded system. This is even more impor-
tant to take into account as the JVM is a stack
machine and will therefore have a relatively high
memory activity.

2.1. Measurements methodology

We chose to use the Sun Microsystems K Virtual
Machine (KVM), CLDC v1.0.3, and the simple
Real-Time-Java (simpleRTJ) virtual machine.
KVM is a small virtual machine containing about
50–80KB of object code in its standard configura-
tion and has a total memory footprint in the range
of 128–256KB. KVM can run on a 16-bit or 32-
bit RISC/CISC processor clocked from 25 MHz.
The simpleRTJ is a tiny JVM targeting 8/16/32 bit
embedded systems and requiring on average about
18–24KB of code memory to run.

To build an energy model of the JVMs we
adapted the energy profiler enprofiler [10] developed
by the Embedded Systems Groups at Dortmund
University. The adaptation was done in order to
integrate the Java environment in the results pro-
vided by the energy profiler. With the adaptation,
when summing up the energy cost for each instruc-
tion execution or memory access the enprofiler

checks in which JVM stage the event occurred and
increments the corresponding costs variable. Enpro-
filer is a processor instructions level energy profiler
for ARM7TDMI processor cores operating in
Thumb mode [11] and integrating the consumption
of memory accesses. It has been built from physical
measurements done on an Atmel AT91EB01 evalu-
ation board consisting of a AT91M40400 processor
clocked at 33 MHz and an external 512KB SRAM.
A detailed description of the energy model used by
enprofiler is given in [12]. According to [12] enpro-

filer shows a precision of 1.7% for the cost measure-
ment of 12 instructions in an endless loop.

Fig. 2 shows the measurements methodology
scheme used to characterize each stage of the JVM
life cycle. The Java class generator generates, from
template classes, Java applications with the possibil-
ity to modify parameters inside the class source
code. With the Java code compact (JCC) we com-
pile and link together the KVM source code and
the generated Java application. For simpleRTJ the
java application is pre-linked with all needed classes
into a single binary image. The executable code is
run on the ARM7TDMI emulator ARMulator,
which traces instructions, memory accesses and

Start JVM Initialization of
the VM

Interpreter loop Exit
Load the class 
containing the 
main method

Fig. 1. Simple view of the JVM life cycle.
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events that occur during the application execution.
From this trace, we extract all information concern-
ing the memory access addresses, size and type
(read, write, sequential, non-sequential), the instruc-
tions addresses and their corresponding processor
opcodes. The energy profiler enprofiler reads the
emulator trace and accesses databases providing
processor instruction costs and the cost of a mem-
ory access depending of its address, size and type.
The energy profiler estimates the energy consumed
by the application and provides information on
how the energy is distributed between the processor
and memories for each JVM stage.

3. Experiments

We have run the measurement process over sev-
eral representative benchmarks to characterize each
stage of the JVMs life cycle and determine if some
stages are dominant. We used as reference an empty
application in order to reflect the JVMs basic costs.
Dedicated intensive allocation applications was also
used in order to study the behavior of the JVMs
stage costs.

3.1. Benchmarks

Empty application: We run the empty application
through the measurement process in order to find
out if overhead constants in the JVMs energy con-

sumption can be determined. Its source code is the
following:

public class HelloWord {
public static void main(String

arg[])

{
//nothing to do

}
}

Intensive allocation applications: Two intensive
allocation applications were used in order to study
a possible application related evolutions in the
JVMs costs. The first application, called alloc1,
instantiates inside a loop one object of class
MyClass. This class does not contain any field
and has just one main method. Each new class
MyClass created by main is stored in the heap,
and will contain only a reference to the class defi-
nitions area. Each instantiation will create a new
stack frame and call the MyClass constructor
which by default will only call java/lang/Object
constructor method. The stack frame created by
the main method contains two operand stacks
and three local variables to store the object refer-
ence, the length and the loop index. This applica-
tion is used to observe the evolution of different
KVM stage costs with the length of the loop.
The source code for alloc1 is the following:

Fig. 2. Measurements methodology scheme.
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public class MyClass {
public static void main(String

arg[])

{
int length = X;

for(int i=0; i<=length ; i++) {
new Myclass();

}
}

}

The second intensive allocation application,
called alloc2, is similar to the precedent one with
the difference that MyClass contain one field
define by an integer array of size 500. Alloc2 is
used to observe the weight that can take the gar-
bage collector in comparison to the other JVMs
stages in extreme allocation rate. As each new
instance takes approximately 2KB, with an heap
size of 128KB the garbage collector needs to be
triggered every 64th objects created in the loop
to reclaim the heap space occupied by the unrefer-
enced objects. The source code for alloc2 is the
following:

public class MyClass {
int[] tab = new int[500];

public static void main(String

arg[])

{
int length = X ;

for(int i=0; i<=length ; i++) {
new Myclass();

}
}

}

3.2. Results

This section presents the results obtained by the
introduced applications through the measurement
process.

Empty application: The empty application has
been used in order to find out if overhead constants
in the JVMs energy consumption can be
determined.

Tables 1 and 2 show the obtained results for
respectively KVM and simpleRTJ. Figs. 3 and 4
present the energy consumption distribution among
respectively all KVM and simpleRTJ stages. The
distribution between the energy consumed by mem-
ory accesses and processor instruction execution is
also presented on these figures.

For the simpleRTJ virtual machine we defined
only one initialization stage and any cleanup or post
interpreter stage. This is because (a) from its code
implementation it is logical to keep its initialization
stage StartJVM as a single block, and (b) the simpl-
eRTJ exit almost immediately after last opcode is
executed.

From Figs. 3 and 4 we can already notice that the
energy distribution between memory access and
instruction execution is similar between the two
JVM. The second observation is the difference of
weight the interpreter takes for executing the empty
application. As we will see later, this difference can
be explained by the fact that the simpleRTJ imple-
mentation implies more expensive heap allocations
than the KVM implementation. This reduce the
simpleRTJ interpreter weight compare to the Start-
JVM stage weight.

As the application was ‘empty’ the values in
Table 1 represent the virtual machines basic costs
or the minimal overhead energy cost that any appli-
cation will have to dissipate.

Intensive allocation applications: From the alloc1
results in Figs. 5 and 6 we note that only the energy
consumed by the interpreter is dependent on the

Table 1
Empty application–energy consumption of KVM’s stages in lJ

StartJVM Inst. StartJVM Mem. KVMStart Inst. KVMStart Mem. Interpr. Inst. Interpr. Mem.

9.42 20.08 748.81 1639.18 3552.28 8273.34

KVM Clean Inst. KVM Clean Mem.

144.92 326.38

Table 2
Empty application–energy consumption of simpleRTJ stages in
lJ

StartJVM
Inst.

StartJVM
Mem.

Interpr.
Inst.

Interpr.
Mem.

10601.52 23905.32 1599.04 3866.66
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loop length value. All other stages of the JVMs con-
sume a constant energy including the garbage col-
lector, as the maximum number of created object

was not enough to fill up the Java heap and trigger
off a garbage collection. It is important to notice
that the evolution of the interpreter stage energy
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9.80%

21.24%

49.46%

3.33%

7.13%

Energy distribution

StartJVM Inst

StartJVM Mem

KVM Start Inst
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consumption with the loop length is different
between KVM and the simpleRTJ. For KVM the
interpreter stage cost is linear and proportional to
the loop length, whereas simpleRTJ interpreter
stage cost is exponential to the length of the loop.
This difference can be explain by looking at each
JVM implementation for allocating new object into
the heap. KVM uses a list of free memory chunk
available in the heap. For each new allocation it tra-
verses the list until it finds a free chunk enough big
to hold the new object. In our case it will always find
the first chunk available to store the new MyClass
object, thus executing each time the same successive
instructions. As a consequence the KVM interpreter
stage cost will be linear and proportional to the loop
length. SimpleRTJ uses only a list of object allo-
cated in the heap. Each object contains a flag telling
if the object is actually free space or not. For each
new allocation simpleRTJ is traversing the list to
find possible object having his flag set and enough
big to hold the new object. If none is found simpl-

eRTJ will allocate a new memory bloc. In our case
for each new MyClass object allocation simpleRTJ
will first probe all already allocated MyClass objects
before allocating a new memory bloc, thus execut-
ing each time a exponential number of instructions.
As a consequence simpleRTJ interpreter stage cost
will be exponential to the length of the loop.

The energy distributions for a loop length of 1000
presented in Figs. 7 and 8, are similar to the first
experiment with an interpreter stage even more
dominant, representing over 95% of the total energy
consumed.

Alloc2 application was used to observe the gar-
bage collector weight in comparison to other JVMs
stages. Several factors can influence the garbage col-
lection behavior and thus its energy consumption:
the size of the heap, the sizes and numbers of live
or dead objects,heap fragmentation and naturally
the technique used to implement it. Both JVMs
use a mark and sweep garbage collection algorithm,
with the difference that KVM implementation tries
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to do all its work in a single pass without any recur-
sive calls.

Fig. 9 presents the garbage collector weight for a
loop length of 1000. We can observe that for an very
intensive allocation rate of dead objects the KVM
GC energy consumption represents only 10% of
the total KVM energy consumption. On the other
hand with the same application and parameter the
simpleRTJ GC will represent almost one third of
the total simpleRTJ energy consumption. This
major difference is coming from the implementation
variance between the JVM garbage collections.

We also run the measurement process with simpl-
eRTJ over the all representative benchmarks pre-
sented in [8], and have the same following
observation than in [8]: from all experiments done
it is clear that the interpreter stage is far ahead the
main source of energy consumption. Thus a better
comprehension of it is needed if someone wants to
achieve energy optimization on the JVMs.

As the interpreter reads and executes the Java
bytecode, having a closer view on the interpreter
implies increasing the granularity of its energy con-
sumption model by looking at the cost of each Java
opcode interpreted.

4. Java opcode energy cost

In order to get a better understanding of the
interpreter energy consumption, an evaluation of
each Java opcode energy cost is needed. As a strict
class file structure needs to be respected, it is not
possible to only execute one Java opcode. Thus a
cost comparison between two class files is needed
to estimate the cost difference between them. The
general measurements methodology scheme used
to characterize each JVMs stage life cycle can be
re-used with different inputs. Instead of using Java
source code files we will use as input appropriate
byte-code executable class files.
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4.1. Measurements methodology

Fig. 10 shows an abstract view of the class files
generator used to create two class files, named
ClassFile and ClassFile_Ref. The opcode behavior
towards the Java operand stack and the local vari-
ables array has to be defined for each studied Java
opcode, i.e. provide the operand stack state needed
before and resulting after the studied opcode execu-
tion as well as the number of local variables needed.

To ensure the estimation quality for each opcode
we generate several pairs of class files executing the
studied opcode and also monitor the possible energy
consumption differences between all other JVMs
stages.

4.2. Results

From all Java opcodes we will not study the 51
opcodes which handle floating point values as float-
ing point is not supported by the CLDC specifica-
tion. In addition as the simpleRTJ VM does not
support long type, all opcodes manipulating longs
are only analysed for the KVM. The opcode athrow

was also omitted from this study, it is not possible
to directly estimate its energy cost using this com-
parison method as its cost can not be extracted from
the context cost. All the same, in Table 5 in [13] we
can see from the opcode checkcast the cost of throw-
ing an ClassCastExeption exception and exiting the
KVM.

As a general observation we can say that for
most opcodes simpleRTJ gives a more expensive
implementation in terms of energy and number of
cycles than KVM. However the cost differences
between opcode functional groups within each vir-
tual machine are similar. Due to space requirement
all obtained values for each studied opcode and
each JVM are published in [13], where the opcodes
are divided in six functional groups:

Stack and local variable operations opcodes:
Tables 2 and 3 in [13] show the results concerning

opcodes that operate on the operand stack and local
variable. We can notice that loading a value from
the local variables array to the operand stack is
lightly more expensive than storing the same value
back to the local variable. It is also interesting to
note that for KVM the opcode bipush consumes
about 9% less energy than iload and 5% less than
ilaod_x. Thus it is more energy efficient to load an
constant integer lower than 256 into the operand
stack using bipush than initializing the local variable
array with the constant and use iload or ilaod_x.
The same is true if a constant integer lower than
65,536 has to be loaded into the operand stack, it
will be more efficient to use the opcode bipush

instead of iload. But in case the integer constant
can be stored in the first 4 local variables then
iload_x becomes the most efficient opcode.

Type conversion opcodes: Table 1 in [13] shows
the results for opcodes that convert value from
one primitive type to another. The costs are in the
same range as the stack and local variable opera-
tions opcodes as the conversion opcodes pop a value
from the stack, perform a right shift or truncate the
popped value and push back the result.

Arithmetic opcodes: Table 4 in [13] shows the
costs for arithmetic opcodes. As it was easy to pre-
dict, the cost of an arithmetic operation is depen-
dent on the type of the operands and the
operation. For the KVM operations on long types
are about 50% more expensive than on integers,
except for the division of types long which is about
two times more expensive than to divide integers.

Logic opcodes: As for the arithmetic opcodes, the
cost of logic opcodes is also depending of the type of
the operand and for the KVM operations on longs
are from 23% to 37% more expensive than operation
on integers. Table 9 in [13] shows the costs for logic
opcodes.

Control flow opcodes: The control flow opcodes
are the opcodes that implement the following Java
language statements: do-while, while, if, if-else, for

and switch. Table 8 in [13] shows the cost for the
25 control flow opcodes. For all conditional if

opcodes (i.e. opcodes from 0x99 to 0xa6 and ifnull,
ifnonnull) the energy cost depends on a two values
comparison success. If the comparison success the
VM jumps to a target defined by the opcode oper-
ands, in the other case the VM continues by execut-
ing the following opcodes.

The tableswitch opcode performs the same task
as lookupswitch, with the difference that it requires
a consecutive list of case values contained between

ClassFile_RefClassFile

Java class file
generator

Opcode + (argument)
Opcode behavior with the stack operand 

Opcode behavior with the local variables array 

Fig. 10. Bytecode executable class file generator.
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one low and high endpoint. Thus the VM knows in
advance the position of all case values so that the
retrieving cost is the same for all cases. Compared
with lookupswitch, tableswitch has a lower energy
cost but generates all the more bigger class file size
as the gape between the case values is great.

Objects and arrays opcodes: Tables 5 and 6 in [13]
show the cost of opcodes that create and manipulate
arrays and objects. The creation cost, with newar-

ray, of a single dimension array of primitive type
integer, long, short, byte, char or boolean is not
directly dependent on array type and size, but more
on the memory size that needs to be allocated for its
creation. That means that the creation cost is iden-
tical for an integers array of size 8, a shorts array of
size 16, or for the KVM a longs array of size 4. The
creation cost, with multiarray, of multidimensional
arrays is dependent on the array dimensions and
dimensions indexes values. Each dimension adds a
basic cost to the array creation cost, thus creating
a 2 * 2 * 2 integers array will be 70% more expensive
than creating a 2 * 4 integers array, and especially
18 times more expensive than creating a single
dimension integers array of size 8.

The objects creation cost depends on the objects
themselves, i.e. on the type and size of their constant
pool, interfaces, fields, methods and their super-
classes, and also on their resolution flags inside each
class constant pool. A new object is resolved only
once within a same class, and its address is stored
in the constant pool structure of the class. Table 5
in [13] shows as an example the creation cost of
an object of type java.lang.Object and java.lang.

String. In addition, Table 5 in [13] refers to two
objects called Class and subClass which is a empty
(none interface, field nor method) sub class of non-
ResolvedClass itself empty sub class of
java.lang.Object.

Method invocation and return opcodes: Because
invoking a method implies returning from it at some
point, Table 7 in [13] shows the costs of different
invoke/return pairs. They all invoke an empty
‘already resolved’ method within the same class or
instance. We can notice from this table that calling
a static, public or private method costs almost the

same, and that the type of the returned value has
not a great influence on the overall cost.

It is also important to compare all obtained val-
ues with the NOP energy consumption. As the
opcode NOP is the first case statement in the inter-
preter switch and does not execute any instruction,
its energy consumption represents the minimum
overhead cost due to the interpreter mechanism.
For the most of the stack and local variable opera-
tion opcodes the interpreter mechanism overhead
represents about 70% of their energy consumption.

4.3. Opcode costs verification

In order to verify the obtained opcode costs we
calculated for each benchmark execution used for
the first experiments the value

P
(Opcode cost * Op-

code Occurrence). The computed value was then
compared with the cost given by the energy profiler
for the interpreter stage. KVM has a build-in imple-
mentation to trace all executed opcodes. We also
added such feature to the simpleRTJ VM in order
to calculate the occurrence of each opcode. For con-
trol flow opcodes we checked if the branch was
taken or not to attribute the correct opcode cost,
but to keep the verification simple we didn’t looked
at the type of variable handled by putfield, getfield,
putstatic and getstatic. There respective cost for
handling integer was used for all occurrences. In
addition for all other none static opcode costs only
the respective basic cost was used. The benchmark
Exception from the Java Grande Forum Benchmark
Suite was not used as we did not studied the cost for
the opcode athrow.

Table 3 presents the normalized verification
results where the value 100 represent for each
benchmark the energy cost given by the energy pro-
filer for the interpreter stage. For each benchmark
the accuracy obtained by calculating the valueP

(Opcode cost * Opcode Occurrence) is staying
between �5% and +10% of the cost given by the
energy profiler. But this loss in precision has to be
balanced with the time needed to compute it. It
takes only few seconds to calculate the occurrence
for each opcode and compute the value

P
(Opcode

Table 3
Verification results

Dhrystone50 Arith Assign Loop Create Method Math Generic

KVM 103.99 105.31 95.55 100.30 97.95 102.51 96.74 109.43
simpleRTJ 102.35 101.56 98.75 102.28 100.15 103.12 98.95 103.34
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cost * Opcode Occurrence), compared to several
hours needed by the energy profiler.

5. Conclusion

Several observations have been done in this paper
concerning the energy consumption of the JVMs.
For the hardware configuration fixed by the energy
profiler, the distribution between the processor and
memories is constant over the JVMs execution with
70% of the energy consumed by memory accesses.
This shows the major importance of the memories
for embedded system runtime performance. We also
showed that implementation differences between two
embedded JVMs can imply great divergence con-
cerning the JVM energy consumption.

This paper can also guide developers to produce
energy-aware java application by limiting the use of
long data type, avoiding multidimensional array
and trying to use consecutive case values inside a
switch statement. Furthermore, the opcodes energy
cost can be helpful for developing a energy-aware
Java compiler as well as optimizing the JVMs by
pointing out the expensive opcodes. This paper
shows the first steps toward an energy aware perfor-
mance analysis tool for Java application, as a such
tool would ask for a more detailed model for a sub-
set of opcodes.

Also as the interpreter mechanism overhead cost
is a predominant factor in opcode execution cost, it
will be interesting in the future to look at the cost
differences between the two possible Java execution
modes: interpreted or JIT compilation. JIT compila-
tion increases significantly the execution speed, but
in the same time increases memory footprint. A
trade-off between execution time and memory foot-
print size will certainly have to be found to reach the

optimum optimization point for energy
consumption.
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Appendix to paper 2

Table 1: Opcodes costs, conversion opcodes
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
i2l 0x85 0.928660 2.200260 198 50
l2i 0x88 0.857440 2.037840 184 47
i2b 0x91 0.928540 2.200260 198 50
i2b 0x91 1.271270 3.209640 268 65
i2c 0x92 0.928520 2.200260 198 50
i2c 0x92 1.113730 2.763480 234 56
i2s 0x93 0.928540 2.200260 198 50
i2s 0x93 1.271270 3.209640 268 65



Table 2: Opcodes costs, stack and local variable operations-part 1/2
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
nop 0x0 0.831440 1.989840 178 45
nop 0x0 0.715870 1.788300 152 39
aconst null 0x1 0.890020 2.126940 190 49
aconst null 0x1 1.015260 2.543520 214 53
iconst m1 0x2 0.899160 2.150940 192 50
iconst m1 0x2 1.024400 2.567520 216 54
iconst 0 0x3 0.890020 2.126940 190 49
iconst 0 0x3 1.015260 2.543520 214 53
iconst 1 0x4 0.890020 2.126940 190 49
iconst 1 0x4 1.015260 2.543520 214 53
iconst 2 0x5 0.890020 2.126940 190 49
iconst 2 0x5 1.015260 2.543520 214 53
iconst 3 0x6 0.890020 2.126940 190 49
const 3 0x6 1.015260 2.543520 214 53
iconst 4 0x7 0.889760 2.126940 190 49
iconst 4 0x7 1.015260 2.543520 214 53
iconst 5 0x8 0.890020 2.126940 190 49
iconst 5 0x8 1.015260 2.543520 214 53
lconst 0 0x9 0.922300 2.192040 196 50
lconst 1 0xa 0.930960 2.216040 198 51
bipush 0x10 0.926900 2.214420 198 52
bipush 0x10 1.231310 3.102480 260 64
sipush 0x11 0.990360 2.373900 212 58
sipush 0x11 1.382090 3.483240 292 71
iload 0x15 1.013700 2.434380 216 55
iload 0x15 1.266740 3.160020 266 64
lload 0x16 1.167820 2.815440 248 63
aload 0x19 1.013700 2.434380 216 55
aload 0x19 1.266740 3.160020 266 64
iload 0 0x1a 0.968120 2.322900 206 51
iload 0 0x1a 1.149280 2.884800 242 59
iload 1 0x1b 0.968120 2.322900 206 51
iload 1 0x1b 1.149280 2.884800 242 59
iload 2 0x1c 0.968120 2.322900 206 51
iload 2 0x1c 1.149280 2.884800 242 59
iload 3 0x1d 0.968120 2.322900 206 51
iload 3 0x1d 1.149280 2.884800 242 59
lload 0 0x1e 1.104800 2.655960 234 57
lload 1 0x1f 1.104800 2.655960 234 57
lload 2 0x20 1.104800 2.655960 234 57
lload 3 0x21 1.104800 2.655960 234 57
aload 0 0x2a 0.968120 2.322900 206 51
aload 0 0x2a 1.149280 2.884800 242 59
aload 1 0x2b 0.968120 2.322900 206 51
aload 1 0x2b 1.149280 2.884800 242 59
aload 2 0x2c 0.968120 2.322900 206 51
aload 2 0x2c 1.149280 2.884800 242 59
aload 3 0x2d 0.968120 2.322900 206 51
aload 3 0x2d 1.149280 2.884800 242 59
istore 0x36 1.004140 2.410380 214 54
istore 0x36 1.248000 3.110700 262 64
lstore 0x37 1.148940 2.767440 244 61
astore 0x3a 1.004140 2.410380 214 54
astore 0x3a 1.248000 3.110700 262 64



Table 3: Opcodes costs, stack and local variable operations-part 2/2
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
istore 0 0x3b 0.958800 2.298900 204 50
istore 0 0x3b 1.130540 2.835480 238 59
istore 1 0x3c 0.958800 2.298900 204 50
istore 1 0x3c 1.130540 2.835480 238 59
istore 2 0x3d 0.958800 2.298900 204 50
istore 2 0x3d 1.130540 2.835480 238 59
istore 3 0x3e 0.958800 2.298900 204 50
istore 3 0x3e 1.130540 2.835480 238 59
lstore 0 0x3f 1.086160 2.607960 230 55
lstore 1 0x40 1.086160 2.607960 230 55
lstore 2 0x41 1.086160 2.607960 230 55
lstore 3 0x42 1.086160 2.607960 230 55
astore 0 0x4b 0.958800 2.298900 204 50
astore 0 0x4b 1.130540 2.835480 238 59
astore 1 0x4c 0.958800 2.298900 204 50
astore 1 0x4c 1.130540 2.835480 238 59
astore 2 0x4d 0.958800 2.298900 204 50
astore 2 0x4d 1.130540 2.835480 238 59
astore 3 0x4e 0.958800 2.298900 204 50
astore 3 0x4e 1.130540 2.835480 238 59
pop 0x57 0.857440 2.037840 184 47
pop 0x57 0.840530 2.097360 178 44
pop2 0x58 0.857440 2.037840 184 47
pop2 0x58 0.840530 2.097360 178 44
dup 0x59 0.928740 2.200260 198 50
dup 0x59 1.139510 2.803260 238 58
dup x1 0x5a 1.040200 2.451780 220 55
dup x1 0x5a 1.447910 3.578880 302 66
dup x2 0x5b 1.119080 2.638200 236 59
dup x2 0x5b 1.623770 4.010580 338 72
dup2 0x5c 1.026160 2.434680 218 56
dup2 0x5c 1.272050 3.147180 266 60
dup2 x1 0x5d 1.169000 2.751300 246 62
dup2 x1 0x5d 1.799630 4.442280 374 78
dup2 x2 0x5e 1.321140 3.100140 276 69
dup2 x2 0x5e 1.975490 4.873980 410 84
swap 0x5f 0.990280 2.338680 210 52
swap 0x5f 1.253810 3.097860 262 60
ldc 0x12 1.022440 2.458380 218 56
ldc 0x12 1.794480 4.742460 378 95
ldc w 0x13 1.085880 2.617860 232 62
ldc w 0x13 1.878520 4.527310 401 107
ldc2 w 0x14 1.203000 2.870700 254 65

Table 4: Opcodes costs, arithmetic opcodes
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
iadd 0x60 0.957860 2.273580 204 51
iadd 0x60 1.191570 2.959440 250 58
isub 0x64 0.957360 2.273580 204 51
isub 0x64 1.191070 2.959440 250 58
imul 0x68 0.959500 2.273580 204 51
imul 0x68 1.193210 2.959440 250 58
idiv 0x6c 1.613020 3.851460 348 84
idiv 0x6c 1.779930 4.563960 382 88
ladd 0x61 1.575480 3.631800 328 76
lsub 0x62 1.575480 3.631800 328 76
lmul 0x69 1.638000 3.865920 348 74
ldiv 0x6d 3.685660 9.344040 820 181
iinc 0x84 1.188360 2.830920 252 63
iinc 0x84 1.348330 3.459240 284 69
ineg 0x74 0.920080 2.176260 196 49
ineg 0x74 1.105290 2.739480 232 55
lneg 0x75 1.366460 3.136320 286 67
irem 0x70 1.613020 3.851460 348 84
irem 0x70 1.779930 4.563960 382 88
lrem 0x71 3.685660 9.344040 820 181



Table 5: Opcodes costs, object and arrays-Part1/2
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
new 0xbb (java.lang.Object) 5.456560 12.437760 1146 240
new 0xbb (java.lang.Object) 24.695630 58.787820 5366 1492
new (java.lang.String) 5.508280 12.561060 1158 240
new (java.lang.String) 24.695630 58.787820 5366 1492
putfield 0xb5 4.201320 9.604260 872 185
putfield 0xb5 2.249470 5.935980 474 116
putfield (long)0xb5 4.432900 10.139520 918 196
getfield 0xb4 4.156160 9.515160 864 183
getfield 0xb4 2.249970 5.935980 474 116
getfield 0xb4(long) 4.324340 9.912000 898 192
putstatic 0xb3 4.100420 9.381000 856 185
putstatic 0xb3 2.271460 5.267030 475 117
putstatic (long) 0xb3 4.334720 9.949800 904 195
getstatic 0xb2 4.083360 9.357000 852 184
getstatic 0xb2 2.243350 5.143060 468 116
getstatic (long)0xb2 4.303640 9.901800 898 193
checkcast 0xc0(is String ’castable’ to Object,yes) 3.726300 8.497920 774 156
checkcast 0xc0(is String ’castable’ to Object,yes) 2.614710 7.184040 554 141
instanceof (is String instanceof Object,yes) 0xc1 3.815760 8.733660 792 160
instanceof (is String instanceof Object,yes) 0xc1 2.669290 7.323780 564 141
instanceof (is Object instanceof String,no) 0xc1 4.213440 9.600299 880 186
instanceof (is Object instanceof String,no) 0xc1 2.527090 6.958500 534 134
instanceof (is This instance of Object,yes) 0xc1 3.815760 8.733660 792 160
nstanceof (is This instance of Object,yes) 0xc1 2.669290 7.323780 564 141
instanceof (is Object instance of This,no) 0xc1 4.213440 9.600299 880 186
instanceof (is Object instance of This,no) 0xc1 2.527090 6.958500 534 134
instanceof (is This instance of String,no) 0xc1 4.442180 10.132260 930 200
nstanceof (is This instance of String,no) 0xc1 2.776750 7.541100 588 148
newarray 0xbc (of size 0) 4.417460 10.073760 924 192
newarray 0xbc (of size 0) 5.512310 12.582180 1155 240
newarray 0xbc (of 4 bytes) 4.434700 10.114860 928 192
newarray 0xbc (of 4 bytes) 5.540130 12.642530 1160 241
newarray 0xbc (of 8 bytes) 4.451940 10.155960 932 192
newarray 0xbc (of 8 bytes) 5.562220 13.200130 1165 241
newarray 0xbc (of 16 bytes) 4.486420 10.238160 940 192
newarray 0xbc (of 16 bytes) 5.608090 12.797520 1175 241
newarray 0xbc (of 32 bytes) 4.555380 10.402560 956 192
newarray 0xbc (of 32 bytes) 5.683420 13.003740 1195 241
newarray 0xbc (of 64 bytes) 4.770880 10.928640 1006 196
newarray 0xbc (of 64 bytes) 5.962520 13.660750 1258 245



Table 6: Opcodes costs, object and arrays-Part2/2
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
anearray (size=0 non resolved empty class) 0xbd 34.638980 79.455499 7388 1908
anearray (size=0 non resolved empty class) 0xbd 43.282320 99.318390 9235 2385
anearray (size=1 non resolved empty class) 0xbd 34.656220 79.496599 7392 1908
anearray (size=1 non resolved empty class) 0xbd 43.320250 99.370710 9240 2385
anearray (size=5 non resolved empty class) 0xbd 34.725180 79.660999 7408 1908
anearray (size=5 non resolved empty class) 0xbd 43.412170 99.573280 9260 2385
anearray (size=0 resolved empty class)0xbd 32.7967 75.5584 6996 1803
anearray (size=0 resolved empty class)0xbd 40.997809 94.447520 8745 2253
anearray (size=1 resolved empty class)0xbd 32.8139 75.5995 7000 1803
anearray (size=1 resolved empty class)0xbd 40.012300 94.498750 8750 2253
anearray (size=5 resolved empty class)0xbd 32.8829 75.7639 7016 1803
anearray (size=5 resolved empty class)0xbd 40.343290 94.663400 8770 2253
anearray (size=0 resolved java.lang.Object class) 27.806520 64.268619 5936 1502
anearray (size=0 resolved java.lang.Object class) 34.757540 80.325210 5936 1877
anearray (size=1 resolved java.lang.Object class) 27.823760 64.309719 7420 1502
anearray (size=1 resolved java.lang.Object class) 34.779700 80.387109 9275 1877
anearray (size=5 resolved java.lang.Object class) 27.892720 64.474119 5956 1502
anearray (size=5 resolved java.lang.Object class) 34.865940 80.592640 7445 1877
anearray (size=0 resolved java.lang.String class) 27.754860 64.073619 5928 1502
anearray (size=0 resolved java.lang.String class) 34.693560 80.092020 7410 1877
anearray (size=1 resolved java.lang.String class) 27.772100 64.114719 5932 1502
anearray (size=1 resolved java.lang.String class) 34.715120 80.143330 7415 1877
anearray (size=5 resolved java.lang.String class) 27.841060 64.279119 5948 1502
anearray (size=5 resolved java.lang.String class) 34.801250 80.348759 7435 1877
multiarray (int 1 dimension,size=0/dim.)0xc5 36.323520 83.483859 7700 1872
multiarray (int 1 dimension,size=0/dim.)0xc5 40.404370 104.354750 9625 2340
multiarray (int 2 dimensions,size=4/dim.)0xc5 49.866399 113.914719 10542 2450
multiarray (int 2 dimensions,size=4/dim.)0xc5 62.332990 142.393239 13177 3062
multiarray (int 4 dimension,size=2) 84.130479 190.890879 17702 3934
multiarray (int 4 dimension,size=2) 104.320275 238.613520 22127 4917
multiarray (nonResolved 1 dimension,size=0) 36.323520 83.483859 7700 1872
multiarray (nonResolved 1 dimension,size=0) 45.404340 104.354752 9625 2340
multiarray (nonResolved 1 dimension,size=5) 36.409720 83.689359 7720 1872
multiarray (nonResolved 1 dimension,size=5) 45.511250 104.622629 9650 2340
multiarray (nonResolved 2 dimension,size=5) 53.042079 121.065519 11212 2580
multiarray (nonResolved 2 dimension,size=5) 66.329640 151.331815 14015 3225
multiarray (Object 1 dimensions,size=8) 36.461440 83.812659 7732 1872
multiarray (Object 1 dimensions,size=8) 45.575820 104.7653259 9665 2340
multiarray (Object 2 dimensions,size=4) 49.866399 113.914719 10542 2450
multiarray (Object 2 dimensions,size=4) 62.332533 142.393380 13177 3062
multiarray (Object 4 dimensions,size=2) 84.130479 190.890879 17702 3934
multiarray (Object 4 dimensions,size=2) 105.163220 238.613557 22127 4917
arraylength 0xbe 0.983920 2.297580 210 52
arraylength 0xbe 1.229930 2.871875 262 65
baload 0x33 1.066680 2.554380 228 60
baload 0x33 1.837710 4.748040 388 99
caload 0x34 1.084380 2.610900 232 62
caload 0x34 1.710840 4.441620 360 90
saload 0x35 1.075780 2.586900 230 61
saload 0x35 1.846810 4.780560 390 100
iaload 0x2e 1.077460 2.588220 230 60
iaload 0x2e 1.730280 4.499460 364 91
laload 0x2f 1.183560 2.846640 252 67
aaload 0x32 1.077460 2.588220 230 60
aaload 0x32 1.730280 4.499460 364 91
bastore 0x54 1.155620 2.748520 246 64
bastore 0x54 1.701710 4.490440 358 90
castore 0x55 1.164480 2.787420 248 65
castore 0x55 1.701710 4.490440 358 90
sastore 0x56 1.164480 2.787420 248 65
sastore 0x56 1.710570 4.529340 360 91
iastore 0x4f 1.158240 2.774640 246 64
iastore 0x4f 1.721890 4.540560 362 91
lastore 0x50 1.310000 3.123480 276 71
aastore 0x53 2.003000 4.674360 418 100
aastore 0x53 1.721890 4.540560 362 91



Table 7: Opcodes costs, method invocation and return
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
invokevirtual+return(empty method)0xb6 12.032760 27.984120 2504 520
invokevirtual+return(empty method)0xb6 13.964910 34.207920 3005 887
invokevirtual+ireturn(empty method) 12.194540 28.380960 2536 529
invokevirtual+ireturn(empty method) 14.119470 34.631400 3036 893
invokevirtual+lreturn(empty method) 12.363720 28.753800 2570 537
invokevirtual+areturn(empty method,return this)0xb6 12.159580 28.284960 2528 525
invokevirtual+areturn(empty method,return this)0xb6 4.119470 34.631400 3036 893
invokestatic+return(empty method)0xb8 10.549340 24.648600 2198 455
invokestatic+return(empty method)0xb8 13.037960 31.513560 2811 840
invokestatic+ireturn(empty method) 10.711120 25.045440 2230 464
invokestatic+ireturn(empty method) 13.192520 31.937040 2842 846
invokestatic+lreturn(empty method) 10.880300 25.418280 2264 472
invokespecial+return(empty method)0xb7 10.512680 24.545700 2188 450
invokespecial+return(empty method)0xb7 13.502640 32.652420 2909 865
invokespecial+ireturn(empty method) 10.674460 24.942540 2220 459
invokespecial+ireturn(empty method) 13.657200 33.075900 2940 871
invokespecial+lreturn(empty method) 10.843640 25.315380 2254 467
invokespecial+areturn(empty method,return this) 10.639500 24.846540 2212 455
invokespecial+areturn(empty method,return this) 13.657200 33.075900 2940 871



Table 8: Opcodes costs, control flow
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
ifeq 0x99 (branch not taken) 0.957140 2.255160 206 54
ifeq 0x99 (branch not taken) 1.098400 2.763480 232 56
ifeq 0x99 (branch taken) 1.142280 2.617860 246 62
ifeq 0x99 (branch taken) 1.314400 3.303720 278 69
ifne 0x9a (branch not taken) 0.957140 2.255160 206 54
ifne 0x9a (branch not taken) 1.098400 2.763480 232 56
ifne 0x9a (branch taken) 1.142280 2.617860 246 62
fne 0x9a (branch taken) 1.314400 3.303720 278 69
iflt 0x9b (branch not taken) 0.957140 2.255160 206 54
iflt 0x9b (branch not taken) 1.098400 2.763480 232 56
iflt 0x9b (branch taken) 1.142280 2.617860 246 62
iflt 0x9b (branch taken) 1.314400 3.303720 278 69
ifle 0x9e (branch not taken) 0.957140 2.255160 206 54
ifle 0x9e (branch not taken) 1.098400 2.763480 232 56
ifle 0x9e (branch taken) 1.142280 2.617860 246 62
ifle 0x9e (branch taken) 1.314400 3.303720 278 69
ifgt 0x9d (branch not taken) 0.957140 2.255160 206 54
ifgt 0x9d (branch not taken) 1.098400 2.763480 232 56
ifgt 0x9d (branch taken) 1.142280 2.617860 246 62
ifgt 0x9d (branch taken) 1.314400 3.303720 278 69
ifge 0x9c (branch not taken) 0.957140 2.255160 206 54
ifge 0x9c (branch not taken) 1.098400 2.763480 232 56
ifge 0x9c (branch taken) 1.142280 2.617860 246 62
ifge 0x9c (branch taken) 1.314400 3.303720 278 69
if icmpeq 0x9f (branch not taken) 0.995660 2.352480 214 56
if icmpeq 0x9f (branch not taken) 1.158300 2.910120 244 58
if icmpeq 0x9f (branch taken) 1.180800 2.715180 254 64
if icmpeq 0x9f (branch taken) 1.374300 3.450360 290 71
if icmpne 0xa0 (branch not taken) 0.995660 2.352480 214 56
if icmpne 0xa0 (branch not taken) 1.158300 2.910120 244 58
if icmpne 0xa0 (branch taken) 1.180800 2.715180 254 64
if icmpne 0xa0 (branch taken) 1.374300 3.450360 290 71
if icmplt 0xa1 (branch not taken) 0.995660 2.352480 214 56
if icmplt 0xa1 (branch not taken) 1.158300 2.910120 244 58
if icmplt 0xa1 (branch taken) 1.180800 2.715180 254 64
if icmplt 0xa1 (branch taken) 1.374300 3.450360 290 71
if icmple 0xa4 (branch not taken) 0.995660 2.352480 214 56
if icmple 0xa4 (branch not taken) 1.158300 2.910120 244 58
if icmple 0xa4 (branch taken) 1.180800 2.715180 254 64
if icmple 0xa4 (branch taken) 1.374300 3.450360 290 71
if icmpgt 0xa3 (branch not taken) 0.995660 2.352480 214 56
if icmpgt 0xa3 (branch not taken) 1.158300 2.910120 244 58
if icmpgt 0xa3 (branch taken) 1.180800 2.715180 254 64
if icmpgt 0xa3 (branch taken) 1.374300 3.450360 290 71
if icmpge 0xa2 (branch not taken) 0.995660 2.352480 214 56
if icmpge 0xa2 (branch not taken) 1.158300 2.910120 244 58
if icmpge 0xa2 (branch taken) 1.180800 2.715180 254 64
if icmpge 0xa2 (branch taken) 1.374300 3.450360 290 71
lcmp 0x94 (value1<value2) 1.483220 3.404280 310 72
lcmp 0x94 (value1==value2) 1.693000 3.845520 356 79
lcmp 0x94 (value1>value2) 1.693000 3.845520 356 79
ifnull 0xc6(branch not taken) 0.957140 2.255160 206 54
ifnull 0xc6(branch not taken) 1.314400 3.303720 278 69
ifnull 0xc6 (branch taken) 1.124720 2.593860 242 61
ifnull 0xc6 (branch taken) 1.314400 3.303720 278 69
ifnonnull 0xc7 (branch not taken) 0.957140 2.255160 206 54
ifnonnull 0xc7 (branch not taken) 1.098400 2.763480 232 56
ifnonnull 0xc7 (branch taken) 1.124720 2.593860 242 61
ifnonnull 0xc7 (branch taken) 1.098400 2.763480 232 56
if acmpeq 0xa5 (branch not taken) 0.995660 2.352480 214 56
if acmpeq 0xa5 (branch not taken) 1.374300 3.450360 290 71
if acmpeq 0xa5 (branch taken) 1.180800 2.715180 254 64
if acmpeq 0xa5 (branch taken) 1.374300 3.450360 290 71
if acmpne 0xa6 (branch not taken) 0.995660 2.352480 214 56
if acmpne 0xa6 (branch not taken) 1.158300 2.910120 244 58
if acmpne 0xa6 (branch taken) 1.180800 2.715180 254 64
if acmpne 0xa6 (branch taken) 1.158300 2.910120 244 58
goto 0xa7 1.034380 2.400540 222 55
goto 0xa7 1.036670 2.589600 220 55
goto w 0xc8 1.108140 2.551500 238 60
goto w 0xc8 1.206750 3.009840 256 63
lookupswitch 0xab (1 iteration) 2.077300 4.759140 438 116
lookupswitch 0xab (1 iteration) 3.403660 8.655840 736 220
lookupswitch 0xab (2 iterations) 2.721600 6.228240 572 151
lookupswitch 0xab (2 iterations) 4.461740 11.268960 968 296
lookupswitch 0xab (3 iterations) 3.365900 7.697340 706 186
lookupswitch 0xab (3 iterations) 2.874620 7.349280 620 182
lookupswitch 0xab (4 iterations) 4.010200 9.166440 840 221
lookupswitch 0xab (4 iterations) 3.668180 9.309120 794 239
tableswitch 0xaa 1.793420 4.205460 384 108
tableswitch 0xaa 1.682750 4.288380 356 87



Table 9: Opcodes costs, logic opcodes
Opcode Inst. Cost in µJ Mem. Cost in µJ Nb Cycles Nb Proc. Inst.
ishl 0x78 0.976480 2.321580 208 53
ishl 0x78 1.210190 3.007440 254 60
ishr 0x7a 0.976360 2.321580 208 53
ishr 0x7a 1.139170 2.841060 242 63
iushr 0x7c 0.976420 2.321580 208 53
iushr 0x7c 1.210130 3.007440 254 60
lshl 0x79 1.419040 3.316500 300 72
lshr 0x7b 1.419040 3.316500 300 72
lushr 0x7d 1.545040 3.593340 324 76
iand 0x7e 0.957800 2.273580 204 51
iand 0x7e 1.191510 2.959440 250 58
ior 0x80 0.958100 2.273580 204 51
ior 0x80 1.191810 2.959440 250 58
ixor 0x82 0.958120 2.273580 204 51
ixor 0x82 1.191830 2.959440 250 58
land 0x7f 1.127820 2.701320 240 63
lor 0x81 1.128420 2.701320 240 63
lxor 0x83 1.128460 2.701320 240 63
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Abstract

DVB-H is targeted for broadcasting digital content to
handheld devices. The content is generally divided into
streaming media or file downloading. In file downloading
scenarios there is typically a requirement on a zero error
ratio which can be met using either a data carousel or addi-
tional forward error correction codes. Both methods how-
ever induce a higher energy consumption in the receiver.
This paper analyses the energy consumption needed for two
different forward error correction codes based on emulator
results for typical hardware in a handheld device. The en-
ergy used for error correction is compared to the energy
used when receiving more carousel rounds in order to meet
the zero error ratio requirement. This difference is denoted
as receiver coding gain. Additionally, error correction also
leads to a reduction in the reception time.

1. Introduction

DVB-H is a relatively new standard in the set of stan-
dards developed by the DVB Project. DVB-H is mainly
targeted for handheld devices, but is also intended for mo-
bile usage in for instance cars or buses. The main use case
for DVB-H is watching television broadcasts, but �le down-
loading enables receiving digital content (MP3's, videos,
etc.) for storing and later use.

DVB-H is based on the physical layer of DVB-T. DVB-
T is a Coded Orthogonal Frequency Division Multiplexing
(COFDM) system, where the basic data item is Transport
Stream (TS) packets of size 188 bytes. In broadcast sys-
tems, such as DVB-T, errors turn up in the stream, even
while using good physical layer Forward Error Correction
(FEC) codes. DVB-T was not designed for mobile usage,
and therefore DVB-H includes an optional FEC code at
the link layer, embedded in the Multi Protocol Encapsula-
tor (MPE or MPE-FEC) to compensate for the performance
degradations due to fast fading effects in mobile channels.
These additions make the delivery of standard IP packets

over the DVB-T network possible, which increases the per-
formance in mobile usage environments. Furthermore, the
MPE-FEC layer adds time interleaving to the system, mak-
ing it more resistant to slow fading effects (e.g. temporal
obstacles). While the MPE-FEC provides an adequate per-
formance improvement for video streaming services, where
errors lead to frame losses or pixelation, it does not add
a suf�cient performance improvement for �le downloading
scenarios.

In �le downloading services, an additional layer of er-
ror correction at the application layer (AL-FEC) is used, in
order to deal with lost IP packets. The DVB-H standard
[3] speci�es a Raptor code [7] for �le delivery scenarios.
Although Raptor codes have several attractive properties,
they may not be the best choice for application layer cod-
ing. One of the most notable reasons, which will be shown
in this paper, is that their energy consumption may be too
large in mobile devices for providing cost effective down-
loading, compared to that of other codes. In this paper we
present simulation results which indicate that Hyper Low-
Density Parity-Check (HLDPC) codes provide similar error
correction performance as the Raptor code, but at a lower
energy consumption in the host processor.

The main contributions of this paper are: (a) a compar-
ative study between two AL-FEC codes (the HLDPC and
Raptor code), (b) an analysis of the receiver coding gain in
terms of energy consumption when application layer cod-
ing is used, and (c) a theoretical analysis for receiver coding
gain.

2. Receiver coding gain

Coding gain for a transmitter is traditionally de�ned for
a speci�ed error probability as the reduction in required en-
ergy per transmitted information bit ETb,c when using error
correction coding compared to the energy per information
bit ETb,0 when error correction coding is not used. The cod-
ing gain from the transmitter point of view is given by
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GT =
ETb,0
ETb,c

(1)

and is often given in the logarithmic scale dB as

GTdB = 10 log10

ETb,0
ETb,c

(2)

In satellite communications the coding gain is essential,
where the energy budget in transmitting satellites is limited.
In terrestrial systems, the availability of energy at transmit-
ter stations is not that big an issue, rather a network plan-
ning or a regulatory matter limiting the power available at
the transmitter. In handheld devices, on the other hand,
the total energy budget is limited. Using the same logic
as de�ning the transmitter side coding gain, we can de�ne
the receiver coding gain. Receiver coding gain is de�ned
as the reduction of energy per information bit Eb,c needed
while using coding compared to the energy per information
bit Eb,0 needed without coding, where the same error rate
is achieved:

GdB = 10 log10

Eb,0
Eb,c

(3)

The use of AL-FEC in downloading should provide re-
ceiver coding gain. Furthermore, additional error correction
coding should provide other bene�ts, which typically could
be reduced downloading time for the required objects. The
rest of this paper describes the codes used for additional
coding, the emulations performed, and theoretical analysis
for obtaining �gures on typically achievable advantages of
using coding.

3. Application Layer Codes Used for Simula-
tions

In this paper, we compare the energy consumption of the
Raptor code [7], the HLDPC code [5], and a system without
AL-FEC. In [5], the erasure correction and overhead perfor-
mances of these codes have been compared. We therefore
limit ourselves to investigating the energy consumed in the
receiving device by using the AL-FEC codes. The Rap-
tor code is standardized for IP-datacasting (IPDC) services
in DVB-H, but due to its license fees, other codes that can
achieve similar performances in IPDC services are of great
interest.

Raptor codes are rateless codes that belong to the class of
concatenated LDPC/rateless LDGM codes, which achieve a
good performance in terms of erasure correction and recep-
tion overhead performances. However, the decoding algo-
rithm given in the DVB-H standard [3] for the Raptor code
has a high computational complexity. As will be shown in

this paper the HLDPC code shows a signi�cantly better per-
formance than the Raptor code, even when using less com-
plex decoding algorithms for both codes. The HLDPC code
is a �xed-rate code, which has a similar erasure correcting
performance as the Raptor code [5], but as will be shown
in section 6, the energy consumption of the HLDPC code is
signi�cantly lower than that of the Raptor code.

The Raptor decoding algorithm relies on Gaussian elim-
ination of the parity-check matrix and is capable of yield-
ing reception overhead performances in the order of 1–2 %.
Because of the algorithm's high complexity we therefore
compare the Raptor code with the HLDPC code, using a
computationally simpler algorithm for both codes, namely
the greedy iterative Belief Propagation algorithm. Using
this algorithm, the erasure correcion and reception over-
head performance of the Raptor code is degraded at the gain
of decreasing the computational complexity in the decoder.
The greedy iterative Belief Propagation algorithm works as
follows:

Algorithm 3.1 Given the value of a parity symbol and all
but one of the information symbols on which it depends, set
the missing information symbol to be the XOR of the parity
symbol and its known information symbols.

Clearly, this algorithm only works on erasure channels
where the decoder knows which symbols are correct and
which are not. Since the IP layer in a network protocol can
be viewed as a packet erasure channel, where IP packets
are either received without errors or corrupted and therefore
discarded, the greedy iterative Belief Propagation algorithm
is usable at the application layer.
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Figure 1. A overview of the system layers in a
DVB-H receiver.
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Figure 2. Packet structure for the encoded
data

4. Protocols used in fi le downloading

The system layers in a DVB-H receiver are illustrated in
figure 1, [2]. For the scope of this paper, only the appli-
cation layer is of interest. In DVB-H IPDC services, the
FLUTE protocol [4] is used for delivering objects to the re-
ceiving terminals. The FLUTE protocol is built on top of
the Asynchronous Layered Coding (ALC) protocol, which
combines the Layered Coding Transport (LCT) building
block, a congestion control building block, and the FEC
building block. However, the congestion control building
block is not used in DVB-H IPDC services. The ALC and
LCT building blocks contain relevant information for the
file delivery, while the FEC building block is used by the
FEC decoder. The FEC building block is comprised of
three fields: the Source Block Number (SBN), the Encod-
ing Symbol ID (ESI), and the Source Block Length (SBL).
This gives the IP packet structure that is shown in figure 2.

The information obtained from the FEC building block
is used in the following manner. The SBN signifies to which
FEC block the received symbol belongs. The ESI is the en-
coding symbol index of the received symbol with the rule
that if ESI ≥ SBL the received symbol is a parity sym-
bol, otherwise it is an information symbol. Additionally,
the Raptor code uses the ESI value as a seed to its random
number generator, to create the degree and edge distribu-
tions of the symbol (see [3] for details). The SBL is the
number of information symbols in the FEC block to which
the received symbol belongs to.

5. Measurement Framework

A measurement framework was created in order to eval-
uate the extra costs created by the HLDPC and Raptor de-
coders. Figure 3 presents the full measurement framework
used for evaluating the HLDPC and Raptor codes. The file
containing the data to be transmitted over the DVB-H net-
work was first encoded by the HLDPC or the Raptor en-
coder. For the measurements the IP/UDP and LCT headers
were not included in the packets because the decoders only
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Figure 3. Measurement system - General view

require the FEC headers for reconstructing the received ob-
ject. The obtained encoded file was thus composed of pack-
ets and each packet contained one FEC header and one sym-
bol.

The error trace was a binary map specifying whether
each transmitted packet was correctly received or an era-
sure. In this work a Binary Erasure Channel (BEC) was
used, i.e. erasures were distributed uniformly at random.
Using the error trace each packet was tagged with erasure
information by setting a fl ag in the packet header. Figure
4 shows the packet structure for the received data contain-
ing the error fl ag. The received data was then read by a
software implementation of the HLDPC or Raptor decoder
which tried to reconstruct the received object.

The Sim-Panalyzer [8] processor simulator was used for
evaluating the costs generated by the execution of the de-
coders. Sim-Panalyzer is based on the SimpleScalar [1] pro-
cessor simulator and performs cycle accurate simulations of
a strongARM SA-110 processor. It computes at every sim-
ulated cycle the energy consumption of each module con-
stituting the ARM core (clock, alu, cache, etc.). RTEMS
was chosen as the operating system for this study because
RTEMS 4.6.2 is to the best of our knowledge the only OS
ported onto SimpleScalar (ported by Jack Whitham [9]).

Table 1. Source and code lengths in number
of symbols

Code length Source length Code rate
4000 3000 0.75
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5.1. Simulation parameters

Tables 1 and 2 present the parameters used by the
HLDPC and Raptor codecs. For all measurements, the
number of information symbols were set to 3000 symbols
and the codeword lengths were set to 4000, hence giving
code rate R = 3/4. The Raptor code was a non-systematic
code, i.e. 4000 rateless symbols were transmitted. The FEC
building block used 12 bytes for the SBN, ESI, and SBL
header �elds and the symbol sizes were set to 1432 bytes,
thereby giving IP packet payloads of 1444 bytes.

The processor parameters and the con�guration of the
caches must be de�ned in Sim-Panalyzer. For this study the
processor speed was set to 233 MHz. The con�guration for
the level 1 instruction cache, level 1 data cache and the uni-
�ed level 2 cache is presented in table 3. Table 4 shows the
different latencies for each memory level. This con�gura-
tion targets the average performance of the host processor
in a multimedia handheld device. All other parameters used
by Sim-Panalyzer were set to their default values.

6. Results

The measurement framework for the HLDPC and Raptor
codes was run on the BEC with probabilities of erasures
ranging from 0% to 20%. All data was transmitted in a
carousel-like manner. The Raptor code was able to decode
within one carousel round the received data containing up to
16% of erasures, while the HLDPC code was able to decode
data containing up to 14% of erasures.

Figure 5 presents for each code the required time in clock
cycles for decoding the received data depending on the era-
sure rate. We observe that increasing the erasure rate does
not affect the execution time of the Raptor decoder while the
execution time for the HLDPC decoder slightly increases

Table 2. Symbol, Packet and Data �le sizes in
bytes

Symbol Packet Data �le Encoded data �le
1432 1444 4 296 000 5 776 000
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Figure 5. Clock cycles needed for complete
reconstruction of received data

with the erasure rate. This is due to the Raptor code being
unaffected by the erasure rate in the channel in terms of re-
ception overhead performance, i.e. the Raptor code has an
approximately constant reception overhead. In other words,
almost every symbol that the Raptor code receives can be
used for decoding, while the HLDPC code may receive
symbols that have already been received or reconstructed
and therefore are useless for the decoding procedure. For
the HLDPC code, this fact re�ects itself as increased ex-
ecution time. The results indicate that the raptor decoder
requires about 465 � 106 processor cycles regardless of the
erasure rate. On the other hand, depending of the erasure
rate the HLDPC code requires about 175 � 106 to 200 � 106

processor cycles in order to reconstruct the object.

6.1. Energy Budget Analysis

In this section we evaluate the cost of using AL-FEC in
terms of energy consumption. For all the results presented
in this section, we assume a data transmission rate Tb of 5
Mbits/s.

Based on Monte Carlo simulations (a similar approach
as in [6]), table 5 presents for a receiver not using AL-FEC
the minimum, maximum and average number of required
carousel rounds on the BEC for downloading the uncoded
object without errors. The given values are obtained based

Table 3. Caches con�guration
Caches Associativity Size # blocks

il1 direct mapped 4 Kb 128
dl1 direct mapped 4 Kb 128
ul2 4-way 8 Kb 256
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on 1000 experiments.
Figure 6 and Figure 7 present the energy consumption

comparison for decoding the received data between a re-
ceiver without AL-FEC and a receiver using the HLDPC
and the Raptor codes respectively for several average power
dissipations while the data is received. The average power
dissipated while receiving the data includes the power dis-
sipated by the radio receiver and by other system units, like
the screen, processor, possible speaker, etc. Figures 6 and
7 show that the energy consumption for a receiver without
AL-FEC is increasing with the erasure rate, proportionally
to the average power dissipated while receiving data, but at
a faster pace than for a receiver using AL-FEC.

The energy consumption for a receiver without AL-FEC,
illustrated in �gures 6 and 7 with dashed lines, are calcu-
lated with the following equation as

Etot,0 = ε0t0P̄ (4)

where ε0 denotes the transmission overhead for an uncoded
transmission, t0 is the time consumed for transmitting all in-
formation symbols during one carousel round, and P̄ is the
average power consumed by the receiver. If n′ is the num-
ber of transmitted symbols at the time when the receiver has
obtained the entire object and k is the number of informa-
tion symbols in the object, then the transmission overhead
is de�ned as ε = n′

k , hence ε ≥ 1. The energy consump-
tion for a receiver using AL-FEC is calculated in a similar
manner as

Etot,c = εct0P̄ + Ec (5)

where Etot,c is the total energy used for receiving an object
including decoding, εc is the transmission overhead for the
encoded transmission, andEc is the total energy used by the
decoder on host processor, in our case the simulated stron-
gARM SA-110 processor. Table 6 gives as example the en-
ergy consumed by the processor functional units for decod-
ing an object with 6% of erasures. The values of Etot,c are
illustrated in �gures 6 and 7 with continuous lines.

When dividing the total energy required by the number
of source bits L0 we get the energy per bit as

Eb,c =
Etot,c
L0

(6)

Table 4. Memory Latencies

il1 dl1 ul2 RAM RAM
first chunk access inter chunk access

Latency 2 2 6 30 4in cycles

Table 5. Number of required carousel rounds
on the BEC when no AL-FEC is used

Erasure rate (%) Avg Min Max
0 1 1 1
2 2.71 2 5
4 3.17 2 5
6 3.54 3 6
8 3.91 3 8

10 4.26 3 7
12 4.55 3 9
14 4.86 4 8
16 5.16 4 9

Eb,0 =
Etot,0
L0

(7)

Substituting the above expressions into equation 3 gives

GdB = 10 log10

ε0t0P̄L
−1
0

εctoP̄L
−1
0 + EcL

−1
0

(8)

Simplifying equation 8 and taking into consideration that
t0 = L0

Tb
, where Tb is the transmission rate in the network,

the �nal expression for the receiver coding gain is obtained
as

GdB = 10 log10

ε0

εc + TbEc

L0P̄

(9)

Note that by using probability theory, the expected value
on the transmission overhead for the uncoded transmission
E fε0g (abusing notation) over a BEC can be calculated as

E fε0g =
∞∑

ε0=1

ε0

[
(1� pε0e )k �

(
1� pε0−1

e

)k]
(10)

Table 6. Energy consumption in Joule for the
processor functional units for an erasure rate
of 6%

HLDPC Raptor
instruction cache level 1 0.362 0.860
data cache level 1 0.204 0.483
uni�ed cache level 2 1.18 3.41
clock 0.207 0.509
µ architecture 0.749 1.80
ALU 0.000526 0.00132
Total (Ec) 2.70 7.07
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Figure 6. Energy consumption comparison
between uncoded and HLDPC coded trans-
mission

where pe is the probability of an erasure, and k is the
number of information symbols in the transmitted object.
To clarify the equation, the probability of all symbols be-
ing correct at a transmission overhead of ε0 is (1� pε0e )k.
Therefore, the expression inside the brackets signi�es the
probability of all symbols being correct at a transmission
overhead of exactly ε0.

Using equation 9 we can now calculate the receiver gain
when AL-FEC is used. Figures 8 and 9 present the obtained
receiver coding gain when the HLDPC and Raptor codes
are used. As the use of AL-FEC is bene�cial only when the
receiver coding gain is positive, the comparison of �gures
8 and 9 clearly shows better performance for the HLDPC
code than the Raptor code. As an example we can see that
for an average receiver power consumption P̄ of 200mW,
the HLDPC code is more ef�cient than a system without
AL-FEC for erasure rates of 4% and upwards. On the other
hand, for the same average receiver power consumption the
Raptor code is unef�cient compared to a system without
AL-FEC for all the erasure rates.

It is also important to note that the simulated strongARM
SA-110 processor is becoming an outdated processor. As
technology evolution since the late 90's concentrated efforts
in developing more energy ef�cient processors, we can ex-
pect that with modern processors the receiver coding gain
when using AL-FEC could reach positive values for even
smaller erasure rates than the one presented on �gures 8
and 9.

7. Conclusions

In this paper, we evaluated the use of AL-FEC tech-
niques for achieving error free delivery of data objects in
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Figure 7. Energy consumption comparison
between uncoded and Raptor coded trans-
mission

a DVB-H system. The alternative to using AL-FEC is to
retransmit the data in a data carousel thereby waiting, in the
worst case, for several carousel rounds before all the data is
received without errors. AL-FEC decoding is performed in
the receiver general purpose host processor. In order to be
ef�cient from an energy point of view, the energy consumed
by the host processor for handling the application layer cod-
ing should be smaller than the energy consumed by the re-
ceiver device for receiving the extra carousel rounds.

Two AL-FEC codes, the HLDPC code and Raptor code,
were run in an emulator system, from which detailed infor-
mation on energy dissipation could be obtained. The energy
used for the AL-FEC codes was compared to the energy
needed for receiving additional carousel rounds. As the ex-
act energy performance �gures for the receiver equipment
(frontend) was not known, a set of different average power
dissipations were used for the simulations. We believe that
this set of average power dissipations covers the range of
most receiver equipment characteristics.

Depending on the AL-FEC code and the erasure rate, the
receiver coding gain was in the region of -9 to 4 dB. This
shows that the energy used by the AL-FEC codes is of the
same magnitude as the energy needed for receiving addi-
tional carousel rounds. On the other hand, by using AL-
FEC codes the transmission overhead is reduced, leading to
faster downloading for the end-users. Moreover, the trans-
mission bandwidth is reduced, because the number of re-
quired carousel rounds containing the same data is reduced.
Thus, using AL-FEC codes is an appealing approach.

The HLDPC and Raptor codecs used in this work, were
originally implemented in a PC environment in ANSI C++,
using rather na�̈ve software engineering. For example, dy-
namic memory allocations have been frequently used, spe-

115



0 2 4 6 8 10 12 14
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4
Receiver coding gain (dB)

50 mW

100 mW
200 mW

400 mW

600 mW

Erasure rate (%)

Average power dissipated
while receiving data

Figure 8. Receiver gain when HLDPC is used

0 2 4 6 8 10 12 14 16
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

Receiver coding gain (dB)

50 mW

100 mW
200 mW

400 mW
600 mW

Erasure rate (%)

Average power dissipated
while receiving data

Figure 9. Receiver gain when Raptor code is
used

cial processor instructions for optimizing performance have
not been used. This code was then recompiled for the emu-
lator framework. Optimizing the code in general, and spe-
ci�c optimizing for the target processor architecture would
certainly give some additional gain.

Future host processor architectures in mobile handsets
will furthermore be more energy ef�cient, hence increas-
ing the receiver gain. Receiver chipsets for DVB-H will
of course also be more energy ef�cient, but assuming that
the host processor development will be faster the experi-
ments presented in this paper shows that AL-FEC codes are
already fully applicable technologies, providing time and
transmission bandwidth savings at practically no extra cost
in the receiver.
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ABSTRACT

This paper presents a comparison of two systems that can simultaneously decode multiple videos on a simple
CPU and dedicated function-level hardware accelerators. The first system is implemented in a traditional way,
such that the decoder instances access the accelerators concurrently without external coordination. The second
system implementation coordinates the tasks’ accelerator accesses by scheduling. The solutions are compared
by execution cycles, energy consumption and cache hit ratios. In the traditional solution each decoder task
continuously requests access to the needed hardware accelerators. However, since the other tasks are competing
on the same resources, the tasks must often yield and wait for their turn, which reduces the energy-efficiency.
The scheduling-based approach assumes that the accelerator latencies are deterministic and assigns time slots for
accelerator accesses required by each task. The accelerator access schedule is re-designed for each macroblock at
run-time, thus avoiding the over-allocation of resources and improving energy-efficiency. Deterministic accelerator
latencies ensue that the CPU is not interrupted when an accelerator finishes. The contribution of this study is
the comparison of the accelerator timing solution against the traditional approach.

Keywords: Video codecs, Parallel processing, Power demand

1. INTRODUCTION

Multimedia applications running on modern mobile devices require huge amounts of computational resources.
Performing all the required computations in software is not a feasible alternative, since general-purpose processors
(GPP) offer low energy-efficiency and low data throughput. Thus, the computationally intensive application
parts are often offloaded to dedicated processing elements (PEs) that can perform the computations faster
and with lower power consumption.1 However, running the application on multiple PEs raises the problem
of synchronization: a processor must know before interacting with another PE, if the device is ready for the
interaction. This synchronization can be performed either by polling the status of the other PE, or by letting
the working PE announce when it is finished.2 Recently, also an alternative way has been proposed for doing the
synchronization of the accelerators: by using deterministic scheduling3,4 it is possible to avoid repeated polling
of other PEs, as well as interrupts.

In this paper we compare the synchronization overhead of a hardware-accelerated polling-based system against
a more sophisticated synchronization-by-scheduling system. As a reference we also compare the aforementioned
solutions against a full-software implementation. The comparison is based on the measurement of execution
cycles, energy consumption and cache hit ratios. The measurement results have been acquired by running a
multi-stream MPEG-4 decoding application on a cycle-accurate strongARM SA-1100 processor simulator.
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2. MEASUREMENT FRAMEWORK

The application framework for our measurements was multi-stream MPEG-4 video decoding performed by the
open-source XViD5 codec. MPEG-4 video decoding was chosen as the application framework, because it is
computationally very demanding and dynamic. Decoding one second of a 320x240-pixel movie (with 25 fps)
involves processing 7500 macroblocks, of which each can have a different decoding procedure. The decoding
procedure of a macroblock is discovered as the video bitstream is read and can not be predicted in advance.
Therefore, if the decoding is accelerated by hardware, the accelerator elements must be so fine-grained that
they can be adapted to the decoding needs of each macroblock.3 Naturally, the decoding hardware designer
can also just assume the worst-case scenario and allocate the maximum amount of hardware resources for each
macroblock, but this will lead to an inefficient solution. Although MPEG-4 is a bit dated as a video compression
scheme, the results of this paper can also be applied to upcoming standards such as RMC.6

The measurements were conducted on three different system configurations: one of the systems ran several
independent unmodified XViD software decoders on a single GPP by using multitasking, whereas the other two
systems contained the GPP and several dedicated hardware accelerators to do the same task. Since the XViD
codec is originally described in monolithic c-code, some effort was required to make the decoder suitable for
hardware acceleration. These modifications introduced some processing-time and memory overhead.

The codec itself is only capable of decoding one video stream at a time, therefore an OS-like wrapper
application was created for the two hardware-accelerated systems. Upon start, the wrapper application initializes
1...4 video decoders and starts decoding the video streams. The wrapper application does not run the decoding
of separate streams in parallel, instead it uses time-division multiplexing of the GPP processing time. When the
code execution of decoder instance n reaches a point that it requires code execution on hardware accelerators, it
returns control to the wrapper application along with the accelerator access requests. The wrapper application
stores these accelerator access requests (but does not activate the accelerators yet) and starts decoder instance
n+1. When decoder n+1 code execution reaches the stage that it can not proceed without use of accelerators,
decoder n+1 returns control to the wrapper application and so on. Once all the decoder instances have finished
executing the control code and are waiting for computation results from the accelerators, the wrapper application
starts to execute the accelerator access requests. How this is done, depends on the synchronization scheme.

The traditional, polling-based system starts processing the stored accelerator access requests in a first-
requested first-served manner. However, if an accelerator is reserved, the new access request must yield and
wait until the accelerator is freed – meanwhile the system continues polling the other accelerators to see if some
other access request could be executed. The second system implementation uses run-time scheduling to plan the
accelerator access pattern in advance. The scheduling algorithm itself causes some overhead, but on the other
hand avoids completely the polling overheads later, because the schedule tells in advance when the resources will
be freed. The completely software based stream decoding does not need further explanation: all computations
are performed on the GPP in traditional time-division multitasking fashion.

Figure 1 shows approximately the behaviour of the hardware accelerated solutions in a Gantt chart. W
represents processing time spent within the wrapper application and D1, D2 and D3 refer to activity in the
control code of the respective decoder instances. The blocks on the accelerator rows below show an arbitrary
schedule of task executions on the accelerators.

2.1 Scheduler

The scheduler used by the second accelerated system implementation is based on the idea that is described
in.4 Theoretically it is a permutation flow-shop (PFS)7 scheduler, that has been applied to the problem of PE
scheduling. In PFS terminology the processing units are machines and the tasks perfomed by the processing units
are operations. Dependencies between tasks are described by grouping tasks into jobs. A job is defined to contain
an operation for each machine, and each job must access the machines in the same order. In our application, we
have also used machine skipping, which means that for some jobs, the execution time of certain operations may
be zero: i.e. nothing is performed on that machine. By the PFS definitions, the execution times of operations
are deterministic. This is not a severe limitation, since the accelerated functions are very predictable. Also,
the assumption about deterministic execution times has been made previously in similar contexts.8,9 From this
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Figure 1. Sequential control code processing and parallel accelerator operation.

description, it is evident that PFS can be applied only to some scheduling problems, as the one presented in this
paper.

The benefit of such a restricted scheduling problem is that the scheduling algorithm can be very straight-
forward and since the scheduler is called with a high frequency, a low overhead will be the most important
characteristic of the scheduler. Thus, of the different scheduler implementations described in,4 the ”no job or-
dering, no-wait timetabling” was selected for computing schedules in this environment. No-wait timetabling
(Figure 2) means that within the same job, the next operation is started immediately after the previous one
finishes. In our scheduling problem this is essential, because it ensures that buffers between processing units are
not overwritten too early.

2.2 Hardware Accelerators

The parts of the XViD code to be hardware accelerated, were selected manually. Evidently, it is most bene-
ficial to use acceleration for compact parts of the code that are invoked often, e.g. nested loops. In MPEG-4
video decoding this part is found from macroblock decoding and especially in block decoding (in our case each
macroblock consists of six blocks).

Besides being often invoked, it is desirable that the accelerated code parts should have a minimal amount
of inputs and outputs. Based on these reasons, the hardware accelerators were created from the block decoding
functions, that are depicted in Figure 3. The figure consists of boxes (accelerators), circles (buffers) and arrows
that indicate the dataflow between the entities. It can be seen that there are several different dataflows, of which
only some are used for each block, depending on the coding scheme.

When choosing the accelerated functions, some compromises had to be made with the modularity (amount
of inputs and outputs) of accelerators. This does not affect the results between the two hardware accelerated
systems, since both of them use the same accelerator units. However, it causes some extra overhead to the
hardware accelerated systems when they are compared against the full-software based approach.

Figure 2. No-wait timetabling of three jobs (A,B,C) on three processors.
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Table 1. Hardware accelerator latencies in clock cycles

Accelerator 1 Accelerator 2 Accelerator 3 Accelerator 4 Accelerator 5
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Figure 3. Data flow between accelerators.

2.3 Hardware Platform

The two hardware-accelerated decoding systems are based on the hardware platform presented in Figure 4. It
consists of six PEs: a general purpose processor and five dedicated hardware accelerators. The PEs are triggered
according to the polling-based approach or by the scheduling solution, that has been described previously. Both
solutions trigger the accelerators in a ”waterflow” manner, where each accelerator passes its computed results to
the following accelerator via a shared local memory. The full-software decoding system is running on the GPP
of the same platform and does not have any use for the dedicated hardware accelerators. The used hardware
accelerator latencies can be seen in Table 1.

3. SIMULATION FRAMEWORK

The simulation framework presented in this section models a typical handheld device featuring basic multimedia
application. It includes a hardware platform, an operating system and a set of applications and hardware
accelerators.

3.1 Processor simulator

The Sim-Panalyzer10 processor simulator was used for this study. Sim-Panalyzer is based on the SimpleScalar11

processor simulator, and performs cycle accurate simulation of a strongARM SA-1100 processor. At every
simulated cycle it computes the energy consumption of each module within the ARM core (clock, ALU, cache,
etc.). The processor simulator allows running an ARM-based operating system on top of it.

Figure 4. Hardware platform.
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3.2 Operating system

The SimpleScalar port of the real-time operating system RTEMS (v. 4.6.2) was used in this study.12 This port
includes a SimpleScalar extension for supporting an interrupt based programmable timer which is needed by
RTEMS. RTEMS is a free open source real-time operating system designed for embedded systems and supporting
a variety of application programming interfaces (APIs) and interface standards. This real-time operating system
allows the execution of a set of applications as independent tasks in a pre-emptive multitasking environment,
which enabled us to conduct the measurements with multiple independent software decoders.

3.3 Accelerators

The accelerators are implemented within the Sim-Panalyzer framework and the applications can trigger the
accelerator via dedicated system calls. It is the responsibility of the application to move the input data into the
local memory 1 feeding the hardware accelerators 1 and 2 on Figure 4. In the same way, it is the responsibility
of the application to read the results from local memory 5 when needed. For the rest of the accelerators reading
input parameters is automatically done when the accelerator is triggered.

The following pseudo code illustrates how the communication with the hardware accelerators is handled for
the polling-based and the scheduled systems:

Polling-based accelerator access
> repeat:
> if(accelerator is free)
> read input data to local memory
> trigger/call hardware accelerator

> endif
> goto repeat

Implementation using the scheduler
> compute schedule
> repeat:
> sleep until designated time
> read input data to local memory
> trigger/call hardware accelerator

> goto repeat

In order to maintain the cache coherency the Sim-Panalyzer handles the memory accesses to the accelera-
tor local memories as uncached memory regions. It is important to note that the execution of the hardware
accelerators is performed outside the simulated platform. The energy consumption of the hardware accelerator
is therefore not directly measured by the system. Instead, based of the difference in power dissipation between
the full-software decoder system and hardware-accelerated systems presented in the results-section, it is possible
to calculate an energy budget that tells us how much energy the accelerators can use to still provide a better
energy efficiency than the full-software decoder.

Table 2. Memory latencies in cycles

IL1 DL1 UL2 Local acc. memory Main memory Main memory

first chunk access inter chunk access

Latency 1 1 4 4 30 4in cycles
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Table 3. Configuration of the caches

Caches Associativity Size # of blocks Block size
IL1 Direct mapped 4 Kb 128 32 bytes
DL1 Direct mapped 4 Kb 128 32 bytes
UL2 4-way 8 Kb 256 32 bytes

3.4 Simulation Parameters

This subsection defines the constant and variable parameters and the corresponding values used in the simulation
framework. Sim-Panalyzer defines the processor parameters and the configuration of the caches. For this study
the processor speed was set at 233 MHz. The configuration for the level 1 instruction and data cache and the
unified secondary cache is presented in Table 3. Table 2 shows the different latencies for the caches and the local
accelerator memories. All other parameters used by the Sim-Panalyzer were set to their default values. The used
input data for all systems consisted of four compressed 320x240 pixel video streams, that had 45 frames each
and a nominal speed of 15 fps. For the full-software implementation RTEMS uses time slices of 50 ms, which
implies 20 task switches per second. This configuration tries to model an average embedded system that could
be used in a multimedia handheld device.

4. RESULTS

For clarity all graphs presenting measurement results are given at the end of the paper in Appendix A. In the
abbreviations FS stands for ”full-software-based”, HA for ”hardware accelerated”, PH for ”polling, hardware
accelerated” and SH for ”scheduler, hardware-accelerated”. Figures 5 to 9 present the cost differences for
initializing the MPEG-4 video decoder with the full-software and hardware accelerated decoding systems. As
the two hardware-accelerated decoding systems share the same piece of code for initializing the decoder, the
initialization costs are common for both systems.

Figure 5(a) presents the execution time in clock cycles and Figure 5(b) presents the power dissipated by the
microarchitecture for initializing the full-software and the hardware accelerated decoding systems. The better
results for the hardware accelerated decoding systems presented in these two graphs can be explained by the
task switching overhead in the multi-tasking environment for the full-software system. The numbers in Figure 7
can also be explained by the task switching overhead.However, Figure 8(b) presents an increase of misses in the
level one data cache for the hardware accelerated decoding systems, which according to figures 9(a) and 9(b) led
to an increase of hits in the unified level 2 cache. As shown on Figure 6, this affect the power dissipated by the
unified level 2 cache. These variations in cache activity are explained by the modifications done to the XViD
codec, to make it suitable for hardware acceleration. As stated before, the full-software implementation uses the
original XViD.

Figures 10 to 14 present the average costs for decoding one frame with the full-software and the two hardware
accelerated decoding systems. For each measurement the average costs for decoding one frame is obtained by
applying the following formula:

Average cost per frame =
Total cost - Initialization cost

Total number of decoded frames
(1)

Figure 10(a) shows the average speed of execution for decoding one frame on each system. The system
using the hardware accelerator and the scheduler is more than twice faster than the polling based system and
about 40% faster than the full-software system. Thus, if we take an average power dissipation of 550 mW for a
strongARM SA-1100 processor,13 the maximum average energy budget for all accelerators must stay below 220
mW, if we want to get the scheduler based system to have a better energy efficiency than the full-software system.
On the other hand, figures 10 and 11 clearly show the inefficiency of the polling based system compared to the
two others. As the graphs in figures 13 and 14 show, this inefficiency in execution time and power dissipation is
mainly due to a huge data access increase in the polling based system. However, it must be pointed out that the
software-based polling solution used here is clearly very inefficient and could be implemented in a much more
efficient way by using some kind of hardware support. Finally, with the used simulation parameters, we can

SPIE-IS&T Vol. 6821  68210G-6



see that only the scheduler-based system is able to decode the four video streams in real time at 15 frames per
second.

5. CONCLUSION

We have presented a comparison between three different multi-stream MPEG-4 video decoding systems. The
comparison was made based on measurements of execution time, power dissipation and cache behaviours. The
compared systems consisted of one fully software-based and two hardware accelerated solutions. One of the
hardware-accelerated solutions used polling to do synchronization between processing elements, whereas the
other one used a new scheduling-based synchronization approach. The measurement results showed that the
hardware accelerated, scheduling-based solution provided the best energy efficiency of these three, if the hardware
accelerators do not consume too much power.
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Figure 7. Instruction level 1 cache hits and misses during initialization stage.
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Figure 9. Unified level 2 cache hits and misses during initialization stage.

(a) Execution time (b) Microarchitecture power dissipa-
tion

Figure 10. Execution time and microarchitecture power dissipation on average for decoding one frame.

Figure 11. Power dissipation in level 1 and 2 caches on average for decoding one frame.
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Abstract

The current trend in handheld devices is to provide users
with various embedded multimedia applications. Architec-
ture developers have to use dedicated hardware accelera-
tors to meet the timing requirements of these new appli-
cations. For physical and economical reasons the use of
dedicated monolithic hardware accelerators is impractical.
Instead, because the multimedia applications share com-
mon functionalities, monolithic hardware accelerators can
be split into smaller accelerators to remove redundancy and
save on silicon area. Unfortunately, lowering the granular-
ity of accelerators increases synchronization calls between
the main processor and the accelerators.

This paper presents a methodology for analyzing the im-
pact of short latency hardware accelerators on a typical em-
bedded system. We show that hardware accelerator granu-
larity has a direct effect on system performance in terms of
cache misses, execution time and thus energy consumption.

1. Introduction

Handheld devices integrate more and more functionality,
and providing more multimedia applications is becoming a
de facto requirement. Solutions are therefore needed for
accelerating these computationally intensive applications in
order to fulfill the requirements. The main acceleration ap-
proaches can be classified into two categories [8]:

1. A short portion of code is accelerated by extending the
processor instruction set with a corresponding instruc-
tion. In this case the new instruction has a typical ex-
ecution latency from 1 to 4 cycles, thus limiting the
size of the accelerated software. Developing longer
instruction would make the pipeline execution flow in-
efficient.

2. A full application functionality is accelerated with a
monolithic hardware accelerator used as peripheral de-
vice. The hardware accelerator is then synchronized
with the application by the means of interrupts. In
this case the hardware accelerator has a typical exe-
cution latency from several thousand cycles up to sev-
eral hundreds of thousands of cycles. However dedi-
cated monolithic hardware accelerators are onerous to
achieve due to physical and economical constraints.

The use of fine grained hardware accelerators has the ad-
vantage of saving silicon area by allowing collaborative use
of common accelerated functionalities among several ap-
plications, thus cutting down implementation redundancy
over several accelerators. For example, applications using
reconfigurable media coding (RMC) [3] [2], where arbitrary
combinations of algorithms may be assembled without pre-
defined standardization, could easily take advantage of col-
laborative use of common accelerated functionalities. Also
one could accelerate the time consuming DCT function in
a MPEG4 video decoder and share the created accelerator
with a JPEG decoder application. In such a case an access
management system or dedicated scheduler is needed in or-
der to avoid blocking state when two tasks would request
the use of an accelerator at the same time. The study of
such access management system or dedicated scheduler is
however beyond the scope of this paper. This would restrict
our study to a specific set of applications while we are here
exclusively interested in analyzing the impact of short la-
tency hardware accelerators on a typical embedded system.

Splitting a monolithic hardware accelerator into several
fine grained hardware accelerators can also in some cases
permit a pipelined execution of the accelerators. Never-
theless, it transfers control complexity to the software run-
ning on the processor and as a consequence increases the
synchronization frequency between the accelerators and the
processor. Synchronization between an accelerator and the
processor is needed to inform the processor about execution



Figure 1. Execution sequence for accelerator
synchronization [9]

termination of the accelerator. As a result, the use of short
latency hardware accelerators tends to amplify the interface
cost used for synchronization between the processor and the
hardware accelerators.

A hardware accelerator is typically used as a peripheral
device and synchronized with the OS running on the pro-
cessor with an interrupt [9]. Figure 1 shows the sequence of
operations needed in a multitasking environment when an
interrupt instructs the OS about the termination of an accel-
erator task. Task 9 previously called a hardware accelerator.
After termination of the accelerator execution an interrupt is
triggered by the accelerator which will wake up the calling
task 9 in order to fetch the computed results.

In a single tasking environment this extra synchroniza-
tion cost is limited to the execution of the interrupt mecha-
nism and handler as no scheduler is needed. But in a mul-
titasking environment the extrinsic (intra-task) cache be-
havior will be affected by the synchronization mechanism.
Each time an accelerator is called the content of the cache
is changed by the new scheduled task running during the
accelerator execution. This will result in a performance lost
called the cache refill penalty [7] [6] each time an acceler-
ator is called and an interrupt is triggered. The cache refill
penalty is due to an increase of cache misses each time a
context switch is performed. It introduces an increase in ex-
ecution cycles and energy consumption since a cache miss
leads to more bus and main memory activity. The cache
refill penalty could be reduced by using various cache par-
titioning approaches where the cache is logically divided
into multiple partitions and each partition is exclusively ac-
cessed by a single task [12] [5]. However such partition-
ing techniques are relevant only in the case the number of
tasks is fixed and completely defined for the whole system
life time. In the case of reconfigurable media coding ap-

plications, where arbitrary combinations of algorithms may
be used, cache partitioning approaches would require one
cache partition for each algorithm combination. This would
request an unreasonable total cache size.

Moreover, since the pace of instruction execution speeds
up much faster than main memory access time, the cache
refill penalty has increased and will in the future continue
to increase along with the difference between processor and
memory speed.

The major contribution of this paper is the establishment
of a simulation framework showing the overall cost due to
interrupts used for synchronization between the hardware
accelerators and the processor on a typical embedded sys-
tem. This overall cost is composed by (a) a direct cost due
to the use of hardware accelerators as peripheral devices and
(b) indirect cost due to the cache refill penalty.

The methodology presented in this paper can be re-used
with other platform configuration for evaluating the granu-
larity range of new hardware accelerators which will pro-
vide a good trade off between implementation redundancy
and synchronization cost.

The rest of this paper is organized as follow: In Section
2 we present the simulation framework established for this
study. Section 3 gives the simulation parameters used to run
the simulation framework, section 4 evaluates our results
and section 5 concludes the paper.

2. Simulation framework

The simulation framework presented in this section mod-
els a typical handheld device featuring basic multimedia ap-
plications. It includes a hardware platform, an operating
system and a set of applications and hardware accelerators.

The Sim-Panalyzer [10] processor simulator is used for
this study. Sim-Panalyzer is based on the SimpleScalar [1]
processor simulator and performs cycle accurate simulation
of a strongARM SA-1100 processor. It computes at every
simulated cycle the energy consumption of each module
constituting the ARM core (clock, alu, cache, etc.). Such
processor simulator permits the execution of an operating
system ported on ARM architecture.

As RTEMS 4.6.2 has been ported onto SimpleScalar
by Jack Whitham [11], RTEMS was chosen as the real-
time operating system for this study. This port includes a
SimpleScalar extension for supporting an interrupt based
programmable timer which is needed by RTEMS. RTEMS
is a free open source real-time operating system designed
for embedded systems and supporting a variety of applica-
tion programming interfaces (APIs) and interface standards.
This real time operating system allows us to execute a set of
applications as independent tasks in a pre-emptive multi-
tasking environment, a prerequisite for our simulation.



Table 1. Selected functions to be accelerated
Application Chosen functions Nb of calls
GSM coder APCM quantization() 532

GSM decoder GSM RPE Decoding() 532
JPEG comp. forward DCT() 128

JPEG decomp. h2v2 fancy upsample() 512

A set of 4 applications are chosen from the MiBench
benchmark suite [4]. These applications are present on typ-
ical handheld devices: a GSM audio coder, a GSM audio
decoder, a JPEG compressor and a JPEG decompressor. For
each application an execution time profiling was carried out
in order to identify the most time consuming functions. Out
of this profiling some functions were selected to be exe-
cuted on dedicated hardware accelerators. Table 1 shows
the selected functions and the number of times the func-
tions are called. Each application is implemented as a task
running on the OS. An idle task with low priority is also
implemented and is executed in the case all other tasks are
waiting for their hardware accelerators to terminate.

The presented applications and hardware accelerators
define our reference environment. In addition to this ref-
erence environment a fifth application was implemented.
This last application will be called the exploration appli-
cation, and will be used to explore the impact of a short
latency hardware accelerator synchronized by interrupts on
the overall performance of the system. The exploration ap-
plication can be seen as an added task disturbing the refer-
ence environment.

Figure 2 represents the parameters influencing the ex-
ecution pattern of the exploration application in a single
task environment. Executed in the pre-emptive multitask-
ing environment of our simulation framework, the OS will
schedule other tasks to run during the suspended state of
the exploration application. The exploration application is
the task used for measuring the cost of short latency hard-
ware accelerators. One hardware accelerator with variable
latency is associated with the exploration application. Thus
the simulation framework requires two parameters: (a) the
length in cycles of execution performed before a call to the
hardware accelerator is done (see Figure 2) and (b) the la-
tency in cycles of its associated accelerator. When the accel-
erator execution terminates the exploration application will
be scheduled by the OS to run depending on its priority and
the priority of other tasks.

The complete simulation framework now consists of five
tasks and their respective hardware accelerators. Figure 3
shows the system architecture used for this study. The five
tasks running on the RTEMS operating system need to com-
municate with their corresponding hardware accelerators.
For each accelerator a new system call is assigned and Sim-
Panalyzer is modified to catch these five new system calls.

Figure 2. The exploration application in single
task environment

Figure 4 represents the sequence of executed operations
following a hardware accelerator call. These operations are
explained as the following:

1. Sim-Panalyzer reads the possible parameters from de-
fined registers and executes the hardware accelerator
job. Then it writes the possible results on defined reg-
isters.

2. Sim-Panalyzer sets the corresponding interrupt flag
valid in X cycles, X being the accelerator latency.

3. RTEMS suspends the calling task by changing its pri-
ority to a low level, making the task non-executable.

4. RTEMS schedules the remained non-suspended tasks
to run.

5. The interrupt handler will acknowledge the triggered
interrupt and call the OS to resume the corresponding
task by restoring its previous priority.

6. Sim-Panalyzer gets the interrupt acknowledgement
and clears the associated flags.

7. RTEMS schedules all non-suspended tasks to run.

It is important to note that the hardware accelerator jobs
are executed within the Sim-Panalyzer simulator, which
means that their executions are performed outside the sim-
ulated platform. The hardware accelerator execution costs,
including possible data transfer between the processor and
accelerators, are thus not taken into account in this study.
This omission does not affect the measurements because the
cost due to the use of interrupts and the indirect cache refill

Figure 3. System architecture



Figure 4. Sequence of operations

penalty cost are not affected by the internal accelerator ac-
tivities or read/write operations initiated by the accelerator.

3. Simulation parameters

The simulation parameters bind the simulation frame-
work within a defined execution window. This section de-
fines the constant and variable parameters and their corre-
sponding values used in the simulation framework.

3.1 Sim-Panalyzer

Sim-Panalyzer defines the processor parameters and the
configuration of the caches. For this study the processor
speed was set at 233 MHz. The configuration for the level
1 instruction cache, level 1 data cache and the unified level
2 cache is presented on table 2. Table 3 shows the different
latencies for each memory level. This configuration tries to
target an average embedded system performance that could
be used for a multimedia handheld device. The relatively
small level 1 and 2 caches compensate for the relatively
small footprint of the benchmark applications (see Appli-
cations and HW accelerators subsection). All other param-
eters used by Sim-Panalyzer were set to their default values.

3.2 RTEMS

RTEMS has a few parameters influencing the timing be-
havior of the executed tasks. For this study all tasks, except
the idle task, have their priority levels set to 10. The idle

Table 2. Caches configuration
Caches Associativity Size Nb blocks Block Size

il1 direct mapped 4 Kb 128 32 bytes
dl1 direct mapped 4 Kb 128 32 bytes
ul2 4-way 8 Kb 256 32 bytes

Table 3. Memory Latencies with a clock fre-
quency of 233Mhz

il1 dl1 ul2 main memory main memory
first chunk access inter chunk access

Latency 2 2 6 30 4in cycles

task has a priority of 20. Following a call to a hardware ac-
celerator the task priority level is changed to 250, making
the task un-executable by the RTEMS scheduler. The inter-
rupt handler will restore the task priority level to 10 when
the corresponding interrupt is triggered. The preemptive ex-
ecution is activated and the time slice is set to 5 ticks, one
tick representing one hundredth of a second. In absence of
hardware accelerator interrupt, the scheduler is then set to
run 20 times per second.

3.3 Applications and HW accelerators

The hardware accelerators used by the applications
defining the reference environment have fixed execution la-
tencies and table 4 shows their latency values in cycles. As
input data, the jpeg compression and decompression appli-
cation process a 512 by 512 pixels image, and the GSM
encoder and decoder process a 2 seconds 8-bit audio sig-
nal. The executable file containing the 5 applications and
the idle task consists of 370kB of instructions and 17kB of
data.

Table 4. Hardware accelerator latencies
Application Accelerator latency
GSM coder 2500 cycles

GSM decoder 2500 cycles
JPEG comp. 3000 cycles

JPEG decomp. 2500 cycles

The exploration application implements an empty loop
in ARM assembly code followed by a system call to its
hardware accelerator.

With such rudimentary implementation the exploration
application is used to look into the effect of hardware ac-
celerator granularity on the overall system running several
other applications. This implementation has a very small
instruction and data footprint in order to interfere as little
as possible with the cache behavior. At first only the im-
pact of having different hardware granularities is studied.
The hardware granularity is adjusted by dividing at the same
time the loop length and the accelerator latency by a mul-
tiple of 2. Splitting the hardware accelerator into 2 inde-
pendent smaller accelerators is thus simulated by dividing
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Figure 5. Influence of granularity on execution time

the exploration application loop length and its accelerator
latency by 2.

A second measurement series is performed with the ex-
ploration application having data accesses after the loop.
Data accesses are obtained by copying in an array of 200
integers the nth array value into the n-1 location. Adding
data accesses in the exploration application is done in order
to obtain a more realistic application behavior.

4. Results

We run the simulation framework with different granu-
larities for the hardware accelerators of the exploration ap-
plication. For each granularity the loop length of the explo-
ration application is set to the accelerator latency value. For
all measurements nine different granularities are used: from
the coarse-grained system having 10 calls to a 131072 cy-
cles hardware accelerator latency to the fine-grained system
calling 2560 times a hardware accelerator with a latency of
512 cycles. We express the granularity in term of cycles: a
granularity of 131072 represents a system having one hard-
ware accelerator with a latency of 131072 cycles and called
in our experiment 10 times. In the same way, a granularity
of 65536 represents a system with one hardware accelera-
tor having a latency of 65536 cycles and called 20 times.
In our experiment a granularity of 65536 is then equivalent
to a system with two hardware accelerators being called 10
times and both having a 32768 cycles latency, introducing a
split coefficient of 2.

As we can see from Figure 4, if the latency is too short
the accelerator will trigger an interrupt before the RTOS fin-
ished to suspend the calling task, which will result in dead-

locking the calling task. In our simulation framework the
fastest accelerator we are able to simulate is an accelerator
with a 512 cycles latency. This indicates the mechanism for
lowering a task priority in RTEMS (sequence 3 on Figure
4) takes less than 512 cycles.

All results presented in this section are relative measure-
ments using the values obtained for the coarse-grained sys-
tem as reference. In other words, all figures trace the rel-
ative evolution in percent of the measured elements com-
pared to the values obtained for the system having a granu-
larity of 131072. The figure legends indicate the results for
the second measurement series with the term 2nd.

Figure 5 presents for the two exploration applications
the evolutions of the number of executed instructions, taken
branches and total execution time in cycles for all the tasks
running on the system. For the two exploration applica-
tions the three measurements show an exponential increase
when the hardware granularity is reduced. For the explo-
ration application having data accesses the total execution
time increases by about 11% with the finest grained accel-
erator compared to the coarse-grained implementation. This
is about twice of the increase obtained by the rudimentary
exploration application. This difference can be explained by
an increase in data cache misses, being presented afterward,
due to the extra data accesses.

Figure 6 shows for the two exploration applications the
granularity influence on level 1 instruction cache. On Fig-
ure 6 il1.pdissipation represents the total energy dissipated
by the cache. The two exploration applications present sim-
ilar results concerning the number of cache misses, with
an increase of almost 25% when fine grained accelerators
are used. This is explained by the fact that the two ex-



Figure 6. Influence of granularity on level 1 instruction cache

ploration applications have little difference in term of in-
struction footprint. Indeed only very few instructions were
added in order to implement extra data accesses. However
the number of cache hits is bigger with the second explo-
ration application due to the added data accesses. Thus, as
the number of cache misses is equivalent for the two explo-
ration applications, the cache miss rate for the second explo-
ration application is increasing at a slower rate. The leakage
current is a static cost in a memory and its resulting energy
consumption is only dependent on the time the memory is
in use. This explains why the energy, il1.leakage, wasted
due to leakage current inside the cache is increasing at the
same rate than the increase of the total execution time. On
the other hand the energy consumption due to switching ac-
tivities in a memory is dependent on the number of occur-
ring read and write accesses. As a general comment, one
can say that decreasing the hardware granularity will have a
relatively large impact on the level 1 instruction cache miss
rate with a 25% increase for the finest grained accelerator
compared to the coarse-grained implementation.

The granularity influence on the level 1 data cache for
the two exploration applications is presented on Figure 7.
Adding data accesses to the exploration application results
in a roughly 30% cost increase compared to the rudimentary
exploration application implementation. As the number of
misses and hits increases in a similar proportion in the level
1 data caches, the value for the cache miss rate stays equal
for the two exploration applications. Figure 7 shows that for
the finest grained accelerator we obtain a 20% cache miss
and 10% energy consumption increase in the level 1 data
cache for the second exploration application. As a general
comment we observe that decreasing the hardware granu-

larity will primarily introduce an increase in level 1 data
misses, thus driving an increase of the cache energy con-
sumption.

Figure 8 shows for the two exploration applications the
influence of granularity on the unified level 2 cache. An in-
teresting observation is the drop of the unified level 2 cache
miss rate with the reduction of hardware granularity. The
miss rate decrease is due to a fast increase of the number of
cache hits while the number of cache misses stays almost
constant. For the two exploration applications, reducing the
hardware granularity increases significantly the number of
cache hits which raises the energy consumption because of
the increase in switching activity.

As a general comment we can say that decreasing the
hardware accelerator granularity on a typical embedded sys-
tem relying on interrupt mechanism for synchronization be-
tween the accelerators and the processor will slow down the
system execution time not only by increasing the number
of instructions to execute but also by increasing the level
one and two cache hits and misses. On the simulated sys-
tem, cost increases start to be seen from the granularity level
4096 which correspond to splitting the reference hardware
accelerator into 32 separate smaller accelerators.

4.1 Implication of the results

For the two exploration applications we also measured
the average time needed to perform the synchronization be-
tween the accelerators and the processor. For the simple
exploration applications each synchronization costs on av-
erage an extra 1375 cycles, with a standard deviation of 365
cycles, while for the second exploration application it costs
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on average an extra 3250 cycles with a standard deviation
of 315 cycles. The cost difference between the two explo-
ration applications is explained by the increase of the cache
refill penalty in the second exploration application.

If one extracts a discrete cosine transform out of a video
decoder implementation and use it as a hardware accelera-
tor decoding a QVGA (320x240 pixels) video at 25 frames
per second, the hardware accelerator will be called 45 000
times per second. Assuming on average a total cost of 3250
cycles per call, 145 Millions processing cycles per second
will be wasted due to the overhead introduced by the syn-
chronization mechanism between the processor and hard-
ware accelerator.

5. Conclusion

In this study we presented a methodology for analyzing
the impact of short latency hardware accelerators on a typ-
ical embedded system. The presented methodology can be
re-used with other platform configurations for evaluating
the granularity range of new hardware accelerators which
will provide a good trade off between implementation re-
dundancy and synchronization cost.

We demonstrated that when approaching the bottom line
imposed by the RTOS speed in the mechanism of suspend-
ing a task, decreasing the hardware accelerator granular-
ity will introduce relatively important extra costs in terms
of cache misses, execution time and energy consumption.
Therefore using a hardware accelerator can become ineffi-
cient if the accelerator latency is too short. This is due to an
increase of the number of instructions to execute and num-
ber of level one and two cache hits and misses. Reducing
the OS mechanism speed used in synchronization between
the accelerators and the processor will push down the min-
imum execution latency the accelerators can have, but will
also considerably increase the system execution time and
energy consumption. As a direct consequence, the addi-
tional cost due to the synchronization introduced by the fine
grained hardware accelerator will be in some case prepon-
derant on the gain obtained by the accelerated software.

If one needs to implement a frequently used hardware
accelerator that has a short latency, an original “interrupt
and context switch free” synchronization mechanism needs
to be used in order to provide an efficient solution.

6. Acknowledgement

We are thankful to professor Olli Silvén for his helpful
comments concerning this study.

References

[1] D. C. Burger and T. M. Austin. The simplescalar tool set,
version 2.0. Technical Report CS-TR-1997-1342, 1997.

[2] C. L. et al. Reconfigurable media coding: a new specification
model for multimedia coders. In Proceeding of the IEEE 2007
Workshop on Signal Processing Systems (SiPS), 2007.

[3] J. T.-K. et al. Reconfigurable media coding: Self-describing
multimedia bitstream. In Proceeding of the IEEE 2007 Work-
shop on Signal Processing Systems (SiPS), 2007.

[4] M. R. G. et al. Mibench: A free, commercially representative
embedded benchmark suite. In WWC ’01: Proceedings of the
Workload Characterization, 2001. WWC-4. 2001 IEEE Inter-
national Workshop on, pages 3–14, Washington, DC, USA,
2001. IEEE Computer Society.

[5] F. Mueller. Compiler support for software-based cache parti-
tioning. In LCTES ’95: Proceedings of the ACM SIGPLAN
1995 workshop on Languages, compilers & tools for real-time
systems, pages 125–133, New York, NY, USA, 1995. ACM.

[6] F. Sebek. The real cost of task pre-emptions — measur-
ing real-time-related cache performance with a hw/sw hybrid
technique. Technical report, Mälardalen Real-Time Research
Centre, Department of Computer Science and Engineering,
Mälardalen University, Sweden, Aug. 2002.

[7] F. Sebek and J. Gustafsson. Determining the worst case in-
struction cache miss-ratio. In Proceedings of Workshop On
Embedded System Codesign (ESCODES’02), San Jose, Cali-
fornia, USA, 24, 2002.
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Abstract-Managing the energy consumption of embedded 77777777777
systems has become a major problem with the increasing demand hwtce
for portable electronic devices. This paper propose a multi-bank
memory architecture as a solution to decrease the static energy Bak2 -
cost in memory. We set up the equations ruling the optimization ±ish,d .ff
problem for decreasing the memory static energy cost, analyze
the impact of different parameters on the energy cost and finally
present some case study results. alive+garbage

I. INTRODUCTION Time

In recent years we have seen an explosion of the market Fig. 1. MBMA behavior
for portable electronic devices such as PDAs, personal com-
municators and mobile phones. They have in common strong
constraints on energy consumption, and thus maximizing bat- of the different parameters on energy consumption and 3) the
tery life for such devices is crucial. performance analysis of such architecture in terms of static

Several studies [1] show that memory is becoming a pre- energy consumption and execution speed.
dominant energy consumption component in handheld devices. The paper is organized as follow: we briefly describe
As the static energy due to leakage currents is becoming the software allocation behavior and the general memory model
major element of memory energy consumption [2], a reduction for static energy consumption. We then present the static
of the static energy cost will have a significant impact on the energy consumption model for a MBMA and two reference
overall system energy consumption. In traditional systems one architectures. Then we setup the optimization problem for the
continuous memory region is generally used to store dynamic MBMA static energy cost and show some simulation results.
memory allocation and its size must to be sufficiently large We conclude with a discussion of related and future work.
to hold in any case all allocations. This required size is most
of the time oversized for the average allocation behavior of II. ALLOCATION BEHAVIOR
the application(s), leading to a waste of static energy in the Dynamic memory allocation is the assignment of memory
memory area used only during the worst cases. In order to block(s) to store specific data used during the runtime of an
cut down the cost associated to this 'most of the time' unused application. A dynamically allocated memory block remains in
memory area we propose a multi-bank memory architecture allocated state until it is explicitly deallocated or implicitly
(MBMA) as a solution to decrease the static energy cost deallocated by the means of a garbage collector (GC). Before
of the memory. Such architecture would have the ability a block is deallocated it can be in an intermediate state, called
to follow the application(s) memory need by adjusting the garbage, where the block content is no longer needed by the
number of memory bank switched on. Fig. 1 simply illustrates application.
the general behavior of such MBMA. In Fig. 1, which doesn't The software applications(s) is driving the allocation ta,
take into account the possible fragmentation in a bank, the garbage tg and deallocation td events occurring in the memory.
maximal energy savings would be proportional to the size of We define the variables free, alive and garbage as the total
the switched off memory area. The remain wasted static energy memory size of blocks in respectively free, alive and garbage
would be proportional to the size of Free Memory area. state. For each new event concerning b blocks of size S Table
The major contributions of this paper are: 1) the introduction I presents the variables updates triggered by the event.

Of a complete static energy costs model for a multi-bank When different size objects are dynamically allocated, a
memory architecture, 2) the establishment of the equations deallocated block might let an free and unuseable space for
governing optimization problem for decreasing the static en- the following allocations. In that case this space contributes to
ergy consumed by the memory and an analysis of the impact memory fragmentation which denotes a waste of the memory.

1-4244-0155-0/06/$20.00 ©2006 IEEE 4



TABLE I tA, tA-Pd tPd-A tA

EVENTS TRIGGERING VARIABLES UPDATES Active state

Event Variables updates tPd /
(occur simultaneously) Powered down

ta, free = free-b S state
alive = alive + b S 1 2 t3 t4 Time

tg alive = alive-b S
garbage = garbage + b S Fig. 2. Memory state transitions

td garbage = garbage-b S
free = free + b S

bit in a memory cell consisting of one capacitor and one
transistor. In addition to the transistor leakage currents the

There is commonly two types of fragmentation: internal and DRAM static energy consumption should also include the
external. Internal fragmentation refers to waste in the memory energy dissipated in order to refresh the cells. Assuming that
due to alignment and storage of additional information needed there is a - probability for a cell to hold 1, the energy needed
by the allocator such as bookkeeping. External fragmentation in order to refresh the memory cells will be proportional to
describes on the other hand a waste due to holes of free half memory size.
memory interspersed with live objects. As this study aims to A the static energy cost for a RAM or DRAM memory
analyze the external fragmentation in the context ofMBMA, in is proportional to its size, for a determined technology the
the remain of this paper the term fragmentation means external average static power dissipated by a memory can be modeled
fragmentation. by the following equation:

There is several ways to evaluate memory external frag- -
k

mentation. One can measure it as a percentage of the actual k Size (2)
memory usage or as a percentage of the amount of live where P represents the average static power dissipated by
objects. This late approach has been used by Johnstone and the memory, Size the size of the memory and k a constant
Wilson in [3]. However their four proposed ways to measure factor depending on the memory technology and hardware
fragmentation require knowledge about the past allocation implementation.
behavior which demand extra storage place if the system has We adopt a two-state memory model consisting of one
to manage by itself on the pertinence to launch a memory active and one powered down state. In active state the memory
compaction. In the context of MBMA we propose to compute can be accessed for read and write operation and dissipates
the instantaneous fragmentation for each bank as: an average static power of P = k * Size. In powered down

state data retention is not required and the memory does not
largest free area consume any energy.
total free area Fig. 2 represents the memory state transitions and define

With this evaluation a bank containing all its free memory tA,Pd and tPd,A respectively the time needed to switch from
in one continuous area has a fragmentation of 0. If the largest state active into powered down and conversely. From Fig. 2 we
free area tends to be relatively small compare to the total free assume that the initial and last state of the memory is powered

area the b fdown and the memory has been in active state N times. Wearea the bank fragmentation will approach 1. Additionaly a
fully allocated bank is considered to have fragmentation of 0. can then define TA, TPd, TA,Pd and TPd,A as:
This fragmentation evaluation method has several advantages: N N
(a) it returns a value relative to the largest free block available, TA E tAi TPd E tPdi
(b) the returned value is bounded between 0 and 1 and (c) it i=o i=O
compute the total free memory available in the bank. These TA,Pd = N tAiPd TPdiA = N -

tPdiA
advantages can be used to precisely evaluate the state of where TA represents the total time during which the memory
each bank in term of fragmentation and potential memory was in active state, Tpd the total time during which the mem-
availability for future allocations. ory was in powered down state, TA,Pd the total time during

which the memory was in transition phase from active state
III*MEMORY MODEL into powered down state, and TPd,A the total time during

There are two main families of RAM technology: Static which the memory was in transition phase from powered down
Ram (SRAM) and Dynamic RAM (DRAM). SRAM's store state into active state.
each bit in a memory cell that are basically flip flops build
from six CMOS transistors. The static dissipation of SRAM's IV. MBMA MODEL FOR STATIC ENERGY COST
is due to the leakage current of each memory cell. During The energy cost model for a MBMA consisting of B
the idle phase the SRAM cell leakage current for a given banks has the following parameters: the average static power
threshold voltage and temperature will be constant. Thus the dissipated by the ith bank Psi, the total time during which
static energy consumed by an SRAM during idle time is the jth bank was powered on in active state TAi, the average
proportional to its number of cells [4]. DRAM's stores each static power dissipated by the jth bank in transition phase
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from active state into powered down state P(A,Pd)1 and System stateAt
from powered down state into active state P(Pd-A)i, the total
time during which the ith bank was respectively in transition New bank needed Timefor the newpsilveb
phase from active into powered down state T(A,Pd)i and vice (nk )" Powe (town Traiisiti 11,, Active
versa T(A,Pd)i. The static energy cost model for a MBMA 'n td Tit~t.,ffat t.adyTimecomposed of B banks is then defined by:

B Fig. 3. Waiting state

EStotal ZE[PSi * TA) + (P(A,Pd)i . T(A--Pd)i)
i=1

+(P(PdA)i * T(Pd,A)] (3) During the system life the MBMA can be in two different

During transition phasestheinstantanousdissipatedpo
states waiting state and working state. A waiting state, as

During~~~~~~~~~~~~~~~~1trniinpaeh ntatnosdsiae oe illustrated on Fig. 3, occurs when the system needs to allocate
will most likely not be constant. In order to simplify alnewtobje on the memory butal switchedstobankcare

the xpresionwe ue th aveage owerP(A,d)ia new obj'ect on the memory but all switched on banks are
the exPressAionswea us the averagtive poweral expresi full. In that case, if the system was not able to anticipate this
an inedf the r ti lit expressions allocation need beforehand, the system will have to wait for a
ft2 PApd(t) 3dt and ff4 Ppd.A(t) dt. This simplification time At until a new bank has been switched on. The waiting
doesn't change the correctness of EStotal definition if we cost is expressed by
consider that tA,Pd, tPd,A, PA,pd(t) and Ppd,A(t) are n
equal for each active to powered down and powered down to Ewait = V[BankSize. k /At] + Pwait 'At (8)
active transitions. With BankSizei standing for the ithbank
size we have then:

where Ewait represents the energy cost wasted during the

B waiting state and Pwait the average power dissipated during
E.total1:[(k BankSizei TAJ the waiting time by the (n + l)th bank which is in transitionEStotai = ^ ,[(k BankSizei TAi) phase. At is bounded by value 0 and (tA-Pd + tPd-A) if

we assume that the transition phase from active into powered
+(P(A,Pd)i *TA,Pd)i) down state can't be interrupted before it ends.
+(P(Pd,A)i T(Pd,A)] (4) During the working state the MBMA has enough free

available memory space for new allocation, and the need forFor each instant t, BankSizei can be further refined as: new bank doesn't exist. With I and m representing respectively
BankSizei = alive(t)i + [(free(t)i + garbage(t)j)] (5) the numbers of active to powered down and powered down to

active transitions occurred during TA., PTrans. (t) the function
During power down states alive(t), free(t) and garbage(t) describing the instantaneous power during the period from last

are considered to be null. During the transition t(Pd,A)i, transition request to the new transition request time, each bank
free(t)i = BankSizei and alive(t)i = garbage(t)i = 0. is consuming during active states:
During transition t(A,pd)i values for live(t)j, dead(t)i and
free(t)i are considered constant and equal to their respective
last active state value. Thus BankSizei TA, in (4) can also Eworkingi k * BankSize * TA,
be expressed by: +1l (P(APd) * t(APd))

TAi ~~~~~~~~+m(P(Pd,A) t(Pd,A))

BankSiz:ei TA, allve(t)i dt +tRpd rrs t)*d g

+ f free(t)i dt For a B banks system where W waiting states occur we

TAi
can express EStotal as:

+ f garbage(t)i dt W B
JO EStotal =i Ewaitk + S [Eworkingig (10)

Alivei + Freei + Garbagei (6) k=1 i=1

And EStotal from (4) can be re-expressed as: In order to simplify the model one could assume that the
average power dissipated by banks during transition phases

B from active into powered down state, and analogously for
Estotai = 5[(k *(Alivei + Frees + Garbagei)) powered-down into active state, is the same for all such tran-

i~~~~~~1 ~~~~sitions. In addition a conservative simplification would assign

+(P(A i Pd) T(A Pd) ) to P(A pd), P(pd )A) and Pwait the Ps value representing±(P~Pd TAP> the upper bound for the functions P(A~Pd)(t)n P(Pd~A) (t)

+(P(Pd~A)i T(PdA)i)1 (7) and Pwait(t). In the same way At can be simplified by its
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maximal value (tA-pd + tPd-A). From (4) Estotal can then
be re-expressed as: ftAPd

B Etranlsi k 1 ./(alive(t) + free(t) + garbage(t)) dt
EStotal Z[(k BarnkSizei. (TA1 +T(A,Pd)i +T(Pd,A))1 tPdO A

i=l ~ ±T(Pd-~)+k m .jalive(t)+free(t)+garbage(t)) dt(17)
B F(TAi +T(A-Pd)i +T(Pd-A)i )

k BankSizei dt] (11) If during the system life time the MBMA will be J times
in waiting state the total extra costs Eextra compare to the

Based on these assumption we can simplify (8) and (9): idealistic architecture reference can be expressed by
n+1 tActi J B

Ewait=k E[ /(alive(t)i + (free(t) i +garbage(t)i) dt] Eextra = [Em it] + Z [Ewastedi + Etransij] (18)
i-l JtLatT~anls m=l i=l

TA. where EWait represents the costs due to the kthwaiting state,
Eworkingi k f(alive(t)i + free(t)i + garbage(t)i) dt Ewastedi and Etransi respectively the wasted energy and

Jo transition energy consumed in j bank during all active states.
ptA Pd Thus :

+k ] (alive(t)i+free(t)i+garbage(t)i).dt B

rtPdA Stt =Eextra + k * [/ aIveti*d] (9

+k m /(alive(t)i +free(t)i +garbage(t)i) EStota F alive(ti dt] (19)

From now on, if not explicitly mentioned we will always refer The second interesting architecture reference to compare with
to this simplified model. is the architecture consisting of only one region memory

to hold all dynamic allocations. This traditional architecture,
V. REFERENCE ARCHITECTURES which can also be seen has an one bank architecture, has the

The ideal MBMA would be composed of an infinity of 1 bit advantage to completely eliminate the waiting cost Ewait and
size banks with the ability to be instantaneously switch on and Etrans but to the detriment of Ewasted. Indeed in that case the
off. Such ideal MBMA would permanently be able to adjust memory size needs also to match with the worst case allocation
its memory size (i.e. the total size of the all banks that are scenario and thus most likely drives a much greater free(t)
powered on) to the exact system needs and thus reaches the function compare to the one achievable with a MBMA.
obtainable minimum static energy consumption due to leakage VI. OPTIMIZATION PROBLEM
current without any additional time penalty. This ideal system
is reducing the functions free(t)i and garbage(t)i as well as In order to minimize EStotal we need to determine the
the value of t(A,Pd)i and t(Pd,A)i to the constant zero. The MBMA configuration parameters influencing it. By MBMA
ideal model can be modeled by the following equations: configuration parameters we mean the size of the banks, a

possible implementation of allocations prediction or bank need
free(t) = garbage(t) 0O (12) prediction feature(s), and allocation policies. The optimization

00TAi ( ) ] (13 goal is to reduce to the maximum the total static energy
EStotal =k [ alive(t)i dt] (13) EStotal consumed by a MBMA for a specific application

or a specific set of applications. From (19) we can derive
Ewait 0 (14) EActive which represents the active energy dissipated by the

rTAi
Eworkingi k / alive(t)i dt (15) MBMA, in other words the static energy that is spent only

Jo on memory blocks holding alive objects during active states.
This theoretically best solution to reduce static energy cost Thus EActive corresponds to the minimum energy that any
can't be obtained for evident physical constraints, but we will memory architecture will have to dissipate.
use it as a reference. B TA
Compare to this idealistic architecture, a 'real life' MBMA EActive =kk [ alive(t)i) dt] (20)

has three additional costs: the sum of Ewait for all waiting Jo
states, Ewasted, representing the static energy consumed by Therefore optimizing EStotal comes to the problem of
Free and Garbage memory area during all system working minimizin FExtra value. FExtra can be decomposed into
states for the ith bank and Etrarns, representing the static the sum of three terms : EextraA FextraB and Fetrac.
energyv onsumed by state transition during working states for Eextrah expresses the energy wasted during waiting states,
the jth bank. For each active state Ewasted~ and Etrans~ can FetAB ersnsteeeg atdi odn abg

be exresseusigthesimplfiedmodelby :objects and free memory space switched on and Fextrac
F1Ai ~~~~~~~~~denotesthe energy wasted during transition phases (from bank

Ewsed ] (re()~+gabgetJ)dO(6 state powered-on into powered-off and vice versa) while the
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system was in a working state. Fig. 4 illustrates the origin of a) Bank size: The bank size used for a MBMA has
Eextrac cost components. an impact on all three optimization subproblems. Increasing

the banks size will increase the function free(t) and thus
obviously will increase EextraB. For EextraA and EextracEextraA S [Ewait] the increase of free(t) has to be balanced by the fact that

rn-i bigger banks will most likely reduce the number of waiting
j (n±1) ftActie and transition states thus will reduce n in EextraA, I and m in
5 [k. 5 []BaJnkSizei dt]] (21) Eextrac. The ratio between the energy increase due to free(t)
m=1 i=1 tLastTransm and the energy decrease due to n, I and m will depend on the

distribution of the allocation, garbage and deallocation events.
B b) Deallocation scheme or garbage collector: Frequent

EextraB = E[Ewastedi] garbage collections (GC) or explicit deallocation will decrease
i= the function garbage(t). Moreover if an optimum deallocation
B rTAi scheme is able to deallocate objects right after their last use, it

= [k (free(t)i + garbage(t)i) dt] would be theoretically possible to reduce function garbage(t)
i=1 to the constant null. But a possible decrease in garbage(t)

generates an identical increase of free(t). In this way a better
B deallocation scheme reduces functions EextraA and Eextrac

Fextrac [Etrasi as it reduces the number of waiting and transition states. As the
=l1 possible garbage(t) decrease will be identical to the free(t)
B tA-Pd increase it will not affect FextraB value. In addition we also

=5[k I ](alive(t)+free(t)+garbage(t)) dt have to remember that frequent GC increases the application
0lo running time and thus tends to increase FextraB with the
ftPd-A increase of TA,.

+k r ](alive(t)+free(t)+garbage(t))cdt] c) Allocation or bank need prediction: Allocation pre-
diction or bank need prediction feature(s) intents to switch

In (21) all variables labeled m refer to their respective value in on banks beforehand in order to avoid waiting states. As a
mth waiting state. EextraA is thus dependent on the number of result it decreases the number of waiting states and intents
waiting states that occurred during that execution. Determining to decrease EextraA. But at the same time it also drives an
the number of waiting states is not a trivial problem as it will increase of free(t) and thus an increase of FextraB and also
depend on the configuration of the MBMA and the distribution possibly Fextrac. The ratio between the energy increase due to
of the allocation, garbage and deallocation events. The weight free(t) evolution and the energy decrease due to the number
of EextraA inside EStotal is also dependent on the time needed of waiting states decrease depends on how long beforehand
for a bank to be switched from powered off to powered on banks are switched on. The extreme case would be to switch
state. on all banks beforehand, eliminating thus EextraA, but then
As for EextraA, Eextrac weight inside EStotal is driven maximizing free(t).

by the memory technology and more particularly by the time d) Allocation policies: Our strong feeling concerning the
needed for a bank to be switched between powered off and allocation policies is that if the policies group in a same
powered on states. The more time is needed for the bank to bank objects with a similar life time, it decreases the number
be switched, the more predominant Fextrac will be inside of waiting and transition states. Regrouping similar life time
EStotal objects into particular banks is expected to increase the overall

number of banks switched on and thus limiting the need
VII. OPTIMIZATION PARAMETERS for new banks. As a consequence such policy will reduce

the number of waiting and transition states while free(t)
In this section we go through parameters influencing the will increase. FextraB will then surely increase as EextraA

optimization problem introduced in above section. and Fextrac evolution will depend on the distribution of the
allocation, garbage and deallocation events.

e) Memory fragmentation: represents free memory areas
Systeiii state i WollsiXlg that might be unuseable for future dynamic allocations due to

their relative small sizes. If these free memory areas distributed
Firstallocationintothe over each bank turn out to be unuseable for future allocations,
s new activebanka

Bank~ ~sttoee on Imto u ri.Io r1 they will waste during all the system runtime a static energy
^> ^ F ~~~~Time proportionally to their sizes. Hence fragmentation plays a roletPd_A 1A_Pd in the MBMA static energy cost as higher fragmentation lead

Fig. 4. Fextra>c components to a potential increase of function free(t)i in Fextrab and J
in Fextraa
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VIII. MBMA BEHAVIOR SIMULATION 225

The MBMA behavior was simulate on 2 different applica-
1 75tions: a) Tobi-Tris a tetris like game written in Java, b) Cfrac X

[5] written in C. Cfrac is a allocation intensive application 7 125
factoring large integers using the continued fraction method.
The application input was 6 successive integers, from 21 to 37 0 75
digits, fed to the application with a 10 to 35 seconds interval. 50

For the Tobi-Tris Java application we used the SUN J2ME 2

Wireless Toolkit [6] and its MIDP device emulator to capture 5 0 15 20 2 4 Ee trac
the allocation, deallocations and garbage events. The Java Bank size in Kb DOne bankcost
application is run twice, a first run is done on the emula-
tor compiled with default options and used to retrieve the Fig. 5. Tobi-Tris - Bank size and and energy costs

allocation and deallocation events. A second run is done
with the emulator compiled with options tuned to launch a
garbadge collection (GC) at each bytecode execution. From one bank. Numerical value for constant k is deducted from the
this second run we are able to retrieve the garbage events. characteristics of the low power ,uPD431000A SRAM [7].
The captured events deallocation reflect the GC actions of tPd,A and tA,Pd are over evaluated at 10 is, twice the
the emulator's Java Virtual Machine (JVM) in the context of pPD431000A operation recovery time from standby mode.
one memory region. We acknowledge that appropriate policies
ruling the GC launch might be different for a MBMA than Fig. 5 shows the results for the Tobi-Tris game where all
for a one memory region. However we want to constrain values are normalized to EActive, 100 representing EActive
the optimization problem and mainly look first at bank size value. On Fig. 5 clearly appears the tradeoff between EeXtraA
influence. and FextraB to get the optimum bank size. For this application

To analyze the energy behavior of an MBMA for Cfrac small bank size is cost unefficient due to EextraA and big
application we implemented a customized memory allocator, bank size is cost unefficient due to FextraB A tradeoff has
It features a first fit algorithm with one address-ordered free to be found in between and Fig. 5 shows that the most
list per bank. When an object is allocated it scans all free cost efficient bank size is 15Kb. For Tobi-Tris application,
lists until it finds the first free space that can hold the new with a 15Kb bank size the MBMA is using 5 banks
object. If no free space is available, a new bank is switched and consumes about 175% of EActive, while a 75Kb single
on. When a object is deallocated its corresponding memory bank architecture will consume about twice the EActive value.
block is inserted into the respective bank free list. If there is
adjacent free blocks they are coalesced in one free block. If Table IV shows statistics on Cfrac execution for 2Kb
after a deallocation event one bank is left over empty the bank banks. Tables II and III resent the savin on static
is switched off. The allocator is able to trace all allocations, energy consumption for 3 bank sizes. With this application
deallocations and bank state transitions in order to compute we note that EextraA and Fextrac are relatively small
afterward the energy cost of the MBMA. compare to FextraB. This is due to the relatively small

For all MBMA behavior simulations, no allocation nor bank period spend in switching on and off time compare to the
need prediction is used. The biggest allocated object fixes application run time. Each time a bank was switched on
the smallest possible bank size, and the maximum number the fragmentation was compute for all already powered on
of powered on banks is used as reference for computing banks. This gave us an average fragmentation of 0,27 with
EoneBank, the static energy cost if the MBMA would had only a standard deviation of 0,31. But it is important to also

say that each time a new banks is switched on, on average
TABLE II the already switched on banks occupation rate is 99%.

CFRAC - BANK SIZE AND ENERGY COSTS IN JOULE This clearly indicates that for this example fragmentation
Bank Size (Kb)EEActive IextraA FExtrIB Eextr is causing insignificant degradation on the MBMA costs.Bank Size (Kb) IEActive IEextralA IEextraB IEextrac

2 36.03 1.61e-4 32.08 1.35e-6 % The average occupation rate denotes the ratio over the
4 36.03 7.37e-5 38.35 1.03e-6 % time between the bank size and the allocated objects size
8 36.03 3.40e-5 42.38 6.87e-7 % in the bank. Figures from Table V indicates that banks

occupation rate have a bigger impact than fragmentation.
TABLE III On average with a 2kb bank size only 52,91% of available

CFRAC - BANK SIZE AND ENERGY COSTS COMPARISON IN JOULE memory is allocated. This is mainly due to left alone objects
Bank Size (Kb) ITotal FoneBank Saving spread over several banks, preventing banks to beswitched off.

2 168,11 185,88 20%
4 174.38 185,88 13 %
8 |78.41 |85,88 |8.5 % Those results show that a substantial saving can be achieve

on static memory energy consumption through MBMA with-
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out any application optimization nor customized allocation
TABLE V

CFRAC - STATISTICS ON THE BANKS OCCUPATION RATE FOR 2KB BANK
policies. However it also indicates that further savings could SIZE
be obtained, mainly on FextraB. Average occupation rate: 52,91 %

Maximal average occupation rate: 81,69 % (third bank)
IX. RELATED WORK Minimal average occupation rate: 0,15 % (94th bank)

Several researches have been done on data transformation Standard deviation: 23,73
or migration and memory access scheduling to exploit MBMA
[8][9][10]. In contrast to these, this paper doesn't explore
the possibilities to adapted the running application(s) on the for cache memory architecture. Moreover, we could also in-
system but on the contrary how to set up an optimum MBMA vestigate the possibility to compact the allocated object within
for a specific application. Nevertheless we believe that after all banks in order to increase the banks average occupation
the optimal memory architecture has been set further cost rate. This might be impossible to implement for conventional
reductions can be achieve through application optimization. L. programming languages, such as C, Pascal, Ada, etc., but
Benini et al. propose an algorithm for automatic scratch-pad would probably better fit with object oriented language like
RAMs partitioning from several application execution profiles Java. An other approach would be the use of region allocation
in [11]. In this work the scratch-pad RAMs doesn't have the mechanism based on objects life time. Furthermore, in the case
possibility to be switched off and on. K. Flautner et al. present of a multi applications platform, it is also worth exploring the
in [12] a method using dynamic voltage scaling (DVS) for solution of having several sets of different bank sizes.
putting cache lines in a low-power mode, called drowsy, where
data are preserved. In [12] only cache memories are addressed, REFERENCES
while our work addreses only static energy saving on the main [1] F Catthoor, E. de Greef, and S. Suytack, Custom Memory Manage-
memory.
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CFRAC - STATISTICS ON CFRAC EXECUTION FOR 2KB BANK SIZE

Total Number of Allocations: 59165
Total Number of Deallocations: 58596
Biggest allocated object in bytes: 1244
Maximum live objects size: 190041 bytes
162 times a bank has been switched on
71 times a bank has been switched off
Maximum numbers of powered on bank: 94
Z tA~Pd in mSec: 1620
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