
Ville Lukkarila

Turku Centre Computer Sciencefor

TUCS Dissertations
No 129, October 2010

On Undecidable Dynamical

Properties of Reversible

One-Dimensional Cellular

Automata

On Undecidable Dynamical
Properties of Reversible

One-Dimensional Cellular Automata

Ville Lukkarila

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in

Auditorium XXI on October 29, 2010, at 12 noon.

University of Turku
Department of Mathematics

FI-20014, Turku

2010

Supervisors

Professor Jarkko Kari
Department of Mathematics
University of Turku
Finland

Reviewers

Professor Nicolas Ollinger
Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence
France

Professor Ivan Rapaport
Departamento de Ingenieŕıa Matemática
Universidad de Chile
Chile

Opponent

Professor Pekka Orponen
Department of Information and Computer Science
Aalto University
Finland

ISBN 978-952-12-2464-5
ISSN 1239-1883

Abstract

Cellular automata are models for massively parallel computation. A cellular
automaton consists of cells which are arranged in some kind of regular lattice
and a local update rule which updates the state of each cell according to the
states of the cell’s neighbors on each step of the computation.

This work focuses on reversible one-dimensional cellular automata in
which the cells are arranged in a two-way infinite line and the computation
is reversible, that is, the previous states of the cells can be derived from the
current ones. In this work it is shown that several properties of reversible
one-dimensional cellular automata are algorithmically undecidable, that is,
there exists no algorithm that would tell whether a given cellular automaton
has the property or not.

It is shown that the tiling problem of Wang tiles remains undecidable
even in some very restricted special cases. It follows that it is undecidable
whether some given states will always appear in computations by the given
cellular automaton. It also follows that a weaker form of expansivity, which
is a concept of dynamical systems, is an undecidable property for reversible
one-dimensional cellular automata.

It is shown that several properties of dynamical systems are undecidable
for reversible one-dimensional cellular automata. It shown that sensitiv-
ity to initial conditions and topological mixing are undecidable properties.
Furthermore, non-sensitive and mixing cellular automata are recursively in-
separable. It follows that also chaotic behavior is an undecidable property
for reversible one-dimensional cellular automata.

i

ii

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor,
Professor Jarkko Kari. His guidance and expertise have been priceless to
my doctoral studies. This thesis contains results which have been achieved
with the guidance of and in collaboration with Professor Kari. Without
his expert guidance and broad knowledge, I would not have completed this
work.

I am grateful to Professors Nicolas Ollinger and Ivan Rapaport for re-
viewing the thesis manuscript and for providing valuable comments. I am
grateful to Professor Pekka Orponen for accepting the invitation to act as
an opponent at the public disputation of my thesis.

I thank Professor Juhani Karhumäki, the Department of mathematics
and Turku Centre for Computer Science (TUCS) for providing excellent
working conditions. This work was financially supported (in chronological
order) by Turku University Foundation, Maili Autio Fund of the Finnish
Cultural Foundation, Fund of Vilho, Yrjö and Kalle Väisälä of the Finnish
Academy of Science and Letters, and TUCS. The financial support is most
gratefully acknowledged.

I would also like to thank Dr. Ari Renvall for giving his support to
my doctoral studies. I also thank the personnel of both the Department of
Mathematics and TUCS for a pleasant working environment.

Finally, I would like to thank my parents and Hanna for all the loving
support.

Turku, August 2010 Ville Lukkarila

iii

iv

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Algorithms and undecidability 5

2.2 Symbolic dynamics and cellular automata 13

2.3 Wang tiles . 25

3 On 4-way deterministic tile sets 31

3.1 The aperiodic tile set . 31

3.2 Drawing a diagonal line . 33

3.3 The tiling problem with a seed tile 43

3.4 The tiling problem without a seed tile 50

3.5 The square tiling problem is NP-complete 60

4 On 2-way deterministic tile sets 71

4.1 The tiling problem with a seed tile 71

4.2 The tiling problem without a seed tile 78

4.3 Tile sets and cellular automata 79

5 Undecidability results regarding expansivity 83

5.1 Some technical definitions and results 83

5.2 Undecidability of left expansivity 88

6 Undecidability of sensitivity to initial conditions 91

6.1 Concept of signals . 91

6.2 Outline of the construction 92

6.3 Layer 1: representing Turing machine computation 94

6.4 Layer 2: verifying initial configuration 96

6.5 Layer 3: detecting incorrect cell state combinations 98

6.6 Layer 4: possible sensitivity 102

6.7 Undecidability of sensitivity 105

v

7 Undecidability of topological mixing and transitivity 111
7.1 Shift signals . 111
7.2 Undecidability of topological mixing 115

8 Some results on linear cellular automata 123
8.1 Brief overview . 123
8.2 Finite commutative rings . 124
8.3 Linear cellular automata . 125
8.4 Some technical lemmas . 127
8.5 Expansivity . 130
8.6 Sensitivity to initial conditions 136

A On Robinson’s tile set 141
A.1 The basic tiles . 141
A.2 The parity tiles . 142
A.3 Colors . 142
A.4 Square patterns in a valid tiling 143

vi

Chapter 1

Introduction

The main topic of this work is reversible cellular automata and their al-
gorithmically undecidable dynamical properties. Parts of this work have
appeared in [53, 67, 66, 68, 69, 70, 71].

Cellular automata are a simple formal model for the study of phenomena
caused by local interaction of finite objects. A cellular automaton consists of
a regular lattice of cells. Each cell has a state which is updated on every time
step according to some rule which is the same for all the cells in the lattice.
The locally used update rule is simply called a local rule. On every time
step the next state of the cell is determined according to its own previous
state and the previous states of a finite number of its neighbors. The state
information of the entire lattice at any time step is called a configuration of
the cellular automaton.

Cellular automata were introduced by von Neumann to study biologically
motivated computation and self-replication [103]. The mathematical study
of cellular automata in symbolic dynamics was initiated by Hedlund [38].
Although cellular automata may seem a simple model for computation, they
can exhibit very complex behavior. A well-known example of such complex
behavior is the Game of Life. Even though the rule according to which the
lattice is updated is quite simple in the Game of Life, some state patterns
interact in a somewhat complex manner. In fact, the Game of Life has been
shown to be computationally universal. In particular, any Turing machine
can be simulated with some cellular automaton in a natural way.

Cellular automata have been studied very extensively also as discrete
time dynamical systems. Properties of dynamical systems such as injectiv-
ity, surjectivity, nilpotency, equicontinuity, sensitivity to initial conditions,
topological transitivity, topological mixing, chaos, and different variants of
expansivity have been studied in terms of cellular automata also. In partic-
ular, some properties have been studied in the sense of algorithmic decid-
ability and undecidability. Nilpotency is an undecidable property even for

1

one-dimensional cellular automata [46, 48]. Injectivity and surjectivity are
known to be decidable for one-dimensional cellular automata but undecid-
able for two-dimensional cellular automata [47]. It was mentioned in [24]
that sensitivity, equicontinuity, transitivity and ergodicity are believed to be
undecidable properties of cellular automata but no proof was given. It was
shown in [28] that equicontinuity and sensitivity are undecidable properties
for not necessarily reversible one-dimensional cellular automata. Recently,
it was shown by Kari and Ollinger that equicontinuity is undecidable even
for reversible one-dimensional cellular automata [54].

Some properties of cellular automata have been studied using Wang tiles
and Wang tiles will be used in this work also. A Wang tile (or simply a tile)
is a unit square tile with colored edges and a Wang tile set is a finite set
of Wang tiles. A tiling by Wang tiles is a function which assigns a unique
tile from the given tile set for each location of the plane. A tiling is said
to be valid if the colors of neighboring tiles match. The tiling problem of
Wang tiles (also known as the domino problem) is the decision problem of
determining whether or not a given finite tile set admits a valid tiling. It
was shown by Berger [7] that the tiling problem is undecidable. A simplified
proof was given later by Robinson [92]. Both the proof of Berger and the
proof of Robinson relied on the existence of an aperiodic Wang tile set, i.e.
a Wang tile set which admits only non-periodic valid tilings.

A Wang tile set is said to be 2-way deterministic if there are no two
tiles in the tile set that have the same colors next to the bottom left corner
or the top right corner. This means that the colors of the edges adjacent
to the bottom left corner determine rest of the edge colors uniquely. The
same holds also for the color of the edges adjacent to the top right corner.
A Wang tile set is said to be 4-way deterministic if there are no two tiles in
the tile set that have the same colors next to any given corner. Then the tile
is uniquely determined by the colors of the edges adjacent to any corner.

In Chapter 3 it is shown that the tiling problem of Wang tiles remains
undecidable even if the structure of the given Wang tile set is restricted to
4-way deterministic tile sets and even if at most one kind of Wang tile can
be placed between any two Wang tiles. It is known that 4-way deterministic
aperiodic tile sets exist [55] but it has not been known whether or not the
tiling problem is undecidable in the 4-way deterministic case. It is shown
that the square tiling problem [35] remains NP-complete even when the
instances are 4-way deterministic tile sets. This chapter is based on [67, 68,
70].

In Chapter 4 it is shown how a 2-way deterministic tile sets can be
used to represent a Turing machine computation. This construction gives
a simple description of a result of Dubacq stating that any (not necessarily
reversible) Turing machine can be simulated in real time by a reversible one-
dimensional cellular automaton [27]. This construction also gives a proof for

2

the undecidability of the tiling problem in the weaker 2-way deterministic
case. Although the result is weaker, the construction is significantly simpler
than the one in Chapter 3 and it is sufficient to be used in Chapter 5 since
4-way determinism is not required. This chapter is based on [66].

In Chapter 5 it is shown that left (or right) expansivity of reversible cel-
lular automata is an undecidable property. An irreversible one-dimensional
cellular automaton is said to be positively expansive if a difference between
two different configurations propagates both to the left and to the right
during a computation forward in time. A reversible one-dimensional cellu-
lar automaton is said to be expansive if a difference between two different
configurations propagates both to the left and to the right during a compu-
tation forward and backward in time. A reversible one-dimensional cellular
automaton is said to be left expansive if a difference between two differ-
ent configurations propagates to the right during the computation forwards
and backwards in time. This definition differs from the original definition
given by Kurka [59] where only forward computation was considered in the
sense of positive expansivity. From either one tile set construction (2-way
or 4-way) it follows that it is undecidable whether a given one-dimensional
cellular automaton is left expansive or not. This chapter is based on [53].
The undecidability status of expansivity in the reversible case and positive
expansivity remain open problems.

In Chapter 6 it is shown that sensitivity to initial conditions is an un-
decidable property even for reversible one-dimensional cellular automata.
Sensitivity to initial conditions (or sensitivity) means that from any open
neighborhood of a configuration it is possible to pick another configura-
tion so that the iterated images of the two configurations are no longer
located within a same open neighborhood with a fixed general radius. Intu-
itively, sensitivity means that small changes in the initial configuration can
always (for any configuration) result relatively large changes in the iterated
image configurations after some number of time steps. It has been known
that sensitivity is an undecidable property for not necessarily reversible one-
dimensional cellular automata [28]. This chapter is based on [69, 71].

In Chapter 7 it is shown that topological mixing and topological tran-
sitivity are undecidable properties even for reversible one-dimensional cel-
lular automata. In fact, non-sensitive reversible one-dimensional cellular
automata and topologically mixing reversible one-dimensional cellular au-
tomata are recursively inseparable. This follows from a simple modifica-
tion to the construction given in Chapter 6. Due to the close relation be-
tween transitivity and different definitions of chaotic behavior, it follows
that chaotic behavior is an undecidable property both according to the defi-
nition of Devaney [26] and according to the definition of Knudsen [57]. This
chapter is based on [71].

3

In Chapter 8 expansivity and sensitivity of linear cellular automata are
briefly discussed. A cellular automaton is linear if the set of configurations
admits an additive operation and the cellular automaton function is linear in
this sense. The linear cellular automata are considered with the definition of
[12, 49]. It is shown that expansivity, positive expansivity and sensitivity to
initial conditions are decidable properties for linear cellular automata whose
state sets consist of vectors over a ring. Also some minor linear algebraic
results are presented. It is shown that a linear rule F is expansive if, and
only if, the linear rule F + F−1 is positively expansive. This chapter is
previously unpublished work.

Many questions regarding expansive dynamical system and cellular au-
tomata remain open, including the following:

Open Problem Is expansivity an undecidable property for reversible cel-
lular automata?

Open Problem Is positive expansivity an undecidable property for cel-
lular automata?

Open Problem Is every expansive (reversible) cellular automata conju-
gate to a two-sided subshift of finite type?

4

Chapter 2

Preliminaries

2.1 Algorithms and undecidability

In this section the mathematical concept of algorithm is briefly reviewed.
Due to the extensive theory which is connected to algorithms and undecid-
ability, only the most basic definitions and notions will be presented and in
an informal manner.

2.1.1 Algorithms

Recall that a word is a finite sequence of elements from a set Σ. The set
Σ in then called an alphabet . A word (i.e. sequence) (a1, a2, . . . , an) is
usually written in the form a1a2 . . . an. The empty sequence (i.e. ()) with
no elements is called the empty word and it is denoted by ε. The set of all
words over alphabet Σ is denoted by Σ∗. A language is a set of words.

In this work, an algorithm is a deterministic mechanical procedure which
receives a finite input (encoded as a word) and after a finite time it halts and
outputs an answer. A decision algorithm for a set A ⊆ Σ∗ is a deterministic
mechanical procedure that receives a finite input x ∈ Σ∗ and outputs “1”,
if the input belongs to the set, and “0”, if the input does not belong to the
set. No matter what word is given to the algorithm, it always eventually
halts and returns an answer.

A semi-algorithm of a set A ⊆ Σ∗ is a deterministic mechanical procedure
that receives a finite input and outputs “1”, if the input belongs to the
set, and otherwise it either outputs “0” or does not halt. If the input
word belongs to the set, the semi-algorithm returns a correct answer (which
is “1”). If the input word does not belong to the set, the computation
might never end. However, if the computation ever ends, a correct answer
is returned.

The concept of algorithm is somewhat intuitive. However, there exists
many strict mathematical models which are assumed to be equivalent to the

5

intuitive concept of an algorithm (by the so-called Church–Turing thesis).
One choice to represent the workings of an algorithm is to represent the
algorithm as a Turing machine. The concept of Turing machines is briefly
reviewed in Section 2.1.2.

2.1.2 Turing machines

In what follows, only the most basic definitions of Turing machines are
represented in an informal manner. A more thorough discussion of Turing
machines can be found in [25, 40, 74].

A Turing machine is usually pictured as a simple mechanical device which
has a finite instruction set, a finite memory and which scans an infinite tape
back and forth. The tape contains cells and each of the cells can contain one
letter from a finite alphabet. The mechanical part of the Turing machine is
called the (read-write) head and it has a state (or (read-write head) state)
from a finite state alphabet.

The head is always located on top of a single cell and on every time step
the head reads the letter from the cell. Then, if the instruction set identifies
the combination of the head’s state and the tape letter, the machine replaces
the tape letter and the state elements with new ones and possibly moves the
head a one location either to the left or to the right. If no instruction
is found for the combination of the machines inner state and the letter
on the tape, the machine simply halts. The operation conducted by the
read-write head is called a transition of the Turing machine. There exists
different definitions of Turing machine depending on how the head is defined
to move on each step of the computation. In particular, in this work two
different, but computationally equivalent, definitions (Definitions 2.1.4 and
2.1.3) are used for Turing machine transitions depending on their suitable
special properties.

There exist different variants of Turing machines with multiple tapes or
read-write heads and also the tape can be infinite either to one direction
only or to both directions. Different definitions for Turing machine appear
in [54, 83, 92]. In addition, sometimes the tape is considered to move instead
of the read-write head [54]. In this work only Turing machines with a moving
read-write head are considered.

Definition 2.1.1. A Turing machine M (or TM in short) is a quadruple

M = (Q,Γ, T, q0),

where Q is the state set, Γ is the tape alphabet, T is the transitions table
and q0 ∈ Q is the initial state.

In this work, the tape of a Turing machine is defined to be two-way
infinite and symbol ε is the empty tape letter which denotes an empty tape

6

cell. The directions of the tape are referred to as left and right . The read-
write head of a Turing machine is an object which moves on top of the tape
and may modify the contents of each individual cell whenever it is located
on top of the cell.

A configuration of a Turing machine (with a moving head) is an expres-
sion of the form

(q, i, c) ∈ Q × Z × ΓZ,

where q is the inner state of the read-write head, i is the current location
of the read-write head and c is the current tape contents. The tape in a
configuration is said to be empty if c(j) = ε holds for every cell j ∈ Z. A
configuration is called infinite if there are infinitely many cells j ∈ Z such
that c(j) 6= ε. Likewise, a configuration is called finite if there are finitely
many cells j ∈ Z such that c(j) 6= ε. A Turing machine configuration is
sometimes called an instantaneous description [39].

The transitions are the Turing machine’s instruction set. The definition
for the set of transitions varies in the literature and in this work two different
definitions are used.

Remark 2.1.2. The constructions in Chapter 3 and Chapter 4 use Defini-
tion 2.1.3 as was done already in Robinson’s article [92].

However, the construction in Chapter 6 uses Definition 2.1.4 because
the construction relies on the reversible Turing machine halting problem.
For the construction in Chapter 6 to work, it would be enough to consider
“injective” Turing machines (see Remark 6.2.1, p. 94).

It is straightforward to see that that the definitions are equivalent in the
sense that a computation by any Turing machine according to one definition
can be simulated by a computation by some Turing machine according to
the other definition.

Definition 2.1.3 (TM transitions as used in [35, 74, 92]). A transition
table is a set

T ⊆ Q × Γ × Q × Γ × {/, .}.

An element (q, a, r, b, ?) ∈ T is interpreted so that the read write head in
state q reading letter a does one of the following:

1. It writes a letter b on the cell, switches to a new state r and moves
one cell to the left if ? = /. Then configuration (q, i, c) is mapped to
configuration (r, i − 1, d), where d(j) = b if j = i and d(j) = c(j)
otherwise.

2. It writes a letter b on the cell, switches to a new state r and moves
one cell to the right if ? = .. Then configuration (q, i, c) is mapped
to configuration (r, i + 1, d), where d(j) = b if j = i and d(j) = c(j)
otherwise.

7

That is, on every time step the read-write head first writes and then moves.

Definition 2.1.4 (TM transitions as used in [25, 54, 83]). A transition
table is a set

T ⊆ (Q × Γ × Q × Γ) ∪ (Q × Q × {/, .}) .

1. An element (q, a, r, b) ∈ Q × Γ × Q × Γ ⊆ T is interpreted so that the
read write head in state q reading letter a writes a letter b on the cell
and switches to a new state r. Then configuration (q, i, c) is mapped
to configuration (r, i, d), where d(j) = b if j = i and d(j) = c(j)
otherwise.

2. An element (q, r, ?) ∈ Q × Q × {/, .} ⊆ T is interpreted so that the
read write head in state q does one of the following:

(a) It moves one cell to the left and switches to a new state r if ? = /.
Then configuration (q, i, c) is mapped to configuration (r, i−1, c).

(b) It moves one cell to the right and switches to a new state r if
? = .. Then configuration (q, i, c) is mapped to configuration
(r, i + 1, c).

That is, on every time step the read-write head either moves or writes but
not both.

The two models for a Turing machine are computationally equivalent
in the sense that any computable function that can be expressed with one
transition model can be expressed with the other model also.

Lemma 2.1.5. For any computation leading from a configuration (a, i, c) to
a configuration (b, j, d) by a Turing machine A (resp. B) with a transition
table according to Definition 2.1.3 (resp. Definition 2.1.4), there exists a
Turing machine A′ (resp. B′) with a transition table according to Definition
2.1.4 (resp. Definition 2.1.3) such that it can compute from a configuration
(qa, i, c) to a configuration (qb, j, d).

Proof. It is shown that for every Turing machine with a transition table of
one type it is possible to construct a Turing machine with a transition table
of another type so that every single computational transition by the first
Turing machine can be achieved as a combination of one or more transitions
of the second Turing machine.

Suppose that the Turing machine A has a transition t = (q, a, r, b, /).
Then the Turing machine A′ is extended with transitions (q, a, qt, b) and
(qt, r, /). Likewise, for a transition s = (q, a, r, b, .), the Turing machine A′

would be extended with transitions (q, a, qs, b) and (qs, r, .).

8

Suppose that the Turing machine B has a transition t = (q, a, r, b).
Then the Turing machine B ′ is extended with transitions (q, a, qt, b, .) and
(qt, x, r, x, /) for any tape letter x. Suppose that the Turing machine B has
a transition (q, r, /). Then the Turing machine B ′ is extended with transi-
tions (q, x, r, x, /) for any tape letter x. Likewise, for a transition (q, r, .),
the Turing machine B ′ is extended with transitions (q, x, r, x, .) for any tape
letter x.

A Turing machine with a transition table according to Definition 2.1.3
(resp. Definition 2.1.4) is said to halt on a configuration (q, i, c), where
c(i) = a, if there are no transitions of the form (q, a, r, b, ?) (resp. (q, a, r, ?)
or (q, r, ?)) in its transition table. That is, the Turing machine halts if there
is no transition which could be applied to the current configuration.

A Turing machine is said to be deterministic if there is at most one tran-
sition that can be applied to a configuration. Otherwise, a Turing machine
is said to be nondeterministic. In terminology, the family of nondeterminis-
tic Turing machines is considered to contain deterministic Turing machines
also.

If a Turing machine M = (Q,Γ, T, q0) is deterministic, then the transi-
tion function δ can be defined in the case of Definition 2.1.3 as

δ(q, a) =

{

(r, b, ?) if (q, a, r, b, ?) ∈ T and

undefined otherwise.

or in the case of Definition 2.1.4 as

δ(q, a) =

(r, ?) if (q, r, ?) ∈ T,

(r, b) if (q, a, r, b) ∈ T and

undefined otherwise

A deterministic Turing machine is said to be injective if every configura-
tion has at most one preimage configuration. Although the computation by
an injective Turing machine is “reversible” in terms of determining previous
computation steps (if they exist), reversibility is defined differently for Tur-
ing machines [81, 83, 54]. The idea is to redefine Turing machine in such
a way that also the inverse mapping is a Turing machine. For this reason,
reversible Turing machines are defined according to [54].

The reverse of a transition according to Definition 2.1.4 is defined as

(q, a, r, b)−1 = (r, b, q, a), (q, r, /)−1 = (r, q, .) and (q, r, .)−1 = (r, q, /).

The reverse transition table T−1 is defined as

T−1 =
{

t−1 | t ∈ T
}

.

9

The reverse of a Turing machine M = (Q,Γ, T, q0) is the Turing machine

M−1 = (Q,Γ, T−1, q0).

A Turing machine (according to Definition 2.1.4) is said to be reversible (or
RTM in short) if it is deterministic and its reverse is a deterministic Turing
machine.

2.1.3 Decidability and undecidability

A Turing machine can return its output, for example, by writing on a specific
part of the tape a specially formatted string. For example, a Turing machine
answering to a yes/no question could give its output as either the letter “1”
or the letter “0” written in the cell immediately to the right of the read-
write head after it has halted. Alternatively, for as simple a set of outputs
as “yes” or “no”, the machine could also output its decision by halting in
a special state such as qyes and qno (as in [35]). This work does not deal
with the practical issues of implementing algorithms on Turing machines
and therefore the output method is left undefined.

A set A ⊆ Σ∗ is said to be recursive (or solvable or decidable) if there
exist a Turing machine such that for a given word x ∈ Σ∗ it would return “1”,
if x ∈ A, and “0”, if x 6∈ A. The set A is said to be recursively enumerable
(or semi-solvable or semi-decidable) if there exists a Turing machine such
that for a given word x it would return “1” if, and only if, x ∈ A. Recursive
enumerability of a set A means that the elements of A can be printed in
some order, although it is not known in which order. A basic result is, that
a set A ⊆ Σ∗ is recursive if, and only if, both A and A{ are recursively
enumerable.

The computational task or problem of determining whether or not a
given word belongs to a given set A is called the membership problem. The
membership problem is said to be decidable, if A is recursive, and undecidable
otherwise. In general, a problem is said be decidable (or solvable), if there
exists a Turing machine that always returns a correct answer for the problem.
Otherwise, the problem is said to be undecidable (or unsolvable). A function
is called computable (or recursive), if it can be implemented as a Turing
machine, and uncomputable (or non-recursive) otherwise.

Two sets A and B are said to be recursively inseparable if there does
not exist a recursive set C such that A ⊆ C and B ⊆ C { [56, 91, 93].
In particular, if two sets are recursively inseparable, there does not exist a
Turing machine that would distinguish the elements of the first set from the
elements of the second set.

10

2.1.4 Turing machine halting problem

The Turing machine halting problem is the following decision problem: “Does
the given Turing machine M eventually halt when started on an empty
tape?” The halting problem is known to be undecidable even for reversible
Turing machines [6, 62].

Theorem 2.1.6 ([6, 62]). It is undecidable whether or not a given reversible
Turing machine eventually halts when started on an empty tape and the
initial state.

A configuration is said to be mortal if the Turing machine eventually
halts when it it starts on such a configuration. Conversely, a configuration
is said to be immortal if the Turing machine never halts when it starts on
the configuration.

The Turing machine immortality problem is the following decision prob-
lem: “Does the given Turing machine M have an immortal not necessarily
finite configuration?” The immortality problem was shown to be undecid-
able for not necessarily reversible Turing machines in [39]. Later, it was
shown to be undecidable for reversible Turing machines in [54]. If a ma-
chine eventually halts on every not necessarily finite configuration, there
must exist an upper bound on how many computation steps the machine
can execute before halting. Therefore the complement of the immortality
problem is semi-decidable because for every hypothetical bound m all the
finite configurations with only m non-empty cells on both sides of the read-
write head can be checked.

2.1.5 Computational complexity

A (nondeterministic) Turing machine M is said to accept a word x ∈ Σ∗

if for input x the Turing machine outputs “yes” for some nondeterministic
path of computation. That is, if there exists some path of transitions to an
positive output, then the word is accepted. The language recognized by a
nondeterministic Turing machine M is the set

LM = {x ∈ Σ∗ | M accepts x}.

The time required by a nondeterministic Turing M machine to accept a
word x ∈ LM is defined to be minimum, over all accepting computations of
M for x, of the number of computation steps until a result is returned [35].

The time complexity function TM : N → N for M is

TM(n) = max ({1} ∪ {m | ∃x ∈ LM ∩ Σn : The time to accept x by M is m.})

A nondeterministic Turing machine is said to be of polynomial time if
there exists a polynomial p(n) such that TM(n) ≤ p(n) for all n ≥ 1. A

11

language is said to be in the set P if it can be recognized in polynomial time
using a deterministic Turing machine, that is,

P = {L | ∃ polynomial time deterministic TM M : L = LM}.

A language is said to be in the set NP if it can be recognized in polynomial
time using a nondeterministic Turing machine, that is,

NP = {L | ∃ polynomial time nondeterministic TM M : L = LM}.

A language L is said to be in the set co-NP if L{ ∈ NP.
A Turing machine is said to compute a function f : A → B if for any

input x ∈ A it outputs f(x) ∈ B. However, in this work the actual output
method is left undefined as noted in Section 2.1.3.

A polynomial time transformation from a language L1 ⊆ Σ∗
1 to a lan-

guage L2 ⊆ Σ∗
2 is a function f : Σ∗

1 → Σ∗
2 that satisfies the following condi-

tions:

1. There exists a polynomial time deterministic Turing machine that
computes f .

2. For all x ∈ Σ∗
1, x ∈ L1 if, and only if, f(x) ∈ L2.

Two languages L1 and L2 are polynomially equivalent if there exist polyno-
mial time transformations from L1 to L2 and from L2 to L1.

A language L is said to be NP-complete if the following conditions hold:

1. L ∈ NP.

2. For all L′ ∈ NP, there exists a polynomial time transformation from
L′ to L.

An example of an NP-complete problem is the satisfiability problem (or
SAT in short). Let X = {x1, . . . , xm} be a set of Boolean variables. A truth
assignment for X is a function t : X → {0, 1}. If t(x) = 1, it is said that x
is “true” under t. If t(x) = 0, it is said that x is “false” under t. If x ∈ X,
then x and ¬x are literals over X.

A Boolean expression or Boolean formula is a finite expression describing
a Boolean function (i.e. a function with a domain of the form {0, 1}m and a
range of the form {0, 1}) using parentheses, a set of Boolean variables and
logical connectives ¬ (NOT), ∧ (AND), ∨ (OR), ⇐ and ⇒ (implication)
and ⇔ (if and only if). For example,

f(x1, x2, x3) = (x1 ∧ x2) ⇒ ¬x3

is a Boolean expression.

12

A Boolean expression f(x1, . . . , xm) is satisfied if f(t(x1), . . . , t(xm)) = 1
for some truth assignment t.

A clause over X is a Boolean expression of the form f(x1, . . . , xm) =
∨

j∈J aj where aj are literals over X. The following decision problem is
the satisfiability problem: “Given a set X of Boolean variables and a set
C = {Ci | i ∈ I} of clauses over X, does there exist a truth assignment such
that the Boolean expression

f(x1, . . . , xm) =
∧

i∈I

Ci =
∧

i∈I

∨

j∈Ji

ai,j

is satisfied?”

Theorem 2.1.7 (Cook’s Theorem [20, 21, 35]). The satisfiability prob-
lem is NP-complete.

It is a famous open problem whether P equals NP or not [21, 35, 88].

2.2 Symbolic dynamics and cellular automata

This section contains the basic definitions on dynamical systems, cellular
automata and their dynamical properties.

2.2.1 Basic definitions

Definition 2.2.1. Let X be a set. A family T of subsets of X is called a
topology if the following conditions hold:

1. ∅ ∈ T and X ∈ T ,

2. any union of elements of T is in T ,

3. any intersection of finitely many elements of T is in T .

The pair (X, T) is called a topological space. The elements of a topology
are called open sets and their complements are called closed sets. A set is
called clopen if it is both open and closed.

A family of open sets U = {Ui | i ∈ I} ⊆ T is called an open cover if
X =

⋃

i∈I Ui. A set V = {Ui | i ∈ J ⊆ I} is said to be a finite subcover
of the open cover U if X =

⋃

i∈J Ui and J is finite. A topological space
(X, T) is compact if every open cover has a finite subcover. Let x ∈ X and
Y ⊂ X be an open set. If x ∈ Y , then Y is called a neighborhood (or an
open neighborhood) of x.

Definition 2.2.2. Let X be a set. A function d : X × X → R is called a
metric or distance, if the following conditions are satisfied:

13

1. d(x, y) = d(y, x) for all x, y,∈ X,

2. d(x, y) = 0, if, and only if, x = y and

3. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

If the function d is a metric, then (X, d) is called a metric space.

Example: discrete topology A simple example of a topological space
is (X, 2X) where X is any set and 2X is the power set of X (i.e. the set
which contains all the subsets of X). This particular topology 2X is called
a discrete topology and the space (X, 2X) is called a discrete space.

Example: Euclidean metric The set of real vectors Rn is a metric space
with the Euclidean metric

d(−→x ,−→y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2,

where −→x = (x1, . . . , xn) and −→y = (y1, . . . , yn).

Let (X, d) be a metric space. The set Bε (x) = {y ∈ X | d(x, y) < ε}
is called the ε-ball of point x or the ε-neighborhood of point x or simply a
ball with radius ε centered at point x. A subset Y ⊆ X of a metric space
(X, d) is called open if for any point y ∈ Y Bε (y) ⊆ Y for some ε ∈ R. A
topological space (X, T) is called metrizable if there exists a metric d on X
such that the topology (i.e. the family of open sets) defined by d is equal to
the original topology T .

Given two topological spaces (X, T) and (Y,S), a function f : X → Y
is said to be continuous if for each open set U ⊂ Y the set

f−1(U) = {x ∈ X | f(x) ∈ U}

is open in X. Alternatively, f is continuous if f−1(V) is closed for each closed
set V ⊆ Y . A continuous bijective function is called a homeomorphism if
its inverse is continuous.

Definition 2.2.3. A pair (X,F) is a dynamical system if X is a compact
metric space and F : X → X is a continuous function.

A dynamical system (X,F) is said to be periodic if there exists a positive
integer p such that F p(x) = x for every x ∈ X. The dynamical system is
said to be ultimately periodic if there exists positive integers p0 and p such
that F p0+p(x) = F p0(x) for every x ∈ X. If F is a homeomorphism (i.e.
continuous bijective function with continuous inverse), the dynamical system
is said to be invertible (or reversible).

14

Definition 2.2.4. Two dynamical systems (X,F) and (Y,G) are conjugate
if there exists a bijective continuous function π : X → Y satisfying π ◦ F =
G ◦ π. Then the function π is called a conjugacy.

Notation 2.2.5. Recall that, for any two sets X and Y , the set of functions
from X to Y is denoted by Y X , that is,

Y X = {f | f : X → Y }.

Definition 2.2.6. Let I denote either N or Z. Let A be an alphabet and let
F ⊆ A∗. The shift function σ : AI → AI is defined by σ(x)(i) = x(i + 1). If
a set X ⊆ AI is of the form

X = {x ∈ AI | ∀w ∈ F : ∀i ∈ I : x[i, i + |w| − 1] 6= w},

then the set X is called a shift space (or shift).

If I = N, then the shift is said to be one-sided . If I = Z, then the shift
is said to be two-sided .

A shift is called a subshift if it is a subset of another shift. The sets AN

and AZ are called full shifts. A pair (X,σ) is called shift dynamical system
if X is a shift.

A shift X is said to be a subshift of finite type (SFT) or a subshift of
order n if there exists an integer n ∈ N and a set F ⊆ An such that

X =
{

x ∈ AI | ∀w ∈ F ⊆ An : ∀i ∈ I : x[i, i + n − 1] 6= w
}

.

Elements of subshifts of finite type are described by a set of forbidden words
F of bounded length n. A sequence belongs to the subshift of finite type
if, and only if, it does not contains a factor word from the set of forbidden
words.

Definition 2.2.7. A pair (AM , F) is said to be a cellular automaton (or
CA in short) if the function F is defined according to a condition

F (c)(−→x) = f(c(−→x + −→x1), . . . , c(
−→x + −→xn)), (2.1)

for some function f : An → A and where + denotes the operation of the
monoid M .

The set A is called the state set of the cellular automaton (AM , F). An
element of AM is called a configuration. The function F is called the global
rule (or global function) and the function f is called the local rule (or local
function) of the cellular automaton. The vector of elements (−→x1, . . . ,

−→xn) ∈
Mn is called the neighborhood vector (or simply neighborhood) of the cellular
automaton.

15

Remark 2.2.8. A more classical definition of a cellular automaton is that
a cellular automaton is the dynamical system defined by a quadruple A =
(M,A,N, f), where M is the monoid defining the structure of the lattice,
A is the state set, N is the neighborhood and f : A|N | → A is the local
rule. This information describes the dynamical system of Definition 2.2.7
effectively (assuming that M has a finite presentation) and can be processed
algorithmically if needed.

This definition of neighborhood has nothing to do with the topological
definition of an (open) neighborhood. The elements of M are called cells
and the elements −→x + −→x1, . . . ,

−→x + −→xn are called neighbors of cell −→x . The
vector (−→x +−→x1, . . . ,

−→x +−→xn) is called the neighborhood of cell −→x . The integer
r = maxn

i=1 ‖
−→xi‖ is called the radius of the neighborhood, the local rule or

the cellular automaton.
If M = Nd or M = Zd in the Definition 2.2.7, then the cellular automaton

is said to be d-dimensional . The positive integer d is then known as the
dimension of the cellular automaton. Cellular automata of the form (AN, F)
and (AZ, F) are called one-dimensional . The topic of this work is cellular
automata of the form (AZ, F). For one-dimensional cellular automata the
set of configurations is in fact a full shift. One-dimensional cellular automata
global functions are then functions on full shifts.

A one-dimensional cellular automaton is one-sided if its shift space of
configurations is one-sided. Likewise, a one-dimensional cellular automaton
is two-sided if its shift space of configurations is two-sided.

For one-dimensional cellular automata, the integer m = −minn
i=1 xi is

called the memory and the integer a = maxn
i=1 xi is called the anticipation

of the local rule. Clearly, the radius can be defined by r = max{m,a}.
The distance between two configurations c, e ∈ Zd can is defined to be

d(c, e) =

(

1

2

)min{‖−→x ‖ | c(−→x)6=e(−→x)}

,

where
‖(x1, x2, . . . , xd)‖ = max{|x1|, |x2|, . . . , |xd|}

and d(c, e) = 0, if c = e.
Function d(·, ·) is also a metric thus making the set of configurations a

metric space. The balls in the metric are called cylinders and they form a
basis for the topology. Radius r cylinder containing configuration c is the
set

Cyl(c, r) =
{

e ∈ AZd

| c(−→x) = e(−→x) when ‖−→x ‖ ≤ − log2 r
}

For every radius r there are only finitely many cylinders and these cylinders
are by definition disjoint. Therefore, radius r cylinders form a partition of
the space of configurations. Hence, every cylinder is clopen (i.e. both open

16

and closed) because the complement of every cylinder is a union of other
cylinders with the same radius.

In the one-dimensional case, one can define cylinders differently as sets

Cyl(w, k) =
{

c ∈ AZ | c(i + k) = w(i) when i ≤ |w| − 1
}

where w ∈ A∗ is a finite word and w(i − 1) denotes the ith letter of the
word. The word consisting of states in locations i through j (when i ≤ j)
in a configuration c is denoted by c[i, j].

The topology induced by the cylinders in known as the Cantor topology
on AZd

and it is compact. In AZd
every (infinite) sequence has a converg-

ing subsequence. Because a metric space is compact if, and only if, every
sequence has a converging subsequence, the metric space AZd

is compact
[52].

Recall that a translation is a mapping such that

τ−→y (c)(−→x) = c(−→x + −→y),

where c ∈ AZd
and −→x ,−→y ∈ Zd.

Theorem 2.2.9 ([38]). A function F : AZd
→ AZd

is the global function
of a cellular automaton if, and only if,

1. it is continuous and

2. it commutes with translations.

Cellular automata are indeed dynamical systems, because the set of con-
figurations is a compact metric space and global functions of cellular au-
tomata are continuous. In particular, d-dimensional cellular automata are
dynamical systems of the form (AZd

, F).
A cellular automaton is said to be injective if its global function is injec-

tive (also known as one-to-one). A cellular automaton is said to be surjective
if its global function is surjective (also known as onto). A cellular automaton
is said to be bijective if its global function is both injective and surjective.

A cellular automaton (AM , F) is said to be reversible (or invertible or
RCA in short) if there exists a cellular automaton (AM , G) such that F ◦G =
G ◦ F = I, where I : AM → AM is the identity function. Then the cellular
automaton (AM , G) is the inverse of the cellular automaton (AM , F).

Theorem 2.2.10 ([38]). A cellular automaton (AM , F), where M = Zd or
M = Nd, is reversible if, and only if, it is bijective.

This theorem means that if the inverse function F −1 exists, it is the
global rule of another cellular automaton. Furthermore, it is known that for
cellular automata injectivity and bijectivity are equivalent and injectivity
implies surjectivity [80, 84]. Injectivity (i.e. reversibility) and surjectivity
are known to be decidable for one-dimensional cellular automata [3, 101]
but undecidable for two-dimensional cellular automata [47].

17

(a)

(b)

(c)

Figure 2.1: Examples of Game of Life computation on random finite initial
configurations.

Example: John Conway’s Game of Life Probably the most famous
cellular automaton is the Game of Life by John Conway [34, 8]. The Game
of Life (or simply Life) is a two-dimensional cellular automaton where each
cell has a neighborhood of 3 × 3 cells centered at the cell and each cell is
either dead or alive. A dead cell becomes alive if it has exactly three living
neighbors. A living cell remains alive if and only if there are either two or
three living cells in the neighboring cells surrounding it. In all other cases
the cell will be dead in the next configuration. The motivation of such a local
rule is to simulate artificial life. If a living cell has too many living neighbors,
it dies of starvation. If it has too few neighbors, it dies of isolation. If there
is the right number of living neighbors, a new living cell is born in place of
a dead cell.

The Game of Life has been studied extensively. One notable property
of Life is that seemingly “living” clusters of cells can appear from random
initial configurations. From computational perspective, it has been shown
that the Game of Life is computationally universal and it is undecidable
whether a finite configuration dies or not [8, 51].

Figure 2.1 contains three examples of Game of Life computations (show-
ing five consecutive configurations) starting with a random finite initial con-
figuration.

Example: Rule 110 The Rule 110 cellular automaton is a one-dimensional
cellular automaton with a state set {0, 1} and a local rule f : {0, 1}3 →

18

(a)

(b)

Figure 2.2: Examples of Rule 110 computation on random finite initial con-
figurations. The computation advances upwards.

{0, 1}, which is defined by

f(1, 1, 1) = 0, f(1, 1, 0) = 1, f(1, 0, 1) = 1, f(1, 0, 0) = 0,

f(0, 1, 1) = 1, f(0, 1, 0) = 1, f(0, 0, 1) = 1 and f(0, 0, 0) = 0.

The name of Rule 110 comes from the fact that the sequence of local rule’s
image states forms the binary presentation of number 110, that is,

110 = (01101110)2 .

The number, which is given by the sequence of image states of a one-
dimensional cellular automaton’s local rule, is called the Wolfram number
of the cellular automaton. The Rule 110 is known to be computationally
universal [19, 110].

Figure 2.2 contains two examples of Rule 110 computations starting with
a random finite initial configuration.

2.2.2 Equicontinuity and sensitivity

Definition 2.2.11. A point x ∈ X is an equicontinuity point of function
F if for any ε > 0 there exists δ > 0 such that for any point y ∈ X and

19

integer n ∈ N,

d(x, y) < δ =⇒ d(F n(x), F n(y)) < ε.

A dynamical system (X,F) is equicontinuous if every point x ∈ X is an
equicontinuity point.

Definition 2.2.12. A dynamical system (X,F) is sensitive to initial condi-
tions (or sensitive) if there exists such ε > 0 that for any x ∈ X and δ > 0
there exists a point y ∈ X such that

0 < d(x, y) < δ and d(F n(x), F n(y)) ≥ ε

for some integer n ∈ N. If the constant ε exists, it is known as the sensitivity
constant.

It was shown in [28] that equicontinuity and sensitivity are undecidable
properties for not necessarily reversible one-dimensional cellular automata.
Recently, it was shown that equicontinuity is undecidable even for reversible
one-dimensional cellular automata [54]. The proof for the reversible case
was based on the undecidability of the immortality problem for reversible
Turing machines.

Theorem 2.2.13 ([10]). A cellular automaton is equicontinuous if, and
only if, it is ultimately periodic.

A state q ∈ A is called quiescent if the local rule of the cellular automaton
satisfies f(q, . . . , q) = q. A cellular automaton is said to be nilpotent if it
has a quiescent state q and there exists a bound n0 such that

F n(c)(i) = q

for every n ≥ n0, i ∈ Z and c ∈ AZd
. A configuration c is called quiescent if

F (c) = c.

Nilpotent cellular automata are all ultimately periodic and therefore also
equicontinuous. It is undecidable whether or not a given one-dimensional
cellular automaton is nilpotent [46, 48]. A closely related result is the
uncomputability of topological entropy for not necessarily reversible one-
dimensional cellular automata [42]. It is also undecidable whether an not
necessarily reversible one-dimensional cellular automaton has a non-trivial
conservation law or not [32].

Definition 2.2.14. A word w ∈ A∗ is blocking if there exists a sequence
of words (wn)∞n=0 such that wn ∈ Ar and there exists an integer i such that
F n(Cyl(w, i)) ⊆ Cyl(wn, 0) for any n ∈ N.

20

Theorem 2.2.15 ([10]). Any equicontinuity point has an occurrence of
a blocking word. Conversely, any point with infinitely many occurrences
of blocking words arbitrarily far to the left and right of the origin is an
equicontinuity point.

For one-dimensional cellular automata sensitivity is equivalent to the
nonexistence of equicontinuity points. However, for two-dimensional cellular
automata this claim does not hold. There exists a 2-dimensional cellular
automaton which is non-sensitive but it still has no equicontinuity points
[95].

2.2.3 Topological transitivity and topological mixing

Definition 2.2.16. A dynamical system (X,F) is topologically transitive
(or transitive) if for all nonempty open subsets U and V of X there exists
a positive integer n such that F n(U) ∩ V 6= ∅.

Definition 2.2.17. A dynamical system (X,F) is topologically mixing (or
mixing) if for all nonempty open subsets U and V of X there exists a positive
integer n0 such that F n(U) ∩ V 6= ∅ for all n ≥ n0.

Topological mixing is an even stronger property than transitivity. Clearly,
a mixing dynamical system is transitive also.

It can be proved with a topological argumentation that a cellular automa-
ton is topologically transitive if, and only if, it has a dense orbit (Definition
2.2.21) [52]. A short introduction to transitivity in terms of symbolic dy-
namics can be found in [65]. It is known that transitivity implies sensitivity
[17].

2.2.4 Expansivity

Definition 2.2.18. A reversible dynamical system (X,F) is expansive if
there exists a constant ε such that for any two different points x and y

d(F n(x), F n(y)) ≥ ε (2.2)

for some integer n ∈ Z.

Definition 2.2.19. A dynamical system (X,F) is positively expansive if
there exists a constant ε such that for any two different points x and y
equation (2.2) holds for some positive integer n ∈ N.

It is known that only one-dimensional cellular automata can be expan-
sive or positively expansive [31, 98]. It can be shown that a reversible cel-
lular automaton cannot be positively expansive [52]. Furthermore, positive
expansivity implies topological mixing [9].

21

It is also known that any positively expansive cellular automaton is con-
jugate to a one-sided subshift of finite type [85]. More precisely, the subshift
is the column subshift Σ2r+1(F) (see Definition 2.2.24), where r is the radius
of the local rule. An expansive cellular automata is conjugate to a subshift
of finite type if either memory or anticipation is non-positive [86]. It is an
open problem whether or not an expansive cellular automaton is conjugate
to a two-sided subshift of finite type. In general, if the memory of (AZ, F)
is m and the anticipation of (AZ, F−1) is a, then (AZ, F ◦ σk) is conjugate
to a subshift of finite type for all k ≥ max{m,a} [11, 86].

Example: the shift function A simple example of a cellular automaton
global function, which is reversible, expansive and transitive, is the shift
function σ : AZ → AZ, which is defined by

σ(c)(i) = c(i + 1).

A reversible cellular automaton (AZ, F) is left expansive if there exists
a constant ε such that for any two different configurations c and e with
c(i) 6= e(i) for some i < 0 equation (2.2) holds for some integer n ∈ Z.
Similarly, a reversible cellular automaton is right expansive if there exists
a constant ε such that for any two different configurations c and e with
c(i) 6= e(i) for some i > 0 equation (2.2) holds for some integer n ∈ Z.

A cellular automaton (AZ, F) is positively left expansive if there exists
a constant ε such that for any two different configurations c and e with
c(i) 6= e(i) for some i < 0 equation (2.2) holds for some positive integer
n ∈ N. Similarly, the cellular automaton is positively right expansive if
there exists a constant ε such that for any two different configurations c
and e with c(i) 6= e(i) for some i > 0 equation (2.2) holds for some positive
integer n ∈ N.

The original definition of left and right expansivity given by Kurka actu-
ally meant positive left and right expansivity [59]. Here Kurka’s left expan-
sivity is called positive left expansivity and right expansivity is called posi-
tive right expansivity because of the similar difference between expansivity
of reversible cellular automata and positive expansivity of the irreversible
cellular automata. Intuitively positive left expansivity means that if two
configurations differ by some cell then their later images will differ by cells
further to the right. Similarly positive right expansivity means that if two
configurations differ by some cell then their later images will differ by cells
further to the left.

22

2.2.5 Chaos

Definition 2.2.20. Let P (F) denote the set of periodic points of a dynam-
ical system (X,F), that is,

P (F) = {x ∈ X | ∃n ∈ N \ {0} : F n(x) = x}.

A dynamical system (X,F) is said to have dense periodic points if P (F) is a
dense subset of X, or equivalently, for any point x ∈ X and any positive real
number ε > 0 there exists a periodic point y ∈ P (F) such that d(x, y) < ε.

Definition 2.2.21. A dynamical system (X,F) has a dense orbit if there
exists a point x ∈ X such that for every point y ∈ X with any ε > 0 there
exists an integer n ∈ N such that d(F n(x), y) < ε.

Definition 2.2.22 (Devaney’s chaos [26]). A dynamical system (X,F)
is said to be chaotic according to Devaney’s definition if

1. it is topologically transitive,

2. it has dense periodic points and

3. it is sensitive to initial conditions.

For cellular automata, it is an open problem whether the set of periodic
points is dense or not for every surjective cellular automaton [51]. If the
answer is affirmative, chaos would become equivalent to transitivity, because
transitivity implies sensitivity (for cellular automata) [17, 51].

Definition 2.2.23 (Knudsen’s chaos [57]). A dynamical system (X,F)
is said to be chaotic according to Knudsen’s definition if

1. it has a dense orbit and

2. it is sensitive to initial conditions.

In [15] the authors reviewed some of the properties of discrete time dy-
namical systems in terms of cellular automata. The authors discussed also
Knudsen’s definition of chaotic behavior with respect to cellular automata.

In the case of reversible cellular automata, Devaney’s and Knudsen’s
definitions of chaos are equivalent because a reversible cellular automaton
has always dense periodic points and a cellular automaton is transitive if,
and only if, it has a dense orbit. Since transitivity implies sensitivity, both
definitions of chaos are equivalent to transitivity in the reversible case.

Definition 2.2.24. A set

Σk(F) =

{

x ∈
(

Ak
)I

| ∃y ∈ AJ : ∀i ∈ I : F i(y)[0, k − 1] = x(i)

}

is called the column subshift of the one-dimensional cellular automaton
(AJ, F), where I and J equal either N or Z.

23

A cellular automaton is regular if for any positive integer k the finite
words (i.e. words over alphabet Ak) appearing in the sequences of Σk(F) as
factors form together a regular language. Equivalently, cellular automaton
is regular if Σk(F) is sofic for every k. In particular, if the column subshift
is of finite type, then the cellular automaton is regular. Every subshift of
finite type is sofic, but not every sofic subshift is a subshift of finite type
[65, p. 67]. Sometimes the denseness of periodic points is called regularity
or topological regularity [15]. However, cellular automata, whose column
subshifts are sofic subshifts, are called regular [58] because the factor words
of the elements of a column subshift form a regular language in the sense
of formal languages. In this work regularity means the regularity defined in
[58] (i.e. the regularity of column subshift words). It has been shown by
Di Lena that regularity is an undecidable property for one-dimensional not
necessarily reversible cellular automata [63].

Using the undecidability of equicontinuity for reversible one-dimensional
cellular automata [54], undecidability of regularity follows in the reversible
case with the same method of proof:

Theorem 2.2.25. It is undecidable whether or not a given one-dimensional
reversible cellular automaton is regular.

Proof. Assume that regularity is a decidable property among reversible one-
dimensional cellular automata. A reversible cellular automaton is equicon-
tinuous if, and only if, it is periodic. Every periodic cellular automaton is
regular because a language of a column subshift consists of powers of a finite
number of words.

Reversibility is a decidable property for one-dimensional cellular au-
tomata and equicontinuity is a decidable property among regular one-dimen-
sional cellular automata because the graph presentation of the column sub-
shift can be constructed algorithmically [63]. Therefore, by the assumption,
it is possible to determine whether or not a given regular one-dimensional
cellular automaton is periodic (i.e. both reversible and equicontinuous).
This contradicts the undecidability of periodicity.

2.2.6 Applications of cellular automata

Applications of cellular automata range both simulation and computational
purposes. Cellular automata have been used to simulate biological (see,
for example [4, 13]) physiological (see, for example [73, 90]) and physical
phenomena (see, for example [33, 37]). Even quantum computation has
been discussed in terms of cellular automata (see, for example [105]). In [4],
vegetation growth is discussed in terms of cellular automata. In particular,
[4, p. 115] contains a partial list of the simulation uses of cellular automata.
In [33], a family of cellular automata called lattice gases are discussed. A

24

lattice gas (or lattice gas automaton) is a cellular automaton which is used
to simulate the behavior of moving particles on a lattice.

Cellular automata have been used also both in private-key cryptography
(see, for example [72, 97, 5]) and public-key cryptography [36, 45, 102]. For
example, in [72] simple two-dimensional cellular automata are used to gen-
erate pseudo-random bits. In [45], the cryptosystem’s security is based on
the difficulty of inverting a 2-dimensional cellular automaton. This assump-
tion is based on the undecidability of reversibility of 2-dimensional cellular
automata [47]. The public key is a global function F of a cellular automaton
and it is formed as a composition

F = Fn ◦ · · · ◦ F1

of n global functions of more “simple” reversible cellular automata. The
private key is the sequence of functions (F1, . . . , Fn). It is assumed that the
cellular automata with global functions Fi are chosen so that the neighbor-
hood of F−1 is very large compared to that of F . It is assumed, that in
practice it is infeasible to compute the inverse mapping

F−1 = F−1
1 ◦ · · · ◦ F−1

n

without the knowledge of the functions Fi. The plaintext configuration p
is mapped with F to produce the ciphertext configuration c = F (p). As-
suming the infeasibility of computing F −1 from F without the knowledge of
(F1, . . . , Fn), only the receiver can compute p = F−1(c). The practical im-
plementation of functions Fi was suggested to be based on so-called marker
cellular automata. In a marker cellular automata, the local rule is defined by
a permutation and a set of patterns with the neighborhood as the domain.
The state of a cell is mapped according to the permutation if, and only if,
some state pattern from the pattern set is present in the neighborhood of
the cell. The details of constructing suitable marker cellular automata have
been recently discussed in [16].

2.3 Wang tiles

In this section the basic definitions and results on Wang tiles are presented.
Wang tiles are used in this work because they can be used to prove some
undecidability results for cellular automata.

2.3.1 Basic definitions

A Wang tile (or a tile in short) is a unit square with colored edges. The
edges of a Wang tile are called north, east , west and south edges in a natural
way. Each edge of a Wang tile has a color which is an element from a finite

25

set. For the given tile t, expressions tN , tE, tW and tS are used to denote
north, east, west and south edge colors, respectively. A Wang tile set T (or
a tile set in short) is a finite set of Wang tiles.

Given tile sets T1, . . . , Tn, a tile set T ⊆ T1 × . . . × Tn is a sandwich tile
set . Elements of T are called sandwich tiles. Tile set Ti is said to be layer i
of the sandwich tile set. Let t ∈ T be an element of a sandwich tile set and
t = (ti1 , . . . , tin). Then the colors of t are sequences of corresponding colors
of the original tiles, for example, tN = (ti1N , . . . , tinN). Let Si be a subset
of tile set Ti for any 1 ≤ i ≤ n. If S1 × . . .×Si−1 ×{t}×Si+1 × . . .×Sn ∈ T
it is said that the tile t on layer i is paired with tiles Sj on layer j.

Sandwich tiles are perhaps a more illustrative way to express that a tile
set is a subset of a cartesian product of given tile sets.

Definition 2.3.1. A tiling is a function f : Z2 → T , which assigns a unique
Wang tile for each integer pair of the plane. A tiling f is said to be valid,
if for every pair (x, y) ∈ Z2 the tile f(x, y) ∈ T matches its neighboring tiles
(e.g. the south edge of tile f(x, y) has the same color as the north edge of
tile f(x, y − 1)).

A tiling f : Z2 → T is called periodic with period (a, b) 6= (0, 0) if
f(x, y) = f(x + a, y + b) for all (x, y) ∈ Z2. Otherwise the tiling f is called
non-periodic. A tile set T is called aperiodic, if there exists some tiling with
the tile set T , but no tiling with the tile set T is periodic. If the tile set T
admits a periodic tiling f : Z2 → T with some period, then it admits also a
doubly periodic tiling g : Z2 → T , that is, there exists such non-zero integers
a and b that g(x, y) = g(x + a, y) and g(x, y) = g(x, y + b) for all (x, y) ∈ Z2

[92].
A Wang tile set T is said to be NW-deterministic, if within the tile set

there does not exist two different tiles with the same colors on the north and
west edges. In general, a Wang tile set is XY-deterministic, if the colors of
X- and Y-edges uniquely determine a tile in the given Wang tile set. A Wang
tile set is 4-way deterministic, if it is NE-, NW-, SE- and SW-deterministic.
This definition makes a Wang tile set “deterministic” in all four diagonal
directions and the rest of a valid tiling is always determined by a single
infinite diagonal row of tiles to any diagonal direction. If one is given an
infinite diagonal row of tiles which is already known to be part of a valid
tiling, then the rest of the tiling is uniquely determined.

A Wang tile set is called 2-way deterministic, if it is NE- and SW-
deterministic. A 4-way deterministic tile set is 2-way deterministic.

Let T be a Wang tile set. The n × n tile set is the Wang tile set that
has been constructed by taking every n × n cluster of matching tiles and
mapping them to a single Wang tile as shown in Figure 2.3. The colors in
the vertical direction are all the matching n×(n−1) clusters of tiles and the
colors in the horizontal direction are all the matching (n− 1)×n clusters of

26

tiles. The tile set which is the n × n tile set of the tile set T is denoted by
T n×n. Clearly, if the original tile set T is 4-way deterministic so is the tile
set T n×n.

t7 t8 t9

t4 t5 t6

t1 t2 t3

t7 t8 t9

t4 t5 t6

t4 t5 t6

t1 t2 t3

t7

t4

t1

t8

t5

t2

t8

t5

t2

t9

t6

t3

Figure 2.3: An n×n square (or rectangular) cluster of matching Wang tiles
can be converted into a single Wang tile. This can be done by setting the
n − 1 outermost columns and rows of tiles as colors of the new tile.

Definition 2.3.2. A function f : T1 → T2 is called a tile homomorphism
if it respects the colors, i.e. f(t) = t′ with t′N = g(tN), t′E = g(tE),
t′W = g(tW) and t′S = g(tS), where g is a function from the set of the
colors of the tile set T1 to the set of the colors of the tile set T2.

The homomorphic image f(T) of a tile set T is defined in the natural
way as the set

f(T) = {f(t)|t ∈ T} .

If every tile in a given tile set T appears in a valid tiling, then the n×n tile
set T n×n can always be mapped tile homomorphically onto T , that is, there
always exists a tile homomorphism f such that f(T n×n) = T . For example,
f could map an element t ∈ T 3×3 to the tile t5 (denoted as in Figure 2.3)
in the center of the 3 × 3 tile cluster represented by t. Furthermore, the
homomorphic image of a valid tiling is also a valid tiling.

The following decision problem is referred to as the tiling problem of
Wang tiles: “Given a Wang tile set T , does there exist a valid tiling of the
plane using tiles of T ?” A tiling f : Z2 → T is said to contain tile t ∈ T ,
if for some integers x, y ∈ Z equation f(x, y) = t holds. The tiling problem
of wang tiles is also known as the domino problem. The following decision
problem is referred to as the tiling problem with a seed tile: “Given a Wang
tile set T and a tile t ∈ T , does there exist a valid tiling of the plane that
contains the tile t?”

If the tiling problem with a seed tile were decidable, then the tiling
problem would be decidable. Let T be the tile set of the given instance of
the tiling problem. Then the answer for the tiling problem is affirmative if,

27

and only if, for some tile t ∈ T the answer for the tiling problem with a seed
tile is affirmative considering the tile set T as the tile set of the instance and
the tile t as the seed tile of the instance.

It is already known that the tiling problem is undecidable [92, 7]. Fur-
thermore, it is known to be undecidable even when restricted to tile sets
that are deterministic by one corner [46]. In this work it is shown that the
tiling problem is undecidable for tile sets that are deterministic by all four
corners. The proof relies on the 4-way deterministic aperiodic tile set given
by Kari and Papasoglu [55].

2.3.2 Determinism in relation to cellular automata

Wang tiles have been used previously, for example, to prove undecidabil-
ity of injectivity and surjectivity of two-dimensional cellular automata [47]
and nilpotency of one-dimensional cellular automata [46]. The definition
of determinism for tile sets was originally motivated by the theory of one-
dimensional cellular automata [46, 51].

A tile set can be considered as a one-dimensional cellular automaton, if
the tile set contains all the possible color pairs at one corner and the tile
set is deterministic by the same corner. The tiles can be seen as states of
the cells and the diagonal rows of tiles as configurations of the cellular au-
tomaton. Therefore, the rule, which determines whether or not neighboring
tiles match, can in this case be considered as the local rule of a cellular
automaton.

It has been shown that the tiling problem is undecidable with tile sets
that are deterministic by at least one corner [46]. From this it follows that
nilpotency of one-dimensional cellular automata is undecidable [46, 48]. Un-
decidability of nilpotency follows from the fact that a tiling error can be used
to create a spreading quiescent state in the local rule and then every diago-
nal row of tiles leads to a quiescent configuration if, and only if, there exists
no valid tiling.

If a Wang tile set is deterministic by two opposite corners, then the tile
set can be seen as a subset of the state set of a reversible one-dimensional
cellular automaton. For such a tile set the non-existence of a valid tiling is
equivalent to having “forbidden” states to appear in every computation of
the cellular automaton.

2.3.3 Mathematical self-assembly

Mathematical self-assembly is the concept of modelling chemical self-assembly
with Wang tiles. One model for self-assembly is the tile assembly model
[108], where one is given a tile set T , a seed tile s ∈ T , a temperature τ ∈ N

and a glue function g : C × C → Z, where C is the set of colors of T and

28

g(a, b) = g(b, a). The tiles represent molecules and the glue function is used
to represent the bond strength between the edges of different molecules (i.e.
tiles). In its simplest form, self-assembly is started from a single seed tile
and tiles are added one by one to an existing connected cluster of tiles. A tile
can be appended to an existing tile cluster if there is a slot around which the
sum of the glue values between the tile and the earlier tiles exceeds or equals
the temperature. A more thorough discussion of mathematical self-assembly
can be found, for example, in [108, 1, 2].

One topic of mathematical self-assembly is the characterization of tile
sets (and glue functions) that produce desired kind of tile clusters even
if any finite number of tiles (except the seed tile) were removed from the
tile cluster. For this reason, self-healing tile sets have been introduced in
[109, 100]. The approach is to counter a sudden removal of any finite number
of tiles (except the seed tile) from assembled tile clusters. A tile set is called
self-healing if for any assembled tile cluster any damage caused by removing
any finite number of tiles is eventually repaired (in linear time with respect
to the number of removed tiles) so that every removed tile is restored in its
original place in the tile cluster.

One possible application of 4-way deterministic tile sets is the modelling
of one type of self-healing systems in mathematical self-assembly. In a way,
4-way deterministic tile sets are an analogy of self-healing tile sets in the
case of classical tilings. If a 4-way deterministic tile set admits a valid
tiling, then any continuous two-way infinite tile path, which intersects all
rows and columns and is contained in a valid tiling, determines rest of the
tiling uniquely. If any finite number of tiles is removed from a valid tiling,
the missing tiles can be replaced only in a unique way to produce a valid
tiling again. Any two adjacent neighbors determine a tile uniquely in a valid
tiling. With regard to mathematical self-assembly, Theorem 3.4.2 gives a
result which might be useful. It states that the tiling problem is undecid-
able even when the tile set is deterministic by any two, including opposite,
edges. This follows from the undecidability of the tiling problem in the 4-
way deterministic case and the fact that a 4-way deterministic tile set can
be changed to a 2 × 2 tile set which is deterministic also with respect to
colors on opposite edges of tiles.

2.3.4 Wang tiles in computer graphics

One practical application of Wang tiles is their use for texture generation
in computer graphics [18, 107, 106]. Wang tiles can be used in cases when
the texture image’s size would exceed the texture size limit of the graphics
card and the texture would consist of small square patterns which repeat in
a non-periodic manner.

29

In practice, the Wang tile texture generation can be implemented (for
both DirectX and OpenGL) by special programming languages known as
shading languages which enable a programmer to write programs (known
as shaders) directly for the GPU. With shading languages one can easily
implement non-standard lighting models [89] and use procedural textures
such as fractal patterns instead of images [94]. Examples of such program-
ming languages are Microsoft’s HLSL for DirectX, OpenGL’s GLSL [94],
NVIDIA’s Cg [30] and Pixar’s RenderMan.

Using shaders, a GPU can be sometimes used to speed up algorithms
that execute massive floating-point number operations. For example, a GPU
can be used to speed up the simulation of Lattice Boltzmann Method (LBM)
[64] which can be seen as a cellular automaton. Also some simple cellular
automata with a “discrete” state set can be simulated with a GPU. For ex-
ample, the Game of Life can be simulated with standard OpenGL functions
without the use of shaders [99, p. 627].

30

Chapter 3

On 4-way deterministic tile

sets

In this chapter it is shown that the tiling problem of Wang tiles (also known
as the domino problem) remains undecidable even when the instances are
restricted to 4-way deterministic tile sets. This result is interesting in the
sense that if a valid tiling exists, it is always completely determined by any
diagonal row of tiles in the valid tiling.

3.1 The aperiodic tile set

In this section Robinson’s aperiodic tile set and an improved 4-way de-
terministic aperiodic tile set are discussed briefly. As before in [92], the
undecidability proof of the tiling problem makes use of an aperiodic tile
set. However, now the tile set needs to be 4-way deterministic and such a
suitable tile set has been provided in [55].

3.1.1 The aperiodic tile set of Robinson

Earlier proofs of the undecidability of different variants of the tiling problem
have relied heavily on the existence of aperiodic tile sets, that is, tile sets
which admit only non-periodic valid tilings. A well-known aperiodic tile
set is the tile set of Robinson which he used in proving the tiling problem
to be undecidable [92]. Its 4-way deterministic version will be used in the
following proofs also. A more thorough description of Robinson’s tile set
can be found in Appendix A.

A general outline of Robinson’s tile set is shown in Figure 3.1. The tile
set consists of tiles that are called crosses and tiles that are called arms
as shown in the figure. The colors of the tiles are defined using patterns
consisting of single arrows and double arrows. The arrows are colored either

31

(a) A cross. (b) An arm. (c) An arm. (d) An arm. (e) An arm.

Figure 3.1: The basic tiles of Robinson’s tile set (with colors, reflections,
rotations and parity constraints omitted).

red or blue. In a cross tile all the arrows have the same color. In an arm
tile the horizontal arrows may have the same or a different color than the
vertical arrows with the exception that the tiles of the form shown in Figure
3.1(e), where the horizontal arrows are required to have a different color
than the vertical arrows. This constraint concerning the tiles of the form
shown in Figure 3.1(e) is set to ensure that only squares with different color
can intersect.

Two tiles are considered to match at their abutting edges if an arrow (of
some particular type and color) exiting one of the tiles enters the other tile.
Robinson’s tile set has also some parity constraints that are not shown in
the tiles in Figure 3.1. A complete description of Robinson’s tile set can be
found in [92] and the necessary properties of Robinson’s tile set are briefly
reviewed in Appendix A.

Figure 3.2: A part of the self-similar pattern generated by the tile set of
Robinson (and the tile set of Kari and Papasoglu).

Robinson’s tile set forces a self-similar pattern to be tiled, a part of which
is shown in Figure 3.2. The tiling forced by the Robinson’s tile set is divided
into square areas bounded by blue squares or red squares. The edges of the

32

squares are formed from the double arrows found in the tiles in Figure 3.1.
The crosses (i.e. the tiles of the form shown in Figure 3.1(a)) act as corners
for the squares of different size and color.

More specifically, the tiling contains blue squares of height 22n+1 + 1
and red squares of height 22(n+1) + 1, for every non-negative integer n.
Furthermore, borders of squares of the same color never intersect. In the
center of the area bounded by a blue square there is always some corner of
a red square, and likewise in the center of the area bounded by a red square
there is always some corner of a blue square. However, every blue cross
is not located in the center of a red square because it is assumed that the
smallest squares present in a valid tiling are the blue squares.

3.1.2 The 4-way deterministic aperiodic tile set

Kari and Papasoglu have constructed a 4-way deterministic tile set which
will be used in this work instead of Robinson’s tile set. Formally, the fol-
lowing theorem holds:

Theorem 3.1.1 ([55]). There exists a 4-way deterministic tile set, which

1. admits a valid tiling and

2. can be mapped homomorphically onto Robinson’s tile set.

An implication of property 2 is the aperiodicity of the tile set of Kari
and Papasoglu. However, the exact structure of the 4-way deterministic tile
set is irrelevant. It is entirely sufficient to know that there exists a 4-way de-
terministic tile set which can be mapped homomorphically onto Robinson’s
tile set. That is, the tile set can be used in a similar way as Robinson’s tile
set and it is enough to refer to the 4-way deterministic aperiodic tile set as
if it was the Robinson’s tile set. The only difference is that each tile in the
Robinson’s tile set is represented by possibly more than one tile in the tile
set of Kari and Papasoglu.

3.2 Drawing a diagonal line

In this section it is shown how to construct a 4-way deterministic tile set
which can be used to draw a single diagonal line. One can construct a tile
set D such that it is a union of disjoint tile sets D1 and D2 and it admits
a valid tiling in which the tiles of D1 are located only on a single two-way
infinite diagonal row of tiles and no tile of D2 is located on the same diagonal
row.

In practical terms the tile set D is such that if the tiles of D1 were colored
black and the tiles of D2 were colored white, then there would exist a valid

33

tiling such that it contains a single black diagonal line on white background.
However, a tiling which contains the single diagonal line is not forced. For
example, there might exist a valid tiling with no black diagonal lines or
there might exist a valid tiling with multiple black diagonal lines or any
other patterns. Fortunately, it is not necessary to force the diagonal line to
be tiled. It is sufficient to know that there exists a tiling where all the black
tiles are located on a single two-way infinite diagonal line.

The construction is quite tedious but in Section 3.3.5 it is essential in
converting a “nondeterministic” set of tiles which represents a Turing ma-
chine into a tile set which is 4-way deterministic.

3.2.1 Structure of the tile set

The tile set D is constructed in four layers as follows:

Layer 1. The aperiodic tile set of Kari and Papasoglu.

Layer 2. The tiles in Figures 3.4, 3.5 and 3.6.

Layer 3. The tiles of layer 1 rotated by 180 degrees.

Layer 4. The tiles of layer 2 rotated by 180 degrees.

1

234

5

6 7 8

Figure 3.3: The tiles around the edges of blue and red squares in the non-
periodic tiling which are used to set constraints between the aperiodic tile
set and the final sandwich tile set.

The tile set D is constructed as a sandwich tile set with four layers.
However, tiles of layers 1 and 2 will be paired together in a similar way as
the tiles of layers 3 and 4. Therefore it is, for now, sufficient to describe how
the tiles of layers 1 and 2 are paired together.

The first layer consists of the tiles of the aperiodic tile set of Kari and
Papasoglu and the second layer consists of tiles from a simpler tile set. Each
tile of the aperiodic tile set is paired with a specific tile set (one of the

34

sets shown in Figures 3.4, 3.5 and 3.6). Recall that in a valid tiling by the
Robinson’s tile set the squares are formed from the arrow patterns of the
tiles in Figure 3.1. Then the corners and the edge centers (enumerated as
in Figure 3.3) of a square can be described as follows in terms of the arrow
patterns (which are used as colors in the aperiodic tile set):

1. A meeting point of two vertical double arrows at the east border of a
square.

2. A cross in the northeast corner of a square.

3. A meeting point of two horizontal double arrows at the north border
of a square.

4. A cross in the northwest corner of a square.

5. A meeting point of two vertical double arrows at the west border of a
square.

6. A cross in the southwest corner of a square.

7. A meeting point of two horizontal double arrows at the south border
of a square.

8. A cross in the southeast corner of a square.

It is possible to assume that one can make a distinction between the tiles
that are located within a square of a certain fixed size and the tiles that are
not. This can be done by forming a new tile set by taking sufficiently large
n×n blocks (which do not contain tiling errors) of the original tiles and using
n− 1 outermost tile rows and columns of tiles of the blocks as colors of the
new tiles as in Figure 2.3. This construction maintains 4-way determinism.
Therefore it is possible to assume that one can determine from the edge
colors whether or not a given tile from the aperiodic tile set is located inside
a blue 3× 3 square in a valid tiling. Now the tiles on layer 1 and layer 2 are
paired together according to the following rules:

1. Tiles at locations 1 on layer 1 are paired with the tiles in Figure 3.4(a)
on layer 2.

2. The tiles at locations 2 on layer 1 are paired with the tiles in Figure
3.5(a) on layer 2.

3. The tiles at locations 3 on layer 1 are paired with the tiles in Figure
3.4(b) on layer 2.

35

4. The tiles at locations 4 on layer 1 which are located outside a 3 × 3
blue square are paired with the tiles in Figure 3.5(b) on layer 2. The
tiles at locations 4 on layer 1 which are located within a 3 × 3 blue
square are paired with the tiles in Figure 3.6(a) on layer 2.

5. The tiles at locations 5 on layer 1 are paired with the tiles in Figure
3.4(c) on layer 2.

6. The tiles at locations 6 on layer 1 are paired with the tiles in Figure
3.5(c) on layer 2.

7. The tiles at locations 7 on layer 1 are paired with the tiles in Figure
3.4(d) on layer 2.

8. The tiles at locations 8 on layer 1 which are located outside a 3 × 3
blue square are paired with the tiles in Figure 3.5(d) on layer 2. The
tiles at locations 8 on layer 1 which are located within a 3 × 3 blue
square are paired with the tiles in Figure 3.6(b) on layer 2.

9. Other tiles than the ones in locations shown in Figure 3.3 are paired
with the tiles in Figure 3.6(c).

(a) The second layer tiles for tiles of the aperiodic tile set
in locations 1

(b) The second layer tiles for tiles of the aperiodic tile set
in locations 3

(c) The second layer tiles for tiles of the aperiodic tile set
in locations 5

(d) The second layer tiles for tiles of the aperiodic tile set
in locations 7

Figure 3.4: The tiles to be paired with the center tiles of blue and red square
edges.

36

(a) The second layer tiles for tiles of
the aperiodic tile set in locations 2

(b) The second layer tiles for tiles of
the aperiodic tile set in locations 4

(c) The second layer tiles for tiles of
the aperiodic tile set in locations 6

(d) The second layer tiles for tiles of
the aperiodic tile set in locations 8

Figure 3.5: The tiles to be paired with the tiles in the corners of blue and
red squares.

(a) The second layer tiles for tiles of
the aperiodic tile set in locations 4
instead of the tiles in Figure 3.5(b)
if the tile of the first layer is in the
center of a 3 × 3 blue square.

(b) The second layer tiles for tiles of
the aperiodic tile set in locations 8
instead of the tiles in Figure 3.5(d)
if the tile of the first layer is in the
center of a 3 × 3 blue square.

(c) The tiles of layer 2 to be paired with such tiles of layer 1 that are not
located in any of the locations in Figure 3.3.

Figure 3.6: The tiles to be paired with the tiles in the center of the smallest
blue squares and in other locations than the ones in Figure 3.3.

This new tile set is almost 4-way deterministic. All the tile sets in Figures
3.4, 3.5 and 3.6(c) are 4-way deterministic. However, the tile sets in Figures
3.6(a) and 3.6(b) cause the sandwich tile set to be not 4-way deterministic.
Fortunately, these are the only sources of “nondeterminism”.

Let T denote the newly constructed tile set with two layers. Let A
denote the 3× 3 tile set of the aperiodic tile set of Kari and Papasoglu. Let
B denote the union of all tiles in Figures 3.4, 3.5 and 3.6. Then

T ⊆ A × B.

Let A1 ⊆ A denote the tiles in locations 4 or 8 in the center of a 3 × 3 blue
square. Let td denote the second tile found in the tile sets in Figures 3.6(a)
and 3.6(b). Let T1 = A1 × {td} and T2 = T \ T1. Notice that no sandwich

37

tile of T2 contains the tile td because by definition td is paired only with the
tiles of A1.

Now the tile set U1 (which is used to draw a “dotted” diagonal line) is
defined to be

U1 = T1 × T 	
1 , (3.1)

where T 	
1 denotes the tile set which contains the tiles of T1 after they have

been rotated by 180 degrees. The tile set U2 (which represents the back-
ground color) is defined to be

U2 = T2 × T 	
2 ,

where T 	 denotes the tile set which contains the tiles of T2 after they have
been rotated by 180 degrees. Now the tile set U is defined to be

U = U1 ∪ U2.

This definition of the tile set U sets a constraint in equation (3.1) that on
layer 2 the third tile in Figures 3.6(a) and 3.6(b) is used if, and only if, its
rotated counterpart is used on layer 4. This will make the tile set 4-way
deterministic because the tile td (the second tile Figures 3.6(a) and 3.6(b)),
which causes the nondeterminism, is paired only with its rotated counterpart
(which will be denoted by t	d). The tile td cannot be distinguished from the
blank tile by looking at the colors on the southeast corner whereas the tile
t	d can be distinguished from the blank tile by looking at the colors on the
southeast corner. To say it concisely, the union U of tile sets

U1 = A1 × {td} × A	
1 × {t	d } and

U2 = T2 × T 	
2

is 4-way deterministic because the elements of U1 can be distinguished from
the elements of U2 by watching the colors adjacent to any corner because
no sandwich tile of T2 contains the tile td.

Lemma 3.2.1. The tile set U is 4-way deterministic.

3.2.2 Drawing the diagonal recursively

In this section it is described how the line patterns drawn by the non-blank
tiles in Figures 3.4, 3.5 and 3.6 can be used to distinguish the tiles in a single
infinite diagonal row from the tiles in the rest of the tiling. The idea is that
the tile set D is such that it admits a tiling which contains a fractal-like line
pattern, part of which is shown in Figure 3.7. For brevity, the construction
is described again only on layers 1 and 2 because for layers 3 and 4 it is
similar.

38

Figure 3.7: The structure of the tile set D is such that the line patterns on
top of the non-periodic tiling can draw a recursive line pattern so that a
single diagonal row of tiles is tiled with a different set of tiles than rest of
the tiling. The locations of sandwich tiles containing tile td (and its rotated
counterpart) are denoted by black squares.

The most important observation concerning the line pattern in Figure 3.7
is that the upper left half of it can be partitioned into smaller line patterns
shown in Figures 3.8(a) and 3.8(b). The other half can also be partitioned
into smaller line patterns which are the ones in Figures 3.8(a) and 3.8(b)
after rotating by 180 degrees. It is enough to show that the upper left half of
the pattern shown in Figure 3.7 can be drawn with the tiles of layer 2 of tile
set T because the same pattern can be repeated on layer 4 as a reflection.

With respect to Figure 3.7, Figures 3.8(a) and 3.8(b) should be inter-
preted so that a line pattern starting from a location denoted by a filled
circle is repeated with (approximately) half the size in locations denoted
by the empty circles. The line pattern is repeated in smaller size over and
over again until the locations denoted by the empty circles are found in
the centers of the 3 × 3 blue squares in which case the pattern is no longer
repeated.

Lemma 3.2.2. The tile set T admits a valid tiling f : Z2 → T such that
f(x, y) ∈ T1 if, and only if, x = y and x, y ∈ 4Z.

Proof. First, it can be noted (by listing all the possibilities) that all the
different “line interactions” seen in Figures 3.8(a) and 3.8(b) in the locations
in Figure 3.3 have been implemented as the tiles in Figures 3.4 and 3.5.

39

(a) A line pattern starting from the top left
corner of a square.

(b) A line pattern starting from the bot-
tom right corner of a square.

Figure 3.8: A recursive signal pattern is used to draw a diagonal line. The
partial pattern beginning at the location denoted by a filled circle is recur-
sively repeated with half the previous size at the locations denoted by empty
circles.

Furthermore, the tiles used elsewhere than in locations 3.3 are exactly the
tiles in Figure 3.6.

Second, it can be concluded with a simple inductive argument that the
recursive pattern in Figures 3.8(a) and 3.8(b) can be drawn for arbitrary
depth without tiling errors and therefore the tiling f exists.

It can be shown by induction that for every N > 0 there exists a (not
necessarily valid) tiling fN such that there is no tiling error in locations
(x, y), where y ≤ x + N , and fN(x, y) ∈ T1 if, and only if, x = y and
x, y ∈ 4Z. Then, by the compactness of the space of tilings, there exists the
desired kind of tiling f .

Let N1 = 0 and let fN1 be a tiling such that the tiling by the aperiodic
tile set (on the first layer) is valid and the tiles in locations (4k, 4k) (where
k ∈ Z) are either upper left corners or lower right corners of squares of size
22 + 1 = 5 (and therefore in both cases centers of 3 × 3 squares). Let the
second layer tiling is to have the second tile td in Figures 3.6(a) and 3.6(b) to
be located in every location (4k, 4k) whereas the blank tile is to be located
in the rest of the locations of the diagonal row (x, x). The second layer is
set to have the blank tile also to the right of the diagonal row. To say it
concisely, fN1(k, k) ∈ A×{td} (where A is the aperiodic tile set) if, and only
if k ∈ 4Z. Then, clearly, the tiling is valid between the tiles in locations
(x, y), y ≤ x.

40

Figure 3.9: The location of the diagonal line is determined by tiles (denoted
by small black squares in the picture) which are located in the centers of
the 3×3 blue squares and receive dashed lines through their north and west
edges.

41

Let Nn =
∑n

i

(

2n + 2n−1
)

(for n > 1), which is the distance from the
pattern starting location (filled circles in Figure 3.8(a)) to the final diagonal
line (filled squares in Figure 3.9), and assume that fNn is a tiling such
that the underlying non-periodic tiling is valid and for every k ∈ Z the tile
fNn((2n +1)k−Nn, (2n +1)k +Nn) is either an upper left corner or a lower
right corner of a 2n + 1 square paired with the second tile in Figures 3.5(b)
and 3.5(d) and rest of the sandwich tiles in locations (l−Nn, l+Nn) (where
l mod 4 6= 0) have the blank tile on the second layer. Furthermore, it is
assumed that tiling is valid for in locations (x, y) where y ≤ x + 2Nn and
fNn(k, k) ∈ A × {td} if, and only if k ∈ 4Z.

Now, let fNn+1 be any such tiling that the underlying non-periodic tiling
is valid and for every k ∈ Z the tile fNn+1((2

n+1 +1)k−Nn+1, (2
n+1 +1)k +

Nn+1) is either an upper left corner or a lower right corner of a 2n+1 + 1
square paired with the second tile in Figures 3.5(b) and 3.5(d) and rest of
the sandwich tiles in locations (l − Nn+1, l + Nn+1) (where l mod 4 6= 0)
have the blank tile on the second layer. By looking at the Figures 3.8(a) and
3.8(b) it can be concluded that the lines starting from locations ((2n+1 +
1)k − Nn+1, (2

n+1 + 1)k + Nn+1) can be constructed so that eventually the
sandwich tiles in locations (k−Nn, k+Nn) are the top left corners or bottom
right of squares of size 2n + 1 and they have on the second layer the second
tile in Figures 3.5(b) and 3.5(d) if, and only if, k ∈ 4Z and otherwise the
blank tile. This reduces the construction of tiling fNn+1 to the construction
of tiling fNn+1 . Because the line patterns could be drawn without tiling
error in the diagonal band of locations (x, y), where y ≤ x + 2Nn+1 and
y ≥ x + 2Nn, the validity of the tiling fNn+1 in locations (x, y), where
y ≤ x+2Nn+1, follows from the validity of the tiling fNn in locations (x, y),
where y ≤ x + 2Nn.

Finally, the requested tiling f exists because a tiling can be constructed
so that it is valid arbitrarily far from the origin while having the tiles of
A × {td} located in precisely the locations (4k, 4k) (where k ∈ Z).

Lemma 3.2.3. The 4-way deterministic tile set U admits a valid tiling
f : Z2 → U such that f(x, y) ∈ U1 if, and only if, x = y and x, y ∈ 4Z.

Proof. Follows directly from the previous lemma because the tiles of T1 and
T	

1 are paired together which makes the tile set 4-way deterministic.

Let D denote the 4 × 4 tile set of the tile set U , that is, D = U 4×4.
Consider the 4×4 tiles as 4×4 tile clusters in the sense of Figure 2.3. Then
D1 is the subset of D containing the tiles that have an element of U1 located
somewhere on the central diagonal (with positive slope). Tile set D2 is the
subset of D containing the tiles that do not have an element of U1 located
anywhere on the central diagonal. Clearly, D = D1 ∪ D2.

42

Theorem 3.2.4. There exists a tile set D = D1 ∪D2 (where D1 ∩D2 = ∅)
such that it is 4-way deterministic and there exists a valid tiling f : Z2 → D
such that f(x, y) ∈ D1 if, and only if, x = y.

Proof. Follows directly from the previous lemma because switching to a 4×4
tile set does not remove the 4-way determinism but enables to determine
whether or not a given tile from U2 is located diagonally between two tiles
from U1 in the tiling f given by the previous lemma.

3.3 The tiling problem with a seed tile

In this section it will be shown that the tiling problem with a seed tile re-
mains undecidable even if the instances are 4-way deterministic tile sets.
This can be seen by applying an additional construction represented in Sec-
tion 3.2 to the original tile set of Robinson.

3.3.1 The idea for the undecidability proof

The basic idea is to represent Turing machine configurations on horizontal
tile rows as was already done in [104]. One tile at each row represents the
read-write head and the current letter to be read. The rest of the tiles on
the same row represent other cells of the tape located to the left and to
the right from the read-write head. This tile set construction has been used
earlier in [104, 92].

Unfortunately, the tile set construction does not provide a 4-way deter-
ministic tile set. However, the tile set can be modified to make it 4-way
deterministic by using the construction given in Section 3.2. After the mod-
ification, the undecidability with the 4-way deterministic instances follows
directly.

The tile set is constructed (as a sandwich tile set) in four layers as follows:

Layer 1. The tiling representing a Turing machine computation.

Layer 2. Horizontal signals identifying the move tile pair (on layer 1) occur-
ring on the particular row.

Layer 3. The tiles used to distinguish the leftmost move tiles from alphabet
tiles of layer 1.

Layer 4. The tiles used to distinguish the rightmost move tiles from alphabet
tiles of layer 1.

Eventually, the following theorem holds:

Theorem 3.3.1. The tiling problem with a seed tile remains undecidable
when restricted to tile sets that are 4-way deterministic.

43

Proof (sketch). Section 3.3.2: The tiles of layer 1 can be used to represent
an unbounded Turing machine computation started on a blank tape. This
layer is forced to contain a tiling error if, and only if, the Turing machine
eventually halts.

Section 3.3.4: The tile set can be modified to have no ambiguity between
different action tiles or merging tiles at any corner. The tiles of layer 2 are
used to distinguish one horizontal pair of an action tile and a merging tile
from other tile pairs. This is done by choosing a unique color for any pair of
move tiles. The new color is transferred horizontally and paired only with
the particular move tiles. Hence, no two move tiles belonging to different
read-write operations have the same color on their east edges or their west
edges. This layer can be tiled in a valid way if the tiling on layer 1 is valid.

Section 3.3.5: The tile set can be modified to have no ambiguity between
an action tile, a merging tile or a alphabet tile at any corner. The tiles of
layer 3 are used to distinguish the leftmost tile of the tile pair representing
a move from the alphabet tiles of the same row. Likewise, the tiles of layer
4 are used to distinguish the rightmost tile of the tile pair representing a
move from the alphabet tiles of the same row. These layers can be tiled in
a valid way if the tiling on layer 1 is valid.

The tile sets used on layers 2, 3 and 4 are all 4-way deterministic, so they
do not create nondeterminism. The way they are paired with the original
tile set on layer 1 makes the final tile set 4-way deterministic.

Details of the proof are given in the following Sections 3.3.2–3.3.5.

3.3.2 Layer 1: simulating an unbounded Turing machine

computation

In this subsection a tile set used for representing a Turing machine compu-
tation will be presented [104]. The tiles are used on layer 1 to represent a
Turing machine computation which is started from a blank tape.

Left moves Assume that the Turing machine contains move δ(q1, a) =
(q2, b, /). Then the tile combination in Figure 3.10(a) (for every letter
c) is used to represent the move. Therefore the tile in Figure 3.11(a)
and all the tiles in Figure 3.12(a) are added to the tile set.

Right moves Assume that the Turing machine contains move δ(q1, a) =
(q2, b, .). Then the tile combination in Figure 3.10(b) (for every letter
c) is used to represent the move and the tile in Figure 3.11(b) and all
the tiles in Figure 3.12(b) are added to the tile set.

Tape contents For every tape alphabet element a, a tile of the form in
Figure 3.13 is added to the tile set. This tile represents a single tape
cell and its current contents.

44

q2c

q 2

c

b

q
2

q1a

(a) The left move
δ(q1, a) = (q2, b, /)

b

q 2

q1a

q2c

q
2

c

(b) The right move
δ(q1, a) = (q2, b, .)

Figure 3.10: The tile combinations to represent different Turing machine
moves.

b

q
2

q1a

(a) The action tile for
the left move δ(q1, a) =
(q2, b, /)

b

q 2

q1a

(b) The action tile
for the right move
δ(q1, a) = (q2, b, .)

Figure 3.11: Action tiles

Initial configuration To force the Turing machine to start on a blank
tape only, the tiles in Figure 3.14 are added to the tile set. One of
these tiles (namely, the one in Figure 3.14(b)) is chosen to be the seed
tile. If the seed tile is contained within a tiling, then a valid tiling
will necessarily represent a non-halting Turing machine computation.
The tiles in Figures 3.14(a) and 3.14(c) define the tape to be initially
empty. In short, if the seed tile is located in the origin, then the Turing
machine simulation is done in the first and the second quadrant of the
plane. The tiles in Figures 3.14(d) and 3.14(e) allow the lower part
of the plane to be always correctly tiled. The tile in Figure 3.14(d) is
required to allow the south edge of the tile in Figure 3.14(b) to have
a different color than the south edges of the tiles in Figures 3.14(a)

qa

q

a

(a) Merging tiles for all
the left moves.

qa

q

a

(b) Merging tiles for all
the right moves.

Figure 3.12: Merging tiles

45

a

a

Figure 3.13: An alphabet tile

and 3.14(c). This is required to achieve SE- and SW-determinism. An
example is given in Figure 3.15 on the use of tiles in Figure 3.14.

ε

(a) Left side initial
tape

q0ε

(b) The seed tile

ε

(c) Right side initial
tape

(d) Downward exten-
sion for the seed tile

(e) The blank tile

Figure 3.14: Starting tiles

Following the terminology of Robinson [92], the tiles shown in Figure 3.11
are referred to as action tiles. Every Turing machine move is represented
by a unique action tile. The tiles shown in Figure 3.12 are called merging
tiles and the tiles of the form shown in Figure 3.13 are called alphabet tiles.
The tiles in Figure 3.14 are referred to as starting tiles. The final tile set
consists of a unique action tile for every non-halting move, all the possible
merging tiles, all the possible alphabet tiles and the starting tiles.

Let q and a be a pair of a read-write head state and a tape letter for which
the Turing machine transition δ(q, a) has not been defined. Then there will
be no tile that would have the color qa on its south edge. Therefore, if
the Turing machine eventually halts, that is, if at some moment of time the
read-write head in state q reads letter a, then the tiling cannot be completed
to cover the entire plane in a valid way. From this it follows that the simple
version of the tiling problem with a seed tile is undecidable.

46

The
read-write

head
starts
here.

ε ε ε q0ε ε ε ε

Figure 3.15: The tile pattern representing the initial configuration of the
Turing machine computation.

3.3.3 Nondeterminism of the Turing machine tile set

The tiles which are used for Turing machine simulation are themselves suffi-
cient to show that the original tiling problem with a seed tile is undecidable.
However, the tile set is not 4-way deterministic.

The tile set is not 4-way deterministic (only) because

Problem 1. two different action or merging tiles cannot always be distin-
guished from each other (see Figure 3.16 for the case of right
moves) and

Problem 2. action and merging tiles cannot always be distinguished from
the alphabet tiles (see Figure 3.17 for the case of right moves).

Fortunately, these are the only sources of nondeterminism in the tile set.
The tiling problem (with a seed tile) will be seen to be undecidable in the
4-way deterministic case by modifying the Turing machine tile set so that
problems 1 and 2 are solved (and the resulting tile set is 4-way deterministic
otherwise also). Problem 1 will be removed in Section 3.3.4 and problem 2
will be removed in Section 3.3.5.

c

q 2

q1a

c

q 2

q1b

(a) Ambiguity at the northwest
corner and northeast corner.

q1a

q
1

a

q2a

q
2

a

(b) Ambiguity at the southeast
corner.

Figure 3.16: The tiles representing a Turing machine move cannot be dis-
tinguished.

47

b

q 2

q1a

b

b

(a) Ambiguity at the northwest
corner.

q1a

q
1

a

a

a

(b) Ambiguity at the southeast
corner.

Figure 3.17: A tile representing a Turing machine move and an alphabet
tile cannot be distinguished.

3.3.4 Layer 2: distinguishing different move tiles

Let the number of different action tiles and merging tiles of layer 1 be n for
the given Turing machine. For simplicity, let the different action tiles and
merging tiles be denoted by expressions t1, . . . , tn, that is, integer i identifies
tile ti uniquely.

Let tk be any action tile or merging tile occurring on layer 1. Then the
tile is paired with the tiles of the form shown in Figure 3.18 with either
i = k or j = k. If the tile is of the form in Figures 3.11(b) or 3.12(a), it is
required that i = k and j 6= k. Otherwise, if the tile is of the form in Figures
3.11(a) or 3.12(b), it is required that i 6= k and j = k. In other words, in
the tile pair representing a move, the leftmost tile is identified by the first
component and the rightmost tile is identified by the second component in
the pair (i, j). This makes it possible to distinguish any two action tiles or
merging tiles from each other just by observing the color of (either) the east
edge or the west edge.

(i
,j

)(i,j)

Figure 3.18: The tiles of layer 2.

All the other tiles are paired freely with all the tiles of the form shown in
Figure 3.18, where 1 ≤ i, j ≤ n. On a valid tiling, layer 2 consists of rows of
tiles like the one in Figure 3.19(b) if the underlying tile row contains action
tile and move tile pair ti and tj as in Figure 3.19(a).

48

ti tj

(a) Layer 1.

(i
,j

)(i,j) (i
,j

)(i,j) (i
,j

)(i,j) (i
,j

)(i,j) (i
,j

)(i,j) (i
,j

)(i,j) (i
,j

)(i,j) (i
,j

)(i,j)
(b) Layer 2.

Figure 3.19: Associating tiles ti and tj with the horizontal signal identifying
the tile pair.

3.3.5 Layers 3 and 4: distinguishing move tiles from alphabet

tiles

Let D be the tile set of Theorem 3.2.4 which is used to draw a northeast-
southwest diagonal line 4-way deterministically. Let D = D1 ∪ D2, where
D1 is the set of tiles used on the diagonal line only and let D2 = D\D1. Let
DR be the tile set which has been constructed by interchanging the north
edge colors and south edge colors in the tiles of set D and by replacing
the east edge colors and the west edge color bijectively with a completely
new set of colors. Tile set DR can be used to tile a diagonal line in the
northwest-southeast direction. Let DR

1 be the set of tiles located on this
diagonal pattern and let again DR

2 = DR \ DR
1 .

Now the tile set D∪DR is 4-way deterministic and it can be used to draw
any diagonally advancing zig-zag line with exactly the elements D1 ∪DR

1 on
the zig-zag line. Using tile sets D and DR one can distinguish action tiles
and merging tiles from alphabet tiles by pairing the action tiles and the
merging tiles of layer 1 with the tiles representing a diagonal line.

The tile set D∪DR is used on both layer 3 and layer 4. The action tiles
in Figure 3.11(a) are paired with the tiles of set DR

1 on layer 4. The action
tiles in Figure 3.11(b) are paired with the tiles of set D1 on layer 3. The
merging tiles in Figure 3.12(a) are paired with the tiles of set DR

1 on layer
3. The merging tiles in Figure 3.12(b) are paired with the tiles of set D1 on
layer 4. These constraints force two diagonally advancing ziz-zag lines to be
drawn side by side on layers 3 and 4. The line pattern of layer 3 is associated
with merging tiles of left moves and action tiles of right moves (that is, the
leftmost tile in a tile pair representing a move). The line pattern of layer 4
is associated with merging tiles of right moves and action tiles of left moves
(that is, the rightmost tile in a tile pair representing a move).

All the alphabet tiles are paired with all the tiles in D2 ∪ DR
2 on both

layers and the starting tiles are paired freely with all the tiles D∪DR on both

49

layers. This can be done because there is no ambiguity between starting tiles
and other tiles.

The idea of this construction is better seen in Figure 3.20. The left side
tiles are identified by the tiles on the diagonal lines on layer 3 and the right
side tiles are identified by the tiles on the diagonal lines on layer 4.

(a) Read-write
head movement on
layer 1.

(b) Signals on
layer 2 for differ-
ent moves.

(c) Simulating a
diagonal line on
layer 3.

(d) Simulating a
diagonal line on
layer 4.

Figure 3.20: Distinguishing move tiles from alphabet tiles by using diagonal
patterns that can be drawn 4-way deterministically.

If layer 1 has been tiled in a valid way, also layers 3 and 4 can be tiled
correctly. This follows from the fact that a row of tiles of D can always
be followed by a row of tiles DR with matching colors since DR is only a
“reflected” version of D and D admits a valid tiling.

This construction distinguishes the action tiles and the merging tiles
from the rest of the tiles. By looking at the tiles on layers 3 and 4 it can
be determined whether or not the tile in question is an alphabet tile or not.
The tile is an alphabet tile if, and only if, it is not a starting tile and it is
not paired with a member of sets D1 or DR

1 on layers 3 and 4.

3.4 The tiling problem without a seed tile

In this section the tiling problem without a seed tile is shown to be unde-
cidable even for 4-way deterministic tile sets. The argumentation is quite
similar to that of earlier proofs [46, 92]. The only difference is the require-
ment that the final tile set must be 4-way deterministic.

3.4.1 A brief outline of the argumentation

The undecidability is proven by reducing the tiling problem with a seed tile
to the tiling problem. The reduction is done by converting an instance of
the tiling problem with a seed tile to an instance of the tiling problem.

50

The idea of the reduction is to construct another tile set. For the new
tile set, the answer for the tiling problem will be affirmative if, and only
if, the answer for the tiling problem with a seed tile is affirmative for the
original given tile set and the given seed tile.

The new tile set is such that certain areas of a valid tiling are used to
simulate a tiling with the original tile set. These areas are referred to as
free rows and free columns. Identifying the free areas in the earlier case [46]
required some modifications to the original proof of Robinson [92]. Now the
tile set construction for identifying the free areas is more complicated.

The construction of the new tile set relies heavily on the use of an aperi-
odic tile set. By using the square patterns generated by Robinson’s tile set,
copies of the seed tile are forced to be located at certain points of the plane.

In [46], Robinson’s tile set was modified resulting a new aperiodic tile
set which is deterministic by one corner. Later in [55] an aperiodic 4-way
deterministic tile set was given which can be mapped homomorphically onto
Robinson’s original aperiodic tile set. This 4-way deterministic tile set will
be used in the proof instead of Robinson’s tile set. This set was already
used in Section 3.2 to construct another tile set.

The new tile set is constructed in four layers for the given tile set T and
a seed tile t ∈ T . The rough outline of the layers is the following:

Layer 1. The tiling forced by the 3× 3 tile set (see the definition in Section
2.3) of the aperiodic tile set of Kari and Papasoglu.

Layer 2. The tiles to identify free areas.

Layer 3. A tiling simulating a tiling by the given tile set T .

Layer 4. The tiles to forward the colors of the tile set T on layer 3 from
a free area to another free area border and from a red border to
another red border without discarding any color information.

Theorem 3.4.1. The tiling problem is undecidable even when restricted to
tile sets that are 4-way deterministic.

Proof (sketch). Section 3.4.2: It is possible to divide the plane into squares
of increasing size using (the 3 × 3 tile set of) the aperiodic tile set of Kari
and Papasoglu. The squares are colored either red or blue. No edges of two
squares of the same color can coincide.

Section 3.4.3: Each of the red squares contains free areas that are not
between any of the smaller red squares. The tiles which are used on free
and non-free areas belong to two disjoint subsets of the modified aperiodic
tile set.

Section 3.4.4: A finite area of a tiling by the original tile set is simulated
on the free areas within the red squares. The size of the free area inside a

51

red square square is directly proportional to the size of the red square. One
copy of the seed tile can be forced to be located in the center of every red
square (and therefore in the center of every simulation area) by pairing only
the seed tile with all blue cross tiles that are not part of a 3× 3 blue square.
Whether or not a cross tile is part of a 3 × 3 blue square is determined
by using a 3 × 3 tile set (see Section 2.3 for the definition) version of the
aperiodic tile set.

Section 3.4.5: The area consisting of disjoint free areas can be considered
as a single continuous square. This is seen by transferring the colors between
the free areas using a 4-way deterministic construction. Also, if the original
tile set admits arbitrarily large squares to be tiled, so does the new tile set.
This is possible because the colors next to a red edge on a free area are chosen
nondeterministically and shared between all the red squares of the same size
using horizontal and vertical signals containing the color information. Then
the plane is tiled correctly if, and only if, on every red square the free areas
are tiled correctly using the original tile set. Any valid tiling by the original
tile set can be simulated using the new tile set without a tiling error.

The details of the proof of Theorem 3.4.1 have been scattered to Sections
3.4.2–3.4.5.

Theorem 3.4.2. The tiling problem is undecidable even when restricted to
tile sets that are deterministic by any two edges.

Proof. A 2 × 2 tile set (see the definition of an n × n tile set in Section
2.3) of a 4-way deterministic tile set is not only 4-way deterministic but
also deterministic by opposite edges. Therefore, the claim follows from the
previous theorem.

3.4.2 Layer 1: the aperiodic tile set

The aperiodic tile set of Kari and Papasoglu is used as the first layer of
the new sandwich tile set. This 4-way deterministic tile set can be mapped
homomorphically onto Robinson’s tile set and therefore it is possible to use
the patterns of red squares and blue squares of Robinson’s original tile set in
the rest of the proof. The aperiodic tile set is used to admit only non-periodic
valid tilings in which the seed tile is contained infinitely many times.

3.4.3 Layer 2: identifying the free areas

A tile within a red square is said to be located on a free column of the red
square, if there are no smaller red squares above or below it within the red
square. Likewise, a tile within a red square is said to be located on a free
row of the red square, if there are no smaller red squares within the red
square to the right or to the left from its position. A tile within a red square

52

is said to be free, if it is located on both a free row and a free column.
For example, the free tiles of a (26 + 1) × (26 + 1) red square are shown in
Figure 3.21. The aperiodic tile set will be modified so that it is possible to
determine whether or not a given tile within a red square is located on a
free area or not.

Figure 3.21: The free area of 9 × 9 squares within a red square spanning
65 × 65 squares.

A row is said to be red, if it consists (only) of tiles having red horizontal
arrows. Similarly, a row is said to be blue, if it consists (only) of tiles having
blue horizontal arrows. Likewise, a column of tiles is said to be red or blue
if it consists of tiles having red or blue vertical arrows, respectively. It needs
to be noted that a row within a red square can be free only if it is a part of
a blue row.

Robinson’s tile set is such that in a valid tiling there is always an even
number red columns and rows within a red square. On the area between
two neighboring red squares of equal size there can be either an even or an
odd number of red columns (if the squares lie on the same tile rows) or rows
(if the squares lie on the same tile columns). The same properties hold for
blue squares, columns and rows.

The number of columns and rows between two neighboring red squares of
equal size is used to force certain line patterns to be drawn which eventually
can be used to locally recognize the tiles that lie on free columns and rows.
The line patterns on non-free areas consist of two signals which change their
parity whenever they intersect a red column or row. The number of the red
columns or rows between two neighboring squares of equal size affects on
how the signals are initialized at the border of a red square.

53

?

?

(a) The tiles to be paired with west edge
red double arrows

?

?

(b) The tiles to be paired with east edge
red double arrows

?

?

?

?

?

?

?

?

?

?

(c) The tiles to be paired with any vertical red single arrows

Figure 3.22: The tiles to be paired with the tiles on blue rows and red
columns. Expression ? denotes either a solid or a dotted vertical line and it
is the same for both the north edge and the south edge.

To identify the free rows (construction is only rotated to identify free
columns), the aperiodic tile set is now modified as follows:

1. The tiles on the west edges of red squares are paired with the tiles in
Figure 3.22(a).

2. The tiles on the east edges of red squares are paired with the tiles in
Figure 3.22(b).

3. The tiles on red vertical single arrows are paired with the tiles in Figure
3.22(c).

4. The rest of the tiles are paired with such tiles that the colors origi-
nating from tiles in Figures 3.22(a), 3.22(b) and 3.22(c) can intersect
unchanged.

The idea of the tiles in Figure 3.22 is that in a valid tiling a tile within
a red square is located on a free row if, and only if, it contains a horizontal
dashed line. If the tile is located on a blue row but not on a free area, then it
must have a pair of horizontal arrows travelling to opposite directions. Each
of these arrows is either solid or dotted. On a red column a solid arrow is
changed to a dotted arrow and vice versa.

Every red column contains a single vertical line which is either solid or
dotted. These vertical lines are used to determine how a dashed line repre-
senting a free row is swapped to the two arrows on the edge of a red square.
Practically speaking, the vertical lines are used to identify nondeterminis-
tically, how many red columns there are between two nearest red squares
of equal size. If there is an even number of red columns between the two
squares, then both the east edge of the leftmost square and the west edge of

54

the rightmost square should contain a solid vertical line. If there is an odd
number of red columns between the two squares, then both the east edge
of the leftmost square and the west edge of the rightmost square should
contain a dotted vertical line.

On the edge of a red square a dashed line representing a free row is
replaced with a leftward arrow and a rightward arrow. The replacement is
determined by the vertical line (which is either solid or dotted) on that red
column. If an east edge contains a solid vertical line, the rightward arrow
(which is emitted away from the square) must be solid also. If an east edge
contains a dotted vertical line, the rightward arrow must be dotted also. If
a west edge contains a solid vertical line, the leftward arrow must be solid
also. If a west edge contains a dotted vertical line, the leftward arrow must
be dotted also. When the vertical lines are assumed to be of the same type
on opposite edges of neighboring red squares, the arrow which is absorbed
on a red edge is uniquely determined by the emitted arrow on the edge of
the opposite red square.

The solid or dotted black arrows emitted at the ends of free rows of two
neighboring red squares of equal size may intersect a vertical edge of another
(larger) red square only exactly in the middle between the two squares. Let
the two squares be of size 22n +1 and let them be aligned so that both their
horizontal edges are located on the same rows, the leftmost square has its
east edge located on column x = −22n−1, the rightmost square has its west
edge located on column x = 22n−1 and the squares have free rows on a blue
row in location y = 0. Then on intervals (−22n−1, 0) and (0, 22n−1) there
is an even number of red columns and the column x = 0 is either red or
blue. Furthermore, on row y = 0 there are no vertical red square edges on
intervals (−22n−1, 0) and (0, 22n−1). The only possibility on row y = 0 to
have a red vertical edge (i.e. a vertical red double arrow on Robinson’s tiles)
on interval (−22n−1, 22n−1) is in location (x, y) = (0, 0). Because both the
subintervals contain an even number of red columns, the horizontal black
arrows are tiled correctly in location (0, 0) using the tiles in Figure 3.22(c)
if there is no red vertical edge present. If there is a red vertical edge present
in location (0, 0), then the horizontal black arrows are still drawn correctly
using the third tile in Figures 3.22(a) and 3.22(b).

It should be noted that there exists such a tiling in which there is a blue
row which does not intersect any red squares (a so-called fracture line). It
follows that this row can therefore contain either a pair of horizontal arrows
or a dashed line without causing a tiling error.

Lemma 3.4.3. If a tile within a red square is located on a non-free row in
a valid tiling, then it cannot contain a horizontal dashed line.

Proof. If a tile on a non-free row contains a dashed line, the line would collide
with an edge of a smaller red square. But this is not possible, because a

55

(a) Both the horizontal arrows are solid at
the end of a free row if the area between
the two squares contains an even number
of red columns.

(b) The horizontal arrows are of different
type at the end of a free row if the area
between the two squares contains an odd
number of red columns.

Figure 3.23: Different tiles are used at the end of free rows depending on
the (even or odd) number of red columns between the two red squares.

dashed line coming from the outside of a square cannot collide with an edge
of the square by the tiles in Figures 3.22(a) and 3.22(b).

(a) If in the middle of the row both the
leftward arrow and the rightward arrow
are solid, then neither the east edge nor
the west edge cannot be tiled correctly
using the tiles in Figures 3.22(a) and
3.22(b).

(b) If in the middle of the row the left-
ward arrow is dotted and the rightward
arrow is solid, then east edge cannot be
tiled correctly using the tiles in Figure
3.22(b).

Figure 3.24: A free row can be tiled only with a horizontal dashed line. The
locations denoted by black rectangles cannot be tiled.

Lemma 3.4.4. If a tile within a red square is located on a free row in a
valid tiling, then it must contain a horizontal dashed line.

Proof. The arrows cannot be of the same type (solid or dotted) because
then at the end of the free row the arrows would still be of the same type
as shown in Figure 3.24(a). A leftward arrow and a rightward arrow of the

56

same type is not allowed inside the red square by the tiles in Figures 3.22(a)
and 3.22(b).

If the arrows are not of the same type, then they will still meet the
red square edges on the east side and the west side as the same arrow
type combination because there is an even number of red columns within
the square and at every red column the arrow types are swapped shown
in Figure 3.24(b). But the same arrow combinations arriving at the both
edges is not possible because on the west side the leftward arrow and the
rightward arrow must be dotted and solid, respectively, whereas the east
side the leftward arrow and the rightward arrow must be solid and dotted,
respectively, by the third tile in Figures 3.22(a) and 3.22(b).

By Lemmas 3.4.3 and 3.4.4, it is obvious that in a valid tiling a tile is
located on a free row if, and only if, it has a horizontal dashed line. It
remains to be shown that a valid tiling exists.

Lemma 3.4.5. The modified tile set admits a valid tiling.

Proof. A row which does not intersect with any red square edges can be
tiled correctly. Therefore, it is enough to consider only rows that contain
free tiles for some red squares. Consider row y = 0, which is assumed to
contain free rows of red squares of size 22n + 1.

Clearly, any free row itself within a square of size 22n + 1 can be tiled
correctly by the tiles containing a horizontal dashed line. It is therefore
sufficient to show that no tiling error is introduced on row y = 0 on the area
between two neighboring red squares of size 22n + 1 assuming that at the
ends of a free row the dashed line is replaced with a suitable pair of arrows.
Let the two neighboring squares be located so that the leftmost square has
its east edge on column x = −22n−1 and the rightmost square has its west
edge on column x = 22n−1.

If the area in between (i.e. columns on interval (−22n−1, 22n−1)) contains
an even number of red columns (as shown in Figure 3.23(a)), the column
x = 0 is blue and the row y = 0 can be tiled correctly by choosing the
vertical lines to be solid on the edges of the red squares. The selection
which is made between solid and dotted vertical lines on the east and west
edges of red squares is “row invariant” because the selection will depend
only on the number of red columns between the red squares.

If the area in between the two squares contains an odd number of red
columns (as shown in Figure 3.23(b)), the vertical lines are chosen to be
dotted on the edges of the red squares. Then the east edge of the leftmost
red square has a dotted rightward arrow and a solid leftward arrow. If the
interval (−22n−1, 22n−1) does not contain a vertical red edge, the arrows are
swapped an odd number of times on the interval using the tiles in Figure
3.22(c) and the west edge of the rightmost square will have a solid rightward

57

Figure 3.25: Signals on free rows within a 65 × 65 red square. For clarity,
horizontal signals are shown only for the central row of each square and
vertical solid signals are not shown.

arrow and a dotted leftward arrow. These arrow combinations are allowed
by the tiles in Figures 3.22(a) and 3.22(b). Therefore, no tiling error is
introduced if the interval (−22n−1, 22n−1) does not contain a vertical red
edge and the vertical line components are chosen correctly on the edges of
the red squares.

The only location on row y = 0 where the horizontal (solid or dotted)
black arrows might meet a vertical red edge on interval (−22n−1, 22n−1) is
on column x = 0. Because the arrows are swapped an even number of times
on both intervals (−22n−1, 0) and (0, 22n−1), the tile required on column
x = 0 is exactly the third tile in Figures 3.22(a) and 3.22(b) or the fourth
tile in Figure 3.22(c) (which are all the same). Therefore, no tiling error
is introduced even if the interval (−22n−1, 22n−1) contains the only possible
occurrence of a vertical red edge in the middle of the interval.

58

It is shown in Figure 3.25 how the signals in tiles in Figure 3.22 are
drawn within a 65 × 65 red square.

The following theorem follows as a combination of the previous lemmas
and their “rotated” counterparts:

Theorem 3.4.6. The 4-way deterministic aperiodic tile set of Kari and
Papasoglu can be modified so that the set of tiles on free areas and the set of
tiles on non-free areas are disjoint sets.

3.4.4 Layer 3: simulating the original tile set

Assume that the given instance for the tiling problem with a seed tile is the
tile set T and the seed tile t. A tiling by the original tile set T is simulated
within all the red squares. However, since larger red squares contain smaller
red squares, the simulation area cannot be the entire square itself. Instead,
the simulation corresponding the particular red square is done on the free
areas.

Lemma 3.4.7 ([92]). For every (4n + 1)× (4n + 1) red square, the number
of free columns is 2n + 1 and the number of free rows is 2n + 1.

Lemma 3.4.7 states that the free area within a red square increases with
respect to the size of the square. Hence, the tiling by the original tiles (on
layer 3) can be arbitrarily large even when restricted to the free rows and
free columns. Hence, it is enough to restrict the simulation only to free rows
and free columns.

One copy of the seed tile can be forced to be located in the center of
every red square (and therefore in the center of every simulation area) by
pairing the seed tile with all blue cross tiles that are not part of a 3 × 3
blue square. Whether or not a cross tile is part of a 3 × 3 blue square is
determined simply by using a 3 × 3 tile set version of the aperiodic tile set.
The tiles that are used on this layer are the tiles of the original tile set T
(which is assumed not to have blank as a color), the blank tile and some
other tiles that have some sides colored blank and some colored with the
colors of T . In Section 3.4.5 these tiles will be described in more detail and
it will be shown to be possible to consider the area consisting of the free
areas as a single continuous square.

3.4.5 Layer 4: joining the free areas

To treat all the free areas within a red square as a single continuous area
and to allow any colors at the edges of red squares while maintaining the
4-way determinism, a set of tiles is added to the original tile set and these
tiles are paired with another set of tiles as shown in Figure 3.26. Notice that
the tiles in Figure 3.26 forward only colors of the north and south edges.

59

A similar construction is used to forward colors in the horizontal direction
and the actual tile set is the combination of tiles in Figure 3.26 and their
counterparts for the horizontal direction.

Let f be a valid tiling of the aperiodic tile set. A tile f(x, y) is said to be
located on the north border, east border, west border or south border of a free
area if a tile f(x, y − 1), f(x − 1, y), f(x + 1, y) or f(x, y + 1), respectively,
belongs to the free area and the tile f(x, y) does not. Collectively, the tiles
that do not belong to a free area but are located horizontally or vertically
next to the free area are said to be located on a border of the free area. The
locations enumerated in Figure 3.26 can be identified as disjoint subsets of
the aperiodic tile set after the modifications of layer 2 (i.e. Section 3.4.3)
and forming the 3 × 3 tile set of the new modified aperiodic tile set. By
looking at the tiles in Figure 3.26, it is obvious that the final tile set is
4-way deterministic.

What needs to be shown is that tiles force arbitrarily large squares to
be tiled with the tiles of the original tile set. This is done by erasing colors
at the free area borders and forwarding them to the next free area unless
the color is adjacent to a red edge. At the red edges the color is erased
and forwarded to the next red square. Another way of looking at it is that
the final colors next to red edges are chosen nondeterministically for all red
squares of the same size.

For example, at the north border of a free area the last color (i.e. x in
Figure 3.26) on layer 3 is erased and raised onto layer 4 to be transferred
northwards. At the south border of another free area color x is lowered from
layer 4 back to layer 3. The last colors next to red edges are chosen nonde-
terministically using the tiles in Figures 3.26(e) and 3.26(f). The principle
of forwarding colors is represented in Figure 3.27.

It can be concluded that any color is allowed on layer 3 next to a red edge
and the free areas can be considered as a single continuous area. Therefore
the new tile set can simulate tiling of arbitrarily large squares by the original
tile set and Theorem 3.4.1 follows.

3.5 The square tiling problem is NP-complete

In this section it is shown that the square tiling problem is NP-complete
even when the instance is a 4-way deterministic tile set.

3.5.1 Preliminaries

The square tiling problem is defined as follows [35]: “Given an integer N (in
unary form) and a set of Wang tiles T , does there exist a valid tiling of an
N ×N -square by these given tiles?” The square tiling problem is known to
be NP-complete [35]. A variant of the square tiling problem is the periodic

60

x

×
(x, y, z)

(y, z)

(a) The tiles at the north bor-
der of a free area.

x

×
(y, z)

(x, y, z)

(b) The tiles at the south
border of a free area.

Any tile
of T . ×

(y, z)

(y, z)

(c) The tiles on free areas.

×
(x, y, z)

(x, y, z)

(d) The tiles on non-free ar-
eas.

y
×

(y, z)

(y, z)

(e) The tiles on a red north
edge next to a free area.

z

×
(y, z)

(y, z)

(f) The tiles on a red south
edge next to a free area.

×
(y, z)

(y, z)

(g) The tiles on a red north
edge next to a non-free area.

×
(y, z)

(y, z)

(h) The tiles on a red south
edge next to a non-free area.

Figure 3.26: The tile construction on layers 3 and 4 to transfer vertical
colors between the free areas inside a red square and between different red
squares. Expressions x, y and z denote arbitrary colors of the given tile set
T . The set T is assumed not to have blank color on any tile.

tiling problem: “Given an integer N (in unary form) and a set of Wang tiles
T , does there exist a periodic tiling of the plane with a period less than N?”
Also the periodic tiling problem is known to be NP-complete [35].

Mathematical self-assembly is the concept of modelling chemical self-
assembly with Wang tiles [2, 1]. One is given a tile set T , a seed tile s ∈ T ,
a temperature τ ∈ N and a glue function g : C × C → Z, where C is the set
of colors of T and g(a, b) = g(b, a). The tiles represent molecules and the
glue function is used to represent the bond strength between the sides of
different molecules (i.e. tiles). In its simplest form, self-assembly is started
from a single seed tile and tiles are added one by one to an existing connected
cluster of tiles. A tile can be appended to an existing tile cluster if there
is a slot around which the sum of the glue values between the tile and the
earlier tiles exceeds or equals the temperature. A more thorough discussion
of mathematical self-assembly can be found in [2, 1]. A tile cluster (of more
than one tile) is called terminal , if no more tiles can be appended to it. The

61

Figure 3.27: Forwarding the colors from one free area to another and from
one red square to another using the construction in Figure 3.26. Dotted lines
represent two-color vectors and dashed lines represent three-color vectors.
Darkened rectangles represent free areas.

definition of glue function allows tiling errors (i.e. mismatching colors) in
the assembled tile clusters. However, if the glue function is restricted not to
allow tiling errors in the assembled clusters, then the concept of determinism
by edge colors can be extended to self-assembly also.

The unique shape problem [2] is the following: “Given a tile set T , a
seed tile s ∈ T , a glue function g, a temperature τ and a shape S, does the
assembly always produce a terminal tile cluster of shape S?” The unique
shape model is a model of mathematical self-assembly, where g(a, a) > 0,
g(a, b) = 0 if a 6= b and assembled tile clusters are distinguished only by
their shape.

It is shown that the square tiling problem [35], the periodic tiling prob-
lem (with a bounded period) [35] and the complement of a special case of the
unique shape problem [2] are NP-complete even if the given tile set is deter-
ministic by any two sides. That is, the problems remain NP-complete even
when the tile set is of a very restricted form. The reductions are done using
the well-known satisfiability problem (or SAT in short), which is known to
be NP-complete [20, 35].

3.5.2 NP-completeness with 4-way deterministic tile sets

In this section it is shown that the NP-complete satisfiability problem can
be reduced to the square tiling problem for 4-way deterministic tile sets.
The construction is based on the construction given in [2], which again is
based on the construction in [61]. In [2], the variables with values were

62

represented by the rows and the clauses were represented by the columns of
the rectangle. The tile set constructed in [2] was only SW-deterministic.

In the following, the clauses are denoted by Ci, where 1 ≤ i ≤ m, and
the variables are denoted by xj , where 1 ≤ j ≤ n. The construction of the
Wang tile set is done as follows:

1. A seed tile (as shown in Figure 3.28(a)) is added to the tile set. For
every clause Ci a clause tile (as shown in Figure 3.28(b)) is added
to the tile set for every 0 ≤ l ≤ n. The clauses are represented
by the columns in the rectangle to be assembled. For every variable
xi in the given instance of SAT, add the valuation tiles in Figures
3.28(c) and 3.28(d). A column of these tiles is used to represent all
the possible valuations. The tile with the color (Cm+1, xi, 1) on its
west edge represents valuation xi = 1 and the tile with the color
(Cm+1, xi, 0) on its west edge represents valuation xi = 0. Each of the
variables is represented by a row in the rectangle.

x1

C
1

∅

∅

(a) The seed
tile.

(Ci, 0, l)

C
i
+

1C
i

(Ci, l, l)

(b) A clause tile
for clause Ci

and 0 ≤ l ≤ n.

xi+1

(C
1
,
x

i
,
1
)

(
C

m
+

1
,
x

i
,
1
)

xi

(c) The valuation tile
for xi = 1.

xi+1

(C
1
,
x

i
,
0
)

(
C

m
+

1
,
x

i
,
0
)

xi

(d) The valua-
tion tile for xi =
0.

Figure 3.28: The auxiliary tiles.

2. For every clause Ci, where 1 ≤ i ≤ m, and variable xj , where 1 ≤ j <
n, add only one set of the tiles from figures 3.29(a), 3.29(b) and 3.29(c).
For every clause Ci, where 1 ≤ i ≤ m, and for the last variable xn, add
only those tiles (from one of the figures 3.29(a), 3.29(b) and 3.29(c)),
which have north side colors of form (Ci, k, k), where 0 < k ≤ n. This
restriction is set to force the top row to be tiled if, and only if, all
the clauses (i.e. columns) have a literal, which is true in the arbitrary
valuation given by the valuation tiles in the first column.

The rectangle is constructed so that the tile corresponding variable xj

in clause Ci having color (Ci, k, l) on its south side has color (Ci, k +1, l) on
its north side if either xj = 1 and literal xj belongs to the clause or xj = 0
and negative literal ¬xj belongs to the clause. In other words, a counter is
initiated for every clause and it is incremented on every true literal. Variable
l ≤ n in Figures 3.28(b), 3.29(a), 3.29(b) and 3.29(c) is used to denote the

63

final counter value at the top row. It is required later to prove the NP-
completeness of the periodic tiling problem and to have the top and bottom
row have matching colors.

The west side color (Ci, xj , 1) represents value xj = 1 for the tile in the
row that represents clause Ci. Likewise, the color (Ci, xj , 0) represents value
xj = 0.

1. If the positive literal xj belongs to clause Ci, add the tiles in Figure
3.29(a). Let the south side color be (Ci, k, l). If xj = 1 (i.e. the west
side color is (Ci, xj , 1)), the north side color is (Ci, k +1, l). Otherwise
the north side color is (Ci, k, l).

(Ci, k + 1, l)

(C
i
+

1
,
x

j
,
1
)(

C
i
,
x

j
,
1
)

(Ci, k, l)

(Ci, k, l)

(C
i
+

1
,
x

j
,
0
)(

C
i
,
x

j
,
0
)

(Ci, k, l)

(a) The tiles for positive literals xj in
clause Ci.

(Ci, k, l)

(C
i
+

1
,
x

j
,
1
)(

C
i
,
x

j
,
1
)

(Ci, k, l)

(Ci, k + 1, l)

(C
i
+

1
,
x

j
,
0
)(

C
i
,
x

j
,
0
)

(Ci, k, l)

(b) The tiles for negative literals ¬xj

in clause Ci.

(Ci, k, l)

(C
i
+

1
,
x

j
,
1
)(

C
i
,
x

j
,
1
)

(Ci, k, l)

(Ci, k, l)

(C
i
+

1
,
x

j
,
0
)(

C
i
,
x

j
,
0
)

(Ci, k, l)

(c) The tiles for literals xj not in
clause Ci.

Figure 3.29: The tiles to represent literals in the given formula.

2. If the negative literal ¬xj belongs to clause Ci, add the tiles in Figure
3.29(b). Let the south side color be (Ci, k, l). If xj = 0, the north side
color is (Ci, k + 1, l). Otherwise the north side color is (Ci, k, l).

3. If neither the positive literal xj nor the negative literal ¬xj belongs
to clause Ci, add the tiles in Figure 3.29(c). These tiles simply move
the information on the truth state of the clause upwards. If the south
side color is (Ci, k, l), then also the north side color is (Ci, k, l).

Theorem 3.5.1. The square tiling problem is NP-complete even for in-
stances with a 4-way deterministic tile set.

Proof. It is quite obvious that the tile set constructed above is 4-way deter-
ministic. All the tiles are determined uniquely by any two adjacent sides.
The only case that is not as obvious is the uniqueness within the tiles in

64

Figures 3.29(a), 3.29(b) and 3.29(c). However, for every clause Ci and vari-
able xj only one of these sets is chosen and within each of these sets the tile
is uniquely determined.

It is not necessary to show that a square can be tiled with the given
tile set. For every instance of SAT it is possible to add dummy variables
that belong to no clause so that the number of variables and the number of
clauses are the same. It remains to be shown that an instance of SAT with
m clauses and n variables has a solution if, and only if, an (m+1)× (n+1)-
rectangle can be tiled with the tile set corresponding to the instance.

It can be seen from the colors of the seed tile that it must be located
in the lower left corner of the rectangle. This implies that the valuation
tiles must be used to tile the leftmost column and the clause tiles to tile the
bottom row. This implies further that the rest of the rectangle can be tiled
correctly if, and only if, the given instance of SAT has a solution.

The reduction from the given instance of SAT to a 4-way deterministic
tile set can clearly be done in polynomial time. Hence, the square tiling
problem is NP-complete for 4-way deterministic tile sets.

x1

C
1

∅

∅

x2

(C
1
,
x
1
,
0
)

(
C

5
,
x
1
,
0
)

x1

x3

(C
1
,
x
2
,
1
)

(
C

5
,
x
2
,
1
)

x2

x4

(C
1
,
x
3
,
0
)

(
C

5
,
x
3
,
0
)

x3

x5

(C
1
,
x
4
,
0
)

(
C

5
,
x
4
,
0
)

x4

(C1, 0, 1)

C
2

C
1

(C1, 1, 1)

(C1, 0, 1)

(C
2
,
x
1
,
0
)(

C
1
,
x
1
,
0
)

(C1, 0, 1)

(C1, 1, 1)

(C
2
,
x
2
,
1
)(

C
1
,
x
2
,
1
)

(C1, 0, 1)

(C1, 1, 1)

(C
2
,
x
3
,
0
)(

C
1
,
x
3
,
0
)

(C1, 1, 1)

(C1, 1, 1)

(C
2
,
x
4
,
0
)(

C
1
,
x
4
,
0
)

(C1, 1, 1)

(C2, 0, 1)

C
3

C
2

(C2, 1, 1)

(C2, 0, 1)

(C
3
,
x
1
,
0
)(

C
2
,
x
1
,
0
)

(C2, 0, 1)

(C2, 1, 1)

(C
3
,
x
2
,
1
)(

C
2
,
x
2
,
1
)

(C2, 0, 1)

(C2, 1, 1)

(C
3
,
x
3
,
0
)(

C
2
,
x
3
,
0
)

(C2, 1, 1)

(C2, 1, 1)

(C
3
,
x
4
,
0
)(

C
2
,
x
4
,
0
)

(C2, 1, 1)

(C3, 0, 1)

C
4

C
3

(C3, 1, 1)

(C3, 0, 1)

(C
4
,
x
1
,
0
)

(
C

3
,
x
1
,
0
)

(C3, 0, 1)

(C3, 0, 1)

(C
4
,
x
2
,
1
)

(
C

3
,
x
2
,
1
)

(C3, 0, 1)

(C3, 0, 1)

(C
4
,
x
3
,
0
)

(
C

3
,
x
3
,
0
)

(C3, 0, 1)

(C3, 1, 1)

(C
4
,
x
4
,
0
)

(
C

3
,
x
4
,
0
)

(C3, 0, 1)

(C4, 0, 1)

C
5

C
4

(C4, 1, 1)

(C4, 1, 1)

(C
5
,
x
1
,
0
)(

C
4
,
x
1
,
0
)

(C4, 0, 1)

(C4, 1, 1)

(C
5
,
x
2
,
1
)(

C
4
,
x
2
,
1
)

(C4, 1, 1)

(C4, 1, 1)

(C
5
,
x
3
,
0
)(

C
4
,
x
3
,
0
)

(C4, 1, 1)

(C4, 1, 1)

(C
5
,
x
4
,
0
)(

C
4
,
x
4
,
0
)

(C4, 1, 1)

Figure 3.30: A valid tiling of a square with values x1 = 0, x2 = 1, x3 = 0
and x4 = 0 for the formula (x1∨x2∨x3)∧ (x1 ∨x2∨x4)∧ (x1 ∨¬x2∨¬x4)∧
(¬x1 ∨ x3 ∨ x4).

Figures 3.5.2 and 3.5.2 present examples of a valid tiling of a rectangle
and an incomplete tiling of a rectangle. In Figure 3.5.2 the valuation (i.e.
the leftmost column) is such that the rectangle can be completed. In Figure

65

x1

C
1

∅

∅

x2

(C
1
,
x
1
,
0
)

(
C

5
,
x
1
,
0
)

x1

x3

(C
1
,
x
2
,
1
)

(
C

5
,
x
2
,
1
)

x2

x4

(C
1
,
x
3
,
0
)

(
C

5
,
x
3
,
0
)

x3

x5

(C
1
,
x
4
,
1
)

(
C

5
,
x
4
,
1
)

x4

(C1, 0, 1)

C
2

C
1

(C1, 1, 1)

(C1, 0, 1)

(C
2
,
x
1
,
0
)(

C
1
,
x
1
,
0
)

(C1, 0, 1)

(C1, 1, 1)

(C
2
,
x
2
,
1
)(

C
1
,
x
2
,
1
)

(C1, 0, 1)

(C1, 1, 1)

(C
2
,
x
3
,
0
)(

C
1
,
x
3
,
0
)

(C1, 1, 1)

(C1, 1, 1)

(C
2
,
x
4
,
1
)(

C
1
,
x
4
,
1
)

(C1, 1, 1)

(C2, 0, 2)

C
3

C
2

(C2, 2, 2)

(C2, 0, 2)

(C
3
,
x
1
,
0
)(

C
2
,
x
1
,
0
)

(C2, 0, 1)

(C2, 1, 2)

(C
3
,
x
2
,
1
)(

C
2
,
x
2
,
1
)

(C2, 0, 1)

(C2, 1, 2)

(C
3
,
x
3
,
0
)(

C
2
,
x
3
,
0
)

(C2, 1, 1)

(C2, 2, 2)

(C
3
,
x
4
,
1
)(

C
2
,
x
4
,
1
)

(C2, 1, 1)

(C3, 0, ?)

C
4

C
3

(C3, ?, ?)

(C3, 0, ?)

(C
4
,
x
1
,
0
)

(
C

3
,
x
1
,
0
)

(C3, 0, ?)

(C3, 0, ?)

(C
4
,
x
2
,
1
)

(
C

3
,
x
2
,
1
)

(C3, 0, ?)

(C3, 0, ?)

(C
4
,
x
3
,
0
)

(
C

3
,
x
3
,
0
)

(C3, 0, ?)

(C4, 0, 2)

C
5

C
4

(C4, 2, 2)

(C4, 1, 2)

(C
5
,
x
1
,
0
)(

C
4
,
x
1
,
0
)

(C4, 0, 2)

(C4, 1, 2)

(C
5
,
x
2
,
1
)(

C
4
,
x
2
,
1
)

(C4, 1, 2)

(C4, 1, 2)

(C
5
,
x
3
,
0
)(

C
4
,
x
3
,
0
)

(C4, 1, 2)

(C4, 2, 2)

(C
5
,
x
4
,
1
)(

C
4
,
x
4
,
1
)

(C4, 1, 2)

Figure 3.31: An incomplete tiling of a square with values x1 = 0, x2 = 1,
x3 = 0 and x4 = 1 for the formula (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ (x1∨¬x2∨
¬x4)∧ (¬x1∨x3∨x4). There is no matching tile for the negative literal ¬x4

in the third clause.

3.5.2 the valuation is such that the column representing the third clause
cannot be tiled.

Theorem 3.5.2. The periodic tiling problem is NP-complete even for in-
stances with a 4-way deterministic tile set.

Proof. A new tile set is constructed by modifying the previous one. The
south side color of the seed tile in Figure 3.28(a) is changed to xn+1 (where
n is the number of variables in the SAT instance) and west side of the seed
tile is changed to Cm+1. This modified tile set admits a periodic tiling by
(m + 1) × (n + 1)-rectangles if, and only if, the given instance of SAT has a
solution.

One can improve the results concerning the square tiling problem (and
the periodic tiling problem) with 4-way deterministic tile sets so that the
square (and the rectangular period) can always be tiled correctly except for
the top right corner. This can be seen by adding an additional row on top
of the rectangle in a similar way as was done in [2]. With the new tile set,
this “check row” is used to count the number of north side colors (Ci, k, k)
(where k > 0) in the row below it. Then the rightmost tile in the check row
can be tiled if, and only if, the number of true clauses equals the number of

66

clauses (and if value l can be chosen correctly for each column). Formally,
the new tiles for the check row are the ones in Figure 3.32.

xn+2

0

m

xn+1

(Ci, k, k)

c
+

1c

(Ci, k, k)

(Ci, k, l)

c

c

(Ci, k, l)

(Cm, k, k)

m

m
−

1

(Cm, k, k)

Figure 3.32: The check tiles. Expression m denotes the number of clauses,
n the number of variables, l 6= k is an integer and c, 0 ≤ c ≤ m − 2, is the
counter for the “correct” north side colors (Ci, k, k), where k > 0.

3.5.3 The unique shape problem of self-assembly

By constructing the tile set as previously but setting no constraints for
the north side colors (Ci, k, l) of the top row and adding the tiles for the
check row, one has, again, a tile set construction reducing the SAT to the
square tiling problem. Now however, the square can always be tiled correctly
except for the top right corner. Knowing this, one can also conclude that a
special case of the unique shape problem is co-NP-complete even with 4-way
deterministic tile sets.

Theorem 3.5.3. The unique shape problem is co-NP-complete with 4-way
deterministic tile sets in the unique shape model.

Proof. The problem is seen to be in co-NP as before in [2]. If a terminal
tile cluster of a shape not contained in S or a (possibly nonterminal) tile
cluster of size |S| + 1 can be produced then the problem has a negative
solution. Then the sequence (with size O(|S|2)) of nonterminal tile clusters
leading to a tile cluster of the alternative shape can be considered as the
polynomial time proof for the negative answer. For every step it can be
checked, whether or not the new tile was added correctly.

The tile set for the reduction is the one of Theorem 3.5.1 with the tiles in
Figure 3.32. The seed tile is the tile in Figure 3.28(a) and the temperature
is τ = 2. The glue function g will be defined to force the leftmost col-
umn and the bottom row to be assembled always by setting g(Ci, Ci) = 2,
g(xj , xj) = 2, g(a, a) = 1 if a 6= Ci, xj and g(a, b) = 0 if a 6= b. Now rest
of the rectangular area will be assembled one tile at a time towards the
top right corner. Also, the assembly will always continue uninterrupted (at
least) until the top right corner. If the given tile set uniquely assembles
into a rectangle with its top right corner missing (i.e. the given shape S),
then the given instance of SAT does not have a solution. Else, a complete

67

rectangle is produced and the given instance of SAT has at least one solu-
tion. Furthermore, with this construction, no mismatching colors occur in
the assembled tile clusters.

3.5.4 NP-completeness with determinism by opposite edges

A corner tile is a unit square, which is divided into four colored corners as
in Figure 3.33(a). Corner tiles are also Wang tiles, since the color of an edge
is determined by corner colors of that particular edge in the sense of Figure
3.33(a). The notions concerning determinism can therefore be extended to
corner tile sets also.

12

3 4

(2, 1)

(1
,4

)(2
,3

)
(3, 4)

(a) A corner tile and the corre-
sponding Wang tile.

N

E
W

S

∅N

t E

N∅

W t

tW

∅ S

Et

S ∅

(b) From Wang tiles to corner tiles. Color t is a
unique new color representing the old Wang tile

Figure 3.33: Corner tiles and Wang tiles.

Every Wang tile set can be converted into a corner tile set, which admits
a valid tiling of a square if, and only if, the original Wang tile set admits a
valid tiling of a square. This can be done by dividing each Wang tile into four
corner tiles (as quadrants) as in Figure 3.33(b). The corners are colored so
that the neighboring corner tiles match if, and only if, they are parts of the
same original Wang tile or their corresponding original Wang tiles match. It
is done simply by introducing a new color uniquely identifying the original
tile and coloring the corners according to the side colors of the original tile.
The technique of Figure 3.33(b) has been used earlier to transform Wang
tile sets into corner tile sets [60].

Lemma 3.5.4. If the given Wang tile set T is XY-deterministic, then the
corner tile set (considered as a Wang tile set in the sense of figure 3.33(a)),
which is constructed from set T by the operation in Figure 3.33(b), is also
XY-deterministic.

Proof. A corner tile set is always deterministic with respect to any two
opposite sides and therefore it is enough to consider only determinism by

68

∅N

t E

N∅

W t

tW

∅ S

Et

S ∅

Figure 3.34: The new corner tiles for Wang tile t.

adjacent sides. Assume that the given tile set is SW-deterministic. The first
one of the new tiles in Figure 3.34 is uniquely defined by both its south side
and its west side, since no other corner tile has color t in its SW-corner.
The second tile is uniquely defined by its south side, since no other corner
tile has color t in its SE-corner. The third tile is uniquely defined by its
south side and west side, since the original Wang tile set was assumed to be
SW-deterministic. The fourth tile is uniquely defined by its west side, since
no other corner tile has color t in its NW-corner. Argumentation for NW-,
NE- and SE-determinism is similar.

Theorem 3.5.5. The problems of Theorems 3.5.1 and 3.5.2 and the com-
plement problem of Theorem 3.5.3 remain NP-complete even if the given tile
set is deterministic with respect to any two sides.

For the square tiling problem and the (bounded) periodic tiling problem
it would have been enough to consider 2×2 tile set formed of the original tile
set to achieve the result of Theorem 3.5.5. However, the problem of Theorem
3.5.3 assumes a unique seed tile which is given in advance. Applying the
2× 2 tile set construction to a seed tile and its neighbors produces multiple
new seed tiles.

Proof. A tile set that is deterministic by any two sides can be constructed
by applying the operation depicted in Figure 3.33(b) to the tile set of a
particular theorem. This new tile set can tile a rectangle of twice the original
height and width if, and only if, the given instance of SAT with m clauses
and n variables has a positive solution. For the problem of Theorem 3.5.3,
the temperature is chosen to be τ = 2 and the glue function is defined
to have value 2 between the equal colors of the leftmost column and the
bottom row. The glue function has value 1 for other equal color pairs and
value 0 for unequal color pairs. The co-NP-completeness (for the rectangular
shapes with the four tiles of the original top right corner missing) follows as
before.

69

70

Chapter 4

On 2-way deterministic tile

sets

In this chapter it is shown that the tiling problem of Wang tiles remains un-
decidable even when the instances are restricted to 2-way deterministic tile
sets. This is a weaker result than that of Chapter 3. However, the 4-way de-
terministic construction is unnecessarily complex with respect to the further
use in Chapter 5. In particular, to represent a Turing machine computa-
tion with a 4-way deterministic tile set, it would seem that the complicated
diagonal line construction of Section 3.2 is necessary. However, a cellular
automaton can be expansive without being based on a 4-way deterministic
tile set and for that reason 4-way determinism is not required of the tile
sets in Chapter 5. Also, the 2-way deterministic tile set construction can
easily be converted into a reversible cellular automaton which can simulate
an irreversible Turing machine unlike the 4-way deterministic construction.
So, for a reader who is interested on cellular automata only, this chapter
is meant to provide, is simplified proof of the results required in Chapter 5
without unnecessarily complicated constructions.

4.1 The tiling problem with a seed tile

It is known that the tiling problem is undecidable in the 4-way deterministic
case with and without a seed tile. However, in the 4-way deterministic case
the construction is unnecessarily complicated in terms of cellular automata.
Therefore, it is shown in this section that the tiling problem with a seed tile
is undecidable for 2-way deterministic tile sets. The construction is much
more simple and it provides the same undecidability results with respect to
cellular automata while the argumentation is more readable. Furthermore,
the 2-way deterministic construction gives another proof for the fact that
any Turing machine can be simulated with a reversible one-dimensional cel-

71

lular automaton, which could not be achieved with the 4-way deterministic
construction.

4.1.1 The idea for the undecidability proof

The basic idea is to represent the Turing machine tape on diagonal rows as
in [46]. It is easy to show that an arbitrary Turing machine computation can
be represented on diagonal rows. The computation on diagonal rows is done
in the manner of Figure 4.1(a). Every second diagonal row in the northwest-
southeast direction is used to represent the Turing machine configuration at
a certain moment. One tile at each diagonal row represents the read-write
head and the current letter to be read. The other tiles of the diagonal row
represent the other letters on the tape located to the left and to the right
from the read-write head.

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

(a) The rough idea of represent-
ing Turing machine computa-
tion on diagonal rows.

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

tap
e

(b) The Turing machine compu-
tation with additional informa-
tion signals of earlier read-write
operations.

Figure 4.1: The general idea of representing the computation on diagonal
rows.

Since a Turing machine is a deterministic method of computation, the tile
set constructed in this manner is clearly deterministic in (at least) one direc-
tion. More specifically, it is the direction to which the computation advances
in time. To force determinism also in the opposite direction, some modifi-
cations are needed. On every operation of the read-write head, a “signal”
is sent to the direction that is opposite to the read-write head movement.
This signal contains information about the read-write operation which is
currently being conducted and the direction from which the read-write head
entered the current cell after the previous move. The computation with sig-
nals is represented in Figure 4.1(b). If the read-write head moves to the left,
then the signal is sent towards east, and if the read-write head moves to the

72

right, then the signal is sent towards north. In practice, the signal is just a
component of a side color which moves onward unobstructed. These signals
containing information about the previous move and the current one are
referred to as the move signals. The move signals are started on the tiles
in Figures 4.2 and 4.3 (i.e. the tiles that represent the read-write head).
The tiles in Figure 4.5 (i.e. the tiles that represent the tape) just move
the possible move signals onward. This construction will make the tile set
representing the given Turing machine 2-way deterministic.

4.1.2 The tile set for the given Turing machine

In this subsection a 2-way deterministic tile set is constructed for the given
Turing machine. In what follows, the diagonal rows of tiles are referred to
as diagonals in short.

The tiles to represent read-write operations For every possible move
of the Turing machine, either the tiles in Figure 4.2 and the tile in
Figure 4.4(a), or the tiles in Figure 4.3 and the tile in Figure 4.4(b)
are added to the tile set.

The tiles for a left move Assume that the Turing machine con-
tains move δ(q, a) = (q′, a′, /). Then the tiles in Figure 4.2 and
the tile in Figure 4.4(a) are added to the tile set.

The tile in Figure 4.2(a) is used if the previous move was to the
left and the current move is to the left. If the previous move was
to the right, then the tile in Figure 4.2(b) is used.

(q′, a′)

(a
′
,q

a
,/

)

a

qa

(a) The new move is to the
left and the previous move
was to the left.

(q′, a′)

(a
′
,q

a
,.

)

qa

a

(b) The new move is to the
left and the previous move
was to the right.

Figure 4.2: Action tiles for move δ(q, a) = (q ′, a′, /)

The tiles for a right move Assume that the Turing machine con-
tains move δ(q, a) = (q′, a′, .). Then the tiles in Figure 4.3 and
the tile in Figure 4.4(b) are added to the tile set.

The tile in Figure 4.3(a) is used if the previous move was to the
left and the current move is to the right. If the previous move

73

(a′, qa, /)

(q
′
,a

′
)

a

qa

(a) The new move is to
the right and the previous
move was to the left.

(a′, qa, .)

(q
′
,a

′
)

qa

a

(b) The new move is to
the right and the previous
move was to the right.

Figure 4.3: Action tiles for move δ(q, a) = (q ′, a′, .)

q′b

a
′b

(q′, a′)

(a) The tile for read-
write operation δ(q, a) =
(q′, a′, /).

a′

q′
b

(q
′,a

′)

b

(b) The tile for read-
write operation δ(q, a) =
(q′, a′, .).

Figure 4.4: Merging tiles. The tiles depend on the new state q ′, the new
letter a′ to be written, the move direction and on the new letter b to be
read.

was to the right and the current move is to the right, then the
tile in Figure 4.3(b) is used.

The tiles in Figures 4.2 and 4.3 will be called action tiles and the
tiles in Figures 4.4 will be called merging tiles. Together these tile are
referred to as move tiles or the tile set MM.

The tiles to represent tape contents For every state q and every ele-
ment a, b and c of the tape alphabet, the tiles in Figure 4.5 are added
to the tile set. The tile in Figure 4.5(a) is used to represent a cell
(or the border between two cells if a 6= b) of the tape without any
information about an earlier read-write operation.

The tiles in Figure 4.5(b) represent tape contents likewise, but contain
also information about a read-write operation during which the read-
write head moved to the left. That is, the east side and the west side
have colors of form (·, qc, ·) if, and only if, there exist a move of form
δ(q, c) = (·, ·, /).

The tiles in Figure 4.5(c) are similar to the tiles in Figure 4.5(b) with
the exception that they contain information about a read-write oper-

74

ation during which the read-write head moved to the right and not to
the left. The north side and the south side have colors of form (·, qc, ·)
if, and only if, there exist a move of form δ(q, c) = (·, ·, .).

The tile set is being constructed so, that if the seed tile (i.e. the tile
in Figure 4.6(c)) is located on an even diagonal, then on every odd
diagonal expressions a and b in Figure 4.5 are equal.

a

ba

b

(a) A tile without read-
write information.

a

(b
,q

c,
/
)(a

,qc,/
)

b

a

(b
,q

c,
.
)(a

,qc,.
)

b

(b) The tiles with information about a move to
the left.

(a, qc, /)

ba

(b, qc, /)

(a, qc, .)

ba

(b, qc, .)

(c) The tiles with information about a move to
the right.

Figure 4.5: The tiles to represents the letters on the tape. Here q denotes
an arbitrary state and letters a, b and c denote arbitrary elements of the
tape alphabet.

The tiles that are used to represent the tape contents of the given
Turing machine M are referred to as alphabet tiles or as the tile set
AM.

The starting tiles To force the Turing machine to start on a blank tape
only, the tiles in Figure 4.6 are added to the tile set. One of these
tiles (namely, the tile in Figure 4.6(c)) is chosen to be the seed tile. If
the seed tile is contained within a tiling, then the tiling represents a
Turing machine computation. Other tiles in Figure 4.6 force the Turing
machine to start on a blank tape. The blank initial configuration of
the Turing machine is represented by the tile pattern shown in Figure
4.8. In short, if the seed tile is located in the origin, then the Turing
machine simulation is done in the first quadrant.

For the given Turing machine M, the tiles in Figure 4.6 are referred
to as starting tiles or as the tile set SM.

75

(a) The blank tile.

q 0
ε

(b) The tile to place the
read-write head.

(c) The seed tile.
ε

(d) The west border. (e) The west border exten-
sion.

ε

(f) The south border.

(g) The south border ex-
tension.

Figure 4.6: Starting tiles.

For every Turing machine M, the tile set constructed using the method
above is denoted by TM, that is,

TM = MM ∪ AM ∪ SM.

An example of a Turing machine operation is shown in Figure 4.7.

Let (q, a) be any preimage pair for which the transition δ(q, a) is not
defined. Then there will be no tile that would have the color qa on its west
side or south side. Therefore, if the Turing machine eventually halts, that
is, if at some moment of time the read-write head in state q reads letter a,
then the tiling cannot be completed to cover the entire plane in a valid way.

Lemma 4.1.1. For any given Turing machine M, the tile set TM is both
NE- and SW-deterministic.

Proof. The tile set is SW-deterministic, since clearly it has no two tiles
having same colors on the south side and the west side.

Similarly, the tile set is NE-deterministic. No two tiles in Figures 4.2,
4.4, 4.3 and 4.5 have the same colors on the north side and the east side.

76

b b

b b

(q
′ , c

′)

(c′
,q

c,
.)

qc c

d d

d d

a a

a a

(b
′ , q

′ b,
/)

(q
,b′

)

b q
′ b

c
′ c′

c ′ c
′

d
(d

,q
c,

.)

(d, qc, .)
d

e e

e e

(a
, q
′ b,

/) a

a

(a
, q
′ b,

/)
b
′ b′

b ′ b
′

(c
′′ , q

c
′ , .

)

(q
,c′′

)

qc ′ c
′

d d

d d

e
(e

,q
c,

.)

(e, qc, .)
e

a a

a a

(b
′ , q

c
′ , .

)
b′

b ′

(b
′ , q

c
′ , .

)
c
′′ c′′

c ′′ c
′′

(d
′ , q

d,
.)

(q
,d′

)

qd d

e e

e e

Figure 4.7: Rewrite operation abqcd ` aq ′bc′de ` ab′qc′de ` ab′c′′qde. The
computation advances upwards, that is, towards northeast. For brevity, not
all tiles are drawn completely.

Theorem 4.1.2. The following question is undecidable: “Given a Turing
machine M, does the tile set TM admit a valid tiling of the plane containing
the tile in Figure 4.6(c)?”

Proof. The tile set TM quite obviously corresponds the actions and config-
urations of the given Turing machine M. Requiring the seed tile to be the
tile in Figure 4.6(c), the structure in Figure 4.8 is forced to be tiled on the
plane.

The structure in Figure 4.8 obviously corresponds the initial configura-
tion with a blank tape. Therefore, the plane can be tiled correctly if, and
only if, the given Turing machine does not eventually halt (when started on
a blank tape). The halting problem with a blank tape is undecidable.

Since the tiling problem with a seed tile is a generalization of the prob-
lem in Theorem 4.1.2, it is seen that the tiling problem with a seed tile is
undecidable for tile sets that are 2-way deterministic. Moreover, the tile set

77

ε
ε

q 0
ε

The simulation

ε ε ε ε ε

Figure 4.8: Using the tiles in Figure 4.6 to start the Turing machine simu-
lation on a blank tape.

TM would be NE-deterministic even if the Turing machine M was nonde-
terministic. No matter what the state q and letter a are, the tiles in Figures
4.2, 4.4 and 4.3 are uniquely defined by the colors of their north and east
sides.

A 2-way deterministic tile set can be constructed even for any nonde-
terministic Turing machine. This tile set is constructed by modifying the
tile set TM. Modification is based on using signals containing information
about the particular move that was chosen. These signals could be referred
to as decision signals. The tile in Figure 4.2 is modified so, that it sends
a decision signal to the left and backwards in time (i.e. towards west since
the computation advances towards northeast). Likewise, the tile in Fig-
ure 4.3 is modified to send a decision signal to the right and backwards in
time (i.e. towards south). Furthermore, the tiles in Figures 4.5 and 4.6 are
modified to allow crossings with any kinds of decision signals. It is quite
straightforward to see, that the new modified tile set is indeed both NE-
and SW-deterministic.

4.2 The tiling problem without a seed tile

In this section the tiling problem without a seed tile is shown to be undecid-
able for those tile sets that are deterministic by two opposite corners. The
reduction procedure is almost identical to that of Section 3.4. That is, the
tile set which simulates the Turing machine computation is much simpler
and the complex construction of Sections 3.2 and 3.3 can be skipped entirely
by using the tile set of Section 4.1.2.

78

The new tile set is constructed in four layers for the given tile set T and
a seed tile t ∈ T . The outline of the layers is the following (as in Section
3.4):

Layer 1. The tiling forced by the 3× 3 tile set (see the definition in Section
2.3) of the aperiodic tile set of Kari and Papasoglu. (Section 3.4.2)

Layer 2. The tiles to identify free areas. (Section 3.4.3)

Layer 3. A tiling simulating a tiling by the given tile set T . (Section 3.4.4)

Layer 4. The tiles to forward the colors of the tile set T on layer 3 from
a free area to another free area border and from a red border
to another red border without discarding any color information.
(Section 3.4.5)

Theorem 4.2.1. The tiling problem is undecidable for tile sets that are
2-way deterministic.

4.3 Tile sets and cellular automata

In this section it is reviewed how a tile set can be interpreted as a cellular
automaton and how a computation by an irreversible Turing machine can
be simulated with a reversible cellular automaton.

4.3.1 Interpreting tile set as a cellular automaton

Following the presentation in [46], it is possible to regard Wang tile sets
(that are deterministic at least in one direction) as one-dimensional cellular
automata.

If the given tile set is, say, SW-deterministic, it is possible to consider
the tiles as states of a cellular automaton. As shown in Figure 4.9, with
a cellular automaton the next state of a cell is determined with a similar
manner as the next tile (to the northeast) in a tiling with a SW-deterministic
tile set. With a cellular automaton the new state depends on the old states
and in a tiling (with a SW-deterministic tile set) the new tile is determined
by the colors of its neighbors.

It should be noted, that the given Wang tile set may not contain all the
possible color pairs in the southwest corners of the tiles. If the given tile set
T is assumed to be deterministic in only one direction, say, by the southwest
corner, it is enough to add a tile to the original tile set for every missing
southwest corner color pair. For example, if there is no tile t with tW = x
and tS = y in the given tile set T , a tile t with tN = tE = z, tW = x and

79

F t(c)(i)

F t(c)(i + 1)

F t+1(c)(i)

(a) States c(i) and c(i + 1) determine
the next state of the cell c(i).

t1

t2

t3

(b) Tiles t1 and t2 determine tile t3
in a tiling by a SW-deterministic tile
set.

Figure 4.9: The tiles of a SW-deterministic tile set can be considered as
states of a cellular automaton.

tS = y, where z is any color of the tile set T , could be added to the tile set
while maintaining SW-determinism.

If the given tile set is assumed to be both NE- and SW-deterministic,
equally many color pairs are missing in the northeast corners and the south-
west corners. It is trivial to construct (for example, by some ordering
method) a one-to-one correspondence between the missing colors in the
southwest corners and the missing colors of the northeast corners. This
bijection can clearly be considered as a NE- and SW-deterministic set of
tiles. Moreover, the union of the initial tile set and this new tile set is both
NE- and SW-deterministic tile set containing N 2 tiles, where N is the num-
ber of colors in the original tile set. Let T { denote the new tile set which
was constructed for the missing color pairs. Now it can be seen that the tile
set T ∪ T { can be considered as a reversible cellular automaton.

A bit more formally, for the NE- and SW-deterministic tile set T , a
reversible cellular automaton (T ∪ T {, FT) simulates the tiling procedure.
The global rule FT is defined using local rule

fT (x, y) = z if x, y ∈ T ∪ T {, xE = zW and yN = zS .

The function fT : (T ∪ T {)2 → T ∪ T { is total and well-defined, since the
tile set T ∪ T { is both NE- and SW-deterministic.

4.3.2 Universality of one-dimensional reversible cellular au-

tomata

It has been shown by Morita and Harao that reversible one-dimensional
cellular automata are computationally universal [82]. More precisely, they
have shown that any reversible Turing machine can be simulated with some

80

reversible one-dimensional cellular automaton. Since any Turing machine
can be simulated with a reversible Turing machine [6], the universality of
one-dimensional reversible cellular automata follows.

However, the requirement of reversibility for the given Turing machine
is not necessary for the machine to be simulated with a reversible one-
dimensional cellular automaton. In fact, Dubacq has given a construction
for a family of reversible cellular automata to simulate any irreversible Tur-
ing machine in real time [27]. Dubacq’s approach was more from the cellular
automata point of view. The construction of the family of tile sets given in
Section 4.1.2 gives a tiling view for Dubacq’s result. Namely, a Turing ma-
chine configuration can be represented by a cellular automaton configuration
where exactly one of the cells contains a move tile representing the read-write
head and all the rest of the cells have alphabet tiles as states. The cellu-
lar automaton executes one Turing machine computation step in two time
steps. If the initial configuration c of the cellular automaton (with global
rule F) represented valid Turing machine configuration, so does F 2t(c). The
additional move signals can be ignored and the configuration of the Turing
machine computation can be read directly.

Theorem 4.3.1 ([27]). Any Turing machine can be simulated using a re-
versible one-dimensional cellular automaton in real time.

Proof. A given Turing machine can be simulated with the cellular automaton
(T ∪ T {, FT), where T is the tile set constructed in Section 4.1.2. Because
for every computation step of the Turing machine the cellular automaton
(T ∪ T {, FT) conducts two computation steps, the cellular automaton with
global rule F 2

T simulates the given Turing machine in real time.

Corollary 4.3.2 ([82]). Reversible one-dimensional cellular automata are
computationally universal.

81

82

Chapter 5

Undecidability results

regarding expansivity

In this chapter it is shown that left expansivity and right expansivity (which
are weaker properties than expansivity) are undecidable properties. The
result follows from the facts that tiling problem is undecidable for tile sets
that are at least 2-way deterministic.

5.1 Some technical definitions and results

A cellular automaton (AZ, F) is said to be globally immortal with respect to
subset B ⊆ A if there exists a configuration c ∈ BZ such that F n(c)(i) ∈ B,
for all integers n ∈ N, i ∈ Z. The following decision problem is referred to
as the global immortality problem: “Given a cellular automaton (AZ, F) and
subset B ⊆ A, is (AZ, F) globally immortal with respect to B?”

A cellular automaton is said to be locally immortal with respect to subset
B ⊆ A if there exists a configuration c ∈ BZ such that F n(c)(0) ∈ B, for
all integers n ∈ N. The following decision problem is referred to as the
local immortality problem: “Given a cellular automaton (AZ, F) and subset
B ⊆ A, is (AZ, F) locally immortal with respect to B?”

These definitions of “immortality” are motivated by the immortality
problem of Turing machines [39]. Hooper has shown that it is undecidable
if a given Turing machine eventually halts on every extended configuration
(i.e. the tape may contain infinitely many non-blank cells).

The problems of global immortality and local immortality are slightly
related to the nilpotency. In a nilpotent cellular automaton every cell enters
to a quiescent state q within a bounded number of time steps. In the im-
mortality problems the elements of A \ B correspond to the quiescent state
of a nilpotent cellular automaton with the distinction that a cell does not

83

have to remain in a state of A \ B. With this difference the immortality
problems make sense for reversible cellular automata also.

Theorem 5.1.1. The global immortality problem is undecidable for re-
versible one-dimensional cellular automata.

Proof. Undecidability of the question follows by a reduction from the prob-
lem of Theorem 4.2.1 (or Theorem 3.4.1). Let (T ∪ T {, FT) be the cellular
automaton constructed in Section 4.3.1 and let B = T in the definition of
the problem.

Assume first, that the given tile set T admits a valid tiling. Then one can
choose any northwest-southeast diagonal row of tiles of the valid tiling to be
the configuration c. Since the tile set is NE-deterministic and configuration
c is part of a valid tiling, F n

T (c)(i) ∈ T , for all integers n, i ∈ Z.
Assume second, that the given tile set T does not admit a valid tiling.

If for some configuration c (considered again as a northwest-southeast di-
agonal row of a valid tiling) the condition of the problem did hold, then it
would be possible to construct a valid tiling. However, this contradicts the
assumption.

Hence, a configuration c exists if, and only if, the tile set T admits a
valid tiling.

Any surjective cellular automaton with global rule F and radius r can
be converted into a mixing cellular automaton by forming a new global
rule which is a composition of the original global rule and a sufficiently high
power of the shift function σ. For example, composition F ◦σr+1 : AZ → AZ

is a mixing cellular automaton. The idea is illustrated better in Figure 5.1.
By applying a shift map, the preimage of the requested pattern is moved
away from the origin.

Figure 5.1: Combining the global rule with a shift function causes the preim-
ages of two different patterns to be transferred to disjoint locations.

Lemma 5.1.2. Let (AZ, F) be a surjective cellular automaton with radius
r. Then (AZ, F ◦ σr+1) is topologically mixing.

Lemma 5.1.3. Let (AZ, F) be an injective cellular automaton with radius r1

and let its inverse local rule have radius r2. Then (AZ, F ◦σr+1) is expansive
where r = max(r1, r2).

84

Corollary 5.1.4. The global immortality problem is undecidable for re-
versible one-dimensional cellular automata that are both expansive and topo-
logically mixing.

Proof. The property in question is shift-invariant. Therefore, by using
Lemma 5.1.2 and Lemma 5.1.3 the claim follows from Theorem 5.1.1.

Theorem 5.1.5. The local immortality problem is undecidable for reversible
one-dimensional cellular automata that are left expansive.

Proof. Let T1 be the tile set in Fig. 5.2(a) and let T2 be the tile set in Fig.
5.2(b). Let tb be the blank tile in set T1. Form a new sandwhich tile set

A = (T × T1) ∪ (T { × T2)

and let B = T × {tb}.
This tile set can also be considered as a reversible cellular automaton

because all the possible color pairs occur both at northeast and southwest
corners. The cellular automaton simulates tiling on two layers with some
additional constraints. On the first layer are tiles T ∪ T { and on the second
layer are tiles T1 ∪ T2. Let G be the global rule of this cellular automaton.

(a) Tile set T1.

(b) Tile set T2.

Figure 5.2: New tiles to pair with the original tile set.

Let c ∈ BZ, that is, let c be a configuration consisting of states T ×{tb}
only. If c is diagonal row of tiles in a valid tiling, then Gn(c) ∈ BZ for every
n ∈ Z. If T does not admit a valid tiling then for every c there exists such
integers n ∈ Z and i > 0 that Gn(c)(i) ∈ T { × T2. (If such integer i > 0
did not exist, a valid tiling would exist.) Due to the structure of tile sets
T1 and T2, once the “arrow signal” is generated using the tiles of T2, it is
always forwarded at least to the left (i.e. northwest) and either forward (i.e.
north) or backward (i.e. west) in time without ever being cancelled. That
is, if an arrow signal is present in a cell i at some moment, then the signal
will be present in every cell j, where j < i, at some moment. This implies

85

that Gn(c)(0) ∈ A \B for some n ∈ Z. Hence Gn(c)(0) ∈ B for every n ∈ Z

if, and only if, T admits a valid tiling. This would conclude the proof for
reversible cellular automata.

For left expansive cellular automata, the rule G is modified so that un-
derlying tiling rule of state components T ∪ T { is combined with the shift
function σ. Let this new global rule be F . This converts the tiling proce-
dure by T ∪ T { into an expansive cellular automaton. The second rule on
the second layer is not modified because tile set T1 defines an expansive cel-
lular automaton and tile set T2 defines a left expansive cellular automaton.
Therefore using either tiles T1 or T2 on predefined locations atop tiles T ∪T {

defines a left expansive cellular automaton.

It is not known whether the local immortality problem is decidable or
undecidable for expansive cellular automata. If the problem was an unde-
cidable for expansive cellular automata, then also expansivity would be an
undecidable property. This would follow by applying the same construction
as later in the proof of Theorem 5.2.1.

Theorem 5.1.6. The local immortality problem is undecidable for reversible
one-dimensional cellular automata that are both left expansive and topologi-
cally mixing.

Theorem 5.1.6 will be proved by modifying the cellular automaton in the
proof of Theorem 5.1.5 so that it becomes mixing.

The only reason, why the cellular automaton is not already mixing, is
that the signals may cause dependence between two configurations in the
same computation. That is, configurations of two different cylinders might
not appear in the same orbit because the contents of one cylinder might
cause some undesired pattern of signals (of the ones generated by T1 and
T2) appear throughout the computation near the origin. For the given two
open set U and V , this might prevent from finding a configuration c ∈ U so
that F k(c) ∈ V for some k (i.e. the cellular automaton would not be even
transitive). The problem is illustrated in Figure 5.3.

Unfortunately, the shift function cannot be applied to the signals of
tile sets T1 and T2 because then a row of tiles without the signals might
appear even if there was tiling error (i.e. a state from T { × T2) in the tiling
represented by the computation. Combining the original rule with shift
function would make the cellular automaton mixing but the problem might
not be undecidable anymore. Therefore, the signals in tiles T1 and T2 need
to be modified.

Proof (sketch). Let (T ∪ T {, G) be the cellular automaton defined by the
2-way deterministic tile set T . It can be assumed that (T ∪ T {, G ◦ σr+1)
is expansive and mixing for some positive integer r. The theorem will be
proved by a reduction from the problem of Corollary 5.1.4.

86

Figure 5.3: The signal generated by the tile set T2 may cause dependence
between cells of two configurations of the same orbit in the proximity of
origin. Solid lines represent the signals in the tiles. Dashed lines represent
absence of the signals. Circles denote tiling errors (where T2 is used). The
rectangles represent domains defining the different cylinders.

The state set T ∪ T { and the rule G ◦ σr+1 is modified by adding three
different kinds of signals. The first set of signals consists of signals that move
with a speed of one cell per time step either from left to right or right to
left. For the sake of the argument, let these signals be called type 1 signals.
The second set consists of signals that move with a speed of one cell per
two time steps either from left to right or right to left. These signals will be
called type 2 signals.

The third set of signals consists of signals that move with a speed of one
cell per time step either from left to right or right to left. These signals will
be called type 3 signals and they correspond the signals of tile sets T1 and
T2. If a tiling error occurs in the underlying tiling, the type 3 signals in the
same cell are modified as in tiles T2 if, and only if, there is no type 1 and
type 2 signal present in the cell. That is, type 1 and type 2 signals are used
to “cancel out” the effects of tiling errors on type 3 signals. Signals of type
1 and 2 are not altered at any point. Let the new global rule be denoted by
F .

Given two radius r cylinders C1 = Cyl(c1, r) and C2 = Cyl(c2, r), it is
shown in Figure 5.4 how type 1 and 2 signals can be used to cancel out tiling
errors everywhere else except in the immediate vicinity of the origin. Type 1
and 2 signal from different sides of the origin coincide after t0 = 2r +2 time
steps. Therefore, configurations belonging to any two cylinders can appear
in the same trajectory for every t ≥ max(t0, n0) time steps apart, where n0

is the bound given implicitly by Lemma 5.1.2. Hence, cellular automaton
F is mixing. Also, adding signals type 1, 2 and 3 does not remove left
expansivity.

87

Figure 5.4: If two configurations are sufficiently far apart in the same orbit,
type 1 and 2 signals can be used to cancel out tiling errors that would cause
constraints between the cylinders of the two configurations. Dashed lines
denote type 1 signals, dotted lines denote type 2 signals and the rectangles
denote the cell state sequences defining the cylinders.

It is now undecidable whether or not there exists a configuration c such
that state F n(c)(0) contains none of the signals type 1, 2 or 3 for any integer
n.

Interpreting the definition of local immortality problem in a different
way, Corollary 5.1.7 follows.

Corollary 5.1.7. Given a left expansive and topologically mixing reversible
cellular automaton (AZ, F) and clopen set C ⊆ AZ, it is undecidable whether
or not there exists a configuration c ∈ C such that F n(c) ∈ C for every
n ∈ Z.

5.2 Undecidability of left expansivity

In this section it is shown that is is undecidable whether or not the given cel-
lular automaton is left expansive. However, it still remains an open problem
whether or not expansivity or positive expansivity are a decidable properties.

Theorem 5.2.1. Given a reversible cellular automaton (AZ, F), it is unde-
cidable whether or not F is left (or right) expansive .

Proof. Let ((T ∪ S)Z, G) be the cellular automaton of Theorem 5.1.5. The
states that do not contains the signals generated by tile T2 are denoted by

88

T and the states that do contain the signals are denoted by S. The new
state set is A = (T ∪ S) × {0, 1} × {0, 1}. The new rule is defined by

F (c)(i) =

{

(G(c1)(i), σ(c2)(i), c3(i)) if c1(i) ∈ T,
(G(c1)(i), c3(i), σ(c2)(i)) if c1(i) ∈ S,

where c ∈ AZ, c(i) = (c1(i), c2(i), c3(i)), c1 ∈ (T ∪ S)Z, c2 ∈ {0, 1}Z and
c3 ∈ {0, 1}Z. That is, the new cellular automaton contains three different
layers. On the first layer the original cellular automaton is simulated. The
second and the third layer contain only binary states that either remain in
place or move one cell per time step to the left. If the state of the first layer
belongs to S then the second and the third component are interchanged.
The idea is that if all the cells of the first layer are in states of T , the states
of the second layer are moved one step to the left and the states of the third
layer remain unchanged. The cellular automaton (AZ, F) is left expansive
if, and only if, the answer to the question of Theorem 5.1.5 is affirmative for
((T ∪ S)Z, G).

Assume that for every initial configuration every cell of ((T ∪ S)Z, G)
must enter to a state in S at some point. Due to the compactness, this
happens for every cell infinitely often and there exists a bound N such that
during N time steps every cell must enter to a state in S at least once. This
means that a binary state value of originally the third component of cell i
must travel at least one cell to the left for every N time step. This means
that no single state of the second of the third layer remains in place but
travel infinitely far to the left eventually. Hence the new cellular automaton
is left expansive.

Assume that for some initial configuration c cell i of ((T ∪ S)Z, G) does
not enter a state in S ever. Let c0 be a configuration such that c0(j) = 0 for
every j. Let c1 be a configuration such that c1(j) = 1 if i = j and c1(j) = 0
otherwise. Then d(F n(c, c0, c0), F

n(c, c0, σ
−i(c1))) ≥ ε for any ε by choosing

suitably large i. That is, the information of the difference only at the third
component of cell i does not travel arbitrarily far to the left. Hence the new
cellular automaton is not left expansive.

89

90

Chapter 6

Undecidability of sensitivity

to initial conditions

In this chapter it is shown that sensitivity to initial conditions is an un-
decidable property for reversible cellular automata. The result follows by
constructing a cellular automaton which is sensitive if, and only if, a given
reversible Turing machine does not eventually halt on an empty tape.

Previously it has been known that sensitivity is an undecidable property
for not necessarily reversible cellular automata [28].

In this chapter’s cellular automata construction the blocking words (if
they exist) are certain words representing a halting Turing machine simu-
lation with some correctly aligned additional “signals” and labels. This is
different from the construction of [28] where the Turing machine simula-
tion is conducted between words consisting of quiescent states which act as
blocking words.

6.1 Concept of signals

In what follows, the concept of a signal is used frequently. Although it is a
very informal concept, formally a signal could be described as just a state
or a component of a state travelling a (piecewise) linear path. A signal has
speed, that is, a number of cells it travels per one time step and a direction
to which it moves.

Let |i − j| < |v|. If a signal with speed v > 0 in location i is said to
collide with or bounce off the cell in location j > i, its speed is changed
from v to −v and its new location is (j + 1) − (|v| − |i − j|). Similarly, if a
signal with speed v < 0 in location i bounces off the cell in location j < i,
its new location is (j−1)+(|v|−|i−j|). If the signal is located between two
cells whose distance is less than the velocity of the signal and both of which
it would bounce off, the same idea of changing the speed to the opposite

91

and computing the new location is applied repeatedly. If a signal, which
is located at cell i, does not have its path intersect any cells from which it
would bounce off in locations j, where |i − j| < |v|, then its new location is
simply i + v.

Geometrically speaking, if cell i occupies the unit interval [i − 1
2 , i + 1

2]
and a signal travelling to the right is represented by a line intersecting a
point (i, t) at time t with a slope of 1/v, the signal is reflected as a line with
respect to a vertical axis x = j + 1

2 . Similarly, a signal travelling to the left
as a line through a point (i, t) at time t with a slope of 1/v is reflected with
respect to a vertical axis x = j − 1

2 . The idea of signals is shown in Figure
6.1.

I

I

I

J

J

(a) A signal with speed
1 bounces back from a
cell to the right.

/
/

/
.

.

(b) A signal with speed
2 bounces back from a
cell to the left.

Figure 6.1: Examples of how signals are represented on a cellular automaton
and how they bounce back from certain cells.

The concept of signals is used in the following constructions because that
way the main ideas of the proofs can be expressed more efficiently.

6.2 Outline of the construction

For each reversible Turing machine, the cellular automaton is constructed in
four layers. The construction is presented in this way to make it more read-
able. The local rule on each of these layers maps states of the neighborhood
into a new state component of the layer depending on the state components
of the particular layer and the previous layers. That is, each layer has a sin-
gle purpose and its contents depend only on the contents of the layer itself
and the contents of the underlying layers in the previous configuration.

Layer 1. The configuration is split into areas on each of which the Turing
machine is simulated.

Layer 2. For each simulation area on layer 1, a signal is used to check the
validity of the initial tape configuration.

92

Layer 3. If the contents of layers 1 and 2 do not match a valid simulation,
error signals are generated to forward this information.

Layer 4. This layer contains border signals and two types of activation sig-
nals. A border signal can block the propagation of activation sig-
nals. If a signal of layer 3 is present in the same cell as a border
signal on this layer, the border signal can be made to change its
state using the activation signals so that further activation signals
can pass through it.

The construction is such that the cellular automaton consisting of only
the first three layers always has equicontinuity points. However, the fourth
layer is constructed in such a way that in the final construction blocking
word sequences exist if, and only if, certain states can be avoided in the
blocking word sequences of the cellular automaton consisting of the first
three layers.

The idea of the construction is to use the first and the second layer to
simulate periodically a computation by a reversible Turing machine starting
on an empty tape. The Turing machine computation is simulated on the
first layer on a finite area. The configuration of the cellular automaton
is divided into areas on each of which the Turing machine computation is
simulated (on arbitrary input). The construction on the second layer is used
to detect whether or not the Turing machine simulation was started on a
specific initial state and an empty tape. The construction for the first layer
is practically the same as in [54] where equicontinuity of reversible cellular
automata was proven to be an undecidable property.

The third layer is used to forward information about the validity of
the computation. That is, if the first layer does not contain periodically a
simulation of a Turing machine computation started on an empty tape, a set
of signals is generated to spread this information. The signals symbolizing a
failed attempt to find a positive solution to the halting problem are restricted
inside the particular simulation area of the Turing machine. Therefore, each
of the simulation areas is in fact a blocking word sequence when layer 4 is
not considered, because the contents of one simulation area are unaffected
by the contents of the other simulation areas. The rule which is used on the
third layer to draw the signals is determined locally by the contents of the
first and second layer.

A simulation error is said to be present in a cell, if the contents of the
first and second layer in the neighborhood of the cell are such that the Turing
machine simulation should be considered failed in the search for a positive
solution to the halting problem. Then, on the third layer, a different local
rule is used depending on whether the cell has a simulation error present or
not.

93

The fourth layer contains three different kinds of signals. One of the
signal types is used to prevent the other two kinds of signals from crossing a
simulation area. However, if a simulation area contains a negative instance
to the halting problem, the signals used as border signals can be made to
switch to an unblocking state and the other two signal types can pass through
the simulation area. Therefore, the cellular automaton is sensitive if, and
only if, the problem of Theorem 2.1.6 has a negative answer. Eventually, the
state set of the cellular automaton is A1 × A2 ×A3 × A4, where Ai denotes
the state components of layer i.

Remark 6.2.1. The construction in this chapter does not actually require
the Turing machine to be reversible. It is enough to assume that the Turing
machine is injective as a dynamical system. In that case the Turing machine
computation can be reversed using a cellular automaton rule by choosing the
neighborhood of the local rule large enough.

For one-dimensional reversible cellular automata the size and location of
inverse neighborhood is polynomially bounded with respect to the number of
states and the length of the neighborhood [23, 22]. Furthermore, the inverse
rule of a one-dimensional cellular automaton can be computed in polynomial
time [101].

6.3 Layer 1: representing Turing machine compu-

tation

Let Q be the state set of the Turing machine and let the initial state of
the Turing machine be denoted by q0. Let Γ denote the tape alphabet of
the Turing machine. Then the cell states representing the read-write head
reading a single tape letter are {N,H}×Q×Γ. The cell states representing
a single tape letter are {., /} × Γ.

Symbols N and H are used together with the state set Q to distinguish
which rule, the original Turing machine or its inverse, is used in the local
rule of the cellular automaton. Therefore, the state set representing the
Turing machine on the first layer is

A1 = ({N,H} × Q × Γ) ∪ ({., /} × Γ).

Let sets {.} × Γ and {/} × Γ be denoted by TL and TR, respectively.
The elements of TL are used to represent the tape contents to the left from
the read-write head and the elements of TR are used to represent the tape
contents to the right from the read-write head. The elements of TL and
TR will be called left tape states and right tape states, respectively. Let ε
denote the empty tape symbol. Let H denote the set of states containing
the read-write head.

94

By associating each tape letter with either expression . or / the tape
is divided into areas where each read-write head occurrence is preceded by
a certain number of elements of TL on the left and succeeded by a certain
number of elements of TR on the right. Therefore, the configuration is
always partitioned into disjoint areas in each of which the Turing machine
is simulated on some configuration.

A simulation area in a configuration c is an integer interval of cell loca-
tions S = {i, . . . , j}, where i ≤ j and

1. if k, k + 1 ∈ S and c(k + 1) ∈ TL then c(k) ∈ TL,

2. if k, k + 1 ∈ S and c(k) ∈ TL then c(k + 1) ∈ TL ∪ H ∪ TR,

3. if k, k + 1 ∈ S and c(k + 1) ∈ H then c(k) ∈ TL,

4. if k, k + 1 ∈ S and c(k) ∈ H then c(k + 1) ∈ TR,

5. if k, k + 1 ∈ S and c(k + 1) ∈ TR then c(k) ∈ TL ∪ H ∪ TR,

6. if k, k + 1 ∈ S and c(k) ∈ TR then c(k + 1) ∈ TR, and

7. c(i − 1) 6∈ TL and c(j + 1) 6∈ TR.

This definition splits a configuration into sequences of consecutive cells where
there is first a certain number of left tape states, then possibly a state repre-
senting a read-write head, and finally a certain number of right tape states.
With this definition, a domain which does not contain a state representing
the read-write head may be a simulation area.

The rightmost cell of a simulation area is called the right border of the
simulation area. Likewise, the leftmost cell of the simulation area is called
the left border of the simulation area. If the simulation area contains only
one cell (in which case it is in a state from H), the left border and the right
border are the same cell. A left border cell and a right border cells are
identifiable using a local rule.

By labelling the cell states representing the different sides of the Turing
machine tape, the read-write heads are forced not to enter other simulation
areas. If the read-write head moves to the left, it labels the previous cell to
belong to the right side of the tape. Similarly, if the read-write head moves
to the right, it labels the previous cell to belong to the left side of the tape.
This way the simulation area maintains its constant width.

Expressions N and H are used to denote the application of the Turing
machine transition function as the local rule and the corresponding inverse
operation. By using values N and H together with the original states of
the Turing machine, the cellular automaton becomes reversible even if the
transition function of the Turing machine was only a partial function. Let
c ∈ AZ

1 and c(i) = (N, q, a). If the Turing machine move defined by pair

95

(q, a) cannot be executed, state (N, q, a) is replaced with state (H, q, a).
That is, state component N is replaced with H if δ(q, a) is undefined, δ(q, a)
defines a left move but c(i − 1) 6∈ TL or δ(q, a) defines a right move but
c(i + 1) 6∈ TR. Similarly, if the inverse move cannot be executed, state
(H, q, a) is replaced with state (N, q, a). With this construction an eventually
halting computation with the Turing machine always leads to a periodic
computation with the cellular automaton. In the peculiar case of the read-
write head being located between a right tape cell to the left and a left tape
cell to the right, the read-write head state (N, q, a) is constantly swapped
with (H, q, a).

A read-write head is forced to be always present within a simulation area
by defining the alternative cases to be simulation errors. That is, if a cell
represents a left tape cell and the cell to its right represents a right tape cell,
the cell is defined to have a simulation error. Similarly, if the cell represents
a right tape cell and the cell to its left represents a left tape cell, the cell
has a simulation error. With these constraints, a missing read-write head is
always dealt with on the third layer.

It is shown in Figure 6.2 how a read-write head moves within a simulation
area.

Figure 6.2: Labelling cells to represent either the left or the right side of the
Turing machine tape. The zig-zag arrows represent read-write heads. The
vertical double lines represent the borders between simulation areas.

6.4 Layer 2: verifying initial configuration

On the second layer, the validity of the Turing machine initial configuration
is verified. If the Turing machine does not erase the tape periodically and re-
enter the initial state, simulation errors are found present in the computation
and they will affect the computation on the third layer.

96

The existence of the empty initial configuration is determined by defining
signals which travel with twice the speed of the read-write head, that is, two
cells per time step. These signals will be called verification signals. They
simply bounce between the left border and the right border of the simulation
area without ever passing from one simulation area to another. The greater
speed of the signal is used to ensure that a verification signal intersects the
path of the read-write head only once during a pass from the left side border
to the right side border.

The movement of the verification signal is presented in Figure 6.3.

Let expressions I and J denote a verification signal moving to the right
and a verification signal moving to the left, respectively. The existence of
the verification signal is forced by using states . or /. State . (resp. /)
tells that the verification signal is located to the right (resp. left) from the
cell. The idea is the same as on the first layer with the read-write head.
A verification signal moving to the right can move only as far as there are
states / to its right. The verification signal at location i moving to the right
(i.e. state I) bounces back from cell i if cell i + 1 has value . or from cell
i+1 if cell i+1 has value / and cell i+2 has value .. Similarly, a verification
signal moving to the left can move only as far as there are states . to its
left. The verification signal at location i moving to the left (i.e. state J)
bounces back from cell i if cell i − 1 has value / or from cell i − 1 if cell
i − 1 has value . and cell i − 2 has value /. This way the configuration is
divided into disjoint, consecutive and continuous areas on each of which a
single verification signal bounces back and forth.

The state of a cell is changed from / to . or from . to / when the path
of the verification signal crosses with the cell. Assume that a verification
signal is contained in cell location i. Then the verification signal is replaced
with state . or /, if the verification signal can move to the right or left,
respectively. If the verification signal moves from cell location i to i + 2,
the state components of both cells i and i + 1 are replaced with value ..
Similarly, if the verification signal moves from cell location i to i − 2, the
state components of both cells i and i − 1 are replaced with value /.

Use of the verification signal is essentially the same method as dividing
the configuration into simulation areas on the first layer according to left
tape cells and right tape cells. Now the verification signal acts like the read-
write head on the first layer changing the state component which points
towards its location. The final state component set of the second layer is

A2 = {., /,I,J}.

To ensure that the areas where the verification signals bounce back and
forth are located exactly the same way as the simulation areas, the alterna-
tive case is defined to be a source of simulation errors. This can be done

97

Figure 6.3: Drawing a verification signal to verify the initial configuration.
The signal bounces between the borders of simulation areas.

by defining appearances of the state components pair / and . to be simu-
lation errors unless value / is located on the right border of a simulation
area and value . is located on the left border of another simulation area. If
a right border and a left border to its right both contain either value / or
., it is considered a simulation error. It is considered a simulation error, if
there are two verification signals side by side on top of the same simulation
are. Hence, unless the domain on which a verification signal moves back
and forth does not match a domain of a simulation area, simulation errors
occur.

It is also considered a simulation error, if the path of a verification signal
intersects with the path of a read-write head when the read-write head is
not in the initial state. Likewise, it is considered a simulation error, if the
verification signal intersects a cell which contains a different Turing machine
tape symbol than the empty tape symbol ε. Therefore, simulation errors
occur if the Turing machine simulation is not started on an empty tape with
the read-write head being in the initial state.

It is shown in Figure 6.4 how the verification signal sweeps the simulation
area back and forth in search for signs of incorrect initial configuration.

6.5 Layer 3: detecting incorrect cell state combi-

nations

The third layer is used to react on the simulation errors detected on the
first two layers. This is done by introducing a new set of signals called error
signals. An error signal travels one cell either to the left or right per one
time step and it bounces back from a left or right simulation area border,
respectively. An error signal always travels a straight line unless it collides
with a simulation area border or there is a simulation error present in the

98

(a) A simulation is executed unsuc-
cessfully: The verification signal in-
tersects the non-empty tape cells
(denoted by circles) before the read-
write head is able to erase them.

(b) An eventually halting simula-
tion is executed successfully: The
Turing machine starts and halts pe-
riodically on an empty tape and
the verification signal intersects the
read-write head path only at the ini-
tial configuration.

Figure 6.4: Pairing the Turing machine simulation and the verification signal
for the initial configuration. The solid arrow denotes the read-write head,
the gray area denotes non-empty tape cells and the dashed arrow denotes
the verification signal. The simulation area borders are denoted by vertical
double lines.

cell. In a cell where there is a simulation error present, the propagation of
error signals is determined according to a different rule. If there is no error
signal entering a cell which contains a simulation error, then two error signals
are created, one of which travels to the left and another to the right. A single
error signal passes through a cell with a simulation error unchanged. If two
error signals enter a cell with a simulation error, both of them are erased. An
outline of these different cases is shown in Figure 6.5. It is shown in Figure
6.5(a) how error signals propagate when no simulation error is present and
in Figure 6.5(b) it is shown how error signals are modified when a simulation
error is present.

As explained already in the sections describing layers 1 and 2, occur-
rences of the following cell state combinations are defined to be simulation
errors:

1. A simulation area does not contain a state representing the read-write
head, that is, at two adjacent cells belonging to the same simulation
area the leftmost cell has value . (representing a left tape state) and
the rightmost cell has value / (representing a right tape state) on layer
1.

2. A read-write head collides with a simulation area border on layer 1.

99

(a) At a location where no simulation error is present,
the error signals can intersect and propagate freely.

(b) At a location where simulation error is present, a
single error signal can propagate freely but two error
signals are either created or erased together.

Figure 6.5: The error signals are allowed to propagate freely if no simulation
error is encountered. If a simulation error is encountered, a single signal can
propagate freely but two signals are either created or erased.

3. A verification signal intersects a cell where the tape is non-empty on
layer 1.

4. A verification signal intersects the path of the read-write head when
the read-write head is not in the initial state on layer 1.

5. Of two adjacent cells belonging to the same simulation area one has
value . and the other has value / for the component of layer 2. That
is, either the verification signal is missing or the areas on the first two
layers do not match.

6. Two verification signals are located in two neighboring cells on top of
the same simulation area, that is, the areas on the two layers do not
match.

7. The component of layer 2 has value / on the left border, that is, the
areas on the two layers do not match.

8. The component of layer 2 has value . on the right border, that is, the
areas on the two layers do not match.

At these locations the error signals are modified according to Figure 6.5(b).

The cellular automaton consisting only of layers 1, 2 and 3 is equicon-
tinuous on all configurations containing only finitely long simulation areas.
This follows from the fact that the contents of one simulation area do not
affect another simulation area.

Using the error signals it would be possible to allow a new set of diag-
onally advancing signals to cross simulation area borders. That is, at the
location where an error signal bounces back from a simulation area border,

100

a signal of another type would be allowed to cross the border. However, this
is not enough to remove the blocking property of multiple simulation areas
next to each other. Namely, a signal crossing one simulation area border
might always “strangely” bounce back from the border of the next simula-
tion area where an error signal might not be present. This might happen,
for example, if adjacent simulation areas contain the same Turing machine
computation but in a different stage. For this reason, the blocking property
of the simulation area border should be more controlled and it should not
depend only on the error signals.

On the other hand, if reversibility was not a requirement, then the sim-
ulation area border could be permanently changed to a state which allows
information pass through it. Therefore, in the not necessarily reversible
case, layer 4 would not be needed in its current complexity.

Formally, the state component of the third layer can be presented by
elements of

A3 = {♦,I,J,�},

where different elements represent different combinations of error signals
moving left and right.

Let (AZ, F) be the cellular automaton consisting of layers 1, 2 and 3.
That is, the state set is

A = A1 × A2 × A3,

and the global rule F is defined as described in Sections 6.3, 6.4 and 6.5.
Now the following theorem follows directly:

Theorem 6.5.1. Given a non-sensitive reversible one-dimensional cellu-
lar automaton (AZ, F) and a subset E ⊆ A of its state set, it is undecid-
able whether or not there exists an equicontinuity point x ∈ AZ such that
F n(x)(0) ∈ A \ E for every n ∈ N.

Proof. Let E be the set of states that contain error signals. By the construc-
tion of layers 1, 2 and 3 it is undecidable whether or not all finite simulation
areas will generate error signals. If error signals appear in a simulation
area, then the error signals necessarily visit every cell of the simulation area
according to the rules in Figure 6.5. Therefore, if the reversible Turing ma-
chine does not eventually halt, every cell in every finite simulation area will
at some point contain error signals.

If the reversible Turing machine does eventually halt, then a finite sim-
ulation area exists on which no error signals appear and this area can be
chosen to overlap the origin.

An infinite simulation area might never contain an error signal if it con-
sists of, say, tape states of one side only. However, a configuration which

101

contains a one-way or two-way infinite simulation area cannot be an equicon-
tinuity point because the contents of the infinite simulation area can be cho-
sen to contain or not an error signal which travels through every cell of the
simulation area.

6.6 Layer 4: possible sensitivity

Now a new cellular automaton (BZ, G) is constructed by adding a new layer
to the cellular automaton (AZ, F) of Theorem 6.5.1. The construction could
be done explicitly by using the construction (AZ, F) but this is not necessary.

The new layer consists of states from set A4. That is, the state set A of
(AZ, F) is replaced with

B = A × A4 = A1 × A2 × A3 × A4,

and the new global rule G is defined accordingly. The states E × A4 will
be called error states (motivated by Theorem 6.5.1) in the new cellular
automaton.

Layer 4 consists of adding three different types of signals on top of cellular
automaton (AZ, F). One of these signal types is a vertical signal, which will
be used to either block or let the other two signal types to pass. The signals
will be defined in such a way that a vertical signal can remain in a blocking
state indefinitely if, and only if, the answer to the question of Theorem 6.5.1
is positive.

The three signal types used on the new layer will be called border signals
and activation signals of type 1 and type 2 . A detailed description of the
interaction of these signal types is shown in Figures 6.6 and 6.7. An active
border signal is represented by a double vertical line and an inactive border
signal is represented by a single vertical line. An activation signal of type
1 is represented by a dashed arrow and an activation signal of type 2 is
represented by a dotted arrow.

A border signal is a signal which travels only vertically. It is represented
by using a ternary component in every cell with one of the values ♦, � and
�. An absent border signal is represented by value ♦ whereas a present
border signal is represented by values � and �. The border signal is said
to be inactive (resp. active) if the component has value � (resp. �). The
main idea is that an active border signal blocks the propagation of activa-
tion signals indefinitely if the cell does not enter an error state. If a cell i
containing a border signal is in such a state that it blocks activation signals,
then a signal coming from the left bounces back from the cell i and a signal
coming from the right bounces back from the cell i + 1. For example, let
two border signals be located in cells i and j with i < j and assume that the
signals are in an active state and the cells i and j do not enter error states.

102

Figure 6.6: The interaction of different signal types when the cell containing
the border signal is not in an error state. The first three rows of pictures
show how activation signals pass through inactive border signals. The second
three rows of pictures show how activation signals bounce back from active
border signals.

Then activation signals located in between the cells i and j will bounce back
and forth between the cells i + 1 and j.

An activation signal of type 1 is a signal which travels to the left or to
the right one cell per one time step. An activation signal of type 2 is a signal
which travels to the left or to the right two cells per one time step. The
activation signals are used to change the states of border signals. The state
of a border signal is changed if, and only if, the cell is in an error state and
there is a single type 1 activation signal coming either from the left or from
the right and a type 2 activation signal coming from the right. Let a cell
in location i contain a border signal. If the cell i is in an error state and
the cell i + 1 contains a type 2 activation signal moving to the left, a type
1 activation signal moving to the right in the cell i bounces back from cell i
and the state of the border signal is changed. If the type 1 activation signal
is moving to the left in the cell i+1, it bounces back from cell i+1 and the
state of the border signal is changed.

Formally, the state component of the fourth layer is expressed by ele-
ments of

A4 = {♦,�,�} × {♦,I,J,�} × {♦,I,J,�},

where the sets represent different signal types and their elements represent
different combinations of a particular signal type.

103

Figure 6.7: The interaction of different signal types when the cell containing
the border signal is in an error state. The border signal changes its blocking
state if there is a single activation signal of type 1 coming either from the
left or from the right and an activation signal of type 2 coming from the
right. In this case the type 1 activation signal bounces back.

A detailed description of the local rule for the signals can be found in
Figures 6.6 and 6.7. The description of the local rule can be summarized as
a following list of rules:

1. Any type of activation signal travels through an inactive border signal
if no error state is present.

2. Any type of activation signal bounces off an active border signal if no
error state is present.

3. A type 1 activation signal travels through any border signal if the cell
is in an error state and no type 2 activation signal is coming from the
right.

4. A type 2 activation signal always travels through any border signal if
the cell is in an error state.

5. The state of the border signal is changed if, and only if, (1) the cell is
in an error state, (2) there is a single activation signal of type 1 coming
either from the left or from the right and (3) an activation signal of
type 2 coming from the right. In this case the type 1 activation signal
bounces back.

104

6.7 Undecidability of sensitivity

In this section it is concluded that the cellular automaton constructed in
previous sections is sensitive to initial conditions if, and only if, the given
reversible Turing machine does not eventually halt on an empty tape. This
follows from the fact that the contents of a simulation area which contains
an eventually halting Turing machine simulation can be used to construct a
blocking word.

Recall that the cellular automaton (BZ, G) was constructed in Section
6.6 by adding an additional layer of signals to the cellular automaton (AZ, F)
of Section 6.5.

Lemma 6.7.1. If the question of Theorem 6.5.1 has a positive answer for
the cellular automaton (AZ, F), then the cellular automaton (BZ, G) has a
blocking word.

Proof. Let cA ∈ AZ be an equicontinuity point such that F n(cA)(0) ∈ A \E
for every n ∈ N. Then, by the definition of an equicontinuity point, there
exists a positive integer k such that the word w = cA[−k, k] is a block-
ing word and for every configuration c ∈ AZ with c[−k, k] = w condition
F n(c)(0) ∈ A \ E holds.

Define word wB,� ∈ B∗ by setting

wB,�(i) = (w(i),♦,♦,♦) if 0 ≤ i < k,
wB,�(i) = (w(i),�,♦,♦) if i = k and
wB,�(i) = (w(i),♦,♦,♦) if k < i ≤ |w| − 1.

Now word wB,�wB,� is a blocking word for the cellular automaton (BZ, G).
This follows from the fact that active border signals (i.e. values �) in the
centers of words wB,� can never be changed inactive.

Lemma 6.7.2. If the question of Theorem 6.5.1 has a negative answer for
the non-sensitive cellular automaton (AZ, F), then for the cellular automa-
ton (BZ, G) and any word u ∈ B∗ there exists a configuration c ∈ Cyl(u, 0)
and a positive integer t+u such that the configuration Gt(c) does not contain
any active border signals for any t ≥ t+u .

Proof. Let w ∈ A∗ be again a blocking word for the cellular automaton
(AZ, F). The blocking word exists because (AZ, F) is non-sensitive. Define
word wB,♦ ∈ B∗ of the same length by setting

wB,♦(i) = (w(i),♦,♦,♦)

whenever 0 ≤ i < |w|. The word wB,♦ is defined so that it does not contain
any border signals.

105

Let u ∈ B∗ any word whose active border signals are supposed to be
changed inactive eventually in a new configuration c ∈ Cyl(u, 0). Then the
configuration c ∈ BZ is constructed by first defining configuration cn (where
n is the number of border signals contained in the word u) so that

cn(i) = wB,♦((i + 1) mod |wB,♦|) if i < 0,
cn(i) = u(i) if 0 ≤ i < |u| and
cn(i) = wB,♦((i − |u|) mod |wB,♦|) if |u| ≤ i.

That is, configuration cn is such that word u is located in the origin and
word wB,♦ repeatedly appears to the left and to the right of the occurrence
of the word u. Moreover, all the border signals are located within domain
[0, |u|−1]. Let the border signals be located in locations b1, b2, . . . , bn where
bi < bi+1, 0 ≤ b1 and bn < |u|. Also, every cell of cn (and its modifications)
will enter an error state infinitely often, thanks to Theorem 6.5.1.

Second, the configuration cn is modified iteratively so that all the border
signals are changed inactive. Assume that ck is a configuration and tk is a
time such that Gt(ck) has neither active border signals nor activation signals
in locations (bk, bn], and further, all activation signals to the left of cell b1

are moving to the left and all activation signals to the right of cell bn are
moving to the right for every integer t ≥ tk. That is, after tk time steps
bk is the rightmost cell containing an active border signal. Furthermore,
it is assumed that no activation signals pass through it to the right after
time step tk without a modification to the the initial configuration. Now the
configuration ck is modified (in two steps) further to produce configuration
ck−1 where cell bk−1 contains the rightmost active border after tk−1 > tk
time steps. The steps of erasing an active border signal are illustrated in
Figure 6.8.

Recall that a border signal state is changed if, and only if, (1) the cell
containing the border signal is in an error state, (2) there is a single type
1 activation signal coming either from the left or from the right and (3) a
type 2 activation signal coming from the right intersects the border signal
at the same time.

1. Let a > |u| be an integer such that Gtk+a(ck)(bk) is an error state.
First, an activation signal of type 1 moving to the left is placed to the
location bk + tk + a+1 if, and only if, there is no type 1 signal coming
from the left. That is, either an activation signal coming from the
left is located in the cell bk at time step tk + a or an activation signal
coming from the right is located in the cell bk + 1 at time step tk + a.

Second, an activation signal of type 2 is set to be located in the cell
bk + 2(tk + a) + 1. These two different activation signals meet the
border signal in cell bk and together change it inactive. Integer a is

106

(a) Step 1 of erasing an active border sig-
nal. An activation signal of type 1 and an
activation signal of type 2 meet the bor-
der signal in a cell which is in an error
state.

(b) Step 2 of erasing an active border sig-
nal. The redundant activation signals are
allowed to scatter away before erasing the
next active border signal.

Figure 6.8: Two activation signals (first of type 1 and second of type 2) are
added to the initial configuration to erase an active border signal.

taken large enough to make sure that an added activation signal of
any type does not hit any earlier stage border signals in cells bi, where
i > k, while they are still in an active state.

2. A band of e (i.e. sufficiently many) cells in the locations [bk + 2(tk +
a)+2, bk +2(tk +a)+1+e] are set not to contain any activation signals
of type 2 moving to the left. Then the type 1 activation signal that was
used to change the border signal in the cell bk and all the activation
signals contained between the border signals in the cells bk−1 and bk

and moving to the right (at time step tk + a) can move beyond the
last border signal in the cell bn without changing the already inactive
border signals back to active. Any activation signal moving to the left
(at time step tk +a) either crosses the border signal in cell bk−1 (when
it changes inactive or enters an error state) while moving to the left
or collides with it and starts moving to the right. In any case, due
to finiteness of u, in a finite number of time steps all the activation
signals of type 1 or 2 that would cross the border signal in cell bk−1

while moving to the right have also done so. Within this time there
should be no type 2 activation signals coming from the right so that
no border signals are changed back to active state.

Clearly, e can be chosen to be a finite positive integer because word u
contains only finitely many activation signals bouncing back and forth
between the border signals.

107

Let the modified configuration (produced from ck) be denoted by ck−1. Now,
for some positive integer tk−1 > tk configuration Gt(ck−1) contains neither
active border signals nor activation signals in locations (bk−1, bn], and fur-
ther, all activation signals to the left of cell b1 are moving to the left and
all activation signals to the right of cell bn are moving to the right for every
integer t ≥ tk−1 and no activation signals meet with border bk−1 when it
enters an error state. Now this iterative procedure is repeated n times to
change the state of each border signal inactive and to allow enough time
pass for all the activation signals to move beyond all the border signals.
Eventually this procedure gives the configuration c = c0.

Assume that the active border signals in the configuration c are erased
in t+u time steps. Then only 2t+u + |u| cells to the left and right of word u
contain activation signals. That is, the configuration c was chosen in such a
way that the activation signals appear only in the locations shown in Figure
6.9(a). Then for some positive integer t+u configurations Gt(c) do not contain
any active border signals for t ≥ t+u .

An example on the usage of the activation signals to change the border
signals inactive is shown in Figure 6.10. However, the contents of Figure
6.10 does not follow the strict guidelines given in the proof of Lemma 6.7.2.
The state of a border signal is changed if the cell containing the border
signal enters an error state and there is a single activation signal of type 1
coming either from the left or from the right and an activation signal of type
2 coming from the right.

Because the signal interaction on layer 4 is almost identical for both the
forward rule and the inverse rule, a similar lemma holds for the inverse rule
also. The only difference is that because an activation signal of type 2 has the
“activation property” only when it is coming from the right, the iterative
process places the required signals to the left from the word occurrence
instead of placing them to the right when working with the inverse rule.
To say it more practically, the set of rules in Figure 6.7 is invariant with
respect to a rotation by 180 degrees. For the inverse rule, the locations of
the signals of layer 4 are shown in Figure 6.9(b).

Lemma 6.7.3. If the question of Theorem 6.5.1 has a negative answer for
the non-sensitive cellular automaton (AZ, F), then for the cellular automa-
ton (BZ, G) and any word u ∈ B∗ there exists a configuration c ∈ Cyl(u, 0)
and a positive integer t−u such that the configuration G−t(c) does not contain
any active border signals for any t ≥ t−u .

Theorem 6.7.4. The cellular automaton (BZ, G) is sensitive if, and only
if, the question of Theorem 6.5.1 has a negative answer for the cellular
automaton (AZ, F).

108

|u|2t+u + |u|2t+u + |u|

t+u

(a) All active border signals contained in u can be
changed inactive after t+u applications of the forward rule
by choosing the contents of the 2t+u + |u| cells to its left
and to its right.

|u|2t−u + |u|2t−u + |u|

t−u

(b) All active border signals contained in u can be
changed inactive after t−u applications of the inverse rule
by choosing the contents of the 2t−u + |u| cells to its left
and to its right.

Figure 6.9: If the question of Theorem 6.5.1 has a negative answer, all border
signals contained in the word u can be changed inactive in a finite number
of time steps. Double lines represent the locations between which active
border signals may appear. Hash fill with positive slope and hash fill with
negative slope represent the possible locations for activation signals of type
1 and type 2, respectively.

109

Figure 6.10: Any finite number of border signals can be changed to inactive
state in which they can remain indefinitely long if every cell containing a
border signal will enter an error state. Error states in the cells containing
border signals are denoted by circles.

Proof. If the answer to the question of Theorem 6.5.1 is positive, then there
exists an equicontinuity point for the cellular automaton (AZ, F) with a cell
that does not enter an error state ever. Then, according to Lemma 6.7.1,
there exists a blocking word for the cellular automaton (BZ, G). Hence, the
cellular automaton (BZ, G) is not sensitive.

If the answer to the question of Theorem 6.5.1 is negative, then the
cellular automaton (BZ, G) is sensitive by Lemma 6.7.2, because at some
point border signals no longer block activation signals.

Undecidability of sensitivity now follows from Theorem 6.5.1.

Corollary 6.7.5. It is undecidable whether or not a given reversible one-
dimensional cellular automaton is sensitive.

110

Chapter 7

Undecidability of topological

mixing and transitivity

In this chapter it is shown that sets of non-sensitive and topologically mix-
ing reversible cellular automata are recursively inseparable sets. This is
achieved by modifying the construction of Chapter 6. It directly follows
that transitivity, topological mixing and (both Devaney’s and Knudsen’s)
chaotic behavior are undecidable properties for reversible cellular automata.

It is described how the cellular automaton constructed in Section 6 can be
modified in such a way that it will be topologically mixing and topologically
transitive if, and only if, the original cellular automaton (of Section 6) is
sensitive. The idea is to modify the cellular automaton in such a way that
unless the original cellular automaton has a blocking word sequence, the
contents of a simulation area (and actually any finite pattern in the original
cellular automaton) can be shifted freely to the left and to the right. The
shift effect is achieved by adding new states, called shift signals, that advance
diagonally and do not affect the computation with the original states but act
as a “filling” material. However, the computation with the original states
does affect the propagation of the shift signals. To be precise, if a left shift
signal encounters an active border signal (as defined in Section 6.6), it is
changed to a right shift signal. Similarly, if a right shift signal encounters
an active border signal, it is changed to a left shift signal. Therefore, the
modified cellular automaton (with shift signals) is mixing if, and only if,
blocking words do not exist for the original cellular automaton (BZ, G).

7.1 Shift signals

Let the cellular automaton constructed in Section 6.6 be again denoted
by (BZ, G). The state set is modified in such a way that the modified

111

cellular automaton is topologically mixing if, and only if, the original cellular
automaton is sensitive.

First, the state set B is swapped to the cartesian product BN for some
N > r, where r is the radius of the original local rule g. Because type 2
activation signals move with a speed of two cells per one time step, the value
of r is at least 2. The value of N is not fixed until the proofs of Lemmas
7.2.3 and 7.2.4 where the reason for using a certain value for N is also seen.
The local rule is modified accordingly by considering the N -tuples of states
to form a single configuration consisting of the original states in a natural,
sequential way. In terms of symbolic dynamics, the cellular automaton,

which is modified this way, could be denoted by ((BN)
Z
, γN ◦G◦γ−1

N) using
the notation in [65]. The function γN is the function which rearranges the
cell structure by replacing every N consecutive cells with a vector containing
the states as elements.

The goal of this change is to reduce the effective radius of the local rule.
That is, the Nth iteration of the new local rule has radius r. In the modified
cellular automaton N consecutive cells from the original cellular automaton
(BZ, G) occupy a single cell in the new cellular automaton.

Second, the state set BN is extended with additional states I and J.
State I represents a left shift signal and state J represents a right shift
signal . The left shift signals and the right shift signals, together called shift
signals, are empty place holders which are used to shift the location of states
belonging to the original state set. A left shift signal can travel three cells
to the right per one time step (as shown in Figure 7.1(a)) and a right shift
signal can travel three cells to the left per one time step (as shown in Figure
7.1(b)).

The shift signals are not allowed to appear on arbitrarily many consecu-
tive cells. The state J signifying a right shift signal can be located only on
cells at locations i, where i mod 3 = 1. Similarly, the state I signifying a left
shift signal can be located only on cells at locations i, where i mod 3 = 2.
Therefore, at least the cells in locations i, where i mod 3 = 0, are in states
from the original state set. With these constraints, the original local rule
can be used to compute the next configuration from the original states found
between the shift signals. At least every third cell does not contain a shift
signal and therefore the radius of the new local rule remains finite.

The collisions of the shift signals are defined differently from the descrip-
tion given in Section 6.6. This follows from the fact that the shift signals
form a disjoint subset of the state set and their locations are restricted. If a
shift signal does not encounter an active border signal, it travels a straight
path as shown in Figure 7.2(a). If a shift signal encounters an active border
signal, it is swapped to a shift signal travelling to the opposite direction (as
shown in Figure 7.2(b)). In other words, a shift travels a straight path if,

112

1 2 3 4 5 6 I

1 2 3 I 4 5 6
I 1 2 3 4 5 6

(a) A left shift signal is
used to move states of the
original state set to the
left.

J 1 2 3 4 5 6

1 2 3 J 4 5 6

1 2 3 4 5 6 J

(b) A right shift signal is
used to move states of the
original state set to the
right.

1 2 J 3 4 5 6 7 8 I 9 10

1 2 3 4 5 J I 6 7 8 9 10

1 2 3 I 4 5 6 7 J 8 9 10
I 1 2 3 4 5 6 7 8 9 10 J

(c) The possible locations for the shift sig-
nals are restricted so that they can intersect
while preserving the number of cells in the
original states.

Figure 7.1: The use of the shift signals. Both shift signals work as a filling
material moving elements of the original state set. For simplicity, the states
of the original state set are denoted only by the numbers of their relative
positions.

and only if, it does not bounce back from an active border signal. If the
shift signal encounters an active border signal, it is bounced back.

However, because shift signals are restricted to only certain locations
whereas a border signal can be located anywhere, it needs to be clarified
where a left signal is swapped to a right signal and vice versa. In short, a
left shift signal that would intersect with an active border signal is replaced
with a right shift signal in the first possible location to the left of the border
signal. Similarly, a right shift signal that would intersect with an active
border signal is replaced with a left shift signal in the first possible location
to the right of the border signal. The case of the left shift signal is shown
in Figure 7.2(c). The collisions are defined in a similar way to right shift
signals.

If the shift signal is located between two active border signals whose
distance is less than the shift signal’s movement amount, then the new lo-
cation and movement direction is determined repeatedly in a natural way.
That happens if a region between two active border signals contains only
one cell in location i mod 3 = 1 or i mod 3 = 2, then the possible single shift
signal in that location remains in place. This rule follows from the fact that
the shift signal in considered to bounce back from both of the borders and
change its direction twice.

113

I
I

I
I

(a) A shift signal can travel through
an inactive border signal.

I
I

I
J

J
J

(b) A shift signal bounces back from
an active border signal.

I
I

J
J

I
I

J
J

I
I

J
J

J

(c) The different cases of a left shift signal bouncing back.

I
I

J
J

I
I

I

I
I

J
J
J

(d) Other miscellaneous examples.

I
I

J
J

JI
JI
JI

(e) An example of two shift signals end-
ing up between two active border sig-
nals.

I
I

J
J

JI
JI
JI

(f) Another example of two shift sig-
nals ending up between two active bor-
der signals.

Figure 7.2: Shift signals travel a straight diagonal path if, an only if, they
do not encounter active border signals.

To enforce the constraint on the locations of shift signals, the state set
of the cellular automaton is further modified from BN to

C = BN ×
(

BN ∪ {J}
)

×
(

BN ∪ {I}
)

and the new local rule is defined accordingly. That is, the new local rule
splits the new input cells into consecutive cell triplets in the old cell structure
and then applies the old local rule.

Let the new global rule be denoted by H. Then the new cellular au-
tomaton is (CZ,H), which was constructed by first joining consecutive cells
to form N -tuples and second by adding the shift signals.

In terms of the original cellular automaton (BZ, G), on every time step
a shift signal shifts N states to the left or to the right by N cells.

114

Theorem 7.1.1. The cellular automaton (CZ,H) is reversible.

Proof. The cellular automaton is seen to be reversible by showing that (1)
the locations of the active border signals in the previous configuration can
be uniquely determined and (2) the previous locations of the shift signals
are then uniquely determined. These conditions are enough, since the un-
derlying cellular automaton (BZ, G) is already reversible.

First, from configuration F (c) it is possible to determine the previous
state of each border signal. If a border signal has been active in the previous
configuration, then it has not been moved by a shift signal. Therefore, it
can be determined how the previous configuration c is split into consecutive
and disjoint regions which are bordered by active border signals.

Second, the next location of a shift signal in the configuration c is de-
termined only by the border signals which are currently active. Because the
active borders in the previous configuration c can be uniquely determined
from configuration F (c), the previous shift signal locations can be uniquely
determined from the configuration F (c). Therefore, the previous locations
of shift signals are uniquely determined.

7.2 Undecidability of topological mixing

In this section it is shown that the cellular automaton constructed in previ-
ous sections is topologically mixing if, and only if, the given injective Turing
machine does not eventually halt on an empty tape.

If the given injective Turing machine eventually halts, it is possible to
construct a blocking word which cannot be moved with the shift signals
in the cellular automaton constructed in Section 7.1. To be exact, if the
Turing machine eventually halts, there can exist a border signal which always
remains in the active state. Then the shift signals simply bounce away from
the border signal without moving it and the cellular automaton is not even
sensitive.

If the Turing machine does not eventually halt, no blocking word se-
quence exists and eventually all simulation areas can be moved to the left
and to the right at will (by modifying the initial configuration). If the Tur-
ing machine does not eventually halt, all the active border signals in a finite
segment can be changed to inactive border signals. Once all the border sig-
nals are in inactive state, the contents of any finite segment can be shifted
to the left or to the right by setting sufficiently many shift signal states to
the initial configuration.

Lemma 7.2.1. Suppose the question of Theorem 6.5.1 has a negative answer
for the cellular automaton (AZ, F). Then for the cellular automaton (CZ,H)
and any word u ∈ C∗ there exists a configuration c ∈ Cyl(u, 0) and a positive

115

integer t+u such that for any t ≥ t+u the configuration H t(c) does not contain
any active border signals.

Proof. The proof is similar to that of Lemma 6.7.2. The shift signals only
disperse away from the location of the word u when all the active border
signals have been changed inactive.

Similarly, Lemma 7.2.2 follows.

Lemma 7.2.2. Suppose the question of Theorem 6.5.1 has a negative answer
for the cellular automaton (AZ, F). Then for the cellular automaton (CZ,H)
and any word u ∈ C∗ there exists a configuration c ∈ Cyl(u, 0) and a positive
integer t−u such that for any t ≥ t−u the configuration H−t(c) does not contain
any active border signals.

Lemma 7.2.3. Let u ∈ C∗ and v ∈ C∗ be two words of equal length k
and assume that the question of Theorem 6.5.1 has a negative answer for
the cellular automaton (AZ, F) so that the value t = max(t+u , t−v) exists.
Then there exists a positive integer m0 and a configuration cm ∈ CZ for any
positive integer m ≥ m0 such that

1. cm ∈ Cyl(u, 0),

2. Hm(cm) ∈ Cyl(v, 4dt/N e + 3k + 4drm/Ne) and

3. H i(cm) does not contain any active border signals for i ∈ [t, (m − t)].

The idea of the proof is to place the words u and v with a suitable
distance so that the contents of one word does not affect the contents of
another. That is, the activation signals dispersing away from word u do not
have time to reach the position of word v in the “condensed” cell structure.

m

u

v

cu[−`1 − `2, k + `1 + 2`2] G−m(cv)[−`1 − 2`2, k + `1 + `2]

`2 `2`2 k + 2`1 `2 `2 k + 2`1 `2

Figure 7.3: The configuration constructed in the proof of Lemma 7.2.3. The
areas denoted by solid and line fill do not contain border signals. Activation
signals are not found on the areas denoted by line fill.

116

u

v

d

t+u

t+u

t+u +
⌈

1
3 |u| +

1
3d + 1

3 |v|
⌉

Figure 7.4: The shift signals originating from the word u pass through the
future domain of word v in t+u +

⌈

1
3 |u| +

1
3d + 1

3 |v|
⌉

time steps. The solid
gray areas denote the locations in which the shift signals may appear.

Proof. Let `1 = 2dt/Ne + k, `2 = drm/Ne and ` = `1 + 2`2, where k is
the length of words u and v and r is the radius of the cellular automaton
(BZ, G). Multiple N`1 = 2Ndt/Ne + Nk gives an upper bound for the
number of states from B which need to be redefined around the words to
change the active border signals inactive. That is, `1 is the equivalent bound
of the new cell structure to the bounds “2t+u + |u|” and “2t−u + |u|” in Figures
6.9(a) and 6.9(b). The bound `2 is simply chosen in a suitable way to have
enough space between the two words.

Let cu and cv be the configurations constructed with the method of the
proof of Lemma 7.2.1 and its analogy for the inverse rule, respectively. Let
d = 2`1 + 4`2. That is,

d = 4dt/Ne + 2k + 4drm/Ne

and it is the distance between the domain of u and the future domain of v.
Then, the configuration cm is constructed by first setting

cm(i) = cu(i) if i < k + `, and
cm(i) = G−m(cv)(i − d) if k + ` ≤ i.

Second, those shift signals which are to be eventually located within word v
are placed to suitable locations in the initial configuration.

However, a shift signal exiting one word must not affect the formation
of the second word. Therefore, the number of time steps m is bounded from
below by equation

m ≥ t+u +

⌈

1

3
|u| +

1

3
d +

1

3
|v|

⌉

+ t−v

117

which comes from the fact that after
⌈

1
3 |u| +

1
3d + 1

3 |v|
⌉

time steps the left
shift signals (which have slope 1

3) exiting the domain of word u have passed
through the future domain of word v as shown in Figure 7.4. Because
d = 2`1 + 4`2, it follows it would be sufficient to have condition

t+u +

⌈

1

3
k +

1

3
(2(2dt/Ne + k) + 4(drm/Ne)) +

1

3
k

⌉

+ t−v

≤ t +
1

3
k +

1

3
d(4t/N + 2 + 2k + 4rm/N + 4)e +

1

3
k + t + 3

≤
4

3
k +

1

6
m + 3t + 6 ≤ m,

where N = 8r, hold. The previous inequality would hold if

m −
1

6
m ≥

4

3
k + 3t + 6

which would hold if m ≥ 2k + 3t + 6. Therefore, it can be chosen that
m0 = 2k + 3t + 6.

Finally, no active border signals appear in the time window [t, (m − t)]
because the activation signals originally found in the configuration cu do
not have enough time to meet with the border signals located in the word
v. Similarly, the signals that change the border signals inactive in cv do not
have enough time to meet with the border signals located in the word u.
This follows from the fact that the distance even from the “seam” location to
either one of the words is N(`1 +2`2) > 4m in terms of the old cell structure
where a type 2 activation signal (i.e. the fastest signal that possibly matters)
travels with a speed of two cells per one time step. In short, no active border
signals are generated in other locations than in the domains of u and v and
none on the interval [t, (m − t)] because the words are chosen to appear far
enough from each other.

Lemma 7.2.4. Let u ∈ C∗ and v ∈ C∗ be two words of equal length k and
assume that the question of Theorem 6.5.1 has a negative answer for the
cellular automaton (AZ, F) so that the value t = max(t+u , t−v) exists. Then
there exists a positive integer n0 and a configuration cn ∈ CZ for any positive
integer n ≥ n0 such that

1. cn ∈ Cyl(u, 0) and

2. Hn(cn) ∈ Cyl(v, 0).

Proof. Let c be the configuration given by Lemma 7.2.3 and which therefore
depends on integer m = n. The configuration cn is constructed by modifying
configuration c by adding shift signals between the states in c. Let `1 =

118

≤ |u| + d + su + sv

du

1
3 |u|

v

1
3 |v|

Figure 7.5: To have words u and v in the same position, at most |u| +
d + su + sv left shift signals are required. This shift effect can be achieved
in |u| + d + su + sv +

⌈

1
3 max(|u|, |v|)

⌉

time steps, where d is the distance
between the occurrences of the word u and the word v without adding any
shift signals to the initial configuration. Expressions su and sv denote the
number of shift signals contained in u and v, respectively.

2dt/Ne+ k, `2 = drn/Ne and ` = `1 + 2`2, where k is the length of words u
and v and r is the radius of the cellular automaton (BZ, G). Let the number
of shift signals contained in word u and v be su and sv, respectively. The
distance between the word occurrences is again d = 2`1 + 4`2.

An upper bound for the number s of left shift signals required to shift
the word v to appear in the original domain of word u is given by condition

s ≤ k + d + su + sv

= k + 2`1 + 4`2 + su + sv

= k + 2(2dt/N e + k) + 4drm/Ne + su + sv

≤ k + 4t/N + 4 + 2k + 4rn/N + 4 + su + sv

≤ 5k + 4t/N + 4rn/N + 8.

The number s of shift signals is restricted only by equation

n ≥ t +

⌈

1

3
k

⌉

+ s + t

which follows from the time window enforced by the appearance of the active
border signals as shown in Figure 7.5. The coefficient 1

3 follows from the
fact that a left shift signal has slope 1

3 . However, the equation holds if

n ≥ t + k + 5k + 4t/N + 4rn/N + 8 + t = 6k + 2t + 4t/N + 4rn/N + 8.

By fixing the constant N to have value 8r as already in the proof of Lemma
7.2.3, it follows from the previous equation that the shift signals can be used

119

Figure 7.6: The possible locations (denoted by gray fill) of the shift signals
in the computation with the initial configuration which is constructed in the
proof of Lemma 7.2.4.

if n ≥ 12k + 6t + 16 and if the constraint m0 of Lemma 7.2.3 holds also.
Now the bound n0 is given by

n0 = 12k + 6t + 8 ≥ max(12k + 6t + 16, 2k + 3t + 6).

For any n ≥ n0 the new configuration can be constructed by modifying
the configuration given by Lemma 7.2.3 by adding sufficiently many left shift
signals to the left of the cell in the location −3t and rearranging the initial
locations of the shift signals that will become part of the word v near the
origin eventually. During the computation the shift signals will be located
as shown in Figure 7.6.

Theorem 7.2.5. For reversible one-dimensional cellular automata, the sets
of topologically mixing and non-sensitive cellular automata are recursively
inseparable.

Proof. Assume that the question of Theorem 6.5.1 has a negative answer
for the cellular automaton (AZ, F). Then, by Lemma 7.2.4, the cellular
automaton (CZ,H) is topologically mixing.

Assume that the answer to the question of Theorem 6.5.1 is positive.
Then the blocking word constructed in the proof of Lemma 6.7.1 can be

120

modified to be used in the new cell structure of the cellular automaton
(CZ,H). The word remains blocking because shift signals simply turn away
from states in C containing active border signals from B as vector elements.
Hence, the cellular automaton is not sensitive to initial conditions.

Corollary 7.2.6. The following dynamical properties are undecidable for
reversible one-dimensional cellular automata:

1. sensitivity to initial conditions,

2. topological mixing and

3. topological transitivity.

Because a reversible cellular automaton has dense periodic points, the
cellular automaton of Theorem 7.2.5 is chaotic if, and only if, it is transitive.
Because transitivity was shown to be undecidable in the reversible case, the
undecidability of Devaney’s chaos follows.

Corollary 7.2.7. It is undecidable whether or not a given reversible one-
dimensional cellular automaton is chaotic according to Devaney.

A cellular automaton is transitive if, and only if, it has a dense orbit.
Transitivity was seen to be an undecidable property, so undecidability of
Knudsen’s chaos follows. In particular, in the case of reversible cellular
automata, Devaney’s and Knudsen’s definitions of chaos are equivalent.

Corollary 7.2.8. It is undecidable whether or not a given reversible one-
dimensional cellular automaton is chaotic according to Knudsen.

121

122

Chapter 8

Some results on linear

cellular automata

In this chapter linear cellular automata are discussed. It is shown that there
exists a close relationship between expansive and positively expansive lin-
ear cellular automata. In particular, a reversible linear cellular automaton
function F is expansive if, and only if, the function F + F −1 is positively
expansive (see Corollary 8.5.2). It is also shown, for example, that expan-
sivity and sensitivity are decidable properties for linear cellular automata.
The dynamical properties have been studied earlier in a less general setting
[43, 14, 75, 96, 76]. Here the linear cellular automata are considered with a
more general definition of [12, 49].

8.1 Brief overview

A subclass of cellular automata is the family of linear cellular automata in
which the global rule is linear, that is, a sum of the images of two config-
urations is equal to the image of the sum of the two configurations. The
linear cellular automata whose state set is a finite commutative ring will
be called linear cellular automata with a single state variable (SSLCA) and
they can be represented with Laurent polynomials. A larger class of lin-
ear cellular automata is the one where the state sets are finite dimensional
vector spaces over finite commutative rings. These cellular automata are
also called linear cellular automata with multiple state variables (MSLCA).
The multiple state variable can be represented with matrices over Laurent
polynomials of the ring. The multiple state variable linear cellular automata
were introduced independently in [12] and [49].

Unlike cellular automata in general, so far all the dynamical properties
of linear cellular automata have turned out to be decidable. In fact, it has
been shown that linear cellular automata cannot be universal [12]. For single

123

state variable linear cellular automata over Zm many dynamical properties
are decidable with easy to check criterions [43, 14, 75, 96, 76]. It seems that
dynamical properties of multiple state variable linear cellular automata have
not been studied except in articles [12] and [49]. For multiple state variable
linear cellular automata nilpotency [12], surjectivity [49] and injectivity [12,
49] are known to be decidable properties.

In what follows it is shown that also expansivity, positive expansivity and
sensitivity to initial conditions are decidable properties for multiple state
variable linear cellular automata. The algorithms do not consist of simple
criterions as in the case of linear cellular automata with a single state variable
[76]. There even might not exist as simple criterions for different dynamical
properties since linear cellular automata with multiple state variables can
exhibit much more complex behavior than the linear cellular automata with
a single state variable. For example, one-sided reversible cellular automata
cannot exist in the single state variable case. Another example is that one-
sided expansive (reversible) cellular automata do not exist in the single state
variable case but they do exist in the multiple state variable case.

8.2 Finite commutative rings

The reader is assumed to have knowledge of basic algebra such as rings and
fields.

The characteristic char (R) of ring R is the least positive integer such

that char (R) · a =
∑char(R)

i=1 a = 0R. If such an integer does not exist, the
characteristic is defined to be char (R) = 0.

An element a ∈ R is called nilpotent , if for some positive integer n
equation an = 0R holds. Similarly, a set A ∈ R is called nilpotent if there
exists a positive integer n such that An = {0R}.

The nilpotency nil (a) of a nilpotent element a ∈ R is the least positive
integer for which anil(a) = 0R. Similarly, the nilpotency nil (A) of a nilpotent
set A is the least positive integer with which Anil(A) = {0R}.

A local ring is a commutative ring with identity having a unique maximal
ideal [41]. There exists a broader definition for a local ring in the case of non-
commutative rings [79, p. 82]. In the case of commutative rings, alternative
definitions of local rings can be found in [87, 44]. However, in this work
a local ring is simply a commutative ring with identity having a unique
maximal ideal.

Theorem 8.2.1 ([79]). Let R be a finite commutative ring with identity
1R 6= 0R. The ring R has a unique decomposition

R = L1 ⊕ . . . ⊕ Ln

into a direct sum of local rings.

124

Moreover, there exists orthogonal idempotents ei in R with
∑m

i=1 ei = 1R

and LiLj = {0R} for every i 6= j [79].

In a finite commutative local ring with identity the zero-divisors are all
nilpotent and they form the maximal ideal [49, 78].

8.3 Linear cellular automata

The following definition of linear cellular automata is a generalization of the
one found in [12]. The only difference is that the state set can consist of
vectors over a finite commutative ring with identity and not just a finite field.
Earlier, linear cellular automata have been defined, for example, only with
a state set Zm [43]. The linear cellular automata defined with a state set
consisting of vectors over a field or a commutative ring were independently
introduced in [12] and [49].

Definition 8.3.1. An m-dimensional cellular automaton (AZm

, F) is said
to be linear, if

1. the state set A = Rn is the set of n-element vectors over a finite
commutative ring R with identity and

2. the function F is defined by

F (c)(−→x) = A1c(
−→x + −→x 1) + · · · + Alc(

−→x + −→x l),

where −→x 1, . . . ,
−→x l ∈ Rm are the neighborhood vectors of length m and

A1, . . . , Al ∈ Mn×n(R).

Following [49], a linear cellular automaton is said to be a multiple state
variable linear cellular automaton (MSLCA) if the state set is not a finite
commutative ring with identity, that is, n ≥ 2 in Definition 8.3.1. A lin-
ear cellular automaton is said to be a single state variable linear cellular
automaton (SSLCA) if the state set is simply the finite commutative ring
with identity, that is, n = 1 in Definition 8.3.1. No distinction was made
depending on the size of the state vectors in [12].

Definition 8.3.2. A Laurent polynomial f(x1, . . . , xm) of m variables
x1, . . . , xm over a ring R is

f(x1, . . . , xm) =
∑

|ij |≤k

ai1,...,imxi1
1 · · · xim

m ,

where ai1,...,im ∈ R and k is a finite bound. The set of Laurent polynomials
of m variables x1, . . . , xm over ring R is denoted by R[x1, x

−1
1 , . . . , xm, x−1

m].

125

Definition 8.3.3. A Laurent series f(x1, . . . , xm) of m variables over a ring
R is

f(x1, . . . , xm) =
∑

ij∈Z

ai1,...,imxi1
1 · · · xim

m ,

where ai1,...,im ∈ R. The set of Laurent polynomials of m variables x1, . . . , xm

over ring R is denoted by R[[x1, x
−1
1 , . . . , xm, x−1

m]].

Notation 8.3.4. For brevity, if X = {a1, . . . , am}, R[a1, . . . , am] will also
be denoted by R[X]. Likewise, if X = {a1, . . . , am}, then R[[a1, . . . , am]] will
also be denoted by R[[X]].

If X = {x}, then R[X] is used to denote a polynomial ring of a single
variable x. If X = {x, x−1}, then R[X] denotes a Laurent polynomial ring
of a single variable x. If R is commutative, then R[x1, x

−1
1 , . . . , xm, x−1

m] is
an infinite commutative ring.

It is straightforward to see, that a configuration of an m-dimensional
linear cellular automaton of n state variables from a finite commutative ring
R with identity can be represented by a Laurent series of m variables with
coefficients from Rn. Then the global function of the cellular automaton can
be interpreted as a linear transformation or a matrix of Laurent polynomials
whose domain is the set of Laurent series vectors.

Let M ∈ Mn×n(R[X]) be matrix which represents an m-dimensional
linear cellular automaton with state set Rn. Then FM is used to denote
the cellular automaton function defined by matrix M , that is, the cellular
automaton in question is ((Rn)Zm

, FM).

Definition 8.3.5. A cellular automaton function F : (An)Zm

→ (An)Zm

is
said to have a one-sided neighborhood with respect to coordinate i if either
−→x j ∈ Zi−1 ×{0, 1, . . .}×Zm−i or −→x j ∈ Zi−1 ×{0,−1, . . .}×Zm−i for every
vector −→x j in the neighborhood of the local rule.

Definition 8.3.6. A cellular automaton function F : (An)Zm

→ (An)Zm

is
said to have a strictly one-sided neighborhood with respect to coordinate i if
either −→x j ∈ Zi−1 × {1, 2, . . .} × Zm−i or −→x j ∈ Zi−1 × {−1,−2, . . .} × Zm−i

for every vector −→x j in the neighborhood of the local rule.

That is, a cellular automaton function has a one-sided neighborhood
with respect to the ith coordinate if either all the effective neighbors of a
cell are located to the left or all the effective neighbors of a cell are located
to the right from the origin along the ith coordinate axis.

Notation 8.3.7. Let X = {x1, x
−1
1 , . . . , xm, x−1

m }. Let f(x1, . . . , xm) ∈
R[X] be a non-zero Laurent polynomial and let x ∈ X.

Then degx f(x1, . . . , xm) is used to denote the smallest integer k such
that x−kf(x1, . . . , xm) ∈ R[X \ {x}].

126

Notation 8.3.8. For brevity, a notation X[m] is used to refer to the set of m
variables {x1, , . . . , xm} of a polynomial and a notation X(n) is used to refer
to the set of m variables {x1, x

−1
1 , . . . , xm, x−1

m } of a Laurent polynomial.

The dynamical properties of linear cellular automata with a single state
variable have been widely studied (see for example [43, 14, 75, 96, 76]), but
it seems that multiple state variable linear cellular automata have not been
studied except in articles [12] and [49].

For linear cellular automata, injectivity [12, 49] and surjectivity [49] can
be determined by studying the determinant of the matrix which defines the
function. Nilpotency of a linear cellular automaton can be determined by
computing n iterations of the function or by determining the characteristic
equation (which will be equal to Mn = 0 if, and only if, M is nilpotent) [12].

Example: An expansive one-sided linear cellular automaton There
exists no one-sided expansive rules in the case of single state variable lin-
ear cellular automata over Zm. However, for multiple state variable linear

cellular automata there exists. Let M =

(

x−1 1 + x−1

1 1

)

. Then FM is

a reversible one-dimensional cellular automaton over state set Z2
2. Then

M−1 =

(

1 1 + x−1

1 x−1

)

modulo 2. Therefore, (Z2
2

N
, FM) is a one-sided re-

versible cellular automaton. The sum of the two matrices is M + M−1 =
(

1 + x−1 0
0 1 + x−1

)

modulo 2. The characteristic polynomial of M + M−1

is

χM+M−1(λ) = λ2 + (1 + x−2).

By Theorem 8.5.6, the cellular automaton (Z2
2
N
, FM+M−1) is positively right

expansive. By Theorem 8.5.1, the cellular automaton (Z2
2
N
, FM) is right

expansive, so it is an expansive one-sided cellular automaton.

8.4 Some technical lemmas

In this section some technical lemmas will be represented. These lemmas will
be used later to study the linear cellular automata and linear combinations
of their iterations.

The following result was already used in [75, 76]:

Lemma 8.4.1. Let integer n be a multiple of m!km for some integer k.
Then

(

n
i

)

is divisible by km for every 0 < i < m.

127

Proof. Let j be a positive integer so that n = m!kmj. Because m!km − i =
i
(

m!
i

km − 1
)

, any binomial coefficient

(

m!kmj

i

)

=
(m!kmj)!

(m!kmj − i)!(i!)
=

m!kmj · · · (m!kmj − i + 1)

i · · · 1

=
m!kmj

i
·
m!kmj − 1

1
·
m!kmj − 2

2
· · ·

m!kmj − i + 1

i − 1

is divisible by km whenever 0 < i < m.

Recall, that N(R), U(R) and Z(R) denote the sets of nilpotent elements,
units and zero-divisors, respectively, of a ring R.

Lemma 8.4.2. Let L be a finite commutative local ring with identity. Let
f(x) ∈ L[x] \ N(L)[x]. Then for some positive integer n

f(x)n =

k
∑

i=0

aix
i,

where ak ∈ U(L).

Proof. Assume that f(x) =
∑l

i=0 bix
i, where bj ∈ U(L) for some j and

bi ∈ N(L) for i > j. Denote A =
∑j

i=0 bix
i and B =

∑l
i=j+1 bix

i. Because

L is local, N(L) is the set of zero-divisors. Choose n = nil (N(L))!qnil(N(L)),
where q is the characteristic of L. Then, by Lemma 8.4.1,

f(x)n = (A + B)n = An +

n
∑

i=nil(N(L))

(

n

i

)

An−iBi = An,

because Bi = 0 when i ≥ nil (N(L)). Now f(x)n = An is of the desired
form.

Lemma 8.4.3. Let R be a finite commutative ring with identity and M ∈
Mn×n(R[X(m)]). Let K = |R|n(2rn+3)m

. There exists such integers N1 and
N2 that 0 ≤ N1 < N2 < K and

M ′ = MN2 − MN1 =

2m
∑

i=0

Mi,

where matrices Mi commute and for every i there exist an integer j so that
either

Mi ∈ Mn×n(x−1
j R[X(m) \ {xj}]) or Mi ∈ Mn×n(xjR[X(m) \ {x−1

j }]).

128

Proof. Let the characteristic equation of M be χM (λ) = λn −
∑n−1

i=0 aiλ
i,

where ai ∈ F [X(m)]. Every power λk of λ greater than λn−1 can be ex-
pressed as a decomposition (which is also unique)

λk =
∑

i1,...,im∈Z

fk,(i1,...,im)(λ)xi1
1 · · · xim

m , (8.1)

where fk,(i1,...,im)(λ) ∈ F [λ] \ λnF [λ].

For some two distinct powers λN2 and λN1 the decompositions (8.1) agree
on the coefficients of terms xi1

1 · · · xim
m , where −(rn+ 1) ≤ ij ≤ (rn + 1) and

1 ≤ j ≤ m. Then the coefficients of the same terms in the decomposition of
λN2 − λN1 are all equal to zero. That is,

λN2 − λN1 =
∑

i1,...,im∈Z

g(i1 ,...,im)(λ)xi1
1 · · · xim

m , (8.2)

where g(i1 ,...,im)(λ) ∈ R[λ]\λnR[λ] and if −(rn+1) ≤ ij ≤ (rn+1) whenever
1 ≤ j ≤ m, then gi1,...,im(λ) = 0. Because the set of indices given by
constraints −(rn + 1) ≤ ij ≤ (rn + 1) and 1 ≤ j ≤ m is finite, the integers
N1 and N2 can be chosen to satisfy 0 ≤ N1 < N2 < K. This is actually a
simple application of the pigeon hole principle.

Finally, because all elements of matrix M n−1 are at most of degree r(n−
1) (with respect to any x ∈ X(m)), the claim follows by substituting M for λ
in equation (8.2). All the terms g(i1 ,...,im)(M)xi1

1 · · · xim
m commute and either

g(i1,...,im)(M)xi1
1 · · · xim

m ∈ Mn×n(x−1
j R[X(m) \ {xj}])

or

g(i1,...,im)(M)xi1
1 · · · xim

m ∈ Mn×n(xjR[X(m) \ {x−1
j }]).

The terms can be summed in a suitable way to produce matrices Mi which
also commute.

In the one-dimensional case the decomposition of commuting matrices
simplifies into a sum of two matrices.

Corollary 8.4.4. Let R be a finite commutative ring with identity and let
M ∈ Mn×n(R[x, x−1]). Let K = |R|n(2rn+3). There exists such integers N1

and N2 that 0 ≤ N1 < N2 < K and

M ′ = MN2 − MN1 = M1 + M2,

where matrices M1 and M2 commute,

M1 ∈ Mn×n(xR[x]) and M2 ∈ Mn×n(x−1R[x−1]).

129

Lemma 8.4.5. Let R be a finite field and let M ∈ Mn×n(xR[x]) represent
a cellular automaton with strictly one-sided neighborhood. If the cellular
automaton ((Rn)Z, FM) is surjective, then all the column subshits are of
finite type of the second order.

Proof. Let the state set of the cellular automaton be denoted by A = Rn.
Let the radius of the local rule be denoted r. Let c ∈ AZ be any configura-
tion. Since the local rule is strictly one-sided, word FM (c)[0, k] is determined
uniquely by word c[−r, k].

Let i be a non-negative integer. Let c be any configuration such that
F i

M (c)[−|u| + 1, 0] = u. Let u and v be such words (of equal length) that
there exists a configuration c′ such that

F i
M (c′)[−|u| + 1, 0] = u and F i+1

M (c′)[−|u| + 1, 0] = v.

Clearly, v depends only on F i
M (c′)[−|u| + 1 − r, 0]. Because the local rule

is surjective, strictly one-sided and linear, for every word w and integer i
there exists a configuration cw,i such that F i

M [−|w| + 1 − r, 0 − r] = w and

F j
M (k) = 0 for all integers j ≤ i and k ≥ −r. By linearity, assume that

w = F i
M (c′)[−|u|+1−r, 0−r]−F i

M (c)[−|u|+1−r, 0−r] (where subtraction
is done cell-wise). Then c′′ = c + cw,i (where addition is done cell-wise) is

a configuration such that F j
M (c′′)[−|u| + 1, 0] = F j

M (c)[−|u| + 1, 0] for every
j ≤ i and F i+1

M (c′′)[−|u|+ 1, 0] = F i+1
M (c′)[−|u|+ 1, 0] = v. This means that

to make the word appear after any sequence of i words, it is sufficient to
modify the cells to the left, which is possible due to linearity. Hence, the
column subshift of width |u| is of the second order.

8.5 Expansivity

In this section it is shown that expansivity and positive expansivity are
decidable properties for linear cellular automata whose states sets are sets
of vectors over finite commutative rings with identity.

The following Theorem 8.5.1 states that among linear cellular automata
there is a strong relationship between expansive and positively expansive cel-
lular automata. In particular, it follows that among linear cellular automata
expansivity can be algorithmically reduced to positive expansivity.

Please note, that in the following elements of set L + N(L)[λ] are poly-
nomials of the form

f(λ) =
k

∑

i=0

aiλ
i,

130

where ai ∈ N(L) whenever i > 0. Then the elements of L[λ]\ (L+N(L)[λ])
are of the form

f(λ) =
k

∑

i=0

aiλ
i,

where aj ∈ U(L) for some j > 0.

Theorem 8.5.1. Let L be a finite commutative local ring with identity. Let
M ∈ Mn×n(L[x, x−1]) and suppose that ((Ln)Z, FM) is a reversible cellular
automaton. The following conditions are equivalent:

1. The cellular automaton ((Ln)Z, FM) is left (right) expansive.

2. For some two polynomials f(λ), g(λ) ∈ L[λ]\(L+N(L)[λ]) the cellular
automaton given by matrix N = f(M) + g(M−1) is positively left
(right) expansive.

3. For any two polynomials f(λ), g(λ) ∈ L[λ] \ (L+ N(L)[λ]) the cellular
automaton given by matrix N = f(M) + g(M−1) is positively left
(right) expansive.

Proof. Let f(λ) and g(λ) be any two polynomials satisfying the assumptions.

Denote f(λ) =
∑df

i=0 aiλ
i and g(λ) =

∑dg

i=0 biλ
i, where it is possible to

assume that adf
, bdg

∈ U(R) by Lemma 8.4.2. For clarity, denote h(λ) =
f(λ) + g(λ−1).

Assume that ((Ln)Z, FM) is not left expansive. Then there exists a con-
figuration c(x) ∈ L[[x−1]]n \ x−1L[[x−1]]n such that Mkc(x) ∈ L[[x−1]]n for
all k ∈ Z. Then also h(M)kc(x) ∈ L[[x−1]]n for all k ∈ N, and ((Ln)Z, Fh(M))
cannot be positively left expansive.

Assume that ((Ln)Z, Fh(M)) is not positively left expansive. Then there

exists a configuration c(x) ∈ L[[x−1]]n \x−1L[[x−1]]n such that h(M)kc(x) ∈
L[[x−1]]n for all k ∈ N. Next it will be proven that also

Mkc(x) ∈ xr max(df ,dg)L[[x−1]]n for all k ∈ Z.

That is, the same configuration c(x) ∈ L[[x−1]]n \ x−1L[[x−1]]n will prove
that FM is not left expansive.

It will be proven by induction that a matrix M i can be presented as a
sum of the form

M i =

Ji
∑

j=0

df
∑

k=−dg

aj,kM
kh(M)j , where aj,k ∈ L and Ji ∈ N. (8.3)

Clearly, the decomposition of Equation (8.3) exists for −dg ≤ i ≤ df .

131

Consider the positive powers M i where i > df . Then

M i = a−1
df

(

M i−df h(M) − (h(M) − adf
Mdf)M i−df

)

.

By the inductive hypothesis M i−df is of the form given in Equation (8.3).
Then the former term M i−df h(M) is of the form given in Equation (8.3).
Because the Laurent polynomial h(M) − adf

Mdf contains terms of degree

df−1 at most, then the Laurent polynomial (h(M)−adf
Mdf)M i−df contains

terms of degree i−1 at most. Furthermore, the Laurent polynomial (h(M)−
adf

Mdf)M i−df contains terms of degree i−df−dg > −dg at least. Therefore,

the latter term is of the form given in Equation (8.3). Hence, M i can be
decomposed into the form given in Equation (8.3) when i > df .

The case for i < −dg is similar.

Now it can be concluded that every matrix M i, where i ∈ Z, can be
presented in the form given in Equation (8.3).

Finally, it follows that

M ic(x) ∈ xr max(df ,dg)L[[x−1]]n for all i ∈ N

using Equation (8.3) and the assumption that h(M)ic(x) ∈ L[[x−1]]n for
all i ∈ N, where r is the maximum of the radii of the local rules of the
cellular automata ((Ln)Z, FM) and ((Ln)Z, F−1

M). That is, no non-zero states

propagate beyond cell r max(df , dg) because ((Ln)Z, Fh(M)) is not positively

left expansive. Hence, the cellular automaton ((Ln)Z, FM) cannot be left
expansive.

Because both polynomials f(λ) and g(λ) were arbitrary, it was shown
that all the conditions 1, 2 and 3 are equivalent.

Corollary 8.5.2. Let L be a finite commutative local ring with identity
and let M ∈ Mn×n(L[x, x−1]). Suppose that M defines a reversible cellular
automaton. The following conditions are equivalent:

1. The cellular automaton given by M is left (right) expansive.

2. For some two elements a, b ∈ U(L) the cellular automaton given by
aM + bM−1 is positively left (right) expansive.

3. For any two elements a, b ∈ U(L) the cellular automaton given by
aM + bM−1 is positively left (right) expansive.

The following lemma states the a linear cellular automaton is positively
expansive if, and only if, any non-trivial linear combination of its powers is
positively expansive.

132

Lemma 8.5.3. Let L be a finite commutative local ring with identity, M ∈
Mn×n(L[x, x−1]) and f(λ) ∈ L[λ] \ (L + N(L)[λ]). The cellular automaton
given by M is positively left (right) expansive if, and only if, the cellular
automaton given by f(M) is positively left (right) expansive.

Proof. By Lemma 8.4.2, it is possible to assume that the coefficient of the
highest term is a unit.

First, assume that M is positively left expansive. Denote Cn(x) =
(L[[x]] \ xL[[x]])n and let

h = min
{

m ∈ N | ∀c(x) ∈ Cn(x−1) : Mmc(x) 6∈ (L[[x−1]])n
}

.

The finite constant h exists because M defines a positively left expansive
cellular automaton. Let the characteristic of L be q. Let m be a positive
integer and k = (hm)!qhm. Let the degree of f(λ) be df Then f(M)k =
∑kdf−hm

i=0 ciM
i + ckdf

Mkdf (for some coefficients ci), that is, the highest

terms in the polynomial are cjM
j (for some j ≤ kdf − hm) and ckdf

Mkdf .
By positive left expansivity, for every configuration c(x) ∈ Cn(x−1) there
are non-zero states in configuration ckdf

Mkdf c(x) further to the right than

in configuration cjM
jc(x). This means that the rightmost non-zero states

caused by the highest term ckdf
Mkdf c(x) cannot be cancelled out by any of

the lower terms ciM
ic(x), i ≤ j. Therefore, f(M) must define a positively

left expansive cellular automaton.
Second, assume that M is not positively left expansive. Then there exists

such c(x) ∈ (L[[x−1]])n that M lc(x) ∈ (L[[x−1]])n for any l ≥ 0. Then also
f(M)lc(x) ∈ (L[[x−1]])n for any l ≥ 0. Then f(M) cannot be positively left
expansive.

The result follows for positive right expansivity in a similar manner.

Theorem 8.5.4 ([63]). Positive expansivity, equicontinuity and nilpotency
are decidable properties for regular cellular automata

The previous theorem by Di Lena [63] can be strengthened to produce
the following lemma:

Lemma 8.5.5. Positive left expansivity and positive right expansivity are
decidable properties for regular cellular automata.

The proof is essentially the same as in [63].

Proof. Assuming that the cellular automaton (AZ, F) is regular, the graph
which describes the column subshift Σk(F) (for any k > 0) can be algorith-
mically constructed [63].

Let k = 2r + 1 where r is the radius of the local rule of the function F .
Recall that the graph contains the (infinite path) p ∈

(

Ak
)N

if, and only if,

133

p ∈ Σk(F). Now the cellular automaton is left expansive if, and only if, there

are no two such paths p1 ∈
(

Ak
)N

and p1 ∈
(

Ak
)N

that p1(0) 6= p2(0) but
p1(i)(j) = p2(i)(j) for every i ≥ 0 and j > 0. That is, the cellular automaton
is left expansive if, and only if there are no two such paths the (state vector)
nodes of the paths agree on every component except on the first one. If
there were, it would mean that the difference in the first component might
not propagate to the right and the rule would not be left expansive.

Right expansivity can be determined in a similar manner.

The following Theorem 8.5.6 gives an easy method for generating expan-
sive cellular automata. That is, choosing suitable Laurent polynomials for
coefficients for a polynomial p(λ) ∈ F [x, x−1][λ] guarantees that the com-
panion matrix of p(λ) represents a positively expansive cellular automaton.

Theorem 8.5.6. Let F be a finite field and let M ∈ Mn×n(F [x, x−1]).
Suppose that for an integer k ∈ N matrix M can be represented by a relation

Mk =

k−1
∑

i=0

fi(x)M i, (8.4)

where fi(x) ∈ F [x, x−1] for every i. If degx(f0(x)) > degx(fj(x)) for every

j, 0 < j < k, then ((F n)Z, FM) is positively left expansive.

Proof. Suppose that matrix M would not define a positively left expansive
cellular automaton. Then there exists a configuration c(x) ∈ (F [[x−1]] \
x−1F [[x−1]])n such that Mmc(x) ∈ (F [[x−1]])n for all m ∈ N. By assump-
tion, Mk =

∑k−1
i=1 fi(x)M i +f0(x). Let p be the characteristic of field F and

let h be a positive integer. Now

(

fi(x)M i
)ph

c(x) ∈ (xph degx fi(x)F [[x−1]])n for all 0 < i < k

and

f0(x)p
h

Ic(x) 6∈ (xph degx fi(x)F [[x−1]])n for any i 6= 0,

This means that the the non-zero states propagate further to the right
with multiplication by f0(x)p

h

I than with multiplication by any higher term
fi(x)M i. Therefore, the linear combination (8.4) of the smaller powers of
M produces a positively left expansive cellular automaton. But this is not
possible, because M was assumed not to define a positively left expansive
cellular automaton.

Lemma 8.5.7. Let R be a finite commutative ring with identity and let

M =

(

a(x) b(x)
c(x) d(x)

)

∈ M2×2(R[x, x−1])

134

and let detM = 1. Then (
(

R2
)Z

, FM) is left (right) expansive if, and only
if, the Laurent polynomial a(x)+d(x) ∈ R[x, x−1] represents a positively left
(right) expansive linear cellular automaton.

Proof. Because detM = 1,

M−1 =

(

d(x) −b(x)
−c(x) a(x)

)

.

Now

M + M−1 =

(

a(x) + d(x) 0
0 a(x) + d(x)

)

.

The cellular automaton defined by this matrix is a direct product of iden-
tical single state variable linear cellular automata. By Theorem 8.5.1, the

cellular automaton (
(

R2
)Z

, FM) is left (right) expansive if, and only if, the
Laurent polynomial a(x) + d(x) represents positively left (right) expansive
linear cellular automaton which happens when degx(a(x) + d(x)) > 0 (or
degx−1(a(x) + d(x)) > 0 for right expansive rules).

Theorem 8.5.8. Let R be a finite commutative ring with identity and let
M ∈ Mn×n(R[x, x−1]). It is decidable whether or not the cellular automaton
given by a non-invertible matrix M is positively left (right) expansive.

Proof. The property needs to be tested for every local ring in the decompo-
sition of the ring.

By Corollary 8.4.4, a linear combination N of some powers of M can
be expressed as a sum N = M1 + M2 of two commuting matrices M1 ∈
Mn×n(xR[x]) and M2 ∈ Mn×n(x−1R[x−1]) with strictly one-sided neigh-
borhoods. By Lemma 8.5.3, M is positively left (right) expansive if, and
only if, N is positively left (right) expansive.

By Lemma 8.4.5, both of the matrices M1 and M2 represent regular cel-
lular automata. Now the cellular automaton given by M is positively left
expansive if, and only if, matrix M1 is positively left expansive. Likewise,
the cellular automaton given by M is positively right expansive if, and only
if, matrix M2 is positively right expansive. Because positive left expansivity
and positive right expansivity are decidable properties for regular cellular
automata, decidability of positive left expansivity and positive right expan-
sivity follows.

Theorem 8.5.9. Let R be a finite commutative ring with identity and let
M ∈ Mn×n(R[x, x−1]). It is decidable whether or not the cellular automaton
((Rn)Z, FM) given by an invertible matrix M is left (right) expansive.

Proof. The property needs to be tested for every local ring in the decompo-
sition of the ring.

The claim follows by Corollary 8.5.2 and Theorem 8.5.8.

135

8.6 Sensitivity to initial conditions

In this section it is shown that sensitivity to initial conditions is a decidable
property for linear cellular automata whose states sets are sets of vectors
over finite commutative rings with identity.

Again, the results are first represented in the case of a finite field and
later generalized to the case of a finite commutative ring with identity.

The following lemma states the obvious fact that a matrix defines a linear
cellular automaton, which is sensitive to initial conditions,

Lemma 8.6.1. Let R be a finite commutative ring with identity and M ∈
Mn×n(R[X(m)]). Then the m-dimensional linear cellular automaton given
by matrix M is sensitive to initial conditions if, and only if, it is not equicon-
tinuous.

Proof. Clearly, if the powers of the variables do not grow arbitrarily large
in the powers of M then the matrix is periodic and hence the rule must be
equicontinuous.

Also, if the powers of the variables do grow arbitrarily large in the powers
of M , then some unit vector of the basis acts as a non-zero configuration
from which non-zero states propagate arbitrarily far. Then the rule must be
sensitive.

The following lemma states that determining the equicontinuity status of
a linear cellular automaton can be reduced to determining the equicontinuity
status of any non-trivial linear combination of its powers.

Lemma 8.6.2. Let F be a finite field, M ∈ Mn×n(F [X(m)]) and f(λ) ∈
F [λ]\F . Then M defines an equicontinuous cellular automaton if, and only
if, f(M) defines an equicontinuous cellular automaton.

Proof. Denote f(λ) =
∑k

i=0 aiλ
i. Assume that M is equicontinuous. Then

matrix M is ultimately periodic which means that there exists such non-
negative integers p0 and p that M p0 = Mp0+kp for every positive integer k.
Then there exists an upper bound on the degrees of Laurent polynomials in
the powers of M . Because the powers of M commute, the same bound even-
tually restricts the elements of matrix f(M) which is a linear combination
of some powers of M .

Assume that M is sensitive. Then matrix M is not ultimately periodic.
Then for some f(x1, . . . , xm) ∈ (F [[X(m) \ {x}]])n, some x ∈ X(m) and
every positive integer s there exists a positive integer t such that

M lf(x1, . . . , xm) ∈ (F [X(m)])n \ (xsF [[X(m) \ {x}]])n,

if l = t and
M lf(x1, . . . , xm) ∈ (xsF [[X(m) \ {x}]])n,

136

if l < t. That is, t is the moment when non-zero states starting from the
origin spread beyond cell s with respect to the coordinate axis of variable
x ∈ X. Let h be maximal so that t = kph + u, where p is the characteristic
of F . Let g(x1, . . . , xm) = Muf(x1, . . . , xm). Then

(

akM
k
)ph

g(x1, . . . , xm) ∈ (F [[X(m)]])n \ (xsF [[X(m) \ {x}]])n

and

(

aiM
i
)ph

g(x1, . . . , xm) ∈ (xsF [[X(m) \ {x}]])n when i < k.

That is, with configuration g(x1, . . . , xm) the consecutive powers of M do
not cancel each other out. Therefore, for configuration g(x1, . . . , xm) and
every positive integer s there exists an positive integer ph such that

(f(M))ph

g(x1, . . . , xm) ∈ (F [[X(m)]])n \ (xsF [[X(m) \ {x}]])n.

This means that also f(M) is not ultimately periodic and therefore the rule
it gives is sensitive to initial conditions.

Lemma 8.6.3. Let F be a finite field and M ∈ Mn×n(F [X(m)]). The
cellular automaton ((F n)Zm

, FM) is sensitive to initial conditions if, and
only if, any cellular automaton ((F n)Zm

, FM ′) given by Lemma 8.4.3 is not
nilpotent.

Proof. Assume that ((F n)Zm

, FM) is sensitive to initial conditions. Then
also ((F n)Zm

, FM ′) must be sensitive by Lemma 8.6.2 and therefore it cannot
be nilpotent.

Assume that ((F n)Zm

, FM ′) is not nilpotent. Let the characteristic of
field F be p. Recall that M ′ =

∑2m
i=0 Mi is a sum of commuting matrices with

strictly one-sided neighborhoods. This means that after ph time steps every
cell in the initial configuration which affects a cell in location −→x is located
at least a distance of d(ph) apart from the cell in location −→x . Furthermore,
d(ph) > d(ph−1) for every h > 0. This follows from the fact that phth powers
of M ′ do not contain mixed terms of matrices Mi. That is, the effective cells
will spread arbitrarily far from the cell in location −→x whenever the number
of iterations is a power of the characteristic.

Because ((F n)Zm

, FM ′) was assumed not to be nilpotent, the effective
cells will keep on spreading away from the cell in location −→x and their
number will not drop to zero. Therefore, ((F n)Zm

, FM ′) must be sensitive
so ((F n)Zm

, FM) must also be sensitive by Lemma 8.6.2.

The following theorem gives a simple and practical method to test sen-
sitivity of a given linear rule. The matrix given by Lemma 8.4.3 might
impractical to calculate for Lemma 8.6.3, but Theorem 8.6.4 requires only
powers I,M, . . . ,Mn−1 and their linear combinations to be computed.

137

Theorem 8.6.4. Let F be a finite field and M ∈ Mn×n(F [X(m)]). The
cellular automaton ((F n)Zm

, FM) is sensitive to initial conditions if, and
only if,

1. every non-zero matrix
∑n−1

i=1 aiM
i (where {0} 6= {a1, . . . , an−1} ⊆ F)

is not nilpotent and

2. the characteristic equation λn =
∑n−1

i=1 aiλ
i of matrix M is such that

F 6⊇ {a1, . . . , an−1} ⊆ F [λ].

Proof. Assume first, that both the conditions 1 and 2 hold. Let

λn =
∑

i1,...,im∈Z

f(i1,...,im)(λ)xi1
1 · · · xim

m

be the sum given by the characteristic equation of M rearranged to a Lau-
rent polynomial with coefficients from F [λ]. If condition 1 holds, then ev-
ery matrix f(i1,...,im)(M) is not nilpotent. Suppose that the matrix M was
ultimately periodic (i.e. not sensitive). Then every matrix f(i1,...,im)(M)
would also be ultimately periodic by Lemma 8.6.2. Then there exists a
bound k for all matrices f(i1,...,im)(M) such that every power of a matrix

f(i1,...,im)(M) contains no term with a power higher than xk
j or lower than

x−k
j for any variable xj . That is, the occurrences of powers of any variable

xj remain bounded. Let p be the characteristic of F and choose h > 0 so
that ph > 2k. Then for any t > 0 the non-zero terms in any two non-zero

matrices (f(i1,...,im)(M)xi1
1 · · · xim

m)p
ht

and (f(i′1,...,i′m)(M)x
i′1
1 · · · x

i′m
m)p

ht
do not

overlap. Then it follows that every matrix M npht
in non-zero and the pos-

itive or the negative powers of at least one of the variables x1, . . . , xm will
grow without a bound in matrices Mnpht

when t grows. Hence, the matrix
is not ultimately periodic and the cellular automaton is sensitive to initial
conditions.

Assume second, that at least one of the conditions does not hold. If
condition 1 does not hold, then the matrix is ultimately periodic by Lemma
8.6.2. If condition 2 does not hold, then the matrix is ultimately periodic
because none of the coefficients of the characteristic polynomial are polyno-
mials. Then the powers of any xj or x−1

j do not grow any larger than what

has already been encountered in matrices I,M, . . . ,M n−1.

Theorem 8.6.5. Let L be a finite commutative local ring with identity and
let M ∈ Mn×n(L[X(m)]). Then matrix M defines a sensitive cellular au-
tomaton over state set Ln if, and only if, matrix

N = M + Mn×n(N(L)[X]) ∈ Mn×n(L/N(L)[X(m)])

defines a sensitive cellular automaton over state set (L/N(L))n.

138

Proof. First, assume that N defines a sensitive cellular automaton. This
means that the powers of the variables with coefficients of the form a +
N(L) ∈ L/N(L) where a ∈ U(L) will grow arbitrarily large. Then the
powers of the variables with coefficients from U(L) will grow arbitrarily
large in the powers of M . Therefore also M must be sensitive.

Assume that M defines a sensitive cellular automaton. This means that
the powers of the variables with coefficients from U(L) must grow arbitrarily
large. Then N would be sensitive. If this did not happen, say for some k ∈ N

and every power M l the coefficient a of a non-zero term axi1
1 · · · xim

m found
in M l would be such that a ∈ N(L) whenever |ij | > l for some j, with
1 ≤ j ≤ m. Because of nilpotency of the elements of N(L), the coefficient
a of a non-zero term axi1

1 · · · xim
m found in M l would be such that a = 0

whenever |ij | > l + rnil (N(L)) for some j, with 1 ≤ j ≤ m, which means
that M is not sensitive after all.

Theorem 8.6.6. Let R be a finite commutative ring with identity and M ∈
Mn×n(R[X(m)]). Then it is decidable whether the m-dimensional linear
cellular automaton ((Rn)Zm

, FM) is sensitive to initial conditions or not.

Proof. Because it is decidable whether a linear cellular automaton is nilpo-
tent or not, the claim follows (either by Lemma 8.6.3 or) by Theorem 8.6.4
and Theorem 8.6.5 when the matrix defines a sensitive rule in at least one
of the local rings given by Theorem 8.2.1.

139

140

Appendix A

On Robinson’s tile set

In this appendix the Robinson’s tile set’s structure and its tilings are briefly
reviewed to provide the reader with the details used in Chapter 3.

Robinson’s tile set is constructed in two layers. On the first layer there
are the basic tiles and on the second layer there are the parity tiles.

A.1 The basic tiles

The basic tiles of Robinson’s tile set construction are the ones shown in
Figure A.1 with all their reflected and rotated variants. The tiles which are
rotated or reflected variants of the tile in Figure A.1(a) are called crosses.
The tiles which are rotated or reflected variants of the tiles in Figures A.1(b)–
A.1(e) are called arms. Each tile has a central arrow at the center of each
four sides and possibly a side arrow . A cross is said face the directions of
its side arrows. The arrow that runs through an arm is called the principal
arrow of the arm and the direction of the principal arrow is called the
direction of the arm [50].

(a) A cross. (b) An arm. (c) An arm. (d) An arm. (e) An arm.

Figure A.1: The basic tiles of Robinson [92, p. 182] (with rotations and
reflection omitted).

141

A.2 The parity tiles

A position (x, y) ∈ Z × Z is said to be

1. odd-odd , if (x + 1, y + 1) ∈ 2Z × 2Z,

2. odd-even, if (x + 1, y) ∈ 2Z × 2Z,

3. even-odd , if (x, y + 1) ∈ 2Z × 2Z, and

4. even-even, if (x, y) ∈ 2Z × 2Z.

(a) (b) (c) (d)

Figure A.2: The parity tiles of Robinson [92, p. 185].

The tiles in Figure A.2 are called parity tiles.
The basic tiles and parity tiles are paired (to form a sandwich tile set)

as follows:

1. Crosses are paired with the parity tile in Figures A.2(b) and A.2(c).

2. Horizontal arms are paired with the parity tile in Figures A.2(a) and
A.2(b).

3. Vertical arms are paired with the parity tile in Figures A.2(b) and
A.2(d).

This causes the crosses to appear in alternate columns and in alternate rows,
say in the odd-odd positions [92]. If the odd-odd positions are filled with
crosses, then the odd-even positions are filled with horizontal arms and the
even-odd positions are filled with vertical arms. Both crosses and arms with
any orientation can appear in even-even positions.

A.3 Colors

The arrows in the basic tiles (see Figure A.1) of Robinson’s tile set are
colored as follows [50]:

1. The side arrows of each cross are both red or both blue. The crosses at
odd-odd positions have blue side arrows. In this way the 3×3 squares
are forced to be blue.

142

2. In each arm the horizontal side arrows have the same color and the
vertical side arrows have the same color. In this way the color is
transmitted unchanged through the arm. If an arm contains both
horizontal and vertical side arrows then these side arrows have different
colors.

3. In the neighboring tiles the matching rule is that the meeting arrow
heads and tails must have the same color.

A.4 Square patterns in a valid tiling

Figure A.3: The patterns formed by the side arrows of the cross tiles are
interpreted as red and blue squares.

In a valid tiling the closed pattern consisting of side arrows originating
from four crosses (as shown in Figure A.3) is a square. The squares are
indeed squares and not just rectangles, i.e. their width and height are equal.
Moreover, both the width and the height and of a square are equal to 2n +1
for some n ∈ N.

The parity constraints force the smallest squares to be blue. Because
squares of the same color cannot intersect, it follows that blue squares are
of height 22n+1 + 1, where n ∈ N, and red squares are of height 4n+1 + 1,
where n ∈ N.

There is always four squares of height 2n +1 centered at the four corners
of a square of height 2n+1 + 1 as illustrated in Figure A.4. The four smaller
squares are of different color than the larger square.

Now the tiles in the corners and in the middle of edges of squares can
be identified as subsets of the tile set. For example, a tile in the top left

143

Figure A.4: A red (resp. blue) square of height 2n + 1 is always centered at
a corner of a blue (resp. red) square of height 2n+1 + 1.

corner of a square is a cross with double arrows travelling rightwards and
downwards. A tile in the middle of the left edge of a square has two meeting
horizontal double arrows with the horizontal arrows aligned on the left and
in the middle of the square.

Figure A.5 shows an example of how a blue 9 × 9 square is centered at
the bottom left corner a red 17 × 17 square. Likewise, there are red 5 × 5
squares centered at the corners the blue 9 × 9 square.

In a valid tiling there can exist a single column or a single row arms
which does not intersect any colored square. There exists at most one such
horizontal line and one such vertical line and they can divide the plane into

1. two half planes,

144

Figure A.5: A example of a tile pattern in a valid tiling. A blue 9×9 square
is centered at the bottom left corner of a red 17 × 17 square.

2. a half plane and two quarter planes, or

3. four quarter planes.

Such lines are called fracture lines in [29, p. 199]. The lines could be
though of as to originate from “infinitely large” squares. A cross in such a
line would not be in the center of any colored square. Such a column or row
is called a fault line if the colored squares on opposite sides are not aligned
symmetrically [92, p. 189].

However, fracture lines and even fault lines do not affect the proof of
tiling problem’s undecidability in a negative way. Regardless of the fault
lines, arbitrarily large red squares are always tiled in the different quadrants.
If arbitrarily large areas can be tiled in the quadrants, then the whole plane
can be tiled without fault lines.

145

Likewise, the fault lines do not enable an incorrect simulation of another
tiling on the free areas within squares. That is, the presence of fault lines
does not remove the existence or arbitrarily large combined free areas within
red squares. More precisely, if a free row within a red square were tiled as
if it were non-free (and hence not used for simulation purposes), it would
cause a tiling error by Lemma 3.4.4 (as shown in Figure 3.24) regardless of
the alignment of nearby squares of the same size.

146

Bibliography

[1] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M.
de Espanés, and P. W. K. Rothemund. Combinatorial optimization
problems in self-assembly. In Proceedings 34th Annual ACM Sympo-
sium on Theory of Computing, pages 23–32, 2002.

[2] G. Aggarwal, Q. Cheng, M. H. Goldwasser, M.-Y. Kao, P. M. de Es-
panés, and R. T. Schweller. Complexities for generalized models of
self-assembly. SIAM Journal on Computing, 34:1493–1515, 2005.

[3] S. Amoroso and Y. Patt. Decision procedures for surjectivity and injec-
tivity of parallel maps for tesselation structures. Journal of Computer
System Sciences, 6:448–464, 1972.

[4] H. Baltzer, P. W. Braun, and W. Köhler. Cellular automata models
for vegetation dynamics. Ecological modelling, 107:113–125, 1998.

[5] F. Bao. Cryptanalysis of a new cellular automata cryptosystem. In
ACISP 2003, volume 2727 of Lecture Notes in Computer Science,
pages 416–427. Springer-Verlag, 2003.

[6] C. H. Bennett. Logical reversibility of computation. IBM Journal of
research and development, 6:525–532, 1973.

[7] R. Berger. The undecidability of the domino problem. Mem. Amer.
Math. Soc., 66:1–72, 1966.

[8] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for
Your Mathematical Plays II. Academic Press, 1982.

[9] F. Blanchard and A. Maass. Dynamical properties of expansive one-
sided cellular automata. Israel Journal of Mathematics, 99:149–174,
1997.

[10] F. Blanchard and P. Tisseur. Some properties of cellular automata
with equicontinuity points. Annales de l’Institute Henri Poincaré,
36(5):562–582, 2000.

147

[11] M. Boyle and W. Krieger. Periodic points and automorphisms of the
shift. Trans. Amer. Math. Soc., 302:125–149, 1987.

[12] L. Le Bruyn and M. Van den Bergh. Algebraic properties of linear
cellular automata. Linear Algebra and its Applications, 157:217–234,
1991.

[13] G. Cattaneo, A. Dennunzio, and F. Farina. A full cellular automaton
to simulate predator-prey systems. In ACRI 2006, volume 4173 of
Lecture Notes in Computer Science, pages 446–451. Springer-Verlag,
2006.

[14] G. Cattaneo, E. Formenti, G. Manzini, and L. Margara. Ergodic-
ity, transitivity, and regularity for linear cellular automata over Zm.
Theoretical Computer Science, 233:147–164, 2000.

[15] G. Cattaneo and L. Margara. Topological definitions of chaos applied
to cellular automata dynamics. In MFCS 1998, volume 1450 of Lecture
Notes in Computer Science, pages 816–824. Springer-Verlag, 1998.

[16] A. Clarridge and K. Salomaa. A cryptosystem based on the compo-
sition of reversible cellular automata. In LATA 2009, volume 5457 of
Lecture Notes in Computer Science, pages 314–325. Springer-Verlag,
2009.

[17] B. Codenotti and L. Margara. Transitive cellular automata are sensi-
tive. Amer. Math. Monthly, 103:58–62, 1996.

[18] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for
image and texture generation. In Proceedings of SIGGRAPH 2003,
volume 22 of ACM Transactions of Graphics, pages 287–294, 2003.

[19] M. Cook. Universality in elementary cellular automata. Complex
Systems, 15:1–40, 2004.

[20] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of 3rd Annual ACM Symposium on Theory of Computing,
pages 151–158, 1971.

[21] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. The MIT Press, 1990.

[22] E. Czeizler. The Inverse Neighborhood Problem and Applications of
Welch Sets in Automata Theory. PhD thesis, Turku Centre for Com-
puter Science, 2007.

148

[23] E. Czeizler and J. Kari. A tight linear bound on the neighborhood of
inverse cellular automata. In Proceedings of Automata, Languages and
Programmin 2005, volume 3580 of Lecture Notes in Computer Science,
pages 410–420. Springer-Verlag, 2005.

[24] M. D’amico, G. Manzini, and L. Margara. On computing the entropy
of cellular automata. Theoretical Computer Science, 290:1629–1646,
2003.

[25] M. Davis. Computability and unsolvability. McGraw-Hill, 1958.

[26] R. L. Devaney. An introduction to chaotic dynamical systems.
Addison-Wesley, 1989.

[27] J.-C. Dubacq. How to simulate any Turing machine by reversible one-
dimensional cellular automaton. International Journal of Foundations
of Computer Science, 6(4):395–402, 1995.

[28] B. Durand, E. Formenti, and G. Varouchas. On undecidability of
equicontinuity classification for cellular automata. Discrete Mathe-
matics and Theoretical Computer Science, pages 117–128, 2003.

[29] B. Durand and V. Poupet. Asymptotic cellular complexity. In DLT
2009, volume 5583 of Lecture Notes in Computer Science, pages 195–
206. Springer-Verlag, 2009.

[30] R. Fernando and M. J. Kilgard. The Cg Tutorial. Addison-Wesley,
2003.

[31] M. Finelli, G. Manzini, and L. Margara. Lyapunov exponents ver-
sus expansivity and sensitivity in cellular automata. J. Complexity,
14:210–233, 1998.

[32] E. Formenti, J. Kari, and S. Taati. The most general conservation law
for a cellular automaton. In Proceedings of CSR 2008, volume 5010 of
Lecture Notes in Computer Science, pages 194–203. Springer-Verlag,
2008.

[33] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for
the navier-stokes equation. Physical review letters, 56(14):1505–1508,
1986.

[34] M. Gardner. Mathematical games. Scientific American, 223(4):120–
123, 1970.

[35] M. R. Garey and D. S. Johnson. Computers and intractability.
W. H. Freeman and company, New York, 1979.

149

[36] P. Guan. Cellular automata public key cryptosystem. Complex Sys-
tems, 1:51–57, 1987.

[37] J. Hardy, O. de Pazzis, and Y. Pomeau. Molecular dynamics of a clas-
sical lattice gas: Transport properties and time correlation functions.
Physical review A, 13(5):1949–1961, 1976.

[38] G. Hedlund. Endomorphisms and automorphisms of shift dynamical
systems. Math. Systems Theory, 3:320–375, 1969.

[39] P. Hooper. The undecidability of the Turing machine immortality
problem. The Journal of Symbolic Logic, 31(2):219–234, 1966.

[40] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[41] T. W. Hungerford. Algebra. Holt, Rinehart and Winston, 1974.

[42] L. P. Hurd, J. Kari, and K. Culik. The topological entropy of cellular
automata is uncomputable. Ergodic Theory and Dynamical Systems,
12:255–265, 1992.

[43] M. Ito, N. Osato, and M. Nasu. Linear cellular automata over Zm.
Journal of Computer System Sciences, 27:125–140, 1983.

[44] I. Kaplansky. Commutative Rings. The University of Chicago Press,
1974.

[45] J. Kari. Cryptosystems based on reversible cellular automata.
Manuscript, 1992.

[46] J. Kari. The nilpotency problem of one-dimensional cellular automata.
SIAM Journal on Computing, 21:571–586, 1992.

[47] J. Kari. Reversibility and surjectivity problems of cellular automata.
Journal of Computer System Sciences, 48:149–182, 1994.

[48] J. Kari. Rice’s theorem for the limit sets of cellular automata. Theo-
retical Computer Science, 127:229–254, 1994.

[49] J. Kari. Linear cellular automata with multiple state variables. In
STACS 2000, volume 1770 of Lecture Notes in Computer Science,
pages 110–121. Springer-Verlag, 2000.

[50] J. Kari. Tilings and patterns. Lecture notes, University of Turku,
2004.

[51] J. Kari. Theory of cellular automata: A survey. Theoretical Computer
Science, 334:3–33, 2005.

150

[52] J. Kari. Cellular automata. Lecture notes, University of Turku, 2009.

[53] J. Kari and V. Lukkarila. Some undecidable dynamical properties for
one-dimensional reversible cellular automata. In Algorithmic Biopro-
cesses, pages 639–660. Springer, 2009.

[54] J. Kari and N. Ollinger. Periodicity and immortality in reversible
computing. In MFCS 2008, volume 5162 of Lecture Notes in Computer
Science, pages 419–430. Springer-Verlag, 2008.

[55] J. Kari and P. Papasoglu. Deterministic aperiodic tile sets. Geometric
and functional analysis, 9:353–369, 1999.

[56] S. C. Kleene. A symmetric form of Gödel’s theorem. Indagationes
Mathematicae, 12:244–246, 1950.

[57] C. Knudsen. Chaos without nonperiodicity. The American Mathemat-
ical Monthly, 101:563–565, 1994.

[58] P. Kurka. Languages, equicontinuity and attractors in cellular au-
tomata. Ergodic Theory and Dynamical Systems, 17:417–433, 1997.

[59] P. Kurka. Topological dynamics of cellular automata. In B. Markus
and J. Rosenthal, editors, Codes, Systems and Graphical models, vol-
ume 123 of IMA Volumes in Mathematics and its Applications, pages
447–498. Springer-Verlag, 2001.

[60] A. Lagae, J. Kari, and P. Dutré. Aperiodic sets
of square tiles with colored corners. Technical Re-
port CW460, Katholieke Universiteit Leuven, 2006.
www.cs.kuleuven.ac.be/publicaties/rapporten/cw/cw460.html.

[61] M. Lagoudakis and T. LaBean. 2D DNA self-assembly for satisfia-
bility. In Proceedings of the 5th DIMACS Workshop on DNA Based
Computers held at MIT, Cambridge, 1999.

[62] Y. Lecerf. Machines de Turing réversibles. C. R. Acad. Sci. Paris,
257:2597–2600, 1963.

[63] P. Di Lena. Decidable propertied for regular cellular automata. In
Fourth IFIP conference on Theoretical Computer Science - TCS 2006,
pages 185–196. Springer-Verlag, 2006.

[64] W. Li, Z. Fan, X. Wei, and A. Kaufman. Flow simulation with complex
boundaries. In M. Pharr, editor, GPU Gems 2, chapter 47, pages 747–
764. Addison-Wesley, 2004.

151

[65] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, 1995.

[66] V. Lukkarila. On the tiling problem and reversible cellular automata.
Technical Report 788, TUCS, 2006.

[67] V. Lukkarila. The square tiling problem is NP-complete for determin-
istic tile sets. Technical Report 754, TUCS, 2006.

[68] V. Lukkarila. The 4-way deterministic tiling problem is undecidable. In
M. Hirvensalo, V. Halava, I. Potapov, and J. Kari, editors, Proceedings
of the Satellite Workshops of DLT 2007, volume 45 of TUCS general
publications, pages 100–105. TUCS, 2007.

[69] V. Lukkarila. On undecidability of sensitivity of reversible cellular au-
tomata. In A. Adamatzky, R. Alonso-Sanz, A. Lawniczak, G. J. Mar-
tinez, K. Morita, and T. Worsch, editors, AUTOMATA 2008, pages
100–105. Luniver Press, 2008.

[70] V. Lukkarila. The 4-way deterministic tiling problem is undecidable.
Theoretical Computer Science, 410:1516–1533, 2009.

[71] V. Lukkarila. Sensitivity and topological mixing are undecidable for
reversible one-dimensional cellular automata. Journal of Cellular Au-
tomata, 5(3):241–272, 2010.

[72] M. Madjarova, M. Kakuta, M. Yamaguchi, and N. Ohyama. Two-
dimensional cellular automata for pseudo-random pattern generators
and for highly secure stream ciphers. Optical Review, 5(3):143–151,
1998.

[73] D. Makowiec. On modeling of the heart pacemaker by cellular
automata — topology issue. In A. Adamatzky, R. Alonso-Sanz,
A. Lawniczak, G. J. Martinez, K. Morita, and T. Worsch, editors,
AUTOMATA 2008, pages 586–600. Luniver Press, 2008.

[74] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[75] G. Manzini and L. Margara. Invertible linear cellular automata over
Zm: Algorithmic and dynamical aspects. Journal of Computer and
System Sciences, 56:60–67, 1998.

[76] G. Manzini and L. Margara. A complete and efficiently computable
topological classification of d-dimensional linear cellular automata over
Zm. Theoretical Computer Science, 221:157–177, 1999.

[77] C. R. F. Maunder. Algebraic Topology. Van Nostrand Reinhold Com-
pany, London, 1970.

152

[78] N. McCoy. Rings and Ideals. 1948.

[79] B. R. McDonald. Finite rings with identity. Marcel Dekker, Inc., 1974.

[80] E. F. Moore. Machine models of self-reproduction. In Proceedings
of the Symposium in Applied Mathematics, volume 14, pages 17–33,
1962.

[81] K. Morita. Universality of a reversible two-counter machine. Theoret-
ical Computer Science, 168:303–320, 1996.

[82] K. Morita and M. Harao. Computation universality of one-dimensional
reversible (injective) cellular automata. Trans. IEICE Japan, E72:758–
762, 1989.

[83] K. Morita and Y. Yamaguchi. A universal reversible turing machine.
In MCU 2007, volume 4664 of Lecture Notes in Computer Science,
pages 90–98, 2007.

[84] J. Myhill. The converse to Moore’s Garden-of-Eden theorem. In Pro-
ceedings of the American Mathematical Society, volume 14, pages 685–
686, 1963.

[85] M. Nasu. Textile systems for endomorphisms and automorphisms of
the shift, volume 546 of Mem. Amer. Math. Soc. AMS, 1995.

[86] M. Nasu. Textile systems and one-sided resolving automorphisms and
endomorphisms of the shift. Ergodic Theory and Dynamical Systems,
28:167–209, 2008.

[87] D. G. Northcott. Ideal Theory, volume 42 of Cambridge Tracts in
Mathematics and Mathematical Physics. Cambridge University Press,
1953.

[88] C. M. Papadimitrou. Computational complexity. Addison-Wesley,
1994.

[89] F. Pellacini and K. Vidimce. Cinematic lighting. In R. Fernando, ed-
itor, GPU Gems 1, chapter 10, pages 167–183. Addison-Wesley, 2004.

[90] G. J. Pettet, C. P. Please, R. L. Colasanti, R. A. Dawson, and
J. Malda. A cellular automaton simulation of calcium driven tissue
differentiation in human skin equivalent models. In A. Adamatzky,
R. Alonso-Sanz, A. Lawniczak, G. J. Martinez, K. Morita, and
T. Worsch, editors, AUTOMATA 2008, pages 601–610. Luniver Press,
2008.

153

[91] M. O. Rabin. On recursively enumerable and arithmetic models of set
theory. The Journal of Symbolic Logic, 23(4):408–416, 1958.

[92] R. M. Robinson. Undecidability and nonperiodicity for tilings of the
plane. Inventiones Mathematicae, 12:177–209, 1971.

[93] H. Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. MIT Press, 1987.

[94] R. J. Rost. OpenGL Shading Language. Addison-Wesley, second edi-
tion, 2007.

[95] M. Sablik and G. Theyssier. Topological dynamics of 2D cellular au-
tomata. In A. Beckmann and C. Dimitracopoulos, editors, CiE 2008,
volume 5028 of Lecture Notes in Computer Science, pages 523–532.
Springer-Verlag, 2008.

[96] T. Sato. Ergodicity of linear cellular automata over Zm. Information
Processing Letters, 61:169–172, 1997.

[97] S. Sen, C. Shaw, D. R. Chowdhuri, N. Ganguly, and P. P. Chaudhuri.
Cellular automata based cryptosystem (CAC). In ICICS 2002, volume
2513 of Lecture Notes in Computer Science, pages 303–314. Springer-
Verlag, 2002.

[98] M. A. Shereshevsky. Expansiveness, entropy and polynomial growth
for groups acting on subshifts by automorphisms. Indag. Math. N. S.,
4:203–210, 1993.

[99] D. Shreier, M. Woo, J. Neider, and T. Davis. OpenGL Programming
Guide. Addison-Wesley, sixth edition, 2008.

[100] D. Soloveichik, M. Cook, and E. Winfree. Combining self-healing and
proofreading in self-assembly. Natural Computing, 7:203–218, 2008.

[101] K. Sutner. De Bruijn graphs and linear cellular automata. Complex
Systems, 5:19–31, 1991.

[102] R. Tao and S. Chen. On finite automaton public-key cryptosystem.
Theoretical Computer Science, 226:143–172, 1999.

[103] J. von Neumann. Theory of Self-Reproducing Automata. University
of Illinois Press, 1966.

[104] H. Wang. Proving theorems by pattern recognition II. Bell Systems
Technical Journal, 40:1–41, 1961.

154

[105] J. Watrous. On one-dimensional quantum cellular automata. In Pro-
ceedings of 36th FOCS, pages 528–537, 1995.

[106] L.-Y. Wei. Tile based texture mapping. In M. Pharr, editor, GPU
Gems 2, chapter 12, pages 189–199. Addison-Wesley, 2004.

[107] L.-Y. Wei. Tile-based texture mapping on graphics hardware. In
T. Akenine-Möller and M. McCool, editors, Proceedings of Graphics
Hardware 2004, pages 55–63, 2004.

[108] E. Winfree. Algorithmic self-assembly of DNA. PhD thesis, California
Institute of Technology, 1998.

[109] E. Winfree. Self-healing tile sets. In J. Chen, N. Jonoska, and
G. Rozenberg, editors, Nanotechnology: science and computation,
pages 55–78. Springer-Verlag, 2006.

[110] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

155

156

Index

(AZ, F), 101, 105

(BZ, G), 105
(CZ,H), 114, 115

(T ∪ T {, FT), 80, 84
((Rn)Zm

, FM), 126

A, 101

A1, 94
A2, 97

A3, 101
A4, 102, 103

AM, 75
B, 102

C, 114
E, 101

F , 101
FM , 126

FT , 80

G, 102
H, 94, 114

L + N(L)[λ], 130
L[λ] \ (L + N(L)[λ]), 131

MM, 74
N , 112

N(R), 128
P (F), 23

R[X], 126
R[[X]], 126

R[[x1, x
−1
1 , . . . , xm, x−1

m]], 126

SM, 75
T {, 80

T−1, 9
T n×n, 27

T1, 85
T2, 85

TL, 94

TR, 94

TM, 76, 78
U(R), 128

Y X , 15
Z(R), 128

Γ, 94

⇐, 12
⇔, 12

⇒, 12
Σ∗, 5

tE , 26
tN , 26

tS , 26
tW , 26

X(m), 127
X[m], 127

�, 101

�, 102
N, 95

H, 95
J, 97, 101

I, 97, 101
degx f(x1, . . . , xm), 126

δ, 9
char (R), 124

NP, 12, 13
NP-complete, 2, 12, 13, 62, 64, 69

P, 12, 13

co-NP, 12
co-NP-complete, 67

♦, 101, 102
¬, 12

nil (A), 124
nil (a), 124

/, 97

157

J, 112, 113

2X , 14
Σk(F), 23
σ(x), 15
�, 102
ε, see word, empty, 94
ε-ball, see ball
ε-neighborhood, see ball
., 97
I, 112, 113

∨, 12
∧, 12
c[i, j], 17
f−1(X), 14
fT , 80
q0, 94
tb, 85
t+u , 105
t−u , 108

algorithm, 5
decision, 5
semi-, 5

alphabet, 5
anticipation, 16, 22

ball, 14
blocking word, see word, blocking
Boolean function, see function, Boolean

CA, see cellular automaton
Cantor topology, see topology, Can-

tor
cell, 16
cellular automata

reversible, 23
cellular automaton, 1, see also dy-

namical system, 15
d-dimensional, 16
as a dynamical system, 17
bijective, 17, 17
chaotic, 121
dimension of, 16
equicontinuous, 2, 20

ergodic, 2

expansive, 3, 22, 84, 85

left, 3, 22, 85, 86, 88

positively, 3

right, 22, 88, 127

having dense orbit, 21

having dense periodic points,
23

immortal

globally, 83

locally, 83

injective, 17, 17, 84, 127

inverse, 17

invertible, see reversible

linear, 4

multiple state variable, 125

single state variable, 125

marker, 25

nilpotent, 20, 127

one-dimensional, 16

one-sided, 16, 127

positively expansive, 22

positively left expansive, 22

positively right expansive, 22

regular, 24, 24

reversible, 17, 17, 24, 25, 81,
84, 85, 110, 115, 120, 121

sensitive, 2, 3, 120, 121

surjective, 17, 17, 23, 84, 127

topologically mixing, 3, 84–
86, 88, 120, 121

transitive, 2, 3, 121

two-sided, 16

ultimately periodic, 20

Cg, 30

chaos, see dynamical system, chaotic

characteristic

of a ring, 124

Church–Turing thesis, 6

clause, 13

color

of a Wang tile edge, 25

158

configuration, 1, see Turing ma-
chine, configuration of, 15

quiescent, 20, 28

conjugacy, 15
connective, 12

conservation law, 20

corner tile, see tile, corner
cover

open, 13

cryptography
private-key, 25

public-key, 25

cryptosystem, 25

decidability of

injectivity
for 1D CA, 2, 17

surjectivity

for 1D CA, 2, 17
decidable problem, see problem,

decidable

decision algorithm, see algorithm,
decision

diagonal, 73

DirectX, 30

distance, see metric
dynamical system, 14

chaotic, 23

conjugate, 15
equicontinuous, 20

expansive, 21

having dense orbit, 23, 23
having dense periodic points,

23, 23

injective, 94

invertible, see dynamical sys-
tem, reversible

mixing, see dynamical system,
topologically mixing

periodic, 14
positively expansive, 21

reversible, 14

sensitive, 20, 23

sensitive to initial conditions,
see dynamical system, sen-
sitive

shift, 15

topologically mixing, 21

topologically transitive, see dy-
namical system, transitive

transitive, 21, 23

ultimately periodic, 14

element

nilpotent, 124

entropy

topological, 20

equicontinuity

with respect to sensitivity, 21

equicontinuity point, 19, 105

error state, see state, error

expression

Boolean, 12

satisfied, 13

formula

Boolean, see expression, Boolean

function

Boolean, 12

computable, 10

continuous, 14

domain of, 12

global, see rule, global

glue, see mathematical self-assembly,
glue function in

injective, 17

local, see rule, local

non-recursive, see function, un-
computable

one-to-one, see function, in-
jective

onto, see function, surjective

range of, 12

recursive, see function, com-
putable

shift, 15, 22

159

surjective, 17
uncomputable, 10

Game of Life, 18, 30
global function, see function, global
global rule, see rule, global

GLSL, 30
glue function, 28
GPU, 30

High-Level Shader Language, see
HLSL

HLSL, 30

homeomorphism, 14, 14

instantaneous description, see Tur-
ing machine, configuration
of

language, 5

polynomially equivalent, 12
Lattice Boltzmann Method, 30
lattice gas, 25

lattice gas automaton, see lattice
gas

Laurent polynomial, see polyno-
mial, Laurent

Laurent series, see series, Laurent
layer, see tile set, sandwich, layer

of

LBM, see Lattice Boltzmann Method
Life, see Game of Life
literal, 12
local function, see rule, local

local rule, see rule, local

mathematical self-assembly, 28, 61
glue function in, 61
seed tile in, 61

temperature in, 61
terminal tile cluster in, 61

matrix
companion, 134

memory, 16, 22

metric, 13
Euclidean, 14

metric space, see space, metric
model

unique shape, 62
MSLCA, see cellular automaton,

linear, multiple state vari-
able

neighbor, 16
neighborhood, 13, 15, 94

one-sided, 126
open, see neighborhood, 16
strictly one-sided, 126

neighborhood vector, see neighbor-
hood

nilpotency
of a set, 124
of an element, 124

OpenGL, 30
OpenGL Shading Language, see

GLSL

periodic tiling problem, see prob-
lem, square tiling, see prob-
lem, periodic tiling

polynomial
characteristic, 127, 138
Laurent, 123, 125, 126

position
even-even, 142
even-odd, 142
odd-even, 142
odd-odd, 142

problem
cellular automaton global im-

mortality, 83–85
cellular automaton local im-

mortality, 83, 85
decidable, 10
domino, see problem, tiling,

see problem, tiling
halting, 11

160

membership, 10
periodic tiling, 61, 66

satisfiability, 12, 13, 62, 63,
65–67, 69

solvable, see problem, decid-
able

square tiling, 2, 60, 64

tiling, 27, 31, 51, 71, 79
with a seed tile, 27, 43, 77

Turing machine halting, 7, 11,
77, 93, 101

Turing machine immortality,
11, 20, 83

is semi-decidable, 11

undecidable, 10, 101

unique shape, 62, 67
unsolvable, see problem, un-

decidable

radius, 16, 16

RCA, see cellular automaton, re-
versible

RenderMan, 30
ring

local, 124

Robinson’s tile set, 31, 33, 35
arm in, 31, 32, 141, 141

central arrow of, 141

direction of, 141
principal arrow of, 141

side arrow of, 141

basic tile in, 141, 141
cross in, 31, 32, 141, 141, 144

central arrow of, 141
directions of, 141

principal arrow of, 141

side arrow of, 141
double arrows of tiles in, 31

parity tile in, 141, 142, 142

single arrows of tiles in, 31
Robinson’s tiling

fault line in, 145

fracture line in, 55, 145

free column in, 51, 52, 53, 56

free row in, 51, 52, 53, 56, 146

free tile in, 53, 53, 56

square in, 143
RTM, see Turing machine, reversible

rule
global, 15

local, 1, 15

inverse of, 94
Rule 110, 18

SAT, see problem, satisfiability

satisfiability problem, see problem,
satisfiability

seed tile, 28
semi-algorithm, see algorithm, semi-

sensitivity
with respect to equicontinu-

ity, 21

sensitivity constant, 20

series
Laurent, 126, 126

set

clopen, 13, 16, 88
closed, 13

decidable, see set, recursive

dense, 23
nilpotent, 124

open, 13, 14
power, 14

recursive, 10

recursively enumerable, 10
recursively inseparable, 10

semi-decidable, see set, recur-
sively enumerable

semi-solvable, see set, recur-
sive

solvable, see set, recursive

state, 15
tile, see tile set

SFT, see subshift, of finite type

shader, 30

161

shading language, 30
shift, 15

full, 15
one-sided, 15
two-sided, 15

shift dynamical system, see dy-
namical system, shift

signal, 91
activation, 93, 102, 103, 104

type 1, 102
type 2, 102

border, 93, 102, 103, 104

active, 102, 105, 108
inactive, 102

bouncing, 91
colliding, 91

decision, 78
error, 93, 98
move, 73
shift, 111, 112, 113, 114

left, 112
right, 112

verification, 97

simulation area, 95
left border of, 95
right border of, 95

simulation error, 93, 99
solvable problem, see problem, de-

cidable
space

discrete, 14
metric, 14

metrizable, 14
shift, see shift
topological, 13, 14

compact, 13
square tiling tile set, 63

clause tile of, 63
seed tile of, 63

valuation tile of, 63
SSLCA, see cellular automaton, lin-

ear, single state variable
state

error, 102
left tape, 94

quiescent, 20, 20, 28, 83

right tape, 94
state set, see set, state

subcover

finite, 13
subshift, 15

column, 23

of finite type, 15, 22, 24
of order n, 15

sofic, 24

temperature, 28, see mathemati-
cal self-assembly, temper-
ature in

texture, 29
tile, 25

contained in a tiling, see tiling,
contains a tile

corner, 68

east edge of, 25

north edge of, 25
sandwich, 26

south edge of, 25

west edge of, 25
tile assembly model, 28

tile homomorphic image, 27

tile homomorphism, 27, 33
tile set, 26

n × n, 26, 27

2-way deterministic, 2, 26, 71,
73, 76–79

4-way deterministic, 2, 26, 33,
34, 38, 42, 43, 51

aperiodic, 2, 26, 31, 33

Kari’s and Papasoglu’s, 33
NE-deterministic, 26

NW-deterministic, 26

Robinson’s, see Robinson’s tile
set

sandwich, 26

layer of, 26

162

SE-deterministic, 26
self-healing, 29
square tiling, see square tiling

tile set
SW-deterministic, 26

tiling, 26
contains a tile, 27
doubly periodic, 26

homomorphic image of, 27
non-periodic, 2, 26
periodic, 26
valid, 26, 33, 39, 42, 43

time, 11
time complexity function, 11
TM, see Turing machine

topological mixing, 3
topology, 13, 14

Cantor, 17
discrete, 14

transformation
polynomial time, 12

translation, 17
truth assignment, 12, 13
Turing machine, 6, 34, 73, 75–77,

81
computes a function, 12
configuration of, 7

finite, 7
immortal, 11

infinite, 7
mortal, 11

deterministic, 9
empty tape letter of, 6
head of, 6
initial state of, 6
injective, 9

instantaneous description, see
Turing machine, configu-
ration of

nondeterministic, 9, 78
polynomial time, 11
read-write head of, see Turing

machine, head of

read-write head state of, see
Turing machine, state of

red-write head of, 7

reverse of, 10
reversible, 10

state of, 6

state set of, 6
tape

left direction of, 7
right direction of, 7

tape alphabet of, 6

tape of
empty, 7

transition function of, 9

transition of, 6
reverse of, 9

transition table of, 6
reverse of, 9

Turing machine tile set

action tile in, 45, 46, 73, 74,
74

alphabet tile in, 46, 46, 48,
50, 75, 75

merging tile in, 45, 46, 74, 74

move tile in, 47, 48, 50, 74

starting tile in, 46, 46, 75, 76

undecidability of

chaos

for 1D RCA, 121
conservation law

for 1D CA, 20

equicontinuity
for 1D CA, 2, 20

for 1D RCA, 2, 20
global immortality

for RCA, 84, 85

immortality
for RTM, 11, 20

for TM, 11

injectivity
for 2D CA, 2, 17

of 2D CA, 25

163

left expansivity, 88
local immortality

for RCA, 85

nilpotency
for 1D CA, 1, 20

regularity

for 1D CA, 24

for 1D RCA, 24
right expansivity, 88

sensitivity

for 1D CA, 2, 20
for 1D RCA, 110, 120, 121

surjectivity

for 2D CA, 2, 17

tiling problem, 2
for 2-way deterministic tile

sets, 79

for 4-way deterministic tile
set, 51

for determinism by any two
edges, 52

tiling problem with a seed tile

for 2-way deterministic tile
sets, 77

for 4-way deterministic tile
sets, 43

topological entropy

for 1D CA, 20
topological mixing

for 1D RCA, 120, 121

transitivity

for 1D RCA, 121
Turing machine halting prob-

lem, 11

undecidable problem, see problem,
undecidable

unique shape problem, see prob-
lem, unique shape

unsolvable problem, see problem,
undecidable

variable

Boolean, 12

Wang tile, see tile
Wang tile set, see tile set
Wolfram number, 19
word, 5

blocking, 20, 105
empty, 5

164

95. Kim Solin
96. Tomi Westerlund
97. Kalle Saari
98. Tomi Kärki
99. Markus M. Mäkelä

100. Roope Vehkalahti

101. Anne-Maria Ernvall-Hytönen

102. Chang Li
103. Tapio Pahikkala

104. Denis Shestakov
105. Sampo Pyysalo
106. Anna Sell
107. Dorina Marghescu

108. Tero Säntti

109. Kari Salonen
110. Pontus Boström

111. Camilla J. Hollanti

112. Heidi Himmanen
113. Sébastien Lafond

114. Evgeni Tsivtsivadze
115. Petri Salmela

116. Siamak Taati
117. Vladimir Rogojin

118. Alexey Dudkov
119. Janne Savela

120. Kristian Nybom
121. Johanna Tuominen
122. Teijo Lehtonen
123. Eeva Suvitie

124. Linda Mannila

125. Hanna Suominen

126. Tuomo Saarni
127. Johannes Eriksson
128. Tero Jokela

129. Ville Lukkarila

, Abstract Algebra of Program Refinement

, Time Aware Modelling and Analysis of Systems-on-Chip

, On the Frequency and Periodicity of Infinite Words

, Similarity Relations on Words: Relational Codes and Periods

, Essays on Software Product Development: A Strategic

Management Viewpoint

, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations

, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms

, Parallelism and Complexity in Gene Assembly

, New Kernel Functions and Learning Methods for Text and Data

Mining

, Search Interfaces on the Web: Querying and Characterizing

, A Dependency Parsing Approach to Biomedical Text Mining

, Mobile Digital Calendars in Knowledge Work

, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks

, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems

, Setup Optimization in High-Mix Surface Mount PCB Assembly

, Formal Design and Verification of Systems Using Domain-

Specific Languages

, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs

, On Transmission System Design for Wireless Broadcasting

, Simulation of Embedded Systems for Energy Consumption

Estimation

, Learning Preferences with Kernel-Based Methods

, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method

, Conservation Laws in Cellular Automata

, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation

, Chip and Signature Interleaving in DS CDMA Systems

, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels

, Low-Density Parity-Check Codes for Wireless Datacast Networks

, Formal Power Analysis of Systems-on-Chip

, On Fault Tolerance Methods for Networks-on-Chip

, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms

, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation

, Machine Learning and Clinical Text: Supporting Health

Information Flow

, Segmental Durations of Speech

, Tool-Supported Invariant-Based Programming

, Design and Analysis of Forward Error Control Coding and Signaling

for Guaranteeing QoS in Wireless Broadcast Systems

, On Undecidable Dynamical Properties of Reversible One-

Dimensional Cellular Automata

Turku Centre for Computer Science

TUCS Dissertations

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

ISBN 978-952-12-2464-5

ISSN 1239-1883

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics

Department of Information Technologies

Institute of Information Systems Sciences

�

�

�

�

V
ille

 L
u
k
k
a
rila

O
n
 U

n
d
e
c
id

a
b
le

 D
y
n
a
m

ic
a
l
P
ro

p
e
rtie

s
 o

f R
e
v
e
rs

ib
le

 O
n
e
-D

im
e
n
s
io

n
a
l
C
e
llu

la
r A

u
to

m
a
ta

