
Turku Centre for Computer Science

TUCS Dissertations
No 148, November 2012

Tuomas Mäkilä

Software Development Process
Modeling

Developers Perspective to Contemporary
Modeling Techniques

It was a dark and stormy night.

Software Development
Process Modeling
Developers Perspective to

Contemporary Modeling Techniques

Tuomas Mäkilä

To be presented, with the permission of the Faculty of Mathematics and Natural
Sciences of the University of Turku, for public criticism in Auditorium Lambda on

November 2, 2012, at 12 noon.

University of Turku
Department of Information Technology &

Business and Innovation Development Unit
20014 Turku, Finland

2012

Supervisors

Docent Timo Knuutila
Business and Innovation Development Unit
University of Turku
FIN-20014 Turku
Finland

Professor Ville Leppänen
Department of Information Technology
University of Turku
FIN-20014 Turku
Finland

Reviewers

Professor Ivan Porres
Department of Information Technologies
Åbo Akademi University
Joukahainengatan 3-5, FIN-20520 Åbo
Finland

Professor Dmitry V. Koznov
Mathematics and Mechanics Faculty
St. Petersburg State University
198504, Universitetsky pr., 28, Stary Peterhof
Russia

Opponent

Professor Hannu Jaakkola
Tampere University of Technology, Pori
P.O.Box 300, FIN-28101 Pori
Finland

ISBN 978-952-12-2790-5
ISSN 1239-1883

Abstract

Formal software development processes and well-defined development methodolo-
gies are nowadays seen as the definite way to produce high-quality software within
time-limits and budgets. The variety of such high-level methodologies is huge
ranging from rigorous process frameworks like CMMI and RUP to more light-
weight agile methodologies. The need for managing this variety and the fact that
practically every software development organization has its own unique set of de-
velopment processes and methods have created a profession of software process
engineers. Different kinds of informal and formal software process modeling lan-
guages are essential tools for process engineers. These are used to define processes
in a way which allows easy management of processes, for example process dis-
semination, process tailoring and process enactment.

The process modeling languages are usually used as a tool for process engi-
neering where the main focus is on the processes themselves. This dissertation
has a different emphasis. The dissertation analyses modern software development
process modeling from the software developers’ point of view. The goal of the
dissertation is to investigate whether the software process modeling and the soft-
ware process models aid software developers in their day-to-day work and what are
the main mechanisms for this. The focus of the work is on the Software Process
Engineering Metamodel (SPEM) framework which is currently one of the most
influential process modeling notations in software engineering.

The research theme is elaborated through six scientific articles which repre-
sent the dissertation research done with process modeling during an approximately
five year period. The research follows the classical engineering research discipline
where the current situation is analyzed, a potentially better solution is developed
and finally its implications are analyzed. The research applies a variety of differ-
ent research techniques ranging from literature surveys to qualitative studies done
amongst software practitioners.

The key finding of the dissertation is that software process modeling notations
and techniques are usually developed in process engineering terms. As a conse-
quence the connection between the process models and actual development work
is loose. In addition, the modeling standards like SPEM are partially incomplete
when it comes to pragmatic process modeling needs, like light-weight modeling
and combining pre-defined process components. This leads to a situation, where

i

the full potential of process modeling techniques for aiding the daily development
activities can not be achieved.

Despite these difficulties the dissertation shows that it is possible to use model-
ing standards like SPEM to aid software developers in their work. The dissertation
presents a light-weight modeling technique, which software development teams
can use to quickly analyze their work practices in a more objective manner. The
dissertation also shows how process modeling can be used to more easily com-
pare different software development situations and to analyze their differences in a
systematic way. Models also help to share this knowledge with others.

A qualitative study done amongst Finnish software practitioners verifies the
conclusions of other studies in the dissertation. Although processes and devel-
opment methodologies are seen as an essential part of software development, the
process modeling techniques are rarely used during the daily development work.
However, the potential of these techniques intrigues the practitioners.

As a conclusion the dissertation shows that process modeling techniques, most
commonly used as tools for process engineers, can also be used as tools for organiz-
ing the daily software development work. This work presents theoretical solutions
for bringing the process modeling closer to the ground-level software development
activities. These theories are proven feasible by presenting several case studies
where the modeling techniques are used e.g. to find differences in the work meth-
ods of the members of a software team and to share the process knowledge to a
wider audience.

ii

Acknowledgements

This dissertation is published about three years after its latest article. At the end
of the day, I’m the only person responsible for the delay. However, I have been
working at the University of Turku since 2004 and there has been years when I
have worked as a professional, full-time teacher and acted as a hobbyist, week-
end doctoral student. Luckily, the things are getting better for the future doctoral
candidates working at the University of Turku.

Despite the minor critique, the fact is that the University of Turku enabled me
to fulfill my dreams and write this dissertation. In addition to my home univer-
sity, Turku Centre for Computer Science supported my conference trips and the
publication of the dissertation book. I am also grateful of a grant from the Nokia
Foundation which helped me financially during the dissertation work. The last
organization I wish to thank is Neoxen Systems whose research project with the
University of Turku basically started my dissertation work and gave its initial di-
rection.

There is only one name on the cover of this book but whole lot more behind it.
Supervisors Ville Leppänen and Timo Knuutila have dragged me through the learn-
ing experience called the doctoral studies. Without their effort this book would not
probably exists. I would also like to thank reviewers Ivan Porres and Dmitry V.
Koznov for their invaluable comments and patience during the review process, and
Hannu Jaakkola for kindly agreeing to act as an official opponent. I am also grate-
ful for professor Olli Nevalainen of his feedback and comments.

This dissertation would not be possible without the research group and the
co-authors interested in the same topic. I wish to express my special gratitude to
Antero Järvi and Harri Hakonen, who mentored and guided me by example through
the process that led to this dissertation. The other co-authors, Luka Milovanov,
Henrik Terävä, Jouni Smed and Andy Best, gave their valuable contribution to the
respective articles.

I also wish to mention Joanna Airiskallio, who checked the language of the
dissertation, and Tomi ”bgt” Mäntylä, who handled the practicalities concerning
the printing and the publication of the book.

Besides the colleagues I wish to thank my family and friends who had to listen
me lecturing about the dissertation topic all these years. My sister Annastiina and
her cohabitant Toni Selkälä cheered me forward and gave tips on scientific think-

iii

ing. My parents Sirpa and Tapio gave me food and shelter, when I was young,
and my parents-in-law Leena and Ilkka Saarinen gave my wife and son food and
shelter, when I needed peace to write the dissertation.

Susanna, Milo, and Nemo, you are important to me.

Turku, September 28th 2012,

Tuomas Mäkilä

iv

List of original publications

1. Antero Järvi and Tuomas Mäkilä. Observations on Modeling Software Pro-
cesses with SPEM Process Components. In Proceedings of The 9th Sympo-
sium on Programming Languages and Software Tools, pages 59–69. Uni-
versity of Tartu, 2005.

2. Tuomas Mäkilä and Antero Järvi. Spemmet – A Tool for Modeling Software
Processes with SPEM. In Proceedings of the 9th International Conference
on Information Systems Implementation and Modelling, ISIM 06, pages 87–
94. MARQ, 2006.

3. Antero Järvi, Tuomas Mäkilä and Harri Hakonen. Changing Role of SPI
– Opportunities and Challenges of Process Modeling. In Proceedings of
the 13th European Conference on Software Process Improvement (EuroSPI),
pages 135–146. Springer-Verlag, 2006.

4. Tuomas Mäkilä, Antero Järvi and Luka Milovanov. Light-weight Approach
for Software Process Modeling – A Case Study. In Proceedings of New Ex-
ploratory Technologies 2007, pages 12–16. Korea Electronic Forum, 2007.

5. Tuomas Mäkilä, Harri Hakonen, Jouni Smed and Andy Best. Three Ap-
proaches Towards Teaching Game Production. M. Kankaanranta, P. Neit-
taanmäki (Eds.), Design and Use of Serious Games, Intelligent Systems,
Control, and Automation: Science and Engineering, pages 3–18. Springer
Netherlands, 2009.

6. Tuomas Mäkilä and Henrik Terävä. Survey of Practitioners Attitudes to Soft-
ware Process Modeling. In Industrial Proceedings of the 16th European Con-
ference on Software Process Improvement (EuroSPI), pages 12.25–12.33.
Delta, 2009.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Theme and Questions 2
1.3 Contents . 4

2 Background 5
2.1 Software Development Processes 5
2.2 Software Development Process Modeling 13

3 Survey on Software Development Process Modeling 25
3.1 Key Publications . 26
3.2 Summary of Survey . 30

4 Research Method 33
4.1 Software Engineering Research Methods 33
4.2 Methods of the Dissertation Study 36

5 Articles 39
5.1 Observations on Modeling Software Processes with

SPEM Process Components . 39
5.2 Spemmet — A Tool for Modeling Software Processes with SPEM 40
5.3 Changing Role of SPI — Opportunities and Challenges of Process

Modeling . 41
5.4 Light-weight Approach for Software Process Modeling — A Case

Study . 43
5.5 Three Approaches Towards Teaching Game Production 44
5.6 Survey of Practitioners’ Attitudes To Software Process Modeling . 46
5.7 Further Work . 47

6 Conclusions 49

vii

viii

Chapter 1

Introduction

1.1 Motivation

ICT industry is a huge industry sector the significance of which is still constantly
growing world-wide. In year 2008 ICT sector generated more than 8% of the busi-
ness value added and employed almost 16 million people in the OECD countries.
The value of the global ICT trade was almost 4 trillion US dollars in year 2008
and trend shows that it has almost doubled during the past decade. [1] If we look
beyond the numbers, the significance of the information technology can be seen
all around us - the digital technology surrounds us in our daily life and a growing
amount of work is done using software-based tools.

Software is an integral part of all ICT systems. Although only 4% of the top
250 ICT companies in the world were pure software companies [1], the whole ICT
sector employs software engineers and runs software development projects. In ad-
dition, the trend is that software is becoming a part of an increasing number of tradi-
tional services and industrial products. A recent study approximated that about one
third of all Finnish industrial companies’ turnover came from software-dependent
products [2]. Although the result of the study cannot be fully generalized, it gives
a hint of the influence of the role of software in the modern society.

The numbers presented above speak for the economic importance of software
engineering as an engineering discipline and as a branch of research. The discipline
is still relatively young and it has struggled with problems for all of its history that
have been mostly related to inefficient work practices. These bad practices have
affected both time frame and quality of software projects.

Dijkstra presented the concept of the software crisis as early as 1972 [3]. He
had noticed that an increasing complexity of the computer systems leads to the
increased complexity of software. Without change in the software development
processes, this leads to overdue and failed software projects even if new software
developers are constantly hired. The infamous Chaos report by the Standish Group
published in 1994 presented alarming findings about the state of software projects:

1

Only 16% of the projects succeeded [4]. Although the validity of the report’s
success criteria has been questioned since [5], the numbers still indicate that the
discipline had some serious delivery problems.

The concept of the software crisis is still familiar to present software practi-
tioners and overdue software development projects are ordinary although the gen-
eral situation has gotten better. Process thinking in software development broke
through during the 90’s with large scale methodologies like CMMI [6], SPICE
(ISO/IEC 15504) [7], and RUP [8, 9]. During the first decade of the 21st cen-
tury agile methodologies have brought more light-weight alternatives for system-
atic software development and increased the reliability of the delivery of software
projects.

In this dissertation the concept of software development process is analyzed
thoroughly. The main focus is in investigating whether the modern software pro-
cess modeling techniques would help to further aid software developers in their
efforts to deliver good quality software within budget and time constrains.

1.2 Research Theme and Questions

Process modeling is often very process-centric, which means that modeling is used
primarily as a tool for improving the processes themselves. Process engineers and
quality managers use process models as a medium for communicating changes in
development methods to development teams. Data gathered from the development
projects is linked to the process models which are then improved further. In this
traditional setting the assumption, that good process guarantees good quality of
software [10, 11, 12], is often taken for granted. However, during the ground-level
development work, the process models are considered the ”necessary evil” and are
often not actively used and modified.

Experiences from the agile methodologies show that in some cases well-defined
processes are not needed to develop quality software. The agile methodologies pro-
mote simple and straightforward development techniques without a heavy process
overhead [13]. This leads to a situation where there is no actual process to be im-
proved. An interesting matter is to analyze, whether this development will make
the process modeling an obsolete technique or is there room for process modeling
in the software development environment which is becoming more and more agile.

The most common practice in the software modeling research is to analyze the
technical aspects of the software development process modeling, e.g. what kind of
notation should be used, how the parts of the models can be merged etc. However,
in this work the processes and process models are investigated from the viewpoint
of a software development project and an individual developer.

The dissertation analyzes the software development process modeling from
several different viewpoints to form a wide understanding of the relationship be-
tween the process modeling and the software development work. To guide the

2

research, two general questions were formed. These questions set the theme for
this dissertation and define the area of the software process modeling research to
which the dissertation mostly contributes. The questions are:

• Can the software process modeling and models help software developers in
their daily work?

• What are the main mechanisms for utilizing the modeling techniques in the
daily development work?

As can be seen, these two questions are very broad to be comprehensively an-
swered in a single dissertation. In fact, there probably is not a single, unambiguous
answer to the questions. To investigate the questions one has to take many issues
into consideration, e.g. what are the possible applications of the process modeling
in operational development work, how do developers actually use the modeling
and what are their attitudes towards it, how the use of modeling affects the quality
of the development work, and how the current modeling principles and techniques
could be further improved.

The dissertation investigates the research theme through a series of studies.
Each study has a certain viewpoint to the software process modeling: Some studies
map the field of software process modeling, some investigate the mechanisms of
using the modeling languages and some report how the modeling is applied in real-
life scenarios. To further elaborate the research theme and narrow the scope of the
dissertation, the following research questions for the studies were set:

Q1. What are the prerequisites for the process model components that could
be re-used in several development scenarios?

Q2. What issues are important when a process metamodel based tool is im-
plemented?

Q3. How do the changes in process modeling languages impact the process
improvement and therefore software development work?

Q4. How can the process modeling techniques be applied when the resources
for the modeling efforts are low?

Q5. How is process modeling used to share the knowledge of a certain soft-
ware development domain?

Q6. What are the opinions of the software practitioners towards the software
process modeling techniques?

The common factor to all the studies is that they focus on analyzing the model-
ing issues that are relevant in operational software development work and that way
they are directly connected to the research theme. Since the dissertation utilizes

3

mostly qualitative research techniques, no exact hypotheses are formulated. The
research questions set above guided the research work and formed the roadmap for
the individual studies. Each research article clarifies a research question by ana-
lyzing the software development process modeling from a certain point of view.

The research questions are discussed throughout the dissertation and projected
to the topic of each article. The final conclusions are made in the concluding Chap-
ter 6, where the research questions are analyzed based on the findings of the indi-
vidual articles and recent research. The individual findings are also discussed in
the context of the general research theme, in order to evaluate how this dissertation
contributes to the overall software development process modeling research.

1.3 Contents

The dissertation consists of an introductory part and six research articles. The
articles can be found after the introductory part in a chronological order.

In Chapter 2, the key concepts and terminology of software processes and soft-
ware process modeling are presented. Especially the meta-process of the software
process modeling and the Software Process Engineering Metamodel (SPEM) are
examined to provide sufficient background knowledge for the dissertation work.

Chapter 3 presents a literature survey to form a perspective on the history and
the current state of software process modeling. This kind of analysis is needed to
understand the foundations of this study. The analysis also shows how the study
field is constantly changing as new modeling tools are introduced.

In Chapter 4, the research process in software engineering is presented as in-
terpreted in this work. Different studies of the dissertation research are linked to
this general research process. In addition, the research methods used during the
making of this dissertation are presented and rationalized.

The articles that form this dissertation are introduced in Chapter 5. The chapter
helps to understand how software process modeling can be used during the various
activities of software development work and how the articles answer the research
questions. In the first articles the current situation of software process modeling is
investigated and analyzed. Based on this analysis, new tools and methods for pro-
cess modeling are developed and analyzed. In the most recent articles, these meth-
ods are utilized in an interdisciplinary setting and validated by a survey amongst
software practitioners in Finland.

In Chapter 6, the research theme and questions are re-evaluated and the work is
concluded. The dissertation shows that there are several ways in which the process
modeling techniques can be used in software development work. However, most
of the techniques require special skills that development teams usually lack. The
skills can be taught to the team or an external expert can help the team with the
modeling. The key issue is whether the benefits from the modeling exceed its
costs.

4

Chapter 2

Background

This chapter presents the key concepts and terminology related to the dissertation
study. First the history and the current state of software development processes are
discussed, in order to set the context for the software development process mod-
eling. Both the traditional plan-driven processes and the contemporary agile tech-
niques are presented. Second part of this chapter presents the actual software de-
velopment process modeling concept by explaining notations and techniques used
for software process modeling. Essential structures of the Software (and Systems)
Process Engineering Metamodel (SPEM) modeling notation [14] are also presented
at the end of the chapter, since most of the dissertation research is connected to this
metamodel.

2.1 Software Development Processes

IEEE defines software engineering as: ”(1) The application of a systematic, dis-
ciplined, quantifiable approach to the development, operation, and maintenance
of software; that is, the application of engineering to software. (2) The study of
approaches as in (1).” [15] As the definition indicates the software development
activities are an essential part, or even the heart, of software engineering disci-
pline. Also, the infamous Guide to the Software Engineering Body of Knowledge
(SWEBOK) concentrates on development related topics [16].

Software Development Activities

Software development process is ”the process by which user needs are translated
into a software product” [15]. IEEE defines the software development process to
include activities of requirements elicitation, software design, implementation and
testing. Usually, also the high-level analysis of the requirements is presented as a
separated activity. These activities form the traditional software development life-

5

System
Requirements

Software
Requirements

Analysis

Program
Design

Coding

Testing

Operations

Figure 2.1: The original waterfall model where consequential phases follow each
other. The RADIT activities are emphasized in the figure with white background.
It should be noted that the Software Requirements phase corresponds the Require-
ments activity and the Coding phase corresponds the Implementation activity in
the RADIT chain. [17]

cycle which is called here the RADIT cycle after Requirements, Analysis, Design,
Implementation / Integration, and Testing.

The RADIT activities were presented as early as 1970 by Royce, with the in-
troduction of the so-called waterfall model [17]. Although the waterfall model has
been widely understood as an exemplary life-cycle model for software engineering,
the author actually used it to illustrate a flawed approach for software development.
Royce’s model is presented in Figure 2.1. Although the waterfall model might be
flawed, the activities of the model form the essential backbone of software devel-
opment. The five RADIT activities present in the waterfall model can be found in
almost any software development methodology in one form or another.

The requirements activity concentrates on the customer needs. The customer
requirements are gathered into functional and qualitative requirements for the soft-
ware. The analysis activity is not only about requirements analysis which means
that the requirements are analyzed and completed if necessary. The analysis also
refers to the high-level technical analysis where an architecture of the software
system is constructed. The lower level software design is done during the design
activity. The goal of the activity is to make sure that the overall architecture is fol-
lowed and that the relationships between software components are working. The
implementation activity includes the actual programming activities. This activity is

6

often also called the integration activity since the integration of the program code
and software modules made by individual programmers is the greatest challenge
of this activity. The last activity of the RADIT cycle is the testing activity. This
activity concentrates again on the customer perspective, because testing activities
are done mainly at the system level. This means that testing personnel makes sure
that all the requirements are met and that the customer is satisfied with the final
software.

The waterfall model is probably the most well-known software development
method and the most used example of a software development model. Nowadays,
the waterfall model also represents the traditional way of software development. It
is used as a deterrent example of a too rigid software development methodology
used back in ”the old days” 1. The myth is that before the waterfall model there
were no formal processes. This is an erroneous impression. For example, Bening-
ton presented a production process for mainframe computer programs already in
1956 [18]. This process is presented in Figure 2.2.

Benington’s model is clearly a plan-driven process which feels quite natural
since mainframe programming did not leave much room for errors. Therefore the
design of the program had to be done carefully before the actual coding. When
Benington’s model is examined more closely, other similarities to the waterfall
model can be found: A design, a programming and an integration activity and even
system-level testing and deployment activities can be found.

As said before, this dissertation assumes the RADIT activities to form the core
of practically all software development processes. However, the interpretation of
the RADIT cycle can be quite loose in terms of the chronological order, the actual
contents and the exact boundaries of the activities. The essential idea is that the
RADIT cycle contains the core activities that can be found in each software devel-
opment project, but the actual processes and workflows can vary a lot depending
on how plan-driven or how agile the underlying development methodology is. In
addition, the individual methodologies can enhance the development process with
activities that cannot be found in the RADIT cycle.

The software development process is not the only process in software com-
panies. Closely related engineering activities like software product development
and software maintenance processes surround the development process. These
processes utilize the same kinds of techniques as the software development pro-
cess, but are usually more heavily connected to the end-user interface. When the
number of parallel software projects in a company increases, the need for product
and portfolio management processes increases. Although these processes still have
some engineering components, the emphasis is on the business and management
activities.

Depending on the size of the software company, there are also several non-
engineering processes related to the business operations and the administrative

1Which it actually was at the first place already in 1970.

7

Operational
Plan

Machine
Specifications

Operational
Specifications

Program
Specifications

Coding
Specifications

Coding

Parameter
Testing

Assembly
Testing

Shakedown

System
Evaluation

Figure 2.2: Benington’s program production model for large mainframe computer
programs. Although the paper was published in 1983, it is based on a presentation
held back in 1956. [18]

8

functions of the company. It is also possible that the software is only one part
of a larger system in development. In this case there are several other processes
from different engineering and design disciplines. In all these cases, the question
of integrating very different kinds of processes fluently together becomes impor-
tant.

Plan-driven Processes

Before the late 90s most methodologies were still based on the concept of sepa-
rate RADIT style activities, although the importance of the iterative and flexible
processes was identified much earlier, e.g. by Royce [17] and by Boehm [19]. A
common factor to all these methodologies is that they are based on extensive docu-
mentation and in-advance project planning. Hence, they are often called document-
or plan-driven processes. These kinds of methodologies are often seen most suit-
able for the development of large, mission critical applications.

As mentioned before, not all plan-driven processes were strictly waterfall-like.
For example, in 1988 Boehm presented the spiral model which was iterative and
incremental [19]. The main idea of the model was to manage the risk caused by
uncertain requirements with several consecutive prototyping cycles. Although the
model had many elements that increased the flexibility of software development, it
was still very rigid and complex and in the end included the classic waterfall cycle.
The structure and the main activities of the spiral model are presented in Figure
2.3. These kinds of iterative and incremental processes can be seen as a transition
models between the waterfall style processes and the agile methodologies, which
are presented in the next section.

The variety of different plan-driven models and methodologies is huge. Shread
has collected the major plan-driven standards into one diagram called the frame-
works quagmire [20]. The quagmire is presented in Figure 2.4. The quagmire
shows the sheer number of different methodologies which can include hundreds
of pages of documentation each. This suggests that in order to effectively utilize
these methodologies, a company has to have resources for an extensive pre-study
even before starting the process implementation.

The concept of software process improvement (SPI) is also often connected
to plan-driven methodologies. Although the software process improvement can
generally mean all activities that target for making the operational software devel-
opment some way better in an organization, the term SPI usually means formal
process improvement activities that aim for implementing a well-defined quality
standard (e.g. CMMI [6] or ISO15504 [7] and related methodologies). A good ex-
ample of an industry-standard, highly disciplined SPI methodology is the IDEAL
model [21]. The IDEAL model is directly connected with the CMMI process as-
sessment and improvement method.

9

Figure 2.3: Boehm’s spiral model of software development [19].

Figure 2.4: The frameworks quagmire. [20]

10

Agile Methodologies

The plan-driven approach was practically the only option for software development
organizations until the 90s, when the movement of the agile software development
methodologies begun. For example, Kent Beck developed a very practice-oriented
Extreme Programming (XP) methodology [22] and Jeff Sutherland formalized the
Scrum methodology with Ken Schwaber [23] at this time. In 2001, a group of
software practitioners published the Agile Manifesto [13] that was a symbolical
start for the agile methodologies.

The Agile Manifesto is clearly a critique against the plan-driven processes,
especially the so called waterfall model. The manifesto emphasizes individuals,
working software, customer collaboration, and responding to change over pro-
cesses, comprehensive documentation, contract negotiation, and following the plan
[13]. Basically, the agile methods focus on techniques that help the members of a
software development team to develop software together rather than defining strict
processes and documentation streams around the team and the whole software de-
velopment organization.

Besides the Agile Manifesto there is no single, exact definition for the Agile
methods. Consequently, there are many different methods and techniques which
call themselves agile: Extreme Programming (XP) [22], Scrum [24], Feature Driven
Development (FDD) [25], and Kanban Method [26] to name a few. An agile
method is usually a collection of techniques which help the software developers
to do their daily work and react to the change.

The Scrum method [24], which is one of the most popular agile methods, is
briefly presented to clarify the agile approach in practice. If Scrum is analyzed
from the classical process point of view, where the activities and the workflow

Sprint
1-4 weeks

Product planning

Sp
rin

t p
lan

nin
gSprint review

Sprint retrospective

Standup meeting
24 hours

Final
product

Figure 2.5: Sprint cycles and key activities of the Scrum method. [23]

11

between them are emphasized, the method is quite straightforward and simple. A
Scrum-based project starts with a product owner defining a product backlog, which
is essentially a prioritized list of the key product requirements. The development
work is organized into two iterative cycles: The 1-4 weeks sprints divide the project
into more manageable iterations and daily standup meetings help to resolve every-
day problems and steer the project work on a regular basis. Each sprint starts with a
sprint planning meeting, where the requirements for the particular sprint are trans-
ferred from the product backlog into a sprint backlog. At the end of each sprint
there is a sprint review, where the working results of the sprint are presented to the
product owner, and a sprint retrospective, where the problems in the work practices
are analyzed and solved. The Scrum ”process” i.e. sprint cycles and key activities
are presented in Figure 2.5.

The Scrum example shows, and this applies to all agile methods, that the pro-
cess and the activities are not the key parts in the methodology. Instead, the Scrum
defines a relatively small set of methodological elements namely roles (Product
owner, Scrum master, Team), ceremonies (Sprint planning, Sprint review, Daily
Scrum meetings), and artifacts (Product backlog, Sprint backlog, Burndown chart).
For each of these elements pragmatic, extensive and sometimes strict guidelines are
given in order to form a compact and at the same time flexible ruleset for develop-
ing better software. The Scrum method, as almost all agile methods, concentrates
on improving the work of a software development team instead of organizing the
processes of the whole software development organization.

From software process modeling point of view, the main philosophical differ-
ence between the plan-driven and agile methodologies is related to the process-
orientation of the methodologies. The plan-driven methodologies rely on well- and
often extensively defined processes, which are tailored to fit the needs of the de-
velopment organization. On the other hand, the agile methodologies define a set of
very pragmatic techniques from which the best sub-set is selected to serve in the
software project’s implementation. The combined techniques define an implicit
process which is strict enough to guide the development work.

What is said above means that process modeling techniques are a very natural
mechanism for defining processes of plan-driven methodologies whereas for agile
methodologies the process modeling is much less explicit and extensive. The most
dedicated agilists sometimes even claim that agile methodologies and processes are
an incompatible match, and the concept of process modeling contradicts with the
Agile Manifesto. However, this is not a completely true statement. For example, a
well-known Extreme Programming web site [27] uses extensive process modeling
techniques to clarify the workflow of the Extreme Programming method and in
that way transfer the knowledge to people who are not familiar with the method
beforehand.

12

2.2 Software Development Process Modeling

The term model has two somewhat distinctive meanings in the context of software
development. Model can mean an established software development method itself
or a definition of such a method or other software development process. A devel-
opment method is usually communicated to the software development community
in natural language through a scientific article, a book or other media. Examples of
these kinds of models are the waterfall model, the spiral model and so on. These
kinds of models have been presented in Section 2.1. As mentioned before, model
can also mean a definition of software development process which is done in at
least a semiformal manner. When this latter viewpoint is taken, the interest is in
modeling notations, languages, tools and metamodels. These more technical mod-
eling topics are discussed in this section.

Although it is useful to understand these two meanings of the term software de-
velopment model, it should be noted that in the end we are looking at the same con-
cept. The only difference between these two meanings is the viewpoint: whether
the main interest is in the model content or in the model representation.

Meta-process

In order to understand software process modeling and to analyze the usage of the
models during software development, the software development meta-process has
to be investigated. The meta-process presents the activities and entities related
to the life-cycle of software processes, i.e. the meta-process defines the essential
concepts of software process modeling. Analysis of these activities and entities
tells us what are the actual applications of the process models. This information
is important, because different modeling notations suit different needs and differ-
ent modeling techniques are needed in different situations. Since many software
process modeling notations try to be quite general, the meta-process helps to both
evaluate the applicability of a certain notation in a certain situation and to analyze
the strengths and the weaknesses of the notation.

Feiler and Humphrey present their interpretation of the software development
meta-process in [28]. Their meta-process containing the essential process entities
and actions is presented in Figure 2.6. Feiler and Humphrey define a process model
as ”[a collection of] process elements at the architectural, design, and definitions
level, whose abstraction captures those aspects of a process relevant to the model-
ing.” They continue: ”Any representation of the process is a process model.”

Therefore, the most important process modeling related entities in this meta-
process are a process architecture, a process design, and a process definition. When
the meta-process is analyzed further tailoring process architectures, designs and
definitions, developing more detailed process descriptions, evolving more general
process descriptions, instantiating enactable process, planning the process, and
analyzing the process execution via the control process can be identified as the key

13

Enacting
Process

Process
Definition

Process
Design

Process
Architecture

Process
Architecture

Process
Architecture

Process
Design

Process
Definition

Process
Plan

Enactable
Process

Enacting
Process

Control
Process

Develop

Develop Evolve

Plan

AnalyzeAdjust

Adjust

Monitor

Instantiate

Initiate

Analyze

Adjust

Tailor

Tailor

Tailor

Interact

Figure 2.6: Feiler and Humphrey present essential meta-process entities and ac-
tions [28]. The most important entities and actions from the process modeling
viewpoint are presented in this simplified diagram. Boxes in the diagram represent
entities and arrows actions. The entities related to the process models are high-
lighted.

actions connected to the process models. Feiler and Humphrey [28] support this
interpretation by discussing the usage of process models: ”A process model can be
analyzed, validated, and, if enactable, it can simulate the modeled process. Process
models may be used to assist in process analysis, to aid in process understanding,
or to predict process behavior.”

While process models form only a small part of the Feiler and Humphrey’s
meta-process, Lonchamp presents his meta-process completely from the process
modeling point of view [29]. Despite of a slightly different viewpoint, the key con-
cepts between these two meta-processes are similar. Lonchamp’s meta-process
consists of the following activities: process model design, process model cus-

14

tomization, process model instantiation, process model enactment, enforcement,
automation, simulation, validation, verification, monitoring, evolution, improve-
ment, and feedback.

In Lonchamp’s meta-process, the process model design, customization, instan-
tiation and enactment describe the main phases of the process lifecycle that utilize
the process models. During the model design, a general process model is defined
based on the informal process model or requirements set for the process. The
general process model is then customized for a certain domain or a development
case. Lonchamp remarks that the distinction between a general process model
and a customized process model can be vague, and in some sense all software
process models contain both general and customized elements. The customized
process model is instantiated by setting the actual parameters of the model from
the real-life project setting. These parameters can include e.g. dates for the process
activities, actors for the process roles and so on. The last phase in Lonchamp’s
metamodel is process model enactment, where the model is interpreted and used
during the development project. The other activities in Lonchamp’s meta-process,
besides the main phases, define how the process models can be used in different
situations during the process life-cycle.

The meta-process of Feiler and Humphrey and the meta-process of Lonchamp
have much in common. As a synthesis of these two it can be said that the meta-
process can be divided into two parts: 1) The planning related activities, where
the process itself is designed and improved, and 2) The process execution related
activities, where the meta-process guides the enactment of the process and the
development work itself. Both meta-processes emphasize the improvement of pro-
cesses through the feedback from the process execution and the evolution of clearly
defined and documented processes.

Related to the software development meta-process concept, Armenise et al. list
software process modeling objectives as a part of an assessment of the formal soft-
ware process modeling languages [30]. They find that the software process models
can be used for the following purposes: Communicating, estimating and planning,
managing and re-planning, measuring, configuring (tailoring), reusing, executing,
and verifying. Curtis et al. [31] have also listed five basic uses for software process
models. Their list is similar to that of Armenise et al. in respect to communica-
tion, process management and process execution support use. In addition to these,
Curtis et al. mention automation of process guidance and support for process im-
provement, which are to some extent implicitly included in the Armenise et al. list.

This use-based approach of Armenise et al and Curtis et al. fits quite well to the
approach of this dissertation. Instead of analyzing the underlying software process
improvement activities, the list focuses on different usages of the process models.
In the end, the modeling purpose defines the key requirements for the modeling
language.

For example, if the process model is done for communicating the overall pro-
cess or certain parts of the process, the modeling language should support clear,

15

visual presentation and should allow the authors to attach some guidance infor-
mation for model readers. On the other hand, if the process model is done for
reusing the existing process information, the modeling language should support
quick composition of existing, reusable process components and allow the attach-
ment of performance data to the respective components. In addition, a specific tool
for building process models from reusable process elements is necessary.

All the meta-level models presented above support each other quite well. The
meta-process of Feiler and Humphrey defines the high-level framework for the
software process improvement activities, where the process models are only one
part. Lonchamp focuses on the low-level activities and defines the meta-process
from the process modeling point of view. Armenise et al. and Curtis et al. list ways
to use process models in an aspect-like manner within the meta-process.

Characteristics of Modeling Languages

In Section 2.2, the meta-process concept was presented. Next question is, what
requirements the meta-process causes for the process modeling and what are the
implications of the requirements for the process modeling languages.

The starting point for analyzing these requirements is to comprehend the nature
of the software development work. Different approaches of software development
work have been discussed in Section 2.1. Although the approaches are different,
there are a few similarities in all software projects. Armenise et al. summarize
these aspects well in [30]: ”Software production is a creative, intellectual activity,
and, therefore, it is not completely formalizable.” In addition, the intangible nature
of the software products affects greatly the way in which software is constructed.
In other terms, software development is design emphasized work, which targets to
create virtual (intangible) systems and services that are usually in direct contact
with the end-users.

Based on the nature of software development work, Armenise et al. list require-
ments for the software process modeling languages in their survey [30]. There are
many general requirements for all types of modeling languages, but also distinctive
requirements for the software process modeling languages. These characteristic re-
quirements are the following:

• Coexistence of both formally and informally described process parts

• Binding execution of process parts to human beings, computing devices, or
other tools

• Controlled modifications during the process enactment

• Both technical and nontechnical activities

• Accompanied analysis tools, e.g. process and product measurement facili-
ties, scheduling and planning tools

16

• Representation of the consequent actions when a certain activity fails

The requirements presented above are aspect-like for all software development
process modeling applications. If a modeling language has to suit for the different
modeling needs presented in Section 2.2, it has to support different modeling per-
spectives. Another option is to utilize different modeling languages for different
uses. Curtis et al. [31] have identified the four most common modeling perspec-
tives: 1) Functional, 2) Behavioral, 3) Organizational and 4) Informational model-
ing perspective. It is interesting that these perspectives are almost identical to the
architectural layers of the well-known ARIS business process modeling platform
[32]. In the ARIS framework, the perspectives are named: 1) Function, 2) Process,
3) Organizational, and 4) Data view [33, p.56].

In the 90s, the software process modeling was usually a synonym for the devel-
opment workflow modeling, where the development work is seen as a long stream
of consecutive activities. Classic workflow diagrams and more sophisticated lan-
guages like Petri nets and FUNSOFT are designed for this kind of modeling. There
are also non-visual modeling languages resembling the programming languages
that are used for this kind of ”algorithmic” software process modeling. Workflow
modeling languages can be further divided into control-based and rule-based lan-
guages [34, Fig.1]. Also many modern business process modeling languages still
utilize this paradigm.

Software Process Engineering Metamodel (SPEM)

The Software and Systems Process Engineering Metamodel (SPEM) [14] was se-
lected as the main modeling language for the research because it was the most
prominent modeling notation at the time this dissertation work begun. After a
few years, it is also one of the few software process modeling notations that still
have industrial support through the Eclipse Process Framework (EPF) and Rational
Unified Process (RUP) community. For some reason most of the software process
modeling languages presented in 90’s have not gained much popularity and thus
became obsolete.

The SPEM process modeling language utilizes a bit different paradigm than
the workflow languages, which are frequently used in business process modeling.
In SPEM the main concern is to model the essential process elements and their
relationships. The workflow modeling is also included in SPEM but with a lower
emphasis. SPEM version 2.0 does not actually define how the workflow models,
i.e. the behavior models, should be constructed [14]. Instead, the standard provides
mechanisms for utilizing the existing notations e.g. UML 2.0 [35], BPMN [36], or
BPDM [37] for the behavior models.

The high level architecture of the SPEM metamodel is presented in Figure 2.7.
The SPEM metamodel has been divided into seven packages which form a layered
hierarchy by merging lower lever packages into more complex modeling structures

17

MethodPlugin

ProcessBehaviorProcessStructure

ProcessWithMethods

MethodContent

Core ManagedContent

<<merge>> <<merge>>

<<merge>>

<<merge>> <<merge>>

<<merge>>

<<merge>>

<<merge>>

Figure 2.7: The high-level architecture and package structure of SPEM. [14,
Fig.2.1]

[14, p. 2]. The goal of the architecture is to give the metamodel a logical structure,
to allow extensions of the metamodel, and to limit model implementers’ workload
by allowing them to choose the most appropriate packages for their needs.

Core package contains all essential structures used by the rest of the packages.
The core package is merged into Managed Content package which is consequently
merged into Method Content package. These two content packages contain struc-
tures for storing the static process content, i.e. process element data, which is not
dependent on the dynamic workflow of the process. The most important static el-
ements are work products, roles and tasks. The static content defines the general
relationships between the elements. Process Structure package, which also merges
the core package, contains structures that are used to model the dynamic content
of the process. The dynamic content is basically the work breakdown structures,
i.e. the order and the phasing of different tasks that form the life-cycle of the de-
velopment process. The dynamic content also defines the runtime relationships
between the more static process elements. When the static and the dynamic con-
tent are compared, it can be seen that the static structures are far more re-usable
than the dynamic content which can vary a lot between different process scenarios.
Usually static content contains long textual descriptions whereas dynamic content
relies more on temporal relationships between the process elements.

18

Role Definition Task Definition

Work Product Definition

Default Responsibility
Assignment

Default Task Definition
Performer

Tool Definition

Step
*

optionality: Optionality Kind

Default Task Definition
Parameter

direction:
Parameter Direction Kind

Work Definition Parameter

in
out
inout

<<enumeration>>
Parameter Direction Kind

mandatory
optional

<<enumeration>>
Optionality Kind

Primary Performer, Additional Performer, Assisting
Performer, Supervising Performer, Consulted Performer, etc.

Responsible,
Accountable,
Consulted,
Informed, Verifies,
and Signs

**1..*

*

1..*

1

*

*

*

*

*

1

*

0..1

Figure 2.8: Key Method Content elements and their relationships in the SPEM
metamodel. [14, Fig.12.3]

Process Behavior package contains mechanisms for using third party behavior
metamodels, since SPEM does not define exact ways for behavior modeling, e.g.
with swim lane diagrams or state diagrams.

The packages presented above concentrate on modeling the individual pro-
cesses from different viewpoints. The remaining two packages introduce mech-
anisms for managing process content and process libraries. Process with Methods
package contains structures for combining the dynamic and the static process con-
tent and therefore avoids the need for re-defining all the process elements for each
dynamic process structure. Method Plugin package defines structures for building
large-scale process libraries with a possibility for process re-use.

The entire SPEM metamodel is not presented in detail in this dissertation.
However, some of the most essential concepts are discussed in order to illustrate
how the software development methodologies are modeled with a modern process
modeling notation. The concepts of work product (artifact), task (activity) and role
form the key elements of the SPEM metamodel and to some extent any software
process modeling notation. These three elements appear in almost every package
in the SPEM metamodel. However, the clearest presentation of the relationships
between these key elements can be found in the Method Content package, which

19

presents the Role Definition, Task Definition and Work Product Definition ele-
ments [14, p. 81]. This part of the metamodel is presented in Figure 2.8.

An analysis of the relationships between the work product, the task and the
role elements makes it easier to understand their meaning and therefore their use
in software process modeling. Tasks define the actual work during the software
development. They form the backbone of the process. It should be noted that
the tasks do not explicitly define the workflow of the process although they are
the elementary elements when the work breakdown structures and workflows are
constructed. Roles define the characteristics of different actors needed during the
software development process. The roles do not necessarily have one-to-one map-
ping to the individuals involved in the process, but one individual can have multiple
roles and many persons can work in one role. Work products define the things that
are worked on during the process. Usually the work products are concrete docu-
ments and assets like different plans, source code, and executables, but sometimes
the work products can be more abstract subjects like decisions and ideas.

In a nutshell, the three key elements, i.e. the work products, the tasks and the
roles, define ”what is done”, ”how it is done” and ”who does it” in a software
development process.

Role definitions are connected to Task definitions through Default Task Defi-
nition Performer relationships, which tell which roles are performing a particular
task. A role can be involved in several tasks and a task can be connected to sev-
eral roles. A role can also be responsible of several work products. A role’s type
as a task performer can be defined through a kind attribute. The kind can be,
for example, primary performer, additional performer or supervising performer.
Role definitions are also connected to Work product definitions through Default
Responsibility Assignment relationships, which tell which roles are responsible of
a particular work product. The relationship also forms many-to-many connections
between the roles and the work products. The responsibility type can be defined
using a kind attribute as with the Default Task Definition Performer relationship.
The type can be e.g. responsible, accountable, consulted, informed, verifies, or
signs. Consequently, Task definitions and Work product definitions are connected
through Default Task Definition Parameter relationship. This relationship is tighter
than previous ones and a particular task aggregates the connected Default Task
Definition Parameters, i.e. the connected work products. The Task Definition Pa-
rameter relationship has two important parameters. Firstly, a work product that is
connected to the task can be either mandatory or optional. Further, a connected
work product can be an input work product for the task, an output work product,
or both an input and an output work product.

It can be seen that the three key elements form a triangle where each vertex is
partly defined by other vertices and therefore are highly dependent of the others.

The use of the key metamodel concepts is illustrated in Figure 2.9. Figure con-
tains an example definition of a partial software process which is modeled using
the SPEM metamodel. The process model defines how the planning and the execu-

20

Write
Test Cases

Execute
System Tests

Test Plan Test Cases

System Under
Test

Test Reports

Test Manager Test Engineer

<<input, mandatory>> <<output,
mandatory>>

<<input,
 mandatory>>

<<input, mandatory>>

<<output, mandatory>>

<<performs, primary>>

<<supervises, additional>>

<<performs, primary>>

Work Product Definition Task Definition Role Definition

Figure 2.9: A part of a software testing process modeled using the SPEM meta-
model.

tion of the test cases are handled during the system testing. The Write Test Cases
and the Execute System Tests tasks are in the middle of the model. The model does
not explicitly define the temporal order of the tasks, but this is implicitly expressed
using the work products and the input and output stereotypes. The documents and
other work products define the information flow between the tasks. In addition, the
model defines the involved roles and which tasks these roles perform. It should be
noted that the model does not reveal how many Test Managers and Test Engineers
are needed to perform each task. Furthermore, the roles’ responsibilities on the
work products are not defined in this model for the sake of simplicity.

The example model shows that when the reader is familiar with the SPEM
notation, it is easier and faster to understand the relationships between process
entities than if the same process would have been described verbally. It can also be
seen that even a small portion of a whole software development process can take
a lot of space when modeled with SPEM. Therefore, in order to keep the process
models readable and usable, there is a need to split them into smaller components.

21

Most of the SPEM-based modeling tools have solved the problem by presenting
model entities in a hypertext structure.

More examples on the SPEM models can be found in the Light-weight Ap-
proach for Software Process Modeling - A Case Study article which is the fourth
article in this dissertation. The modeling examples in the article focus on the work-
flows of certain agile development teams.

Software Process Modeling Tools

Major parts of the SPEM specification have been implemented in the EPF Com-
poser tool. The tool is made by the Eclipse Process Framework (EPF) community
[38]. The metamodel used in the EPF Composer is called Unified Method Archi-
tecture (UMA) [39, Appendix A], which has been designed in parallel with the
SPEM metamodel. The metamodels resemble each other since UMA has been
used as a basis for the SPEM 2.0 development work. The UMA metamodel em-
phasizes the reuse of model components and separation of the high-level method
definitions and the process models tailored from those.

In addition to a state-of-the-art software process modeling tool, the EPF com-
munity also provides method content authored with the EPF tool using SPEM-
based metamodel. The community has published process models [40] based on
e.g. the OpenUP [41], the Scrum [23] and the Extreme Programming [22] devel-
opment methods. These models are authored using the EPF wiki tool which is
basically a wiki-style tool for browsing and commenting the models made with the
EPF composer tool. The EPF wiki tool is also available as open source.

IBM has been highly involved in both development of the SPEM metamodel
and activities of the EPF community. Therefore it is no surprise that IBM provides
a commercial tool utilizing the SPEM metamodel and the EPF code base. Rational
Method Composer (RMC) software [42] is a part of the Rational Unified Process
(RUP) product family [9]. The main difference between the RMC tool and the EPF
composer is that the former includes pre-defined RUP-compliant method content.
Actually, the RUP methodology is the main product and the RMC is only a tool for
organizing the extensive contents.

The concept of Application Lifecycle Management (ALM) [43] relates strongly
to process modeling. The basic idea of the ALM is to provide holistic methods and
tools for managing the whole lifecycle of a software product including governance,
development and operational activities. In order to provide efficient tool support for
the ALM, different tools have to be ”configured” to follow desired workflow using
process models. For example, a process model could define the timeframe when
a developer can submit changes to the main version of the software and when the
main version is locked for deployment activities. The Jazz initiative of IBM [44]
provides tools for supporting the ALM principles2. Also, Microsoft Team Foun-
dation Server includes possibility to use process modeling techniques to customize

2Renamed as Collaborative Lifecycle Management (CLM).

22

process templates, which control the workflow of the team server and the develop-
ment environment [45].

23

24

Chapter 3

Survey on Software Development
Process Modeling

A literature survey of the academic publications on the software development pro-
cess modeling is presented in this chapter. The goal of the chapter is to present the
key publications that study the applications of the software process modeling and
especially SPEM-based process modeling.

The key publications were selected by the author after a systematic, manual
survey on the digital libraries of IEEE, ACM and Springer. These libraries were
searched using the keywords software development process modeling. About top
one hundred hits for each library were analyzed. The hardware and the computer
science articles1 were omitted based on the article title and the abstract of the arti-
cle. The rest were read and their bibliographies were analyzed further to find more
relevant works.

The selection procedure was rather strict, or even picky. The publications
which discussed process modeling or its applications, but were mainly focused on
some different topic, were omitted. The omitted articles can be coarsely divided
into three categories: 1) Studies about technical details of process modeling lan-
guages e.g. [46] [34] [47], 2) studies reporting case study results without general
findings e.g. [48], and 3) studies using process modeling as means to analyze some
other topic like process improvement or process metrics e.g. [49]. Because of the
strict selection procedure, the survey does not offer a complete listing of the pub-
lications written about the software process modeling, but it gives a good insight
on how the applications of software process modeling are studied in the scientific
literature.

The publications are presented in chronological order. Therefore, in addition
to the presentation of the most influential process modeling papers, the survey also
concretizes how the software process modeling research has evolved over time.

1Term process is used in both hardware design and computer science to describe an instance of
computer program running in a computer system.

25

The chapter is divided into two sections. In the first section the publications are
presented and in the second section a brief summary of the survey is given.

3.1 Key Publications

The key articles about software development process modeling are presented below
in chronological order. The authors and the publication year are included in each
article. In addition, other publications by the authors of the presented publication
are discussed briefly, when they are related to the topic.

In [12] Osterweil (1987) presents an idea for constructing process models us-
ing the concepts used in programming. The famous presentation is more like a
pamphlet than a true scientific report. Osterweil is concerned about the state of
software development and sees that static, informal process definitions are a cause
for the inefficient software development. As a solution, he proposes the use of the
so called process programs which would better suit the dynamic nature of software
development work. Process programs would be written with process modeling lan-
guages which resemble common programming languages and are executed during
software development projects.

Osterweil’s paper is probably the most influential paper in the software process
modeling research. At the end of the paper he suggests that process modeling lan-
guages and tools should be further investigated. This thought guided the software
process modeling research till the end of the 20th century.

In [31] Curtis et al. (1992) discuss the use of process modeling in the field of
information systems. The rationale for the discussion is that the modeling of infor-
mation systems had been very data-oriented. They do not concentrate on software
process modeling but use it as an example application. Curtis et al. present four
perspectives on process modeling: 1) functional, 2) behavioral, 3) organizational,
and 4) informational. These perspectives are still in use in business process mod-
eling [33]. The article also points out some issues of software process modeling,
related to formality, granularity, precision, scriptiveness, and fitness of the models.
In addition, some uses of the models are discussed.

As a conclusion, Curtis et al. mention that the research around process model-
ing is still young and, at the time the article was written, it was too early to sum-
marize the characteristics of the research, although they saw that process modeling
itself possessed promises.

In [29] Lonchamp (1993) defines a comprehensive terminological framework
for software process engineering. Lonchamp lists almost all key concepts related to
the topic and gives a detailed definition accompanied with informative comment to
each key concept. He rationalizes this work by the confusing state of software pro-
cess engineering at the time and the need for further discourse and communication
between the people interested in the topic.

26

In [28] Feiler and Humphrey (1993) set key definitions for software process
development and enactment. They try to form a general framework to describe
the software process improvement activities and responsibilities. At the heart of
their framework is a model of entities and activities that are involved in the pro-
cess improvement activities. The model covers the whole life-cycle of the process
modeling from the definition of high-level process architectures to the enactment
of the process models. In addition, they compare the process modeling terms to the
terminology of the operating system’s computational processes.

In [30] Armenise et al. (1993) conduct a survey of the state of the process mod-
eling formalism in 1993. As an introduction they present the main branches of the
formal process modeling at the time and also try to list the key features for a perfect
process modeling language. As the most significant process modeling notations
they present: Adele, ALF, APPL/A, DesignNet, Entity, EPOS, FunSoft, HFSP,
Marvel, Merlin, MVP-L, Oikos and SPADE. Most of the presented approaches use
syntax similar to program languages. The main purpose of these kinds of models is
to form machine readable model for automatic analysis and maybe for simulation.

The four articles presented above [31] [29] [28] [30] define the basic frame-
work for software processes and software process modeling. Also, they provide
the meta-process for managing and handling the process model. Therefore these
articles should be taken into consideration whenever the process models are dis-
cussed. Their work is discussed further in the previous chapter in Sections 2.2 and
2.2.

In [50] Wolf and Rosenblum (1993) introduced a method for obtaining objec-
tive process data using simple process models and disciplined process event log-
ging. The authors use a simple timeline based process modeling as a starting point
for the process analysis. Basically project workers log manually ending and start-
ing times of all essential process events like normal coding work, analysis work,
external work and so on. The authors’ hypothesis is that problems in the develop-
ment process can be spotted by analyzing the intervals between different process
events. The authors also present a case study conducted at AT&T. They feel that
their approach leads to an objective analysis on the dynamic aspects of the devel-
opment process. The key finding of the article from the process modeling point of
view is that manual data logging of even these kinds of simple process events is
very labor-intensive.

In [51] Morisio (1995) proposes a software process measurement method that
is based on the formal software process models. He compares three alternatives
of process definition, namely an undefined process, a process defined in a natural
language and a (semi-)formal process model, and concludes that it is best to use
at least semi-formal process models to avoid incoherent process interpretations
when defining process metrics. Morisio uses OMT [52] as a modeling language
for demonstrating his method. He defines OMT classes of Process Item, Process
Activity, Process Phase, External Product and Working Role as parent elements for
his process model, which resembles e.g. the SPEM modeling notation. In an actual

27

process model, these classes are inherited into more concrete process elements like
project plan, verification/validation or g++ library. Morisio has reported about his
work also in e.g. [53].

In [54] Ellmer and Merkl (1996) analyze the benefits of the process model re-
use. They identify model classification, retrieval and tailoring as key activities to
support model re-use in the organization. They also propose a technique for the
model re-use which is based on the natural language keywords extracted from the
models using a neural network.

In [55] Grundy et al. (1998) present four consequent tools for aiding the dis-
tributed software development work. As a starting point for their work, the authors
have analyzed computer supported collaborative work (CSCW) systems, process-
centered development environments (PCE), and workflow and project planning
systems, but all these individual solutions have lacked features needed in dis-
tributed software teams. The biggest problem is that all these systems lack good
coordination support. All the presented tools, C-SPE, SPE-Serendipity, JCom-
poser, and Serendipity-II, provide collaborative software artifact editors. The last
three include a process model editor which is used to define the work process for
the distributed team. These tools also include graphical editors which allow the de-
velopers to define rules on e.g. how they are informed on the artifact changes and
what kind of automatic events are triggered in certain project situations. An inter-
esting feature about these rule models is that the tool allows developers to re-use
the rule sets.

In [56] Becker-Kornstaedt (2001) presents a systematic framework for a full-
scale process elicitation effort. The framework consists of process familiarization
and actual detailed elicitation phases. Moreover, a schema or a template for defin-
ing building blocks for more detailed elicitation activities is defined. In addition to
the solution proposal, the article analyses the software process elicitation process.
An interesting remark is that most process models are constructed based on the in-
terviews of the process actors. Therefore if the potential problems in the interviews
are not addressed (e.g. gathering dispersed process knowledge and focusing on the
key actors), the resulting model may become incomplete or even faulty.

In [57] Acuña and Juristo gather articles from the best software process and
SPI experts in a book titled Software Process Modeling. The book investigates the
process modeling from four perspectives, namely: 1) processes for open source
software development, 2) behavioral processes, 3) socio-technico-organizational
processes, and 4) software process analysis, definition and evaluation. Although
the content is interesting, the book concentrates more on the process contents and
the general SPI activities and less on the actual process modeling (e.g. use of mod-
eling notation, activities of the meta-process). Therefore no single article from the
book is presented here, but rather the whole book is listed as an example of the
common viewpoints to the process modeling topic.

In [58] Porres and Valiente (2006) present an approach for modeling software
development processes in a way that supports the principles of the model driven en-

28

gineering (MDE). In MDE software is constructed using high-level formal models
that are transformed into working software through a chain of model transitions.
The presented approach is two-folded. Firstly, a process is defined with a planning
notation which focuses on workflows between activities, their inputs and outputs,
and responsibilities of individual activities. Secondly, the model is executed dur-
ing a software development process. The idea is that by defining the activities in
fine detail, it is possible to follow which steps are already taken and which phases
should be done next. The detailed model also makes it possible to automate the
parts of the process which use tools to e.g. make transitions to the MDE-based
models. The approach of Porres and Valiente can be used independently or as an
extension of the SPEM notation.

In [59] Savolainen et al. (2007) propose a method where small companies can
use light-weight modeling as a starting point for their software process improve-
ment work. The method is demonstrated through a case study in a small Finnish
software company. The key idea of the method is to iteratively build and analyze
the process model in a focus group session, convert the resulted wall-chart model
into digital format, let the participants of the focus group comment the results, and
then repeat the process until the model is good enough. The authors see that the
light-weight process modeling is needed even in the small companies to initiate
SPI work and establish a base for the following modeling activities.

In [60] Turetken and Demirörs (2007) present an iterative method for decen-
tralized software process modeling called the Plural method. In context definition
phase, different roles involved in the processes are identified and responsibilities
for different process areas are guided to these roles. In the next phase, the descrip-
tion and conflict resolution phase, role-based modeling is utilized to construct a
complete process model in a decentralized manner. A specific coordination team
supervises the work and helps to resolve conflicts between individual process parts.
In the last phase, the integration and change phase, the individual process parts are
merged together. Extended Event Driven Process Chain (eEPC) is used as a mod-
eling notation in the Plural method.

The method was applied for two cases. The authors conclude that the method
increases communication between process participants but the lack of proper mod-
eling tools hinders the full potential of the method.

The authors have presented the same idea also in [61]. The concept of the
decentralized modeling is based on the Ph.D. work of Demirörs [62] and the re-
lated articles [63][64] where the Horizontal Change Approach (HOC-A) method is
described.

In [65] Mäkinen and Varkoi (2008) present a method for supporting process
assessment with process modeling. Their method consists of doing a preliminary
process modeling when preparing for the assessment, constructing a descriptive
process model based on the current development process and designing a prescrip-
tive process model based on the descriptive process model enhanced with improve-
ment suggestions from e.g. the SPICE process library. These modeling activities

29

are further connected to other assessment activities. The authors find that process
modeling combined with systematic process assessment activities increase the ac-
curacy of final process models and, on the other hand, make assessment results
easier to access and use. The research group has continued their work. For exam-
ple, Mäkinen investigates the topic further in his PhD thesis [66].

3.2 Summary of Survey

The survey shows that software development process modeling is not a major topic
in the software engineering research discipline. Currently the number of publica-
tions on the topic is rather low compared to more popular software engineering
topics. Also, based on this survey the research is not very interconnected between
the research groups. This does not mean that the software process modeling re-
search is irrelevant but it is usually done in parallel with other software process
improvement research.

The temporal analysis of the publications shows that the software process mod-
eling research saw its peak in the nineties. There were several research groups in-
vestigating the topic and they wrote the same kinds of papers at approximately the
same time. This shows that there was some kind of dialogue between the research
groups. In the nineties, the software process modeling research seemed to fade
away for a few years to return around 2005. While the software process research
of the nineties was focused on analyzing the process modeling languages, the cur-
rent research is more scattered and focused on more specific process modeling
issues.

Amongst the publications on the topic, there seems to be only one article that
is frequently cited by the following studies. It is the ’Software processes are soft-
ware too’ paper that Osterweil published in 1987 [12]. Osterweil approaches the
software process modeling in a very formal way and this might be one explanation
to why the modeling research in the nineties was very focused on investigating the
modeling formalism instead of its actual use and applications.

The research work done in the Method Engineering [67] community is very
close to the topic of this dissertation. However, there are only a few references to
the method engineering research. The reason for this might be that the method en-
gineering community concentrates on building re-usable process modules, which
was not considered pragmatic in the context of this dissertation (see the first dis-
sertation article [68]). On the other hand, the method engineering community has
a slightly different viewpoint to the topic: They see process modeling as a com-
plex framework for managing the building of usually big and complex information
systems, whereas this dissertation analyzed how the individual development teams
could benefit from the process modeling techniques.

Another research community that is close to the topic, but is not widely cov-
ered in this dissertation, is the Model Driven Engineering community. They see

30

that models can be used to control and to guide the software development from the
beginning to the end. Therefore process models could be used to plan the devel-
opment efforts and synchronize the automated work done through models and the
work done by developers (see e.g. [58]). The author of the dissertation sees the
model driven engineering approach as one possible development method amongst
others and therefore has not especially concentrated on that topic.

31

32

Chapter 4

Research Method

4.1 Software Engineering Research Methods

The natural way in the context of this dissertation is to approach the research by
constructing a high-level process model of the common activities in the software
engineering research. Software engineering can be analyzed from a few different
viewpoints, e.g. high-level program structures are analyzed by the computer sci-
entists and the software engineering as an organizational function is investigated
by the information systems community. From the perspective of the engineering
discipline, the target is to challenge the old methodologies and tools by trying to
develop improvements in a systematic way.

The author followed the high-level research process, presented below as a list
of phases from a very early stage of the dissertation work. This process is based
on the author’s own observations and experiences of the software engineering re-
search.

1. Analysis of the current situation

2. Position paper on the current situation and its problems

3. Development of the improvements

4. Small-scale proof-of-concept

5. Technical report of the improvement and initial results

6. Pilot projects in the industrial context

7. Analysis of the pilot projects

8. Article on the pilot project results

9. Possible industrial adoption of the improvements

33

10. Case studies on several industrial adopters

11. Articles on the success of the improvements in the industrial setting

The process-based approach for software engineering is not the author’s own
invention. In [69] Basili discusses various research paradigms related to the soft-
ware engineering research. He presents three experimental models: the scientific
method, the engineering method and the empirical method. The latter two are the
most interesting ones in context of software engineering research, from the view-
point of the engineering discipline.

The engineering method is seen as an evolutionary method; it targets to im-
prove existing technical solutions. The engineering method consists of the follow-
ing steps: ”Observe existing solutions, propose better solutions, build / develop,
measure and analyze, and repeat the process until no more improvements appear
possible”. The empirical method is seen as a revolutionary method; it targets to
bring a new method into an organization and to analyze its effects. The empirical
method consists of the following steps: ”Propose a model, develop statistical / qual-
itative methods, apply to case studies, measure and analyze, validate the model, and
repeat the procedure”. [69]

A very coarse generalization is to say that the engineering method suits better
for studying software engineering as an engineering discipline whereas the em-
pirical method suits best for the information systems research. The reality is that
mixed methodologies are constantly used, and software engineers, computer scien-
tists and information systems researchers attend the same conferences and inves-
tigate similar issues. Sometimes researchers with even more diverse background
(e.g. economics, social sciences) work on topics related to software engineering.

When the Basili’s research paradigms and the author’s ideas about the engi-
neering research are compared, similarities between them can be found. The steps
1 to 5 of the author’s process are almost identical to the engineering method of
Basili. The steps 6 to 11 are more pragmatic and may be simpler than in Basili’s
models but the essence is the same as in the empirical method of Basili.

It is very natural to combine the engineering and the empirical approaches in
software engineering research. Software engineering methods and techniques can
be improved with the evolutionary engineering method in more closed university
or single company settings. When the method is good enough, a wider adoption
can be sought and the revolutionary effects in the software industry can be analyzed
with the empirical method through case studies. Reasoning behind this approach is
that testing of new software engineering techniques can be quite time-consuming
and expensive. Therefore it is difficult to get companies to adopt too immature
or minor improvements. Via the engineering method confidence about the new
method can be gained in order to start wider pilot projects. This idea and both the
engineering and the empirical methods are presented in Figure 4.1.

It should be noted that especially in the engineering discipline the academic
research partially overlaps with the research and development work done in the

34

industry. Similar investigation methods and techniques are used e.g. to analyze the
efficiency of a company’s development processes as in research projects focusing
on SPI issues. The main difference is that the academic research has higher risk
potential and longer time-span. The academic research usually does wider analysis
whereas the industrial R&D activities target to benefit mainly the company doing
the research.

It can also be argued that the ultimate goal for the scientific research should be
to formulate general theories based on unbiased findings and observations. Build-
ing general and widely applicable theories can be difficult in the software engineer-
ing research, because in many cases the research is based on separate case studies.
Theory building in this kind of setting requires ability to identify the scope of each
individual research effort and patience to collect sufficient evidence from multiple
sources.

Observe
existing
solutions

Measure and
analyze

Propose better
solutions

Build / develop

Propose a
model

Measure and
analyze

Develop
research
methods

Apply to case
studies

Validate the
model

The
Engineering

Method

The
Empirical
Method

Figure 4.1: Research paradigms presented by Basili. [69]

35

4.2 Methods of the Dissertation Study

As mentioned before, the dissertation research followed the author’s own percep-
tion of the software engineering research process from very early on. The activities
of this process were presented in the previous section. It was later discovered that
the outline of this process could be well aligned with Basili’s engineering and em-
pirical research paradigms [69].

When the research articles presented in this work are compared to the research
process phases presented above, it is seen that the dissertation work has followed
the intended research process quite well.

In Observations on Modeling Software Processes with SPEM Process Com-
ponents the current situation of the process modeling languages is analyzed. The
article resembles a position paper where problems in forming re-usable process
components are investigated. The work for the article covers Steps 1-2 of the pre-
sented research process. The article discusses Research Question Q1 which was
presented in Section 1.2.

In Spemmet — A Tool for Modeling Software Processes with SPEM the starting
point of the research was the lack of a proper process modeling tool that would
utilize the latest SPEM standard. Therefore such a tool was developed as a proof
of concept. At the same time difficulties in the implementation of the metamodel
were analyzed. The work for the article covers Steps 3-5 of the presented research
process. The article analyzes Research Question Q2.

In Changing Role of SPI — Opportunities and Challenges of Process Mod-
eling the research group had gained enough experience to analyze the challenges
and the opportunities of the new modeling languages from the software process
improvements point of view. The article is clearly a position paper that articulates
the effects of these changes. The work for the article also covers Steps 1-2 but from
a wider perspective than the first article. The article discusses Research Question
Q3.

In Light-weight Approach for Software Process Modeling — A Case Study
some ideas presented in the previous article were tested in a real-life pilot environ-
ment. The research work mixed work techniques from both the engineering and
the empirical disciplines. The article presents the pilot case results. The work for
the article covers Steps 6-8 of the presented research process. The article examines
Research Question Q4.

In Three Approaches Towards Teaching Game Production the process model-
ing techniques were used to communicate process level issues to other researchers
in a specific software development domain. It can be seen that the work done for
the article covers Steps 7-8 of the presented research process. The article acts as
an example case which clarifies Research Question Q5.

In Survey of Practitioners’ Attitudes To Software Process Modeling the expe-
riences of a wider industrial audience were gathered. The article presents how the
process modeling has succeeded in the Finnish industry. The work for the article

36

covers the final Steps 10-11 of the presented research process. Step 9 was omit-
ted i.e. the researchers did not actively push the new techniques to the industry.
However, the next steps were possible because the industry was already adopting
the modeling techniques by itself. The last article of the dissertation discusses
Research Question Q6.

The dissertation research utilized several different research techniques. As the
research utilized mostly the qualitative research techniques, only a very simple sta-
tistical analysis was done in a couple of cases. The used qualitative methods were
literature surveys, case studies and a qualitative survey. Also a proof of concept
(PoC) was constructed. The significance of the PoC as a purely scientific research
method can be questioned. However, it is an important phase in the engineering
research paradigm and can reveal new perspectives on the investigated topic.

The main sources of research theory for this work are [10, 70, 71]. In [70]
and [71] the research methods used in empirical software engineering research are
presented in general and good references for detailed research method articles are
provided. In [10] a detailed introduction on software metrics is given. Although
this work uses mostly qualitative methods, the book gives excellent guidelines on
how to interpret non-quantitative results and what are the limits of numeric tech-
niques when the samples are small.

37

38

Chapter 5

Articles

In this chapter the articles which form this dissertation are presented in chrono-
logical order. It will be shown how the articles form a consistent story answering
the research questions of the dissertation. For each article the general goals of the
article, the used research methodology, contribution to the research questions, and
other significant findings are presented. Similar work found in the literature, after
the article was published, will also be presented with each article.

5.1 Observations on Modeling Software Processes with
SPEM Process Components

The study presented in this paper begun the research group’s work with the soft-
ware development process models and modeling languages. The purpose of the
study was to analyze how the SPEM 1.1 version [72] supports component based
process modeling. For example, would it be possible to publish commercial pro-
cess components that could be integrated to a company-specific, SPEM-based pro-
cess model.

During the study the SPEM 1.1 documentation was analyzed in order to find
out how well the language supported process components. Parts of two real-life
process frameworks, namely CMMI [6] and RUP [9], were modeled with SPEM
as process components and these components were compared to each other.

The results of the study reveal several technical shortcomings in SPEM 1.1
standard that make the construction of process components difficult or even impos-
sible in practice. Most of the problems relate to the fact that the process component
mechanism in SPEM 1.1 is not very well documented.

In addition to the findings connected to the SPEM language, the study also
points out more fundamental difficulties in constructing arbitrary, re-usable process
components. In order to connect the modeled components to each other without
extensive tailoring, the component interfaces should be compatible. If the compo-
nents were modeled from the same process framework, this could be feasible. Alas,

39

fitting together two components modeled from two different frameworks is consid-
erably harder, because of the foundational differences on how the frameworks are
organized.

The article acts as a kick-off for the software process modeling research. The
article can be seen as a pre-study survey where the essential literature was reviewed
and the possibilities and limits of the current technology were investigated.

The study answers Research Question Q1 of the dissertation: ”What are the
prerequisites for the process model components that could be re-used in several de-
velopment scenarios?” As mentioned above two issues have to be resolved. Firstly,
the metamodel used for modeling should provide sufficient support for component-
based modeling. Secondly, the process components should follow the same general
process framework. If these two prerequisites are not met, the modeling will be-
come considerably harder and require much more effort and expertise.

The author did the study together with Antero Järvi. The author investigated
the technical details of the modeling standard and did most of the modeling work,
whereas Järvi fitted the findings to the context of process modeling and lead the
writing of the article.

Some work related to the process model notations and especially model re-use
has been presented in Chapter 3, e.g. [54].

5.2 Spemmet — A Tool for Modeling Software Processes
with SPEM

The article presents an effort for making a working modeling tool for constructing
SPEM 1.1 compliant models. The main reason for the effort was that no publicly
available SPEM modeling tools existed at the time and the research group required
such a tool to continue the analysis of the SPEM modeling mechanisms. There
was a commercial SPEM tool from Osellus [73] but there was no evaluation ver-
sion of it. The Softeam SPEM modeling tool was also evaluated but it was in beta
stage at that time and did not work properly. Also, both tools focused on the pro-
cess enactment through pre-defined process content and implemented the SPEM
specification only partially.

The article presents the implementation project and the main architecture of
the Spemmet tool. The tool was using a client-server-architecture in web platform.
The idea was that multiple users were able to edit the same model simultaneously.

The implementation effort showed that the SPEM metamodel can be used as a
basis for a real-life modeling tool. The implementation was quite straightforward
and the tool was up and running within a couple of months. It also became clear
that the SPEM metamodel was partially ambiguous and therefore hard to actually
implement.

The Eclipse project published the first version of the Eclipse Process Frame-
work (EPF) Composer modeling tool just when the second version of the Spemmet

40

tool was under construction. Because the original purpose for the Spemmet tool
was just to enable further research activities, the research team decided to cease
further development activities regarding the Spemmet tool and focus on utilizing
the new EPF Composer as the main modeling tool during the research activities.

Although the life span of the Spemmet tool was quite short, it helped the re-
search team to do some initial SPEM modeling by e.g. modeling Microsoft So-
lutions Framework (MFS) [74] with SPEM. This was later transferred to an EPF
Composer model. The implementation effort of the Spemmet tool also revealed
several implementation related shortcomings in the SPEM standard, which would
not have been necessarily noticed with a third party modeling software.

The article discusses Research Question Q2 of the dissertation: ”What issues
are important when a process metamodel based tool is implemented?” Here the
devil is in the details. The tool vendor perspective is not always present in the
metamodel definitions, which will lead to a situation where the tool vendors have to
interpret the metamodel definition when they are implementing the process model-
ing tools. If the metamodel definition is too ambiguous, as the SPEM 1.1 definition
partially is, different modeling tools could produce incompatible process models.

The author implemented the Spemmet tool alone, and started the implementa-
tion of the second version. The author also did most of the writing work for the
article, whereas Antero Järvi acted as a supervisor and mentor for the work.

5.3 Changing Role of SPI — Opportunities and Challenges
of Process Modeling

The article analyses the opportunities and the challenges the new process model-
ing techniques impose on traditional Software Process Improvement (SPI) activi-
ties. The main motivation for the article was the finding that the SPEM modeling
language made new kinds of modeling techniques possible and therefore critical
analysis of the existing modeling applications was necessary.

The main research method for the article was a literature survey combined with
the authors’ analysis work. The authors held several workshops where modeling
ideas from the various sources were put together and contrasted against the current
situation of the software process modeling.

The authors found five key concepts of SPI that are mostly affected by the new
process modeling techniques. The five key concepts of the SPI are: 1) Business,
project and process coherence, 2) process frameworks, 3) process definitions, 4)
SPI cycle, and 5) organization’s capability. It is analyzed what kind of opportu-
nities and, on the other hand, challenges modern modeling techniques impose on
these key concepts.

It is hard to devise one single conclusion or summary about the article’s results,
because the article tries to make a broad analysis on the modeling techniques’

41

impact onto the SPI. Instead, all the key concepts contain findings that are valid
even today, several years after the original publication:

Business, project and process coherence. It is evident that there is a con-
nection between organization’s business context and both the processes and the
projects. Stable business factors directly guide the organization’s SPI activities and
process development. The link between projects and processes has traditionally
been more indirect, since process engineers have to gather typical project factors
and take them into consideration during the SPI activities. New process model-
ing techniques enable quicker model changes and therefore more direct connection
between projects and organization’s processes.

Process frameworks. Each process framework makes dominant assumptions
about the organization’s way of doing software. In order to make most out of the
framework, each organization should selfishly cherry-pick the frameworks that suit
best for each task at hand. Process modeling would help this activity and allow the
organization to manage several parallel frameworks.

Process definitions. Process definitions make traditional SPI activities possi-
ble, since the process definitions make the process visible and act as a medium for
designing the improvements. The SPEM standard defines the actual notation in
very great detail but does not guide how the notation should be used to construct
the process definitions. Therefore it is important to make general guidelines on
how the process definitions are made with SPEM in different situations and how
these definitions support the SPI work.

SPI cycle. The SPI cycle (or SPI process) contains several steps which are
presented in the same manner in almost every SPI framework. The new model-
ing techniques would allow the practitioners to speed up the SPI cycle and that
way reach for example better business, project and process coherence that were
mentioned above.

Organization’s capability. Stakeholders in a software development organiza-
tion use the process models differently. Even within a stakeholder group, e.g. pro-
cess engineers, project managers or developers, the skill set of individual persons
may vary. Therefore it is important that a modeling language supports different
views into the process models, which support each stakeholder’s work in the best
possible way.

The article can be categorized as a position paper which tries to identify the
main problems with the software process modeling, but also the opportunities af-
ter the problems are addressed. The article gives the mind set or ”philosophical
framework” for the rest of the dissertation research and is therefore very impor-
tant. Especially influential for the rest of the dissertation work are the ideas about
business, project and process coherence.

The article comprehensively answers Research Question Q3 of the dissertation:
”How do the changes in process modeling languages impact the process improve-
ment and therefore software development work?” The main message is that mod-
ern software process modeling notations, like SPEM, can make the gap between

42

process modeling and actual software development work narrower. However, this
requires good tool support and tested practices for modeling processes in a manner
that supports both the goals of process engineering and daily software development
work.

The author of the dissertation participated the workshops and the writing pro-
cess with equal contribution as the other authors. However, it should be noted that
Järvi and Hakonen as senior researchers provided valuable insights to the article
and therefore the author was very lucky to be a part in such a team.

5.4 Light-weight Approach for Software Process Model-
ing — A Case Study

The research team wanted to experiment with the actual modeling after the release
of the EPF Composer modeling tool. In the literature, there are only a few guide-
lines written on how the software process modeling should be done, whereas on
the technical notation details there exists plenty of documentation (see Chapter 3).
In the business process modeling there exists studies on how the actual modeling is
done, but these modeling efforts are usually very extensive, lasting months or even
years.

During the study, the research team examined if it is possible to get sane models
with very light-weight modeling techniques. Based on existing knowledge on the
modeling, the team developed a very straightforward and simple modeling process,
which was then tested in the GAUDI software factory of Åbo Akademi university.

The testing was done by first modeling an initial process model based on the
written documentation on the GAUDI work methods. Then several GAUDI team
members and projects managers were asked to make corrections to the initial model
and this way the model was constructed in an iterative manner.

The results show that achieving light-weight process modeling is possible and
the resulting models are usable. In this study the final model had a dual pur-
pose. Firstly it showed that although the process was very well documented in the
GAUDI software factory and the process guidelines were well followed, there were
actually two different implementations of the process in use, based on whether
there was an actual customer involved in the project or the team coach acted as
a customer proxy. The team was unaware of this kind of difference. Secondly,
the model was good enough to act as an initial model for more serious modeling
efforts.

The study showed that process modeling techniques can be used close to the
day-to-day development work context. Using this kind of light-weight modeling
method, a software team can easily analyze their process and compare it with other
teams within the organization. Of course, an experienced process engineer is re-
quired to do the actual modeling work, because the training would take some time.

43

The paper was done in co-operation by Luka Milovanov, Antero Järvi and the
author. The author was primarily responsible for designing the study, planning
the modeling process and writing the article. Luka Milovanov from the GAUDI
software factory offered great help with the GAUDI work methods and provided
an insider’s view to the process.

The paper answers Research Question Q4 of the dissertation: ”How can the
process modeling techniques be applied when the resources for the modeling ef-
forts are low?” The paper presents a method for conducting light-weight process
modeling with minimal human resources. The resulting model can be used as a
starting point for a larger modeling work or as a snapshot of current work pro-
cesses. The downside of the method is that it requires a skilled modeler who
is familiar with the modeling notation. There are also limitations to the size of
the modeled process and the organization using the process, since the modeling
method relies on the direct communication and interaction between the modeling
team and the people working in the modeled process organization.

The same kind of ideas about light-weight process modeling exist in literature.
Some of them were published after the study was done.

Becker-Kornstaedt presents a systematic framework for a full-scale process
elicitation effort [56]. The framework consists of process familiarization and ac-
tual detailed elicitation phases which both may require several iterations. This
framework is too extensive for the light-weight modeling purposes although some
analogies may be drawn between the light-weight modeling and the process fa-
miliarization phase. Becker-Kornstaedt also discusses the problems that may arise
during the elicitation, which can be applied to light-weight modeling situations.

Other light-weight modeling approaches have been proposed using other mod-
eling notations or techniques. Conradi et al. propose the use of a coarse process
model as an initial point for their method to support project-wide process evolu-
tion [75]. However, they do not cover the actual modeling techniques in detail.
Savolainen et al. propose a method where small companies can use light-weight
modeling as a starting point for their software process improvement work [59].

It should be noted that process mining techniques [76] could also be utilized
for generating initial models for the light-weight modeling. This naturally requires
existing data from the previous projects. The generated models could also be so
inaccurate it could be easier to model the process from scratch. In these cases the
generated models can be used to validate the light-weight models quickly.

5.5 Three Approaches Towards Teaching Game Produc-
tion

There has been an active game algorithms research group at the University of Turku
for several years. The research has led to game development teaching activities
which the author of the dissertation has also participated. Therefore it was quite

44

natural to combine the knowledge of the process modeling techniques with the
lessons learned during the game development courses. In the article Three Ap-
proaches Towards Teaching Game Production the authors disseminate the knowl-
edge gained in the game development courses to the game teaching community
using the process modeling techniques.

The article analyzes game development on two levels: On general game devel-
opment process level and on the level of individual development courses. Firstly,
the general game development process was investigated in order to situate the ped-
agogical contents into right context. This investigation was done by comparing
several game development processes found in the literature with a general software
product development process. For each of these processes a high level model was
done in order to make the comparison easier.

Secondly three different types of game development courses were analyzed. A
light-weight process model was made for each course type. These three models
visualized the main teaching activities and the key responsibilities of teachers and
students. The models showed the similarities and the differences between the var-
ious course types. Together with the general game development process analysis
it was easy to point out which parts of the game development cycle were taught
during each course.

An interesting result was that the game development process actually matches
the software product development process rather than the technical software devel-
opment process. This fact was revealed by modeling the game development and
the software product development systematically and comparing the models. The
paper shows that light-weight process modeling techniques can be used to dissem-
inate process models even in a multi-disciplinary setting.

The article acts as a proof of concept in using the process modeling techniques
to share process knowledge to a wide audience in a very visual manner. The light-
weight modeling techniques presented in the previous paper were successfully used
to model various types of game development related processes. This shows that
even the light-weight process models can reveal new details about the process un-
der investigation.

The study indirectly answers to Research Question Q5 of the dissertation:
”How is process modeling used to share the knowledge of a certain soft- ware de-
velopment domain?” This is done by providing a case example where the process
modeling is used in the domain of game development and teaching of it. The study
shows that the process modeling techniques can be applied to analyze process-
related problems and to share the process-related choices with a wider audience.
In the study a few high level game development processes are compared with a soft-
ware product development process. The model comparison shows that the game
development processes usually define the whole product development life cycle
rather than just development methods. Also, three different methods for teaching
game development are defined using process modeling techniques. This allows

45

university teachers to discuss different approaches to teach game development and
possibly apply new ideas to their teaching.

The main contributors to the paper were the author and Harri Hakonen. Hako-
nen provided the pedagogical background for the study while the author did most
of the modeling and related process analysis. Extended version of the book chapter
was published as a technical report with a more detailed theoretical analysis [77].

5.6 Survey of Practitioners’ Attitudes To Software Pro-
cess Modeling

Most of the software process modeling research concentrates on studying the tech-
nical aspects of the modeling languages and notations. It is unclear how the people
in software development organizations see the process modeling as a tool and a
technique for making better software. This is an important research issue because
opinions of the software practitioners a) reveal problems in existing modeling tech-
niques, b) tell which are the most important pragmatic use scenarios of the process
modeling and c) hint the future modeling needs of the industry.

In the article Survey of Practitioners’ Attitudes To Software Process Modeling,
a qualitative survey of the software practitioners opinions on the process modeling
techniques was conducted. The web-based survey was sent to several software de-
velopment companies in Finland through the researchers’ partner channels. Twenty
practitioners from fifteen different Finnish software companies answered. The sur-
vey was divided into three parts: 1) Background questions, 2) Opinions on the
current process methodologies and modeling, and 3) Expert analysis on the up-
coming modeling trends. The main focus of the questions was to analyze how the
practitioners see and feel the modeling techniques in their everyday work.

As upcoming modeling trends the following modeling methods were presented
and opinions of the practitioners were asked: 1) Distributed process modeling, 2)
Light-weight process modeling and 3) Decrease of the process-project gap. The
last trend means techniques that bring process models closer to the everyday project
world and enable the usage of the same models in both process and project plan-
ning.

As mentioned above, the survey was conducted in a qualitative manner. This
means that most questions in the questionnaire were of open form. Naturally, the
length and depth of the answers varied and therefore most of the work was done
after all the answers were gathered by identifying key words and common themes
from the answers. Although the qualitative study is more prone to a subjective bias
than pure statistical studies, the approach was suitable for this initial survey since
the researchers got more rationalized answers. The qualitative approach was also
more suitable than the quantitative because the sample of the study was quite small
and therefore statistical relevance would not have been met.

46

The results of the study show that most of the companies utilize some kind
of development methodology. The respondents saw that the methodologies cause
some overhead and may be inflexible, but at the same time bring the needed struc-
ture to the software development work. The use of process modeling was quite
rare and only a few of the respondents knew that their company used some kind of
standard modeling notation. The most common uses for the process models were
to access the document templates and check some individual parts of the process
methodology. Only a few of the respondents used the process models to enact and
improve the development processes.

An interesting finding was that the respondents’ opinions towards the emerging
modeling trends were quite positive. The conclusion might be that although the
respondents are not completely satisfied with current modeling techniques they see
potential in process modeling if it would really support their own work.

The survey is an appropriate conclusion to the dissertation research since it
binds the theoretical research to the practice. The previous studies tried to under-
stand the modeling field as a whole and developed modeling methods that would
improve the existing situation. In this study most of the findings in the previous
studies were implicitly exposed to the public debate by the survey respondents. The
fact that the survey results did not reveal any big surprises tells that the premises set
in the previous studies were somewhat correct also from the software practitioners’
point of view.

The study answers to Research Question Q6 of the dissertation: ”What are
the opinions of the software practitioners towards the software process modeling
techniques?” As mentioned above, the most surprising finding was that the prac-
titioners were interested in the advances in the field of process modeling and saw
the applications of the process modeling promising. However, the current situation
of the process modeling techniques and tools was not perfect in many ways.

If the other reported studies are evaluated, it is found that the findings of the
study are mostly in line with them. Turetken and Demirors found out in their
decentralized modeling study that the lack of proper tools was one of the greatest
obstacles for the approach [60].

5.7 Further Work

The dissertation research concludes with the small qualitative study on the prac-
titioners’ opinions of the current state of process modeling. The next natural step
would be to conduct a much larger statistical study on the subject based on the
findings of this study. The target would be to analyze whether the findings done in
some Finnish companies could be generalized also to software companies e.g. in
other European countries. As a side product the extent of the modeling techniques
used in software companies could be evaluated in greater accuracy.

47

Also, the Eclipse Process Framework community [38] continues its work. For
example, the process composer software and the wiki-based process content are
constantly updating. Although the discussion on the project web forum is not most
active, there still seems to be hundreds of readers in each discussion thread.

48

Chapter 6

Conclusions

This dissertation investigates how modern software process modeling notations and
techniques could be used to improve and support daily software development activ-
ities. This is accomplished by conducting a series of studies which investigate the
software process modeling from several different viewpoints. The goal of this ap-
proach is to form wide understanding of the relationship between software process
modeling and operational software development work.

In the beginning of the dissertation there is a summary of the history and the
current state of software development methodologies. Both the plan-driven pro-
cesses and the agile methodologies are discussed. After that, theoretical back-
ground for software development process modeling is presented concentrating es-
pecially on the Software and Systems Process Engineering Metamodel (SPEM)
[14]. Also, the most significant scientific articles on software process modeling
and its application techniques are briefly presented.

Most of the research effort done for the dissertation is documented in the six
accompanied research articles. Each article analyzes one of the research questions
presented in Section 1.2. The following conclusions can be drawn from each indi-
vidual article in contrast to the research questions:

Q1. What are the prerequisites for the process model components that could
be re-used in several development scenarios?

The first article asked whether the SPEM notation can be used to build re-
usable process components for different development scenarios. It was found
that the SPEM 1.1 was not complete in this respect1 but the greater obstacle
for re-usable components was that the different development methodologies
have different terminologies, different interfaces, different pace etc. This
means that different methodologies are not compatible with each other so
that interchangeable components could be made.

1SPEM 2.0 is much better when process re-use is considered.

49

Q2. What issues are important when a process metamodel based tool is im-
plemented?

The second article analyzed whether a modeling tool based on the SPEM
1.1 metamodel could be made. The successful implementation of the tool
and later the publication of EPF process tools proved that this can be done.
However, the case also showed that the SPEM 1.1 specification was not com-
pletely unambiguous and therefore two SPEM-based tools would probably
become slightly different.

Q3. How do the changes in process modeling languages impact the process
improvement and therefore software development work?

The third article analyzed the challenges of contemporary process improve-
ment activities and how the process modeling could be used to improve the
situation. The main finding from the development point of view was that
there is still a gap between processes and development work; the modeling
cycles are too long and the developers have different views to the processes
than the process engineers. The process modeling was seen as a promising
tool for solving these challenges by providing support for dynamic but yet
managed changes in the enacted work process.

Q4. How can the process modeling techniques be applied when the resources
for the modeling efforts are low?

The fourth article investigated whether fast process modeling is possible and
speculated the possible benefits of such modeling approach. This was pos-
sible but the model could be used just as a starting point for further process
improvement activities. In addition, an experienced modeler was needed to
successfully execute a quick modeling effort.

Q5. How is process modeling used to share the knowledge of a certain soft-
ware development domain?

The fifth article gave an example case of how the process modeling tech-
niques are used as a tool for analyzing the game development processes from
the pedagogical perspective. Process models helped to understand that the
game development process compares to the product development process,
not the actual software development work. It was also found out that the
division of the responsibilities between teachers and students is the key issue
that differentiates various game development courses.

Q6. What are the opinions of the software practitioners towards the software
process modeling techniques?

The last article investigated opinions of Finnish software practitioners to-

50

wards the process modeling techniques. The practitioners saw high poten-
tial in modeling techniques, but currently the process modeling did not play
a big role in their daily work.

The wider research theme, to which this work contributes, was set through two
general questions: 1) Can the software process modeling and models help software
developers in their daily work? and 2) What are the main mechanisms for utilizing
the modeling techniques in the development work? Each article provided an answer
to a specific research question but they all also contributed to the research theme by
examining the software process modeling from the development work perspective.
By combining the results of the individual studies, the following statements can
be made, which helps to understand the set research context better and partially
answer the two general questions.

Articles 1, 2, and 4 investigated detailed technical or methodological aspects of
the SPEM-based process modeling. The result of all of these articles indicate that
there are ways to use SPEM in a way that also supports the development work di-
rectly. Use of process modeling reduces the feedback cycle and makes the process
use more flexible from the development point of view. The fifth article strength-
ens this conclusion by providing an example of using the modeling techniques to
communicate techniques used in a specific branch of software development.

Articles 3 and 6 investigate the process modeling on a more general level. The
results of these two studies support each other. In the third article the researchers
identify several problems in software process improvement and develop ideas on
how to address these challenges by using process modeling techniques. In the sixth
article, done a couple of years later, the existence of the challenges and the feasi-
bility of process modeling, a solution is verified from the software practitioners.

As a synthesis of the main research questions of the dissertation, it can be said
that there are indeed several ways to use software process modeling techniques to
help software developers in their work in general. The applications can usually be
found in the interface of the process improvement and the software development.
Whether the modeling can help the developers in their daily work is a more com-
plex question. The efficient use of modeling would require good skills in process
modeling and it is not practical for each software engineer to acquire these skills.
Therefore the process engineers are still required to aid software developers to uti-
lize process modeling techniques even though the techniques are connected more
strongly to daily development work.

In principle, through the process modeling, a connection between the process
improvement and the software development could be established, i.e. the process
modeling could act as ”glue” between the improvement and the development activ-
ities. However, this would require much better tool support than currently exists.
The process modeling tools should take different use scenarios better into account
and provide different views e.g. for process engineers, software developers and
managers.

51

Most of the research work for this dissertation was done between the years
2005 and 2009. During this time period, the agile methodologies have become
mainstream in the software development field and have replaced the plan-driven
processes in many software companies. Therefore the dissertation concludes with
a few remarks on the relevance of the research results.

It can be said that the raising popularity of the agile development methodolo-
gies have reduced the importance of the process modeling notations, which were
originally designed for modeling plan-driven software development processes. The
reason for this is that the practitioners of the agile methodologies do not rely on
heavy process structures on their daily work. Therefore, they require no extensive
process modeling support during the operational development activities, i.e. the
need for dynamic process models which guide the work is mild. What is said does
not mean that the process modeling cannot be applied in agile context. Beneath the
surface many agile methodologies are quite complex and contain many process-
like elements like role, work products and different activities. Hence, the process
models can be used to illustrate the main principles of a certain methodology and
compare the methodologies with each other.

The agile trend will probably continue and other processes around the software
development will simplify and become more streamlined. Naturally, the process
modeling techniques are still needed for analyzing and improving the high-level
processes, and especially the process interfaces, and for disseminating the method-
ological innovations to other practitioners.

52

Bibliography

[1] OECD information technology outlook 2010. Technical report, OECD Pub-
lishing, 2010.

[2] Tuomo Nikulainen, Jyrki Ali-Yrkkö, and Timo Seppälä. Softaa koneisiin!
Ohjelmisto-osaaminen suomalaisen teollisuuden uudistajana. The Federa-
tion of Finnish Technology Industries, 2011. Executive Summary available
in English.

[3] Edsger W. Dijkstra. The humble programmer. In ACM Turing award lectures,
page 1972. ACM, 2007.

[4] Chaos. The standish group report, Standish Group, 1994.

[5] J. Laurenz Eveleens and Chris Verhoef. The rise and fall of the chaos report
figures. IEEE Software, 27(1):30–36, 2010.

[6] CMMI for development, version 1.3. Technical report, Software Engineering
Institute (SEI), November 2010.

[7] ISO/IEC 15504-1:2004. Technical report, International Organization of Stan-
dardization (ISO), 2004.

[8] Rational unified process - best practices for software development teams.
Technical report, Rational Software, 1998.

[9] Rational unified process (RUP) homepage.
http://www.ibm.com/software/awdtools/rup/. Accessed on September
28th 2012.

[10] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics, A Rig-
orous & Practical Approach, Second Edition. PWS Publishing Company,
1997.

[11] Watts S. Humphrey. Managing the software process. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1989.

53

[12] Leon Osterweil. Software processes are software too. In Proceedings of the
9th international conference on Software Engineering, ICSE ’87, pages 2–13,
Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[13] Manifesto for agile software development. http://agilemanifesto.org/. Ac-
cessed on September 28th 2012.

[14] Software & systems process engineering meta-model specification, version
2.0. Technical report, Object Management Group OMG, April 2008.

[15] IEEE standard glossary of software engineering terminology.
http://dx.doi.org/10.1109/IEEESTD.1990.101064, 1990.

[16] Alain Abran, Pierre Bourque, Robert Dupuis, James Moore, and Leonard
Tripp, editors. Guide to the Software Engineering Body of Knowledge – SWE-
BOK. IEEE Press, 2004.

[17] Winston W. Royce. Managing the development of large software systems:
Concepts and techniques. In Proceedings of the IEEE WESTCON (1970),
1970.

[18] Herbert D. Benington. Production of Large Computer Programs. Annals of
the History of Computing, 5(4):350–361, October 1983.

[19] Barry Boehm. A spiral model of software development and enhancement.
SIGSOFT Software Engineering Notes, 11(4):14–24, 1986.

[20] Sarah A. Sheard. Evolution of the frameworks quagmire. Computer,
34(7):96–98, 2001.

[21] Robert McFeeley. IDEAL: A users guide for software process improvement.
Cmu/sei-96-hb-001, Software Engineering Institute, 1996.

[22] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 1999.

[23] Jeff Sutherland and Ken Schwaber, editors. The Scrum Papers: Nuts, Bolts,
and Origins of an Agile Process. 2007. Draft 10/14/2007.

[24] Ken Schwaber. SCRUM development process. In Proceedings of the 10th
Annual ACM Conference on Object Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 117–134, 1995.

[25] Stephen R. Palmer and John M. Felsing. A Practical Guide to Feature-Driven
Development. Prentice Hall, 2002.

[26] David J. Anderson. Kanban: Successful Evolutionary Change for Your Tech-
nology Business. Blue Hole Press, April 2010.

54

[27] Don Wells. Extreme programming: A gentle introduction web page.
http://www.extremeprogramming.org/. Accessed on September 28th 2012.

[28] Peter H. Feiler and Watts S. Humphrey. Software process development and
enactment: Concepts and definitions. In Second International Conference on
the Software Process, pages 28–40, Berlin, Germany, 1993.

[29] Jacques Lonchamp. A structured conceptual and terminological framework
for software process engineering. In Proceedings of the Second International
Conference on the Continuous Software Process Improvement, pages 41—53,
1993.

[30] Pasquale Armenise, Sergio Bandinelli, Sergio B, Carlo Ghezzi, Angelo
Morzenti, and Cefriel Politecnico Di Milano. A survey and assessment of
software process representation formalisms. International Journal of Soft-
ware Engineering and Knowledge Engineering, 3:401—426, 1993.

[31] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Communica-
tions of the ACM, 35:75–90, September 1992.

[32] ARIS platform homepage. http://www.softwareag.com/corporate/products/
aris platform/. Accessed on September 28th 2012.

[33] Jörg Becker, Martin Kugeler, and Michael Rosemann, editors. Process Man-
agement. Springer, 2003.

[34] Darren C. Atkinson, Daniel C. Weeks, and John Noll. Tool support for it-
erative software process modeling. Information and Software Technology,
49(5):493–514, May 2007.

[35] Unified modeling language: Infrastructure, version 2.0. Technical report,
Object Management Group (OMG), May 2005.

[36] Business process model and notation (BPMN), version 2.0. Technical report,
Object Management Group (OMG), January 2011.

[37] Business process definition metamodel. Technical report, Object Manage-
ment Group (OMG), November 2008.

[38] EPF project homepage. http://www.eclipse.org/epf/. Accessed on September
28th 2012.

[39] Ueli Wahli, Majid Irani, Matthew Magee, Ana Negrello, Celio Palma, and
Jason Smith. Rational Business Driven Development for Compliance. IBM,
November 2006.

[40] EPF wiki. http://epf.eclipse.org/. Accessed on September 28th 2012.

55

[41] Ricardo Balduino. Introduction to OpenUP (open unified process). Technical
report, Eclipse Process Framework Project, August 2007.

[42] Rational method composer homepage. http://www.ibm.com/software/awdtools/rmc/.
Accessed on September 28th 2012.

[43] David Chappell. What is application lifecycle management. Technical report,
Chappell & Associates, December 2008.

[44] Jazz community site. https://jazz.net/. Accessed on September 28th 2012.

[45] Visual studio 2012 manual: Customize process templates.
http://msdn.microsoft.com/en-us/library/ms243782.aspx, 2012. Accessed on
September 28th 2012.

[46] Martı́n Soto and Jürgen Münch. Focused identification of process model
changes. In Software Process Dynamics and Agility, pages 182–194. 2007.

[47] Wil van der Aalst, Vladimir Rubin, Eric Verbeek, Boudewijn van Dongen,
Ekkart Kindler, and Christian Günther. Process mining: a two-step approach
to balance between underfitting and overfitting. Software and Systems Mod-
eling, 9(1):87–111, January 2010.

[48] Chris Jensen and Walt Scacchi. Process modeling across the web information
infrastructure. Software Process: Improvement and Practice, 10(3):255–272,
2005.

[49] Sergio Bandinelli, Alfonso Fuggetta, Luigi Lavazza, Maurizio Loi, and
Gian Pietro Picco. Modeling and improving an industrial software process.
IEEE Transactions on Software Engineering, 21(5):440–454, 1995.

[50] Alexander L. Wolf and David S. Rosenblum. A study in software process data
capture and analysis. In Proceedings of Second International Conference on
the Software Process, pages 115–124, Berlin, Germany, 1993.

[51] Maurizio Morisio. A methodology to measure the software process. In
In Proceeding of 7th Annual Oregon Workshop on Software Metrics, Silver
Falls, 1995.

[52] James R. Rumbaugh, Michael R. Blaha, William Lorensen, Frederick Eddy,
and William Premerlani. Object-Oriented Modeling and Design. Prentice-
Hall, 1st edition, October 1990.

[53] Maurizio Morisio. Measurement processes are software, too. Journal of
Systems and Software, 49(1):17–31, December 1999.

56

[54] Ernst Ellmer and Dieter Merkl. Considerations for an organizational memory
in software development. In Proceedings of the 10th International Software
Process Workshop, pages 60 – 62, Dijon, France, June 1996.

[55] John C. Grundy, John G. Hosking, and Warwick B. Mugridge. Coordinating
distributed software development projects with integrated process modelling
and enactment environments. In Proceedings of the 7th Workshop on En-
abling Technologies (WETICE ’98), pages 39–44, Stanford, CA, USA, June
1998.

[56] Ulrike Becker-Kornstaedt. Towards systematic knowledge elicitation for de-
scriptive software process modeling. In Product Focused Software Process
Improvement, pages 312–325. 2001.

[57] Silvia T. Acuña and Natalia Juristo, editors. Software Process Modeling,
volume 10. Springer-Verlag, New York, 2005.

[58] Ivan Porres and Marı́a Valiente. Process definition and project tracking in
model driven engineering. In Product-Focused Software Process Improve-
ment, pages 127–141. 2006.

[59] Paula Savolainen, Hanna-Miina Sihvonen, and Jarmo Ahonen. SPI with
lightweight software process modeling in a small software company. In Soft-
ware Process Improvement, pages 71–81. 2007.

[60] Oktay Turetken and Onur Demirörs. An approach for decentralized process
modeling. In Software Process Dynamics and Agility, pages 195–207. 2007.

[61] Oktay Turetken and Onur Demirörs. Process modeling by process owners:
A decentralized approach. Software Process: Improvement and Practice,
13(1):75–87, 2008.

[62] Onur Demirörs. A Horizontal Reflective Process Modeling Approach for
Managing Change in Software Development Organizations. PhD thesis,
School of Engineering and Applied Science, Southern Methodist University,
1995.

[63] Onur Demirörs and Dennis J. Frailey. A horizontal approach for software
process improvement. In Proceedings of Nineteenth Annual International
Computer Software and Applications Conference (COMPSAC 95), pages 326
– 331, Dallas, TX, USA, 1995.

[64] A. Gunes Koru and Onur Demirörs. Advances in Computer and Information
Sciences ’98: Proceedings of the 13th International Symposium on Computer
and Information Sciences, chapter Decentralized Process Modeling Notations
for Horizontal Change Approach, pages 535 – 542. IOS Press, 1998.

57

[65] Timo Mäkinen and Timo Varkoi. Assessment driven process modeling for
software process improvement. In Proceedings of Portland International
Conference on Management of Engineering & Technology (PICMET 2008),
pages 1570–1575, Cape Town, South Africa, 2008.

[66] Timo Mäkinen. Towards Assessment Driven Software Process Modeling.
PhD thesis, Tampere University of Technology, Finland, 2010.

[67] Sjaak Brinkkemper. Method engineering: Engineering of information sys-
tems development methods and tools. Information and Software Technology,
38(4):275–280, 1996.

[68] Antero Järvi and Tuomas Mäkilä. Observations on modeling software pro-
cesses with SPEM process components. In Proceedings of The 9th Sympo-
sium on Programming Languages and Software Tools, 2005.

[69] Victor R Basili. The experimental paradigm in software engineering. In Pro-
ceedings of International Workshop of Experimental Software Engineering
Issues: Critical Assessment and Future Directions, volume 706 of Lecture
Notes in Computer Science, pages 3—12. Springer, 1992.

[70] Wilhelm Hasselbring and Simon Giesecke, editors. Research Methods in
Software Engineering. GITO Verlag, 2006.

[71] Forrest Shull, Janice Singer, and Dag I.K. Sjøberg, editors. Guide to Ad-
vanced Empirical Software Engineering. Springer-Verlag London Limited,
2008.

[72] Software process engineering metamodel specification – version 1.1. Techni-
cal Report formal/05-01-06, Object Management Group (OMG), January 5th
2005.

[73] Osellus IRIS process author homepage. http://www.osellus.com/IRIS-PA,
2012. Accessed on September 28th 2012.

[74] MSF Team. MSF process model v. 3.1. Technical report, Microsoft Inc., June
2002.

[75] Reidar Conradi, Minh Ngoc Nguyen, Alf Inge Wang, and Chunnian Liu.
Planning support to software process evolution. In Proceedings of Tenth In-
ternational Conference on Software Engineering and Knowledge Engineer-
ing (SEKE’98), pages 17—20, 1998.

[76] Vladimir Rubin, Christian Günther, Wil van der Aalst, Ekkart Kindler,
Boudewijn van Dongen, and Wilhelm Schäfer. Process mining framework
for software processes. In Software Process Dynamics and Agility, pages
169–181. 2007.

58

[77] Harri Hakonen, Tuomas Mäkilä, Jouni Smed, and Andy Best. Learning to
make computer games: An academic approach. Technical Report TUCS
Technical Reports 899, Turku Centre for Computer Science, 2008.

59

Antero Järvi and Tuomas Mäkilä

Observations on Modeling Software
Processes with SPEM Process

Components

In Proceedings of The 9th Symposium on Programming
Languages and Software Tools, pages 59–69. University

of Tartu, 2005.

c©Authors 2005.

Observations on Modeling Software Processes
with SPEM Process Components

Antero Järvi and Tuomas Mäkilä

University of Turku,
Department of Information Technology,
FI-20014 University of Turku, Finland

Abstract. OMG’s standard for software process modeling (SPEM) con-
tains an element, ProcessComponent, that could be used as a reusable
element to assemble end-to-end software processes. However the com-
position mechanism and the nature of process components is not well
defined in SPEM. In addition the organization of process components
is not straightforward. In this paper we describe an experiment of us-
ing CMMI Process Areas and Rational Unified Process disciplines as a
basis for structuring process components. The two approaches produced
process components that could not be used together. We conclude that
in order to achieve reusable process components, the components must
be defined using a common process framework. Further, we give proposi-
tions for organizing process components that facilitate component reuse
and composition.

1 Introduction

All organizations involved in developing software need to organize, manage and
support the development work. Organization’s software development process ties
together all activities and practices addressing this need. Recent years have
shown a clear trend of growing emphasis on the software process – the process
is thought to be a key factor in ensuring high product quality, achieving accu-
rate time and cost estimates, providing cost efficiency in software development
and coordinating large development efforts. In other words, software process has
and increasingly important role in achieving and maintaining competitiveness in
software business.

Software processes can be defined in many levels of detail, ranging from
processes defined implicitly in project management, tools and work practices up
to high-ceremony explicitly defined and documented processes. Explicit process
description opens the route for software process engineering (SPE), consisting of
modeling, authoring, tailoring and enacting processes. A natural part of SPE is
software process improvement (SPI), a deliberate effort to document and modify
organizations software processes to increase its competitive strength. However,
manual process authoring and tailoring may be impractical. SPI that involves
constant change of software processes becomes prohibitively expensive. The over-
head cost of SPE and SPI can be brought down by tool support and process
automation, both enabled by a process modeling language.

Recently, OMG published a standard for software process modeling, Software
Process Engineering Metamodel (SPEM) [1], that provides the required formal-
ism for process engineering tools. This paper investigates the suitability and use
of SPEM for modeling reusable process components. Section 2 briefly introduces
SPEM and related concepts of organizations process engineering. In section 3 we
describe the modeling experiment that was carried out. We focus on two frame-
works: Capability Maturity Model Integration (CMMI) [2] and Rational Unified
Process (RUP) [3]. CMMI is a maturity model, which provides a roadmap for
practicing SPI in an organization, RUP is a de facto process standard, which
defines a software process and its roles, activities, and work products at detailed
level. In section 4 the problems of SPEM in this context are summarized and
a proposition of process component organization to alleviate the problems is
made. This paper is based on work done in the ReProCo-project1 aiming at
constructing reusable process components for various software projects.

2 Background

The background of software process modeling and related technologies are com-
prehensively reviewed in [4]. Since then the research has somewhat focused
around SPEM.

2.1 Software Process Engineering Metamodel (SPEM) overview

The SPEM specification is used for describing a concrete software development
process or a family of related software development processes [1]. SPEM is struc-
tured as an UML profile and provides a complete OMG Meta-Object Facility
(MOF) metamodel. SPEM also defines a notation for its concepts, defined as
UML stereotype icons. The main idea of SPEM based process representation
is the interplay of three basic elements: ProcessRoles that are responsible for
and execute Activities that consume and produce WorkProducts. ProcessRoles,
WorkProducts and Activities are all process definition elements. Relationships
between these basic elements are illustarted in Figure 1.

SPEM defines LifeCycle, Phase and Iteration that are used for dynamic struc-
turing of the process. A LifeCycle defines the ordering of Phases, which in turn
can contain Iterations. A Process must have one LifeCycle.

SPEM also defines elements that are meant for organizing other process el-
ements from the viewpoint of process authoring, assembly and reuse. Packages
are concerned with dividing one or more process descriptions into self-containing
parts. These parts can then be placed under configuration and version man-
agement and used in assembling and tailoring software development processes.
ProcessComponents are specializations of Packages. A ProcessComponent is an
internally consistent and self-contained chunk of process description that may be

1 Part of E!3320 project, in co-operation with Genestia Group Inc. - Neoxen Systems
and Devera Software Development Center.

Fig. 1. The core elements of SPEM and their relationships. [1]

reused with other ProcessComponents to assemble a complete process. Process-
Components can import a non-arbitrary set of process definition elements. The
Discipline is a specialization of ProcessComponent and is used for representing
activities in a common area (corresponding to e.g. Core Workflows in the Unified
Process). Process finally is a also a specialization of ProcessComponent that is
intended to stand alone as a complete end-to-end process.

The assembly of processes is done by composition of ProcessComponents.
This requires unification of the ProcessComponents. Corresponding output and
input WorkProducts must be unified, as well as ProcessRoles and possibly other
elements that are used in more than one ProcessComponent. The details of
unification are not defined in SPEM.

2.2 OPA, OSSP and software process frameworks

Capability Maturity Model Integration (CMMI) [2] introduces concepts of Or-
ganization’s Process Assets (OPA) library and Organization’s Set of Standard
Processes (OSSP). OPA library is a loosely tied collection of ”process assets
that are potentially useful to those who are defining, implementing, and manag-
ing processes in the organization”. OSSP defines a set of processes that ”guide
all activities in an organization” and ”cover the fundamental process elements”.
OSSP forms a base for organization’s project-level tailoring whereas more de-
tailed definitions for process elements can be found from the OPA library. Both
OPA Library and OSSP are highly organization specific, depending on the busi-
ness goals and characteristics of the organization. Similar tailoring mechanisms
are also suggested by other major process standards (ISO 12207 [5], RUP [3]).

OSSP is not normally developed from scratch nor simply put together from
existing and past projects – instead, so called software process frameworks should
be used as guidelines. There are numerous process frameworks available, each fo-
cusing on certain types of software development organizations. A partial overview
of the software process frameworks and their categorization can be found from
the Frameworks Quagmire [6] [7].

2.3 Levels of process modeling

The process modeling language must support modeling at the framework level,
at the OSSP level, and at the project level. In Figure 2 these different levels
of process modeling are shown with respect to the four-layered organization of
SPEM [1]. Layer M2 defines the SPEM language as OMG MOF model. Layer
M1 contains process models created with SPEM language, and layer M0 is the
enacted software process. Different levels of process modeling are not directly
supported by the layering, specifically layer M1 must be divided into two sub-
layers: 1) general process modeling and description that models elements of
process frameworks, and 2) OSSP that structures modeled process elements
so that reusability of these assets is achieved. In ’Project-level tailoring’, level
M0 performing processes are enacted by selection, composition and tailoring of
reusable process components of OSSP M1 sub-layer. These components in turn
contain modeled elements from ProcessFramework M1 sub-layer and are tailored
to meet organizations need for different types of processes.

Fig. 2. Process modeling levels contrasted with the OMG SPEM language organization
as an UML profile.

Support for this kind of sub-layer organization of organizations process assets
is not well included in SPEM standard. The basic SPEM construct for struc-

turing process elements, ProcessComponent, is simply a self-contained Package.
SPEM does not define how the underlying process or process framework should
be decomposed into components. However, this decomposition largely deter-
mines how reusable and how pluggable the process components become. Most
process frameworks define a natural decomposition, e.g. Process Areas in CMMI
or Disciplines in Unified Process. SPEM standard mentions e.g. Disciplines of
Rational Unified Process as possible candidates for ProcessComponents. It ap-
pears, however, that this proposed framework decomposition does not yield very
reusable process components. The whole issue of framework decomposition to
define conceptual organization of the OSSP is far more complicated than we
and apparently the SPEM standard anticipated. We will get back to this issue
in Section 4.

3 The modeling experiment

3.1 Modeling CMMI Process Areas as process components

The original plan was to model CMMI Requirement Management (REQM) and
Requirements Development (RD) Process Areas [2] as two process components.
CMMI was chosen because it structures software process in widely adopted
and accepted way. The reasoning was that with this kind of approach, reusable
process component ’stubs’ would form the OSSP. The conceptual organization of
the OSSP would follow CMMI Process Areas, thus CMMI compliance of the tai-
lored process would be straightforward to show. The contents for these ’stubs’,
the OPA of the organization, would be obtained from other software process
frameworks and the components would be mutually compatible as long as they
comply to corresponding requirements of CMMI. This would have enabled as-
sembling a software process from several different process frameworks and using
most suitable parts of each.

The visible interface of a process component in SPEM is defined by com-
ponents inputs and outputs. Thus, in order to model Process Areas as process
components, we analyzed what process elements were consumed or produced
by a particular Process Area, i.e. its inputs and outputs. Modeling was done
at the CMMI Specific Practice level. Specific Practices are brief statements on
what is required from a software process in order be compliant with regard of
a particular Process Area. Special Practices essentially form the backbone of
each Process Area. It became apparent that Specific Practices, despite their
activity-like nature, describe only the minimum set of Process Areas require-
ments. In order to construct a process component that could be used in a real
software process, Process Areas requirements must be complemented with a soft-
ware process framework that defines the missing detailed content of the process
model, in particular the exact set of inputs and outputs of the Process Area. This
suggests that process components can not be modeled based solely on the CMMI
Specific Practices. The textual guidelines and work product recommendations
of CMMI provide some of the missing content of the process component, but
fall short on providing detailed interface descriptions. The interface detail must

be obtained from another software process framework. This hints that CMMI
Process Area based components will not have high reusability and can not be
used to form an OSSP.

3.2 Integrating RUP and CMMI process components

To set the underlying software process methodology and provide detailed con-
tent for CMMI Process Area based process components, we chose commercial
Rational Unified Process framework (RUP) [3]. The reason for this choice was
that the framework is widely adopted, there is enough reference material about
the framework available and it is based on the more academic Unified Process
framework [8]. Also RUP involves many of the generally accepted properties of
modern software process: iterative, incremental, use-case driven and architecture
centric to mention a few [8].

We began the modeling experiment by mapping relevant parts of RUPmethod-
ology into CMMI Process Area based process components. Because RUP and
CMMI are structured differently and CMMI generally speaking operates at a
higher level of abstraction, process element level correspondences between these
two frameworks had to be established. This required interpretation of the ele-
ments roles in the two frameworks, since directly corresponding elements could
not be always found. In CMMI, Specific Practices were chosen as elements that
were mapped into RUP activities and work products. Figure 3 illustrates a map-
ping of CMMI REQM Process Area Specific Practices into RUP. The mapping
shows that the practices of the CMMI REQM Process Area do not map into a
single RUP discipline, even though only the Requirements discipline should con-
tain requirements related activities in RUP. It should be noted that only Special
Practices 1.1. and 1.2. are shown in Figure 3 The remaining three Special Prac-
tices of REQM are similarly scattered throughout the RUP disciplines. Inverse
mapping from the RUP Requirements discipline to REQM and RD Process Ar-
eas strengthened this finding: only part of the practices in RUP Requirements
discipline could be mapped back into CMMI REQM or RD.

4 Findings

In our experiment we found two different impediments of full scale use of SPEM
process components as a basis for an OSSP: 1) shortcomings of SPEM standard
regarding process components and 2) lack of established practices of organizing
process components at conceptual level.

4.1 SPEM process component shortcomings

SPEM language is well-designed to model basic process definition elements.
However the definition of ProcessComponent is ambiguous: requirement of self-
contained components means that there must be no ’RefersTo’ dependencies

Fig. 3. An exemplar mapping of CMMI practices to RUP activities illustrate how these
two frameworks structure the requirements management differently.

from within the component to elements not within the component. Other depen-
dency types, e.g. ’Import’ are allowed. The semantics of ’RefersTo’ and ’Import’
can be interpreted in many ways. Figure 4 shows one possible use of the depen-
dencies. [1] The absence of any examples in the standard illustrating the intended
use of these dependencies will lead to different ways of composing process models
from process components in different organizations.

Composition of process components is done by unification. SPEM states that
at least output work products of component P1 and input work products of com-
ponent P2 must be made identical in order to combine P1 and P2. In addition,
according to SPEM other elements may possibly be also unified, such as Process-
Roles, Templates, and so on. SPEM suggests that composition of components
could only be fully automated if they originate from a common family, so that
unification could be automated. Otherwise the unification would involve human
intervention consisting re-writing of the elements [1]. However, SPEM does not
provide any explicit support for component composition and unification – the
issue is left open.

From the viewpoint of process component reusability, the assembly mecha-
nism may allow too much variation and jeopardize component portability be-
tween two OSSPs. Also tool independency is compromised as tool vendors may
interpret SPEM standard composition mechanisms differently.

4.2 Conceptual organization of process components

Process components could be formed from process frameworks by using their
existing organization to identify components. As an example, making process
components out of RUP disciplines is certainly a natural decomposition. How-
ever, looking closer at how one discipline in RUP interacts with other disciplines
in RUP, we clearly see that the composition interface of the component will
become very complex. The work carried out in a discipline, expressed as an ac-
tivity flow, is connected to many other disciplines in all four phases of RUP.
Further, phases contain iterations, and many disciplines are active during one
iteration. Roles, tools, guidances and templates are shared between disciplines,
and continuous, integral workflows of a single worker continue seamlessly from
one discipline to another. Expressing such a complicated and versatile relation-
ship between process components, with the simple support that SPEM offers, is
challenging.

It is questionable whether these kind of large process components are useful
at all in an OSSP. Achieving reusability in general requires that the reused
component has a well defined task or responsibility, and has a simple interface
- otherwise it will not be pluggable without considerable manual tailoring. It
may very well be the case that these problems originate from the foundational
level, not specifically from SPEM. Process components that are formed from
RUP Disciplines or CMMI Process Areas appear not to be reusable or even
usable. The only situation where the composition is gets manageable is a simple
waterfall type sequencing where process components represent the phases of the
life-cycle and are connected via major mile-stone work products. Note that in
this case disciplines (e.g. requirements, design, testing) in fact coincide with the
phases.

The other possible approach to create process components is to begin by
defining process elements of a process framework: work products, roles, guidances
etc., and model the dependencies between these basic elements. These elements
have high reusability and process independence, and can thus be used to form the
OPA. SPEM Package is a natural choice to model this library of stable process
elements. The OSSP has the role of modeling the dynamic part of the process.
It consists of rather small process components, packaging together a cohesive
flow of activities, the participating roles, guidances and tool mentors, templates,
and related work products. Most of this content could be taken from the OPA
using ’Import’ dependency. Elements that remain internal to only one process
component need not be added to OPA. The main reason for this arrangement is
the unification of process elements shared by several process components.

’RefersTo’ dependency is used in the OPA to indicate which elements must
be imported together due to dependencies. The situation is illustrated in Figure
4. For instance, importing ’Use Case Model’ necessitates also importing ’Use
Case’. ’Impacts’ dependency means that changing one element has a potential
effect on the other. All of these dependencies should be modeled in the OPA
only if they are valid in all possible process components where they will be used,

e.g. ’Software Requirements Specification’ will impact ’Software Architecture’ in
any imaginable process, thus the dependency is reusable.

4.3 The proposed organisation of an OSSP based on process
components

Fig. 4. The proposed organization process assets into OPA that contains low level
reusable process elements, and OSSP that is the target of process authoring and con-
tains goal-oriented small sized process components that package together the flow of
activities and all related process elements.

Some of the process components in OSSP are going to be reusable and some
not. Examples of reusable components are ’DefineSystemScope’ or ’CreateCan-
didateArchitecture’. These components could have different versions for different
types of projects, e.g. a light version of ’DefineSystemScope’ for projects in famil-
iar domain and a more detailed and more comprehensive one for new domains or
multi stakeholder situations. Note that we propose to create process components
based on clearly identified goals during the development work, rather than based
on the structure of the process framework. As stated these components have vari-
able degree of reusability. However this approach facilitates process authoring
intermediate goals of development are a very natural view in process authoring.

Process authoring would then consist of dividing the project into clear interme-
diate goals, looking for reusable components for each identified goal, selecting
the most suitable component depending on the particular project, tailoring or
modifying the selected components, creating new components using elements
from OPA where none could be found in the OSSP, and finally controlling the
input and output work products to make sure that the components fit together.
All of this involves a lot of manual work, but it seems that when practical issues
are taken into account, more automation in process authoring is very difficult to
achieve. The OPA of course gives high degree of reusability of process elements.

5 Discussion

In this ongoing work we aim at understanding the many faceted problem of
decomposing software process models into reusable and easily pluggable com-
ponents. Our original idea, inspired by guidance of SPEM standard, of creating
large components using the structure of existing process frameworks seems to
yield unmanageable process authoring task and no real reuse. Thus we started
looking at smaller scale components and new ways of delineating process com-
ponents. Some promising ideas have emerged, as reported above. However, there
are many forces involved that must be taken into account. Processes with dif-
ferent life-cycle models and other process attributes probably require different
modeling philosophy, e.g. document-driven methodologies using the traditional
waterfall life-cycle model can be modeled using SPEM type language and process
components quite easily while evolutionary methodologies with iterative activity
flows are more demanding. Agile methodologies probably would require some-
thing very different because they usually lack clear intermediate work products
and therefore process component interfaces could not be formed. The control
relies heavily on inter-person communication and seamless integration of many
activities by the developer into one whole. Establishing artificial interfaces and
work products to implement the interfaces would be catastrophic in this envi-
ronment. We believe that an agile process can not be decomposed at all into
process components.

The traditional goals for OSSP are not easily achieved. The issue must be
addressed from many viewpoints: process analysis, design, assessment, process
component reuse, process improvement, process authoring, publishing, enact-
ment and authoring. The issues are organization dependent; at least organiza-
tions size and business context affect the OSSP.

Common understanding on these issues must be achieved: academic commu-
nity, tool vendors and standardization work all have a role here. SPEM standard
version 1.1. has not gained widespread acceptance, possibly due to insufficient
guidance on how it should be put into use. The standardization work for SPEM
version 2.0. [9] is ongoing and hopefully succeeds better on these issues that
have immense practical influence; is process modeling only going to be used for
describing graphically the processes of the organization, or will we be creating a
component oriented OSSP that is the target of SPI and can yield a tailor made

process for each project, possibly supporting third party process component
markets.

References

1. Object Management Group. Software Process Engineering Metamodel Specification
- Version 1.1, January 5 2005. formal/05-01-06.

2. CMMI Product Team. Cmmi for systems engineering and software engineering
(cmmi-se/sw, v1.1) - staged representation. Technical Report CMU/SEI-2002-TR-
002, Software Engineering Institute, Pittsburgh, PA, USA, December 2001.

3. IBM. Ibm rational unified process. Software Product, 2005.
4. D. Wastell J.C. Derniame, B.A. Kaba, editor. Software Process, Lecture Notes in

Computer Science. Springer-Verlag, 1999.
5. ISO/IEC, Geneva, Switzerland. ISO/IEC 12207, Information technology - Software

life cycle processes, August 1 1995. ISO/IEC 12207:1995.
6. The frameworks quagmire. http://www.software.org/quagmire/. Accessed on May

30 2005.
7. Sarah A. Sheard. The framework quaqmire, a brief look. Crosstalk, September 1997.
8. Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Devel-

opment Process. Addison-Wesley Professional, February 4 1999.
9. Object Management Group. Software Process Engineering Metamodel (SPEM) 2.0

- Request For Proposal, November 4 2004. ad/2004-11-04.

Tuomas Mäkilä and Antero Järvi

Spemmet – A Tool for Modeling
Software Processes with SPEM

In Proceedings of the 9th International Conference on
Information Systems Implementation and Modelling,

ISIM 06, pages 87–94. MARQ, 2006.

c©Authors 2006.

Spemmet - A Tool for Modeling Software Processes with SPEM

Tuomas Mäkilä !

tuomas.makila@it.utu.fi

Antero Järvi!

antero.jarvi@it.utu.fi

Abstract: The software development process has many unique attributes and therefore the mod-
eling language should be designed for this particular task. The emerging Software Process En-
gineering Metamodel (SPEM) modeling standard from the Object Management Group (OMG)
offers one solution of modeling software processes. In this paper the Software Process Engineer-
ing Metamodel is presented in brief and challenges on implementing a SPEM based modeling
tool are discussed. Especially the Spemmet process modeling tool implemented by the authors is
presented and analyzed.

Keywords: software process modeling, SPEM

1 Introduction

Business process modeling is a tool in information system development for understanding the
dynamic behavior of the system context. Similarly, the dynamic complexity of information sys-
tem development is managed by modeling the underlying development processes. However,
these processes have different characteristics than business processes and thus can not be mod-
eled well with the present business process modeling languages e.g. traditional flow chart nota-
tion, Business Process Modeling Notation (BPMN) [1], Integrated Definition Methods (IDEF)
[2], or Event-Process Chains (EPC) [3].

The development of information systems is a highly complicated task, involving coordina-
tion of actions of many people working under uncertainty, managing constant change, and at the
same time using resources efficiently to meet tight deadlines. Software processes need to bal-
ance predictability and efficiency with flexibility of operation and creativity. The stable elements
in software development are the work products; how created value is captured to work products
during the project is less volatile than the activities and their order of execution. Therefore well-
known business process modeling languages based on activity oriented modeling fail to express
the required flexibility in modeling processes characterized by uncertainty and creativity.

Process modeling languages that are built around the work products, so called entity-based
modeling languages, are more suitable for modeling software development processes. One such
language is the Software Process Engineering Metamodel (SPEM) from the Object Manage-
ment Group (OMG) [4]. The SPEM is based on the OMG Meta Object Facility (MOF) [5]. The
purpose of the SPEM is to become the standard software process modeling language. The cur-
rent version of the SPEM is 1.1 which was released in January 2005. In a few years there will
be a major revision of the standard [6].

The research of software process specific modeling languages has been mild during recent
few years. Some work on the topic has been done. Garcı́a et al. have developed metrics for
! University of Turku, Department of Information Technology, FI-20014 Turku, Finland

evaluating maintainability of the software process models [7][8]. They have used the SPEM
as a primary modeling language. Franch and Ribó have investigated ways to enhance reuse
with appropriate modeling conventions [9]. They have developed own UML-based modeling
language PROMENADE to support the reuse.

Besides the academic research there are some commercial tools, that support software pro-
cess modeling techniques. Key practitioners in this field are IBM and Osellus. IBM provides
a software process modeling tool that supports their Rational Unified Process framework [10].
Osellus have developed the IRIS product family which is meant for process authoring and en-
actment [11]. The IRIS product family has been built on the SPEM modeling language.

One interesting project related to the topic is the freshly started Eclipse Process Framework
Project (EPF) [12]. The goal of the project is to provide process authoring tool framework
and process content for different development needs. The work is based on the open Eclipse
platform.

This report is based on the ongoing ReProCo research project, that investigates how soft-
ware development should be supported by process modeling. The central issues are the type
of modeled process content, its organization into process components, and the mechanisms of
process content reuse. The aim is to provide flexible and customizable process models that can
meet the high variety of the process needs, which are typically found in software companies.
In addition these process models should be light to define and maintain. The concepts of the
process content organization into reusable process libraries are presented in another paper [13].

This paper will focus on describing technological elements of software process modeling:
the modeling language and a modeling tool based on the language. The context of software
process modeling should still be kept in mind. The process models should be organized into
reusable process libraries, which can be selected, tailored, and enacted by software companies
based on the organizational and the project needs.

2 Software Process Engineering Metamodel (SPEM)

2.1 SPEM standard

SPEM standard is closely related to the UML standard, since they both are based on the MOF
specification. The SPEM 1.1 standard is actually built onto the SPEM Foundations package
which is a subset of the UML 1.4 [14]. Basic element, relationship, and package structures are
defined in this Foundations package. All other SPEM elements are defined in relation to the
elements of the Foundations package through inheritance. Because there is a close connection
between the SPEM and the UML, it is natural that the SPEM is also defined as a UML profile
in the SPEM documentation [4, Chapter 11].

Although the SPEM notation resembles the UML, it has otherwise quite different structure.
At the conceptual level, the main idea of SPEM based process is the interplay of three basic el-
ements: Process Roles that are responsible for and execute Activities that consume and produce
Work Products. Roles, Work Products, and Activities are all process definition elements. This
is illustrated in Figure 1.

SPEM defines elements Life Cycle, Phase and Iteration that are used to model the dynamic
structure of the process. A Life Cycle defines the order of Phases, which in turn can contain
Iterations. A Process must have exactly one Life Cycle.

SPEM also defines elements that are meant for organizing other process elements from
the viewpoint of process authoring, assembly and reuse. The purpose of Packages is to divide

Fig. 1: The core concept of SPEM process modeling is a triangle formed by Role, Work Product
and Activity.

process descriptions into self-containing parts. These parts can then be placed under configu-
ration and version management and used for assembling and tailoring software development
processes. Process Components are specializations of Packages. A Process Component is an
internally consistent and self-contained chunk of process descriptions that may be reused with
other Process Components to assemble complete processes. Process Components can import a
non-arbitrary set of process definition elements. The Discipline is a specialization of the Process
Component and is used to represent activities within a common process area, such as design,
implementation or testing (corresponding to e.g. Core Work-flows in the Unified Process [15]).
Process itself is also a specialization of the Process Component, that is intended to stand alone
as a complete end-to-end process.

The assembly of processes is done by composition of Process Components. This requires
unification of the Process Components. Corresponding output and input Work Products must
be unified, as well as Process Roles and possibly other elements that are used in more than one
Process Component. The details of unification are not defined in SPEM.

2.2 The scope of process modeling

Process modeling can be used in many different scales; at its simplest, an existing software pro-
cess in a company would be modeled for clearer presentation and easier delivery. On the other
extreme, a large company might manage a library of software process content and new end-
to-end processes would be created by combining and customizing process components, either
internally developed or third party components. It is evident, that the more complex applications
of process modeling and reuse require more sophisticated mechanisms for organizing process
content. Unfortunately SPEM 1.1 cannot provide these mechanisms. However, the core ideas
of SPEM modeling are unlikely to change. For this reason we are currently targeting for sim-
ple applications of process modeling; having only internally developed process content, a clear
separation of static and dynamic process content, and simple mechanisms of process assembly
[13]. As the SPEM standard evolves, these basic modeling concepts should remain valid.

3 Spemmet Process Modeling Tool

In this section we present a SPEM based modeling tool called Spemmet. The development of the
tool begun at the early stage of the ReProCo project when we had to form a prototype process
component model using the SPEM modeling language.

Before the decision of the own SPEM modeling tool was made, several readily available
tools were evaluated. The evaluated tools can be divided into four categories: Basic drawing
tools, UML tools, XML tools, and SPEM specific editors. Drawing tools, UML tools, and SPEM
tools concentrated on diagram drawing, whereas we needed more efficient means to bind textual
data (e.g. tailoring guidelines) to process elements. These tools also had limited modeling sup-
port for our needs. XML tools were evaluated in order to exploit the SPEM XMI DTD (XML
Metadata Interchange Document Type Definition) provided by OMG [16] for manual data in-
put. It soon become apparent that the DTD was meant only for exchanging information between
modeling programs and could not be used as a base for forms for manual data entry 1.

When the Spemmet development started we made a couple of key design decisions. Firstly,
we wanted to make sure that the tool would not restrict our modeling options. Of course, the tool
should offer all necessary elements for modeling software processes and support the modeling
efforts in order to make the modeling as easy as possible. It is equally important that the tool
is flexible and allows the user to use different modeling techniques, because modeling needs
change depending on the modeled process. Modeling tool must also allow user to experiment
with different modeling techniques since there are no established software process modeling
guidelines available.

Second design decision was to omit graphical representation of the process model and al-
low user to input and output data into the model only in textual form. It was apparent that the
textual list of the attributes of a process element was easy to comprehend. Actually it would
have been difficult to clearly express all attributes of one element in a graphical diagram. After
the process element data is entered into machine-readable form, it is relatively easy to generate
various graphical and textual views from this data in future version of the tool. This is an im-
portant design aspect, because in practice different stakeholders have different purposes of use
for the same process model, and logical way of taking these varying and currently unanticipated
requirements into consideration is to be able to offer multiple views to the model.

The implementation of the Spemmet tool was quite straightforward. It was developed on a
web platform and used a shared data storage. The idea was that the tool would be available on
any workstation without installation and multiple users could use it simultaneous. The overview
of the architecture of the tool can been seen in Figure 2.

Fig. 2: Overview of the Spemmet architecture. Spemmet web clients communicate with the
Spemmet server through the http protocol. The model data is stored in the database.

The most difficult task during the implementation was to transform the conceptual model of
1 This was an anticipated outcome, because the original purpose of the XMI definitions is to enable metadata

interchange between modeling tools.

the SPEM to the actual data structure definitions used by the tool. This was a consequence of
the complexity of the SPEM standard specification. Some parts of the standard were ambiguous
or simply too complex to be feasible in this kind of tool prototype. Good example of the latter
is the state machine described in the SPEM Foundations package, which might be good for the
UML 1.4 but is too complex for the SPEM.

Luckily the UML Profile definition of the SPEM was easier to understand and helped re-
solving some of the metamodel ambiguities. Some shortcuts were made with the most complex
parts of the SPEM metamodel. However, the overall data structure of the Spemmet tool was
kept as compatible with the SPEM standard as possible.

The most important classes of the Spemmet tool data model are presented in Figure 3. Only
structures used for modeling static process elements were implemented in this first version of
the Spemmet tool. Therefore the basic conceptual triangle of the SPEM presented in Figure 1
formed the heart of the class structure of the Spemmet tool. Guidance and Package classes were
adopted to support the process reuse: The Guidance class enabled documentation and tailoring
guidelines integration into the process models and the Package class made possible to logically
group process model elements. Figure 3 also shows that all of the SPEM classes are inherited
from the Model Element class.

Fig. 3: Core classes from the SPEM implemented in the Spemmet tool.

The first version of the Spemmet tool was successfully implemented and included all the
features that were needed in our modeling project. The basic architecture works fine and it
is possible to use modeling tool with a web browser through any workstation in our intranet.
Multiple users are able to model with the tool simultaneously, although there are still some
scalability issues and no user management in this first version.

The most important feature for flexible and practical process modeling styles is the versatile
linking between the process elements. All basic elements can be linked together using multiple
relationship types. Association, dependency, and inheritance, which are familiar from the UML
standard, are all supported. The user can to browse elements by following these relationship
links. Together with the basic package structure the user can navigate through the process model
easily and in appropriate manner.

The user interface of the Spemmet tool is naturally quite simple, because in the SPEM all
process elements are inherited from the same parent class (i.e. Model Element class). Therefore
the user can browse and edit all process elements in consistent one-screen view. This simple
design allowed us also to implement an html exporter, which is a great help when we have
to share snapshots of the model with other stakeholders. A screen shot of the Spemmet user
interface can be seen in Figure 4.

Fig. 4: Screen shot of an element view of the Spemmet tool.

4 Further Work

The Spemmet tool is our first attempt to get practical understanding of the SPEM based process
modeling. At the time being the Spemmet tool includes only static process elements of the
SPEM standard. The tool must be further developed so that the process dynamics mentioned at
the introduction section can be modeled. Especially elements in Process Life Cycle package (i.e.
Phase, Life Cycle, Iteration) are important, because these elements are used to express temporal
relationships between activities. Modeling of the dynamic structures can however be based on
elements that are already included in the tool. For example an activity can be automatically
connected to the compatible activities using the input and output work products and their states.

Our work continues on two mutually supporting tracks: first we are carrying out an empir-
ical investigation on the needs and applications of process modeling in software companies.
Together with theoretical research on software process modeling, the empirical study results
guide the second track, the development of Spemmet tool. The goal is to be able to meet the
practical modeling needs in a wide range of companies, and support them with process model-
ing tools.

The standardization work of SPEM is ongoing; the version 2.0 [6] will be released with in
a few years. This of course introduces some uncertainty, but on the other hand, it gives us time
to understand the potential and sound ways of applying process modeling in companies.

5 Conclusions

Our experiment with the Spemmet tool shows that it is possible to develop a working process
model tool in a relatively short time using the SPEM process modeling standard. The SPEM
standard is certainly hard to follow in places and partially too complex. Therefore some short-
cuts have to be made at least for this kind of lightweight modeling tool.

The tool was successfully used to model parts of a process framework during the ReProCo
project. The modeling was quicker than with tools that were not designed for process modeling,
because the tool supported directly SPEM metamodel concepts. The communication about the
model itself was also easier with the other stakeholders of the project, because all necessary
information of a process element was collected into one place.

The clear benefit from the SPEM specific modeling tool was that the tool makes modeling
easier and enables quick modifications. Models made with the software process specific tools
seem to be more informative than models ”hacked” with other modeling tools.

The greatest challenge with the SPEM modeling standard is to promote its use both in the
academic world and in the software industry. Also, the current SPEM 1.1 version is immature,
and this obstacle will probably be removed by the forthcoming SPEM 2.0. The only way we see
to increase the adoption of SPEM is to develop working SPEM based modeling tools that will
help learning modeling techniques and experimenting with the SPEM.

This article is based on work done during the ReProCo research project (Sub-project of the
E!3320 project) in co-operation with Genestia Group Inc. - Neoxen Systems and Devera Soft-
ware Development Center.

Bibliography

1. Business Process Modeling Notation Specification - Final Adopted Specification. Object Manage-
ment Group, 2006. dtc/06-02-01.

2. Integrated Definition Methods Home Page. http://www.idef.com/, Knowledge Based Sys-
tems Inc. Accessed on March 16 2006.

3. Becker et al.: Process Management - A Guide for the Design of Business Processes. Springer, 2003.
4. Software Process Engineering Metamodel Specification - Version 1.1. Object Management Group,

2005. formal/05-01-06.
5. Meta Object Facility (MOF) Specification - Version 1.3. Object Management Group, 2000.

formal/00-04-03.
6. Software Process Engineering Metamodel (SPEM) 2.0 - Request For Proposal. Object Management

Group, 2004. ad/2004-11-04.
7. Garcı́a et al.: Integrated Measurement for the Evaluation and Improvement of Software Processes.

Lecture Notes in Computer Science, Volume 2786, Springer, 2003. pp 94 – 111.
8. Garcı́a et al.: Definition and Empirical Validation of Metrics for Software Process Models. Lecture

Notes in Computer Science, Volume 3009, Springer, 2004. pp 146 – 158.
9. Franch and Ribó: A UML-Based Approach to Enhance Reuse within Process Technology. Lecture

Notes in Computer Science, Volume 2786, Springer, 2003. pp 74 – 93.
10. Rational Unified Process Home Page. http://www.ibm.com/software/awdtools/

rup/, IBM. Accessed on March 16 2006.
11. Osellus Home Page. http://www.osellus.com/. Accessed on March 16 2006.
12. Eclipse Process Framework Project Home Page. http://www.eclipse.org/epf/, The

Eclipse Foundation. Accessed on March 16 2006.

13. Antero Järvi and Tuomas Mäkilä: Observations on Modeling Software Processes with SPEM Process
Components. Proceedings of The 9th Symposium on Programming Languages and Software Tools,
Tartu, Estonia, 2005.

14. OMG Unified Modeling Language Specification - Version 1.4. Object Management Group, 2001.
formal/01-09-67.

15. Jacobson et al.: The Unified Software Development Process. Addison-Wesley Professional, 1999.
16. XMI DTD for SPEM 1.0. Object Management Group, 2003. formal/02-11-14.

Antero Järvi, Tuomas Mäkilä and Harri Hakonen

Changing Role of SPI – Opportunities
and Challenges of Process Modeling

In Proceedings of the 13th European Conference on
Software Process Improvement (EuroSPI), pages

135–146. Springer-Verlag, 2006.

c©Springer-Verlag Berlin Heidelberg 2006. Reprinted with kind permission from
Springer Science and Business Media.

Tuomas Mäkilä, Antero Järvi and Luka Milovanov

Light-weight Approach for Software
Process Modeling – A Case Study

In Proceedings of New Exploratory Technologies 2007,
pages 12–16. Korea Electronic Forum, 2007.

c©Authors 2007.
Editorial note: This dissertation contains a slightly adapted version of the

original article where a broken layout of the proceedings is fixed.

Light-weight Approach for Software Process Modeling
– A Case Study

Tuomas Mäkilä1, Antero Järvi1 and Luka Milovanov2
1University of Turku, Department of Information Technology, Turku, Finland

2Plenware Oy Ltd., Embedded Systems, Turku, Finland
tuomas.makila@utu.fi, antero.jarvi@utu.fi, luka.milovanov@plenware.fi

Abstract
Formal software process modeling languages like Software
Process Engineering Metamodel (SPEM) together with
proper tool support, provide an efficient way to maintain
and modify process definition content. In order to adopt a
process modeling technology, an organization has to model
its current processes. This is not a straightforward task
since existing process definitions may be nonexistent, in-
complete or incompatible with concepts of a modeling lan-
guage, and the actual process may vary considerably from
the documented one. In this paper, we describe an ap-
proach for conducting the as-is process modeling work. As
a proof of concept we present a case study on process mod-
eling carried out in the Gaudí Software Factory.

Keywords
Software Process Modeling, SPEM, EPF, Agile Methods

INTRODUCTION
Software process modeling technology is advancing rapidly
and gaining wider acceptance in the industry [1,2]. The
Software Process Engineering Metamodel (SPEM) stand-
ard of the OMG has defined a unified way to model soft-
ware development processes. Current SPEM standard is at
version 1.1 [3], version 2.0 [2] is not released at the time of
writing this paper, but has reached final adopted specifica-
tion phase and will be released in the very near future. The
success and penetration of a standard is crucially dependent
on the availability of mature tools. In this research we have
used an open-source process authoring tool provided by the
Eclipse Process Framework (EPF) project [4]. The EPF
Composer tool supports all essential SPEM 2.0 modeling
mechanisms, although it is not fully SPEM compliant. Also

commercial SPEM based process modeling tools are avail-
able.

Formal process modeling with suitable tools enhances ex-
isting process practices by reducing process management
costs and increasing process flexibility, and creates new
innovative ways of utilizing processes for supporting de-
velopment work and project management [5]. A common
requirement for realizing these benefits is bringing process-
es closer to the developers’ world and thus enabling to nar-
row the gab between the defined process and the actual
process followed by the developers.

Depending on how the process models will be used in the
organization, the required accuracy, level of detail and fre-
quency of modeling work varies. However, the more often
we refine or supplement the models, the better match we
can sustain between the models and the actual process.
Thus modeling has to be seen as an ongoing activity, not as
a single project which creates an everlasting process defini-
tion. There is a need for a modeling approach that is light-
weight and can be executed in parallel with the develop-
ment work.

In this article we propose an approach for modeling the
software development processes using the SPEM language.
Prerequisite for the modeling is the existence of explicit or
implicit process documentation which can be incomplete,
outdated or incompatible with the SPEM language.

MODELING APPROACH
Although there is active research on process modeling, the
focus is on the models. Research on the methods of creat-
ing the models is rare. Schwegmann and Laske present a
procedure for as-is business modeling in [6]. The procedure
includes following high-level activities: preparation of as-is

Figure 1 Illustration of the modeling approach

modeling, identification and prioritizing of problem areas,
collection and documentation of as-is models and consoli-
dation of as-is models. Kellner and Hansen [7] describe a
process modeling project for SPI purpose. Although their
focus is on the contents of produced models, some useful
information on how the actual modeling should be done
can also be found.

Requirements for Approach
To define the concept of light-weight modeling, we set the
following requirements for our proposed modeling ap-
proach:
1. Fast modeling: the development processes shall be

modeled effectively so that the focus can be kept on
the use of the models rather than on the definition of
the models.

2. Low interference with development: the modeling shall
not affect the normal development activities more than
is absolutely necessary. This makes it possible to mod-
el the software development process in parallel with
the on-going development projects.

3. No need for extensive consultation: the modeling shall
be possible to execute by following the written model-
ing approach description and general modeling guide-
lines. This makes industrial adoption more plausible
and takes also small organizations into consideration.

4. Technology independence: modeling shall be possible
for all kinds of software development processes, re-
gardless of the methods they are based on.

The modeling of processes can be a complex task and con-
sume a large amount of resources if done thoroughly [6,7].
Therefore, we must also accept some process simplifica-
tions in order to speed up the modeling and reduce the in-
terference with development projects. On the other hand,
based on the findings of Kellner and Hansen, a too low
number of interview iterations will reduce the accuracy of
the final process model [7][p.23]. Their findings also sug-
gest that processes which have been executed repeatedly
are easier to model.
Our modeling approach suites well for the cases where the
process is well-established and a consensus of work prac-
tices exists within the development organization. In this
case, the number of costly interview iterations can be kept
minimal while still yielding sufficient accuracy of the mod-
el.

Modeling Process
Our modeling process consists of seven steps which are
executed sequentially. The high-level overview of the ap-
proach is illustrated in Figure 1.
Start of modeling project. Plan the modeling project and
communicate the plan to all participants. There should be
one lead modeler who is responsible for the modeling
work. The lead modeler should have experience in software
process modeling. Also the purpose of the final model

should be specified, because it defines the level of detail of
the model.
Construction of initial model. The initial process model is
constructed based on the existing process documentation.
The initial model acts as a starting point for modeling the
current process. It can also work as a reference when com-
paring the differences between the documented and actual
processes. If no explicit process documentation exists, im-
plicit process documentation, i.e. guidelines and templates
of the development organization, should be used.
Verification of initial model (Optional). Authors of the
existing documentation, namely process experts, should
verify that the model is in line with the existing process
documentation and that the modelers have understood the
documentation right. The model should be refined during
the verification meeting, so that no additional meetings are
needed. Time-consuming, detailed changes can be done
after the verification.
Planning of interviews. The interviews serve several pur-
poses. Firstly, to clarify unclear parts of the process model.
Secondly, to find contradictions between the process doc-
umentation and the actual process. Thirdly, to find differ-
ences on how different process stakeholders use the pro-
cess. The interviewees should be chosen so that they repre-
sent different process stakeholders in as broad way as pos-
sible.
Execution of interviews. Minor modifications to the model
should be made interactively with the interviewees to illus-
trate and verify the model changes immediately. If possible,
notes should be made from the comments of the interview-
ee.
Refinement of model. Model should be refined right after
or even during the interviews based on the interviewee
comments. A proper modeling tool is essential since it al-
lows fast, interactive and flexible modeling.
Verification of final model. The purpose of the step is to
verify that the modelers have understood the interviewees
correctly and validate that the model is accurate enough for
indented use. If there are major contradictions between
participants, the interviews should be re-planned and re-
peated.
Closing of modeling project. The lead modeler should
create a baseline of the model and make sure that it is
stored properly and distributed to all stakeholders.

CASE STUDY AND RESULTS
Modeling Environment
The Gaudí Software Factory [8] is a software construction
unit at the department of Information Technologies at Åbo
Akademi University. The goal of the Gaudí factory is to
produce software for the needs of various university re-
search projects. Software process in the Gaudí factory is
based on agile methods, particularly on Extreme Program-
ming [9]. It is characterized by short (one or two weeks)
iteration cycles followed by small releases, and close in-

volvement of a customer [10] or customer proxy [11] in
software projects. The Gaudí process is defined as a collec-
tion of so-called software best practices focusing on prod-
uct quality and project agility [12]. Some of the practices
were directly borrowed from Extreme Programming, while
the most of them were adapted to suit the university envi-
ronment [13].

Modeling Steps
Besides the description of the software best practices which
comprise the Gaudí process, there is no other description of
the process in a conventional way. However, a need for a
clearer description of the Gaudí process has been arising,
mainly because of two reasons. Firstly, due to the high staff
turn-around [8] in Gaudí, there is a need for clear process
description to teach the process to new programmers, cus-
tomers and coaches. Secondly, the Gaudí process is sup-
posed to be very flexible and allow tailoring – an accurate
process model would be a great help in this task. Therefore,
the Gaudí factory makes a good pilot study for testing our
approach for software process modeling.
The initial model was created based on the technical report
on the Gaudí Software Factory [12]. After completing the
initial model, it was verified by interviewing the process
expert who was one of the original authors of the Gaudí
process description. Also the key stakeholders of the pro-
cess were identified and interviews with them and model-
ing team were scheduled. The key stakeholders, a develop-
er and a coach from different projects, were interviewed
about the actual hands-on execution of the process during
the development projects. The interviews revealed new
details about the process, problems in the initial work flow,
and elements that were over-emphasized in the original
process description. The interviews also complemented
each other. The developer had more information about ac-
tual development tasks while the coach knew better about
the managerial issues. This is of course quite obvious find-
ing, but shows that making a comprehensive model with
low effort is possible only if the interviewees are selected
carefully at the beginning of the modeling project. An ini-
tial model was modified during the interview session based
on the comments of the interviewees. Notes were also made
from the interviewees’ feedback to be used in subsequent
steps.
After the interviews, the draft model was modified based
on the interview notes. This model was again verified by
the process expert and the relevance of the model was eval-
uated. Some minor adjustments were made, but in general
the model was satisfying. The final model is presented in
the next section.

Final Model
Interviews revealed that there are two kinds of projects in
the Gaudí factory. Therefore the main iteration was divided
into two different models: customer driven and technical
coach driven. The former process model is used in projects
with clear customer role. In this case separate acceptance

testing is done and there is need for release builds. This
model can be seen in Figure 2. The latter process model is
used when the coach of the project also works as a custom-
er proxy. In this case the role of the coach resembles more
of the traditional project manager role. Because the cus-
tomer proxy i.e. the coach works closely in the project,
separate acceptance testing is not needed. Instead, the
coach evaluates the functionality of the software constantly
by doing exploratory testing. This model is illustrated in
Figure 3.

Figure 2 Modeling step 4 a: Final model for the customer

driven projects.

Figure 3 Modeling step 4 b: Final model for the technical

coach driven projects.

Analysis of the Modeling Experiment
The model of the Gaudí software process presented in the
case study turned out to be an accurate enough for the se-
lected purpose. The SPEM diagrams of the model give a
clear overview of the Gaudí process to process owners and
software engineers. The model captures most of the process
activities.
Finally, it is significantly faster to capture the basics of the
Gaudí process with the presented diagrams, rather than
reading the existing 27-page Gaudí document [12].
Since the proposed modeling approach is straightforward
there were neither major delays nor problems during the
modeling. We were able to follow the proposed modeling
approach quite faithfully. The total work effort was approx-
imately one man-week distributed into one month’s period.
The details on the modeling effort are presented in Table 1.

CONCLUSIONS
In this paper we have presented an approach for conducting
as-is process modeling. The presented approach is a fast
and light-weight way to model the existing software pro-
cess of an organization, when some process documentation
exist.
As a proof of concept we have also presented a case study
on process modeling carried out in the Gaudí Software Fac-
tory. As a result of this case study, we have seen that the
proposed approach works in practice. Furthermore, the ap-
proach turned out to satisfy our preset requirements as it is
fast, has low interference with development, does not re-
quire extensive consultation and is methodology independ-
ent. In addition, the resulting process model showed direc-
tions for the process improvement in the Gaudí factory.
The modeling approach proposed in this paper resulted in
two final models for Gaudi factory: the customer-driven
and coach-driven models (see Section 3.3). These two
types of the process have been established in the Gaudí

factory since its start, but were never implicitly document-
ed anywhere. This discovery speaks for the accuracy and
objectivity of the proposed modeling approach in the pre-
sented case study and shows the ability of bottom-up mod-
eling to reveal existing, undocumented high-level devel-
opment strategies.
However, the final model is not complete. For example, the
model does not include full work-product and role descrip-
tions. In fact, we do not see the need to model comprehen-
sive work-product flow because of the agile nature of the
Gaudí process. Nevertheless, the model is accurate and we
believe that complemented with essential work-product
templates and role descriptions, the model would serve as
good process documentation in the Gaudí factory.
While Gaudí factory offers a fine, controlled environment
to experiment with the process modeling techniques, we
will also test the proposed modeling approach in purely
industrial settings. The problems with process modeling
also apply to the purely commercial software development,
namely how process documentation can be supported by
modeling techniques and how models can be flexibly tai-
lored to fit different development needs. The forthcoming
industrial cases will represent different development meth-
ods, so that technological independence of the modeling
approach and its applicability in different situations and
organizations can be verified.

REFERENCES
[1] Peter Haumer. Second revised spem 2.0 submission.

OMG Meeting, 2006.
[2] Object Management Group. Software Process Engi-

neering Metamodel Specification, v2.0, March 2007.
ptc/07-03-03.

[3] Object Management Group. Software Process Engi-
neering Metamodel Specification – Version 1.1, Janu-
ary 5 2005. formal/05-01-06.

Step LM AM PE C D Total

Project Start 1 1 1 - - 3

Initial Modeling 15 - - - - 15

Verification of Initial Model 1.5 1.5 1.5 - - 4.5

Interviews Planning 0.5 - 0.5 - - 1

Interviews Execution 3 3 - 1.5 1.5 9

Model Refinement 3 3 - - - 6

Verification of Final Model 1.5 1.5 1.5 - - 4.5

Project Closing 1 - - - - 1

Total 26.5 10 4.5 1.5 1.5 44

Table 1 Estimated effort of the modeling participants in hours. Legend: LM = Lead modeler, AM = Assistant modeler,
PE = Process Expert, C = Coach, D = Developer.

[4] Eclipse process framework project homepage.
http://www.eclipse.org/epf/. Accessed on March 16
2007.

[5] Antero Järvi, Tuomas Mäkilä, and Harri Hakonen.
Changing role of spi - opportunities and challenges of
process modeling. In Proceedings of the 13th European
Conference on Software Process Improvement (Euro-
SPI 2006), volume 4257 of Lecture Notes in Computer
Science, pages 135 – 146. Springer Berlin / Heidel-
berg, October 2006.

[6] Ansgar Schwegmann and Michael Laske. Process
Management - A Guide for the Design of Business
Processes, chapter As-is Modeling and Process Analy-
sis, pages 107 – 133. Springer, 2003.

[7] Marc I. Kellner and Gregory A. Hansen. Software
process modeling. Technical report, Software Engi-
neering Institute, May 1988.

[8] Ralph-Johan Back, Luka Milovanov, and Ivan Porres.
Software development and experimentation in an aca-
demic environment: The gaudí factory. Journal of Sys-
tems and Software, 2007. To appear.

[9] Kent Beck. Extreme Programming Explained: Em-
brace Change. Addison-Wesley, 1999.

[10] Ralph-Johan Back, Piia Hirkman, and Luka Mi-
lovanov. Evaluating the XP Customer Model and De-

sign by Contract. In Proceedings of the 30th
EUROMICRO Conference. IEEE Computer Society,
2004.

[11] Piia Hirkman and Luka Milovanov. Introducing a Cus-
tomer Representative to High Requirement Uncertain-
ties. A Case Study. In Proceedings of the International
Conference on Agile Manufacturing, 2005.

[12] Ralph-Johan Back, Luka Milovanov, and Ivan Porres.
Software development and experimentation in an aca-
demic environment: The gaudi experience. Technical
Report 641, TUCS, Nov 2004.

[13] Luka Milovanov. Agile Software Development in an
Academic Environment. PhD thesis, TUCS, Dec 2006.

Tuomas Mäkilä, Harri Hakonen, Jouni Smed and
Andy Best

Three Approaches Towards Teaching
Game Production

M. Kankaanranta, P. Neittaanmäki (Eds.), Design and
Use of Serious Games, Intelligent Systems, Control, and

Automation: Science and Engineering, pages 3–18.
Springer Netherlands, 2009.

c©Springer Science + Business Media B. V. 2009. Reprinted with kind permission
from Springer Science and Business Media.

Tuomas Mäkilä and Henrik Terävä

Survey of Practitioners’ Attitudes to
Software Process Modeling

In Industrial Proceedings of the 16th European
Conference on Software Process Improvement

(EuroSPI), pages 12.25–12.33. Delta, 2009.

c©Authors 2009.

EuroSPI 2009  12.25

Abstract

Software process modeling has evolved fast during the past few years. New dedicated model-
ing standards and process-based tools have been introduced. Emerging trends of the process
modeling could bring even more radical changes. These changes have affected the work of
common software industry practitioners. Results of a qualitative survey, which was conducted
amongst Finnish software practitioners, are presented in this paper. The goal of the survey
was to map the attitudes of the practitioners towards the use of software methodologies and
software process modeling in their own work. In addition the practitioners provide expert anal-
ysis on the emerging modeling trends. The answers of the practitioners are analyzed in this
paper and conclusions are given on how the practitioners see the current state and the near
future of the software process modeling.

Keywords

Software Process Modeling

Survey of Practitioners' Attitudes to

Software Process Modeling

Tuomas Mäkilä, University of Turku, Finland

Henrik Terävä, Digia Plc., Finland

Session 12: SPI and Processes

 12.26  EuroSPI 2009

Introduction

Software process modeling and software process models are essential techniques in making under-
standable process descriptions. Efficient modeling and clear, up-to-date process models are essential
part of many software process improvement (SPI) activities. Several different techniques have been
used to construct the models: Work-flow diagrams, more advanced business process modeling lan-
guages, and also dedicated software process modeling languages. Development in the field of soft-
ware process modeling has enabled new applications for the models and brought the models closer to
the every-day project work in the software industry.

Many practical applications of the process modeling require strong tool support. For example a simple
task like keeping a process model up to date can become laborious with basic office tools. Existing
modeling language standards simplify and in many cases enable the implementation of modeling
tools. Modeling languages standards are also essential for model reuse and model interchange be-
tween different organizations. There has been swift development in both modeling standards and tool
support during the past five years. This development has increased the software industry’s interest
towards the software process modeling.

Second version of the Software Process Engineering Metamodel (SPEM) modeling language standard
[1] was released in 2007. The SPEM modeling language has provided a foundation for development of
new generation of software process modeling tools. IBM has constantly published improved versions
of its Rational Method Composer (RMC) [2] modeling tool which is indirectly based on the SPEM
standard. Partly based on the RMC code, almost identical tool is freely available through the Eclipse
Process Framework (EPF) project [3]. The EPF project also distributes models of several popular pro-
cess methodologies. Latest advancement is the IBM's Team Concert tool [4] which uses simple pro-
cess models as a mean to configure the project tools (e.g. user rights, version tracking rules and
communication). Microsoft has also same kind of ideas in their Visual Team System product [5].

This paper reports the results of a qualitative survey of software practitioners' attitudes on software
process modeling. There were three goals for the survey. First goal was to get objective information
about the current state of the process modeling in the software industry. This was done by obtaining
information about practitioners’ personal attitudes towards process modeling and also about the un-
derlying work methodologies. Second goal was to get expert analyses on the upcoming trends of the
process modeling. Third goal was to evaluate the research team’s own beliefs of the process modeling
which were based on the literature and the team’s own experiences.

The research was conducted as a two-part qualitative survey. In the first part the respondents an-
swered the web-based questionnaire at their own pace. The questionnaire included mainly open ques-
tions grouped in three categories: 1) Influence of work processes in respondents' own work, 2) influ-
ence of process models in respondents' own work, and 3) analysis on the upcoming trends of process
modeling. In the second part of the survey the answers of the selected respondents were supplement-
ed during personal interviews. The interviews were done after the preliminary analysis of the answers
of the first part questionnaire.

The survey results were analyzed by our research team. The team consisted of both university re-
searchers and industry practitioners. The idea was to use a scientific method to get relevant results,
which would also serve industrial needs. During the analysis the research team tried to find common
elements and also contradictions in the answers to form meaningful conclusions. In addition to the
qualitative analysis, the team used straightforward quantitative methods to analyze the respondents'
answers to certain, individual questions. It should be noted that the percentage values presented in
this paper can not be directly generalized outside this study.

The structure of the paper is following. In Section 0 the respondents' opinions on the impact of the
software methodologies, processes and models to their every-day work are presented. In Section 0
respondents' views on the selected software process modeling trends and the future of the software
process modeling are analyzed. Section 0 presents the research team’s plans on continuing and ex-
tending the research of practitioners' opinions on the software process modeling. Finally in Section 0
the paper is concluded.

Session 12: SPI and Processes

 EuroSPI 2009  12.27

Current State of Modeling

The questionnaire was send to several software companies from the research team’s partner network
in Finland during spring 2009. Twenty practitioners (N=20) from fifteen different companies participat-
ed the survey. The total number of people who actually received the invitation to the survey is hard to
determine, but about one fourth of those who opened the survey web page actually filled the survey.

Respondents’ company sizes varied quite evenly from micro companies to large companies. The roles
of the survey respondents varied from developer and project manager to process engineer and com-
pany executives. When the more detailed work descriptions of the respondents were analyzed there
was usual variation between the work descriptions. No particular sector of the ICT industry was over-
emphasized. Most of the respondents worked in the various software development projects, but there
were also respondents working in e.g. ERP system development, methodology engineering and
maintenance projects. The exact distributions of company sizes and respondent work roles are pre-
sented in Table 1.

Table 1 Company sizes and roles of the respondents

The respondents were inquired about the methodologies and process frameworks their employees
had implemented. This was done to better understand the use of process modeling and modeling
needs in respondents' everyday work. Based on the detailed answers, it can be said that most of the
respondents were quite well aware of the methodologies used in their companies and the maturity of
the used methodologies.

It was found out that 85 % of the respondents recognized at least one methodology to be used in their
company. The methodologies used in the respondents' companies varied and there was not one clear-
ly dominant methodology. For example ISO standards, ITIL, RUP or variant, CMM(I) and Agile meth-
odologies were mentioned by multiple respondents. Half of the companies used more than one meth-
odology. Usually a standard methodology was accompanied by company's own process methodology
or guidelines. The maturity of the used methodologies also varied: 40 % of the companies had used a
methodology for several years and 40 % were at the beginning of the methodology adoption. It could
be seen from the answers that almost all of the companies were constantly developing their processes
and evaluating underlying methodologies.

The information presented above is mainly background information. The respondents' views on the
benefits and drawbacks of the methodologies and process modeling are analyzed next.

By analyzing the overall attitudes of respondents it can be concluded that 65 % of the respondents
found the process frameworks beneficial for their work, 15 % had negative experiences, and 20 % had
neutral attitude. Negative experiences seemed to be result of poorly defined or too inflexible process-
es. Although many respondents had positive overall experience, most of them also found some nega-
tive aspects in the use of the methodologies. In addition many respondents emphasized that the use
of the guidelines and the methodologies has to be adapted case by case in order to get the most out
of them.

More detailed analysis of attitudes revealed that the many respondents saw the methodologies as a
kind of foundation for either the development work itself or the improvement activities. Many of them
also said that methodologies enable reuse of practices which in turn saves time in different phases of
project work. On the other hand the reuse could lead to repeating old mistakes. Other more negative
attributes connected to the methodologies were inflexibility and unnecessary overhead caused by a
methodology.

Although only 20 % of the respondents worked mainly with methodology improvement issues, almost

Session 12: SPI and Processes

 12.28  EuroSPI 2009

all respondents had participated in the process improvement activities: 55 % directly, 35 % indirectly
e.g. by giving feedback about the process, and 10 % had not participated at all.

The use of the software process modeling was investigated by a set of yes / no claims about the state
of the process descriptions and modeling in the respondents' companies. The answers are collected in
Table 2. It can be said that while the use of standard methodologies was unexpectedly high in the
respondents' companies the use of process modeling seemed to be more normative. The table shows
that the advanced process modeling techniques like dedicated modeling tools, formal process models
and use of modern process modeling language were still rare in the companies. It is also notable find-
ing that number of the ”unknown” answers increased when more technical issues were inquired.

Table 2 How the work processes are documented in respondents' companies

The process modeling tools and languages the respondents use in their work was also inquired. 35 %
of the respondents used dedicated process modeling tools, 25 % used some other tools like drawing
software while 40 % did not use any process modeling tool or language. SPEM was mostly used
modeling language while Business Process Modeling Notation (BPMN) and Universal Modeling Lan-
guage (UML) were also in use.

The concrete use of the process models revealed that about half of the respondents used models just
to access common document templates or checklist. Only one fourth of respondents mentioned pro-
cess models as a tool for process tailoring and software process improvement. The question about the
use of process models also showed that many people used the word “model” as a synonym for the
word “methodology”. This was confusing because the research team used the word “model” to repre-
sent a result of modeling efforts.

The respondents would develop the use of the process models and modeling in their company in vari-
ous ways. Only 75 % of all respondents actually answered to the model development question. All of
them saw improvement possibilities and were able to specify clear development suggestions. Many
respondents mentioned that the modeling tools should be improved and the use of dedicated model-
ing language increased. One respondent noted that this could take longer than expected: "Formal
modeling is our next step but this step is bigger than we first thought".

Some respondents wanted to increase flexibility of the models. One rationale behind this was to ena-
ble tailoring of the models for different situations. There were also suggestions about making a library
of more detailed process models for different small scale situations. This approach resembles the
emerging practice-based process modeling [6] [7] which is probably still quite unknown amongst the
practitioners. Rest of the respondents wanted to increase the use of models by making them clearer,
easier to read, and more comprehensive. Also training for using the models was needed.

Answers about the process modeling seemed to suggest that the maturity of the software process
modeling was lower than the maturity of software methodologies which were used in companies. 85 %
of the respondents knew that their company utilizes at least one development methodology but only
60 % used some kind of modeling tool. It also seems that the respondents were more familiar with
methodologies and their use than meaning and the use of the software process modeling.

Session 12: SPI and Processes

 EuroSPI 2009  12.29

Emerging Trends

The second goal of the survey was to get practitioners' analysis on the vitality of emerging software
process modeling trends. Three most interesting modeling trends were selected based on the re-
search team’s previous research [8] and the recent advancements in the modeling techniques. The
trends that were presented to the respondents were:

 Distributed process modeling. Distributed process modeling is an approach which emphasizes
bottom-up modeling practices. Portions of the process models are done in the projects where the
process is used. This approach is opposite to the top-down, process engineer led process model-
ing. In practice, both aspects have to be taken into consideration. Techniques for distributed pro-
cess modeling are proposed e.g. in the paper [9].

 Light-weight process modeling. Light-weight process modeling means focusing only on the
most important elements during the process modeling. Idea is to quickly form a starting point for
longer modeling efforts or to quickly illustrate the current state of the process. The approach is op-
posite to the traditional business modeling techniques where target is to generate very accurate
models. Techniques for light-weight process modeling are described in the papers [10] [11].

 Decrease of project-process-gap. There's always overhead when process description and
methodologies are enacted into an actual project organization. The gap can lead to process devia-
tions and make measuring the project difficult. The gap can be decreased with modern process
modeling techniques for example by configuring the project tools using the actual process descrip-
tions. Ivar Jacobson has discussed about the project-process gap and developed a practice-based
method to deal with the issue [6]. Process modeling techniques for reducing the gap are present-
ed e.g. in the paper [12].

The respondents were asked to evaluate whether the techniques described in the trends would be
applicable to their own work and if they would benefit from these trends. They were also inquired to
analyze if some of the techniques were already applied in their companies.

Surprisingly many of the respondents had hands-on experiences on the distributed process modeling:
30 % of them had at least tested the principles related to this trend. Half of the respondents had posi-
tive attitudes towards this trend while others were neutral about the trend. The respondents liked the
idea that the process users can directly affect the process models. They also saw that it is efficient to
define process where it is used. This way there would be less process deviations in the project level
and the overall process model would better resemble the reality.

The respondents found also many possible pitfalls in the distributed process modeling. The largest
concern was the integration of the distributed models into one company-wide model. Many respond-
ents mentioned that strict distributed modeling would not work, but traditional top-down techniques
would still be needed to accompany the distributed modeling. There were worries about extra work-
load and insufficient skill levels of the project workers who would have to participate more actively in
process modeling. As a solution the respondents offered a modeling facilitator who would do the actu-
al modeling in co-operation with the project team, and take care of the integration and other technical
issues.

The light-weight process modeling was a little bit more unfamiliar concept: Only two of the respond-
ents had tried the techniques related to this trend. Controversially to the previous trend even 70 % of
the respondents had positive attitudes towards this trend. The respondents liked the idea to model
only necessary elements and reduce unnecessary overhead. The trend was connected to the princi-
ples of agile methods by several respondents. Iterative process development was also mentioned.

The largest problem with light-weight modeling was how to identify the most important process ele-
ments and define the detail level of the modeling. Solutions for this problem were not found. Some
respondents also identified that the light-weight process modeling has very focused applicability: It
works best for sketching and piloting new methodological ideas, and for forming a starting point for
longer lasting process modeling efforts.

The decrease of the project-process gap with process modeling techniques was clearly the most ab-
stract concept for the respondents. Although 65 % of the respondents had positive attitudes towards

Session 12: SPI and Processes

 12.30  EuroSPI 2009

this trend, the analysis was not as detailed as with the previous trends. The main message was that it
is hard to see how the project-process gap is actually decreased because the tools and modeling
standards do not yet fully support this approach.

The survey was concluded with the question about the respondents' own opinions on the future trends
of the software process modeling. Almost all respondents saw that meaning of the process modeling
and process methodologies will generally increase in the near future. The respondents emphasized
the importance of the development of the both process and project tools, and their interoperability. It
seemed that there are methodologies, modeling languages and tools available already but their ma-
turity is still quite low. Full potential of the modeling technologies is still to be reclaimed. Optimistically,
the respondents believed that this will eventually happen.

Further Work

As mentioned before, this was a qualitative survey and therefore percentages presented in the paper
give only hints on which issues were more important and which were less important for the respond-
ents as a whole. Because of the small sample (N=20) the percentage values themselves are not sta-
tistically significant.

This study acts as a starting point for a longer research on the practitioners' attitudes and expectations
towards the software process modeling. The qualitative analysis presented in the paper was a neces-
sary step to form understanding of the modeling issues that are important for the practitioners. Next
the research team is planning to conduct a statistical survey that will provide more comprehensive
information on tighter formulated set of hypotheses.

In the study presented in the paper the population and the sample was limited to the Finnish software
practitioners. Therefore conclusions can be drawn only about Finnish software industry. In the follow-
ing study the survey will be conducted in several other countries as well. There might be regional dif-
ferences on the attitudes since the software methodology culture seems to vary geographically. In the
following study the research team expects to deepen understanding on the differences of the attitudes
of different employee groups by using more formal statistical analysis.

It will also be interesting to follow how the field of the software process modeling will evolve in the near
future. As the study continues the research team will observe how well the expert analyses of the re-
spondents realize.

Conclusions

There should not be big surprises in the overall results of the survey for those who have followed the
recent development of the software process modeling concepts, methods, languages, and tools. Prac-
titioners welcome, with healthy criticality, new methodologies that will improve their ability to do their
every-day work better. Naturally the methodological frameworks do not offer a silver bullet, but some
kind of structures and guidelines are clearly needed in the software work.

The software process modeling concepts seem to be still a little bit unfamiliar for the practitioners,
although the project and development methodologies are quite well known. Reason for this might be
the immaturity of the modeling languages and the tools. It should also be noted that only portion of the
practitioners actually modify the process models, and therefore work directly with the modeling tools
and languages. For others it is sufficient to understand the models and maybe give constructive feed-
back about them. This situation might however be changing because of the trends presented in this
paper.

The unity of the practitioners' answers for the survey was interesting. Despite the fact that the re-
spondents represented many different work roles and different-sized companies, they all looked quite
positively at the methodological issues and changes in the process modeling field. Maybe the people
who are interested in these kinds of issues became selected as the respondents and this somehow
biased the results. However, it can be said that there are people in the software industry who are

Session 12: SPI and Processes

 EuroSPI 2009  12.31

open-mindedly willing to adopt new methodologies, but at the same time they expect to see direct
improvements in their work environment.

Acknowledgements: The authors wish to thank all practitioners who participated the survey from Digia,
Codebakers, Ericsson, RP5 Software, Samlink, Sesca and several other software companies.

Session 12: SPI and Processes

 12.32  EuroSPI 2009

Literature

[1] Object Management Group. Software & systems process engineering meta-model specification - version 2.0,

April 2008.

[2] Rational method composer (IBM) homepage. http://www-01.ibm.com/software/awdtools/rmc/. Accessed on

May 14th 2009.

[3] Eclipse process framework (EPF) project homepage. http://www.eclipse.org/epf/tool component/tool

index.php. Accessed on May 14th.

[4] Rational team concert homepage. http://www-01.ibm.com/software/awdtools/rtc/. Accessed on May 14th 2009.

[5] Team system (Microsoft) homepage. http://msdn.microsoft.com/enus/teamsystem/default.aspx. Accessed on

May 14th 2009.

[6] Ivar Jacobson, Pan Wei Ng, and Ian Spence. Enough of processes: Let's do practices. Journal of Object

Technology, 6(6):pp. 41-66, August 2007.

[7] IBM practices homepage. http://www.ibm.com/developerworks/rational/practices/. Accessed on May 14th

2009.

[8] Antero Järvi, Tuomas Mäkilä, and Harri Hakonen. Changing Role of SPI Opportunities and Challenges of

Process Modeling, volume 4257/2006 of Lecture Notes in Computer Science, pages 135-146. Springer Berlin

/ Heidelberg, 2006.

[9] Oktay Turetken and Onur Demirors. Process modeling by process owners: A decentralized approach.

Software Process: Improvement and Practice, 13(1):75-87, 2008.

[10] Tuomas Mäkilä, Antero Järvi, and Luka Milovanov. Light-weight approach for software process modeling - a

case study. In Proceedings of New Exploratory Technologies 2007, October 2007.

[11] Paula Savolainen, Hanna-Miina Sihvonen, and Jarmo Ahonen. SPI with Lightweight Software Process

Modeling in a Small Software Company, pages 71-81. 2007.

[12] Soojin Park, Hoyoung Na, Sooyong Park, and Vijayan Sugumaran. A semiautomated ltering technique for

software process tailoring using neural network. Expert Systems with Applications, 30(2):179-189, February

2006.

Session 12: SPI and Processes

 EuroSPI 2009  12.33

Author CVs

Tuomas Mäkilä (tuomas.makila@utu.fi)

M.Sc.(in technology) Tuomas Mäkilä works as a teacher and a resercher at the Department of
Information Technology of the University of Turku. He has researched software process mod-
eling for five years and is currently finishing his doctoral thesis on the topic.

Henrik Terävä (henrik.terava@digia.com)

M.Sc.(in technology) Henrik Terävä works as a project manager at Digia Plc., a worldwide in-
formation and technology solutions provider. He is an expert on modern software process
modeling technologies and develops Digia’s Open Method software development methodolo-
gy product.

Turku Centre for Computer Science

TUCS Dissertations

116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming
128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling

for Guaranteeing QoS in Wireless Broadcast Systems
129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-

Dimensional Cellular Automata
130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal

Development
131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic

Assessment with Immediate Feedback in Visualizations
132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of

Information Technology
133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software

Development Using Agile, Lean and Collaborative Approaches
134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2790-5
ISSN 1239-1883

Tuom
as M

äkilä

Tuom
as M

äkilä

Tuom
as M

äkilä
S
oftw

are D
evelopm

ent Process M
odeling

S
oftw

are D
evelopm

ent Process M
odeling

S
oftw

are D
evelopm

ent Process M
odeling

