
Turku Centre for Computer Science

TUCS Dissertations
No 158, March 2013

Tommi J. M. Lehtinen

Numbers and Languages

Numbers and Languages

Tommi J. M. Lehtinen

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in

Auditorium Cal4 on March 15, 2013, at 12 noon.

University of Turku
Department of Mathematics and Statistics

FI-20014 Turku
Finland

2013

Supervisors

Docent Alexander Okhotin
Department of Mathematics and Statistics
University of Turku
FI-20014 Turku
Finland

Reviewers

Professor Martin Kutrib
Institut für Informatik
Universität Gießen
Gießen
Germany

Professor Lila Kari
Department of Computer Science
University of Western Ontario
London, Ontario
Canada

Opponent

Docent Juha Kortelainen
Department of Information Processing Science
University of Oulu
Linnanmaa
FIN-90570 Oulu
Finland

ISBN 978-952-12-2849-0
ISSN 1239-1883

Acknowledgements

Alexander Okhotin for supervising my graduate studies and providing me
nice problems to think about.
Juhani Karhumäki for answering yes on my question whether there is a
possibility for me to continue my studies.
Lila Kari and Martin Kutrib for pre-examination of the thesis.
Anne Kivelä for checking the language of the thesis and other stuff.
Personnel of the department for making it a pleasant working environment.
My family for always being there for me and especially my parents for giving
me my life.
My friends for all the good times.

i

ii

Contents

Introduction 1

I Numbers 5

1 Numbers everywhere 7
1.1 Equations, algebra and topology 9
1.2 Natural numbers . 14
1.3 Sets of natural numbers . 15

2 The hardness of simple things 19
2.1 Equations over sets of natural numbers 19
2.2 The expressive power of simple systems 21
2.3 Limitations of simple systems 34

II Languages 41

3 Different types of languages 43
3.1 Formal languages . 45
3.2 Language equations . 47
3.3 Grammars and families of languages 50

4 Closure properties of language families 59
4.1 Gsm-mappings . 61
4.2 Boolean grammars and injective gsm-mappings 64
4.3 Boolean grammars and inverse gsm-mappings 68

5 Morphisms preserving language families 73
5.1 Codes . 74
5.2 The families DetCF and LL and bounded deciphering delay . 78
5.3 Non-codes preserving LL, DetCF and UnambCF 82

iii

iv

Introduction

This thesis presents theoretical results published during the graduate studies
of the author. It is divided in two parts: Numbers and Languages.

Although the first part is written in terms of numbers, the historical back-
ground is in formal language theory. Formal languages are sets of words,
where words are sequences of letters from some fixed alphabet. Language
equations are equations ϕ(X1, . . . Xm) = ψ(X1, . . . Xm), where Xi are vari-
ables over languages and ϕ and ψ are expressions containing variables, con-
stants and language-theoretic operations. A system of language equations

ϕ1(X1, . . . Xn) = ψ1(X1, . . . Xn)
...

ϕn(X1, . . . Xn) = ψn(X1, . . . Xn)

is a set of language equations. Language equations have been a part of formal
language theory since Seymour Ginsburg and H. Gordon Rice defined the
semantics for context-free grammars in 1962 [6] by the least solutions of
systems of language equations of the resolved form

X1 = ϕ1(X1, . . . Xn)
...

Xn = ϕn(X1, . . . Xn),

where the operations of concatenation and union are allowed. Furthermore,
Alexander Okhotin has introduced generalizations of the context-free gram-
mar, the so-called conjunctive and Boolean grammars, that have their se-
mantics defined through language equations using concatenation, union and
intersection in the case of conjunctive grammars and, in addition, comple-
mentation in the case of Boolean grammars.

It was proved in 1985 by Parikh et al. [33], that the problem of solv-
ability of systems of language equations with concatenation and Boolean
operations is undecidable. This undecidability result was made more specific
by Okhotin [27, 31, 29] in 2003, who proved that these systems are computa-
tionally complete and the problem of solution existence co-r.e.-complete. A

1

further completeness result was achieved in 2005, when Michal Kunc [18, 19]
proved that there exists a finite language L such that the greatest solution
of the commutation equation

XL = LX

is co-r.e.-complete. This suprising result answered the question by John Con-
way [3] from 1971, asking if the greatest solution is regular if L is. The proof
relies upon the non-commutativity of concatenation of languages. A recent
survey was written by Kunc and Okhotin [20], for a more thorough overview
on language equations.

In the first part of this thesis, computational universality of simple sys-
tems of equations over sets of natural numbers or, equivalently, of systems of
language equations over a unary alphabet is presented. It is the final step in
a quest for finding simpler systems of equations over the unary alphabet that
are computationally universal. That quest began after Artur Jeż answered
negatively to the question proposed by Okhotin, asking if conjunctive gram-
mars can generate non-regular unary languages. Jeż gave an example of a
grammar generating the language {a4n | n ∈ N} [12], showing that the con-
junctive grammars are more powerful than context-free grammars also in the
unary case. The technique used by Jeż was further developed by him and
Okhotin, who proved that systems of equations over unary alphabet using
operations of concatenation and union and finite constants are computation-
ally complete [13]. It is based on the representation of computation histories
of Turing machines as k-ary representations of natural numbers. They fur-
ther improved this result by showing that computational universality can be
achieved with systems using only concatenation and regular constants [14].
In this thesis, this development is taken to its conclusion. It is shown that
computational universality can be achieved by systems of language equations
over a unary alphabet

XK = L

XXM = XXN,

where K,L,M and N are unary regular languages.
This is done in Chapter 2, where the result is presented in terms of

natural numbers. Jeż and Okhotin also used this terminology, and considered
systems of equations over sets of natural numbers as the primary object
rather than systems over unary alphabet. This is quite natural, as the length
of unary words characterizes them and it is presented with a natural number.
In Section 2.2 it is proved that systems of equations over sets of numbers of
the form

X +A = B

X +X + C = X +X +D,

2

where A,B,C and D are eventually periodic constant sets of numbers and
the addition of sets is defined elementwise, are computationally universal.
This follows from the presentation of all recursive sets in an encoded form as
unique solutions of that kind of systems. This result was first presented in
DLT 2010 conference [24]. However, they cannot represent all recursive sets
as shown in Section 2.3, which is based on the article [25].

The second part of the thesis concerns languages, the results falling within
the sphere of closure properties of language families. In Chapter 4, it is proved
that the family of languages generated by Boolean grammars is closed under
injective and inverse gsm-mappings. The proof for this is just a general-
ization of the argument used by Ginburg and Ullian [8], who proved that
unambiguous context-free languages are closed under inverse gsm-mappings.
However, this is more of a tribute for the argument than an underration of
the result presented here. Closure properties of language families are among
the most important theoretical results in formal language theory, so this is a
crucial step in the development of the theory of Boolean languages. The proof
also applies for unambiguous Boolean languages and for the conjunctive lan-
guages and their unambiguous variant. It uses injective gsm-mappings, and
closure of the families mentioned under them is achieved on the side. The
chapter is based on the article [23].

The last chapter of the thesis takes another view on closure properties.
The question is not if a family is closed under a class of some operations,
but under which operations in the class. There is a beautiful correspondence
between codes that can be deciphered deterministically and context-free lan-
guages that can be recognized deterministically. The family of deterministic
context-free languages is closed under a code, an injective morphism, if and
only if it is a so-called code of bounded deciphering delay. This is, at least
after reading the proofs, not a suprising result, and the most suprising thing
about it is that it was not known before. This result was presented at DLT
2012 conference [26].

3

4

Part I

Numbers

5

Chapter 1

Numbers everywhere

Numbers are everywhere. If you look at your hands, you will probably see
two. There is one and there is the other one, so there are two. In sports
competitions, the results are expressed by numbers so that the winner is
labeled with one, followed by two, three, four, five, six, seven, eight, nine,
ten, eleven, twelve, thirteen, and so on. In stores, products are labeled with
numbers expressing their prices. Products also very often have numbers in
their names like Commodore 64, for example. Even songs have numbers in
them, like the song When I’m sixty-four by The Beatles. You see, there is
no escape from numbers. New examples of using numbers in different ways
could be given one after another to the point of exhaustion of both the reader
and the writer.

Numbers are very convenient to use. Imagine 64 elephants. They are
heavy. Then imagine another 64 elephants. Now you have 128 elephants.
That is a lot of elephants! But since they are expressed by numbers, they can
be imagined almost without effort. Now sell 23 of those 2·64 = 128 elephants.
You get an amount of money and still have 105 elephants left. In the real
world, dividing a group of 128 elephants in two groups, 23 elephants and
105 elephants, would require quite a lot of work. But there are no elephants
around, just the numbers. And it is fairly easy to say 128 = 23 + 105 or
128 − 23 = 105. Hence, a lot of things can be expressed in a nice and
convenient way with a little help from numbers.

Numbers also lie in the core of mathematics, as reasoning about natural
numbers is the starting point for anybody becoming familiar with the science.
They are taken for granted in the elementary school, because there is no
need to define them formally. They are just numbers and people become
familiar with them without even noticing it. If you are reading this, you
probably know the natural numbers up to some extent. If you wouldn’t, you
couldn’t have read this far. However, there is always something new to learn,
something more.

7

The set of natural numbers N = {0, 1, 2, 3, . . .} is the profound structure
of mathematics. Everything else, at least numberwise, is built on top of them.
Starting from the integers Z with negative numbers, continuing to rationals
Q with fractions and then to reals R, complex numbers C and beyond. At
a glance, the set of natural numbers seems simple and easy to understand.
However, they have been under a very active study for thousands of years,
and no ending to that quest of understanding different aspects of N is at
sight.

The study of natural numbers, known as number theory, has led to the
development of heavy theoretical machinery used in almost all other areas
of mathematics, and consequently, in other sciences using mathematics as
a tool. Natural numbers have been used in calculations as obvious or given
through the ages. Still, a precise logical definition for them was established
only as late as in the end of the 19th century. This was done by Giuseppe
Peano, who built upon the insights of preceding mathematicians such as
Richard Dedekind. The Peano axioms, as they are called, are essentially so-
called second-order sentences. The induction axiom, stating that a subset of
natural numbers including zero and the following number of every number
in it equals the whole set of natural numbers, needs to be expressed through
quantification over subsets. Any attempt to axiomatize natural numbers by
axioms of first-order is doomed to fail, as any set of first-order axioms has
so-called non-standard models besides the standard that is the familiar set
of natural numbers.

The existence of these non-standard models of natural numbers, or ac-
tually of any infinite logical structure expressed by first-order axioms, is a
consequence of the Löwenheim-Skolem theorem. The Löwenheim-Skolem the-
orem states that if a countable first-order theory has an infinite model, then
it has infinite models of cardinality of any infinite cardinal. The non-standard
models form the foundation of non-standard analysis, introduced by Abra-
ham Robinson around 1960. Non-standard analysis gives a firm ground to
the so-called infinitesimal numbers that already Leibniz, who provided some
of the foundations of analysis, used intuitively. Infinitesimal numbers have
also been used in computations here and there more or less rigorously.

Somewhat related to the impossibility of describing the natural number
by first-order sentences is Gödel’s incompleteness theorem, stating that any
finitely describable set of first-order axioms is incapable of having all true
first-order statements about natural numbers as logically derivable conse-
quences. This result by Kurt Gödel is one of the most significant results in
mathematics in the 1900s, or even in the history of mathematics overall. It
gave a death punch to David Hilbert’s program to prove everything, which
in a way is a drawback. On the other hand, it has the comforting conse-
quence that there will always be new mathematical results to prove. It also
gives insight on why some problems concerning the familiar and simple set

8

of natural numbers are so hard to solve.
Another example of the difficulty of questions related to natural num-

bers is Hilbert’s 10th problem presented in 1900. It is about the so-called
Diophantine equations, which are equations of the form

p(x1, . . . , xn) = q(x1, . . . , xn),

where p and q are polynomials with integer coefficients. One of the most
famous Diophantine equations is

an + bn = cn.

Fermat’s last theorem, proposed by Pierre Fermat in 1673 claiming he had
a proof too long to fit in the margin, states that the equation does not
have a solution where a, b, c > 0 are natural numbers and n is a natural
number larger than two. Fermat’s last theorem was escaping all efforts to
prove it right or wrong for centuries, finally proved to be true in 1995 by
Andrew Wiles. Hilbert’s 10th problem asked for an algorithm solving if a
given Diophantine equation has an integer solution. The problem is stated in
terms of integers, but it can be shown using Lagrange’s four-square theorem
that the problem can be phrased equivalently in terms of natural numbers as
well. The problem was answered by Yuri Matiyasevich in 1970, who proved
that there actually is no algorithm solving it. So the answer is that there is
no answer, and the problem is impossible to solve.

Similarly, this thesis also presents a problem in terms of natural numbers.
A problem easy to state, but impossible to solve. It is the problem of solving
a system of equations

X +A = B

X +X + C = X +X +D

where A,B,C,D ⊆ N are eventually periodic sets of natural numbers, X is
a variable with subsets of natural numbers as valuations, and the addition
of sets is defined elementwise. The hardness of the problem is a consequence
of the possibility to encode every computable set in the unique solution of
a system of the above kind. This means that solving this kind of a simple
system of equations is as hard as solving any computational problem in
general.

1.1 Equations, algebra and topology

Let (A,O) be an algebra. This means thatA is a set andO a set of operations
from A to itself. The constants of algebraic structures are usually defined
as 0-ary operations. For example, a monoid would be an algebraic structure

9

(M, ·, e), where e is the unit element with respect to the product (·). However,
in this thesis, the constants are dropped, so the monoid would be denoted
just by (M, ·) with an implicit assumption about the existence of a unit
element.

If A,B ∈ A, then the equation

A = B

states that A and B are the same element of A. Usually equations also
contain variables X that are not elements of the algebra. If X and Y are
variables, then the equation

X = Y

has a solution X = A, Y = B if and only if A = B. The mapping X → A,
Y → B is called a valuation of variables. In general, a valuation of variables
is a mapping from X to A, or an element of the power AX defined as a
collection of elements from A indexed with elements from X :

AX = {(SX)X∈X | SX ∈ A}.

The power is accompanied with projections ΠX : AX → A defined by

ΠX(S) = SX for S ∈ AX .

The set of n variables {X1, . . . , Xn} is denoted by Xn. In this case, no-
tation

An = {(S1, . . . , Sn) | Si ∈ A}

is used for the product and Πi for the projection ΠXi . In the one variable
case, the index is dropped and the notation X1 = {X} is used. Other letters
for variables besides X are used also and in this case one can write, for
example, X3 = {X,Y, Z}. It should always be clear from the context which
names are used for the variables, usually they are capital Latin letters from
the end of the alphabet. The sets of variables X are assumed to be finite.

The use of elements of A can be limited by fixing a set C ⊆ A of con-
stants that are allowed in the equations. For a more detailed description of
equations, there are the following definitions.

Definition 1.1.1. Expressions over the algebra (A,O) with variables X and
constants C, denoted E [X , C, (A,O)], are defined recursively:

• A is an expression for all A ∈ C

• X is an expression for all X ∈ X

• If ϕi(X) for i = 1, . . . ,m are expressions and f ∈ O is an m-ary
operation, then f(ϕ1(X), . . . , ϕm(X)) is an expression.

10

Every expression ϕ ∈ E [X , C, (A,O)] with variables X defines a mapping

ϕ : AX → A

For every S ∈ AX , the value of ϕ(S) is defined in the following way:

Definition 1.1.2. Let ϕ ∈ E [X , C, (A,O)] be an expression and S ∈ AX .
Then value of ϕ(S) is defined recursively:

• If ϕ = A ∈ C, then
ϕ(S) = A

• If ϕ(X) = X ∈ X , then

ϕ(S) = ΠX(S)

• If
ϕ = f(ϕ1, . . . , ϕn)

for some ϕi ∈ E [X , C, (A,O)] with the values ϕi(S) = Si ∈ A and an
n-ary operation f ∈ O, then

ϕ(S) = f(S1, . . . , Sn)

Equations are statements on the equality of expressions:

Definition 1.1.3. Let ϕ,ψ ∈ E [X , C, (A,O)] be expressions. Then

e : ϕ = ψ

is the equation e.
The expression ϕ is the left-hand and ψ is the right-hand side of the

equation. If S ∈ AX and ϕ(S) = ψ(S), then S is a solution of e.

The set of equations over the algebra (A,O) with variables X and con-
stants C is denoted by E[X , C, (A,O)].

Systems of equations are sets of equations:

Definition 1.1.4. A system of equations in S[X , C, (A,O)] contains equa-
tions in E[X , C, (A,O)]. If S ∈ AX is a solution of all the equations e ∈ S,
then it is a solution of the system S.

If the set A is accompanied with an order 6, then one can talk about the
least and greatest solutions of a system. A solution S ∈ AX of a system is
the least solution, if for all solutions S ′ ∈ AX it holds that ΠX(S) 6 ΠX(S ′)
for all X ∈ X . Symmetrically, S is the greatest solution if ΠX(S ′) 6 ΠX(S)
for all solutions S ′ ∈ AX and variables X ∈ X .

11

If the algebra has an order 6, the operations in O are called monotone
with respect to 6 if for every m-ary operation f ∈ O

f(S) 6 f(S ′)

whenever S,S ′ ∈ AX and ΠX(S) 6 ΠX(S ′) for all X ∈ X .
If the order has the property that for any elements A,B ∈ A there

exists a greatest element A ∧ B with A ∧ B 6 A,B and a least element
A ∨ B with A,B 6 A ∨ B, then (A,6) is a lattice. Lattices can be defined
also algebraically through ∧ and ∨. In this case, (A,∧,∨) is a lattice if the
operations are commutative:

A ∧B = B ∧A for all A,B ∈ A

A ∨B = B ∨A for all A,B ∈ A,

associative:

(A ∧B) ∧ C = A ∧ (B ∧ C) for all A,B,C ∈ A

(A ∨B) ∨ C = A ∨ (B ∨ C) for all A,B,C ∈ A

and mutually distributive:

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C) for all A,B,C ∈ A

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C) for all A,B,C ∈ A.

The definitions of lattices through order and algebra are equivalent. The
algebraic operations can be defined by the order as mentioned above. And if
the operations are given, then the order can be defined by

A 6 B if and only if A ∧B = A.

A lattice is bounded if there are A,B ∈ A such that for every C ∈ A it
holds that A 6 B. It is complete, if there is a greatest lower bound and a
least upper bound for every subset of A. A complete lattice is bounded as
the greatest lower bound and the least upper bound for A are the least and
greatest elements of A respectively.

A system is in resolved form, if all equations in it consist of equations of
the form

X = ϕX(X),

for X ∈ X and ϕX ∈ E [X , C, (A,O)]. If expressions are allowed on the left-
hand side of the equations as well, the system is unresolved. A resolved sys-
tem over an algebra with a complete lattice-order and monotone operations
always has the least and greatest solutions:

12

Lemma 1.1.1 (Tarski’s fixed point theorem [35]). Let S ∈ S[X , C, (A,O)]
be a resolved system of equations for an algebra (A,O) with a complete lattice-
order and monotone operations. The least and greatest solutions exist.

Most algebraic stuctures in this thesis can be seen as ultra-metric spaces,
defined as:

Definition 1.1.5. Let X be a set and d : X2 → R>0 a mapping. Then (X, d)
is an ultra-metric space, if the following hold:

d(x, x) > 0 for all x ∈ X
d(x, y) = d(y, x) for all x, y ∈ X
d(x, z) 6 max(d(x, y), d(y, z)) for all x, y, z ∈ X

If (X, d) is an ultra-metric space and n ∈ N, then (Xn, dmax), where

dmax((x1, . . . , xn), (y1, . . . , yn)) = max(d(x1, y1), . . . , d(xn, yn))

for (x1, . . . , xn), (y1, . . . , yn) ∈ Xn, is also an ultra-metric space. The nota-
tion (Xn, dmax) = (Xn, d) without the index will be used from now on.

If (X, d) and (X ′, d′) are ultra-metric spaces, then a mapping f : X → X ′

is called continuous, if for every ε > 0 there exists δ > 0 such that d(x, y) < δ
implies d′(f(x), f(y)) for all x, y ∈ X. An equivalent condition for continuity
can be given through converging sequences: f : X → X ′ is continuous if and
only if for every converging sequence (xk)k∈N −−−→

k→∞
x of elements of X it

holds that
lim
k→∞

f(xk) = f(x).

An ultra-metric space (X, d) is compact if every open cover of X has
a finite subcover or, equivalently, if every sequence of elements of X has a
converging subsequence. If (X, d) is compact, then (Xn, d) is compact as
well.

The following Lemma states an important property of compact ultra-
metric spaces that is used later.

Lemma 1.1.2. Let (X, d) be a compact ultra-metric space and ϕ,ψ : Xn →
X continuous mappings. For all ε > 0 there exists δ > 0 such that if x, y ∈
Xn, d(ϕ(x), ψ(x)) < ε, d(x, y) < ε and d(ϕ(y), ψ(y)) < δ, then there exists
z ∈ Xn such that ϕ(z) = ψ(z) and d(x, z) < ε.

Proof. Let ε > 0. Suppose the contrary: There exists x ∈ Xn such that
d(ϕ(x), ψ(x)) < ε and for every 0 < k ∈ N there exists yk ∈ Xn such that
d(x, yk) < ε and d(ϕ(y)k, ψ(yk)) < 1

k , but there does not exist such a z.

13

Since X is compact, the sequence yk has a subsequence yki
converging to

some z ∈ Xn, so ϕ(yki
) −−−→
i→∞

ϕ(z) and ψ(yki
) −−−→
i→∞

ψ(z) as ϕ and ψ are
continuous. Hence,

d(ϕ(z), ψ(z)) = lim
i→∞

d(ϕ(yki
), ψ(yki

)) 6 lim
i→∞

1
ki

= 0,

and ϕ(z) = ψ(z).
Furthermore,

d(x, z) 6 max(d(x, yki
), d(yki

, z))

and since d(x, yki
) < ε and d(yki

, z)→ 0, it follows that d(x, z) < ε. This is
a contradiction and there exists such a δ.

1.2 Natural numbers

The Peano axioms defining the natural numbers are formulated as follows:

Definition 1.2.1. The set of natural numbers is defined as the set with the
properties

• Zero is a natural number: (
0 ∈ N

)
.

• If n is a natural number, then n+ 1 is a natural number:(
n ∈ N

)
implies

(
n+ 1 ∈ N

)
.

• If n is a natural number, then n+ 1 does not equal zero:(
n ∈ N

)
implies

(
n+ 1 6= 0

)
.

• If m and n are natural numbers and m + 1 and n + 1 are equal, then
m and n are equal:(

(m,n ∈ N) and (m+ 1 = n+ 1)
)
implies

(
m = n

)
.

• If S is a subset of natural numbers closed under +1 and containing
zero, then S is the whole set of natural numbers:(

0 ∈ S ⊆ N and (S + 1) ⊆ S
)
implies

(
S = N

)
.

14

Usually a successor function is used in the place of adding one. After
that addition is defined using the successor function. In this thesis, addition
is taken for granted, so such formalism is not needed. In general, the use of
successor function has the advantage that it makes visible the presence of
natural numbers in almost every infinite structure. Whenever an operation
with an infinite trace is defined, it defines an isomorphic copy of the natural
numbers.

In algebraic terms, the set of natural numbers with addition and zero
(N,+) is a commutative monoid. This means that the addition is associative

(n1 + n2) + n3 = n1 + (n2 + n3) for all n1, n2, n3 ∈ N

and commutative

n1 + n2 = n2 + n1 for all n1, n2 ∈ N

and that zero is the unit element with respect to addition

0 + n = n+ 0 = n for all n ∈ N.

The monoid of natural numbers with addition (N,+) is a free monoid, which
means that for every monoid (M, ·), any mapping f : 1 → m ∈ M can be
continued in a unique way to a monoid morphism f̂ : N→M as f̂(n) = mn.

If p > 0 is a natural number, then natural numbers m and n are said
to be equal modulo p if p divides m − n. In this case, the set consisting of
numbers equal d modulo p, or the set

{np+ d | n ∈ N},

is called the coset d modulo p.

1.3 Sets of natural numbers

Subsets of natural numbers, denoted S ⊆ N or S ∈ P(N), will be discussed
in the remainder of the first part of this thesis.

The addition of S, T ⊆ N is defined elementwise so that n ∈ S+T if and
only if there exist such k ∈ S and l ∈ T that n = k + l.

S + T = {k + l | k ∈ S, l ∈ T}

The addition of sets of numbers has the same properties as the addition of
numbers. It is associative

(S1 + S2) + S3 = S1 + (S2 + S3) for all S1, S2, S3 ⊆ N

15

and commutative

S1 + S2 = S2 + S1 for all S1, S2 ⊆ N

and the singleton set {0} is the unit element with respect to addition

{0}+ S = S + {0} = S for all S ⊆ N.

This makes (P(N),+) a commutative monoid.
Because sets are on the table, there are also set-theoretic operations, such

as union, intersection and complementation. The union of two sets S1, S2 ⊆ N
contains all numbers in those sets:

S1 ∪ S2 = {n ∈ | n ∈ S1 or n ∈ S2}.

The intersection of two sets S1, S2 ⊆ N contains the numbers in both sets:

S1 ∩ S2 = {n ∈ | n ∈ S1 and n ∈ S2}

and the complement of a set S ⊆ N contains the numbers not in S:

S = {n ∈ | n /∈ S}.

The union is associative

(S1 ∪ S2) ∪ S3 = S1 ∪ (S2 ∪ S3) for all S1, S2, S3 ⊆ N

commutative
S1 ∪ S2 = S2 ∪ S1 for all S1, S2, S3 ⊆ N,

it has the empty set as the unit element

∅ ∪ S = S ∪∅ = S for all S ⊆ N,

and it is distributive over addition

S1 + (S2 ∪ S3) = (S1 + S2) ∪ (S1 + S3) for all S1, S2, S3 ⊆ N.

So (P(N),∪,+) is a commutative semiring.
Furthermore, the union is distributive over intersection

S1 ∪ (S2 ∩ S3) = (S1 ∪ S2) ∩ (S1 ∪ S3) for all S1, S2, S3 ⊆ N

and vice versa

S1 ∩ (S2 ∪ S3) = (S1 ∩ S2) ∪ (S1 ∩ S3) for all S1, S2, S3 ⊆ N,

making (P(N),∪,∩) or (P(N),⊆) a lattice with respect to the inclusion order

S1 ⊆ S2 if and only if (n ∈ S1 implies n ∈ S2).

16

The lattice has ∅ and N as the least and greatest elements respectively, so
it is bounded.

De Morgan’s laws
S1 ∪ S2 = S1 ∩ S2

and
S1 ∩ S2 = S1 ∪ S2,

express the connection between these three set operations. As a result,
(P(N),∪,∩,) is a Boolean algebra.

The set of natural numbers can be embedded into the set of sets of
natural numbers by the inclusion n ↪→ {n}. With this inclusion in mind,
the singleton sets {n} appearing in sums are sometimes written without the
brackets:

{n}+ S = n+ S.

There are some classes of subsets referred to later. The class of finite
sets is denoted by Pfin(N). Another important class of subsets is that of
eventually periodic sets Pevp(N). A set S ⊆ N is eventually periodic with
period p > 0 if there is a number n0 ∈ N such that

n ∈ S if and only if n+ p ∈ S

for every n > n0.
In the following, the computational properties of sets of numbers are of

particular interest. One of the most natural classes of sets in computational
sense is that of recursive sets, which are those that can be recognized by
algorithms that terminate on every input:

Definition 1.3.1. A set S ⊆ N is recursive if and only if there exists an
algorithm deciding whether n ∈ S for all n ∈ N.

Furthermore, a set is called recursively enumerable (r.e) if there exists an
algorithm that returns a positive answer on every number that belongs to
that set, while the algorithm might not terminate on inputs not in the set.
A set is co-recursively enumerable (co-r.e.) if its complement is recursively
enumerative. A set is both r.e. and co-r.e. if and only if it is recursive.

A problem is called decidable if there exists an algorithm solving it that
terminates on all instances. If there exists an algorithm that terminates on all
positive instances, but might not terminate on negative instances, a problem
is called an r.e. problem. Symmetrically, co-r.e. problems are those that have
an algorithm terminating on all negative instances. A problem P is r.e.-
complete (co-r.e.-complete) if it is r.e. (co-r.e.) and for every r.e. (co-r.e.)
problem there exists an algorithm that reduces the problem to P .

17

18

Chapter 2

The hardness of simple things

Some things seem simple. But in the path to know them, one always finds
new things to learn. One can discover a new perspective to look at a thing
from and can get new insights into an already familiar topic. One becomes
more familiar with things over time spent with them. One gets to understand
things in a deeper way than before, over and over again.

Throwing and catching balls is a familiar activity to most and even chil-
dren do it, but there are people devoting their lives to master the skill of
juggling. Likewise, playing games like chess or go can be started after the
rules have been learnt, but people still get better at them after years of
practice. Writing a thesis, playing an instrument, singing, talking, dancing,
walking, running, skateboarding, standing, sitting, making a list. . .

All of these seemingly simple things take a moment to get acquainted
with, but may take a lifetime or more to master. This is the case also in
questions related to natural numbers. In this chapter, a simple system of
equations is presented that is not so simple to solve.

2.1 Equations over sets of natural numbers

The hardness of solving a simple system of equations

X +A = B

X +X + C = X +X +D

is discussed later in this chapter. The hardness of solving the system depends
heavily on the meaning of X, A, B, C and D. If they are reals with the usual
addition, the system is often written in lower case

x+ a = b

x+ x+ c = x+ x+ d,

19

and solving it is easy. In the case c = d the solution to the system of equations
is x = b − a and in the case c 6= d there is no solution. The solution to the
system is similar in every algebraic structure, in which + has an inverse.

If A, B, C and D are eventually periodic subsets of the natural numbers
and X gets values from P(N), then solving the system gets much more
interesting. Consider the following equation

X + {0, 1} = N.

It has the solutions

S ⊆ N : 0 ∈ S and S ∩ {n, n+ 1} 6= ∅ for all n ∈ N,

in other words, the sets that contain zero and one of any two consecutive
numbers. This is just one example of how much more complicated the addi-
tion of sets is compared to the addition of numbers.

For other examples of relations of equations over sets of numbers with
addition, there is a way of expressing a result proved by Joseph Lagrange
in 1770, often presented during introductory courses on number theory. It
states that every natural number can be expressed as a sum of four squares:

Example 2.1.1 (Lagrange). The set of squares

{n2 | n ∈ N},

is a solution of the equation

X +X +X +X = N.

It is also possible to state one of the most famous open problems in
mathematics by a simple equation in E[X1,Pevp(N), (P(N),+)]:

Example 2.1.2. The equation

X +X = {2n | n > 3}

has the set of odd primes as a solution if and only if the Goldbach’s conjecture,
stating that every even number at least six can be represented as a sum of
two odd primes, holds.

So, questions about the addition of sets of numbers have been consid-
ered along the history of mathematics quite frequently, and the history will
probably be repeating itself ad infinitum.

20

Theorem 2.2.1 is perhaps the most important contribution of this thesis.
It concerns sets of numbers and says that

X +A = B

X +X + C = X +X +D

is as hard to solve as any system of equations in S[Xn,Pevp(N), (P(N),∪,+)].
These systems are hard to solve as a consequence of the following proposi-

tion, stating that all recursive subsets of natural numbers can be represented
as components of unique solutions of systems in S[Xn,Pfin(N), (P(N),∪,+)].

Proposition 2.1.1 (Jeż, Okhotin [13]). Let S ⊆ N. Then S is recur-
sive if and only if there exists n ∈ N and a system of equations in
S[Xn,Pfin(N), (P(N),∪,+)] with a unique solution Xi = Si such that S =
S1.

This expressive power implies hardness in solving these kinds of systems.
Consider the example:

Example 2.1.3. Let S ∈ S[Xn,Pfin(N), (P(N),∪,+)] be a system of equa-
tions with a unique solution (S1, . . . , Sn) such that S1 is the set of odd primes.
This system exists by Proposition 2.1.1.

Now, if the equation

X1 +X1 = {2n | n > 3}

is added to the system, then the resulting system has a solution if and only
if the Goldbach’s conjecture holds.

However, there is no systematic way of finding out if that kind of a system
of equations has a solution: the problem of solution existence is undecidable.

Proposition 2.1.2 (Jeż, Okhotin [13]). The problem whether a system of
equations S[X ,Pfin(N), (P(N),∪,+)] has a solution is co-r.e.-complete.

2.2 The expressive power of simple systems

In this section, a system of equations

S ∈ S[Xm,Pevp(N), (P(N),∪,+)]

with m variables and operations of union and addition is simulated by a
system

S′ ∈ S[X1,Pevp(N), (P(N),+)]

with only one variable and addition. This simulation means that there is a
correspondence between the solutions of the two systems. For this simulation

21

to be possible, the solutions (S1, . . . , Sm) ∈ P(N)m of S have to be repre-
sented by the solutions S ∈ P(N) of S′. Thus, there needs to be an encoding
π : P(N)m → P(N).

The sets will be encoded periodically, so that there is a period p > 0 such
that for every i = 1, . . . ,m there is a natural number 0 6 di < p with the
property that n ∈ Si if and only if pn + di ∈ S. In other words, the set Si
is stored in the coset di modulo p, called the track di in this section. So the
mappings

τpd : P(N)→ P(N)

defined by
τpd (S) = {pn+ d | n ∈ S}

are needed for d = 0, 1, . . . , p− 1. If track d modulo p contains ∅ or N, it is
called empty or full respectively.

The encoding has to be able to simulate the sums

Si + Sj

to be useful in simulating them-variable system. Hence, if S = π(S1, . . . , Sm)
for some sets S1, . . . , Sm ⊆ N, then the sum S+S should have the encodings
of those sums.

The sum of Si + Sj is on the track di + dj modulo p of the set S + S as

τpdi
(Si) + τpdj

(Sj) = τpdi+dj
(Si + Sj).

In S + S, there are this kind of sums for every pair of indices. These sums
have to be compared, so their tracks must not be the same for any disjoint
indices. To achieve this, the sums di + dj should be different for different
(i, j). Although, for the pairs (i, j) and (j, i), the sums di+dj and dj +di are
equal because (N,+) is commutative, and so the sums Si + Sj and Si + Sj
will necessarily end up on the same track. But since the addition of sets is
commutative as well, the sums are the same and this is not a problem.

The simplest way to do this is to demand that di1 + di2 < di3 + di4
whenever i1, i2 < max(i3, i4). In this case, di + di < di+1 + d1 or 2di − d0 <
di+1. So at the smallest di+1 = 2di − d1 + 1. The solution of this recursion
equation is di = d1 + 2i−1 − 1, so fixing d1 will determine the rest.

There also needs to be a way to compare these different sums: if there is
an equation

Si1 + Si2 = Si3 + Si4

in the original system, there should be sets Ei1,i2 and Ei3,i4 such that the
above equation holds if and only if the equation

S + S + Ei1,i2 = S + S + Ei3,i4

22

of the constructed system holds. This is done by a set E+ with the property
that

S + S + E+ =
p−2⋃
n=0

τpn(N),

making all other tracks full except the track p−1 that remains empty. So all
information about the sets Si is overwritten. Now the encoded sum Si1 +Si2
on track di1 + di2 of S + S can be moved to this empty track by including
p− 1− (di1 + di2) in the set E+, so that

S + S +
(
E+ ∪ {p− 1− (di1 + di2)}

)
=

p−2⋃
n=0

τpn(N) ∪ τpp−1(Si1 + Si2).

Hence, the equality of the sums can be checked by the equations

S + S +
(
E+ ∪ {p− 1− (di1 + di2)}

)
= S + S +

(
E+ ∪ {p− 1− (di3 + di4)}

)
.

To do this overwriting, the encoding needs to have many numbers in it.
A convenient way to have these numbers is to include a block of full tracks
in the beginning. Consider a block of b full tracks

⋃b−1
i=0 τ

p
n(N). If b = p

4 , then(b−1⋃
i=0

τpn(N)
)

+ {0, b, 2b, 3b} = N

and (b−1⋃
i=0

τpn(N)
)

+ {0, b, 2b, 3b− 1} =
p−2⋃
n=0

τpn(N).

Furthermore, the data tracks di will be after the track b and their contents
cannot be controlled, so they might cause trouble in the sum S+S. Because
of this, and also in order to have encodings of the sets Si = Si+{0} in S+S,
an additional track dm+1 containing the encoding of {0} is added as the last
data track.

It is time to define the encoding. Since adding the b full tracks to dm+1

overwrites everything between dm+1 and dm+1 + b− 1, and the encoding of
S1 + S1 should not be vanished, the inequality dm+1 + b < d1 + d1 should
hold. This also leaves an empty track between tracks dm+1+b−1 and d1+d1,
which is also needed later. The earlier recursion equation with the solution
di = d1 + 2i−1− 1 gives the inequality d1 + 2m− 1 + b < d1 + d1, and further
the inequality 2m + b− 1 < d1. So let d1 = b+ 2m.

The number of the last data track dm+1 should be smaller than p
2 to have

its sum with itself smaller than p. If dm+1 = p
2 − 1, then it is p− 1 modulo

b and causes trouble with the overwriting, so let dm+1 = p
2 − 2. Now

p

2
− 2 = dm+1 = d1 + 2m − 1 = b+ 2m + 2m − 1 =

p

4
+ 2m+1 − 1

23

implying p = 2m+3 + 4, b = 2m+1 + 1 and di = 3 · 2m + 2i−1, so all the
information needed to define the encoding has been collected:

First, there is the constant map

πb(S1, . . . , Sm) = Bπ =
b−1⋃
i=0

τpi (N)

for the block of full tracks.
Second, there is the mapping

πd(S1, . . . , Sm) =
(m⋃
j=1

τpdj
(Sj)

)
∪ {dm+1}

embedding the sets into the data tracks.
Third, the encoding π is the union of these two

π(S1, . . . , Sm) =
(b−1⋃
i=0

τpi (N)
)
∪
(m⋃
j=1

τpdj
(Sj)

)
∪ {dm+1},

so π = πb ∪ πd.

Example 2.2.1. Let S ∈ S[X2,Pevp(N), (P(N),∪,+)] be a system using
two variables, and union and addition as operations.

Now p = 36, b = 9, d1 = 13, d2 = 14 and d3 = 16. So the two components
of the encoding are

πb(S1, S2) = Bπ =
8⋃
i=0

τpi (N),

containing all numbers equivalent to i modulo 36 for 0 6 i 6 8, and

πd(S1, S2) = τ36
13 (S1) ∪ τ36

14 (S2) ∪ {16},

containing the encoding of S1 on track 13, the encoding of S2 on track 14
and the encoding of {0} on track 16. The encoding π(S1, S2) is the union of
these two.

The sum of πb(S1, S2) with itself results in a set that has all numbers
equivalent to i modulo 36 for 0 6 i 6 16 :

πb(S1, S2) + πb(S1, S2) =
16⋃
i=0

τ36
i (N).

The sum of πd(S1, S2) with itself results in a set that has the encoding of
S1 + S1 on track 26, the encoding of S1 + S2 on track 27, the encoding of

24

S2 + S2 on track 28, the encoding of S1 on track 29, the encoding of S2 on
track 30 and the encoding of {0} on track 32 :

πd(S1, S2) + πd(S1, S2) =

τ36
26 (S1 + S1) ∪ τ36

27 (S1 + S2) ∪ τ36
28 (S2 + S2) ∪ τ36

29 (S1) ∪ τ36
30 (S2) ∪ {32}.

The last component in the sum π(S1, S2) + π(S1, S2) is

πb(S1, S2) + πd(S1, S2) =
(8⋃
i=0

τpi (N)
)

+
(
τ36

13 (S1) ∪ τ36
14 (S2) ∪ {16}

)
,

which equals

τ36
13 (min(S1) + N) ∪ τ36

14 (min(S2) + N) ∪ τ36
15 (min(S1, S2) + N) ∪

8⋃
i=0

τp16+i(N),

where min(Si) should be considered undefined if Si is empty and in this case
min(Si) + N = ∅. So the sum of π(S1, S2) with itself equals

24⋃
i=0

τ36
i (N)∪τ36

26 (S1+S1)∪τ36
27 (S1+S2)∪τ36

28 (S2+S2)∪τ36
29 (S1)∪τ36

30 (S2)∪{32}.

If the set {0, b+ 1} = {0, 10} is added to π(S1, S2) +π(S1, S2), then the sum
of {0, b+1} and

⋃24
i=0 τ

36
i (N) equals

⋃34
i=0 τ

36
i (N). The sums with the encoded

sets on tracks 26, 27, 28, 29, 30 and 32 end up on the same tracks when
added to 0 and on tracks 36, 37, 38, 39, 40 and 42 when added to 10. The
most important thing is that they do not end up on the track p − 1 = 35,
which remains empty in the sum π(S1, S2) + π(S1, S2) + {0, 10} while all
other tracks are full, so that

π(S1, S2) + π(S1, S2) + {0, 10} =
34⋃
i=0

τ36
i (N).

The overwriting of data in π(S1, . . . , Sm) and π(S1, . . . , Sm) +
π(S1, . . . , Sm) can be made according to the following Lemma:

Lemma 2.2.1. Let S = π(S1, . . . , Sm) for some S1, . . . , Sm ⊆ N. Then

S + {0, b, 2b, 3b− 1} = S + S + {0, b+ 1} =
p−2⋃
n=0

τpn(N).

25

Proof. First consider the sum S+{0, b, 2b, 3b−1}. As previously mentioned,

Bπ + {0, b, 2b, 3b− 1} =
p−2⋃
n=0

τpn(N)

and only the emptiness of track p − 1 is left to prove. The sums of di with
0, b and 2b are all less than

2b+ dm+1 =
p

2
+
p

4
− 2 =

3p
4
− 2 < p− 1

and sums with 3b− 1 are all greater than

3b− 1 + d1 = 3b− 1 + b+ 2m = 4b+ 2m > p

and smaller than

3b− 1 + dm+1 =
3p
4

+
p

2
− 2 =

5p
4
− 2 < 2p− 1,

so the data tracks added to {0, b, 2b, 3b− 1} do not end up on track p− 1.
Then consider S+S+ {0, b+ 1}. Since S = Bπ ∪πd(S1, . . . , Sm) and the

addition is commutative, the sum S + S can be written as(
Bπ +Bπ

)
∪
(
Bπ + πd(S1, . . . , Sm)

)
∪
(
πd(S1, . . . , Sm) + πd(S1, . . . , Sm)

)
.

The sum Bπ +Bπ equals
2b−2⋃
n=0

τpn(N)

and adding 0 and b+ 1 to this set results in the set

3b−1⋃
n=0

τpn(N).

It is left to prove that the tracks from 3b = 3p
4 to p− 2 are full and that the

track p−1 is empty. Adding Bπ to dm+1 results in a block of full tracks from
dm+1 to dm+1 + b− 1, that is, from p

2 − 2 to 3p
4 − 3. Now

dm+1 + b− 1 + b+ 1 = dm+1 + 2b =
p

2
− 2 +

p

2
= p− 2

and the rest of the block Bπ + dm+1 ends up on tracks from dm+1 + b+ 1 =
3p
4 − 1 to p− 3, so all tracks from 0 to p− 2 are full.

Furthermore,

d1+d1+b+1 = b+2m+b+2m+b+1 = 3b+2m+1+1 = 3b+b−1+1 = 4b = p

26

and

dm+1 + dm+1 + b+ 1 =
p

2
− 2 +

p

2
− 2 +

p

4
+ 1 =

5p
4
− 3 < 2p− 1,

so none of the sets encoded on tracks di + dj end up on track p − 1 and it
remains empty.

For the encoding to be usable, there needs to be a set of equations guar-
anteeing that a set is an encoding of some m sets. This set of equations is
given in the next Lemma:

Lemma 2.2.2. Let S ∈ N. Then S = π(S1, . . . , Sm) for some S1, . . . , Sm ⊆
N if and only if S is the solution to the equations

X + {0, b, 2b, 3b− 1} =
p−2⋃
n=0

τpn(N)

X + E∅ =
p−2⋃
n=0

τpn(N)

X +
(
{0, b, 2b, 3b− 1} ∪ {p− 1− dm+1}

)
=

p−2⋃
n=0

τpn(N) ∪ {p− 1}

X +
(
{0, b, 2b, 3b− 1} ∪ {p− 1}

)
= N

X +
(
{0, b, 2b, 3b− 1} ∪ {p− 2}

)
= N
...

X +
(
{0, b, 2b, 3b− 1} ∪ {p− b}

)
= N,

where E∅ = {0, b, 2b, 3b− 1} ∪
(⋃p−1

k=b{p− 1− k} \
⋃m+1
i=1 {p− 1− di}

)
Proof. The first equation states that

S + {0, b, 2b, 3b− 1} =
p−2⋃
n=0

τpn(N).

This is true for all S = π(S1, . . . , Sm) for some S1, . . . , Sm ⊆ N by
Lemma 2.2.1.

Assuming that the first equation holds, the expression

S +
(
{0, b, 2b, 3b− 1} ∪

(p−1⋃
k=b

{p− 1− k} \
m+1⋃
i=1

{p− 1− di}
))

equals
p−2⋃
n=0

τpn(N) ∪
(
S +

(p−1⋃
k=b

{p− 1− k} \
m+1⋃
i=1

{p− 1− di}
))
,

27

which implies that

(
S +

(p−1⋃
k=b

{p− 1− k} \
m+1⋃
i=1

{p− 1− di}
))
∩ τpp−1(N) = ∅

if and only if the second equation holds. So, the first and the second equations
together imply that the tracks in

{b, . . . , p− 1} \
m+1⋃
i=1

{di}

are empty, which are exactly the always empty tracks in all S =
π(S1, . . . , Sm) for some S1, . . . , Sm ⊆ N.

The third equation, assuming the first holds, states that the track dm+1

contains the encoding of {0}, which is true for all S = π(S1, . . . , Sm) for
some S1, . . . , Sm ⊆ N by definition.

Finally, still assuming the first equation holds, the equations

S +
(
{0, b, 2b, 3b− 1} ∪ {p− 1}

)
= N

S +
(
{0, b, 2b, 3b− 1} ∪ {p− 2}

)
= N
...

S +
(
{0, b, 2b, 3b− 1} ∪ {p− b}

)
= N,

state that the tracks 0, . . . , b−1 are full, and these are exactly the full tracks
in the definition of π.

It follows that S is a solution to the equations if and only if S =
π(S1, . . . , Sm) for some Si ⊆ N.

The expressions appearing in the system S to be simulated are assumed
to be of the form

ϕ(X1, . . . , Xm) =
(⋃

(i1,i2)∈Iϕ

Xi1 +Xi2

)
∪
(⋃
j∈Jϕ

Xj

)
∪ Fϕ,

where Iϕ ⊆ {1, . . . ,m} × {1, . . . ,m}, Jϕ ⊆ {1, . . . ,m} and Fϕ ∈ Pevp(N).
This is not a serious limitation, as any system can be transformed into that
form by introducing new variables.

For these expressions, the sets

Eϕ = {0, b+ 1} ∪ {p− 1− (di1 + di2) | (i1, i2) ∈ Iϕ} ∪
∪ {p− 1− (dm+1 + dj) | j ∈ Jϕ} ∪ τpp−1−2dm+1

(Fϕ)

will be used to simulate them in the one-variable system:

28

Lemma 2.2.3. Let S1, . . . , Sm ⊆ N and S = π(S1, . . . , Sm). Then

S + S + Eϕ =
p−2⋃
n=0

τpn(N) ∪ τpp−1(ϕ(S1, . . . , Sm)).

Proof. The sum of S + S with {0, b + 1} makes all tracks except p − 1 full
by Lemma 2.2.1. Adding

{p−1−(di1 +di2)|(i1, i2) ∈ Iϕ}∪{p−1−(dm+1+dj)|j ∈ Jϕ}∪τpp−1−dm+1
(Fϕ)

to S+S takes the sets Si1 +Si2 for (i1, i2) ∈ Iϕ, the sets Sj for j ∈ Jϕ and the
set Fϕ to the track p− 1, so it contains the encoding of ϕ(S1, . . . , Sm).

Example 2.2.2 (Example 2.2.1 continued). Let S contain the equation

ϕ(X1, X2) = ψ(X1, X2),

where
ϕ(X1, X2) = (X1 +X2) ∪X1 ∪ {2n | n ∈ N}

and
ψ(X1, X2) = (X1 +X1) ∪ (X2 +X2) ∪ {3n | n ∈ N}.

Now p− 1 = 35 and subtracting d1 + d2 = 27, d1 + d3 = 29 and 2d3 = 32
from it results in 8, 6 and 3, respectively. Thus

Eϕ = {0, 10} ∪ {8} ∪ {6} ∪ τ36
3 ({2n | n ∈ N})

and

π(S1, S2) + π(S1, S2) + Eϕ =
34⋃
i=0

τ36
i (N) ∪ τ36

35 (ϕ(S1, S2)).

Similarly, d1 + d1 = 26 and d2 + d2 = 28 so

Eψ = {0, 10} ∪ {7, 9} ∪ τ34
3 ({3n | n ∈ N})

and

π(S1, S2) + π(S1, S2) + Eψ =
34⋃
i=0

τ36
i (N) ∪ τ36

35 (ψ(S1, S2)).

The sets π(S1, S2)+π(S1, S2)+Eϕ and π(S1, S2)+π(S1, S2)+Eψ are equal on
tracks from 0 to 34, and their equality depends only on equality on track 35.
Since the contents of track 35 are the encodings of ϕ(S1, S2) and ψ(S1, S2),
the sets are equal if and only if ϕ(S1, S2) and ψ(S1, S2) are equal as well.

Hence, (S1, S2) is a solution to ϕ(X1, X2) = ψ(X1, X2) if and only if
π(S1, S2) is a solution to X +X + Eϕ = X +X + Eψ.

29

As the expressions can be isolated, and thus compared, on track p − 1
by the previous Lemma, it is easy to construct an equivalent equation with
only one variable for the equation ϕ = ψ:

Lemma 2.2.4. Let S1, . . . , Sm ⊆ N. Then S = π(S1, . . . , Sm) is a solution
to the equation

X +X + Eϕ = X +X + Eψ

if and only if ϕ(S1, . . . , Sm) = ψ(S1, . . . , Sm).

Proof. By Lemma 2.2.3,

S + S + Eϕ =
p−2⋃
n=0

τpn(N) ∪ τpp−1(ϕ(S1, . . . , Sm))

and

S + S + Eψ =
p−2⋃
n=0

τpn(N) ∪ τpp−1(ψ(S1, . . . , Sm)).

These sets are the same if and only if ϕ(S1, . . . , Sm) = ψ(S1, . . . , Sm), which
proves the statement.

Now the original system can be simulated by a system containing equa-
tions given by Lemma 2.2.2, which ensure the validity of the encoding. It
also contains equations given by Lemma 2.2.4, equivalent to the equations
of the original system.

Lemma 2.2.5. Let S ∈ S[Xm,Pevp(N), (P(N),∪,+)] be a system of equa-
tions with all expressions appearing in the equations of the form

ϕ(X1, . . . , Xm) =
(⋃

(i1,i2)∈Iϕ

Xi1 +Xi2

)
∪
(⋃
j∈Jϕ

Xj

)
∪ Fϕ,

where Iϕ ⊆ {1, . . . ,m} × {1, . . . ,m}, Jϕ ⊆ {1, . . . ,m} and Fϕ ∈ Pevp(N).
If the system S′ ∈ S[X1,Pevp(N), (P(N),+)] contains the equations in

Lemma 2.2.2 and an equation

X +X + Eϕ = X +X + Eψ

for every equation ϕ = ψ ∈ S, then S ⊆ N is a solution to S′ if and only if
S = π(S1, . . . , Sm) for some solution (S1, . . . , Sm) ∈ P(N)m of S.

This contruction can be taken one step further. The constructed one-
variable system can be simulated by a system with only two equations yield-
ing the main result of this chapter or even the whole thesis:

30

Theorem 2.2.1 ([24]). Let S ⊆ N be recursive. Then there are natural
numbers p, d ∈ N and eventually periodic sets A,B,C,D ⊆ N, such that a
natural number n ∈ N belongs to S if and only if pn+d belongs to the unique
solution to

X +A = B

X +X + C = X +X +D.

Proof. By Proposition 2.1.1 there exists a system in
S[Xm,Pfin(N), (P(N),∪,+)] with a unique solution (S1, S2, . . . , Sm),
where S1 = S. Without loss of generality, it can be assumed that all
expressions appearing in the equations of the system are of the form

ϕ(X1, . . . , Xm) =
(⋃

(i1,i2)∈Iϕ

Xi1 +Xi2

)
∪
(⋃
j∈Jϕ

Xj

)
∪ Fϕ,

where Iϕ ⊆ {1, . . . ,m} × {1, . . . ,m}, Jϕ ⊆ {1, . . . ,m} and Fϕ ∈ Pevp(N).
Lemma 2.2.5 gives a system in S[X1,Pevp(N), (P(N),+)] with a unique

solution π(S1, . . . , Sm). This unique solution has the property that

(2m+2 + 8)n+ 2m + 3 ∈ π(S1, . . . , Sm) if and only if n ∈ S.

The constructed system has equations

X +Ai = Bi for i = 1, . . . , k1

and
X +X + Ci = X +X +Di for i = 1, . . . , k2

as presented in Lemma 2.2.5.
Let p = max(k1, k2) + 1 and define the sets

A =
k1⋃
i=1

τpi (Ai)

B =
k1⋃
i=1

τpi (Bi)

C =
k2⋃
i=1

τpi (Ci)

D =
k2⋃
i=1

τpi (Di)

Note that all of the constant sets Ai, Bi, Ci, Di introduced during the con-
struction have zeros in them, and especially, they are all non-empty.

31

Now consider the system of equations

X +A = B

X +X + C = X +X +D.

If it has a solution T ⊆ N, then T can only have numbers 0 modulo p in it.
Assume the contrary: there is a number pn+ d ∈ T for some 0 < d < p.

If p − d 6 k1, then the set Ap−d contains 0 and the set T + τpp−d(Ap−d)
contains pn+ d+ p− d = p(n+ 1). But the track 0 of B is empty, so it is a
contradiction.

If p−d > k1, then the set Ak1 contains 0 and the set T+τpk1(Ak1) contains
pn + d + k1. But k1 < d + k1 < p and all tracks from k1 + 1 to p − 1 are
empty in B, which is again a contradiction and T = τp0 (T ′) for some T ′ ⊆ N.

Now

τp0 (T ′) +A =
k1⋃
i=1

τpi (T ′ +Ai)

τp0 (T ′) + τp0 (T ′) + C =
k2⋃
i=1

τpi (T ′ + T ′ + Ci)

τp0 (T ′) + τp0 (T ′) +D =
k2⋃
i=1

τpi (T ′ + T ′ +Di)

and T is a solution to

X +A = B

X +X + C = X +X +D

if and only if
k1⋃
i=1

τpi (T ′ +Ai) =
k1⋃
i=1

τpi (Bi)

k2⋃
i=1

τpi (T ′ + T ′ + Ci) =
k2⋃
i=1

τpi (T ′ + T ′ +Di),

but this is the case exactly when T ′ is a solution to the equations

X +Ai = Bi for i = 1, . . . , k1

X +X + Ci = X +X +Di for i = 1, . . . , k2.

This means that T ′ = π(S1, . . . , Sm) and T = τp0 (π(S1, . . . , Sm)).
It follows that

p
(
(2m+2 +8)n+2m+3

)
= p(2m+2 +8)n+p(2m+3) ∈ T if and only if n ∈ S,

and the theorem is proved.

32

One example giving insight into why these simple systems are so hard to
solve is the following:

Example 2.2.3. In Example 2.1.3 a system S ∈
S[Xn,Pfin(N), (P(N),∪,+)] that has a solution if and only if the Goldbach’s
conjecture holds was discussed.

By Theorem 2.2.1, there exists such eventually periodic sets A, B, C and
D that the system of equations over sets of natural numbers

X +A = B

X +X + C = X +X +D

has a solution if and only if the Goldbach’s conjecture holds.

As a corollary of Theorem 2.2.1 and Proposition 2.1.2, one has the fol-
lowing theorem giving precise computational hardness of solving problems
related to these simple systems:

Theorem 2.2.2 ([24]). The problem of existence of a solution to the system
of equations

X +A = B

X +X + C = X +X +D

is co-r.e.-complete for given eventually periodic sets A,B,C,D ⊆ N.

A similar simulation can be done in the case of more general systems,
where also subtraction of sets is allowed. Subtraction of sets of natural num-
bers is defined elementwise, so that

S − T = {k − l | k ∈ S, l ∈ T, k > l}

for K,L ⊆ N.
The general systems using union, addition and subtraction can present

the so-called hyper-arithmetical sets as unique solutions:

Proposition 2.2.1 (Jeż, Okhotin [16]). Let S ⊆ N. Then S is hyper-
arithmetical if and only if there exists n ∈ N and a system of equations
in S[Xn,Pfin(N), (P(N),∪,+,−)] with a unique solution Xi = Si such that
S = S1.

And as in the case of addition only, these general systems can be simu-
lated by systems with only one variable and two equations to get the following
theorem:

33

Theorem 2.2.3 (Lehtinen [21]). Let S ⊆ N be hyper-arithmetical. Then
there are natural numbers p, d ∈ N and eventually periodic sets A,B,C,D ⊆
N, such that a natural number n ∈ N belongs to S if and only if pn+d belongs
to the unique solution to

X +A = B

(X +X) + C = (X −X) +D.

2.3 Limitations of simple systems

As seen in the previous section, simple systems can be suprisingly powerful
expressively. However, there are some limitations in their expressive power.
It will be proved that a system in S[Xm,Pevp(N), (P(N),+)] cannot have
certain sets as the least or greatest solution with respect to componentwise
inclusion. These sets are prime and fragile, as defined below.

A set is prime (in the monoid (P(N),+)), if it cannot be represented as
a sum of two sets different from the unit element {0}.

Definition 2.3.1. A set S ⊆ N is prime if S = S1 +S2 implies S1 = {0} or
S2 = {0}.

A fragile set is fragile in the sense that adding any set with at least
two numbers to it results in a co-finite set, so that its structure breaks and
information encoded into it is lost.

Definition 2.3.2. A set S ⊆ N is fragile if S + {n1, n2} is co-finite for all
n1, n2 ∈ N with n1 6= n2, while S itself is not co-finite.

A set S is fragile if and only if for every k > 0 there exists k0 such that
for every pair of numbers larger than k0 and missing from S, their difference
is bigger than k. In other words, m,n /∈ S and k0 6 m < n imply n−m > k.

Sets with these two properties cannot be represented by a system in
S[Xm,Pevp(N), (P(N),+)], as is stated in the following Theorem.

Theorem 2.3.1 ([25]). Let S ⊆ N be prime and fragile. Then S is not a
component of the least or the greatest solution of any system of equations in
S[Xm,Pevp(N), (P(N),+)].

Proof. Let S ∈ S[Xm,Pevp(N), (P(N),+)]. Assume without loss of gener-
ality that all equations in S are of the form X = Y + Z or X = C for a
constant C ∈ Pevp(N).

Consider a solution, in which one of the components is X1 = S. Some
other components might have values of the form Si = S+{i} as well: let them
be denoted Xi = Si with i ∈ I for some finite index set I ⊆ N. Furthermore,
let Yj = Tj with j ∈ J be the rest of the variables, whose values are not of

34

the form S + {i} for any i. It can be assumed that all components of the
solution are nonempty.

The smaller solution is defined as follows: Let k be the maximum of the
differences of the two smallest numbers in any V , with |V | > 2, that appears
in the solution. Since S is fragile, there is a number l, such that every pair
of missing numbers m,n /∈ S with n > m > l satisfies n−m > k. Let l′ > l
be such that {l′, l′ + 1, . . . , l′ + 2k} ⊆ S. Such l′ exists by the fragility of S.

The new solution is Xi = S′i = (S \ {l′ + k}) + {i} for all i ∈ I and
Yj = Tj for j ∈ J . As compared to Si, one more number is missing from S′i,
but it is different by at least k+1 from any other missing number. Thus, the
above property is inherited by S′i: every pair m,n /∈ S′i with n > m > l + i
satisfies n−m > k.

It has to be shown that the new solution satisfies the equations. Consider
every equation in S. If none of the variables Xi are used in the equation,
then the new solution clearly satisfies it, since the variables Yj did not change
their values. So, consider each equation containing an instance of some Xi;
only three cases are possible:

Claim 2.3.1.1. The equations that contain some Xi are of the form

1. Xi = Xi1 + Yj, with Tj = {i2} and i = i1 + i2,

2. Yj = Xi + Yj1, with |Tj1 | > 2 or

3. Yj = Xi +Xi1.

Proof. Let Xi be on the left-hand side of the equation. The right-hand side
of this equation cannot be a constant, since S is not ultimately periodic. So,
the equation is of the form Xi = U + V .

Then S + {i} is factorized as R1 + R2 for some sets R1, R2 ⊆ N. Let i1
and i2 be the smallest elements of R1 and R2, respectively. Then i1 + i2 is
the smallest element of S + {i}, which must be i, as 0 ∈ S by the primality
of S. Therefore, S is factorized as (R1− i1)+ (R2− i2), and since S is prime,
R2−i2 = {0}, that is, R2 = {i2} and R1 = S+{i1} = Si1 . Then the equation
is of the form Xi = Xi1 + Yj , where Tj = {i2}.

If the equation is Yj = Xi + V , and if V = Yj1 , then it must be the case
that |Tj1 | > 2: otherwise, Tj1 = {i1} for some i1 ∈ N and Tj = Si + {i1} =
Si+i1 , which contradicts the assumption that Tj /∈ {Si | i ∈ I}.

The only case left is Yj = Xi +Xi1 .

Resuming the proof of the theorem, it has been shown that there are
three cases to consider:

1. Let Xi be on the left-hand side of the equation, so that it is of the form
Xi = Xi1 + Yj . Then the solution is Si = Si1 + Tj with Tj = {i2} and

35

i = i1 + i2. The equality S′i = S′i1 + {i2} holds by definition of the sets
S′i.

2. Let the equation be of the form Yj = Xi + Yj1 , with |Tj1 | > 2. The
goal is to show that S′i + Tj1 = Si + Tj1 . Clearly, S′i + Tj1 ⊆ Si + Tj1 .
Consider any number m+n with m ∈ Si and n ∈ Tj1 . If m 6= i+ l′+k,
then m ∈ S′i by the definition of S′i and thus m + n ∈ S′i + Tj1 . Let
m = i + l′ + k and let n1 < n2 be the two smallest numbers in Tj1 .
Then n2 − n1 6 k, by the definition of k.

Consider two numbers m + n − n1 and m + n − n2. The former is
clearly greater than l + i, since n1 6 n. For the latter number, note
that n−n2 > n−n1−k and thusm+n−n2 > (i+l′+k)+(n−n1−k) =
i+ l′+ n− n1 > l+ i. Since both numbers are greater or equal to l+ i
and their difference is at most k, it could not be the case that both of
them are missing from S′i. Therefore, either (m+n−n1)+n1 ∈ S′i+Tj1
or (m+n−n2) +n2 ∈ S′i +Tj , which proves that m+n is in S′i +Tj1 .

3. Finally, consider the case Yj = Xi +Xi1 . The solution is Tj = Si +Si1 .
It is to be shown that Tj = S′i + S′i1 . Obviously, S′i + S′i1 ⊆ Si + Si1 .
To prove the converse, assume that m ∈ Si and n ∈ Si1 . If m ∈ S′i,
then the argument used in the previous case applies, with S′i1 instead
of Tj1 . The case of n ∈ S′i1 is handled symmetrically.

Suppose m /∈ S′i and n /∈ S′i1 . Then m = i+ l′ + k and n = i1 + l′ + k.
Now m−1 ∈ S′i and n+1 ∈ S′i1 , so m+n = (m−1)+(n+1) ∈ S′i+S′i1 .
Thus Tj = S′i + S′i1 .

It follows that the system of equations is satisfied, and S is not a com-
ponent of the least solution.

It is left to prove that a prime and fragile set cannot be a component of
the greatest solution. As in the proof for the least solution, let the system of
equations have a solution X1 = S, Xi = Si with i ∈ I, Yj = Tj with j ∈ J ,
where Si = S + {i} and Tj 6= S + {i}.

For every equation of the form Yj = Xi +V , where V is either a variable
Xj or a variable Yj with |Tj | > 2, the sum Si + V is co-finite because Si is
fragile. Let k be the least number with l ∈ Si + V for all l > k and let k0 be
the maximum of all k’s for all such equations. Let n0 > k0 and n0 /∈ S.

In the new solution this number n0 is included into S: Xi = S′i = (S ∪
{n0}) + {i} = Si ∪ {n0 + i} and Yj = Tj for all applicable i and j.

To see that this assignment is a solution, only equations where some Xi

occur need to be considered, since the rest stay as they were. Again, see
Claim 2.3.1.1, there are three cases to consider:

1. For an equation Xi = Xi1 + Yj the solution is Si = Si1 + Tj with Tj =
{i2} and i = i1 + i2. The equation is satisfied for the new solution as

36

well: (S∪{n0})+{i} = (S∪{n0})+{i1+i2} = ((S∪{n0})+{i1})+{i2}.

2. In the case Yj = Xi + Yj1 with |Tj1 | > 2, note that since n0 > k0,
every number greater or equal to n0 is in Tj by the choice of k0. Then
S′i + Tj1 equals

(Si∪{n0+i})+Tj1 = (Si+Tj1)∪({n0+i}+Tj1) = Tj∪({n0 + i}+ Tj1)︸ ︷︷ ︸
⊆Tj

= Tj .

3. In the final case, the equation is Yj = Xi+Xi1 . Again, l ∈ Tj for every
l > n0, and S′i + S′i1 can be transformed as

(Si ∪ {n+ i}) + (Si1 ∪ {n0 + i1}) =
= (Si + Si1)︸ ︷︷ ︸

=Tj

∪ (Si + {n0 + i1})︸ ︷︷ ︸
⊆Tj

∪ (Si1 + {n0 + i1})︸ ︷︷ ︸
⊆Tj

∪ ({n0 + i}+ {n0 + i1})︸ ︷︷ ︸
⊆Tj

,

which equals Tj .

In the remaining part of this section, a prime and fragile subset of natural
numbers is constructed. First, some concepts that are used in the construc-
tion are defined.

For a set S ⊆ N the infinite word w(S) = x0x1x2 · · · ∈ {0, 1}ω, where

xk =
{

1, if k ∈ X
0, if k /∈ X,

is called the characteristic word of S.
The relation 4 between infinite words over {0, 1} defined by

x0x1x2 . . . 4 y0y1y2 . . . , iff xk 6 yk for all k ∈ N

is a partial order. It corresponds to set inclusion over subsets of N in the
sense that w(X) 4 w(Y) if and only if X ⊆ Y for X,Y ⊆ N. A similar
relation is defined for finite words of matching length as x1 . . . xn 4 y1 . . . yn
if xi 6 yi for each i.

A finite word w is a 4-factor of a word v ∈ {0, 1}∗ ∪ {0, 1}ω, if there are
words x, w′ and y, such that v = xw′y, |w′| = |w| and w 4 w′.

Let u = 100011110000 and vk = (1k0)2k for all k > 2, and consider a set
S defined by the characteristic word

w(S) = s = s0s1s2 · · · = uv2v3v4 · · · = 100011110000
∞∏
k=2

(1k0)2k
.

It will now be proved that this set has the desired properties.

37

Lemma 2.3.1. The set S is fragile and prime.

Proof. The first claim is that the length of each prefix uv2 . . . vn of s is

|uv2 . . . vn−1| = (n− 1)2n + 8. (2.1)

To prove this, consider the equality

n−1∑
k=0

(k + 1)tk =
((t− 1)n− 1)tn + 1

(t− 1)2
, (2.2)

which can be obtained by taking the derivative of both sides of the known
equality

∑n
k=0 t

k = tn+1−1
t−1 . Substituting t = 2 in (2.2) yields

|uv2 · · · vn−1| = 12 +
n−1∑
k=2

(k + 1)2k = 12 + (n− 1)2n + 1− 5 = (n− 1)2n + 8,

which proves (2.1).
Getting back to the proof of the Lemma, the fragility of S is obvious

because starting from vk, the distance between any two zeroes in w(S) is at
least k + 1.

To prove the primality of S, suppose that S = X+Y for some X,Y ⊆ N.
Let w(X) = x = x0x1x2 . . . and w(Y) = y = y0y1y2 . . . be the characteristic
words of X and Y .

Since S = X + Y , it holds that X + {k} ⊆ S for all k ∈ Y . This is
equivalent to 0kx 4 s. The characteristic word for S has 10001 as a prefix,
so 0 and 4 are the two smallest numbers in S. One of the sets, X or Y , must
contain them both. Let it be X, so that x begins with 10001.

If the factorization S = X + Y is nontrivial, then there is the smallest
nonzero numberm ∈ Y . Thenm,m+4 ∈ S, and it is easy to see thatm > 12:
indeed, by the form of u, there is no pair si = si+4 = 1 for 1 6 i 6 11.
Consequently, u is a prefix of x.

Now xi = si for i < m and 0mx = 0mu · · · 4 s. Since u = 100011110000,
we have sm+4 = sm+5 = sm+6 = sm+7 = 1. Then

m > 52 = |uv2v3| − 4, (2.3)

because v4 is the first of the words vk to have 1111 as a 4-factor. Let the
first m symbols of x be

uv2 · · · vnv,

where n > 2 and vn+1 = vv′. It follows that uv2 · · · vn is a 4-factor of
v′vn+2, since |uv2 · · · vn| = n · 2n+1 + 8 < (n+ 3) · 2n+2 = |vn+2| by (2.1). In
particular, there is a factor w of v′vn+2 with |w| = |vn| and vn 4 w. Since the
distance between consecutive occurences of zero in v′vn+2 is at most n + 3,

38

and |w| = (n+ 1) · 2n > 2(n+ 2) + 1, it follows that w contains at least two
occurrences of zero. If w has a zero in some position, then vn has to have a
zero in the same position. Since the distance between consecutive zeroes is
n + 1 in vn and n + 2 or n + 3 in w, a contradiction is obtained. It follows
that Y = {0} and S is prime.

It follows by Theorem 2.3.1 that this set S is not representable by systems
of equations with eventually periodic constants and the operation of addition.
Since S is obviously recursive, and in fact computationally very easy, these
equations are less powerful than the equations equipped with addition and
union.

Similarly, one-variable systems cannot have fragile sets as components
of least or greatest solutions. The proof is omitted, as it is just a simpler
version of the proof of Theorem 2.3.1.

Theorem 2.3.2 ([24]). Let S ⊆ N be fragile. Then S is not the least or
greatest solution of any system of equations in S[X1,Pevp(N), (P(N),+)].

A fragile set can be represented by a system in
S[Xm,Pevp(N), (P(N),∪,+)], with this set as a component of a unique solu-
tion. This system can be simulated by a system in S[X1,Pevp(N), (P(N),+)]
as presented in the previous section. Say the solution is (S1, . . . , Sm) and S1

is the fragile set. Then the set

π(S1, . . . , Sm)+π(S1, . . . , Sm)+Eϕ =
p−2⋃
n=0

τpn(N)∪τpp−1(S1) (cf. Lemma 2.2.3)

for the expression ϕ = X1 is fragile, and adding a variable Y and an
equation Y = X + X + Eϕ to the one-variable system with the solution
X = π(S1, . . . , Sm) results in a system with two variables and a fragile set
as a component of the unique solution. Thus, one-variable systems with ad-
dition only are less powerful than many-variable systems with addition only.
Table 2.1 gathers what is known about the expressive power of systems over
sets of natural numbers.

In the table, Σ1
1 is the class of sets that can be defined by using existential

quantification of second order before any first-order sentence. A dual notion
is Π1

1, where only the use of universal second-order quantification is allowed.
The hyper-arithmetical sets are in the intersection of these classes, in other
words ∆1

1 = Σ1
1 ∩Π1

1.
The encodings of different classes mentioned in the table mean that the

whole class of the corresponding sets are not representable. They can be
similar to the one discussed in Section 2.2, implying that the number of
variables can be limited to one. There might, depending on the meaning of
similar, exist other kinds of encodings for representing sets, but the results in
this section show that all sets in the considered classes are not representable.

39

Operations Unique Least Greatest
∪,+ [13] ∆0

1 (recursive) Σ0
1 (r.e.) Π0

1 (co-r.e.)
+ [14, 24], Sec. 2.2 encodings of ∆0

1 encodings of Σ0
1 encodings of Π0

1

∪,+,− [15, 16] ∆1
1 (HA) ? Σ1

1

+,− [21] encodings of ∆1
1 ? encodings of Σ1

1

Table 2.1: Expressive power of systems of equations over sets of natural
numbers

The only unknown instances in the table are the least solutions of sys-
tems using union, addition and subtraction and the more restricted case of
only addition and subtraction. However, the encoding used in [21] is order-
preserving. Thus, whatever the class of representable sets is in the first case,
the second can represent them in an encoded form. Symmetry would suggest
that these are the sets in Π1

1, but it is left to be seen if that really is the case.

40

Part II

Languages

41

Chapter 3

Different types of languages

Languages are another thing familiar to all people. A good example is the
language used to write this thesis: it is English suplemented with mathe-
matical notion. The text consists of words. Words are sequences of capi-
tal and lower case letters in the Latin alphabet. Besides that, one can find
spaces and punctuation marks in this written text. There are also numerals
(0, 1, 2, 3, 4, . . .), Greek letters (π, σ, γ, . . . and Π,Σ,Γ, . . .), blackboard bold
letters (N,P,Q, . . .), symbols for operations (+,−, ·, . . .), and so on.

Natural languages, such as English, Finnish, Greek, Chinese or Urdu,
are not exactly defined nor static. The lack of exact definability follows from
the fact that whether a word belongs in a language or not might depend on
the context. For example, there are many dialects of languages and it is not
always easy to decide if a word like YO! should be accepted as a word in
English. The lack of staticness is a consequence of the ever ongoing process of
language evolution: new words are introduced and old ones are forgotten, so
natural languages and grammars defining them are under a constant change.

The most familiar and common way of defining a formal language is a
formal grammar. The earliest known example of a formal grammar is Pān. ini’s
grammar for the Sanskrit language, from around 500 BCE. Modern research
on formal grammars started after Noam Chomsky introduced context-free
grammars in the late 1950s. Grammars in their most familiar form express
the structure of sentences in a natural language. For example, the grammar
with the rules

(sentence) → (subject)(predicate)
(predicate) → (verb)

∣∣ (verb) (object)
(subject) → It

∣∣ Frank ∣∣ The dog
(verb) → is

∣∣ has ∣∣ eats
(object) → an apple

∣∣ a dog
∣∣ 64 elephants

prescribes that sentences consist of a subject and a predicate, or of a subject,

43

a predicate and an object. The grammar generates a small fraction of English,
36 different sentences to be exact. However, it should be enough to give an
intuitive perception on the functionality of generative grammars. It generates
the sentences

It is

Frank eats an apple

Frank has 64 elephants

and
The dog is a dog

among others.
A complete grammar totally defining the English language should of

course be much more complicated and actually, due to the non-exact and non-
static nature of natural languages, such a grammar does not exist. Moreover,
the meaning of a sentence like "It is" is heavily dependent on its context.
The word "It" can refer to almost anything and the meaning of the word
"is" is not clear without knowing what is being discussed.

In mathematics, exactness is required, and it is essential, to reason about
abstract and well-defined objects. Therefore, at least in theory, the syntax
and semantics of a mathematical language are defined in some precise way,
though in practice, natural language is more or less freely used for conve-
nience.

The grammar with the rules

S → (S + S)
∣∣ (S · S)

∣∣ N
A → 1B

∣∣ 2B
∣∣ 3B

∣∣ 4B
∣∣ 5B

∣∣ 6B
∣∣ 7B

∣∣ 8B
∣∣ 9B

∣∣ 0
B → 1B

∣∣ 2B
∣∣ 3B

∣∣ 4B
∣∣ 5B

∣∣ 6B
∣∣ 7B

∣∣ 8B
∣∣ 9B

∣∣ 0B
∣∣ ε

defines expressions over the natural numbers in base 10 using addition and
multiplication. Here S stands for an expression and A stands for a number.
So, an expression is either a number or a sum or product of two expressions,
and a number is a sequence of numerals not starting with a zero, unless the
number is zero. The last replacement for B is the empty word, denoted by
ε, which means that replacing B with ε makes it disappear.

In formal language theory, only the syntax of a language is in the scope
of interest and words are just sequences of symbols without any meaning
attached to them. In contrast to natural languages, formal languages are
exact and static, although in some cases, the question whether a word belongs
to a language is impossible to solve. So, formal languages consist of words
that can be any sequences of letters and do not need to mean anything.
Usually the words in formal languages look like abcacababcaaacbabcacb or
10001110001011, and do not need to resemble the words in natural languages.

44

3.1 Formal languages

A formal language is a set of words over a finite alphabet Σ. Words are
sequences of letters in Σ, so a word w can be written as

w = a0a1 · · · an−1 or w = b1b2 · · · bn,

where ai, bj ∈ Σ. In this case, the length of w is n, denoted by

|w| = n.

The unique word of length zero is called the empty word and is denoted by
ε.

The concatenation u · v = uv of two words

u = a1a2 · · · am
v = b1b2 · · · bn

is the word with letters from u continuing with letters from v:

uv = a1a2 · · · amb1b2 · · · bn.

The prefix of length k > 0 of a word w = a1a2 · · · an is prefk(w) =
a1a2 · · · ak if k < n, and prefk(w) = w if k > n. In other words, prefk(w) is
the word formed by the first k letters of w, or the whole word w if k is larger
than the length of w. Symmetrically, the suffix of length k > 0 of a word w,
denoted by sufk(w), is the word formed by the last k letters of w.

The set of all words over Σ is denoted by Σ∗, so that L is a language over
the alphabet Σ if

L ⊆ Σ∗

or
L ∈ P(Σ∗).

The set of words of length at most k > 0 is denoted by Σ6k, so that

Σ6k = {w ∈ Σ∗ | |w| 6 k}.

Concatenation of languages K,L ⊆ Σ∗ is defined elementwise, so that
K · L = KL = {uv | u ∈ K, v ∈ L}.

The star L∗ for L ⊆ Σ∗ is defined by

L∗ =
∞⋃
n=0

Ln = {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ . . .

and, applied to Σ, this definition gives the set of all words Σ∗ as was defined.

45

If Σ = {a} is unary, containing only one letter, then the concatenation
is commutative as the length of the word is enough to characterize the word
making (Σ∗, ·) isomorphic to (N,+) discussed in the first part through the
mapping an → n. It is a monoid isomorphism, as

ak · al = ak+l.

So, from the algebra point of view it is irrelevant which of the two structures
is used. In the following, it is assumed that |Σ| > 1.

The concatenation is associative

(w1 · w2) · w3 = w1 · (w2 · w3) for all w1, w2, w3 ∈ Σ∗

and the empty word is the unit element

ε · w = w · ε = w for all w ∈ Σ∗.

The concatenation is not commutative, so (Σ∗, ·) is a non-commutative
monoid.

The concatenation of languages is associative

(L1 · L2) · L3 = L1 · (L2 · L3) for all L1, L2, L3 ⊆ Σ∗

and the singleton set containing only the empty word is the unit element

{ε} · L = L · {ε} = L for all L ⊆ Σ∗.

Thus, (P(Σ∗), ·) is also a non-commutative monoid.
Furthemore, the concatenation is distributive over union

L1 · (L2 ∪ L3) = (L1 · L2) ∪ (L1 · L3) for all S1, S2, S3 ⊆ N,

so that (P(Σ∗),∪, ·) is a non-commutative semiring.
As in the case of natural numbers, the set of words Σ∗ can be embedded

into the set of languages by the inclusion w ↪→ {w}. Accordingly, the notation

{w} · L = wL

is used. The image of Σ∗ under this inclusion is the class of singleton sets
P1(Σ∗).

The family of regular languages is one of the most important language
families.

Definition 3.1.1. Regular languages over the alphabet Σ, denoted by
Reg(Σ), are defined as:

• ∅ is a regular language.

46

• {a} is a regular language for all a ∈ Σ.

• If K and L are regular languages, then K ∪ L and KL are regular
languages.

• If L is a regular language, then L∗ is a regular language.

The unary regular languages correspond to the class of eventually peri-
odic sets of natural numbers as L is regular if and only if the set

{n ∈ N | an ∈ L}

is eventually periodic.
The set of languages P(Σ∗) accompanied with the inclusion order is

a complete lattice. The inclusion order for vectors of languages is defined
componentwise, so that (K1, . . . ,Kn) ⊆ (L1, . . . , Ln) if Ki ⊆ Li for all
i = 1, . . . , n. The operations of union, intersection and concatenation are
monotone with respect to inclusion while complementation is not monotone.

The distance between languages can be defined by

d(K,L) = 2min({|w| | w∈K4L}),

whereK4L = (K\L)∪(L\K) is the symmetric difference. With this metric,
(P(Σ∗), d) is an ultra-metric space and (P(Σ∗), ·,∪,∩,) is an ultra-metric
algebra as the operations are continuous.

3.2 Language equations

Language equations are equations where variables get values from languages
over a given alphabet. The expressions in them usually contain the set-
theoretic operations union, intersection and complementation, and the op-
eration of concatenation. The constants are often singletons, finite sets or
regular languages. If S ∈ S[X , C, (P(Σ∗), ·,∪,∩)] is a system of language
equations and it has a solution S ∈ P(Σ∗)X , then the components ΠX(S) of
the solution are languages. The systems can be used to represent languages
by fixing a variable X ∈ X and a solution S of the system and saying that
the system represents the language ΠX(S). Usually, the solutions considered
are unique, least or greatest, in order to be easily distinguishable from other
possible solutions.

If a system of equations in S[Xn, C, (P(Σ∗), ·,∪,∩)] is in the resolved
form with the equations

Xi = ϕi(X1, . . . , Xn)

for n = 1, . . . , n, then it has a least and greatest solution by Tarski’s fixed
point theorem (Lemma 1.1.1). In formal language theory, the most usual

47

way of representing languages by language equations are by least solutions
of such systems.

If also complementation is allowed, the least and greatest solutions do
not need to exist. In fact, resolved systems in S[X , C, (P(Σ∗), ·,∪,∩,)]
can represent all languages that can be represented by unresolved systems.
Consider an equation ϕ(X) = ψ(X). It has a solution S if and only if the
symmetric difference

ϕ(S)4 ψ(S) =
(
ϕ(S) ∩ ψ(S)

)
∪
(
ψ(S) ∩ ϕ(S)

)
equals the empty set. Now introducing a new variable Y /∈ X makes it
possible to construct the equation

Y =
(
ϕ(X)4 ψ(X)

)
∩ Y

that has the solution Y = ∅, X = S if and only if ϕ(S) = ψ(S), and no
solution if ϕ(X) = ψ(X) has no solution.

The unresolved systems can represent recursive languages as unique solu-
tions, making them computationally hard. The following definition is useful
for considerations on language equations of the general form.

Definition 3.2.1. Let ϕ = ψ ∈ E[X , C, (P(Σ∗), ·,∪,∩,)] and n ∈ N. The
equation is said to have a solution modulo Σ6n if there is S ∈ P(Σ∗)X such
that

d(ϕ(S), ψ(S)) 6 2n+1.

In other words, the equation ϕ = ψ has the solution S if ϕ(S) and
ψ(S) are equal on words of length at most n. A system of equations has a
solution modulo Σ6n if there is a solution modulo Σ6n to all equations in
the system. Similarly, solutions modulo L for any subword-closed language
L can be defined by

ϕ(S) ∩ L = ψ(S) ∩ L.

Since (P(Σ∗), ·,∪,∩,) is ultra-metric, for every system S ∈
S[X , C, (P(Σ∗), ·,∪,∩,)] there exists such a natural number n that S has
a solution if and only if it has a solution modulo Σ6n. This follows from
Lemma 1.1.2, as it states the existence of such a number n that if a solu-
tion modulo Σ60 can be extended to a solution modulo Σ6n, then it can
be extended to a full solution. As there is a finite number of classes modulo
Σ6n, there exists an algorithm checking solvability of a system modulo Σ6n.
This can be done for every n starting from 0 and return not solvable, if an
n without a solution modulo Σ6n is encountered. If there is a solution, the
algorithm goes on infinitely, this being the case for every algorithm by the
following Proposition:

48

Proposition 3.2.1 (Okhotin [29]). The problem of solution existence for
S[X ,P1(Σ∗), (P(Σ∗), ·,∪,∩,)] is co-r.e.-complete.

This completeness can be achieved by much more simpler systems be-
cause Theorem 2.2.2 can be interpreted as a theorem on unary languages as
follows:

Theorem 3.2.1 (Theorem 2.2.2). The problem of solution existence for sys-
tems

XK = L

XXM = XXN

over {a}, where K,L,M,N ⊆ a∗ are regular, is co-r.e.-complete.

Similarly, the subtraction of sets of natural numbers can be seen as the
quotient of unary languages. Jeż and Okhotin have proved that the compo-
nents of unique solutions of systems over sets of numbers using union, addi-
tion, subtraction, and eventually periodic constants ([16], Proposition 2.2.1)
are the hyper-arithmetical sets. The encoding in [21] enables the represen-
tation of encodings of all hyper-arithmetical sets in the unique solutions
of systems of unary language equations using one variable, concatenation,
quotient and regular constants:

Theorem 3.2.2 (Theorem 2.2.3). Let S ⊆ N be hyper-arithmetical. There
are natural numbers p, d ∈ N and regular unary languages K,L,M,N ⊆ a∗,
such that a natural number n ∈ N belongs to S if and only if apn+d belongs
to the unique solution to

XK = L

(XX)M = (XX−1)N.

This implies the following result on the complexity of solution existence
for these systems:

Theorem 3.2.3 (Lehtinen [21]). The problem of solution existence for sys-
tems

XK = L

(XX)M = (XX−1)N

over {a}, where K,L,M,N ⊆ a∗ are regular, is Σ1
1-complete.

Since the languages here are unary, the results have consequences also
on the decidability of questions concerning language equations with other

49

operations than concatenation and quotient. One example is the shuffle ,
defined as

u v = {u1v1u2v2 · · ·ukvk | u = u1 · · ·uk, v = v1 · · · vk, ui, vi ∈ Σ∗}.

Although the shuffle of two words is defined to be a set of words, all of these
words are equal to the concatenation of u and v in the unary case. These
kind of operations have been studied among others by Lila Kari [17], who
investigated language equations X♦K = L, where ♦ is an invertible word
operation with a right-inverse �. Here invertible means that for all words
u, v, w ∈ Σ∗ it holds that

w ∈ (u♦v) if and only if v ∈ (u�w),

and in this case ♦ and � are right-inverses of each other.
The operations considered by Kari were different insertion and deletion

operations that have the common property that when restricted to the unary
alphabet they coincide with the concatenation and quotient. Kari proved
decidable many instances of solution existence for X♦K = L, where K and
L are regular constants. From the above theorems it follows that the problem
of solution existence for systems of two equations

X♦K = L

X♦X♦M = X♦X♦N

with regular constants K, L, M and N and an insertion operation ♦ is
undecidable, and in fact co-r.e.-hard.

Similarly, the problem of solution existence of systems of two equations

X♦K = L

(X♦X)♦M = (X�X)♦N

with regular constants K, L, M and N , an insertion operation ♦ and a
deletion operation � is Σ1

1-hard.

3.3 Grammars and families of languages

Grammars are used to generate languages. They are defined as follows:

Definition 3.3.1. Let k, l ∈ N. A (Boolean) rule is an expression

A→ α1& . . .&αk&¬β1& . . .&¬βl,

where A ∈ N and αi, βj ∈ (N ∪ Σ)∗.
The words αi and βj appearing on the right-hand side of the rule are

called positive and negative conjuncts respectively.
If l = 0, the rule is called conjunctive, and if in addition k = 1, it is

called context-free.

50

Definition 3.3.2. A grammar G = (Σ, N,R, S) is a 4-tuple, where

• N is the set of nonterminals

• Σ is the terminal alphabet

• R is the set of rules

• S ∈ N is the initial nonterminal

The grammar is called Boolean, conjunctive or context-free if all the rules
in the grammar are Boolean, conjunctive or context-free respectively.

The language generated by the grammar, LG ⊆ Σ∗, is most easily defined
by the rewriting of words.

Definition 3.3.3. Let G = (Σ, N,R, S) be a conjunctive grammar.
If µ1, µ2 ∈ (N ∪ Σ ∪ {(,),&})∗ are such that µ1 = ν1Aν2 and µ2 =

ν1(α1& . . .&αk)ν2, or µ1 = ν1(w&w& . . .&w)ν2 and µ2 = ν1wν2, then µ2 is
derivable from µ1 in one step, denoted by µ1 → µ2. If there is a sequence of
one step derivations

µ1 → µ2 → . . .→ µn,

then µn is derivable from µ1, denoted by µ1 →∗ µn.
The language generated by a nonterminal A ∈ N is

LA = {w ∈ Σ |A→∗ w}.

Sometimes the notation LG(A) is used to emphasize the grammar.
The language generated by G is the language generated by the initial non-

terminal S :
LG = LS .

The notation Lα is also used to denote the language corresponding to α
according to the grammar for any α ∈ (N∪Σ)∗, so that Lα = LA1LA2 · · ·LAn

for α = A1A2 · · ·An, where La = {a} for all a ∈ Σ.
However, this rewriting semantics is not used in this thesis because the

semantics through language equations will be used instead. Ultimately, the
reason for this is that Boolean grammars cannot be given a semantics through
rewriting. The rule

A→ α1& . . .&αk&¬β1& . . .&¬βl

should generate w if it is in every Lαi and not in any Lβi
. This would mean

that something is not generated by βi, which would make things very com-
plicated as nonterminals in βi’s can have negative conjuncts in rules as well.

Semantics for Boolean grammars can be defined by language equations.

51

Definition 3.3.4. Let G = (Σ, N,R, S) be a Boolean grammar. The corre-
sponding system of equations S(G) ∈ S[N,P1(Σ∗), (P(Σ∗), ·,∪,∩,)] con-
tains the equation

A =
⋃

A→α1&...&αk&¬β1&...&¬βl∈R
α1 ∩ . . . ∩ αk ∩ β1 ∩ . . . ∩ βl

for each A ∈ N .
If |N | = n, the variables of the corresponding system are usually chosen

to be Xn, with a bijection N → Xn mapping S to X1.

For each conjunctive grammar G = (Σ, N,R,XS), the corresponding sys-
tem of equations S(G) is in S[Xn,P1(Σ∗), (P(Σ∗), ·,∪,∩)]. The operations
are monotone, so the system has a least solution S ∈ P(Σ∗)n, and for this
least solution it holds that Π1(S) = LG.

For context-free grammars, the corresponding systems of equations are
in S[Xn,P1(Σ∗), (P(Σ∗),∪, ·)] and they also have the language generated by
the grammar as a component of the least solution.

Example 3.3.1. Let N = {S}, R contain the rules

S → aSb

S → ε

and G = ({a, b}, N,R, S). The language generated by G is

LG = LS = {anbn | n > 0}.

For example, the word aabb is generated by the rewriting

S → aSb→ aaSbb→ aa · ε · bb = aabb.

Let S ∈ S[X1, C, (P(Σ∗),∪, ·)] be the system

X = {a}X{b} ∪ {ε}.

It has the unique solution X = {anbn | n > 0} = LG.

The conjunctive grammars are more powerful than context-free gram-
mars, as they can generate the following non-context-free language:

Example 3.3.2. Let N = {S,A,B,C}, R contain the rules

S → AB&CA
A → aA

A → ε

B → bBa

B → ε

C → aCb

C → ε

52

and G = ({a, b}, N,R, S). The language generated by G is

LG = {anbnan | n ∈ N}.

The rewriting of conjuncts happens simultaneously as in the derivation

S → AB&CA→ aAB&CaA→ aB&Ca→
→ abBa&aCba→ aba&aba→ aba

of the word aba.
Let S3 ∈ S[X3, C, (P(Σ∗), ·,∪,∩)] be the system

X1 = a∗X2 ∩X3a
∗

X2 = bX2a ∪ {ε}
X3 = aX3b ∪ {ε}.

It has the least solution (X1, X2, X3) = (S1, S2, S3), where

S1 = {anbnan | n ∈ N}
S2 = {bnan | n ∈ N}
S3 = {anbn | n ∈ N}.

Here S1 = LG, although it is not the system corresponding to G because the
regular components have been considered as constants.

The general case of systems corresponding to Boolean grammars is more
complicated since complementation is not a monotone operator. For example,
the grammar with only one nonterminal S and rule S → ¬S does not have
an intuitive meaning, and the corresponding system with the equation X =
X does not have any solutions. Furthermore, the languages representable
as the unique solutions of systems in S[X ,P1(Σ∗), (P(Σ∗), ·,∪,∩,)] are
the recursive languages, so their expressive power is too big for practical
applications.

The easiest, although in some senses unsatisfactory, way of defining se-
mantics for a Boolean grammar is through the so-called strongly unique
solution.

Definition 3.3.5. Let S ∈ S[X , C, (P(Σ∗), ·,∪,∩,)]. It is said to have a
strongly unique solution if it has a unique solution modulo Σ6n for all n ∈ N.

A system with a strongly unique solution always has a unique solution.
Using this definition, Boolean grammars with the corresponding system

of equations having a strongly unique solution can be given a meaning: the
unique solution to the system, whereas grammars with the corresponding
system without a strongly unique solution are considered ill-formed and are

53

not given a meaning. The drawback of this definition is that some grammars
with an intuitively clear meaning are considered ill-formed. The simplest
one of these is the grammar with only the rule S → S. It should generate
the empty language by the least solution semantics, but the corresponding
system X = X does not have a unique solution: all languages are solutions!
However, for any conjunctive language, there exists a conjunctive grammar
generating that language, with a corresponding system having a strongly
unique solution.

Boolean grammars have the following normal form used in the proofs of
the next chapter:

Definition 3.3.6. A Boolean grammar G = (Σ, N,R, S) is said to be in
binary normal form, if all rules in R are of the form

A→ B1C1& . . .&BkCk&¬D1E1& . . .&¬DlEl&¬ε

for k > 1, l > 0 and A,Bi, Ci, Di, Ei ∈ N ,

A→ a

for a ∈ Σ and A ∈ N or
S → ε.

The rule of the last type is allowed only if S does not appear in the right-hand
sides of any rules.

Every Boolean grammar can be effectively transformed into an equivalent
grammar in binary normal form generating the same language. Furthermore,
every system of equations corresponding to a Boolean grammar in binary
normal form has a strongly unique solution.

Example 3.3.3. Let N = {S,A,B,C,D}, R contain the rules

S → AB&¬CA
A → aA

A → ε

B → bBa

B → ε

C → aCb

C → ε

and G = ({a, b}, N,R, S). The language generated by G is

LG = {ambnan |m,n ∈ N, m 6= n}.

54

It is not known if Boolean grammars can generate more languages than
conjunctive grammars, but the language {ww |w ∈ {a, b}∗} is a good candi-
date for a counterexample as there is a Boolean grammar generating it, and
no conjunctive grammar for it is known.

Grammars can be restricted in order to define subfamilies of languages.
For example, if all rules in a context-free grammar are of the form

A→ aB

or
A→ a,

then the grammar is called left-linear and the language it generates is regular.
If rules

A→ aBb

and
A→ a

are allowed, then the grammar is linear and it generates a linear context-
free language. Similarly, if the only rules containing nonterminals on the
right-hand side in a conjunctive grammar are of the form

A→ u1B1v1& . . .&unBnvn,

where ui, vi ∈ Σ∗, then the grammar is linear conjunctive and generates a
linear conjunctive language. The linear Boolean grammars could be defined
accordingly, but they generate the same family of languages as the linear
conjunctive grammars [28].

Some grammars are ambiguous in the sense that one word can be gener-
ated in many ways. This is sometimes undesirable and the grammars satis-
fying the following definition are an important subclass of grammars.

Definition 3.3.7. A Boolean grammar G = (Σ, N,R, S) is said to be un-
ambiguous if

• For every nonterminal A and word w, there exists at most one rule

A→ α1& . . .&αk&¬β1& . . .&¬βl,

with
w ∈ Lα1 ∩ . . . ∩ Lαk

∩ Lβ1 ∩ . . . ∩ Lβl

(in other words, different rules for a single nonterminal generate dis-
joint languages).

• For every conjunct α = A1 · · ·An or β = ¬A1 · · ·An that occurs in
the grammar, and for every word w, there exists at most one partition
w = u1 · · ·un with ui ∈ LAi .

55

A (context-free, conjunctive, Boolean) language L is called inherently ambigu-
ous if there is no (context-free, conjunctive, Boolean) unambiguous grammar
generating L.

The following example describes a grammar generating an inherently
ambiguous context-free language:

Example 3.3.4. Let N = {S,A,B,C}, R contain the rules

S → AB

S → CA

A → aA

A → ε

B → bBa

B → ε

C → aCb

C → ε

and G = ({a, b}, N,R, S). The language generated by G is

LG = {akblam | k = l or l = m}.

The words anbnan are generated by both of the rules for S.

However, the language of the example is not inherently ambiguous as a
conjunctive or Boolean language because there exists an unambiguous con-
junctive grammar for the language.

Besides grammars of particular type, families of languages can be defined
through recognition. Regular languages are recognized by finite automata,
with a bounded memory represented by the states of the automaton.

Context-free languages can be recognized by pushdown automata simu-
lating grammars in Greibach normal form, where all rules containing non-
terminals on right-hand sides are of the form

A→ aBC.

A pushdown automaton has a stack, where it can push to or pull from a
symbol according to the letter being read, its state and the topmost symbol
of its stack. Formally, a pushdown automaton is defined as follows:

Definition 3.3.8. A pushdown automaton (PDA) is a septuple B =
(Σ,Γ, Q, q0, δ, F, γ0), where

• Σ is a finite alphabet

56

• Γ is the stack alphabet

• Q is the set of states

• q0 ∈ Q is the initial state

• The configurations of the automaton are triples (q, w, x), where q ∈ Q,
w ∈ Σ∗ and x ∈ Γ∗

• the transition function δ maps Q × (Σ ∪ {ε}) × Γ to the set of finite
subsets of Q× Γ∗

• F ⊆ Q is the set of final states

• γ0 ∈ Γ is the initial stack symbol

The relation ` of one-step transition on the set of these configurations
is defined as (q, aw, γz) ` (q′, w, yz) for all (q′, y) ∈ δ(q, a, γ). The language
recognized by the PDA is

L(B) = {w ∈ Σ∗ | (q0, w, γ0) `∗ (qF , ε, ε) for some qF ∈ F}.

For a context-free grammar in Greibach normal form, the correspond-
ing PDA reading letter a from the input word pulls a nonterminal A from
the stack and pushes BC to the stack, if there is a rule A → aBC in the
grammar. In the general case, there can be many rules of that form, and
consequently the automaton behaves in a nondeterministic way. This means
that there are many different possibilities for the computations to emerge.
The deterministic variant of PDA has just one way to continue the compu-
tation in every step. So, a PDA is deterministic if δ(q, a, γ) has at most one
element for all (q, a, γ) ∈ Q × (Σ ∪ {ε}) × Γ, and if δ(q, ε, γ) is not empty,
then δ(q, a, γ) is empty for all a ∈ Σ.

As an example of a context-free language not recognized by a determin-
istic PDA, there is the following language that is also encountered in the last
chapter:

Example 3.3.5. Let N = {S,A,B}, R contain the rules

S → A

S → B

A → aAb

A → ab

B → aBbb

B → abb

57

and G = ({a, b}, N,R, S). The language generated by G is

LG = {anbn | n > 1} ∪ {anb2n | n > 1}

Here it has to be decided in the first step of the rewriting whether a word of
the form anbn or a word of the form anb2n is to be generated. The pushdown
automaton recognizing the language has to make a nondeterministic guess at
the border of a’s and b’s.

The language {banbn | n > 1} ∪ {bbanb2n | n > 1} on the other hand
is deterministic context-free, as reading one or two b’s in the beginning is
sufficient to distinguish the two cases before reaching the border.

Consider a further subfamily of deterministic context-free languages de-
fined by LL(k) grammars. These are grammars that can be parsed with a
lookahead k.

Definition 3.3.9. A context-free grammar G = (Σ, N,R, S) is called LL(k),
if S →∗ xAβ, A → α1, A → α2 ∈ R, w1 ∈ LG(α1β), w2 ∈ LG(α2β) and
prefk(w1) = prefk(w2) implies α1 = α2.

Accordingly, for an LL(k) grammar, there exists a partial function T : N×
Σ6k → R, such that whenever S →∗ xAβ, A → α ∈ R and w ∈ LG(αβ),
the rule A→ α is given by T (A,prefk(w)).

A language is LL context-free, if there exists an LL(k) grammar gener-
ating it for some k.

Example 3.3.6. The grammar in Example 3.3.1 generating the language
{anbn |n ∈ N} is LL(1), since the rule used to generate a letter can be known
instantly. If the word anbn is read from left to right, then reading the letter
a means that the rule

S → aSb

is used and at the first occurence of b, the rule

S → ε

is used.

A non-LL language is presented in the following example:

Example 3.3.7. The language {anbn | n ∈ N} ∪ {ancn | n ∈ N} is not LL
context-free. The grammar defining it has to have different rules to gener-
ate words of the form anbn and of the form ancn, and these cannot be dis-
tinguished reading only a’s in the beginning. The language is deterministic
context-free, as a pushdown automaton can decide if it should compare the
number of a’s to b’s or c’s at the first appearance of either letter.

The language {banbn |n ∈ N}∪{cancn |n ∈ N} on the other hand is LL(1)
as the correct ending of the word is known after reading the first letter.

58

Chapter 4

Closure properties of language
families

Closure properties of language families are among the most important the-
oretical results in formal language theory. Operations under interest are the
set-theoretic operations like union, intersection and complementation, the
algebraic operations like concatenation and different kinds of mappings.

Formally, the closure of a language family under an operation is defined
as:

Definition 4.0.10. If F is a family of languages and f : Fn → F a mapping,
then F is closed under f if

L1, . . . , Ln ∈ F

implies
f(L1, . . . , Ln) ∈ F .

For example, the family of context-free languages is closed under concate-
nation and union, but it is not closed under intersection or complementation.
Conjunctive languages, on the other hand, are trivially closed under inter-
section as it is built in their definition, and their closure under complement
is not known. Boolean languages are closed under all three set-theoretic op-
erations by definition.

Among the standard operations on languages are also morphisms that
respect concatenation and the more general gsm-mappings: these are map-
pings M : Σ∗ → Γ∗ implemented by deterministic transducers (generalized
sequential machines, gsm). As shown by Ginsburg and Rose [7], context-free
languages are closed under gsm-mappings; an easy proof of this fact given by
Harrison [9, Th. 6.4.3] is by simulating a gsm within a pushdown automaton.
On the contrary, the languages generated by Boolean grammars are already
not closed under morphisms: in fact, all recursively enumerable languages

59

can even be obtained as morphic images of languages generated by linear
conjunctive grammars, because the computations of Turing machines can
be represented as an intersection of two linear context-free languages, and
consequently, all recursively enumerative languages appear as morphic im-
ages of linear conjunctive languages. The closure of Boolean or conjunctive
languages under non-erasing morphisms remains an open problem, although
the closure is not likely as it would imply P = NP .

For a gsm-mapping M : Σ∗ → Γ∗, the inverse is defined as M−1(L) =
{w ∈ Σ∗ |M(w) ∈ L} for every L ⊆ Γ∗. It is known from Ginsburg and
Rose [7] that context-free languages are closed under inverse gsm-mappings.
This argument was adapted to unambiguous context-free languages by Gins-
burg and Ullian [8]. More accessible proofs of these results based upon push-
down automata were given by Harrison [9]. An examination of this argu-
ment shows that it also applies to linear context-free languages which are
consequently closed under inverse gsm-mappings. Table 4.1 presents selected
closure properties of language families.

∪ ∩ L · h inj.gsm gsm−1

Reg + + + + + + +
LL − [34] − [34] − [34] − [34] − [34] − − E5.2.1
DetCF − [5] − [5] + [5] − [5] − [5] + L5.2.2 + [5]
UnambCF − [8] − − [10] − [8] + [8] + [8] + [8]
LinCF + − − − + + + [9]
CF + − − + + + + [7]
LinConj + + + [28] − [36] − [28] + [4] + [11]
UnambConj ? + ? ? − + T4.2.1 + T4.3.2
Conj + + ? + − + T4.2.1 + T4.3.2
UnambBool + + + + − + T4.2.1 + T4.3.2
Bool + + + + − + T4.2.1 + T4.3.2

Table 4.1: Closure properties

Closure properties are handy in proving languages to be or not to be in
a given family. For example, if it is assumed to be known that the language
{anbnan | n ∈ N} is not context-free, as it is not, then it is easy to show
that the language {unvnun | n ∈ N} is not context-free either, as long as u
and v are not powers of the same word. The inverse image of the morphism
a → u, b → v for this language is the language {anbnan | n ∈ N} assumed
to be known non-context-free. The family of context-free languages is closed
under inverse morphisms, so {unvnun |n ∈ N} cannot be context-free either.
A direct proof for the lack of existence of a context-free grammar for that
language would require quite a complicated argument. Similarly, it can be
argued that the language {unvn|n ∈ N} is context-free under the assumptions

60

that {anbn | n ∈ N} is context-free and the family of context-free languages
is closed under morphisms, although in this case, a context-free grammar for
the language would also be easy to construct.

This chapter investigates the closure of Boolean languages and their sub-
families under inverse gsm-mappings. The proof also uses closure under other
operations. It is proved that the families are closed under injective gsm-
mappings and under inverses of a special case of gsm-mappings called weak
codings. As the inverses of gsm-mappings can be represented as a combina-
tion of injective gsm-mappings and weak codings, the closure under inverse
gsm-mappings follows. A different construction not using intermediate re-
sults can be found in the technical report Boolean Grammars Are Closed
Under Inverse Gsm Mappings [22].

4.1 Gsm-mappings

In the remaining sections of this chapter, one of the contributions of this
thesis is presented. It is proved that the family of Boolean languages and
some of its subfamilies are closed under injective gsm-mappings and under
inverse gsm-mappings. The proof is presented as in [23].

Definition 4.1.1. A (deterministic) generalized sequential machine (gsm)
is a septuple M = (Σ,Γ, Q, q0, δ, λ, F), where

• Σ is the input alphabet

• Γ is the output alphabet

• Q is the set of states

• q0 ∈ Q is the initial state

• δ : Q× Σ→ Q is the transition function

• λ : Q× Σ→ Γ∗ is the output function

• F ⊆ Q is the set of final states

The functions δ and λ are extended toQ×Σ∗ in the usual way, as δ(q, ε) =
q, δ(q, aw) = δ(δ(q, a), w) and as λ(q, ε) = ε, λ(q, aw) = λ(q, a)λ(δ(q, a), w).
A gsmM computes a partial functionM : Σ∗ → Γ∗, whereM(w) = λ(q0, w)
and δ(q0, w) ∈ F . In some literature, gsm’s are defined not to reject any input
and hence compute complete functions from Σ∗ to Γ∗. This thesis consistently
uses partial mappings computed by gsm’s with accepting states. The partial
mapping can also be considered as a mappingM : L(M)→ Γ∗, where L(M)
is the language recognized by the underlying finite automaton of the gsm.

61

Example 4.1.1. Let M = ({a, b}, {a, b}, {q}, q, δ, λ, {q}) be a gsm, where
the transition function is defined by δ(q, a) = δ(q, b) = q, and the output
function by λ(q, a) = u and λ(q, b) = v for some u, v ⊆ {a, b}∗.

It maps instances of a’s and b’s into instances of u’s and v’s, so that,
for example, M(an) = un, M(bn) = vn, M((ab)n) = (uv)n and M(anbn) =
unvn.

The mapping in the above example is a morphism. Every morphism can
be computed by a one-state gsm in a similar manner, so that morphisms are
a special case of gsm-mappings.

Example 4.1.2. Define a gsm M = ({a, b}, {a, b}, {q0, q1}, q0, δ, λ, {q0, q1}),
where the transition function is defined by δ(q0, a) = δ(q0, b) = q1 and
δ(q1, a) = δ(q1, b) = q0, and the output function by λ(q0, a) = λ(q1, b) = a
and λ(q0, b) = λ(q1, a) = b.

It changes every second letter in a word, so that, for example, M(a2n) =
(ab)n, M(b2n) = (ba)n and M((ab)n) = a2n.

A state q of a gsmM is said to be useful if it is reachable from the initial
state and there is a path from it to some accepting state, that is, δ(q0, u) = q
and δ(q, v) ∈ F for some u, v ∈ Σ∗. Denote by Q̂ ⊆ Q the set of useful states.

A gsm M is called injective if the function it computes is injective, that
is, if M(w) = M(w′) implies w = w′. The graph of any injective gsm’s
transitions that output ε (erasing transitions) is acyclic:

Lemma 4.1.1. Let M be an injective gsm. Consider the graph (V,E) of
its erasing transitions, with V = Q̂ and E = {(q, q′) | ∃a ∈ Σ : δ(q, a) =
q′, λ(q, a) = ε}. Then this graph is acyclic.

Proof. Suppose the contrary, that is, there is a cycle passing through some
state q ∈ Q̂. Then there is a word w 6= ε with δ(q, w) = q and λ(q, w) = ε.
Since q is useful, there exist words u, v ∈ Σ∗ with δ(q0, u) = q and δ(q, v) ∈ F .
Therefore, δ(q0, uv) = δ(q0, uwv) ∈ F and λ(q0, uv) = λ(q0, uwv), that is,
M(uv) = M(uwv), where uv 6= uwv. This contradicts the assumption that
M is injective.

Since the graph is acyclic, there is a bound on the length of its paths.
In terms of the given injective gsm, every path in this graph corresponds to
a sequence of erasing transitions. So it is known that the number of such
consecutive transitions is bounded, and for every state q ∈ Q̂ the following
bounds can be defined:

d(q) = max{|w| | δ(q, w) ∈ Q̂, λ(q, w) = ε},
d′(q) = max{|w| | ∃q′ : δ(q′, w) = q, λ(q′, w) = ε}.

62

In other words, d(q) (and d′(q), respectively) is the greatest number of erasing
transitions starting from state q (before entering state q, respectively) which
is well-defined because of Lemma 4.1.1.

Definition 4.1.2. Let Σ be an alphabet. A mapping h : Σ → Γ∗ is called a
weak coding if |h(a)| 6 1 for all a ∈ Σ.

A weak coding extends to a mapping h : Σ∗ → Γ∗ by h(a1a2 · · · an) =
h(a1)h(a2) · · ·h(an). This is a gsm-mapping, computed by a gsm M =
(Σ,Γ, {q}, q, δ, λ, {q}), where δ(q, a) = q and λ(q, a) = h(a) for all a ∈ Σ.

The goal of this chapter is to prove the closure of Boolean languages under
inverse gsm-mappings. This will be done using the general result below. The
construction is from Ginsburg and Ullian [8], who used it in the case of
unambiguous context-free languages to establish their closure under inverse
gsm-mappings.

Proposition 4.1.1 ([8]). Let L be a family of languages closed under injec-
tive gsm-mappings and inverse weak codings. The family L is closed under
inverse gsm-mappings.

Proof. Let L ⊆ Γ∗ be any language. and let M = (Σ,Γ, Q, q0, δ, λ, F) be a
gsm. It is assumed that Σ and Γ are disjoint.

The first step is to define a simulation of M , which maps words in Σ∗ to
words over ∆ = Σ ∪ Γ. Define a gsm M1 = (Σ,∆, Q, q0, δ, λ1, F), where

λ1(q, a) = aλ(q, a).

Now the imageM1(w) contains the computation history ofM on w, including
the symbols of w and the outputs. Then M1(Σ∗) becomes the language of
valid computation histories of M ; note that it is regular as an image of a
gsm.

Next, define a weak coding h : ∆→ Γ that converts such a computation
history into an output word of M . Let

h(c) =
{
ε, if c ∈ Σ,
c, if c ∈ Γ.

Now h(M1(w)) = M(w) for all w ∈ Σ∗.
It is also possible to reconstruct the input word ofM andM1 from a com-

putation history of this form. Let A = (∆, Q2, q
2
0, δ2, F2) be a DFA recogniz-

ing the languageM1(Σ∗). Define a gsmM2 = (∆,Γ, Q2, q
2
0, δ2, λ2, F2), which

in every state q ∈ Q2 outputs λ2(q, a) = a for all a ∈ Σ and λ2(q, b) = ε
for all b ∈ Γ. Then M2(M1(w)) = w for every w ∈ Σ∗ accepted by M1.
On the other hand, M2 contains a recognizer for M1(Σ∗), so every word
x /∈M1(Σ∗) is rejected. Therefore, every word w in the domain of M1 has a
unique pre-image M−1

2 (w) = M1(w), that is, M2 is injective.

63

Now the pre-image of every language L ⊆ Γ∗ underM can be represented
as follows:

M−1(L) = M2

(
h−1(L)

)
.

Here h−1 attempts to re-construct computation histories of M on words
w with M(w) ∈ L, then recognition of M1(Σ∗) by M2 filters out ill-formed
computation histories, and finally,M2 extracts the actual words w from these
computation histories.

If L ∈ L, then h−1(L) is in L as an inverse image of a weak coding and
M2

(
h−1(L)

)
belongs to L by the closure under injective gsm-mappings. So

M−1(L) is in L, which proves the closure of L under inverse gsm-mappings.

4.2 Boolean grammars and injective gsm-mappings

In this section, it is proved that the family of languages generated by Boolean
grammars is closed under injective gsm-mappings.

Let M = (Σ,Γ, Q, q0, δ, λ, F) be an injective gsm, and let Q̂ ⊆ Q be the
set of its useful states. Assume G = (Σ, N,R, S) is in the binary normal form
without the rule S → ε. If ε is generated by G, this would only mean that
M(ε) = ε should be in M(L(G)) (provided that q0 ∈ F), and it will suffice
to add a single rule to the final grammar to complete the construction.

Construct G′ = (Γ, N ′1∪N ′2∪{S′}, R′, S′) with N ′1 = Q̂×N×Q̂ and N ′2 =
Q̂×N ×N × Q̂. For all ϕ = B1C1& . . .&BmCm&¬D1E1& . . .&¬DnEn&¬ε
appearing as the right-hand side of a rule in R, denote

(q, ϕ, q′) = &
16i6m

(q,Bi, Ci, q′)& &
16j6n

¬(q,Dj , Ej , q
′)&¬ε (4.1)

The set of rules R′ of the new grammar is comprised of the following rules:

(q, A, q′)→ (q, ϕ, q′) (A→ ϕ ∈ R), (4.2a)

(q,B,C, q′)→ (q,B, q′′)(q′′, C, q′) (q′′ ∈ Q̂), (4.2b)

(q, A, δ(q, a))→ λ(q, a) (A→ a ∈ R; q, δ(q, a) ∈ Q̂; λ(q, a) 6= ε) (4.2c)
(q, A, q′)→ ε (∃w ∈ LG(A) : λ(q, w) = ε, δ(q, w) = q′) (4.2d)

S′ → (q0, S, qf) (qf ∈ F) (4.2e)

Now the task is to prove that G′ is well-defined, that it actually generates
M(L(G)), and that it preserves unambiguity. The case of a conjunctive G
also requires some remarks. These properties of G′ are established in the
below claims.

Lemma 4.2.1. The system (3.3.4) corresponding to G′ has a strongly unique
solution.

64

Proof. It has to be proved that the solution modulo every finite subword-
closed K ⊆ Γ∗ is unique. The proof is done by induction on |K|.

Basis: K = {ε}. The unique solution L modulo K is defined as follows.
For nonterminals in N ′1, L(q,A,q′) = {ε} if there is a rule (q, A, q′)→ ε in P ′,
and L(q,A,q′) = ∅ otherwise. For nonterminals in N ′2, L(q,B,C,q′) = {ε} if there
exists q′′ with rules (q,B, q′′) → ε and (q′′, C, q′) → ε, and L(q,B,C,q′) = ∅
otherwise.

Induction step: Suppose the solution modulo K is unique, let x /∈ K,
while all proper subwords of x are in K. It has to be proved that the solution
modulo K ∪ {x} is also unique. Suppose it is not, and let L and L′ be two
different solutions modulo K ∪ {x}, with x ∈ LX and x /∈ L′X for some
nonterminal X. We can choose X with minimal d(q) + d′(q′).

If X = (q, A, q′) ∈ N1, then x ∈ L(q,A,q′) is generated either by a rule
(q, A, δ(q, a))→ λ(q, a), which means that x ∈ L′(q,A,q′) by the same rule, or
by a long rule (q, A, q′)→ (q, ϕ, q′), which means that the solutions differ on
some nonterminal (q,B,C, q′) ∈ N2 also.

If X = (q,B,C, q′) ∈ N2, then there is a rule (q,B,C, q′) →
(q,B, q′′)(q′′, C, q′)&¬ε with x ∈ L(q,B,q′′)L(q′′,C,q′) and x /∈ L′(q,B,q′′)L

′
(q′′,C,q′).

Let x = x1x2, where x1 ∈ L(q,B,q′′) and x2 ∈ L(q′′,C,q′). If x1, x2 ∈ K, then,
by the induction hypothesis, x1 ∈ L′(q,B,q′′) and x2 ∈ L′(q′′,C,q′), and thus
x ∈ L′(q,B,C,q′).

Otherwise, let x1 = x and x2 = ε. Then ε ∈ L(q′′,C,q′) by a rule
(q′′, C, q′) → ε, and such a rule exists only if there is a nonempty word
w ∈ LG(C) with λ(q′′, w) = ε and δ(q′′, w) = q′. Then d′(q′′) < d′(q′′)+|w| 6
d′(q′). Consider the variable (q,B, q′′): since d(q) + d′(q′′) < d(q) + d′(q′),
by the assumption, the solutions L and L′ do not differ on this vari-
able and thus x ∈ L(q,B,q′′) = L′(q,B,q′′). On the other hand, by the ba-
sis of induction, ε ∈ L(q′′,C,q′) is equivalent to ε ∈ L′(q′′,C,q′). Therefore,
x ∈ L′(q,B,q′′)L

′
(q′′,C,q′) ⊆ L

′
(q,B,C,q′) which is a contradiction.

In the other case of x1 = ε and x2 = x, it similarly holds that d(q′′) <
d(q). Then for the variable (q′′, C, q′) it holds that d(q′′) + d′(q′) < d(q) +
d′(q′), so L′(q′′,C,q′) = L(q′′,C,q′) by assumption and x ∈ L′(q′′,C,q′). At the same
time, ε ∈ L′(q,B,q′′) according to the basis, and x ∈ L′(q,B,q′′)L

′
(q′′,C,q′) yields

the same contradiction as above.

Lemma 4.2.2. x ∈ LG′
(
(q, A, q′)

)
if and only if x = λ(q, w) for some

w ∈ LG(A) with δ(q, w) = q′.

Proof. The proof is an induction on the lexicographically ordered pairs
(|x|, d(q) + d′(q′)). Note that the second component is well-defined due to
Lemma 4.1.1.

Basis: If x = ε, then it can be generated only by a rule (q, A, q′)→ ε, and
the definition of these rules implies that there is w ∈ LG(A) with δ(q, w) = q′

65

and λ(q, w) = ε.
Induction step: Let |x| > 1. Assuming the induction hypothesis, the

following statement is proved first:

Claim 4.2.2.1. x ∈ LG′
(
(q,B,C, q′)

)
if and only if x = λ(q, w) for some

w ∈ LG(BC) with δ(q, w) = q′.

To prove this, assume first x ∈ LG′
(
(q,B,C, q′)

)
. Then x = yz with

y ∈ LG′
(
(q,B, q′′)

)
and z ∈ LG′

(
(q′′, C, q′)

)
for some q′′. If y, z 6= ε, then

y = λ(q, u) and z = λ(q′′, v) for some u ∈ LG(B), v ∈ LG(C), δ(q, u) = q′′

and δ(q′′, v) = q′ by the induction hypothesis. Now x = λ(q, uv) with uv ∈
LG(BC) and δ(q, uv) = q′.

If y = ε and z = x, then by definition there is such a word u ∈ LG(B) that
λ(q, u) = ε and δ(q, u) = q′′. Since u is nonempty, d(q′′) < d(q′′)+ |u| 6 d(q),
and thus the induction hypothesis is applicable to x ∈ LG′

(
(q, C, q′′)

)
which

asserts that there is v ∈ LG(C) with λ(q′′, v) = x and δ(q′′, u) = q′. Again,
x = λ(q, uv) with uv ∈ LG(BC) and δ(q, uv) = q′.

The case of y = x and z = ε is handled similarly.
Assume conversely that x = λ(q, w) for some w ∈ LG(BC) with

δ(q, w) = q′. Then w = uv with u ∈ LG(B) and v ∈ LG(C), where
u, v 6= ε. Let q′′ = δ(q, u). If λ(q, u) = ε, then d(q) < d(q′′) and if
λ(q, v) = ε, then d′(q′′) < d′(q′). In both cases, the induction hypothe-
sis is applicable for λ(q, u) ∈ LG′

(
(q,B, q′′)

)
and λ(q, v) ∈ LG′

(
(q′′, C, q′)

)
,

as is in the case λ(q, u), λ(q, v) 6= ε. Thus λ(q, u) ∈ LG′
(
(q,B, q′′)

)
and

λ(q′′, v) ∈ LG′
(
(q′′, C, q′)

)
, and x = λ(q, u)λ(q′′, v) ∈ LG′

(
(q,B,C, q′)

)
,

which proves Claim 4.2.2.1.

Claim 4.2.2.2. Let ϕ = B1C1& . . .&BmCm&¬D1E1& . . .&¬DnEn&¬ε
and A → ϕ be a rule in P , assume x 6= ε. Then x ∈ LG′

(
(q, ϕ, q′)

)
if

and only if x = λ(q, w) for some w ∈ LG(ϕ) with δ(q, w) = q′.

Recall that (q, ϕ, q′) is a notation for a Boolean expression (4.1). As-
sume that x ∈ LG′

(
(q, ϕ, q′)

)
, then by (4.1) x ∈ LG′

(
(q,Bi, Ci, q′)

)
for i =

1, . . . ,m. By Claim 4.2.2.1, there are words wi ∈ LG(BiCi) with δ(q, wi) = q′

and λ(q, wi) = x. Since M is injective, all the words w1 = . . . = wm are the
same, denote this word by w. Furthermore, w /∈ LG(DjEj) for j = 1, . . . , n
again by Claim 4.2.2.1, so w ∈ LG(ϕ).

Conversely, let x = λ(q, w) for some w ∈ LG(ϕ) with δ(q, w) = q′. Now
for each i = 1, . . . ,m, w ∈ LG(BiCi) and hence, x ∈ LG′

(
(q,Bi, Ci, q′)

)
by Claim 4.2.2.1. Similarly, w /∈ LG(DjEj) for j = 1, . . . , n, and it has
to be proved that x /∈ LG′

(
(q,Dj , Ej , q

′)
)
. Suppose the contrary that x ∈

LG′
(
(q,Dj , Ej , q

′)
)
. Then, by Claim 4.2.2.1, there is w̃ ∈ LG(DjEj) with

δ(q, w̃) = q′ and λ(q, w̃) = x. Since M is injective, w = w̃, and hence
w ∈ LG(DjEj) which contradicts the above. Therefore, x ∈ LG′

(
(q, ϕ, q′)

)
and Claim 4.2.2.2 is proved.

66

To begin with the proof of the induction step, assume first x ∈
LG′
(
(q, A, q′)

)
. If x is generated by a rule (q, A, δ(q, a)) → x, then, by the

definition of these rules, x = λ(q, a) and a ∈ LG(A). If x is generated by
a rule (q, A, q′) → (q, ϕ, q′), then by Claim 4.2.2.2 there is w ∈ LG(ϕ) with
δ(q, w) = q′ and λ(q, w) = x. It follows that w ∈ LG(A) by the rule A→ ϕ,
which exists by the construction of (4.2a).

Conversely, assume that x = λ(q, w) with w ∈ LG(A) and δ(q, w) = q′.
If w = a ∈ Σ, then there is a rule A→ a ∈ R, and x ∈ LG′

(
(q, A, q′)

)
by the

rule (q, A, δ(q, a)) → λ(q, a). If |w| > 1, then it is generated by a long rule
A → ϕ. Now x ∈ (q, ϕ, q′) by Claim 4.2.2.2 and thus x ∈ LG′

(
(q, A, q′)

)
by

the rule (q, A, q′)→ (q, ϕ, q′). This ends the proof of the induction step and
of the entire Lemma 4.2.2.

Using this statement, it is easy to show that the constructed grammar
generates the image of L(G) under M . Consider that S′ has the rules S′ →
(q0, S, qf) for all qf ∈ F . So, it follows from Lemma 4.2.2 that x ∈ L(G′) if
and only if x = λ(q0, w) for some w ∈ LG(S) with δ(q0, w) = qf ∈ F , which
means x = M(w) for some w ∈ L(G). This shows that L(G′) = M

(
L(G)

)
,

which proves Theorem 4.2.1 in the case of Boolean grammars.
To see that the same construction works for conjunctive grammars, note

that no new negations except ¬ε are added. If G is conjunctive, then G′

can be made conjunctive as well by replacing each conjunct ¬ε with a refer-
ence to a nonterminal generating Σ+. So Theorem 4.2.1 has been proved for
conjunctive grammars as well.

To complete the proof of Theorem 4.2.1 it remains to consider unam-
biguous conjunctive and Boolean grammars. It is sufficient to establish the
following statement:

Lemma 4.2.3. If G is unambiguous, then G′ is unambiguous.

Proof. First the uniqueness of the factorizations is proved. The only con-
juncts in the rules of R′ with multiple nonterminals are those of the form
(q,B, q′′)(q′′, C, q′). So let x = yz = ỹz̃ be two factorizations of x with
y, ỹ ∈ LG′

(
(q,B, q′′)

)
and z, z̃ ∈ LG′

(
(q′′, C, q′)

)
. Then, by Lemma 4.2.2 (ap-

plied four times), y = λ(q, u), ỹ = λ(q, ũ), z = λ(q′′, v) and z̃ = λ(q′′, ṽ)
for some u, ũ ∈ LG(B) and v, ṽ ∈ LG(C) with δ(q, u) = δ(q, ũ) = q′′ and
δ(q′′, v) = δ(q′′, ṽ) = q′. Combining the images in each pair, one obtains
λ(q, uv) = yz and λ(q, ũṽ) = ỹz̃, that is, λ(q, uv) = λ(q, ũṽ) = x. Since M is
injective, this implies uv = ũṽ.

Consider that u, ũ ∈ LG(B) and v, ṽ ∈ LG(C). Since the original gram-
mar contains a conjunct BC, the factorization of any word into LG(B)LG(C)
must be unique, so u = ũ and v = ṽ. This implies y = ỹ and z = z̃, meaning
that the factorization of x is unique.

67

Next, it is proved that different rules generate disjoint languages. Start
with the nonterminals in N ′1.

If the empty word is in LG′
(
(q, A, q′)

)
, then it can only be generated by

a rule (q,A, q′)→ ε, since other rules explicitly deny it by a conjunct ¬ε.
In the case x 6= ε and x ∈ LG′

(
(q, A, q′)

)
, there is a w ∈ LG(A) with

δ(q, w) = q′ and λ(q, w) = x. There is only one such w, since M is injective.
There are two cases, namely the case of x generated by (q, A, δ(q, a)) → x
and the case of x generated by (q, A, q′) → (q, ϕ, q′). In the first of these,
w = a ∈ Σ and in the second, w is generated by a rule A→ ϕ. The cases are
clearly disjoint. In the first case, there is only one such rule. In the second
case, let x be generated by two different rules (q, A, q′) → (q, ϕ, q′) and
(q, A, q′)→ (q, ψ, q′). Then w is generated by two different rules A→ ϕ and
A→ ψ by Claim 4.2.2.2 contradicting the unambiguity of G.

Then consider the rules for x ∈ LG′
(
(q,B,C, q′)

)
. If there are two

rules for it, say (q,B,C, q′) → (q,B, q′′)(q′′, C, q′) and (q,B,C, q′) →
(q,B, q′′′)(q′′′, C, q′), then there are two corresponding factorizations x =
yz = ỹz̃. Now, by Lemma 4.2.2 four times, there are such words u, ũ ∈ LG(B)
and v, ṽ ∈ LG(C), that δ(q, u) = q′′ and δ(q, ũ) = q′′′, and that λ(q, u) = y,
λ(q′′, v) = z, λ(q, ũ) = ỹ and λ(q′′′, ṽ) = z̃. Now λ(q, uv) = λ(q, ũṽ) and it
follows from the injectivity of M that uv = ũṽ. Since G in unambiguous,
u = ũ and v = ṽ, so that q′′ = q′′′ and the rules are the same.

Theorem 4.2.1. For every injective gsmM : Σ∗ → Γ∗ and for every Boolean
(conjunctive, unambiguous Boolean, unambiguous conjunctive) grammar G
over Γ, there exists and can be effectively constructed a Boolean (conjunctive,
unambiguous Boolean, unambiguous conjunctive) grammar over Γ generating
the language M(L(G)).

4.3 Boolean grammars and inverse gsm-mappings

In this section, it is proved that the family of languages generated by Boolean
grammars is closed under inverse gsm-mappings. First this is proved for weak
codings.

So let h : Σ∗ → Γ∗ be a weak coding. Denote Σ0 = {a ∈ Σ | h(a) = ε}
and Σ1 = {a ∈ Σ | h(a) ∈ Γ}.

Let G = (Γ, N,R, S) be a Boolean grammar in binary normal form;
for technical reasons, assume that S → ε /∈ R. The goal is to construct a
grammar G′ = (Σ, N ′, R′, S′) for the language h−1(L(G)). Let N ′ = N ∪

68

{S′, T} be the set of nonterminals. Then R′ contains the following rules:

S′ → TST (4.3a)
T → a0T | ε (for all a0 ∈ Σ0) (4.3b)
A→ B1TC1& . . .&BmTCm&¬D1TE1& . . .&¬DnTEn&¬ε

(for all A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬DnEn&¬ε ∈ R)(4.3c)
A→ a (for all a ∈ Σ1 and A→ h(a) ∈ R)

(4.3d)

If ε should be in L(G), then a rule S′ → T can be added to G′; this case is
not considered in the below proof.

It is easy to see that the constructed grammar is well-defined:

Lemma 4.3.1. The system (3.3.4) corresponding to G′ has a strongly unique
solution.

Proof. The equation for T has a unique solution T = Σ∗0 modulo every
language. Now, for the entire system, it has to be proved that for every finite
subword-closed languageM , the solution moduloM is unique. This is proved
by an induction on |M |.

Basis: The unique solution modulo {ε} has LA = ∅ for all A ∈ N and
LT = {ε}, and accordingly LS′ = ∅.

Induction step: LetM = M0∪{w}, with w /∈M0 and with all subwords
of w in M0. By the induction hypothesis, the solution modulo M0 is unique.

Let (LS′ , LS , . . . , LA, . . .) and (L′S′ , L
′
S , . . . , L

′
A, . . .) be any two different

solutions moduloM . If LS′ and L′S′ are different, then so are LS and L′S , so it
is sufficient to consider the case of the solutions being different on a variable
A ∈ N . Assume, without loss of generality, that w ∈ LA and w /∈ L′A. If
w is in LA by a rule (4.3d), then it is in L′A by the same rule. Let w be in
LA by a rule (4.3c), while the same rule (4.3c) does not produce w in L′A.
Then there is a conjunct BiTCi with w ∈ LBiLTLCi and w /∈ L′Bi

L′TL
′
Ci

(or,
symmetrically, a conjunct DjTEj with w /∈ LDjLTLEj and w ∈ L′Dj

L′TL
′
Ej
).

Accordingly, w = uxv with u ∈ LBi , x ∈ LT and v ∈ LCi . Since ε /∈ LB, LC ,
u and v are shorter than w and hence are in M0. Then, since the solution
modulo M0 is unique, u ∈ L′Bi

and v ∈ L′Ci
, and therefore w ∈ L′Bi

L′TL
′
Ci
,

which contradicts the assumption.

Next, note that each nonterminal A ∈ N in the grammar G′ may generate
only words that begin and end with symbols from Σ1.

Lemma 4.3.2. For every A ∈ N , LG′(A) ⊆ Σ1 ∪ Σ1(Σ0 ∪ Σ1)∗Σ1.

Proof. Suppose the contrary that there is w ∈ LG′(A) that starts or ends
with a symbol from Σ0 (the case of w = ε is clearly impossible by (4.3)).

69

Let w be the shortest such word. It cannot be generated by a rule (4.3d)
because that would imply w ∈ Σ1. So, w must be generated by a rule (4.3c),
and by the first conjunct of this rule, w = uxv with u ∈ LG′(B), t ∈ Σ∗0
and v ∈ LG′(C). Since u, v 6= ε, both u and v are shorter than w. Then,
if the first symbol of w is from Σ0, then u is a shorter word with the first
symbol from Σ0, and if w ends with a symbol from Σ0, then so does v which
is shorter. In both cases, this contradicts the choice of w.

The correctness of the construction is established by the following corre-
spondence of nonterminals in G and G′:

Lemma 4.3.3. Let w ∈ Σ1∪Σ1(Σ0∪Σ1)∗Σ1 and A ∈ N . Then w ∈ LG′(A)
if and only if h(w) ∈ LG(A).

Proof. Induction on |w|.
Basis: w = a ∈ Σ1. Then a ∈ LG′(A) if and only if there is a rule A→ a

in R′, which, by (4.3d), exists if and only if h(a) ∈ LG(A).
Induction step: Let w ∈ Σ1(Σ0 ∪Σ1)∗Σ1. First it is proved that under

the induction hypothesis the following statement holds:

Claim 4.3.3.1. w ∈ LG′(BTC) if and only if h(w) ∈ LG(BC).

If w ∈ LG′(BTC), there is a factorization w = uxv, where u ∈ LG′(B),
x ∈ LG′(T), and v ∈ LG′(C). Then u, v 6= ε, and hence |u|, |v| < |w|. By the
induction hypothesis for u and v, h(u) ∈ LG(B) and h(v) ∈ LG(C). Also,
h(x) = ε by (4.3b), so h(uxv) = h(u)h(x)h(v) = h(u)h(v) ∈ LG(BC).

Conversely, if h(w) ∈ LG(BC), there is a factorization w = u′v′, such
that h(u′) ∈ LG(B) and h(v′) ∈ LG(C). This implies u′, v′ 6= ε and thus
|u′|, |v′| < |w|. Let x ∈ Σ∗0 be the longest suffix of u′ comprised of symbols
from Σ0, that is, u′ = ux with u ∈ Σ1 ∪Σ1(Σ0 ∪Σ1)∗Σ1. Then h(u) = h(u′)
and, by the induction hypothesis, u ∈ LG′(B). Similarly, let y ∈ Σ∗0 be the
longest prefix of v′ containing only symbols from Σ0: then v′ = yv with
v ∈ Σ1 ∪ Σ1(Σ0 ∪ Σ1)∗Σ1, and the induction hypothesis gives v ∈ LG′(C).
Combining these facts, w = uxyv ∈ LG′(BTC), which completes the proof
of Claim 4.3.3.1.

Next, a similar statement for the right hand sides of the long rules will
be established:

Claim 4.3.3.2. w ∈ LG′(B1TC1& . . .&BmTCm&¬D1TE1& . . .&¬DnTEn&¬ε)
if and only if h(w) ∈ LG(B1C1& . . .&BmCm&¬D1E1& . . .&¬DnEn&¬ε).

Suppose w ∈ LG′(B1TC1& . . .&BmTCm&¬D1TE1& . . .&¬DnTEn&¬ε).
This is the case if and only if w ∈ LG′(BiTCi) for all applicable i, and
w /∈ LG′(DjTEj) for all applicable j. By Claim 4.3.3.1, this is equivalent
to h(w) ∈ LG(BiCi) for all i, and h(w) /∈ LG(DjEj) for all j, which is

70

equivalent to h(w) ∈ LG(B1C1& . . .&BmCm&¬D1E1& . . .&¬DnEn&¬ε).
Thus, Claim 4.3.3.2 has been proved.

To prove the induction step, consider that w ∈ LG′(A) is equivalent to
the existence of a rule

A→ B1TC1& . . .&BmTCm&¬D1TE1& . . .&¬DnTEn&¬ε

in R′. Such a rule exists if and only if P contains a rule

A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬DnEn&¬ε.

On the other hand, by Claim 4.3.3.2, this is equivalent to h(w) ∈ LG(A).
This completes the proof of Lemma 4.3.3.

It remains to show that the construction preserves unambiguity, which
will complete the proof of Theorem 4.3.1.

Lemma 4.3.4. If G is unambiguous, then G′ is unambiguous.

Proof. Consider factorizations of words in G′ according to its conjuncts. For
the rule (4.3a), if w ∈ LG′(TST), then w = xw′y, where x, y ∈ Σ∗0 and
w′ ∈ Σ1 ∪ Σ1(Σ0 ∪ Σ1)∗Σ1, is the unique factorization of w with respect to
LG′(T) and LG′(S).

All the other conjuncts that have multiple nonterminals are of the form
BTC. So, let w ∈ LG′(BTC). Suppose w = u1x1v1 = u2x2v2 with u1, u2 ∈
LG′(B), x1, x2 ∈ LG′(T), and v1, v2 ∈ LG′(C). Then by Lemma 4.3.3, h(w) =
h(u1v1) = h(u2v2) ∈ LG(BC). In addition, u1, u2 ∈ Σ1 ∪ Σ1(Σ0 ∪ Σ1)∗Σ1

by Lemma 4.3.2. It follows that if |u1| < |u2|, then also |h(u1)| < |h(u2)|.
This means there would be two different factorizations of h(w) with respect
to LG(B) and LG(C), which contradicts the unambiguity of G. This proves
that conjuncts of G′ yield unique factorizations.

If a word w is generated by some rule (4.3c) of G′, then, by Claim 4.3.3.2,
there is a corresponding rule of G that generates h(w). Because G is unam-
biguous, h(w) is generated by a unique rule for A. From this it follows that
the languages generated by distinct rules are disjoint, and furthermore, that
G′ is unambiguous.

Now Theorem 4.3.1 can be proved for Boolean grammars.

Theorem 4.3.1. For every weak coding h : Σ∗ → Γ∗ and for every Boolean
(conjunctive, unambiguous Boolean, unambiguous conjunctive) grammar G
over Γ, there exists and can be effectively constructed a Boolean (conjunctive,
unambiguous Boolean, unambiguous conjunctive) grammar over Σ generating
the language h−1(L(G)).

71

Proof. First note that no w ∈ Σ∗0 can be in LG′(S′) and by assumption
h(w) = ε /∈ LG(S). So, let w ∈ Σ∗ be such that h(w) 6= ε. Suppose h(w) ∈
LG(S). Then w can be factorized as w = xw′y where x, y ∈ Σ∗0, and w′ ∈
Σ1 ∪ Σ1(Σ0 ∪ Σ1)∗Σ1 with h(w′) = h(w) ∈ LG(S). By Lemma 4.3.3 and
the definition of T , this is equivalent to w′ ∈ LG′(S) and x, y ∈ LG′(T).
This holds by the rule (4.3a) if and only if w ∈ LG′(S′), and thus indeed
L(G′) = h−1

(
L(G)

)
.

If G is conjunctive, then no new negations are added and G′ is conjuctive,
so Theorem 4.3.1 holds for conjunctive grammars as well.

The above results for the closure of Boolean (conjunctive, unambiguous
Boolean, unambiguous conjunctive) languages under injective gsm-mappings
and inverse weak codings can now be combined to establish their closure
under inverse gsm-mappings according to Proposition 4.1.1:

Theorem 4.3.2. For every gsm M : Σ∗ → Γ∗ and for every Boolean (con-
junctive, unambiguous Boolean, unambiguous conjunctive) grammar G over
Γ, there exists and can be effectively constructed a Boolean (conjunctive, un-
ambiguous Boolean, unambiguous conjunctive) grammar over Σ generating
the language M−1(L(G)).

72

Chapter 5

Morphisms preserving
language families

In the previous chapter, the question whether a family of languages is closed
under some operation was under discussion. In this chapter, the same prob-
lem is considered, but the question asked is under which morphisms a family
of languages is closed. A similar characterization was established by Okhotin
for the linear variant of conjunctive languages [30]. They are closed under
injective morphisms and the trivial morphism mapping everything to the
empty word.

Algebraic morphisms constitute the most important and natural class of
mappings, at least when dealing with algebraic structures. The explanation
of their importance lies in their definition through the algebraic operations of
the underlying structure; a mapping is a morphism if and only if it respects
the operations. In the monoid of words (Σ∗, ·, ε), this means that the image of
the concatenation of two words is mapped to the concatenation of the images
of those words, so h : Σ∗ → Γ∗ is a morphism if and only if h(uv) = h(u)h(v)
for all u, v ∈ Σ∗.

Injective morphisms, or codes, have the property that different words
are mapped to different words. This is a nice property that enables the
coding of words into words of a (not necessarily) different alphabet. An
important subclass of codes is that of codes of bounded deciphering delay,
which consists of codes that can be decoded by finite machines, gsm’s. The
families of deterministic and LL context-free languages turn out to be closed
under a code exactly when it is of bounded deciphering delay.

The proofs use some known closure properties of the families under con-
sideration. The family of deterministic context-free languages is closed under
right-quotient with a regular language and intersection with a regular lan-
guage [5]. Furthermore, it is closed under the inverse gsm-mappings [5].

The LL context-free languages are not closed even under inverse mor-

73

phisms, a counter-example is given in Example 5.2.1. Therefore, the proofs
concerning LL languages require proofs that do not use closure properties.

The last family of languages discussed in this chapter is that of unambigu-
ous context-free languages, which is closed under inverse gsm-mappings [8].

This chapter is based on the article presented at DLT 2012 [26].

5.1 Codes

Codes are sets of words that can be used to represent messages. For the codes
to be decipherable, the representations of the messages have to be unique.
Formally, this means that if C = {c0, c1, . . . , ck−1} with ci ∈ Σ∗ is a code and
x = x1x2 · · ·xm and y = y1y2 · · · yn are codewords with xi, yj ∈ C and x = y,
then m = n and xi = yi for all i = 1, . . . , n. A code can be represented as
a morphism c : Σ∗k → Σ∗ defined by c(i) = ci, and in this case, a morphism
is a code if and only if it is injective. For other alphabets the definition is
of course the same, and for example, the morphism h : {a, b} → {a, b} is a
code if and only if h(a) and h(b) are not powers of the same word. This
characterizes all two-element codes; {x, y} is a code if and only if x and y
are not powers of the same word.

In the next section, a connection between deterministic subclasses of
context-free languages and a subclass of codes is established. The mentioned
subclass of codes is that of codes of bounded deciphering delay:

Definition 5.1.1. A code h : Σ∗ → Γ∗ is of bounded deciphering delay d ∈ N
if whenever h(u) and h(v) have a common prefix of d symbols, then the first
symbols of u and v are equal.

Intuitively, bounded deciphering delay means that the symbols in the be-
ginning of a coded word can be concluded after some fixed number of symbols
from the beginning of the codeword are known. This enables the decoding
of codes of bounded deciphering delay by a finite machine: a deterministic
gsm. In other words, the inverse mapping of a code of bounded deciphering
delay can be computed by a gsm:

Lemma 5.1.1 ([1, Prop. 5.1.6]). For every code of bounded deciphering delay
h : Σ∗ → Γ∗, there exists a deterministic gsm M : h(Σ∗) → Σ∗, such that
M ◦ h is the identity mapping on Σ∗ (that is, M is the inverse mapping of
h).

It is easy to see by induction that the first k symbols of a coded word can
be concluded after reading a bounded number of symbols on the codeword
as well, for any fixed k.

Lemma 5.1.2. If h : Σ∗ → Γ∗ is a code with deciphering delay bounded
by d > 1, then, for every k > 1, prefk′(h(u)) = prefk′(h(v)) (where k′ =
d+ (k − 1) maxa∈Σ |h(a)|) implies prefk(u) = prefk(v).

74

Proof. Induction on k. If k = 1, then the first d letters of h(u) and h(v) are
the same, and thus the first letters of u and v must also be the same.

For k > 1, assume the condition holds for smaller values of k. By the
same argument as above, the first letters of u and v are the same, and so the
words can be written as u = bu′ and v = bv′ for some b ∈ Σ and u′, v′ ∈ Σ+.
Now h(u′) and h(v′) are equal on the first d+ (k− 1) maxa |h(a)| − |h(b)| >
d + (k − 2) maxa |h(a)| letters. Thus, by the induction assumption, u′ and
v′ have the same k − 1 first letters. It follows that u = bu′ and v = bv′ are
equal on the k first letters, as claimed.

If a code is not of bounded deciphering delay, it is said to have unbounded
deciphering delay. A code is of unbounded deciphering delay if and only if
there is a pair of different right-infinite words with the same image:

h(a0a1a2 · · ·) = h(b0b1b2 · · ·), a0 6= b0.

The following Lemma gives a characterization for codes of unbounded
deciphering delay used in the next section.

Lemma 5.1.3. Let h : Σ∗ → Γ∗ be a code. Then it is of unbounded deci-
phering delay if and only if there exist x, y, z ∈ Γ+ with x, xy, yz, zy ∈ h(Σ∗)
and y, z /∈ h(Σ∗).

Proof. Assume h is a code, but not of bounded deciphering delay. Then there
exist two infinite words a0a1a2 . . . and b0b1b2 . . ., such that a0 6= b0, but that
the images h(a0)h(a1)h(a2) . . . = h(b0)h(b1)h(b2) . . . are the same. Since h is
a code, for every prefix a0a1 · · · ak of a0a1a2 . . . there exists a unique prefix
b0b1 · · · bl of b0b1b2 . . ., such that h(b0b1 · · · bl) is shorter and h(b0b1 · · · bl+1)
is longer than h(a0a1 · · · ak). Therefore one can define a mapping f : N→ N,
so that

|h(b0b1 · · · bf(k)−1)| < |h(a0a1 · · · ak)| < |h(b0b1 · · · bf(k))|

holds for all k.
Since h(a0a1 · · · ak) is a strict prefix of h(b0b1 · · · bf(k)), there exists a

non-empty word yk ∈ Γ+ satisfying h(a0a1 · · · ak)yk = h(b0b1 · · · bf(k)). As
h(b0b1 · · · bf(k)−1) is a strict prefix of h(a0a1 · · · ak), it follows that |yk| <
|h(bf(k))|. Consequently, |yk| < maxa∈Σ(|h(a)|) for any k, so there are two
indices l < l′ such that yl = yl′ by the pigeon hole principle.

Now |h(a0a1 · · · al)yl| < |h(a0a1 · · · al′)|, since otherwise

|h(b0b1 · · · bf(l)−1)| < |h(a0a1 · · · al)| < |h(a0a1 · · · al′)| 6 |h(b0b1 · · · bf(l))|,

and thus f(l′) = f(l). This would mean that h(a0a1 · · · al)yl =
h(a0a1 · · · al′)yl′ and furthermore that h(a0a1 · · · al) = h(a0a1 · · · al′), which
is a contradiction.

75

Denote y = yl = yl′ and define x, z ∈ Γ+ by

x = h(a0a1 · · · al)
yz = h(al+1al+2 · · · al′).

Now x = h(a0a1 · · · al) ∈ h(Σ∗), xy = h(b0b1 · · · bf(l)) ∈ h(Σ∗), yz =
h(al+1al+2 · · · al′) ∈ h(Σ∗) and zy = h(bf(l)+1bf(l)+2 · · · bf(l′)) ∈ h(Σ∗). At
the same time y /∈ h(Σ∗), since otherwise there would be two different fac-
torizations for h(a0a1 · · · al)yl = h(b0b1 · · · bf(l)) by the words in h(Σ) con-
tradicting the assumption that h is a code. Furthermore, if z ∈ h(Σ∗), then
also zyz ∈ h(Σ∗). In this case, it could be factorized in two ways, z · yz and
zy · z, into words in h(Σ+). This contradiction proves that also z /∈ h(Σ∗).

Conversely, assume that there exist such words. Now x · yz · yz · yz · · ·
and xy · zy · zy · zy · · · are two different factorizations of the same infinite
word, so h is not of bounded deciphering delay.

The next Lemma sharpens the characterization in Lemma 5.1.3 by pre-
senting some conditions on the words x, y and z obtained in the latter
Lemma. It basically states that as long as h is a code, these three words
must be different from each other to a certain extent.

Lemma 5.1.4. If h : Σ∗ → Γ∗ is a code and x, xy, yz, zy ∈ h(Σ∗) for some
x, y, z ∈ Γ+ with y, z /∈ h(Σ∗), then the following conditions hold:

i. x and y are not powers of the same word.

ii. x and xy (or x and yx) are not powers of the same word.

iii. x and yz are not powers of the same word.

iv. xy and zy are not powers of the same word.

v. xy and yz are not powers of the same word, or yz 6= zy.

Proof. If x and y are powers of the same word, then xy = yx. Since x, xy ∈
h(Σ∗), the word xyx ∈ h(Σ∗) could be factorized into code words as x · yx
or as xy · x implying y ∈ h(Σ∗). This is a contradiction.

The words x and xy (x and yx) are powers of the same word if and only
if xk = (xy)l (xk = (yx)l) for some k, l > 0. But then the words x and y
would be powers of the same word, contradicting the above.

If x and yz are powers of the same word, then xk = (yz)l for some
k and l. By the assumptions xy ∈ h(Σ∗), and thus also xk−1xy ∈ h(Σ∗).
Then xk−1xy = xky = (yz)ly, so (yz)ly(zy)l ∈ h(Σ∗) as (yz)ly ∈ h(Σ∗) and
(zy)l ∈ h(Σ∗). The word (yz)ly(zy)l ∈ h(Σ∗) can be factorized as (yz)ly·(zy)l

or as (yz)l · y(zy)l, which implies y ∈ h(Σ∗) contradicting the assumption.

76

If xy and zy are powers of the same word, then (xy)k = (zy)l for some k
and l. By the assumptions x, xy ∈ h(Σ∗), and thus also (xy)k−1x ∈ h(Σ∗).
Now (xy)k−1x = (zy)l−1z, by the assumption (xy)k = (zy)l. Furthermore,
y(xy)k−1x = (yz)l ∈ h(Σ∗). Now the word (xy)k−1xy(xy)k−1x can be factor-
ized as (xy)k−1x ·y(xy)k−1x and as (xy)k−1xy · (xy)k−1x. Again, this implies
y ∈ h(Σ)∗, a contradiction.

If xy and yz are powers of the same word and yz = zy, then xy and
zy would be powers of the same word as well, contradicting the previous
statement.

Although the words x and yz (or xy and zy) cannot be powers of the
same word, the words xy and yz can, as shown by the following example:

Example 5.1.1. The code h : {a, b, c}∗ → {a, b}∗ defined by h(a) = ababa,
h(b) = baaba and h(c) = ababaab is of unbounded deciphering delay. One
can choose x = ababaab, y = aba and z = ba. They satisfy the conditions
x, xy, yz, zy ∈ h({a, b, c}∗) and y, z /∈ h({a, b, c}∗), while xy = yzyz. In this
case, yz = ababa is different from zy = baaba.

The next result gives further conditions on the form of the words x, y
and z in Lemma 5.1.3. It shows that their pre-images with respect to h must
also be distinguishable from each other in certain occasions.

Lemma 5.1.5. Let h : Σ∗ → Γ∗ be a code, and let the words w,w′, u, v ∈ Σ+

be encoded as h(w) = x, h(w′) = xy, h(u) = yz and h(v) = zy for some
x, y, z ∈ Γ+ with y, z /∈ h(Σ∗). Then:

i. Neither of the words w and w′ is a prefix of the other, and, in particular,
their longest common prefix is of length less than min(|w|, |w′|);

ii. The longest common prefix of the infinite words wω and uω is of length
less than |w|+ |u|;

iii. The longest common prefix of (w′)ω and vω is of length less than |w′|+
|v|;

iv. The longest common prefix of w′vω and uω is of length at most |w′|+|v|.

Proof. Firstly, w′ cannot be a prefix of w, as the image of w is a prefix of
the image of w′. Secondly, if w would be a prefix of w′, that is, w′ = wŵ
for some ŵ ∈ Σ∗, then xy = h(w)h(ŵ) and x = h(w) imply y = h(ŵ) ∈
h(Σ∗), contradicting the assumption that y /∈ h(Σ∗). Thus, the length of the
common prefix of wω and w′vω must be less than min(|w|, |w′|).

If wω and uω have a common prefix of length |w|+ |u|, then uwω and uω

have a common prefix of length |w|+ 2|u|, and wω and wuω have a common

77

prefix of length 2|w|+|u|. Consequently, uwω and wuω have a common prefix
of length |w| + |u|, so uw = wu. As the words w and u commute, they are
powers of the same word, and therefore, h(w) = x and h(u) = yz would also
be powers of the same word, contradicting Lemma 5.1.4.

The case of (w′)ω and vω can be handled in the same way as the case of
wω and uω. The contradiction with Lemma 5.1.4 just comes from xy and zy
instead of x and yz.

In the last case, if uω and w′vω have a common prefix of length |w′|+ |v|,
then h(uω) = (yz)ω and h(w′vω) = x(yz)ω have a common prefix of length
|xy| + |yz|. Similarly to the above, yzx(yz)ω would have the same prefix of
length |x|+|yz| with x(yz)ω. This implies xyz = yzx, which is a contradiction
as x and yz are not powers of the same word by Lemma 5.1.4.

5.2 The families DetCF and LL and bounded deci-
phering delay

In this section, it is proved that the family of deterministic context-free
languages is closed under those codes that have a finite deciphering delay.

The language
{anbn | n > 0} ∪ {anb2n | n > 0}

is not deterministic, as the PDA would have to guess if the number of a’s
corresponds to the number of b’s or the number of b’s multiplied by two
before reaching the border between a’s and b’s.

The code h(a) = a, h(b) = ab, h(c) = bb is of unbounded delay. Decipher-
ing a codeword abn from left to right needs a similar nondeterministic guess
as in the case of recognizing the language above by a pushdown automaton.
The pre-image is

ac(n
2

)

if n is even and
bc(n−1

2
)

if n is odd, forcing a nondeterministic guess after reading the first a. Now,
consider the language L = {ancn |n > 0}∪{an−1bc2n |n > 1} which is clearly
deterministic context-free. However, its image under h is h(L) = {anb2n |n >
0} ∪ {anb4n+1 | n > 1}, and this language is not deterministic context-free.

This is not a coincidence, as there is a connection between codes of
bounded deciphering delay and deterministic context-free languages. First of
all, deterministic context-free languages are closed under these codes which
follows from their decipherability by deterministic gsm-mappings:

Lemma 5.2.1. Let h : Σ∗ → Γ∗ be a code of bounded deciphering delay
and L ⊆ Σ∗ a deterministic context-free language. Then the language h(L)
is deterministic context-free.

78

Proof. Let L be a deterministic context-free language. By Lemma 5.1.1, the
inverse mapping of h is computed by a gsm M : h(Σ∗)→ Σ∗. The family of
deterministic context-free languages is closed under inverse gsm-mappings [5,
Thm. 3.2], and thus, h(L) = M−1(L) is deterministic context-free as was
claimed.

Conversely, if a code is of unbounded deciphering delay, then it does not
preserve deterministic context-free languages:

Lemma 5.2.2. Let h : Σ∗ → Γ∗ be a code of unbounded deciphering delay.
Then there exists a deterministic context-free language L ⊆ Σ∗, such that
h(L) is not deterministic context-free.

Proof. By Lemma 5.1.3, there exist x, y, z ∈ Γ∗ with x, xy, yz, zy ∈ h(Σ∗)
and y, z /∈ h(Σ∗). Let w,w′, u, v ∈ Σ∗ be the words with h(w) = x, h(w′) =
xy, h(u) = yz and h(v) = zy and consider the language

L = {wnun | n > 1} ∪ {wn−1w′v2n | n > 1}

which is generated by the grammar

S → A | B
A→ wAu | ε
B → wBvv | w′vv.

A deterministic pushdown automaton simulating this grammar would push
w’s into the stack until it sees either u or w′. For that, it should be able to
notice the border between w and u in wnun, and the border between w and
w′ in wnw′v2n, and be able to distinguish these cases from each other. This
can be done, as the lengths of the common prefices of wω, uω and w′vω are
bounded by max(|w|+ |u|, |w′|+ |u|), which follows from Lemma 5.1.5.

So the border and the type of the words can be distinguished determin-
istically after reading the max(|w| + |u|, |w′| + |u|) letters when the border
has been passed, and afterwards a deterministic pushdown automaton may
start popping the stack, reading u or vv depending on the case.

The image of L under h is

h(L) = {xn(yz)n | n > 1} ∪ {xn(yz)2ny | n > 1}.

Let M : a+b+(ε ∪ c) → Γ∗ be a gsm-mapping with M(akblcm) =
xk(yz)lym for k, l > 1 and m ∈ {0, 1}.

The pre-imageM−1
(
h(L)

)
is easily figured out asM is injective. To prove

the injectivity, assume that two distinct words in a+b+(ε∪ c) are mapped to
the same word. It turns out that in this case, x and yz would be powers of
the same word, contradicting Lemma 5.1.4. There are three possible cases:

79

If xk1(yz)l1 = xk2(yz)l2 for different exponents, then x and yz are powers
of the same word.

The case xk1(yz)l1y = xk2(yz)l2y can be handled by the same argument
by removing y from the end.

In the third possible case xk1(yz)l1 = xk2(yz)l2y, consider the suffices of
length |yz|. Since l1, l2 > 0, the suffix on the left-hand side is yz and zy on
the right-hand side. They are equal so yz = zy, and thus, y and z are powers
of the same word z′. Substituting y and z by powers of z′ in the equation
results in an equation xk1z′l′1 = xk2z′l

′
2 which implies that x and z′, and thus

also x and yz, are powers of the same word.
SoM is injective, and thusM−1

(
h(L)

)
= {anbn|n > 1}∪{anb2nc|n > 1}.

It remains to be proved that this is not a deterministic context-free language.
This can be seen by taking a right quotient with {ε, c} and intersecting
with a+b+. The result is a known non-deterministic language {anbn | n >
0} ∪ {anb2n | n > 0}, while deterministic languages are closed under right
quotients and intersections with regular languages [5].

The language L = {acnan |n > 0}∪{bcna2n |n > 0} is LL(1) context-free,
but its image h(L) = {ab2nan | n > 0} ∪ {ab2n+1a2n | n > 0} is not LL(k)
context-free for any k, where h is the code h(a) = a, h(b) = ab, h(c) = bb of
unbounded deciphering delay. It actually is the case that the LL languages
are closed under a code if and only if it is of bounded delay. However, as the
next example shows, the family is not closed under inverse gsm-mappings or
even morphisms, so a separate argument for the closure is needed.

Example 5.2.1. Let Σ = {1, 2, 3, 4, 5, 6} and Γ = {a, b, c, d}, and define
a morphism h : Σ∗ → Γ∗ by h(1) = a, h(2) = bc, h(3) = cb, h(4) = ab,
h(5) = d, h(6) = cd. Then the language L = {an(bc)nd | n > 0} is LL(1)
context-free, while its inverse image

h−1(L) = {1n2n5 | n > 0} ∪ {1n−143n−16 | n > 1}

is not LL(k) for any k.

However, the bounded deciphering delay guarantees that k symbols of
the original word can be known after reading a bounded number of symbols
(depending on the delay bound and k) of the image word.

Lemma 5.2.3. Let h : Σ∗ → Γ∗ be a code of deciphering delay bounded by
d. Then, for every LL(k) context-free language L ⊆ Σ∗, the language h(L)
is an LL(k′) context-free language, where k′ = d+ (k − 1) maxa∈Σ |h(a)|.

Proof. Let G = (Σ, N, P, S) be an LL(k) context-free grammar generating
L, and extend h to a code h : (Σ ∪ N) → (Γ ∪ N) by setting h(A) = A
for all A ∈ N . Define the grammar G′ = (Γ, N, P ′, S) with the set of rules

80

P ′ = {A→ h(α) |A→ α ∈ P}. Then L(G′) = h(L(G)) and, more generally,
LG′(h(α)) = h(LG(α)) for each α ∈ (Σ∪N)∗. It remains to prove that G′ is
LL(k′).

Let S →∗ h(x)Ah(β) in G′, where A → α1, A → α2 ∈ P , and as-
sume that h(w1) ∈ LG′(h(α1β)), h(w2) ∈ LG′(h(α2β)) and prefk′(h(w1)) =
prefk′(h(w2)). Then, by Lemma 5.1.2, prefk(w1) = prefk(w2). Consider the
corresponding derivation S →∗ xAβ in G, with w1 ∈ LG(α1β), w2 ∈
LG(α2β). Since G is LL(k), this implies that α1 = α2 and further that
h(α1) = h(α2).

A similar non-closure result as for deterministic context-free languages
holds for LL context-free languages as well. However, due to the limited
closure properties of this language family, the proof involves a lengthy low-
level analysis of a parser’s computation, and only a short sketch of a proof
is presented here.

For every LL(k) grammar, there exists a partial function T : N ×Σ6k →
P , such that whenever S →∗ xAβ, A → α ∈ P and w ∈ LG(αβ), the rule
A→ α is given by T (A,prefk(w)).

For every LL(k) grammar G, the membership of a given input word w in
L(G) is recognized by an LL(k) parser as follows. The parser’s configurations
are pairs of the form (u, η), where u ∈ Σ∗ is an unread suffix of the input
word and η ∈ (Σ∪N)∗ is the contents of the parser’s stack. In a configuration
(u,Aη), the parser looks up T (A,prefk(u)), and if it contains a rule A→ α,
the parser enters the configuration (u, αη). In a configuration (au, aη), the
next configuration is (u, η). In all other cases, an error is reported. The
configuration (ε, ε) is accepting.

Lemma 5.2.4. For every code h : Σ∗ → Γ∗ of unbounded deciphering delay,
there exists a language L ⊆ Σ∗ generated by a simple linear context-free
grammar, such that h(L) is not an LL(k) context-free language for any k.

Proof. The words x, y, z ∈ Γ∗ with x, xy, yz, zy ∈ h(Σ∗) and y, z /∈ h(Σ∗)
exist by Lemma 5.1.3. Consider w,w′, u, v ∈ Σ∗ with h(w) = x, h(w′) = xy,
h(u) = yz and h(v) = zy. The language

L = {wunwn | n > 0} ∪ {w′vn(w′)n | n > 0}

is generated by the following context-free grammar

S → wA | w′B
A→ uAw | ε
B → vBw′ | ε.

It is claimed that this grammar is LL(k) for k = |u|+|w|. By Lemma 5.1.5(i),
the choice between the rules S → wA and S → w′B can be made based on

81

the first min(|w|, |w′|) symbols of the input. Choosing between the rules A→
uAw and A→ ε requires the parser to distinguish between uω and wω (which
can be done using the first |u|+ |w| symbols according to Lemma 5.1.5(ii)),
as well as between uiwω and wω for any i > 1; the latter can be done using
|u| + |w| symbols, because if the first |u| + |w| symbols of uiwω and wω

are the same, then either |u| + |w| < |ui| and they can be distinguished
the same way as uω and wω, or |ui| 6 |u| + |w|. In the latter case, ui is
a prefix of wω, and thus wω and u2iwω have a common prefix of length
|u|+|v| as well, and repeating this would eventually lead to wω and ujwω with
|u|+ |w| < |uj | having a common prefix of length |u|+ |w|, a contradiction.
Similarly, Lemma 5.1.5(iii) implies that a parser can choose between the rules
B → vBw′ and B → ε using |v|+ |w′| symbols of the input.

The image of L is the following language:

h(L) = {x(yz)nxn | n > 0} ∪ {x(yz)ny(xy)n | n > 0}.

It is not LL(k) for any k. A precise proof for the non-existence of an LL gram-
mar for h(L) would be rather long and technical, and is omitted. Intuitively,
the parser just sees

xyzyzyzyzyzyzyzyzyz . . .

in the beginning and cannot decide which rule is producing them without
knowing how the word is going to end.

5.3 Non-codes preserving LL, DetCF and Unam-
bCF

In this section, the non-codes preserving LL, deterministic and unambiguous
context-free languages are characterized, finalising the characterization for
morphisms in general. The non-codes preserving these families map every-
thing into the submonoid w∗ generated by some word w.

It is easy to see that the families are closed under these morphisms, as
the image of any context-free language under them is regular:

Lemma 5.3.1. Let h : Σ∗ → Γ∗ be a morphism satisfying h(Σ) ⊆ w∗ for
some w ∈ Γ∗. Then, for every context-free language L, the language h(L) is
regular.

Proof. By Parikh’s theorem, there exists a regular language L′ letter equiv-
alent to L. Since regular languages are closed under morphisms and h(L) =
h(L′), it follows that h(L) is regular.

If the image of a non-code is not included in some w∗, then there exists
an LL(1) language with an inherently ambiguous image. Thus, none of the
families are preserved.

82

Lemma 5.3.2. Let h : Σ∗ → Γ∗ be a morphism that is not a code and for
which h(a) and h(b) are not powers of the same word for some a, b ∈ Σ.
Then there exists a language L ⊆ Σ∗ generated by an LL(1) grammar, such
that h(L) is an inherently ambiguous context-free language.

Proof. Since h is not a code, there exist two distinct words u, v ∈ Σ∗ with
h(u) = h(v). It can be assumed that u and v differ on the first letter, or in
the case one of them, say u, is empty, that v is of length one and v 6= a.
Define

L = {uanbian | i, n > 1} ∪ {vaibnan | i, n > 1}.

It is generated by the grammar

S → uaS1a | vaS2

S1 → aS1a | bA
S2 → aS2 | bBa
A→ bA | ε
B → bBa | ε

For each non-terminal symbol, the words generated by different rules differ
on the first symbol. Therefore the grammar, and thus also L, is LL(1).

The image of L is

h(L) = {xh(a)nh(b)ih(a)n | i, n > 1} ∪ {xh(a)ih(b)nh(a)n | i, n > 1},

where x = h(u) = h(v).
It remains to be proved that h(L) is inherently ambiguous.
For this, define a gsm-mapping M : a+b+a+ → Γ∗ such that

M(akblam) = xh(a)kh(b)lh(a)m).

If
M(ak1bl1am1) = M(ak2bl2am2)

for some exponents, then h(a)k1h(b)l1h(a)m1 = h(a)k2h(b)l2h(a)m2 . By as-
sumption, h(a) and h(b) are not powers of the same word, so k1 = k2, l1 = l2
andm1 = m2. It follows thatM is injective andM−1

(
h(L)

)
= {anbian|i, n >

1} ∪ {aibnan | i, n > 1} which is an inherently ambiguous language. As un-
ambiguous context-free languages are closed under inverse gsm-mappings, it
follows that h(L) is inherently ambiguous as well.

Combining the results in this and the previous section results in the
following characterization for morphisms preserving deterministic or LL
context-free languages:

83

Theorem 5.3.1 ([26]). Let h : Σ∗ → Γ∗ be a morphism. Then the family of
deterministic (LL) context-free languages is closed under h if and only if h
is a code of bounded deciphering delay or h(Σ) ⊆ w∗ for some word w ∈ Γ∗.

Furthermore, there is the characterization for morphisms preserving the
unambiguous context-free languages:

Theorem 5.3.2 ([26]). Let h : Σ∗ → Γ∗ be a morphism. Then the family of
unambiguous context-free languages is closed under h if and only if h is a
code or h(Σ) ⊆ w∗ for some word w ∈ Γ∗.

84

Bibliography

[1] J. Berstel, D. Perrin, C. Reutenauer, Codes and Automata, Cambridge
University Press, 2010.

[2] V. Bruyère, “Maximal codes with bounded deciphering delay”, Theoret-
ical Computer Science, 84:1 (1991), 53–76.

[3] J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall
(1971).

[4] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata: stability,
decidability and complexity”, Information and Control, 71 (1986) 218–
230.

[5] S. Ginsburg, S. A. Greibach, “Deterministic context-free languages”, In-
formation and Control, 9:6 (1966), 620–648.

[6] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”,
Journal of the ACM, 9 (1962), 350–371.

[7] S. Ginsburg, G. Rose, “Operations which preserve definability in lan-
guages”, Journal of the ACM, 10:2 (1963), 175–195.

[8] S. Ginsburg, J. Ullian, “Preservation of unambiguity and inherent am-
biguity in context-free languages”, Journal of the ACM, 13:3 (1966),
364–368.

[9] M. A. Harrison, Introduction to Formal Language Theory, Addison-
Wesley, 1978.

[10] T. N. Hibbard, J. Ullian, “The independence of inherent ambiguity from
complementedness among context-free languages”, Journal of the ACM,
13:4 (1966), 588–593.

[11] O. H. Ibarra, S. M. Kim, “Characterizations and computational com-
plexity of systolic trellis automata”, Theoretical Computer Science, 29
(1984), 123–153.

85

[12] A. Jeż, “Conjunctive grammars can generate non-regular unary lan-
guages”, International Journal of Foundations of Computer Science,
19:3 (2008), 597–615.

[13] A. Jeż, A. Okhotin “On the computational completeness of equations
over sets of natural numbers”, Automata, Languages and Programming
(ICALP 2008, Reykjavik, Iceland, July 6-13 2008), part II, LNCS 5126,
63-74.

[14] A. Jeż, A. Okhotin, “Equations over sets of natural numbers with ad-
dition only”, 26th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS 2009, Freiburg, Germany, 26–28 February 2009),
Dagstuhl Seminar Proceedings 09001, 577–588.

[15] A. Jeż, A. Okhotin, “Least and greatest solutions of equations over sets
of integers”, Mathematical Foundations of Computer Science (MFCS
2010, Brno, Czech Republic, 23-27 August 2010), LNCS 6281, 441-452.

[16] A. Jeż, A. Okhotin, “Representing hyper-arithmetical sets by equations
over sets of integers”, Theory of Computing Systems, 51:2 (2012), 196–
228.

[17] L. Kari, “On language equations with invertible operations”, Theoretical
Computer Science, 132 (1994), 129–150.

[18] M. Kunc, “The power of commuting with finite sets of words”, STACS
2005, 569–580.

[19] M. Kunc, “The power of commuting with finite sets of words”, Theory
of Computing Systems, 40:4 (2007), 521–551.

[20] M. Kunc, A. Okhotin “Language equations”, in: J.-E. Pin (Ed.) Au-
tomata: from Mathematics to Applications, to appear.

[21] T. Lehtinen, “On equations X+A = B and (X+X)+C = (X−X)+D
over sets of numbers” Mathematical Foundations of Computer Science,
(MFCS 2012, Bratislava, Slovakia, August 26–31 2012), LNCS 7464,
615–629.

[22] T. Lehtinen, A. Okhotin, “Boolean Grammars Are Closed Under In-
verse Gsm Mappings”, TUCS Technical Reports 911, Turku Centre for
Computer Science (2008).

[23] T. Lehtinen, A. Okhotin, “Boolean grammars and gsm mappings”, In-
ternational Journal of Foundations of Computer Science, 21:5 (2010),
799–815.

86

[24] T. Lehtinen, A. Okhotin, “On language equations XXK = XXL and
XM = N over a unary alphabet” Developments in Language Theory
(DLT 2010, London, Ontario, Canada, 17–20 August 2010), LNCS 6224,
291–302.

[25] T. Lehtinen, A. Okhotin, “On equations over sets of numbers and their
limitations”, International Journal of Foundations of Computer Science,
22:2 (2011), 377–393.

[26] T. Lehtinen, A. Okhotin, “Homomorphisms preserving deterministic
context-free languages”, Developments in Language Theory, (DLT 2012,
Taipei, Taiwan, August 14–17 2012), LNCS 7410, 154–165.

[27] A. Okhotin, “Decision problems for language equations with Boolean op-
erations”, Automata, Languages and Programming, (ICALP 2003, Eind-
hoven, The Netherlands, 30 June–4 July 2003), LNCS 2719, 239-251.

[28] A. Okhotin, “On the equivalence of linear conjunctive grammars to
trellis automata”, RAIRO Informatique Théorique et Applications, 38:1
(2004), 69–88.

[29] A. Okhotin, “Unresolved systems of language equations: expressive
power and decision problems”, Theoretical Computer Science, 349:3
(2005), 283–308.

[30] A. Okhotin, “Homomorphisms preserving linear conjunctive languages”,
Journal of Automata, Languages and Combinatorics, 13:3–4 (2008),
299–305.

[31] A. Okhotin, “Decision problems for language equations”, Journal of
Computer and System Sciences, 76:3–4 (2010), 251–266.

[32] A. Okhotin, “Conjunctive and Boolean grammars: the true general case
of the context-free grammars”, submitted, (2012).

[33] R. Parikh, A. K. Chandra, J. Y. Halpern, A. R. Meyer, “Equations
Between Regular Terms and an Application to Process Logic”, SIAM J.
Comput., 14(4): 935–942 (1985)

[34] D. J. Rosenkrantz, R. E. Stearns, “Properties of deterministic top-down
grammars”, Information and Control, 17 (1970), 226–256.

[35] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications”,
Pacific J. Math., Volume 5, Number 2 (1955), 285–309.

[36] V. Terrier, “On real-time one-way cellular array”, Theoretical computer
science, 141 (1995), 331–335.

87

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2849-0
ISSN 1239-1883

Tom
m

i J. M
. Lehtinen

Tom
m

i J. M
. Lehtinen

Tom
m

i J. M
. Lehtinen

N
um

bers and Langauges

N
um

bers and Languages

N
um

bers and Languages

