
Qaisar Ahmad Malik

Turku Centre Computer Sciencefor

TUCS Dissertations
No 130, October 2010

Combining Model-Based Testing

and Stepwise Formal

Development

Combining Model-Based Testing and
Stepwise Formal Development

Qaisar Ahmad Malik

To be presented, with the permission of the Department of Information
Technologies at Åbo Akademi University, for public criticism in

Auditorium Gamma, the ICT building, on October 4th, 2010, at 12 noon.

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3-5
20520 Turku

Finland

2010

Supervisor

Professor Johan Lilius
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5
20520 Turku
Finland

Reviewers

Professor Tommi Mikkonen
Department of Software Systems
Tampere University of Technology
Korkeakoulunkatu 1
FIN-33101 Tampere
Finland

Adjunct Professor Ville Leppänen
Department of Information Technology
University of Turku
Joukahaisenkatu 3-5
FIN-20520 Turku
Finland

Opponent

Professor Tommi Mikkonen
Department of Software Systems
Tampere University of Technology
Korkeakoulunkatu 1
FIN-33101 Tampere
Finland

ISBN 978-952-12-2467-6
ISSN 1239-1883

To the memory of my beloved father, Mohammad Latif Anwar (1930-1994)

Sammanfattning

Datorer har blivit en nödvändighet i v̊art dagliga liv. De används i en
mängd olika system, allt fr̊an avancerade system s̊asom flygplan, telekom-
munikation och banksystem till hush̊allsapparater s̊asom TV, tvättmaskiner
och mikrov̊agsugnar. Programvaran spelar en viktig roll i m̊anga av dessa
system. Med framstegen inom teknik har datorer och i synnerhet deras
programvara blivit ganska komplicerade. Eftersom v̊art beroende av pro-
gramvara ständigt ökar, förväntar vi oss inte att programvaran ska fallera.
Programvara har dock ofta fel. Resultatet av programvarufel kan vara allt
fr̊an mindre irritationsmoment till stora ekonomiska förluster eller katastro-
fala situationer.

Fel i programvara kan bero p̊a en felaktig tolkning av krav, design-
fel eller slarviga misstag av programmerare. Det finns flera sätt att kon-
trollera kvaliteten hos programvara, inklusive rigorös och noggrann analys,
design samt styrning av utvecklingsprocessen. Testning av programvaran
kvarst̊ar dock fortfarande som den mest använda metoden inom industrin
för kvalitetssäkring. En effektiv och omfattande testning av programvaran
är en mödosam, tidskrävande och felbenägen process i synnerhet eftersom
den ofta görs manuellt. En avancerad metod för testning är modellbaserad
testning (MBT) där testfall genereras fr̊an modeller av systemet. Mod-
eller som används för detta ändam̊al är formella eller semiformella mod-
eller med exakt semantik. Dessa modeller erh̊alls vanligen genom att följa
vissa formella utvecklingsmetoder. De formella utvecklingsmetoderna garan-
terar riktigheten av ett system genom att tillämpa metoder fr̊an matematik
och logik. Den forskning som presenteras i denna avhandling kombinerar
den formella mjukvaruutvecklingsmetoden Event-B med MBT. För MBT
använder vi scenariobaserade tester som grund för v̊ara testvalskriterier.

Avhandlingen är uppdelad i tv̊a delar. Den första delen ger bakgrundsin-
formation om ämnet och sammanfattar v̊ara forskningsbidrag. Den andra
delen av avhandlingen, som best̊ar av ursprungliga publikationer, diskuterar
hur stegvis formell utveckling, även kallad precisering, kan användas för att
härleda testfall. Publikation I presenterar en algoritm för att härleda scenar-
iobaserade testfall genom en serie förbättringar. Idén om scenariobaserade
tester utökas i Publikation II och en alternativ metod för förädling av sce-

i

narier föresl̊as med hjälp av en fallstudie. Publikation III presenterar en
mekanism för att omvandla scenariobaserade abstrakta testfall till JUnit
tester, som exekveras mot Java implementationen av systemet-under-test.
Under den beskrivna processen överförs kraven som är kopplade till testsce-
narier till JUnit test. I publikation IV har vi använt UML och UML-B
modeller för MBT, följande en stegvis utvecklings strategi. För testgenera-
tion använde vi Conformiqs Qtronic verktyg. Publikation V behandlar en
jämförande studie av tv̊a modelleringsperspektiv som används för modell-
baserad testning. Denna analys görs p̊a basis av tv̊a fallstudier fr̊an telekom-
munikationsdomänen.

ii

Acknowledgments

First praise is to ALLAH, the Almighty, on whom ultimately we depend for
sustenance and guidance.

I am glad that this day has arrived when I am writing this part of my thesis.
This thesis is not a product of efforts of a single person and it is my pleasure
to show my gratitude to all those who made this thesis possible.

I am heartily thankful to my supervisor, Professor Johan Lilius, whose
encouragement, guidance, support and patience made this thesis come true.
I would also like to thank him for his friendly attitude and fair advices on
various matters during my doctoral studies.

I would also like to thank my thesis reviewers, Professor Tommi Mikko-
nen from Tampere University of Technology and Adjunct Professor Ville
Leppänen from University of Turku, for their time and efforts while review-
ing the thesis and providing with their invaluable comments and suggestions
how to improve this work. Furthermore, I wish to sincerely thank Professor
Tommi Mikkonen for accepting to be the opponent in the public defense of
my thesis.

I owe my deepest gratitude to my senior colleagues and friends, Dr.
Dragoş Truşcan and Dr. Linas Laibinis. You guys were always there to
guide me and help me in resolving difficult research issues, often on a very
short time notice. Just as you were there for me to help me finalize and
improve my papers. Thank you very much for doing that!

I would also like to extend my gratitude to all of my co-authors for
collaborating on this research. Special thanks go to post-doctoral researcher
Dr. Manoranjan Satpathy (now at General Motors, India) as well as Dr.
Mika Katara and his model-based testing group from Tampere University
of Technology for their collaboration and guidance during our joint work.

I would also like to take this opportunity to thank Professor Kaisa Sere
for accepting me as her doctoral student at the Distributed Systems Lab-
oratory. Although I later moved to the Embedded Systems Laboratory,
to join the D-MINT project under the supervision of Professor Johan Lil-
ius, I could however always feel her support and encouragement for my
success. I really appreciate her trust in me. During my stay at the Dis-

iii

tributed Systems Laboratory, I learnt a great deal from senior researchers
Marina Waldén, Elena Troubitsyna and Luigia Petre. Moreover, there I
also made many good friends. In particular, I am very thankful to Pontus
Boström, Leonidas Tsiopoulos, Mats Neovius, Marta Olszewska, Dubravka
Ilić, Fredrik Degerlund and Anton Tarasyuk for their invaluable friendship.

My stay at the Embedded Systems Laboratory was made enjoyable due
to the pleasant and amusing working environment of this lab. It always
helped me to stay in good mood, regardless of all work-related stress and
worries. In this regard, I am grateful to all my fellow workers and friends es-
pecially to Johan Ersfolk, Mohsin Saleemi, Kristian Nybom, Haitham Habli,
Sébastien Lafond, Andreas Dahlin and Stefan Grönroos.

I am blessed to have made many friends at my workplace and I want
to extend my gratitude to all other friends and colleagues from the Depart-
ment of Information Technologies at Åbo Akademi and Turku Centre for
Computer Science (TUCS), especially Moazzam Niazi, Ali Hanzala, Miko-
laj Olszewski, Adnan Ashraf, Kashif Javed, Fredrik Abbors and also to all
others for exchanging smiles and saying “Hi” while passing through the de-
partment corridors.

I have greatly enjoyed the study and research environment provided by
TUCS and the Department of Information Technologies. I am grateful to
both of these institutions for providing generous financial support for my
doctoral studies. All of my research and conference trips were financed either
by TUCS or by European Union (EU) funded projects namely, RODIN (Rig-
orous Open Development Environment for Complex Systems) and D-MINT
(Deployment of Model-based Technologies to Industrial Testing). Therefore,
I would like to extend my gratitude to EU and to everyone who made these
projects possible. I would also like to thank all secretaries, administrative
and support staff at TUCS and Åbo Akademi for running the department
in an efficient manner and keeping it free from hectic bureaucratic proce-
dures. In this regard, I am glad to name Christel Engblom, Irmeli Laine,
Britt-Marie Villstrand and Ulla Bäckström for their kind help at different
phases of my doctoral research.

Last, but certainly not least, I wish to thank my family for all their
wishes, prayers and love they gave me. I am truly indebted to the support
of my parents, especially of my mother, who after death of my father and
regardless of major financial difficulties, took special care of my education.
Without her help, encouragement, prayers and unconditional love, I would
not have managed to come to this stage in my life. Thank you very much
Maa Jee!

Finally, I owe my loving thanks to my wife and my best friend, Kanwal,
for standing by me at all times throughout this journey. Without your great
sense of humor, wit and love, my life would have been very boring. Thank
you for everything!

iv

List of Original Publications

This thesis is based on five original papers, which are referred in the text by
Roman numbers I-V.

I Manoranjan Satpathy, Qaisar A. Malik and Johan Lilius. Synthesis
of Scenario Based Test Cases from B Models, In Proceedings of the
Workshop on Formal Approaches to Testing and Runtime Verification
(FATES/RV). Lecture Notes in Computer Science, Vol. 4262/2006,
pp. 133-147, Springer-Verlag, August 2006, Seattle USA.

II Qaisar A. Malik, Johan Lilius and Linas Laibinis. Model-based Testing
Using Scenarios and Event-B Refinements, In Methods, Models and
Tools for Fault Tolerance. Lecture Notes in Computer Science, Vol.
5454/2009, pp. 177-195, Springer-Verlag, March 2009.

III Qaisar A. Malik, Johan Lilius, Linas Laibinis and Dragoş Truşcan.
On Extending Scenario-based Test Case Generation Using Event-B
Models, (Published with additions as “Requirement-driven Scenario-
based Testing Using Formal Stepwise Development” in International
Journal On Advances in Software. Vol. 3 Nr. 1 & 2, pp. 147-160,
2010.)

IV Qaisar A. Malik, Dragoş Truşcan and Johan Lilius. Using UML Mod-
els and Formal Verification in Model-Based Testing. In Proceedings of
17th IEEE Intl. Conference on Engineering of Computer-Based Sys-
tems (ECBS 2010), IEEE Computer Society, pp. 50-56, March 2010,
Oxford, UK.

V Qaisar A. Malik, Antti Jääskeläinen, Heikki Virtanen, Mika Katara,
Fredrik Abbors, Dragoş Truşcan and Johan Lilius. Model-Based Test-
ing using System vs. Test Models -What is the difference? In Proceed-
ings of 17th IEEE Intl. Conference on Engineering of Computer-Based
Systems (ECBS 2010), IEEE Computer Society, pp. 291-299, March
2010, Oxford, UK.

v

“Seek knowledge from the cradle to the grave.”
Prophet Muhammad (Peace be upon him)

Contents

I Research Summary 1
1 Introduction . 3

1.1 Research problems . 4

1.2 Research methodology 6

1.3 Research setting . 6

1.4 Organization of the thesis 7

2 Model-Based Testing . 7

2.1 Software Testing . 7

2.2 Model-Based Testing Process 9

2.3 Taxonomy of Model-Based Testing 11

2.4 Scenario-Based Testing 16

3 Formal Software Development by Refinement 17

3.1 The Event-B Method 18

3.1.1 Proof obligations for specifications in Event-B 20

3.1.2 Refinement in Event-B 21

3.2 UML-B . 23

4 Contributions of the Thesis 25

4.1 Scenario-based Testing and Formal Development . . . 25

4.1.1 Related Work 26

4.2 Modeling with UML-B for Model-based Testing 28

4.2.1 Related Work 28

4.3 Comparative Study of Modeling Subjects in Model-
based Testing . 29

4.3.1 Related Work 30

4.4 Overview of the Papers 30

4.4.1 Paper I: Synthesis of Scenario Based Test
Cases from B Models 30

4.4.2 Paper II: Model-based Testing Using Scenar-
ios and Event-B Refinements 31

4.4.3 Paper III: Requirement-driven Scenario-based
Testing Using Formal Stepwise Development 31

4.4.4 Paper IV: Using UML Models and Formal
Verification in Model-Based Testing 32

ix

4.4.5 Paper V: Model-Based Testing using System
vs. Test Models -What is the difference? . . 33

4.5 Mapping over Taxonomy of Model-Based Testing . . . 34
5 Discussion . 35

5.1 Testing vs. Formal Verification 35
5.2 Model-Based Testing vs. Formal Verification 36

6 Summary and Conclusions . 37
Bibliography . 41

II Original Publications 49

x

Part I

Research Summary

1

1 Introduction

Computers have become a necessity of our everyday lives. They are used
in a variety of systems, ranging from sophisticated ones such as aircrafts,
telecommunications and banking systems to home appliances such as TV,
washing machines and microwave ovens. Software plays an important role
in many of these systems. As a result, the usage of software for a variety
of purposes in different domains of modern life is rapidly increasing. With
the advancements in technology, computers and in particular their software
have become quite complex. Due to this reason, the correctness of software
cannot be guaranteed, even by the programmer who has designed it.

Since our dependence on software is continuously increasing, we do not
expect it to fail. However, software often contains errors. The severity of
software errors can range from minor irritations to major economical losses
or catastrophic situations. An often quoted example is of the software er-
ror that caused the failure of Arian 5 Flight 501 [36], resulting in the loss
of more than US$370 million and several years of research. The increased
penetration of software-intensive systems in our society has also increased
the demand for high-quality software. Moreover, due to sever market com-
petition, it has become a matter of reputation for organizations to produce
quality products, especially when safety of people or environment is con-
cerned. A recent example of such a case is the Toyota company, which
issued a recall of approximately 133,000 Prius and 14,500 Lexus vehicles to
update software in the vehicle’s antilock braking system [75].

The errors in software can be due to misinterpreted requirements, design
violations or careless mistakes done by programmers. There are several ways
to control the quality of a software, including rigorous and careful analysis,
design and process management. However, software testing still remains the
primary method used in industry for quality assurance. Software testing can
be described as an activity of checking whether for given inputs the software
always produces the correct output. Software testing has mostly been a
manual job, which usually involves a feedback loop between developers and
testers. Once a software module is developed and sent for testing, the testers
apply the pre-defined procedures to find and report errors. In response, the
developers fix them and send the software again for testing. This feedback
loop continues until all found errors are resolved.

Effective and extensive testing of a software system is a laborious, time-
consuming and error-prone process, especially since it is often performed
manually. This can be improved by automating the execution process. Tra-
ditionally, test automation is supported by pre-defined scripts, which gener-
ate test inputs, and then execute test cases on the system under test (SUT).
However, the automation does not distinguish between less and more im-
portant (e.g., critical) parts of the system. Moreover, exhaustive testing by

3

automation is not feasible since generating and running tests covering all
possible values of data or execution paths of a program is too difficult and
time consuming.

An advanced approach to testing is model-based testing (MBT) [85]
where test cases are generated from existing models of the system. The
models used for this purpose are formal or semi-formal models with precise
semantics. Very often, these models are also used to generate input data
and expected output values for the test cases. The research work presented
in this thesis is based on MBT.

Another approach for quality assurance is formal methods for software
construction. The formal methods prove correctness of a system by apply-
ing techniques from mathematics and logic. The software developed using
formal methods is considered correct-by-construction with regard to formal
system models (specifications), hence, theoretically speaking, needs no test-
ing. However, the formalists encourage testing as it helps in detecting errors
and omissions of the specifications. The use of formal methods in industry
has been limited by a number of factors, especially by its still limited ap-
plicability for the development of large sized software. However, the formal
methods provide a number of specification and verification techniques that
can be used at least at the design level.

In the past, formal methods and testing were often considered as rival
approaches. However, during recent years, the researchers have repeatedly
tried to combine them in order to get the best of two worlds. This combi-
nation has advanced especially in the context of MBT, where formal models
are used to generate test cases. This thesis is also a contribution in this
direction.

1.1 Research problems

In the following, a list of research problems, which have been addressed in
this thesis, and their proposed solutions are outlined.

• Using formal methods in order to improve the quality of the models
used for MBT

We use formal models for modeling and verifying the system behav-
ior at an abstract level. The verified models are then used in our
MBT approach for generating tests (Publications I to IV). Combining
formal methods and MBT is not a brand-new concept. However, our
work in this direction is focused on using formal stepwise development,
also known as refinement. In our proposed approach, the test design
follows the same refinement steps used for developing formal speci-
fications. We use the Event-B [10, 11] formalism for formal stepwise

4

development. The models are mathematically proved as correct before
they are used for MBT.

• Using user-provided abstract testing scenarios as test selection criteria

In MBT, there is often a nearly infinite number of tests that can be
generated. Even if a finite, but large, number of tests are generated,
it is usually not feasible to execute all of them due to restrictions
on available time and resources. In this regard, one needs to use
some selection criteria to focus on particular parts or aspects of the
system that must be tested. The selection criteria we use in this
thesis (Publications I to III) are based on the testing scenarios that
are provided by the user. The scenarios represent the system behavior
to be tested at an abstract level. Moreover, these scenarios are refined
in a step-wise manner following the same refinement steps used for
refining formal models of the system.

• Transforming abstract test cases into executable ones

In MBT, the models used to represent the system-under-test (SUT)
are usually abstract. Hence, the tests generated from these models are
also abstract. In order to execute these tests on the target system, the
tests need to be in an executable form with all the necessary details like
inputs, the sequence of steps to follow, and the expected outputs. In
this thesis, we present a methodology (in Publication III) to transform
abstract test cases into executable Java Unit (JUnit) [5] test cases.

• Using UML and UML-B models for test generation

In a separate work (Publication IV) we have explored using UML [71]
and UML-B [79] models for MBT while following the stepwise develop-
ment approach. The behavior of the SUT is modeled in UML-B, while
the architectural parts are modeled in UML. The main advantage of
using UML-B is that it provides a graphical modeling facility combin-
ing constructs from both UML and Event-B. The resulting models are
then exported to Conformiq’s Qtronic [55] for test generation.

• Comparing two modeling perspectives used in MBT

Finally, in the last part of the thesis (Publication V) we compare, by
presenting two case study examples, two modeling perspectives used
in MBT, namely, modeling the SUT and modeling the environment
of the SUT. This is done by comparative analysis of two case study
examples from the telecommunication domain.

5

1.2 Research methodology

The main research methodology used in this thesis has both exploratory
and analytical aspects. We started with studying the advantages and disad-
vantages of using the Event-B formalism for model-based testing. Later on,
we devised a methodology for refining the test cases along with the formal
development (refinement) steps. As a first step in this direction, we devised
an algorithm, presented in Publication I, for refining the scenario-based test
cases. This algorithm proved to be exponential in nature, thus limiting
its applicability. In Publication II, we resolved the exponential problem of
the first publication by introducing another scenario-based testing method-
ology. This new methodology was quite different than the first one as it
involved an additional technique for checking conformance between the sce-
narios and the model by ProB model-checker [62]. In Publication III, the
scenario-based testing approach was further extended as we devised a tech-
nique to transform abstract test cases into executable ones. Furthermore,
we also introduced a requirement traceability feature in our methodology. In
short, the above described research work on scenario-based testing evolved
with the time, while improving the existing features and exploring the re-
quired future extensions. In another model-based testing work, presented
in Publication IV, we explored using UML and UML-B to improve quality
of the models used for test generation. For this work, we adapted an exist-
ing MBT methodology, named MATERA [8], to use UML-B models while
following the formal stepwise development approach. In Publication V, we
analytically compared two modeling perspectives used in the MBT, namely,
modeling the SUT and modeling the environment of the SUT.

For demonstrating the proof-of-concept in our publications we worked on
various case study examples, which also involved experimentation with vari-
ous software tools and languages, e.g., the Rodin [7] platform and supported
provers, the ProB [62] model-checker, the JUnit framework [5], EclEmma [3],
UML [71], UML-B [79] and Qtronic [55]. Overall, the analytical aspect of
our research nearly always came hand in hand with the exploratory one.

1.3 Research setting

The research presented in thesis has been done as a collaborative work at
Turku Centre for Computer Science (TUCS). The research work was in the
context of two research projects, namely, RODIN(Rigorous Open Develop-
ment Environment for Complex Systems) [7] and D-MINT(Deployment of
Model-based Technologies to Industrial Testing) [2]. The objective of the
RODIN project was creation of a methodology and of a supporting open tool
platform for the cost effective rigorous development of dependable complex
software systems and services. This project was funded by the European

6

Union under the FP6 program and included several academic and indus-
trial partners across the Europe. On the other hand, the D-MINT project
aimed at the development, enhancement, and industrial deployment of test-
ing methods and tools for software-intensive systems based on model-driven
technologies. D-MINT, funded by ITEA2 [4], was a consortium of 27 part-
ners both from industry and research. Last but not least, Publication V
was a result of the collaboration with the researchers working on MBT at
Tampere University of Technology (TUT), Finland.

1.4 Organization of the thesis

This thesis consists of two parts: Part I - Research Summary, and Part
II - Original Publications. The Research Summary is structured a follows.
Section 2 presents concepts of software testing and model-based testing. In
Section 3, we describe a formal refinement-based development approach in
general and the Event-B formalism in particular. Section 4 summarizes our
main contributions and gives an overview of our approach and the related
work for model-based testing using formal models. These contributions are
based on the results of the publications listed on Page v. We continue with
a short discussion on the use of formal methods and testing for the quality
assurance in Section 5. Section 6 contains the summary and the conclusions.

2 Model-Based Testing

2.1 Software Testing

Software testing is the process of executing a program or system with an
intent of finding errors [69]. It is considered one of the most important activ-
ities in the software development process. Studies [23, 39] show that testing
typically takes more than 40% of the total development time. Usually, test-
ing is used as a means of validation and verification. The distinction between
the two is the following. The validation process describes whether the right
software is built, while the verification describes if it is built right [14]. In
other words, the validation process involves requirement documents which
describe what the software is supposed to do, whereas, the verification pro-
cess determines whether the software is correct with regard to its design.

In general, the software testing process cannot be exhaustive due to
obvious limitations such as limited number of tests that can be performed
in the given time. For this reason, the quotation of Dijkstra that testing can
be used to show the presence of errors, but never to show their absence [34]
has become a common statement. Hence, the testing aims at finding as many
errors as possible. An error, or its synonym bug, can appear in many different
forms, for example, as a logical, timing or user interface error. Just as there

7

are many types of errors, there are many different types of testing depending
on the overall aim of the testing, for example, performance testing, security
testing, requirement-based testing and functional testing. An exhaustive list
on types of error and testing can be found in the literature, for example in
the famous book on software testing techniques by Beizer [19].

Software testing can also be categorized based on the level of abstraction
it is applied to. For example, according to the V-Model [12, page 6], as shown
in Figure 1, the following testing types are defined.

• Function/Unit testing is applied to the smallest unit of the software
program code.

• Module testing is used to test modules or components of the system.

• Integration testing is performed to assess the software with respect to
its subsystem design.

• System testing is applied to test a complete system in order to assess
the software with respect to its architectural design.

• Acceptance testing is performed to test whether a system satisfies the
“acceptance criteria”, i.e., its operational and business needs.

	

Requirements	
Analysis	

System	 Test	

Unit	 Test	

Module	 Test	

Integration	 Test	

Acceptance	 Test	

Architectural	
Design	

Subsystem	
Design	

Detailed	 Design	

Implementation	 Test	

Test	

Test	

Test	

Test	

Figure 1: Software development activities and testing levels - the “V-Model”

Another often used categorization of software testing is based on the
distinction between the black-box and white-box testing. In the black-box
testing, a system-under-test is considered as a black-box, where internals of
the system are not known. The only known parts are the inputs and the
outputs of the system. This type of testing is also referred to as functional

8

testing. In the white-box testing, the testing is based on the actual source
code of the software. The tests are designed in such a way that the test
designer has access to the algorithms and structures of the source code.
This type of testing is also referred to as structural testing. The test cases
can execute certain parts of the source code, hence, it is possible to analyze
the program code covered by the test cases and additionally, detect the
dead-code that never got executed. Examples of the techniques used in
white-box testing include fault-injection, mutation testing, static testing etc.
Sometimes a hybrid approach called grey-box testing is used for creating
functional tests while considering the internal structures of the program
code.

2.2 Model-Based Testing Process

The term model-based testing is defined as a kind of testing where tests are
generated from models [85]. The basic idea of model-based testing is the
same as what was earlier known as specification-based testing [86]. The
main difference between specification-based testing and model-based testing
is that, in the latter, the model does not need to be a formal specification
of the system. The model can merely be a representation of some aspects
of the requirements to be tested.

In the following, the generic model-based testing process is briefly de-
scribed. As shown in the Figure 2, the model-based testing process can
be divided into five main steps (summarized from the book on Practical
Model-Based Testing [85]).

The first step is referred to as modeling phase. A model can be of the
system-under test (SUT) and/or of its environment. It is usually called
an abstract model since it is less complex than the actual system imple-
mentation. The model is built from the requirements or the specification
documents, and it encodes the intended behavior of the system. Since this
model will later be used for test generation, this phase also involves a test
plan to ensure that necessary requirements and design specifications have
been considered.

The second step of model-based testing is test case generation from mod-
els. This process is tool-assisted (to mark this distinction, the box is drawn
with bold line in the Figure 2). Since the test cases are generated from
abstract models, they are on the same level of abstraction with the model,
hence called abstract test cases. The abstract test cases focus on the key as-
pects to be tested and omit many other details. The test generation process
often follows some model coverage criteria [12] and keeps track of require-
ments covered by the test cases.

The third step of model-based testing is to transform the abstract test
cases, generated in the previous step, into executable concrete test cases.

9

5) Analyse

2) Generate

Test Script
Generator

Test Cases

3) Concretise

Test Plan

Requirements

1) Model

Model
Coverage

Matrix
Req. Trace.

4) Execute

Model

Test Execution Tool

Adaptor

Test Scripts

Test Case
Generator

Results
Test

System
under
Test

Figure 2: Model-Based Testing Process as in [85]

This is typically called concretization or implementation of tests. This pro-
cess again requires tool support and/or is assisted by programmer(s). The
transformation is carried out using various templates and mappings (be-
tween abstract and concrete test cases/values).

The fourth step is test execution. Before a test is executed, it needs to
be adapted to the execution environment. This is performed by using a tool
commonly referred to as test adapter. The adapter adds the implementation-
specific information to the tests so that the tests can be executed against
the real SUT. The tests can be executed either in online or in offline mode.
In the online mode, the tests and inputs are applied as they are produced,
on-the-fly based on the response of the SUT. Test execution and recording
of the test results are managed by the provided model-based testing tool.
On the other hand, in the offline mode, the concrete test cases are stored in
the form of test scripts which are later executed manually or by using some
tool.

The fifth step is the analysis of the test results. This phase is quite
similar to traditional test analysis. Upon a test case failure, the analysis is
performed to see whether the error is due to a fault in the system, in the
test case itself or in the test setup.

10

2.3 Taxonomy of Model-Based Testing

In this section, we briefly describe model-based testing taxonomy presented
by Utting, Pretschner and Legeard in [86]. The purpose of this description
is to allow us later on, when we discuss our contributions in Section 4.5, to
position them in the context of this taxonomy. This taxonomy is presented
in Figure 3. It includes three general classes: model, test generation and
test execution. Each class is further divided into categories. In the following
we will give an overview of these classes and categories.

Data−Flow

Paradigm

Subject

Model

Technology

On/OfflineExecution
Test

Test Selection
Criteria

Generation
Test

Discrete / Hybrid / Continuous

Transition−Based
History−Based
Functional
Operational

Shared test&dev model

Separate test model

Timed / Untimed

SUT

Environment

Deterministic / Non−Det.

Pre−Post

Characteristics

Independence

Stochastic

Manual
Random generation
Graph search algorithms
Model−checking
Symbolic execution
Theorem proving

Structural Model Coverage
Data Coverage
Requirements Coverage
Test Case Specifications

Fault−Based

Online / Offline

Random&Stochastic

Figure 3: Model-Based Testing Taxonomy as in [86]

Model subject

The subject defines what is being modeled in the model-based testing pro-
cess. The model can be a behavioral model of the SUT or of its environ-
ment/user interacting with the SUT. The difference between these two is in

11

the viewpoint with regards to the interfaces of the SUT. The models of the
SUT provide an internal viewpoint by describing the inner architecture and
reactions of the SUT to the external stimuli. On the other hand, the models
of the environment provide an external viewpoint by describing what events
the SUT should accept at a certain moment and by observing SUT reac-
tions to these events. Sometimes, a combination of these above mentioned
viewpoints is used. However, in that case the model becomes quite complex
as it contains too much details to be practical [86].

Model Independence

A model used for model-based testing can be solely developed for this pur-
pose or adapted from the development models. The development models,
depending on the abstraction level, are used to represent inner details of
the system and can be used to generate code. In order to save time and ef-
fort, sometimes it seems tempting to re-use the development models for the
purpose of testing. However, if the same model is used for generating both
the code and the test cases, then there is a chance that the mistakes in the
model are propagated to both the code and the test cases, hence, reducing
the capabilities of test cases to detect implementation errors. On the other
hand, the models built solely for testing purposes, without any involvement
of the developers of the SUT, are likely to reveal more implementation bugs
and ambiguities in requirement specifications.

Model Characteristics

A model is an abstract representation of the SUT. Therefore, it exhibits
some of the properties of the SUT while omitting other ones. The decision
on what to include and what to leave out depends on the aim of the testing.

A model can be deterministic which means that, for a given input, the
output of the model is deterministically defined. Sometimes, the SUT pos-
sesses concurrency due to internal parallel processes and then generates
many alternate outputs depending on the current internal state, timing and
hardware related asynchronous processes. The tests in this case are not
represented as sequences anymore but rather as mathematical graph or tree
structures.

Sometimes, there is a need to test the real-time constraints of the SUT.
In this case, the models with the timing annotations are used. It is generally
considered difficult to test such systems. In practice, simpler timeouts are
programmed in the adapter than in the model.

In terms of dynamics, the models can be discrete, continuous or mixture
of the two (also called hybrid). This characteristic is related to the type of
the data used in the test cases.

12

Model Paradigm

The paradigm of model describes what style and notations are used for mod-
eling. There are many different modeling notations and styles used in MBT
these days. These are grouped into the following (adapted from van Lam-
sweerde [58]).

State-based (Pre/Post) notations: The system is modeled as a col-
lection of variables, which provide a snapshot of the internal state of the
system, and operations that modify the state. These operations are defined
by a pre- and post-condition semantics. Examples of these notations include
the B-method [9], Event-B [10, 11], Z [81], VDM [57] and JML [59].

Transition-based notations: The models using this type of notation de-
scribe transitions between different states of the system. Usually, the graph-
ical node-and-arc notations, like finite state machine (FSM), are used to
represent states (nodes) and transitions (arcs). Examples of these include
FSM [89], State-Charts [49], Labelled Transition Systems (LTS) [82] and
I/O automata [64].

History-based notations: These describe traces of the allowable system
behavior over the time. Examples of these models include Message Sequence
Charts (MSC) [29] and temporal logic [40].

Functional notations: Functional notations describe the system in the
form of mathematical functions. Examples of these include first and higher-
order logic specifications [13].

Operational notations: Models using these notations describe the system
as a collection of parallel processes. These types of models are particularly
suitable for describing distributed systems and communication protocols.
Examples of such modeling notations include Process Algebras (e.g., CSP,
CCS) [87] and Petri Nets [73].

Stochastic notations: The models using stochastic notations describe
systems by the probabilities of events and input values. The Markov chain
model [91] is one of the examples of such notation.

Data-flow notations: The models using this notation focus on the data
rather than the control-flow of the system. Examples of data-flow notations
include Lustre [45] and block-diagrams of Matlab Simulink [65].

13

Test Selection Criteria

This category defines how different tests are selected in the test generation
process of MBT. In the following, various test selection criteria are briefly
covered.

Structural Model Coverage : These criteria specify the selection of tests
from models in terms of coverage of the structural elements of the models.
Different modeling notations use different structural elements, therefore, the
structural coverage criteria is also different in each case. Table 1 summarizes
commonly used modeling notations and their respective coverage criteria
examples.

Table 1: Modeling notations and Structural model coverage examples
Modeling Notation Structural Model Coverage Example

State-based (Pre/Post) Cause-Effect coverage, Disjunctive Normal
Form (DNF) of post-conditions [12, page
138].

Transition-based Various graph coverage criteria e.g., all-
states, all-transitions, all-transition-pairs and
all-cycles [12, page 32].

History-based Each Message (EM) or Message Path (MP)
coverage [63].

Functional Coverage of axioms.

Operational Similar to graph coverage e.g., transitions,
places, cycles etc. [72].

Stochastic Coverage from usage profile in terms of prob-
abilities of states and transitions [90].

Data-flow Data-path coverage, which is similar to code
coverage criteria e.g., all-definitions, all-uses,
all-definition-use pairs of data variables [41].

Data Coverage : These criteria describe how to select test-values from a
huge data space. The most often used techniques include boundary analysis,
where test input values are selected at the boundaries of the input domain,
and statistical distribution, where input values are selected following certain
statistical distribution [53].

Requirement Coverage : These coverage criteria are based on informal
requirements of the system. The elements of the models, such as transitions
of a state machine or predicates of a post-condition, are associated with the
informal requirements. The generated test cases ensure that all the require-
ments of the SUT are covered.

14

Explicit Test-case specification Coverage : In this case, in addition to
the model, the test cases are specified by the test engineer to emphasize
testing of some particular aspects of the model. These test cases are often
used to represent test objectives of the model, heavily used cases and scenar-
ios. The test cases and models can be specified in the same or in different
notations. Commonly used notations include FSM, UML Testing Profile
(UTP) [43] and regular expressions.

Random and Stochastic Coverage : It is used for selecting tests based
on the usage profile of the SUT in terms of action probabilities. A common
approach is to use Markov chain models for this purpose because of their
support for random variables and probabilities.

Fault-Based Coverage : This coverage criteria is used for testing typically
occurring faults. An example of this criteria is mutation testing.

Test Generation Technology

Here we list various test generation technologies currently used in model-
based testing.

Manual : In this case, tests are generated manually from the model.

Random Generation : It is carried out by sampling the input space of the
SUT. This approach is also referred to as monkey-testing. Another common
approach in this category is to generate tests by a random walk on the model.

Graph search algorithms: This technique uses graph-search algorithms
to generate tests based on the coverage of the model as a graph. For ex-
ample, the Chinese Postman algorithm [67] is used to test if each arc in a
node-arc based graph is covered at least once.

Model-Checking : Model-checking [30] is used to verify the properties of
a system using reachability analysis. The tests are specified as reachability
properties, for example, “eventually, a certain transition is fired or a cer-
tain state is reached” (e.g., [52]). The model-checker generates a trace that
eventually fires the given transition or reaches the given state.

Symbolic Execution : It is achieved by running an executable model with
a set of input values as constraints (e.g., [74]). The resulting traces are then
instantiated with concrete values to construct test cases.

15

Theorem Proving : Theorem provers [37] are used for test generation in
a similar way as model-checkers are used. The theorem-provers check the
feasibility of formulas that appear as the guards of transitions in state-based
models.

Test Execution

Test execution concerns with the relative timing of test case generation and
execution. In online testing, the test generation algorithms interact with the
SUT and respond to the output of the SUT. This kind of testing is usually
performed when testing non-deterministic systems. The test generator can
see what path the SUT has followed and it follows the same path in the
model. This is often referred to as on-the-fly testing.

In offline testing, the tests are strictly generated before they are exe-
cuted. Usually, the generated tests represent linear traces and therefore are
suitable for testing deterministic systems. Once generated, these tests can
be reused in the future, for instance for regression testing.

2.4 Scenario-Based Testing

In the previous section, we have discussed various test selection techniques.
One of the important test selection techniques among these is testing against
the use cases of the SUT. Here, we are emphasizing on this testing technique
because most of the later parts of this thesis deal with this technique.

A use case represents interaction(s) between the system and its user.
Informally, the use cases are defined as: description of sequences of events
that, taken together, lead to a system doing something useful [20, page 2-3].
The use cases are also referred to as usage scenarios or simply as scenarios.
Hence, the testing based on such scenarios is referred to as scenario-based
testing.

The scenarios specify the test cases on abstract level. They provide a
way to express user expectations about the SUT which might be hard to test
by other means. For instance, a scenario may include some important func-
tionality of the SUT that might have been missed, mistakenly, in the model.
Hence, the traditional coverage criteria, like code coverage, transition cov-
erage etc., do not guarantee that the user scenarios are tested. Therefore,
the scenario testing provides another way of ensuring that the user require-
ments and expectations about the SUT have been fulfilled. In practice, the
scenarios are represented using many different notations, for example, the
Unified Modeling Language (UML) use case diagrams [20], message sequence
charts, state machines, regular expressions and even using natural language
expressions.

In the later sections, we will see details of our scenario-based testing
approach.

16

3 Formal Software Development by Refinement

In this section, we present the formal refinement-based stepwise develop-
ment approach. The main idea in this approach is to start the development
from an abstract formal specification, which in a stepwise manner is trans-
formed into an executable program. The correctness preserving steps of the
formal development are called refinements. A formal specification, which is
obtained from an informal system description, uses mathematical notations
to describe the properties which a system must have. The stepwise develop-
ment process is depicted in Figure 4. Since the refinement process preserves
the system’s correctness, the software developed by refinement is correct by
construction. 	

Abstract	 Specification	 (R0)	
	

Refined	 Specification	 (R1)	

Executable	 Program	

…….
.	

Refinement	

Refinement	

Refinement	

Refined	 Specification	 (RN)	

Refinement	

Figure 4: The Refinement Process

The idea of stepwise development was first proposed by Dijkstra [33] and
Wirth [92] as an approach to develop correct programs. Later, Back [15]
proposed the mathematical foundation of the refinement process, which was
further developed into the refinement calculus framework by Back and Von
Wright [17]. The refinement based development is formalized using the
weakest pre-condition semantics [35].

Let S be a statement and P a post-condition predicate, i.e., a set of states
which can be reached after executing S, then wp(S, P) represents weakest
pre-condition that guarantees establishing P after executing S. Now suppose
that S is refined by T , then the refinement relation (v) between S and T
can be expressed [17] by the weakest pre-conditions as follows:

S v T iff for all P : wp(S, P)⇒ wp(T, P)

17

where ⇒ stands for implication between predicates. Informally speaking, a
refined specification is said to refine an abstract specification if any post-
condition, which abstract specification can establish, is also established by
the refined specification. Alternatively, the refinement relation can also be
expressed using before-after predicates relating initial and final states of
statements. The expressions using before-after predicate will be presented
in the next section.

The refinement process reduces non-determinism of the abstract specifi-
cation and makes it more implementable. The transitivity of the refinement
relation guarantees that each intermediate refined specification from R1 to
RN as well as the Executable program are correct refinements of initial
Abstract Specification (R0) [17].

R0 v R1 v v RN v Executable Program

The refinement can be categorized [17] into two forms: data and algo-
rithmic refinement. The data refinement replaces an abstract data structure
by the one which is more concrete and closer to the implementation, while
preserving the global system behavior. On the other hand, algorithmic re-
finement introduces more concrete programming language structures to work
on the data while leaving the structure of the data unchanged.

3.1 The Event-B Method

The Event-B [11, 10] is a recent extension of the classical B-method [9] for-
malism, which is a state-based formalism for specifying the system behavior
as a special kind of a state transition system. The B-method has been
successfully used in the industrial development of several complex real-life
applications [18]. The Event-B has incorporated the Action System for-
malism [16] into the B-method, thus enabling reasoning about event-based
(reactive) systems. The language of the B-method and Event-B is based
on set theory and predicate calculus. The Event-B comes with a good tool
support called the Rodin platform [7].

As an example of an Event-B model, consider the following model (also
known as machine) M with a context C. A context is considered as the static
part of the Event-B specifications. It contains constants, sets and properties
(axioms) related to these. On the other hand, an Event-B machine describes
the dynamic part of the specification in the form of events (state transitions).
The context has the following general form.

CONTEXT C
SETS sets
CONSTANTS constants
AXIOMS axioms
END

18

A context is uniquely defined by its name in the CONTEXT clause. The
CONSTANTS and SETS clauses define constants and sets respectively. The
AXIOMS clause describes the properties of constants and sets in terms of
set-theoretic expressions.

An Event-B machine has the following general form.

MACHINE M
SEES C
VARIABLES v
INVARIANT I
EVENTS
INITIALISATION = . . .
E1 = . . .
. . .
EN = . . .

END

A machine is uniquely defined by its name in the MACHINE clause. The
VARIABLES clause defines state variables, which are then initialized in the
INITIALISATION event. The variables are strongly typed by constraining
predicates of the machine invariant I given in the INVARIANT clause.
In addition, the invariant can define other essential system properties that
should be preserved during system execution. The operations of event-based
systems are atomic and are defined in the EVENT clause. An event is
defined in one of two possible ways

E = WHEN g THEN S END

E = ANY i WHERE G(i) THEN S END

where g is a predicate over the state variables v, and the body S is an
Event-B statement specifying how the variables v are affected by execution
of the event. The second form, with the ANY construct, represents a pa-
rameterized event where i is the parameter (or a local variable) and G(i)
restricts i. The event guard (e.g., g or G(i)) defines the condition under
which execution of the event is enabled.

The occurrence of events represents the observable behavior of the sys-
tem. The condition under which the action can be executed is defined by
the guards. An event is known to be enabled when the guards evaluate to
true. An event execution is supposed to take no time and no two events
can occur simultaneously. When all events are disabled, i.e. their guards
evaluate to false, the discrete system stops. When some events are enabled,
one of them is chosen non-deterministically and its action modifies the state.
Then previous step is repeated to see if any events are enabled for execution.

19

This can be summarized in the following.

Initialisation;

while (some events have true guards)

{
Choose one such event;

Modify the state accordingly;

}

An action can be either a deterministic assignment to the variables of the
system or a non-deterministic assignment from a given set. The semantics
of actions are defined by their before-after (BA) predicates and given in the
following. A before-after (BA) predicate is a relation between before and
after values of the event variables.

Action Before-after (BA) predicate Explanation

x := F (x, y) x′ = F (x, y) ∧ y′ = y standard
assignment

x :∈ Set ∃t. (t ∈ Set ∧ x′ = t) ∧ y′ = y non-deterministic
assignment from set

x : | P (x, y, x′) ∃t. (P (x, y, t) ∧ x′ = t) ∧ y′ = y
non-deterministic
assignment by
given post-condition

where x and y are disjoint lists of state variables, and x′, y′ represent their
values in the after state.

The F (x, y) represents here a mathematical function that defines a new
value for x (denoted by x′) deterministically. The second part of the BA
predicate requires all the remaining variables (y) should not change as a
result of the assignment. The Set represents any defined set while P (x, y, x′)
is a post-condition relating initial values of x and y to the final value x′. The
:∈ and : | represent non-deterministic assignment operators operating on sets
and predicates respectively.

3.1.1 Proof obligations for specifications in Event-B

In order to check consistency of an Event-B machine, a number of pre-defined
conditions (called proof obligations) should be proven true (i.e discharged)
for each event [48, 68]. In recent practice, these proof obligations are gener-
ated and proved using the provided automated tool support. For each event
in a machine, two types of properties are needed to be verified: the event

20

feasibility property and the invariant preservation property. The event fea-
sibility states that it should be possible to execute an event from any state
when both the machine invariant and the event guards hold. In other words,
it can produce at least one after state that satisfies the before-after predicate,
i.e.,

I(v) ∧Ge(v) ⇒ ∃v′. BAe(v, v
′) (1)

where I(v) is the invariant of the system while Ge(v) is the guard of event
e operating on variable(s) v. Similarly BAe correspond to the before-after
predicate of event e.

The invariant preservation property states that the invariant should al-
ways be maintained:

I(v) ∧Ge(v) ∧BAe(v, v
′) ⇒ I(v′) (2)

The initialisation is treated as any other event of the system. The only
difference is that it does not have initial state. Therefore, for the initialisa-
tion event, the event feasibility(1) and invariant preservation(2) properties
become the following.

∃v′. BAInit(v
′) (3)

BAInit(v
′) ⇒ I(v′) (4)

In order to prove consistency of an Event-B machine, it is sufficient to prove
the above stated proof obligations for all the events.

3.1.2 Refinement in Event-B

In Event-B, the systems are refined in a stepwise manner. Refinement
process reduces non-determinism of an abstract specification by introduc-
ing concrete data structures and other implementation decisions. In other
words, an abstract specification is gradually transformed (refined) into a
less abstract one by introducing implementation details while preserving its
correctness. A result of a refinement step is an independent model. Let
us assume that the refinement machine M ′ is a result of refinement of the
abstract machine M :

21

MACHINE M ′

REFINES M
SEES C
VARIABLES w
VARIANT V
INVARIANT I ′

EVENTS
INITIALISATION = . . .
E1 = . . .
. . .
EN = . . .

END

The variables in M ′ are denoted by w. The invariant I ′ of machine M ′

defines the invariant properties of the refined model. However, I ′ now also
defines a connection between the newly introduced variables and the abstract
variables that they replace. For a valid refinement step, every possible exe-
cution of the refined machine must correspond (via I ′) to some execution of
the abstract machine [48]. In order to establish this we need two proof obli-
gations, i.e., feasibility of refined events and correctness with respect to the
abstract events. In order to show feasibility, we need to prove the following
proof obligation.

I(v) ∧ I ′(v, w) ∧G′
e(w) ⇒ ∃w′. BA′

e(w,w
′) (5)

Here G′
e(w) is the guard of the refined event and BA′

e(w,w
′) is its before-

after predicate. In order to show correctness of a refinement, we need to
prove that the guards of the refined event are strengthened and there is
a correspondence between the abstract and refined post conditions. These
proof obligations are as follows:

I(v) ∧ I ′(v, w) ∧G′
e(w) ⇒ Ge(v) (6)

I(v) ∧ I ′(v, w) ∧G′
e(w) ∧BA′

e(w,w
′) ⇒ ∃v′. (BAe(v, v

′) ∧ I ′(v′, w′)) (7)

The refinement can also introduce new events. The proof obligations for new
events are similar to the above, however, we have to show that new events
are refinements of implicit empty (skip) events of the abstract machine.

Finally, there is another proof obligation associated with the refined
event that the new events can not take control forever and, hence, they have
to terminate eventually when executed in isolation.

I(v) ∧ I ′(v, w) ∧G′
e(w) ∧BA′

e(w,w
′) ⇒ V (w) ∈ NAT ∧ V (w) > V (w′) (8)

22

Here V is a natural number expression that should be given in the spe-
cial VARIANT clause of the refined machine. Proof obligation 8 requires
that V decreases as a result of event execution, thus proving its eventual
termination.

3.2 UML-B

UML-B [79] is a new graphical language which combines certain UML fea-
tures with Event-B. UML-B is similar to UML but has its own meta model.
The main advantages of using UML-B is that it provides UML-like front-
end to Event-B which might seem familiar to the majority of the developers.
Moreover, it provides additional structuring of Event-B models in the form
of UML classes and state-machines.

There are four kind of diagrams supported by UML-B, namely, context
diagrams, package diagrams, class diagrams and state-machine diagrams.
The package diagram is a top-level diagram which shows the structure and
the relationship of components (contexts and machines). The context dia-
gram describes static data such as constants and structured types. Logically,
a UML-B context is similar to an Event-B context. The UML-B machine
may contain class diagram(s) and state-machine diagram(s). The class dia-
gram may contain class attributes (variables), associations between classes,
methods (events) and class-level state-machines. An attribute defines a data
value of an instance of a class, whereas an association is a special kind of an
attribute that defines a relationship between two classes.

The events, in object oriented terms, resemble methods of a class that
modify the attributes of the class. A state-machine models the behavior
of a class using transitions and discrete states. In addition to class-level
state-machines, a UML-B machine may also contain one or more sub-state-
machines. Moreover, a system invariant needs to be be defined in order to
obtain complete formal specifications. The invariants and all other predi-
cates in UML-B follow the same set-theoretic language as used by Event-B.
However, in order to reflect some object oriented features, the Micro B
(µB) [79, section 3.1] notation is used. For instance, object-oriented style
dot notation is used to show class ownership of entities, such as attributes
and associations.

UML-B comes with a good tool support in the form of a plug-in [80] for
the Rodin platform [7]. The Figure 1.5(a) shows a package with a machine
M and a context C. Examples of class diagram and state-machine are
depicted in Figures 1.5(b) and 1.5(c) respectively.

The models in UML-B are automatically translated to the correspond-
ing Event-B constructs. In Event-B everything is modeled in terms of con-
texts and machines. An UML-B context is translated as an Event-B con-
text, whereas the class instance attributes from a UML-B machine become

23

(a) Package (b) Class Diagram

(c) State-machine Diagram

Figure 5: Various UML-B Diagrams

variables in Event-B. The class associations are transformed into functions.
Events and transitions in classes and state machines become events in the
generated Event-B machine. The generated Event-B specifications are then
proved using theorem provers.

Like Event-B, UML-B also follows stepwise refinement approach. An
abstract machine in UML-B is refined further to include more details about
structure and behavior of the system. A refinement may involve refinement
of both classes and state-machines. A state-machine is generally refined to
include sub-state machine(s). The modeling and refinement in UML-B are
described in detail in [78].

24

4 Contributions of the Thesis

4.1 Scenario-based Testing and Formal Development

We combine the scenario-based testing, introduced briefly in Section 2.4,
with formal system development. This approach can be divided into two
parallel development processes, one for the formal development of models
and second for the development of the testing scenarios.

The formal Event-B models are developed in a stepwise manner, start-
ing with an abstract model and then refining it gradually in correctness-
preserving refinement steps. The development of scenarios also follows the
same stepwise development approach. A scenario is first specified at an
abstract level. The abstract model, which is present at the same level of ab-
straction, must conform to this abstract scenario, meaning that the abstract
scenario represents a valid behavior in the model.

In the formal development, the abstract scenario is refined along the
refinement chain of the system models until a sufficiently detailed scenario
is obtained. The overall process is presented in Figure 6. The scenarios are
represented as Communicating Sequential Process (CSP) [76] expressions.
The conformance relation between the model and the scenarios is checked
using the ProB model-checker and animator [62].

The formal models are refined manually based on the guidelines, pro-
vided in our work (i.e., Publication II). However, the testing scenarios are
refined automatically once the abstract scenario is provided by the user. This
automatic refinement process is merely a syntactic transformation from the
abstract scenario.

Once a sufficiently refined model is obtained, the implementation code
can be generated from it. However, due to the abstraction gap between
formal models and the executable implementations, automatic generation
of implementation code is not always possible. Instead, an implementation
is often hand-coded, while consulting the formal models. In our presented
approach, we also propose a methodology for generating an implementation
template, from the sufficiently refined model, that can be further developed
to construct the complete implementation. The implementation template
is generated considering the final implementation to be in the Java pro-
gramming language. However, the template generation approach can also
be adapted for other programming languages such as Python and C#.

In order to make sufficiently refined scenarios executable, they need to
be concretized into executable test cases. In our approach, we concretize
the scenarios into unit tests [22]. Since we consider Java for our implemen-
tation template, it was natural to choose the Java Unit testing framework
(JUnit) [5] for this purpose.

25

R e f i n e m e n t

R e f i n e m e n t

A b s t r a c t s c e n a r i o

R e f i n e d s c e n a r i o

(S
A

)

(S
i

)

S u f f i c i e n t l y r e f i n e d
 scenar ios (S

C
)

I m p l e m e n t a t i o n

M o d e l i n g

T e s t c a s e i m p l e m e n t a t i o n

M o d e l i n g

T e s t c a s e a p p l i c a t i o n

R e f i n e m e n t

R e f i n e m e n t

S u f f i c i e n t l y r e f i n e d
 model (M

C
)

R e f i n e d m o d e l (M
i

)

A b s t r a c t m o d e l (M
A

)

()

()

()

()

S y s t e m U n d e r T e s t
 (SUT)

R e q u i r e m e n t s

U n i t T e s t s

T e m p l a t e g e n e r a t i o n

I m p l e m e n t a t i o n
T e m p l a t e

C o n f o r m s t o ()=|

C o n f o r m s t o ()=|

C o n f o r m s t o ()=|

Figure 6: Our Scenario-based Testing Approach

In addition to the above, we also propose a methodology for associating
informal requirements to the model elements and testing scenarios. These
requirements are presented in textual format and are propagated from the
model and the scenarios to the implementation template and the unit test
cases respectively. The main purpose of this approach is to be able to
trace scenarios to different parts of the specification and, in the end, to the
generated test cases.

4.1.1 Related Work

The scenarios are used during various phases of the software development.
In the field of specification and behavior modeling, message sequence charts
(MSCs) [29] and UML sequence diagrams [71] are one of the most popular
techniques to model scenarios. These are quite helpful in designing con-
current and distributed systems since these show interrelationships between
different components, object instances or processes - and between them and
the environment. MSCs have been extended or modified for use in other
modeling and structuring approaches and one of the notable works in this
direction is live sequence charts (LSCs) [50]. LSCs describe scenarios in
the terms of liveness i.e., the things that must occur, by using two types of

26

charts called universal and existential charts. LSCs are executed into a LSC
interpreter called “Play Engine”.

Lee et al.[61] used Petri nets for the analysis and integration of use
case scenarios. This approach defines Constraint-based Modular Petri Nets
(CMPNs) and presents a procedure to create CMPNs from scenarios. The
CMPNs are then used for checking consistency and completeness of the
system. This approach is used for validation purpose and not for test gen-
eration.

Hall [47] in his work on scenarios, describes a method and tool for build-
ing, managing and using large scale scenarios (LSS). In this approach, the
scenario groups are represented by parameterized scenario classes. The sce-
narios are animated visually and validation of the scenarios is done by “con-
straint checking”. In this work, the scenarios are used for requirement en-
gineering purpose.

The use of scenarios in the field of software testing is as old as the
testing itself. The only difference between the traditional-styled manual
testing and the automated scenario-based testing is that in the former, the
testing scenarios are in the mind of test engineers while in the latter, these
are documented and connected with other modeling structures. The work
related to scenario usage in automated testing is presented in the following.

In [83], a Scenario-based Object Oriented Testing Framework (SOOTF)
is proposed. The scenarios are described as tree structures where nodes of
the tree represent functions of the UML classes under test. The scenarios
are transformed into executable test cases and stored in the database to be
used again for regression testing. A similar approach to SOOTF is proposed
by Hsia et al. [54], where scenarios are represented as trees. This approach
is based on regular grammars and state machines.

In [77], a method for SCENario-based validation and Testing (SCENT)
of software is presented. In this approach, the scenarios are described as
natural language expressions which are later formalized in the form of state
charts. The tests are derived from the state charts by using path traversal
techniques.

TOBIAS [60] is a combinatorial testing tool that also combines scenar-
ios as sequence of method calls. TOBIAS is used for conformance testing
of VDM [57] and JML [59] specifications. The test case generation uses
assertions and pre-conditions from the specifications to filter the test case
generation process.

The jSynoPSys tool [31] performs scenario-based testing using symbolic
animation of the B machines. The scenarios are represented using scenario-
descriptive language. This work is based on CLPS-BZ [25] constraint solver.
Although the B-method is used for the specifications, however, this work
does not describe how the refinement of scenarios or specifications is taken
into account.

27

4.2 Modeling with UML-B for Model-based Testing

In this work, we use UML [71] and UML-B [79] models for model-based
testing. The purpose of this work is to improve the quality of the models
used in the MBT process by incorporating formal verification. Figure 7
depicts the overall process used in our approach. The UML models are used
for modeling architectural and static aspects of the SUT, whereas UML-B
is used to formally verify the behavioral aspects of the system.

Once these models are constructed, they are transformed into input for
Conformiq’s Qtronic [55], which is a tool for model-driven test case design.
Qtronic generates test cases from the specifications of the SUT, which are
represented using Qtronic Modeling Language (QML). QML uses a Java-
like action language and state-machine models to represent the behavioral
part of the SUT. At the later phase, Qtronic generates the test cases and
applies them on the SUT in online mode.

Requirements

Modeling
(UML/UML B)

Transformation

Test generation
and execution

(Qtronic)

Test
Adaptation

SUT

UML/UML B models

Verification
(UML B)

QML

Figure 7: Our Scenario-based Testing Approach

Although this methodology has been proposed for using UML and UML-
B for modeling, and Qtronic for test generation, it can be generalized to be
used with other modeling and test generation techniques.

4.2.1 Related Work

Microsoft’s SpecExplorer [88] is a tool for model-based specification and
conformance testing. The system’s abstract behavior is encoded in machine-
executable form, which is also referred to as “model-program”. A model-
program defines state variables and update rules of an abstract state ma-

28

chine. The tool uses explicit-state model checking technique to explore the
states of the state machine. The results of the exploration can be visualized
graphically and test cases are generated from these results.

Object-Z [38], which is an object-oriented extension of the formal speci-
fication language Z [81], has been used for test generation in [28, 66], how-
ever, these approaches do not use graphical models and lack tool-support
for industrial-scale test generation.

In MATERA [8] approach, UML models (requirement, domain, archi-
tecture and test configuration) are used in the model-based testing process.
The models are validated using OCL [70] constrains. The validated models
are then transformed into the input for Conformiq’s Qtronic [55] tool for au-
tomated test generation. This work supports requirement traceability from
the failed test cases to the UML model elements.

LEIRIOS Test generator (LTG) [56], now called SmartTesting, uses B
formal models for model-based testing. The B models, which encode the
system’s behavior, are validated using LTG symbolic animator. The abstract
tests are generated by covering all symbolic execution paths for all operations
with input parameters’ boundary values. The generated test cases are later
translated into executable test scripts.

In [42], a conformance testing and automatic test case generation scheme
for UML Statecharts (UMLSCs) is presented. The authors propose a for-
mal conformance-testing relation for input-enabled transition systems with
transitions labeled by input/output-pairs (IOLTSs). The test case genera-
tion algorithm is a mix of process algebra and a simplified version of lambda
calculus. This work, like other state chart based approaches, does not con-
sider other aspects, e.g., architectural, data etc., of the SUT.

4.3 Comparative Study of Modeling Subjects in Model-based
Testing

As it has already been discussed in Section 2.3, in model-based testing, the
modeling subject can be the SUT itself or the environment where the SUT
operates. In this work, we analytically compare two model-based testing
approaches using different modeling perspectives. Moreover, we describe
how these two types of models are constructed and used in the MBT process.
We try to find out how the difference in the viewpoints affect the modeling
process and the actual testing. The two perspectives are studied in the
context of two case studies, both from the telecommunication domain. In
the first case study, MBT is applied to test functional features of Mobile
Switching Server (MSS). The second case study employs model-based testing
for testing a smartphone application by using its Graphical User Interface
(GUI).

29

4.3.1 Related Work

Model-based testing has been in the industry and academia for more than
a decade and today several commercial and academic tools exist. However,
we have not found any related work comparing differences between using
the SUT model and the environment model for model-based testing. There
have been few comparisons in the literature between different model-based
testing tools and techniques, however, these do not directly relate to our
work presented in this thesis. These are presented in the following.

In [51], a list of model-based testing tools is presented. This list contains
both the academic and the commercial tools. Each tool in the list is briefly
described discussing the input model and test generation technology it uses.

Dias-Neto et al.[32] conducted a literature survey and defined many di-
mensions for characterizing model-based testing approaches. The authors
also developed a tool support for selection of model-based testing techniques
according to the needs and the project nature.

In [44], the authors compared the efforts required by different modeling
scenarios in model-based testing. The comparison is based on a test man-
ager’s point of view focusing on testing activities and organization aspects.
This work presents six different scenarios focusing on the origin of the model
(e.g., development model, separate model, reverse-engineered model etc.),
used for the model-based testing, with advantages and disadvantages these
bring in the process.

4.4 Overview of the Papers

The contribution of the thesis is described in the context of the individual
research papers, which are presented in Part II of this thesis. Each paper is
summarized and the author’s contributions are discussed.

4.4.1 Paper I: Synthesis of Scenario Based Test Cases from B
Models

Paper I was a first attempt to explore the possibility of test refinement while
the system specifications are developed using formal refinement steps. The
system specifications are expressed using the Event-B formalism, whereas
the provided testing scenarios are expressed in a simple textual form, list-
ing the operations (events) of the system in some sequence. The abstract
scenario is described at the level of an abstract specification. When this spec-
ification passes through a succession of refinements, we derive the scenario-
based test cases for each refinement and show that all these test cases are
equivalent to the test cases of the original specification. The refinement of
test cases is performed by using a proposed algorithm, which searches for
the new operation instances added during the refinement process. However,

30

the presented algorithm has proved to be exponential in nature thus limiting
its application to larger specifications.

Software and tools’ setup: As a case study example for this work, the
leader-election problem was modeled in Event-B with three levels of refine-
ments. The Event-B specifications were proved correct using AtelierB [1]
provers before the proposed algorithm was applied.

Author’s contribution: The basic idea presented in this paper was coined
by Prof. Johan Lilius and Dr. Manoranjan Satpathy and was jointly devel-
oped by all the contributors listed in the paper. The author took part in
the discussions and development of the algorithm.

4.4.2 Paper II: Model-based Testing Using Scenarios and Event-
B Refinements

In this paper, we improved our scenario-based testing approach introduced
earlier in Paper I. The basic idea remains the same - we refine the user-
provided testing scenarios automatically at each step together with the cor-
responding system specifications. The specification language, i.e., Event-B,
remains the same while the testing scenarios are represented as Communi-
cating Sequential Process (CSP) expressions. Representing scenarios as CSP
expressions gives us better structure and the associated tool support. In this
work, we also described basic refinement rules, allowing us to do the devel-
opment in a controlled way and to transform our testing scenarios according
to those rules. At each refinement step, the testing scenarios are checked for
conformance against specifications, using the ProB model-checker and ani-
mator. The presented approach does not involve any exponential algorithm
thus making it more applicable in practice. The approach is exemplified by
a case study example of the development of a fault tolerant agent system.

Software and tools’ setup: For this work, we used the case study of a
mobile-agent system. The Event-B specifications were proved using provers
within the Rodin platform. Moreover, as described earlier, the CSP expres-
sions were checked for conformance against specifications by using the ProB
model-checker and animator.

Author’s contribution: The author developed this idea and wrote the
paper under the supervision and guidance of Prof. Johan Lilius and Dr.
Linas Laibinis.

4.4.3 Paper III: Requirement-driven Scenario-based Testing Us-
ing Formal Stepwise Development

Paper III is an extension of Paper II. In Paper II, the testing scenarios were
presented on abstract level, while in Paper III the testing scenarios are trans-
formed into executable test cases. In order to make test cases executable,

31

more information on the inputs and outputs of the system is needed. There-
fore, the procedure for system development by refinement is appended with
a new concept of Input-Output Unit (IOUnit). The sufficiently refined speci-
fications are translated into concrete implementations. In this work, we also
proposed an approach to generate Java language implementation templates
from the given Event-B models. Moreover, the abstract testing scenarios
are translated into executable JUnit test cases.

Additionally, we also proposed a mapping functionality, to map informal
requirements to the formal model and to the testing scenarios at different
refinement steps. This mapping of informal requirements is extended down
to the concrete test cases. When a test case fails, the unfulfilled requirements
can be back-traced into the model. In particular, the paper proposed the
following:

• inclusion of requirements in the formal specification process and prop-
agation of requirements to tests;

• a method for identification of abstract test cases from formal scenario
specifications;

• a method for generating Java templates of the system from sufficiently
refined Event-B specifications;

• a method for generating JUnit tests from abstract test cases in CSP.

Software and tools’ setup: This work was supported by a small case
study example of a hotel-booking system. The Event-B specifications, with
several levels of refinements, were developed and proved using the Rodin
platform and its supported plug-ins. Moreover, we used JUnit and TestNG
testing frameworks for executable test cases. The code-coverage analysis was
performed by using EclEmma [3] tool. In order to represent and map in-
formal requirements to formal specifications, we used the requirement man-
agement plug-in, named ReqsManagement, of the Rodin platform.

Author’s contribution: The author further extended the idea of scenario-
based testing and wrote this paper under the supervision and guidance of
Prof. Johan Lilius and the listed co-authors.

4.4.4 Paper IV: Using UML Models and Formal Verification in
Model-Based Testing

In this paper, we present a model-based testing approach where we inte-
grate UML, UML-B and the Qtronic test generator. This paper, like pre-
vious ones, uses a refinement-based approach where details are added in
the model in a stepwise manner. However, in this paper, we use UML-B

32

to model the behavioral part of the system, while the architectural mod-
els of the system are specified in UML. The UML-B models, which mainly
consists of class and state machine diagrams, are automatically translated
into Event-B specifications that can be proved using theorem provers. Once
the formal models are proved, the UML-B models are transformed into the
QML notation used by the Qtronic test generator. This approach combines
UML modeling with formal verification in order to improve the quality of
the models used for automated test derivation. The proposed methodology
is illustrated by using excerpts from a telecommunication case study.

Software and tools’ setup: The case study used in this work was the
Location Update feature of a Mobile Switching Server (MSS). For UML
modeling, we used the MagicDraw [6] tool, while for developing UML-B
models, we used the UML-B plug-in of the Rodin platform. The UML-
B models were developed using refinement-based approach and all of the
models were proved using available provers within the Rodin platform. For
test generation, Qtronic tool was used.

Author’s contribution: The author developed this idea and wrote the
paper under the supervision and guidance of Dr. Dragoş Truşcan and Prof.
Johan Lilius.

4.4.5 Paper V: Model-Based Testing using System vs. Test Mod-
els -What is the difference?

In Paper V, we discuss the differences between using “system models” and
“test models” with respect to the model-based testing process. System mod-
els describe the internal behavior of the system under test, whereas test
models specify the system behavior from the point of view of the user or of
the environment. We analyze how these two types of models are obtained
and used throughout the model-based testing process and how they are re-
lated to each other. The discussion is based on authors’ earlier experiences
as well as on two case study examples from the telecommunication domain.
The idea of this paper emerged as authors were comparing different types
of models and notions used for model-based testing, in particular, when
focusing on different perspective of the SUT behavior.

Software and tools’ setup: This research work was theoretical in nature
and hence, did not require any software or tool setup. However, the original
case study examples, which we compared in this paper, did involve software
and tool setups.

Author’s contribution: Paper V is a joint work between Åbo Akademi
University and Tampere University of Technology. The study was done on
two model-based testing case studies, one from each university, and the find-
ings were analyzed and compared with each other. The author was responsi-
ble for collecting and writing most of the analytical details of two case studies

33

under guidance of Dr. Dragoş Truşcan and Adj. Prof. Mika Katara. The
two case studies were compared for the purpose of the presented research,
however, originally the two case studies were developed independently of
each other by the listed co-authors in their respective universities.

4.5 Mapping over Taxonomy of Model-Based Testing

In the following, we map our work, presented in this thesis, over the tax-
onomy of the MBT already discusses in Section 2.3. We discuss the cate-
gorization from Paper I to Paper IV. The Paper V is not included in this
mapping as it is does not propose any model-based testing methodology.

Subject of the model

The model we use are the behavioral models of the SUT.

Model redundancy level

We use Event-B formal models for our approach. These models are usually
constructed for the purpose of development of the system. In our case, these
are shared for both development and for testing. Our decision to use shared
models was motivated by the fact that Event-B specifications were quite
detailed, precise and fully-proved before being used for testing. Moreover,
in scenario-based testing, the user-provided scenarios represent another par-
allel layer of models which are checked for conformance with the Event-B
models, hence, limiting chances of ambiguities. However, constructing sepa-
rate models for development and testing are likely to find more ambiguities
of the specifications.

Model Characteristics

The models we have used are deterministic, un-timed and discrete in nature.

Modeling Paradigm

We use Event-B formal models in all of our approaches. The Event-B is
based on the Pre-Post semantics. However, the Event-B models can also
be thought of as transitions-based models, e.g., state-machines or labelled
transition systems. For instance, it can be observed that the UML-B uses
transition-based notation (state diagrams), however, it translates to Event-B
in the background.

34

Test Selection Criteria

We used requirement-based selection criteria as the test scenarios represent
the user requirements which are to be tested. The test scenarios are in fact
test cases which are specified abstractly hence they can be categorized as
following the Test case specification criteria.

Test Generation Technology

We use a mix of various technologies in our work. In Paper I, we used a
search-based algorithm to find refinement of the test cases. While in Paper
II and III, we rather derive our test cases from abstract test scenarios and
formal models. We use model-checking or more precisely model-animation
to check the validity of the abstract test cases. The theorem provers are
used to prove the formal Event-B models rather than to generate test cases.
The abstract test cases are transformed into executable JUnit tests using
syntactic transformation.

In Paper IV, we transform the models from UML to Qtronic. The
Qtronic test generator uses random generation and graph-search algorithms
as test generation technology [85, page 377].

Test Execution Mode

At the moment, the scenario-based testing methodology, presented in Paper
I, II and III, considers offline execution of the test cases since the test cases
will be generated and stored in the form of JUnit test cases. However, in
Paper IV, the tests generated by Qtronic can be executed in either Online
or Offline mode depending on the test setup.

5 Discussion

5.1 Testing vs. Formal Verification

Testing is an incomplete process as exhaustive testing is not always practical.
On the other hand, formal verification had mostly been an academic or
research topic. In the past, the testing and formal verification had often
been considered as rivals [26, Section 1.1]. However, in recent years these
have appeared as complementary techniques [24].

Formal methods no doubt provide rigorous mathematical techniques for
proving correctness, but formal verification alone does not guarantee the
correctness of the real system as described by Hall in Seven Myth’s of For-
mal Methods [46, Myth 1]. The reason behind this is the fact that formal
specifications of the system might be incorrect or incomplete, i.e. they do
not include everything that it takes for a system to be correct. In addition

35

to that, due to immense complexity of software, the specifications represent
an abstract view of the actual software. Since the abstract model hides some
of the implementation details, it may also hide the associated errors. In this
context, there remains a need for testing even when the formal techniques
are used for software development. That was the reason why in the famous
Ten Commandments of Formal Methods [27], the Commandment IX states,
“Thou shalt test, test and test again”.

The formal verification finds inconsistencies and errors at a certain level
of abstraction. On the other hand, in testing, the system is executed in its
real environment with conditions as close as possible to its intended use, thus
testing is good at finding some errors at all levels of abstraction including
hardware [84]. Figure 8 depicts the relation between software testing and
formal verification in context of finding errors at different abstraction levels.

Testing

Verification

100%0%

Hardware

Assembler

Program Code

Specification

Abstraction Level

Errors Found

Figure 8: Testing vs. Formal Verification from [84]

5.2 Model-Based Testing vs. Formal Verification

The model-based testing is an advanced kind of testing, therefore, our ar-
guments related to the importance of testing from previous section are still
valid here. The model-based testing advocates the usage of models for test
generation. The model-based testing tools [85], which are employed in indus-
try, use formal or semi-formal models for this purpose. Hence, model-based
testing can be considered as a first step towards introduction of formal meth-
ods in those sects of industry where no formalism was used before. With
the recent increased adaption of model-based testing in industry, we can
hope that in future, software professionals will start using more formal or
semi-formal techniques.

36

It is commonly believed that formal methods are applicable to system
of a limited size and full automation of formal methods in not always pos-
sible. Model-based testing can still be used even in the presence of a such
fully automated formal development method. In this case, the model-based
testing can be used as a tool for validation of specifications and require-
ments and can be applied on the models before verification is started. It has
been revealed by the studies that most of the faults exposed by MBT are
specification and requirement errors rather than implementation errors [21].

6 Summary and Conclusions

Most of the work presented in this thesis is on combining model-based testing
with the formal stepwise development approach. Moreover, we also look at
different modeling perspectives used for model-based testing. The described
methods and techniques have been presented at international conferences
and published in a refereed journal. A selection of representative papers has
been collated and attached to this thesis.

The presented work can clearly be divided into three parts. The first
part deals with the scenario-based testing where the test cases are gener-
ated from the user-provided testing scenarios, while behavior of the system
is specified in Event-B formalism using stepwise development approach. The
testing scenarios are presented by the user at the abstract level, correspond-
ing to the abstract Event-B specification. Once an abstract scenario is con-
structed, it is automatically refined following the refinement step used to
refine Event-B specification. In order to facilitate the automatic refinement,
we have described basic refinement rules, allowing us to do the develop-
ment in a controlled way and transform testing scenarios according to those
rules. Additionally, we also proposed an approach to generate Java language
implementation templates from Event-B models. The abstract testing sce-
narios can then be used to generate executable JUnit test cases. Optionally,
the user can map informal requirements to the formal model and testing
scenarios at different refinement steps. This mapping of informal require-
ments is extended to concrete test cases so that upon test case failure, these
unfulfilled requirements can be back-traced into the model.

Our scenario-based testing approach brings the following benefits to the
software development process.

• We use formal Event-B models where complexity of the system to be
developed is handled by refinement-based stepwise development and
the models are formally verified.

• In traditional model-based testing approaches, the whole process is
based on the coverage criteria, such as transition coverage, state cov-
erage or any other variation of these. Our scenario-based approach

37

can be seen as an attempt to focus the testing process, by explicitly
identifying important behavior of the system that should be tested.

• We propose a way to include informal requirements in the formal spec-
ification process and propagation of requirements to the tests. The
back-traceability of requirements, from the failed test cases to the
model elements, is quite helpful in the debugging process.

• A method for generating Java templates of the system to be devel-
oped from sufficiently refined Event-B specifications, provides a start-
ing point for the implementation, thus, saving overall development
time.

• Automatic generation of JUnit tests based on user-provided scenarios,
on the one hand, ensures that the important behaviors of the system
are tested while, on the other hand, it saves overall time used for the
testing.

In the second part of the thesis, we proposed another approach for com-
bining model-based testing with the formal stepwise development. In this
case, the UML and UML-B models are used to specify architectural and
behavioral aspects of the system, respectively, and Conformiq’s Qtronic is
used as the test generation tool. The UML-B models, comprising mainly of
state machines, are developed in a stepwise manner. These UML-B mod-
els are then automatically translated into Event-B specifications that can be
proved using theorem provers. The basic idea to use UML-B state machines,
instead of UML state machines, is to increase the quality of the models used
for test derivation, by incorporating formal verification in the process.

The last part of the thesis deals with a comparative study of two mod-
eling perspective used for model-based testing. In the first perspective, the
models, termed as “system models”, are developed from the perspective of
the implementation, while in the second perspective, the models, termed as
“test models”, see the implementation as a black-box. The comparison is
carried out using two case studies from the telecommunication domain.

Generally speaking, the model-based testing brings number of benefits,
some of these are listed in the following.

• The overall time for the development process is shortened while forcing
the testability into the product design.

• The construction of the behavioral models of the system-under-test
may help in finding the specification and design bugs and resolving
requirement ambiguities.

38

• Since the tests are generated automatically, different coverage criteria
can be applied to increase testing thoroughness while there is no cost
associated with the test suite maintenance.

• The changes in the design can also be handled with lesser effect, as
just the model needs to be changed and test cases can be re-generated
from the updated model.

Model-based testing has a good potential to enhance the quality of the
complex software products. However, the model-based testing still needs
to go a long way before it can become everyday practice in the software
industry. The adaptability of model-based testing is hindered due to the
following reasons.

• One of the main hinderances is the lack of modeling practice by testing
engineers in the industry, in particular, practice of formal and semi-
formal modeling, which is essential for using model-based testing.

• There are also limitations imposed by model-based testing tools and
techniques, for instance, modeling restrictions in terms of abstraction
handling and modeling language notations. Test generation techniques
also suffer from limitations, e.g., state-space explosion problem and
limitations on translation of abstract test cases to low-level executable
test cases.

• At the organization level, adapting model-based testing often requires
re-organization of the software design process. It also requires em-
ployment of skilled professionals or effective training of the existing
team.

In conclusion, the model-based testing aims at improving the quality of
the software with the overall gain in the productivity. The work presented
in this thesis is a step towards this direction.

39

40

Bibliography

[1] AtelierB - User Manual. ClearSy System Engineering, Aix-en-Provence,
France. http://www.atelierb.eu/php/manuels-atelier-b-en.php

Accessed in August 2010.

[2] Deployment of Model-Based Technologies to Industrial Testing (D-
MINT). ITEA2 project, online at http://www.d-mint.org/ Accessed
in August 2010.

[3] EclEmma - Java Code Coverage for Eclipse. http://www.eclemma.

org/ Accessed in August 2010.

[4] ITEA2 - Information Technology for European Advancement. http:

//www.itea2.org/ Accessed in August 2010.

[5] Java Unit Testing - JUnit 4. http://www.junit.org/ Accessed in
August 2010.

[6] NoMagic MagicDraw. http://www.magicdraw.com/ Accessed in Au-
gust 2010.

[7] Rigorous Open Development Environment for Complex Systems. IST
FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/ Ac-
cessed in August 2010.

[8] Fredrik Abbors, Andreas Backlund, and Dragos Truscan. MATERA -
An Integrated Framework for Model-Based Testing. IEEE International
Conference on the Engineering of Computer-Based Systems, pages 321–
328, 2010.

[9] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

[10] J.-R. Abrial. A System Development Process with Event-B and the
Rodin Platform. In International Conference on Formal Engineering
Methods, pages 1–3, 2007.

[11] J.-R. Abrial. Modeling in Event-B: System and Software Design. Cam-
bridge University Press, 2010.

41

http://www.atelierb.eu/php/manuels-atelier-b-en.php
http://www.d-mint.org/
http://www.eclemma.org/
http://www.eclemma.org/
http://www.itea2.org/
http://www.itea2.org/
http://www.junit.org/
http://www.magicdraw.com/
http://rodin.cs.ncl.ac.uk/

[12] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cam-
bridge University Press, 2008.

[13] Peter B. Andrews. An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof. Academic Press Professional, Inc.,
San Diego, CA, USA, 1986.

[14] James D. Arthur, Markus K. Gröner, Kelly J. Hayhurst, and
C. Michael Holloway. Evaluating the Effectiveness of Independent Ver-
ification and Validation. Computer, 32(10):79–83, 1999.

[15] R. J. R. Back. On Correctness of Refinement Steps in Program Devel-
opment. PhD thesis, University of Helsinki, Finland, 1978.

[16] R. J. R. Back and R. Kurki-Suonio. Decentralization of Process Nets
with Centralized Control. In PODC ’83: Proceedings of the second
annual ACM symposium on Principles of distributed computing, pages
131–142, New York, NY, USA, 1983. ACM.

[17] Ralph-Johan Back and Joakim von Wright. Refinement Calculus, Part
I: Sequential Nondeterministic Programs. In REX ((Research and Ed-
ucation in Concurrent Systems) workshop: Proceedings on Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness,
pages 42–66, Mook, The Netherlands, 1990. Springer-Verlag New York,
Inc.

[18] Patrick Behm, Pierre Desforges, and Jean-Marc Meynadier. MÉTÉOR:
An Industrial Success in Formal Development. In B ’98: Proceedings
of the Second International B Conference on Recent Advances in the
Development and Use of the B Method, page 26, London, UK, 1998.
Springer-Verlag.

[19] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold Com-
pany Limited, 1990.

[20] Kurt Bittner. Use Case Modeling. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[21] Mark Blackburn, Robert Busser, and Aaron Nauman. Why Model-
based Test Automation is Different and what you should know to get
started. In In International Conference on Practical Software Quality
and Testing, 2004.

[22] IEEE Standards Board. IEEE Standard for Software Unit Testing:
An American National Standard, ANSI/IEEE Std 1008-1987. In IEEE
Standards: Software Engineering, Volume Two: Process Standards. The

42

Institute of Electrical and Electronics Engineers, Inc. Software Engi-
neering Technical Committee of the IEEE Computer Society, 1987.

[23] B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[24] K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M. Ghe-
orghe, M. Harman, R. M. Hierons, K. Kapoor, P. Krause, G. Luettgen,
A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan. Work-
ing together: Formal Methods and Testing. ACM Computing Surveys,
2003.

[25] Fabrice Bouquet, Bruno Legeard, and Fabien Peureux. CLPS-B: A
Constraint Solver to Animate a B Specification. International Journal
on Software Tools for Technology Transfer (STTT), 6(2):143–157, 2004.

[26] J. Bowen, K. Bogdanov, J. Clark, M. Harman, R. Hierons, and
P. Krause. FORTEST: Formal Methods and Testing. Annual Inter-
national Conference on Computer Software and Applications, page 91,
2002.

[27] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments of
Formal Methods...Ten Years Later. Computer Journal, issn: 0018-
9162, 39:40–48, 2006.

[28] David Carrington, Ian Maccoll, Jason Mcdonald, Leesa Murray, and
Paul Strooper. From Object-Z Specifications to ClassBench Test Suites.
Journal on Software Testing, Verification and Reliability, Vol. 10:111–
137, 2000.

[29] Message Sequence Charts. International Telecommunications Union
(ITU). Telecommunication Standardization Sector. 1996.

[30] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, 2008.

[31] Frédéric Dadeau and Régis Tissot. jSynoPSys – A Scenario-Based Test-
ing Tool based on the Symbolic Animation of B Machines. Electron.
Notes Theor. Comput. Sci., 253(2):117–132, 2009.

[32] Arilo Claudio Dias-Neto and Guilherme Horta Travassos. Model-based
Testing Approaches Selection for Software Projects. Information and
Software Technology, 51(11):1487 – 1504, 2009. Third IEEE Interna-
tional Workshop on Automation of Software Test (AST 2008); Eighth
International Conference on Quality Software (QSIC 2008).

[33] E. W. Dijkstra. A Constructive Approach to the Problem of Program
Correctness. BIT Numerical Mathematics, issn: 0006-3835, Springer
Netherlands, 8:174–186, 1968.

43

[34] E. W. Dijkstra. On the Reliability of Mechanisms. Notes On Structured
Programming, EWD249, 1970. available at http://www.cs.utexas.

edu/users/EWD/ewd02xx/EWD249.PDF Accessed in August 2010.

[35] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall Interna-
tional, 1976.

[36] Mark Dowson. The Ariane 5 Software Failure. SIGSOFT Softw. Eng.
Notes, 22(2):84, 1997.

[37] David A. Duffy. Principles of Automated Theorem Proving. John Wiley
& Sons, Inc., New York, NY, USA, 1991.

[38] Roger Duke and Gordon Rose. Formal Object Oriented Specification
Using Object-Z. Palgrave macmillan, 2000.

[39] Sean Feinberg Elsje Scott, Alexander Zadirov and Ruwanga Jayakody.
The Alignment of Software Testing Skills of IS Students with Indus-
try Practices A South African Perspective. Journal of Information
Technology Education, 3, 2004.

[40] E. Allen Emerson. Temporal and Modal Logic. In Handbook of Theo-
retical Computer Science, pages 995–1072. Elsevier, 1995.

[41] P.G. Frankl and E.J. Weyuker. An Applicable Family of Data
Flow Testing Criteria. IEEE Transactions on Software Engineering,
14(10):1483–1498, 1988.

[42] Stefania Gnesi, Diego Latella, and Mieke Massink. Formal Test-Case
Generation for UML Statecharts. IEEE International Conference on
Engineering of Complex Computer Systems, pages 75–84, 2004.

[43] Object Management Group. UML Testing Profile, v 1.0. formal/05-07-
07.

[44] Baris Guldali, Michael Mlynarski, and Yavuz Sancar. Effort Compari-
son for Model-Based Testing Scenarios. IEEE International Conference
on Software Testing Verification and Validation Workshop, pages 28–
36, 2010.

[45] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous
Dataflow Programming Language LUSTRE. In Proceedings of the
IEEE, volume 79, pages 1305–1320, 1991.

[46] Anthony Hall. Seven Myths of Formal Methods. IEEE Software,
7(5):11–19, 1990.

44

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

[47] Robert J. Hall. A Method and Tools for Large Scale Scenarios. Auto-
mated Software Engg., 15(2):113–148, 2008.

[48] S. Hallerstede. The Event-B proof obligation generator. In L. Viosin,
editor, Specification of Basic Tools and Platform, RODIN Deliverable
3.3 (D10), RODIN-Project, IST-511599, 2005.

[49] David Harel. Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming, 8(3):231–274, June 1987.

[50] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2003.

[51] Alan Hartman. Model based test generation tools, available at: http:

//www.agedis.de/documents/ModelBasedTestGenerationTools_

cs.pdf Accessed in August 2010.

[52] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A tem-
poral logic based theory of test coverage and generation. In TACAS
’02: Proceedings of the 8th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 327–341,
London, UK, 2002. Springer-Verlag.

[53] W.E. Howden. Systems Testing and Statistical Test Data Coverage.
Annual International Conference of Computer Software and Applica-
tions, pages 500–504, 1997.

[54] Pei Hsia, Jayarajan Samuel, Jerry Gao, David Kung, Yasufumi
Toyoshima, and Cris Chen. Formal Approach to Scenario Analysis.
IEEE Softw., 11(2):33–41, 1994.

[55] Conformiq Inc. Qtronic. http://www.conformiq.com/qtronic.php

Accessed in August 2010.

[56] Eddie Jaffuel and Bruno Legeard. LEIRIOS Test Generator: Auto-
mated Test Generation from B Models. B 2007: Formal Specification
and Development in B, pages 277–280, 2006.

[57] Cliff B. Jones. Systematic Software Development Using VDM (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[58] Axel van Lamsweerde. Formal specification: A roadmap. In ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering,
pages 147–159, New York, NY, USA, 2000. ACM.

45

http://www.agedis.de/documents/ModelBasedTestGenerationTools_cs.pdf
http://www.agedis.de/documents/ModelBasedTestGenerationTools_cs.pdf
http://www.agedis.de/documents/ModelBasedTestGenerationTools_cs.pdf
http://www.conformiq.com/qtronic.php

[59] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary De-
sign of JML: A Behavioral Interface Specification Language for Java.
SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[60] Yves Ledru, Lydie du Bousquet, Olivier Maury, and Pierre Bontron.
Filtering TOBIAS Combinatorial Test Suites. Fundamental Approaches
to Software Engineering, pages 281–294, 2004.

[61] Woo Jin Lee, Sung Deok Cha, and Yong Rae Kwon. Integration and
Analysis of Use Cases Using Modular Petri Nets in Requirements Engi-
neering. IEEE Transaction on Software Engineering, 24(12):1115–1130,
1998.

[62] M. Leuschel and M. Butler. ProB: A model checker for B. Proc. of
FME 2003, Springer-Verlag LNCS 2805, pages 855-874., 2003.

[63] Bao-Lin Li, Zhi shu Li, Li Qing, and Yan-Hong Chen. Test Case Auto-
mate Generation from UML Sequence Diagram and OCL Expression.
International Conference on Computational Intelligence and Security,
pages 1048–1052, 2007.

[64] Nancy A. Lynch and Mark R. Tuttle. An Introduction to Input/Output
Automata. CWI Quarterly, 2(3):219–246, 1989.

[65] Matlab Simulink. http://www.mathworks.com/ Accessed in August
2010.

[66] Jason Mcdonald, Leesa Murray, and Paul Strooper. Translating Object-
Z Specifications to Object-Oriented Test Oracles. In In Proc. Asia-
Pacific Software Engineering Conference and Int. Computer Science
Conference, pages 414–423. IEEE Computer Society, 1998.

[67] Kwan Mei-Ko. Graphic Programming Using Odd or Even Points (Chi-
nese Postman Problem). Chinese Math, 1:273–277, 1962.

[68] C. Métayer, J.-R. Abrial, and L. Voisin. Event-B language. In RODIN
Deliverable 3.2 (D7), RODIN-Project, IST-511599, 2005.

[69] Glenford J. Myers. The Art of Software Testing. John Wiley and Sons,
Inc., 1979.

[70] Object Constraint Language (OCL) Version 2.0, Object Management
Group. http://www.omg.org/technology/documents/formal/ocl.

htm Accessed in August 2010.

[71] Documentation of the Unified Modeling Language (UML). available
from the object management group (omg). http://www.omg.org Ac-
cessed in August 2010.

46

http://www.mathworks.com/
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org

[72] V. Papailiopoulou. Automatic Test Generation for LUSTRE/SCADE
Programs. In ASE 08: Proceedings of the 2008 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 517–
520, Washington, DC, USA, 2008. IEEE Computer Society.

[73] James Lyle Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1981.

[74] Alexander Pretschner. Classical search strategies for test case genera-
tion with constraint logic programming. In In Proc. Formal Approaches
to Testing of Software, pages 47–60. BRICS, 2001.

[75] Recall on 2010 Model-Year Prius and 2010 Lexus HS 250h Vehicles
to Update ABS Software. http://pressroom.toyota.com/pr/tms/

toyota-2010-prius-abs-recall-153614.aspx Accessed in August
2010.

[76] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998 amended 2005.

[77] Johannes Ryser and Martin Glinz. A Practical Approach to Validat-
ing and Testing Software Systems Using Scenarios. In QWE 99, 3rd
International Software Quality Week Europe, 1999.

[78] Mar Yah Said, Michael Butler, and Colin Snook. Class and State Ma-
chine Refinement in UML-B. In Integration of Model-based Formal
Methods and Tools (workshop at iFM 2009), February 2009.

[79] Colin Snook and Michael Butler. UML-B: Formal Modeling and Design
Aided by UML. ACM Trans. Softw. Eng. Methodol., 15(1):92–122,
2006.

[80] Colin Snook and Michael Butler. UML-B: A plug-in for the Event-
B tool set. In Abstract State Machines, B and Z, First International
Conference ABZ 2008, page 347, September 2008.

[81] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1989.

[82] Jan Tretmans. Conformance Testing with Labelled Transition Systems:
Implementation Relations and Test Generation. Comput. Netw. ISDN
Syst., 29(1):49–79, 1996.

[83] W. T. Tsai, A. Saimi, L. Yu, and R. Paul. Scenario-based Object-
Oriented Testing Framework. International Conference on Quality Soft-
ware, page 410, 2003.

47

http://pressroom.toyota.com/pr/tms/toyota-2010-prius-abs-recall-153614.aspx
http://pressroom.toyota.com/pr/tms/toyota-2010-prius-abs-recall-153614.aspx

[84] Mark Utting. Position Paper: Model-based Testing. Verified Software:
Theories, Tools, Experiments. ETH Zürich, IFIP WG, 2, 2005.

[85] Mark Utting and Bruno Legeard. Practical Model-Based Testing. Mor-
gan Kaufmann Publishers, 2006.

[86] Mark Utting, Alexander Pretschner, and Bruno Legeard. A Taxon-
omy of Model-based Testing. Technical report, 2006. ISSN 1170-487X,
The University of Waikato http://www.cs.waikato.ac.nz/pubs/wp/

2006/uow-cs-wp-2006-04.pdf Accessed August 2010.

[87] R. J. van Glabbeek. Notes on the methodology of CCS and CSP. In
ACP ’95: Proceedings from the international workshop on Algebra of
communicating processes, pages 329–349. Elsevier Science Publishers B.
V., 1997.

[88] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, and Lev Nachmanson. Model-Based Test-
ing of Object-Oriented Reactive Systems with Spec Explorer. Formal
Methods and Testing, pages 39–76, 2008.

[89] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and Peter Wol-
stenholme. Modeling Software with Finite State Machines. Auerbach
Publications, Boston, MA, USA, 2006.

[90] Anders Wesslén, Per Runeson, and Björn Regnell. Assessing the Sen-
sitivity to Usage Profile Changes in Test Planning. International Sym-
posium on Software Reliability Engineering, page 317, 2000.

[91] James A. Whittaker and Michael G. Thomason. A Markov Chain Model
for Statistical Software Testing. IEEE Trans. Softw. Eng., 20(10):812–
824, 1994.

[92] Niklaus Wirth. Program development by stepwise refinement. Com-
mun. ACM, 14(4):221–227, 1971.

48

http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf
http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf

Part II

Original Publications

49

Paper I

Synthesis of Scenario Based Test Cases from B
Models

Manoranjan Satpathy, Qaisar A. Malik and Johan Lilius

Originally published in The Proceedings of the Workshop on Formal
Approaches to Testing and Runtime Verification (FATES/RV). Lecture
Notes in Computer Science, Vol. 4262/2006, pp. 133-147, Springer-
Verlag, August 2006, Seattle USA.

c©2006 Springer-Verlag. Reprinted with permission of Springer Science and
Business Media.

Paper II

Model-based Testing Using Scenarios and Event-B
Refinements

Qaisar A. Malik, Johan Lilius and Linas Laibinis

Originally published in M. Butler, C. Jones, A. Romanovsk and E.
Troubitsyna (Eds.) Methods, Models and Tools for Fault Tolerance.
Vol. 5454/2009, Lecture Notes in Computer Science, pp. 177-195,
Springer-Verlag, March 2009

c©2009 Speinger-Verlag. Reprinted with permission of Springer Science and
Business Media.

Paper III

On Extending Scenario-based Test Case Generation
Using Event-B Models

Qaisar A. Malik, Johan Lilius, Linas Laibinis and Dragoş
Truşcan

Published (with additions) as Requirement-driven Scenario-based Test-
ing Using Formal Stepwise Development in International Journal On
Advances in Software. Vol. 3 Nr. 1 & 2, pp. 147-160, 2010.

Shorter version published as Scenario-based Test Case Generation Us-
ing Event-B Models in the Proceedings of 1st IEEE Intl. Conference on
Advances in System Testing and Validation Lifecycle (VALID 2009),
IEEE Computer Society, pp. 31-37, September 2009, Porto Portugal

c©2009 IEEE and 2010 IARIA. Reprinted with permission

On Extending Scenario-based Test Case Generation Using Event-B Models

Qaisar A. Malik, Johan Lilius, Linas Laibinis and Dragoş Truşcan
Turku Centre for Computer Science and Dept. of Information Technologies,

Åbo Akademi University, Turku, Finland.
Email: {Qaisar.Malik, Johan.Lilius, Linas.Laibinis, Dragos.Truscan}@abo.fi

Abstract

The paper presents an extension of our previously re-
ported scenario-based testing approach based on formal
models and user-provided testing scenarios. In our ap-
proach, the user provides a testing scenario on the level of an
abstract model of the system under test. When the abstract
model is refined to add or modify features, the corresponding
testing scenarios are automatically refined to incorporate
these changes. The resulting testing scenarios are unfolded
into the test cases containing the required inputs and ex-
pected outputs. We use Event-B as our formal framework.
The refinements of the system model and of its scenarios
are later on transformed into Java code and respectively into
JUnit test cases. In order to enable requirements traceability
across the process requirements are linked to different parts
of the specification, propagated at Java level, and associated
to the JUnit tests.

1. Introduction

Testing is one of the most important and time-consuming
activities in the software development process. Originally,
testing has been performed manually, testers carefully con-
sidered the implementation under test and the designed test
cases. As the software became more complex, the resulting
test cases have grown in numbers and complexity. This
naturally has lead to the need to automate the testing process.
Today there exist several testing approaches that automate
the testing process either completely or partially. These
approaches try to achieve their goal by applying different
means, i.e., code templates, scripts, formal and semi-formal
software models etc.

Still, test automation still could not reduce the time taken
to design the test cases, and thus a new approach came into
place, namely Model-Based Testing (MBT) [1]. In MBT,
models (typically behavioral) of the system under test (SUT)
are used to automatically derive test cases based on selected
coverage criteria. In these approaches, the generated tests
do not distinguish between different parts of the system
that might be more or less important for overall system
correctness. In these cases, the whole process is based on the
coverage criteria, such as transition coverage, state coverage
or any other variation of these. Our scenario-based approach

can be seen as an attempt to focus the testing process, by
explicitly identifying important behavior of the system that
should be tested.

We propose a methodology for scenario-based testing
using formal models of the system and user-provided testing
scenarios. These formal models and scenarios are mapped
by the requirements. The formal models and scenarios are
translated to Java and JUnit artifacts, respectively, while
requirements are also propagated to the JUnit test cases.
The work we present in this paper builds on our previous
work [2], [3] on scenario-based testing, where we have used
formal models of the SUT based on the Event-B formalism
and we proposed a set of formal refinement techniques that
can be used in the context of test generation.

Concretely our methodology proposes the following.
• inclusion of requirements in the formal specification

process and propagation of requirements to tests;
• a method for identification of abstract test cases from

formal scenario specifications;
• a method for generating Java templates of the system

from sufficiently refined Event-B specifications;
• a method for generating JUnit tests from abstract test

cases in CSP.
The organization of the paper is as follows. In Section

2, we give an overview of the model-based testing pro-
cess and our scenario-based testing methodology. Section 3
presents extended guidelines for modeling of Event-B spec-
ifications and of testing scenarios along with requirements.
In Section 4, we describe the technique for generation of
implementation-templates for Java. In Section 5, we discuss
JUnit test case generation. Section 6 contains some analysis
and discussion. Finally, Section 7 concludes the paper.

2. Background

The Model-based Testing (MBT) process can be divided
into following main phases [1], also shown in Figure 1

1) Modeling
2) Test Generation
3) Test Concretization
4) Test Execution
5) Test Result Analysis/Evaluation

In our previous work [2], we presented a scenario-based
testing approach for generation of abstract test cases. The

R e q u i r e m e n t s

M o d e l s

T e s t
C o n c r e t i z a t i o n

T e s t c a s e
G e n e r a t i o n

S y s t e m U n d e r T e s t
(S U T)

C o n c r e t e
T e s t c a s e s

T e s t
E x e c u t i o n

M o d e l i n g

T e s t R e s u l t
E v a l u a t i o n

T e s t R e p o r t

A b s t r a c t
T e s t s a s e s

Figure 1. Model-based Testing Process

aforementioned approach can be divided into two parallel
development processes, one for formal development of mod-
els and other for development of testing scenarios. In the
following, we give overview of the approach.

We use the Event-B formalism to model the behavior of
the system as a state transition system. The development
process starts with an abstract model and then gradually, by
a number of refinement steps, a sufficiently detailed model
is obtained. The implementation of the system under test
(SUT) is an hand-coded implementation of this detailed
model. Ideally, the final implementation should have been
automatically generated from the detailed model. However,
in practice, the final models still often lacks the low-level
implementation details. Due to this abstraction gap between
formal models and executable implementations, automatic
generation of implementation code is not always possible.
As a result, an implementation is often hand-coded, while
consulting the formal models. Since the implementation is
no longer correct-by-construction, the resulting implementa-
tion should be tested. Such tests could be designed by hand
or generated automatically. We follow the latter approach.

For development of testing scenarios, we start from the
requirements and gradually construct testing scenarios. The
first abstract scenario is provided by the user. This scenario
represents a valid behavior of the abstract model present
on the same level of abstraction. In short, we say that the
abstract model conforms to or formally satisfies the abstract
scenario. Later on, we refine this abstract scenario along the
refinement chain of the system models until a sufficiently
detailed scenario is obtained. In fact, this detailed scenario
represents an abstract test case. This process is presented
graphically in Figure 2.

The formal models are refined manually based on the
provided guidelines. The details of such refinement process

R e f i n e m e n t

R e f i n e m e n t

A b s t r a c t s c e n a r i o

R e f i n e d s c e n a r i o

(S
A

)

(S
i

)

S u f f i c i e n t l y r e f i n e d
 scenar ios (S

C
)

I m p l e m e n t a t i o n

M o d e l i n g

T e s t c a s e i m p l e m e n t a t i o n

T e s t C a s e s

M o d e l i n g

T e s t c a s e a p p l i c a t i o n

R e f i n e m e n t

R e f i n e m e n t

S u f f i c i e n t l y r e f i n e d
 model (M

C
)

R e f i n e d m o d e l (M
i

)

A b s t r a c t m o d e l (M
A

)

()

()

()

()

S y s t e m U n d e r T e s t
 (SUT)

R e q u i r e m e n t s

C o n f o r m s t o ()=|

C o n f o r m s t o ()=|

C o n f o r m s t o ()=|

Figure 2. Overview of our scenario-based approach

are given in [2]. However, the generation of refined testing
scenarios is automatic once an abstract scenario is provided
by the user. This automatic process is merely a syntactic
transformation from the abstract scenario SA to the refined
scenario Si, while considering the controlled refinement
steps involved in refining the abstract model MA to the
refined model Mi. Similarly, this process continues until
we get a sufficiently detailed, concrete testing scenario
SC to which the model MC conforms. The scenarios are
represented as Communicating Sequential Process (CSP) [5]
expressions. The refinement between scenarios is trace-
refinement [6], while the conformance between models and
scenarios is checked by the ProB [7] model checker. The
satisfiability check is performed at each refinement level as
was shown earlier in Figure 2.

More details about our scenario-based testing approach,
modeling with Event-B, controlled refinements and case
study example can be found in [2].

Overview of Event-B

The Event-B [4] is a recent extension of the classical B-
method [8] formalism. Event-B is particularly well-suited
for modeling event-based systems. The common examples
of event-based systems are reactive systems, embedded
systems, network protocols, web-applications and graphical
user interfaces.

In Event-B, the specifications are written in Abstract Ma-
chine Notation (AMN). An abstract machine encapsulates
state (variables) of the machine and describes operations

(events) on the state. A simple abstract machine has the
following general form

MACHINE AM
VARIABLES v
INVARIANT I
EVENTS
INITIALISATION = . . .
E1 = . . .
. . .
EN = . . .

END

A machine is uniquely defined by its name in the
MACHINE clause. The VARIABLE clause defines
state variables, which are then initialized in the
INITIALISATION event. The variables are strongly
typed by constraining predicates of the machine invariant
I given in the INVARIANT clause. The invariant defines
essential system properties that should be preserved during
system execution. The operations of event-based systems
are atomic and are defined in the EVENT clause. An event
is defined in one of two possible ways

E = WHEN g THEN S END

E = ANY i WHERE C(i) THEN S END

where g is a predicate over the state variables v, and
the body S is an Event-B statement specifying how the
variables v are affected by execution of the event. The second
form, with the ANY construct, represents a parameterized
event where i is the parameter and C(i) restricts i. The
occurrence of the events represents the observable behavior
of the system. The event guard (e.g., g or C(i)) defines the
condition under which event is enabled.

Related Work

The jSynoPSys tool [9] performs scenario-based testing
using symbolic animation of the B machines. This work
defines a scenario-description language used to represent
scenarios. However, authors do not provide any guidelines
for the refinement of the specifications or scenarios. It is
also not mentioned how scenarios will be transformed into
executable test cases.

Nogueira et al. in [10] present a test generation approach
based on the CSP formalism. The CSP models are con-
structed from use cases described in a pre-defined subset of
natural language. The test scenarios are then incrementally
generated as counter-examples for refinement verifications
using a model checker. The main difference between their
work and our approach is that we use Event-B to represent
our system models and use CSP to represent testing sce-
narios. A model checker in our case is used to check the
conformance between models and scenarios.

Stotts et al. in [11] describe a JUnit test generation scheme
based on the algebraic semantics of Abstract Data Types

(ADTs). The developer codes ADT in Java, while tests
are generated for each ADT axiom. One of the advantages
of this approach is that the formalism is hidden and the
developer only needs to know Java to use this method.
However, unlike our approach, in their case it would not
be possible to mathematically prove any safety properties or
to find deadlocks in the specifications.

In our earlier work [12], we presented the scenario-
based testing approach for B models, where we designed
an algorithm for constructing test sequences across different
refinement [13] models. However, this algorithm is expo-
nential in its nature thus limiting its practical applicability.

3. Event-B Models and Testing Scenarios

Our main goal in this paper is to generate executable
test cases. In order to generate such concrete test cases,
one needs to have enough information about the inputs and
outputs of the system. In [2] we listed three basic types
of refinement steps referred to as controlled refinement. In
this section, we elaborate on these types of refinements by
suggesting guidelines to incorporate information about the
inputs and outputs of the system. These guidelines are used
in a similar way for the development of both Event-B models
and corresponding user scenarios.

In our scenario-based testing approach, we refine our
models and scenarios in a stepwise manner (see Figure 2)
based on user requirements. We will also elaborate on
how the requirements can be attached to one or more of
refinement steps as decided by the user.

3.1. Requirements

Usually the software systems are built according to in-
formal requirements provided by user. The link between
informal requirements and formal models is quite important
in software development. We extend our previous scenario-
based testing approach by introducing requirements in the
specification process.

The requirements are used for creating the initial specifi-
cation of the SUT and also for refining this specification on
the next level of abstraction. The requirements are mapped to
the Event-B models and to testing scenarios (see Figure 3).

In our approach, a stand-alone document specifying the
requirements of the SUT in a structured manner is used. In
this document, the requirements are specified using an ID
and a text with the following structure:

Requirement : REQ− ID

Text describing the requirement

Hierarchy of the requirements is implemented using the
requirement ID. For instance, requirement REQ − 1.1 is a
sub-requirement of requirement REQ− 1.

Throughout this paper we will use small examples from a
Hotel Booking System. The system should allow the user to
search for a room in the room database (REQ−1), to reserve
the room (REQ − 2), to allow him to pay for the reserved
room (REQ−3) or to cancel an existing reservation (REQ−4).
The requirement REQ− 1 is described as

Requirement : REQ− 1

The system should be able to find a room of given

type if it is available in the database and

connection to the database is successfully

established. In case of failed connection,
an exception is reported.

Each requirement can be divided into several sub-
requirements. For instance, (REQ− 1.1) and (REQ− 1.2) are
given in the following.

Requirement : REQ− 1.1
The system should be able to find a room of given

type if it is available in the database and

connection to the database is successfully

established.

Requirement : REQ− 1.2
The system should return an error message if

connection to the database is not established

successfully.

The requirement (REQ− 1.1), is further divided as

Requirement : REQ− 1.1.1
The system should be able to accept room type as

an input.

Requirement : REQ− 1.1.2
The system should be able to connect to the

database.

Requirement : REQ− 1.1.3
The system should be able to retrieve results.

These sub-requirements serve as basis for refinements in
the Event-B model. A plug-in for the RODIN platform [14],
the Requirement plug-in [15], is used for mapping require-
ments between the requirement document and the model.
In the Requirement plug-in, a parser parses the requirement
document and lists individual requirements. Then, any re-
quirement can be selected to be mapped to one or more
Event-B elements. This mapping information is stored in a
mapping file. Similarly, a separate mapping file is created for
storing the mapping between requirements and scenarios.

"#$%&'()*!

+$,-('$.$%/*!

01$%/23!4)5$6!

4&77(%8!

!

4&77(%8!

!

Figure 3. Mapping Requirements to Specifications and
Scenarios

3.2. Using EventB for system specification

In our approach, we create formal descriptions of the
SUT starting from the requirements as shown in Figure 2.
Subsequent refinements of the specification are preformed
based on the sub-requirements of a given requirement. In
this section, we discuss our controlled method for modeling
and refining the system specification. In order to facilitate
the refinements of our EventB specifications, we introduce
a classification of the event types and a new logical unit
concept.

3.2.1. Classification of Events. In order to identify the
inputs and the outputs of the system, we classify the events
of our Event-B models as of input, output, and internal
types.

Definition 1: The Events. Set of all events in the system,
denoted by Σ, is divided into following subsets of:

• Input events denoted by εI

• Output events denoted by εO

• Internal events denoted by ετ

�
The input events, εI , accept inputs from user or environment.
Apart from their input behavior, these events may take part
in the normal functioning of the system. However, the input
events do not produce externally visible output. The output
events εO produce the externally visible outputs. Finally,
the internal events do not take part in any input/output
activity. These events however, may produce intermediate
results used by the events in εI and εO. The motivation
of this classification is explained in next section, where we
divide our system into logical functional units.

3.2.2. Logical Units. As we develop our system in a
stepwise manner, the main functional units of a system are
already identified on the abstract level. Each of these abstract
functional units are modeled as a separate logical unit, called
IOUnit, in our Event-B models.

Definition 2. An IOUnit, U, consists of a finite sequence of
events and has the following form.

U =< εI , ετ+, εO >

Here εI and εO denote the input and output events re-
spectively, and ετ+ represents one or more occurrences of
internal events.

�
It can be observed from the above definition that an

IOUnit consists of the sequence of events occurring in such
an order that the first event in the unit is always an input
event and the last event is always an output event, with
possibly one or more internal events in between. Moreover,
an IOUnit can not contain more than one input or output
event.

An IOUnit takes input and produces output, as the pres-
ence of the input and output events indicates. The classi-
fication of events, defined in the previous section, helps
us in identifying the inputs and outputs of each unit, and
when combined, of the whole system. The motivation for
this approach is the following. The developer of the SUT
may decide to implement the system independently of the
structure of an Event-B model. Indeed, it is sometimes
hard to construct the strict one-to-one mapping between
the events of the model and corresponding programming
language units. For example, two events in a model can be
merged to form one programming-language operation, or the
functionality of an event in the model may get divided across
multiple operations or classes in the implementation. How-
ever, for successful execution of the system, the interfaces
of the model and implementation, i.e., the sequence of the
inputs and outputs, should remain the same.

3.2.3. Example. Reserving a room in such the hotel booking
system can be modeled as a sequence of events that occur
in a specific order. On the abstract level, we may have only
a few events, representing some particular functionalities
of the system. For example, if we model requirements
REQ − 1 to REQ − 4, each top-level user requirement will
be implemented as one IOUnit. Consequently, there are four
main IOUnits namely, Finding a room, Reserving it, Paying
for it, and Canceling a reserved room. After we structure our
model according to the guidelines described in Section 3.2.1,
the resulting events and their sequence of execution can be
seen in Figure 4(a).

As it can be observed, the main functional events are
wrapped with the input and output events. For example,
the Find event is wrapped around with the InputForFind
and OutputForFind events, where InputForFind and Output-
ForFind are the input and output events, respectively.

Within an IOUnit, we treat our main functional events
as internal events (e.g., Find, Reserve, Pay and Cancel).
Such events can be further refined, in one or more steps,

I N I T

R e s e r v e

F i n d

P a y

O u t p u t F o r F i n d

O u t p u t F o r R e s e r v e

O u t p u t F o r P a y

I n p u t F o r F i n d

I n p u t F o r R e s e r v e

I n p u t F o r P a y

I O U n i t s

I n p u t F o r C a n c e l

O u t p u t F o r C a n c e l

C a n c e l

n e w I O U n i t

(a)

I N I T

I n pu t Fo rF i n d

C o n n e c t D B

Fe t c hRe c o r d s

Ou t p u t F o r F i n d

I n p u t F o rRe s e r v e

Connec t i o nFa i l u r e

Re t r i e v e

IOUn i t

(b)

Figure 4. (a) Abstract System (b) Refined System

consequently adding more internal events within the input-
output unit. The refinement is performed according to the
sub-requirements of the requirement that was the source of
the IOUnit. For instance, the Find IOUnit in Figure 4(a) has
been refined by applying successive refinements based on the
requirement REQ − 1 and its sub-requirements, introduced
earlier in Section 3.1, into four internal events depicted
graphically with dashed line pattern in Figure 4(b).

The complete Event-B specifications of this example
have been developed and proved using the RODIN [14]
platform. In the final refined system, there was a total of 42
proof obligations. Out of these, 38 proof obligations were
automatically discharged by the tool, while the remaining 4
needed manual assistance.

3.3. Testing Scenarios

We mentioned before that we use Communicating Se-
quential Processes (CSP) [5] to represent testing scenarios.
We define a testing scenario as a finite sequence of events
occurring in some particular order. Since we have grouped
the events in the form of logical IOUnits, our scenarios
will also include a finite sequence of IOUnits. This means
that the scenarios will include the same events as in the
corresponding Event-B model. However, the scenarios must
follow the same rules that were set for constructing IOUnits
in the previous section, i.e.,

1) The first event in the scenario is always an input event;
2) The last event in the scenario is always an output

event;
3) There can not be two input-type events in the sequence

without any output event in between them, i.e., the fol-
lowing sequence in a CSP expression is not allowed;

< · · · → εIk → εIk+1 → · · · >
4) There can not be two output-type events in sequence

without any input event in between them, i.e., the
following sequence is also not allowed.

< · · · → εOk → εOk+1 → · · · >
Since the scenarios are defined on the abstract level, they

lack details about the system inputs and outputs. The input
details can be identified from the input event(s) of each
IOUnit. For example, if an input event reads three input
variables then these three variables become the inputs for
the unit that the input event belongs to. The details about
the inputs can be retrieved from the Event-B model since the
model specifies the type, initial value and invariant properties
for all variables.

The expected outputs are generated after the model is
animated using the ProB model checker [7]. For a given
input of a test case, the ProB can animate the model and
return the result, which is then saved as the expected output
of the test case. This expected output can be then used to
compare the values while testing the real implementation.
The ProB model checker can only produce output values
based on the available abstract values. For example, to test
whether a room is available in the Hotel Booking System,
ProB can check the expected result for a pre-defined set of
inputs, while in the actual implementation this result might
be retrieved from the database. Therefore, we need to define
a mapping relation between the abstract and concrete data
types. At the moment this mapping is provided manually.
However, it is possible to automate its generation for the
commonly used types, e.g., boolean and integers.

3.3.1. Example. In the case of the previously discussed
Hotel Booking System example, there can be many possible
testing scenarios. For example, if we want to test the room
finding, reservation and paying functionality, the correspond-
ing abstract scenario expressed as a CSP expression would
be as follows.

S0(A) = InputForFind?roomType→ Find →
OutputForFind!(roomId, anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→
InputForPay?reserveId→ Pay →
OutputForPay!payId

After a number of successive refinements of event Find,
we achieve the following scenario. For keeping the example
simple, we only show the refinement of Find event which
is also shown graphically in Figure 4(b).

S0 = InputForFind?roomType→ ConnectDB→
((FetchRecords→ Retrieve) ⊓ ConnectionFailure))
→ OutputForFind!(roomId, anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→

InputForPay?reserveId→ Pay →
OutputForPay!payId

where ⊓ is the internal choice operator in CSP. The
variable roomType is the input for this IOUnit, whereas
roomId, anyException are possible outputs. The variable
anyException specifies if there was any exception, e.g., a
connection failure.
Often, the subsequent event depends on the results of
the previous ones. For example, the event Reserve takes
roomId as an input from the previous event. It can be
noticed that the refinement of the Find event has created
two branches, one leading to successful case and the other
to a database connection failure exception. When the above
scenario is checked for conformance with the ProB model
checker, it will be found that one can not proceed to
Reserve if an exception occurred at the previous step.
Therefore, this scenario will be split into two scenarios S0
and S1 given in the following.

S0 = InputForFind?roomType→ ConnectDB→
FetchRecords→ Retrieve→
OutputForFind!(roomId,anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→
InputForPay?reserveId→ Pay →
OutputForPay!payId

S1 = InputForFind?roomType→ ConnectDB→
ConnectionFailure→
OutputForFind!(roomId,anyException)

These scenarios, when sufficiently refined, are transformed
into JUnit tests which will be discussed later in Section 5.

In the next section, we will discuss how Event-B model
is used to generate an implementation template in Java.

4. Generating Java Implementation Templates

Once developed, we use the Event-B models of the SUT
to generate Java implementation templates. We start by
translating a (sufficiently refined) Event-B model into a
Java class. As a result, Event-B events are translated to the
corresponding Java methods. For our Hotel Booking System
example, the excerpts of the respective Event-B machine and
its implementation template are shown as follows.

An operation in an Event-B specification consists of
two parts. The first part contains the pre-condition(s) for
the event operation to be enabled, while the second part
consists of the actions that the operation performs. For every
event in an Event-B model, we create two separate methods
in the corresponding Java implementation representing the
pre-conditions and actions respectively. The first method,
which contains the pre-conditions of an event, returns the
evaluation result in the form of a boolean value. The name
of this method is pre-fixed with the string “guard ”. The

MACHINE BookingSystemRef1

REFINES BookingSystem

SEES BookingContext

VARIABLES

roomType

. . .

INVARIANTS

!"!"!"

EVENTS

Initialisation

act5 : roomType := Null_roomType

!"!"!"

Event"InputForFind ≙"

Refines InputForFind

any

tt

where

grd1 : tt ∈ RTYPES

then

act1 : roomT ype := tt

act2 : inputForFindCompleted := TRUE

end

!"!"!"

END

second method encapsulates the actions of the event. For
example, for the InputForFind event from our Hotel Booking
System example, the Java implementation methods are given
in the Listing 1. As one can notice, the requirements attached
to different IOUnits in Event-B are preserved during the
transformation and included in the generated template (see
line 19 of Listing 1).

1 p u b l i c c l a s s Hote lBook ingSys tem {
2
3 / / c l a s s −l e v e l v a r i a b l e s
4 p u b l i c S t r i n g roomType ;
5
6
7 p u b l i c Hote lBook ingSys tem () {
8 / / i n i t i a l i z a t i o n . . .
9 }

10
11 /∗ P r e C o n d i t i o n s / Guards f o r I n p u t F o r F i n d e v e n t

∗ /
12 p r i v a t e boolean g u a r d i n p u t F o r F i n d (S t r i n g

roomType) {
13 return (roomType != n u l l) ;
14 }
15
16 /∗ I m p l e m e n t a t i o n method f o r I n p u t F o r F i n d

e v e n t ∗ /
17 p u b l i c boolean i n p u t F o r F i n d (S t r i n g roomType)
18 throws P r e C o n d i t i o n V i o l a t e d E x c e p t i o n {
19 / / REQ−1.1.1
20
21 boolean i n p u t F o r F i n d C o m p l e t e d = f a l s e ;
22 i f (g u a r d i n p u t F o r F i n d ()) {
23
24 / / a c t i o n s . . .
25
26 t h i s . roomType = roomType ;
27 i n p u t F o r F i n d C o m p l e t e d = t rue ;
28 }

29 e l s e {
30 throw new
31 P r e C o n d i t i o n V i o l a t e d E x c e p t i o n (” For

i n p u t F o r F i n d ”) ;
32 }
33 return i n p u t F o r F i n d C o m p l e t e d ;
34 }
35
36 / / more I m p l e m e n t a t i o n methods f o r e v e n t s
37
38 }
39
40 c l a s s P r e C o n d i t i o n V i o l a t e d E x c e p t i o n extends

E x c e p t i o n {
41
42 p u b l i c P r e C o n d i t i o n V i o l a t e d E x c e p t i o n (S t r i n g

mesg) {
43 super (mesg) ;
44 }
45 }

Listing 1. Implementation template example

Each Java implementation method, representing an
Event-B event, first evaluates its pre-condition(s)
by calling its “guard ” method. If the pre-
conditions are evaluated to false then the exception
PreConditionViolatedException is raised,
otherwise the actions of the corresponding event are
executed. The variables of an Event-B machine are
translated into the corresponding class variables in Java.
The type information for these variables can be retrieved
from the invariant clause of the Event-B machine. We
assume that a mapping relation between data types in
Event-B and Java is provided by the user. While most of
the Java code can be automatically translated from Event-B
constructs, the user can add more code statements according
to his/her requirements. This means that the generated class
actually constitutes a Java template.

In the next section, we will discuss how testing scenarios
are translated into JUnit test cases.

5. Generating JUnit test cases from Scenarios

In Section 4, we presented the guidelines for generating
implementation templates for Java. Once such a template is
generated, we can generate the corresponding executable test
cases from the scenarios. These test cases can be represented
as Java Unit Testing (JUnit) [16] and TestNG [17] test
methods.

Since our Event-B events are now presented as sequences
of IOUnits, we write JUnit test cases to test these IOUnits.
The Find IOUnit from scenario S0 is represented as an
abstract test case T0 as given in the following.

T0 = InputForFind?roomType→ ConnectDB→
FetchRecords→ Retrieve→
OutputForFind!(roomId, anyException)

For scenario S1, the abstract test case T1 would be expressed
as following.

T1 = InputForFind?roomType→ ConnectDB→
ConnectionFailure→
OutputForFind!(roomId, anyException)

For each of the test cases T0 and T1, a separate JUnit test
method is implemented. The JUnit test method for T0 is
shown in the Listing 2. In a similar way, JUnit test cases
are generated for each IOUnit in the scenario.

1 p u b l i c c l a s s Hote lBook in gSy s t em T e s t {
2
3 Hote lBook ingSys tem bSys ;
4 . . .
5
6 @Before
7 p u b l i c vo id setUp () throws E x c e p t i o n {
8 bSys = new Hote lBook ingSys tem () ;
9 }

10
11 @Test (d a t a p r o v i d e r = ‘ ‘ roomTypes ’ ’)
12 p u b l i c f i n a l vo id T0 (S t r i n g roomType) {
13 / / REQ−1.1
14 t r y {
15 boolean v1 , v2 , v3 , v4 , v5 ;
16 v1 = v2 = v3 = v4 = v5 = f a l s e ;
17
18 / / c a l l i n g methods o f IOUnit
19 v1 = bSys . i n p u t F o r F i n d (roomType) ;
20 v2 = bSys . connectDB () ;
21 v3 = bSys . f e t c h R e c o r d s () ;
22 v4 = bSys . r e t r i e v e () ;
23 v5 = bSys . o u t p u t F o r F i n d () ;
24
25 / / a s s e r t s t a t e m e n t s (v e r d i c t)
26 a s s e r t T r u e (‘ ‘ S u c c e s s f u l c o m p l e t i o n ’ ’ ,
27 v1 && v2 && v3 && v4 && v5) ;
28
29 a s s e r t T r u e (bSys . r e s u l t S e t . s i z e () > 0) ;
30 a s s e r t T r u e (bSys . a n y E x c e p t i o n == f a l s e)

;
31 }
32 catch (P r e C o n d i t i o n V i o l a t e d E x c e p t i o n e) {
33 f a i l (e . ge tMessage ()) ;
34 }
35 }
36 / / TestNG method t o p r o v i d e i n p u t da ta
37 @DataProvider (name = ‘ ‘ roomTypes ’ ’)
38 p u b l i c O b j e c t [] [] c rea teAl lRoom T ypes () {
39
40 return new O b j e c t [] [] {
41 new O b j e c t [] { ‘ ‘ S i n g l e ’ ’ } ,
42 new O b j e c t [] { ‘ ‘ Double ’ ’ } ;
43 }
44 }
45 }

Listing 2. JUnit/TestNG Test method for T0

In the test case example shown in Listing 2, there is only
one input parameter, i.e., roomType. However, in practice,
there can be more than one input parameters. Generating
all possible values for each parameter and then making all
possible combinations of these parameters values may result
in combinatorial explosion. In order to handle this problem,
the input space partitioning [18] approach is used for test
case generation. Information about each input variable is
retrieved from the invariant clause and the pre-condition part

of the input event. The pre-conditions and invariant clauses
specify the type and possible restrictions (value ranges) for
each variable. Using this information, the input space for
each parameter is divided into equivalent partitions. Then
from each partition, one value is selected to represent the
whole partition. Combining the values of different variables
from different partitions reduces the total number of in-
put combinations needed for testing. These combinations
are provided to JUnit test cases using the @DataProvider
method of the TestNG framework [17]. An example of such
a method can be observed in Listing 2.

If a scenario involves multiple IOUnits in a sequence and
JUnit test case for that sequence is desired, then JUnit test
also includes calls to the relevant implementation methods
of the the IOUnit involved. Moreover, the JUnit assert
statements are also appended in the test case.

It is important that the system requirements are propagated
from scenarios to JUnit test cases. Although, requirements
can be attached at any one or more of the refinement steps,
however, it is important that the requirements are mapped
to the sufficiently refined models and scenarios. This is
because the sufficiently refined models and scenarios (at
this stage called abstract test cases) are transformed into
implementation constructs in Java. The resulting JUnit test
case would also carry the information about requirements
and upon their execution, it would be possible to trace which
requirements have or have not been fulfilled.

The requirement REQ− 1.1 and REQ− 1.2 are attached
(see Figure 5) to the above mentioned test cases, T0 and
T1 respectively, and this information is appended as Java
comments in resulting JUnit test cases as can be seen on
line 13 in the Listing 2.

)#! $%&'(*(!

)(! $%&'(*+!

203456/01! $73/078709!

)# $%&'(*(

)($%&'(*+

,-../01!

Figure 5. Mapping for informal requirements to abstract
test cases

In the next section, we analyze our testing approach and
discuss some related issues.

6. Discussion

The presented test generation process produces test cases
in JUnit, which is a well-known and widely used testing
framework. The test cases are generated according to the
user provided scenarios. More scenarios the user provides,
the more code coverage we are likely to achieve. There
are several good coverage measuring tools available that
can be used with the generated test suites. We have tried
EclEmma [19], which is a freely available open source Java

code coverage tool available for Eclipse, and found it quite
easy to use with our approach. With EclEmma, it is also
possible to generate the test execution and coverage analysis
reports.

Furthermore, our approach has the distinguishing advan-
tage that it also accommodates those changes which can not
categorized and proved as formal refinement. Referring back
to Figure 2, in some cases the model Mi may contain some
extra functionalities or features, such as the incorporated
fault-tolerance mechanisms, which were omitted or out of
scope of the scenario SA. These extra features, denoted
by SEF , can be added in the scenario Si manually. The
modified scenario Si ∪ SEF must be checked, by means of
the ProB model checker, to satisfy the model Mi. We can
then follow the same refinement process, now starting with
Si∪SEF , until we get a sufficiently refined scenario at level
of the final model MC .

Our approach also describes how one can generate Java
implementation templates and the corresponding JUnit test
cases. However, if for some reason, the user does not want
to use the generated template, s/he can still use the JUnit test
generation part to test his/her own implementation, provided
that s/he has implemented the system keeping the operation
interfaces consistent with the already generated JUnit test
cases.

At the moment, we do not support translation of more
complex pre-condition and invariant expressions from Event-
B to Java. Namely, the existential and universal quantifiers
are not covered. However, this can be achieved by using an
approach similar to the one used in JML [20].

We do not explicitly support testing for negative scenarios
i.e., the behavior that should not exist in the SUT. However,
this kind of testing can also be accommodated if we model
such negative behavior in our Event-B models as events and
then provide testing scenarios covering those events. In order
to show correctness, the JUnit tests, generated from these
negative scenarios, should fail when applied on SUT.

7. Conclusions

In this paper, we presented a model-based testing ap-
proach using user-provided testing scenarios. These sce-
narios are first validated using a model checker and then
used to generate test cases. Additionally, we have provided
the guidelines for stepwise development of formal models
and automatic refinement of testing scenarios. We also
proposed an approach to generate Java language implemen-
tation templates from Event-B models. The abstract testing
scenarios can then be used to generate executable JUnit test
cases. Optionally, user can map informal requirements to the
formal model and testing scenarios at different refinement
steps. This mapping of informal requirements is extended
till concrete test cases so that upon test case failure, these
unfulfilled requirements can be back-traced into the model.

We believe that our approach is very scalable. It can
help developers and testers to automatically generate large
number of executable test cases. Generating these test case
by hand would be very laborious and error-prone process.

As future work, we aim at providing graphical
representation for the testing scenarios and their refinements.
Moreover, at the moment, the mapping between abstract
and concrete data types needs to be provided manually by
the user. An automatic translation would be very helpful
and time-saving in this respect.

References

[1] M. Utting and B. Legeard, Practical Model-Based Testing.
Morgan Kaufmann Publishers, 2006.

[2] Q. A. Malik, J. Lilius, and L. Laibinis, “Model-Based Testing
Using Scenarios and Event-B Refinements,” in Methods,
Models and Tools for Fault Tolerance, LNCS Vol. 5454.
Springer-Verlag, 2009, pp. 177–195.

[3] Q. A. Malik, J. Lilius, and L. Laibinis, “Scenario-Based Test
Case Generation Using Event-B Models,” in International
Conference on Advances in System Testing and Validation
Lifecycle (VALID 2009). IEEE Computer Society, 2009, pp.
31–37.

[4] J.-R. Abrial, “A System Development Process with Event-B
and the Rodin Platform,” in ICFEM, 2007, pp. 1–3.

[5] C. A. R. Hoare, Communicating sequential processes.
Prentice-Hall, Inc., 1985.

[6] A. Roscoe, The theory and practice of concurrency. Prentice
Hall, 1998 amended 2005.

[7] M. Leuschel and M. Butler, “ProB: A model checker for B.”
Proc. of FME 2003, Springer-Verlag LNCS 2805, pages 855-
874., 2003.

[8] J.-R. Abrial, The B-Book. Cambridge University Press, 1996.

[9] F. Dadeau and R. Tissot, “jSynoPSys – A Scenario-Based
Testing Tool based on the Symbolic Animation of B Ma-
chines,” Electron. Notes Theor. Comput. Sci., vol. 253, no. 2,
pp. 117–132, 2009.

[10] S. Nogueira, A. Sampaio, and A. Mota, “Guided Test Gener-
ation from CSP Models,” in ICTAC, 2008, pp. 258–273.

[11] P. D. Stotts, M. Lindsey, and A. Antley, “An Informal
Formal Method for Systematic JUnit Test Case Generation,”
in XP/Agile Universe, 2002, pp. 131–143.

[12] M. Satpathy, Q. A. Malik, and J. Lilius, “Synthesis of
Scenario Based Test Cases from B Models.” in FATES/RV,
2006, pp. 133–147.

[13] R.-J. Back and J. von Wright, “Refinement Calculus, Part
I: Sequential Nondeterministic Programs,” in REX Workshop,
1989, pp. 42–66.

[14] “Rigorous Open Development Environment for Com-
plex Systems,” iST FP6 STREP project, online at
http://rodin.cs.ncl.ac.uk/.

[15] “Requirement Management Plug-in for Rodin
Platform,” home page : http://wiki.event-
b.org/index.php/Category:Requirement Plugin.

[16] “JUnit 4,” http://www.junit.org.

[17] C. Beust and H. Suleiman, Next Generation Java Testing:
TestNG and Advanced Concepts. Addison-Wesley, 2007,
http://www.testng.org/.

[18] P. Ammann and J. Offutt, Introduction to Software Testing.
Cambridge University Press, 2008.

[19] “EclEmma - Java Code Coverage for Eclipse,”
http://www.eclemma.org/.

[20] G. T. Leavens and A. L. Baker, “Enhancing the Pre- and
Postcondition Technique for More Expressive Specifications,”
in In FM99: World Congress on Formal Methods. Springer,
1999, pp. 1087–1106.

Paper IV

Using UML Models and Formal Verification in Model-
Based Testing

Qaisar A. Malik, Dragoş Truşcan and Johan Lilius.

Originally published in In Proceedings of 17th IEEE Intl. Conference
on Engineering of Computer-Based Systems (ECBS 2010), IEEE Com-
puter Society, pp. 50-56, March 2010, Oxford UK.

c©2010 IEEE. Reprinted with permission.

Using UML Models and Formal Verification in Model-Based Testing

Qaisar A. Malik, Dragoş Truşcan and Johan Lilius
Turku Centre for Computer Science (TUCS)

Department of Information Technologies, Åbo Akademi University, Turku, Finland.
Email: {Qaisar.Malik, Dragos.Truscan, Johan.Lilius}@abo.fi

Abstract

In this paper we present a model-based testing approach
where we integrate UML, UML-B and the Qtronic test
generator tool, with the purpose of increasing the quality of
models used for test generation via formal verification. The
architectural and behavioral models of the system under test
(SUT) are specified in UML and UML-B, respectively. UML-
B provides UML-like visualization with precise mathematical
semantics. UML-B models are developed in a stepwise
manner which are then automatically translated into Event-
B specifications that can be proved using theorem provers.
Once the formal models are proved, they are transformed
into QML which is a modeling language used by the test
generation tool.

Index Terms

UML-B; UML based testing; Model-based testing; Event-B

1. Introduction

During recent years, Model-based Testing (MBT) has
gained noticeable popularity due to its success in automated
testing. The term Model-based testing refers to the kind of
testing where tests are generated from models [1, page 6].
The main purpose of software testing is to find defects and
increase the confidence in a given system implementation,
by checking weather the implementation conforms to the
specifications.

There are several established approaches and available
tools for generating tests from behavioral models of the
system under test (SUT) (see [1] for details). However, com-
plex systems are often described using several perspectives
like architectural, behavioral, data etc., which may also aid
the testing process. One such approach of using different
perspectives of the system for MBT has been discussed
in [2]. The mentioned approach uses several system models,
modeled using the Unified Modeling Language (UML) [3],
and transforms these into input for an automated test design
tool named Qtronic [4].

Despite of its extensive use in both industry and academia,
one commonly stated argument against using UML is about

the lack of precise formal semantics. In order to improve
quality of the models, consistency checking and validation
is performed by developing various rules and guidelines [5],
mainly by using OCL [6]. However, there still exists a need
for formal verification for the behavioral part of the system,
which by improving the quality of the generated models will
eliminate unnecessary failed test cases due to inconsistencies
in the models used for test generation.

This paper focuses on the aspect of how to incorporate
formal verification in this existing model-based testing pro-
cess. For formal verification, we use UML-B which is a
new formal modeling notation combining UML with the
B-method [7], thus providing UML-like visualization with
precise mathematical semantics.

The organization of this paper is as follows. Firstly, some
background theory and concepts about UML-B, Qtronic and
our model-based testing approach is presented in Section 2.
In Section 3 and 4, we describe, with a case study, how
formal verification is incorporated in our existing model-
based testing process. Section 5 contains references to some
related work in this area. Finally, Section 6 provides an
evaluation of our approach and concludes the paper.

2. Background

2.1. Model-Based Testing Process

The earlier work, that we are extending here, is on using
UML models to specify the SUT, by using data models, test
configuration models, domain models and state-machines.

To show details of this methodology, we use excerpts
from a telecommunication case study modeling a Mobile
Switching Server (MSS), which will be used as the SUT. The
MSS is the main element of 2G (2nd Generation) and 3G
(3rd Generation) networks. The role of MSS is to connect
calls between mobile phones and fixed networks. For this
case study, we model Location Update feature of MSS
which handles location information of mobile phones at the
time of call setup and during the calls. The communication
between MSS and MS (Mobile Subscriber) is performed by
exchanging messages that is why this work is tailored for
message-based communicating systems.

The class diagram (Fig. 1), as domain model, is used to
represent components of the domain and how these com-

2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4005-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ECBS.2010.13

50

+[RANAP]_IU_RELEASE_COMPLETE()
+[RANAP]_RELOCATION_REQUIRED()
+[RANAP]_SECURITY_MODE_COMPLETE()
+[RANAP]_RELOCATION_DETECT()
+[RANAP]_RELOCATION_COMPLETE()
+[RANAP]_RAB_ASSIGNMENT_COMPLETE()
+[RANAP]_PAGING_RESPONSE()
+[RANAP]_RELOCATION_REQUEST_ack()

Iu

+[MM]_LOCATION_UPDATING_REQUEST()
+[MM]_AUTHENTICATION_RESPONSE()
+[MM]_IDENTITY_RESPONSE()
+[MM]_TMSI_REALLOCATION_COMPLETE()
+[MM]_CM_SERVICE_REQUEST()
+[CC]_ALERTING()
+[CC]_CALL_CONFIRMED()
+[CC]_CONNECT()
+[CC]_CONNECT_ack()
+[CC]_SETUP()
+[CC]_DISCONNECT()
+[CC]_RELEASE()
+[CC]_RELEASE_COMPLETE()

MM

+[RANAP]_IU_RELEASE_COMMAND()
+[RANAP]_RELOCATION_COMMAND()
+[RANAP]_RELOCATION_REQUEST()
+[RANAP]_SECURITY_MODE_COMMAND()
+[RANAP]_PAGING()
+[RANAP]_RAB_ASSINGMENT_REQUEST

(

Iu

+[MM]_LOCATION_UPDATING_ACCEPT()
+[MM]_AUTHENTICATION_REQUEST()
+[MM]_IDENTITY_REQUEST()
+[CC]_ALERTING()
+[CC]_CALL_PROCEEDING()
+[CC]_CONNECT()
+[CC]_CONNECT_ack()
+[CC]_SETUP()
+[CC]_DISCONNECT()
+[CC]_RELEASE()
+[CC]_RELEASE_COMPLETE()

MM

-imsi : String
-domain : String
-role : String
-followOn : Boolean
-registered : Boolean
-connectId : Integer

MS

RNS

MSS

<<use>>

<<use>>

0..*

1

0..*

0..*

0..*

1

<<use>>

<<use>>

<<use>>

0..*

0..*

<<use>>

Figure 1. Class diagram representing a Domain Model

-authenticationResponseParamenterSRES : byte4

AUTHENTICATION_RESPONSE

-CMServiceType : byte1/2
-cipheringKeySequenceNumber : byte1/2
-mobileStationClassmark2 : byte4
-mobileIdentity : byte2-9

CM_SERVICE_REQUEST

-cipheringKeySequenceNumber : byte1/2
-spareHalfOctet : byte1/2
-authenticationParameterRAND : byte16

AUTHENTICATION_REQUEST

+locationUpdatingType : Integer
-cipheringKeySequenceNumber : byte1/2
-locationAreaIdentification : byte5
-mobileStationClassmark1 : byte1
-mobileIdentity : byte2-9
+domain : String

LOCATION_UPDATING_REQUEST

TMSI_REALLOCATION_COMPLETE

-locationAreaIdentification : byte5

LOCATION_UPDATING_ACCEPT

-protocolDiscriminator : byte1/2
-skipIndicator : byte1/2
-messageType : byte1

MM

-mobileIndentity : byte2-10

IDENTITY_RESPONSE

-identityType : byte1/2
-spare half octet : byte1/2

IDENTITY_REQUEST

Figure 2. Message declaration in UML

ponents are connected via interfaces. Domain components
communicate with each other using messages belonging to
various protocols. The messages sent and received on each
protocol level are modeled separately using interface
classes (e.g., MM).

Since test cases will be generated for the MSS component,
which will farther on regarded as the system-under-test
(SUT), a description of the data, the messages, sent and
received by the system is needed. This data is modeled
explicitly via class diagrams referred as data models. A data
model depicts each message type as a class where relevant
fields or parameters of the messages are represented as class
attributes. The message definitions are structured based on
corresponding protocols. Figure 2 presents an example of a
UML data model from our case study.

The behavioral part is specified by UML state machine
diagrams. In previous work it has been discussed how the
UML models are created [2], validated [5] and then trans-
formed to QML [8] to be used for automated test generation
in the Qtronic tool. Here in this paper, we emphasize more
on incorporating formal verification in this modeling and
test generation process.

2.2. Modeling with QML - The Qtronic tool

Conformiq Qtronic [4] is a tool for model-driven test case
design. It generates test cases from the specification of the
SUT. The Qtronic Modeling Language (QML) is a Java-
like modeling language used by Qtronic. The behavior of
the SUT can be specified in Qtronic using state machines,
whereas the QML used as action language and for specifying
the test configuration. The SUT is specified as a class that
can have attributes and methods. In Qtronic, messages sent
or received by the SUT are defined as records, that is user-
defined types that can contain variables, methods, operators
and nested types. The messages sent and received by SUT
are described by the Inbound and Outbound ports. In
QML, a state-machine, describing the SUT behavior, runs
as a separate thread. However, multiple threads of the SUT
can be executed facilitating testing of concurrent behavior.

2.3. Modeling with UML-B

2.3.1. UML-B. UML-B [9], is a graphical formal modeling
notation that combines UML and Event-B method. UML-B
is similar to UML but has its own meta-model. UML-B pro-
vides tool support that includes a drawing tool and a transla-
tor to generate Event-B models. The tool support is provided
in the form of a plug-in for the RODIN [10] platform
which is an Eclipse-based formal development framework
for Event-B. By using UML-B one can graphically model
various aspects of a system using class diagrams and state
machines. One can also attach, graphically, formal constructs
like invariants and theorems to the two diagram types. Since
UML-B uses the precise mathematical semantics of Event-
B, everything in graphical model is automatically translated
into Event-B specifications. In the following, we give an
overview of Event-B method.

2.3.2. Overview of Event-B. The Event-B [11] is a recent
extension of the classical B-method [7] formalism. Event-B
is particularly well-suited for modeling event-based systems.
The common examples of event-based systems are reac-
tive systems, embedded systems, network protocols, web-
applications and graphical user interfaces.

In Event-B, the specifications are written in Abstract Ma-
chine Notation (AMN). An abstract machine encapsulates
state (variables) of the machine and describes operations
(events) on the state. A simple abstract machine has fol-
lowing general form

MACHINE AM
VARIABLES v
INVARIANT I
EVENTS
INITIALISATION = . . .
E1 = . . .
. . .
EN = . . .

END

51

A machine is uniquely defined by its name in the
MACHINE clause. The VARIABLE clause defines
state variables, which are then initialized in the
INITIALISATION event. The variables are strongly
typed by constraining predicates of the machine invariant
I given in the INVARIANT clause. The invariant defines
essential system properties that should be preserved during
system execution. The operations of event-based systems
are atomic and are defined in the EVENT clause. An event
is defined in one of two possible ways

E = WHEN g THEN S END

E = ANY i WHERE C(i) THEN S END

where g is a predicate over the state variables v, and
the body S is an Event-B statement specifying how the
variables v are affected by execution of the event. The second
form, with the ANY construct, represents a parameterized
event where i is the parameter and C(i) restricts i. The
occurrence of the events represents the observable behavior
of the system. The event guard (e.g., g or C(i)) defines the
condition under which event is enabled.

3. Combining UML and Event-B

The main goal of this work is to increase the quality of the
models used for test generation. UML is used for modeling
architectural and static aspects of the SUT, whereas UML-B
is used to formally verify behavioral aspects of the system.
These models are transformed into QML. Qtronic generates
test cases from these models which are then executed on
SUT. The online testing mode of Qtronic has been used
in our approach, where Qtronic generates tests and applies
them on-the-fly against the SUT. Figure 3 depicts the overall
process.

Requirements

Modeling
(UML/UML B)

Transformation

Test generation
and execution

(Qtronic)

Test
Adaptation

SUT

UML/UML B models

Verification
(UML B)

QML

Figure 3. The overall process

3.1. Modeling Behavior in UML-B

In this work, UML-B is mainly used to model state-
machines. In order to handle complexity, we use a step-wise
development approach. First, an abstract model is specified
which is further refined in the next steps to add more details.
The graphical models in UML-B are automatically translated
into Event-B textual representation. The generated Event-B
specifications are represented by modules named Machines.
The added-value of using UML-B is that it is possible to
add formal first-order logic expressions as the guards of the
transitions of state-machines and invariants of the system.
The Event-B specifications are proved by theorem provers at
each refinement step. At the moment, UML-B only supports
refinement of classes and state-machines. Our new approach
is applied and exemplified with excerpts from the same
telecommunications case study discussed in Section 2.1.

As described earlier, we develop state machines in a
stepwise manner. In the first step, an abstract state machine
is defined to model the Location Update functionality of our
SUT. The state machine (Figure 4(a)) has four main states,
namely Idle, Authentication, Ciphering and ReleaseChannel,
representing the main functionality of the system abstractly.
In a later refinement step, we add detailed information
about each functionality by introducing sub-state machines
as shown in Figure 4(b). The sub-state machine for Re-
leaseChannel state is shown in Figure 5.

3.2. Transformation to QML

Once a sufficiently refined and formally proved model is
obtained, we proceed to the next phase, transforming it into
QML. The overall transformational process, for individual
constructs, for UML, UML-B and QML is shown in the
Figure 6.

As described earlier, the behavior of the SUT is described
in the form of state machines. There are two main purposes
for modeling behavior using state machines. First, by using
UML-B state machines we formally verify behavioral prop-
erties of SUT specification. Second, Qtronic tool expects the
behavior of SUT in the form of state machines, therefore,
we transform the verified state and sub-state machines from
UML-B to Qtronic.

In QML, a transition on the state machine may consists
of the following:

[trigger][guard]/[actions]

The triggers are implemented by messages received on a
certain port. The guard is a boolean condition, often a
comparison of values or fields. The actions are the methods
of the SUT class definition which represent sending of
a message. All of these three constructs that constitute a
transition are optional in QML.

52

(a) (b)

Figure 4. (a) Abstract State Machine (b) Refined State
Machine

Figure 5. Release Channel Sub-state Machine

D o m a i n M o d e l

N e t w o r k
C o n f i g u r a t i o n

M o d e l
D a t a M o d e l

U M L

Q M L

S t a t e M a c h i n e s

Q M L F i l e s

S y s t e m - b l o c k

R e c o r d s

M e t h o d s

T e s t
C o n f i g u r a t i o n U M L - B

A b s t r a c t
S t a t e M a c h i n e s

(1) R e f i n e d
S t a t e M a c h i n e s

(N) R e f i n e d
S t a t e M a c h i n e s

r e f i n e m e n t

r e f i n e m e n t

T r a n s f o r m a t i o n s

Figure 6. Transformation from UML and UML-B to QML

In UML-B, a transition is implemented as an Event-B
event. The structure of events in Event-B has already been
described in Section 2.3.2. An event consists of two parts,
one for the guards and other for the actions. There are no
external triggers in Event-B, therefore in order to represent
an external trigger, e.g, reception of a message, a boolean
variable, as a flag, is used in conjunction with the guard
of the event. The action related to sending of a message is
also modeled by using a boolean variable, whose true value
marks sending of the message.

In order to facilitate automatic transformation from Event-
B to the corresponding constructs in QML, we annotate the
labels of Event-B statements. The labels for the conditions
corresponding to triggers are prepended with the string
“Trigger”, while the ones that correspond to the guards
are prepended with the string “Guard”. There are generally
two types of actions, which corresponds to sending of a
message and changing values of the variables respectively.
The label corresponding to the Event-B action for the first
type, i.e. sending of a message, is prepended with string
“Send”. Similarly, the actions for variable assignments have
their labels prepended by “Assign” strings. Similarly, the
“CurrentState” and “NextState” labels mark the current state
and next state respectively. Figure 7(a) shows an excerpt of
an Event-B event with labels, guards and actions.

The data types in QML and UML are different than the
ones supported by Event-B. In order to reduce complexity,
and to concentrate on verification aspects, we abstract out
data types of the variables and message parameters. For
instance, in order to model a numeric type, we use NAT (set
of natural numbers) in Event-B. Similarly, there is no String
type in Event-B. This is handled by declaring a user-defined
type and its instances (constants) as shown in Figure 7(b).
For concrete test cases to be executed on SUT, a conversion
between abstract and concrete data types is performed by
the transformation program.

Figure 8 shows the QML sub-state machine transformed
from UML-B ReleaseChannel sub-state machine presented

53

RELOCATION_COMMAND
STATUS

ordinary
ANY

self //contextual instance of class MSS
WHERE

self.type:
self MSS

CurrentState.Release_Channel_SubMachine_isin_Release:
 Release_Channel_SubMachine(self) = Release

Guard.RELOCATION_COMMAND.Guard1:
domain = domain3G

Trigger.RELOCATION_REQUEST_MESSAGE:
RANAP_Relocation_Request_Message = TRUE

……
……

THEN

Send.RELOCATION_COMMAND_MESSAGE:
RANAP_Relocation_Command_Message TRUE

NextState.Release_Channel_SubMachine_enterState_Release_Complete
_3G:

Release_Channel_SubMachine(self) Release_Complete_3G
……
……

(a)

(b)

Figure 7. (a) Excerpt of an Event-B event (b) User
defined type

Figure 8. Release Channel Sub-state Machine in QML

in Figure 5. The messages sent or received by the sys-
tem are modeled as records in QML. All the messages

sent or received by the system are defined in the system
block with their respective Inbound or Outbound ports as
shown in Listing 1. The QML implementation of sending
the “RANAP Relocation Command” message, from Fig-
ure 7(a), is depicted in Listing 2. From this implementation,
it can be observed that first an instance of message/record
type is instantiated and then sent to the outbound port.

Tool Support. The UML-B tool is used as a plug-in to the
RODIN [10] platform. In RODIN platform, the UML-B and
Event-B models are internally represented as XML metadata
interchange (XMI) format. The transformation from UML-
B to QML is mostly performed at the XMI-level with the
exception of few complex constructs which are transformed
programmatically.

Listing 1. System Block: Messages and Ports in QML

s ys te m {
/ / ∗∗∗ PORTS ∗∗∗
/ / ∗∗∗ Inbound P or t∗∗∗
Inbound i n P o r t :
MM Ident i tyResponse ,
MM TmsiReal locat ionComplete ,
MM Authent ica t ionResponse ,
. . . .
RANAP IuReleaseComplete ,
RANAP RelocationRequestAcknowledge ,
RANAP RelocationComplete ,
RANAP Relocat ionRequired ,
RANAP Relocat ionDetect ,
. . . .

/ / ∗∗∗Outbound P or t∗∗∗
Outbound o u t P o r t :
MM Ident i tyReques t ,
M M Authen t i ca t ionReques t ,
MM LocationUpdateAccept ,
. . . .
RANAP SecurityModeCommand ,
RANAP IuReleaseCommand ,
RANAP RelocationRequest ,
RANAP RelocationCommand ,
. . . .

}

Listing 2. Sending of a message in QML
\\∗∗METHODS∗∗
c l a s s Main extends S t a t e M a c h i n e
{

. . . .
vo id RANAP RelocationCommand ()
{

RANAP RelocationCommand r a n a p r e l o c a t i o n c o m m a n d ;
o u t P o r t . s end (r a n a p r e l o c a t i o n c o m m a n d) ;
re turn ;

}
. . .

}

4. Test Configuration and Execution

In order to model the test configuration, we use the UML
Object diagram (see Figure 9) instantiated from the domain
model specified earlier in Figure 1. The :MSS instance
represents the SUT while the other instances represent

54

m s # 1 : M S

 d o m a i n = " 2 G "

 f o l l o w O n = f a l s e

 i m s i = " 2 3 4 8 0 0 0 0 0 0 0 0 9 2 1 "

 r o l e = " M O C "

m s # 2 : M S

 d o m a i n = " 2 G "

 f o l l o w O n = f a l s e

 i m s i = " 2 3 4 8 0 0 0 0 0 0 0 0 9 2 2 "

 r o l e = " M T C "

m s # 3 : M S

 d o m a i n = " 3 G "

 f o l l o w O n = f a l s e

 i m s i = " 2 3 4 8 0 0 0 0 0 0 0 0 9 2 3 "

 r o l e = " "

b s s # 1 : B S S

b s s # 2 : B S S

r n s # 1 : R N S

 : MSS

Figure 9. Test setup configuration example.

the test environment. For example, the instances of :MS
represent different mobile subscribers requesting the location
update from :MSS.

The information from the object diagram is used for
generating the test configuration in QML. In the given
example, in Figure 9, the following QML code (see Listing 3
is generated. It can be observed that subscribers are modeled
as threads which are then started to test behavior of the SUT.

Listing 3. Test setup in QML
/ / ∗∗∗ MAIN ∗∗∗
vo id main (){

. . .
S u b s c r i b e r s m y S u b s c r i b e r s [] = new S u b s c r i b e r s [2] ;
. . .

m y S u b s c r i b e r s [0] . my name = ”ms1” ;
m y S u b s c r i b e r s [0] . domain = ”2G” ;
m y S u b s c r i b e r s [0] . fol lowOn = f a l s e ;
m y S u b s c r i b e r s [0] . r e g i s t e r e d = true ;
m y S u b s c r i b e r s [0] . r o l e = ”MOC” ;
m y S u b s c r i b e r s [0] . i m s i = ” 23480000000921 ” ;

m y S u b s c r i b e r s [1] . my name = ”ms2” ;
m y S u b s c r i b e r s [1] . domain = ”2G” ;
m y S u b s c r i b e r s [1] . fol lowOn = f a l s e ;
m y S u b s c r i b e r s [1] . r e g i s t e r e d = true ;
m y S u b s c r i b e r s [1] . r o l e = ”MTC” ;
m y S u b s c r i b e r s [1] . i m s i = ” 23480000000922 ” ;

m y S u b s c r i b e r s [2] . my name = ”ms3” ;
m y S u b s c r i b e r s [2] . domain = ”3G” ;
m y S u b s c r i b e r s [2] . fol lowOn = f a l s e ;
m y S u b s c r i b e r s [2] . r e g i s t e r e d = true ;
m y S u b s c r i b e r s [2] . r o l e = ” ” ;
m y S u b s c r i b e r s [2] . i m s i = ” 23480000000923 ” ;

. . .
f o r (i n t i =0 ; i <=2; i ++){

MSS mss = new MSS(m y S u b s c r i b e r s [i]) ;
Thread t = new Thread (mss) ;
t . s t a r t () ;

}
. . .

}

As the behavioral specification of the SUT is quite abstract,

the test cases generated by Qtronic will be on the same
abstraction level. It is the task of the Test Adaptation (see
Figure 3) to concretize the messages by adding additional
message parameters, their default values, and for handling
communication on lower levels of the protocol stack with
the SUT.

5. Related Work

There are several model-based testing approaches in prac-
tice these days. Some of these approaches use formal models
while other use informal models. Linking object-oriented
system development to formal specifications is not a new
idea. Object-Z [12] which is an object-oriented extension of
the formal specification language Z, has been used for test
generation (see [13], [14]), however, these approaches do
not use sophisticated graphical models and industrial scale
test generation tool.

Object Constraint Language (OCL) has been used for
generating test cases (see [15]), however, this approach lacks
formal verification of the models.

In [16], formal specifications in Java Modeling Language
(JML) are combined with test-driven development. This
approach is suitable for agile development method.

In [17], a conformance testing and automatic test case
generation scheme for UML Statecharts (UMLSCs) is pre-
sented. The authors propose a formal conformance-testing
relation for input-enabled transition systems with transitions
labeled by input/output-pairs (IOLTSs). This work, like other
state chart based approaches, does not consider other aspects
e.g., architectural, data etc., of the SUT.

6. Conclusions

We presented an approach on combining UML modeling
with formal verification in order to improve the quality
of the models used for automated test derivation. While
incorporating formal verification in the over-all process gave
number of advantages. Firstly, the quality of the models was
improved allowing us to detect inconsistence in the models
that where not detected by our custom OCL validation
rules. Secondly, while modeling with UML-B, we observed
several ambiguities, or not well-explained details, in the
specifications that might have been difficult to observe by
using UML only. In a way, by using formal specifications,
we better understood the functionality of the SUT. However,
it also increased the complexity of the model as we had to
add more details just to prove the system correct.

We also found that by using formal specifications we
could make the testing process a bit more efficient. For
example, one can derive data dependencies between message
parameters from the invariants and pre-conditions in Event-
B. Invariants and pre-conditions also specify the possible
restrictions on the input variables (message parameters) that

55

may help the test generator to reduce the input space (all
possible values) for these variables.

Adjusting formal verification in our case was made easy
due to availability of the UML-B tool. UML-B provides
automatic translation of various object-oriented constructs.
Most of the Event-B specifications were automatically gen-
erated and proved. Doing all this by hand would have been a
difficult task for an engineer not very familiar with proving
formal specifications.

At the moment, traceability of requirements from test
cases into formal models is not performed. However, this
can be done by attaching textual requirements, taken from
requirement model, to the generated Event-B specifications.
This would certainly help to find which part of the system
has passed or failed the test and constitute a topic for our
future work. Another topic for future work is on improving
our UML-B to QML transformation. As the UML-B is de-
fined based on a metamodel, we plan to create a metamodel
that specifies the concepts used in QML and reimplement
the transformation at metamodel level by using model-driven
transformational techniques.

7. Acknowledgement

Financial support from Tekes under the ITEA2 D-MINT
project is greatly acknowledged.

References

[1] M. Utting and B. Legeard, Practical Model-Based Testing.
Morgan Kaufmann Publishers, 2006.

[2] F. Abbors, T. Pääjärvi, R. Teittinen, D. Truşcan, and J. Lilius,
“Transformational Support for Model-Based Testing – from
UML to QML,” in Proceedings of Model Based Testing in
Practice (MoTiP’09) workshop, 2009.

[3] J.Rumbaugh, I.Jakobson, and G.Booch, “The Unified Mod-
elling Language Reference Manual.” Addison-Wesley, 1998.

[4] Conformiq, “Qtronic,” http://www.conformiq.com/.

[5] J. Abbors, “Increasing the Quality of UML Models Used for
Automatic Test Generation,” Master’s thesis, Åbo Akademi
University, 2009.

[6] “Object Constraint Language,”
http://www.omg.org/technology/documents/formal/ocl.htm.

[7] J.-R. Abrial, The B-Book. Cambridge University Press, 1996.

[8] “MATERA Approach,”
https://research.it.abo.fi/research/embedded-systems-
laboratory/projects/d-mint/matera.

[9] C. Snook and M. Butler, “UML-B: Formal modeling and
design aided by UML,” ACM Trans. Softw. Eng. Methodol.,
vol. 15, no. 1, pp. 92–122, 2006.

[10] “Rigorous Open Development Environment for Complex Sys-
tems,” iST FP6 STREP project, online at http://www.event-
b.org/platform.html.

[11] J.-R. Abrial, “A System Development Process with Event-B
and the Rodin Platform,” in ICFEM, 2007, pp. 1–3.

[12] R. Duke and G. Rose, Formal Object Oriented Specification
Using Object-Z. Palgrave macmillan, 2000.

[13] D. Carrington, I. Maccoll, J. Mcdonald, L. Murray, and
P. Strooper, “From object-z specifications to classbench test
suites,” Journal on Software Testing, Verification and Relia-
bility, vol. 10, 1998.

[14] J. Mcdonald, L. Murray, and P. Strooper, “Translating object-z
specifications to object-oriented test oracles,” in In Proc. Asia-
Pacific Software Engineering Conference and Int. Computer
Science Conference. IEEE Computer Society, 1998, pp. 414–
423.

[15] A. D. Brucker and B. Wolff, “Testing distributed component
based systems using uml/ocl,” in GI Jahrestagung (1), 2001,
pp. 608–614.

[16] H. Baumeister, “Combining formal specifications with test
driven development,” in XP/Agile Universe, 2004, pp. 1–12.

[17] S. Gnesi, D. Latella, and M. Massink, “Formal test-case
generation for uml statecharts,” Engineering of Complex
Computer Systems, IEEE International Conference on, vol. 0,
pp. 75–84, 2004.

56

Paper V

Model-Based Testing using System vs. Test Models
-What is the difference?

Qaisar A. Malik, Antti Jääskeläinen, Heikki Virtanen, Mika
Katara, Fredrik Abbors, Dragoş Truşcan and Johan Lilius

Originally published in In Proceedings of 17th IEEE Intl. Conference
on Engineering of Computer-Based Systems (ECBS 2010), IEEE Com-
puter Society, pp. 291-299, March 2010, Oxford UK.

c©2010 IEEE. Reprinted with permission.

Model-Based Testing using System vs. Test Models –
What is the Difference?

Qaisar A. Malik∗‡, Antti Jääskeläinen§, Heikki Virtanen§, Mika Katara§,
Fredrik Abbors∗, Dragoş Truşcan∗ and Johan Lilius∗‡

∗Department of Information Technologies, Åbo Akademi University, Turku, Finland.
Email: {Qaisar.Malik, Fredrik.Abbors, Dragos.Truscan, Johan.Lilius}@abo.fi

‡Turku Centre for Computer Science, Turku, Finland.
§Department of Software Systems, Tampere University of Technology, Tampere, Finland.

Email: {antti.m.jaaskelainen, heikki.virtanen, mika.katara}@tut.fi

Abstract

We discuss the differences between using system models
and test models with respect to the model-based testing
process. Although these two terms are usually used in-
terchangeably, very little is known about the distinction
between the two. System models describe internal behavior
of the system under test while the test models contain the
behavior from user’s or environment’s point of view. We
describe how these two types of models are obtained and
used throughout the model-based testing process and how
they are related to each other. The discussion is based on our
earlier experiences as well as on two case study examples
from the telecommunication domain.

1. Introduction

The main purpose of software testing is to find defects
and increase the confidence in the system under test (SUT).
Functional testing, the focus of this paper, is typically
done by checking the input/output behavior of the system.
Traditionally, elementary tests are described by test cases,
which state what particular part of the SUT is exercised, the
input used in the test, the expected output, the identification
and the description of the test case etc. Usually such test
cases are grouped into test suites.

One straightforward way to automate testing is to develop
test scripts, which execute test cases one by one. Test cases
are specified using a dedicated test specification language
like TTCN-3 [1] or they can be coded using a testing
framework such as JUnit [2], for instance. Automation of test
case execution does not, however, alleviate the fundamental
difficulties that exist with test case based testing. First, linear
and static test cases are not capable of finding new bugs
efficiently since they do not allow variance in the tested
behavior. Second, design and maintenance of test suites can
be very resource consuming. These problems can be resolved
to a large degree if tests are derived automatically from high-
level models describing the SUT behavior.

Due to model-driven software development becoming
more popular, there are models defining requirements and
expected system behavior. From these models, test cases can
be derived directly or via some model transformations. These
test cases are linear in nature and are generally represented
as scripts which are used in off-line model-based testing.

However, linear test cases [3, page 187], consisting of
a linear sequence of events, are not suited well for testing
a system that is supposed to operate in a concurrent and
reactive environment. Too often a test run results in an
inconclusive verdict, because the SUT responds in a valid but
unexpected way to a given stimulus. A linear test case does
not describe multiple expected output states. To overcome
this difficulty, online model-based testing can be used. In
online model-based testing, the test generator has an online
connection to the SUT through an adapter component and
the SUT responses affect the test generation.

The inputs for the test generation are models and coverage
criteria, and the outputs are the sequence of test operations,
the test verdict and diagnostic information (e.g. a test log)
that can be used for reporting and debugging purposes,
among other types of analysis. The test operations can
mimic the elements the traditional test cases consist of. For
instance, we can call function X with parameters P, press
button B, or enter text I into field F. Moreover, the SUT
response can contain information on what was the return
value of the last function call R, does the last function
call throw exception E, or is there text T on the display,
for example. From the model and test generation heuristics
points of view, the test operations are atomic, but the adapter
may break them into more detailed events before sending
them to the SUT.

Any model type used in model-based testing has to define
the expected behavior of the SUT by the means of the
interfaces of the SUT. The viewpoint of modeling can be
either internal or external with regards to these interfaces.
Internal viewpoint means that the corresponding model is in
a passive role; it describes how the SUT should respond to
given stimulus on the interface. These kinds of models are

2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4005-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ECBS.2010.41

291

called system models (SM). On the other hand, test models
(TM) define the behavior of the SUT from an external point
of view and explicitly state what events the SUT should
accept at a certain moment.

In this paper, we try to find out how the difference in
the viewpoints affects the modeling process and the actual
testing. Basic questions are what kind of information the
modeling can be based on, what kind of development models
can be used to replace dedicated TMs, what can be tested,
and what kind of benefits each approach provides. Toward
these ends, we describe two case study examples. In the
first one, model-based testing is applied to test functional
features of a Mobile Switching Server. The second case
study example is about model-based testing of a smartphone
application. The organization of this paper is as follows.
First, some background theory and concepts about model-
based testing, system modeling and test modeling are briefly
introduced in Section 2. In Section 3, we present the two
case studies. In Section 4, we do comparative analysis of
the modeling approaches used in the case studies presented
in this paper. Finally, Section 5 draws some conclusions.

2. System vs. Test Models

There are several modeling languages used for test model-
ing, some based on the Unified Modeling Language (UML)
[4], e.g., UML2 Testing Profile (U2TP) [5], essential Test
Modeling Language (eTML) [6] and some on non-UML
based specification languages like CSP [7] or Labelled
Transition Systems (LTS) [8]. For a comprehensive list,
please refer to [9, page 62]. The choice of representation and
notation depends on the intended use and expertise of the
modeler. Other than choice of representation and notation,
it is also very important to decide what to model in order
to obtain the maximum benefit from test generation.

The primary use of models in model-based testing is to
automatically create abstract specifications of the tests. As
already mentioned, the viewpoint of modeling can be either
internal or external with regards to the interfaces of the SUT.
In the former case the corresponding model is an SM. It is in
a passive role and describes how the SUT should respond to
given stimulus on the interface. An SM describes the partial
or complete behavior of the SUT. On the other hand, TMs
define the behavior of the SUT from an external point of
view and explicitly state what events the SUT should accept
at a certain moment. That is, in the terms of reactive systems,
TMs provide stimuli and observe the SUT reactions, while
the SMs expect the stimuli and provide reactions.

Development models are those system specifications used
for specifying the system at initial stages of the development
process and can be used for code generation. Such models
are also referred to as SMs. It is important to mention
that the SM used for testing is similar, even some times
identical, with the one used for the initial phases of the

Figure 1. Testing Process: Case Study Example 1.

software development process, thus more abstract than the
design models used for implementing the SUT. On the other
hand, TMs are created by test engineering or test modeling
experts based on any existing models and documentation, or
the actual SUT behavior using reverse engineering.

3. Case studies

In this section we present two model-based testing case
study examples which use SMs and TMs, respectively.

3.1. Case Study 1: Testing Functional Features of
a Mobile Switching Server

In the following, we will discuss an approach for using
SMs for testing the system. The approach has been devel-
oped for and used in the telecommunication domain.

3.1.1. General Description. The system under test is a
Mobile Switching Server (MSS). An MSS is a network
entity located in a mobile telecommunication network. The
MSS communicates with its surrounding elements through
several different interfaces. The three main features of the
MSS to be tested are location updating procedure, voice
call procedure and handover. The location update procedure
enables a mobile subscriber (MS) to inform its position in
the network to the MSS. The voice call procedure enables
the MSS to connect calls between MS’s and the handover
procedure enables the MSS to track the movement of MS’s
during an ongoing call. In the following, the examples and
excerpts from case study 1 are presented for the location
update procedure only.

3.1.2. Testing Process. The testing process for this case
study example can be divided into the following phases as
also shown in Figure 1.

292

Requirements. As an initial step of the approach, we
create a specification starting from informal requirements
(including protocol specifications, standards, user scenarios,
etc.). As the SM of the SUT is derived from the infor-
mal requirements, it is important to track how different
requirements reflect in the models, on different perspectives
and on different abstraction levels. It is also important
to propagate requirements through the test generation and
execution processes, so that one can verify which parts of
the models and consequently, which requirements have been
tested and validated.

In our approach, requirements are first structured hier-
archically (see Figure 2) using SysML requirement dia-
grams [10], and then they are traced to different models
or parts of the models implementing them.

Location Update RequirementsRequirements model[Package] req []

Id = "3.1"
Text = "The MSS must be able
to perform a location update"

Source = 3GPP TS 23.002 / 4.1.1.2

<<requirement>>

3.1

Id = "3.2"
Text = "The MSS must always
respond to the MS on a location
update"

Source

<<requirement>>

3.2

Id = "3.1.1"
Text = "Location Update
must be supported in GREAN
(2G) networks"

Source = 3GPP TS 24.008 / 4.1

<<requirement>>

3.1.1

Id = "3.1.2"
Text = "Location update
must be suppoted in UTRAN
(3G) networks"

Source = 3GPP TS 24.008 / 4.1

<<requirement>>

3.1.2

Id = "3.2.1"
Text = "MSS responds
with a accept message"

Source

<<requirement>>

3.2.1

Id = "3.2.2"
Text = " MSS responds
with a reject message"

Source

<<requirement>>

3.2.2

Id = "3"
Text = "Location
Update"

Source 3GPP TS 23.012

<<requirement>>

3

Id = "6"
Text = "Authentication"

<<requirement>>

6 Id = "7"

Text = "Ciphering"

<<requirement>>

7

<<deriveReqt>> <<deriveReqt>>

<<trace>>
<<trace>>

<<deriveReqt>> <<deriveReqt>>

<<deriveReqt>><<deriveReqt>>

Figure 2. Requirements model example.

System modeling. For modeling, we employ a systematic
approach in which the SM (in fact, a collection of mod-
els) is created in order to capture different views of the
SUT. UML is used to represent different perspectives of
the system like architecture, data, behavior, such that the
information contained in these models can be used not only
for development, but also for automated test generation using
specialized test generation tools. A set of validation rules and
guidelines are defined [11] for increasing the quality of the
resulting models. These rules also ensure that the models are
consistent with each other and moreover, that they contain
the information needed in the later phases of the testing
process. Tool support is provided for automatically verifying
these rules.

Several types of models are used in our test process. A
domain model (Figure 3) shows what domain components
exist and how they are interfaced at different protocol levels.
Each interface specifies a set for messages that can be
received or sent over it. The structure of these messages
and their fields are described in a Data model (Figure 4-(a)).
A Behavioral models (Figure 4-(b)) describes the intended
behavior of the SUT using state machines in which the
messages received or sent conform to the messages specified

Architectural model Architecturepackage []

+[RRC]_CONNECTION_REQUEST()
+[RRC]_CONNECTION_SETUP_COMPLETE()
+[RRC]_CONNECTION_RELEASE_COMPLETE()
+[RRC]_SECURITY_MODE_COMPLETE()

Uu

+[RANAP]_IU_RELEASE_COMPLETE()
+[RANAP]_RELOCATION_REQUIRED()
+[RANAP]_SECURITY_MODE_COMPLETE()
+[RANAP]_RELOCATION_DETECT()
+[RANAP]_RELOCATION_COMPLETE()
+[RANAP]_RAB_ASSIGNMENT_COMPLETE()
+[RANAP]_PAGING_RESPONSE()
+[RANAP]_RELOCATION_REQUEST_ack()

Iu

+[MAP]_UPDATE_LOCATION()
+[MAP]_INSERT_SUBSCRIBER_DATA_ack()

MAP

+[MM]_LOCATION_UPDATING_REQUEST()
+[MM]_AUTHENTICATION_RESPONSE()
+[MM]_IDENTITY_RESPONSE()
+[MM]_TMSI_REALLOCATION_COMPLETE()
+[MM]_CM_SERVICE_REQUEST()
+[CC]_ALERTING()
+[CC]_CALL_CONFIRMED()
+[CC]_CONNECT()
+[CC]_CONNECT_ack()
+[CC]_SETUP()
+[CC]_DISCONNECT()
+[CC]_RELEASE()
+[CC]_RELEASE_COMPLETE()

MM

+[RANAP]_IU_RELEASE_COMMAND()
+[RANAP]_RELOCATION_COMMAND()
+[RANAP]_RELOCATION_REQUEST()
+[RANAP]_SECURITY_MODE_COMMAND()
+[RANAP]_PAGING()
+[RANAP]_RAB_ASSINGMENT_REQUEST()

Iu

+[BSSMAP]_ASSIGNMENT_COMPLETE()
+[BSSMAP]_CLEAR_COMPLETE()
+[BSSMAP]_HANDOVER_REQUIRED()
+[BSSMAP]_HANDOVER_REQUEST()
+[BSSMAP]_HANDOVER_COMPLETE()
+[BSSMAP]_CIPHER_MODE_COMPLETE()
+[BSSMAP]_PAGING_RESPONSE()
+[BSSMAP]_HANDOVER_DETECT()
+[BSSMAP]_HANDOVER_REQUEST_ack()

A

+[BSSMAP]_ASSIGNMENT_REQUEST()
+[BSSMAP]_CLEAR_COMMAND()
+[BSSMAP]_HANDOVER_REQUEST()
+[BSSMAP]_HANDOVER_COMMAND()
+[BSSMAP]_PAGING()
+[BSSMAP]_CIPHER_MODE_COMMAND()

A

+[MM]_LOCATION_UPDATING_ACCEPT()
+[MM]_AUTHENTICATION_REQUEST()
+[MM]_IDENTITY_REQUEST()
+[CC]_ALERTING()
+[CC]_CALL_PROCEEDING()
+[CC]_CONNECT()
+[CC]_CONNECT_ack()
+[CC]_SETUP()
+[CC]_DISCONNECT()
+[CC]_RELEASE()
+[CC]_RELEASE_COMPLETE()

MM

+[RRC]_CONNECTION_SETUP()
+[RRC]_CONNECTION_RELEASE()
+[RRC]_SECURITY_MODE_COMMAND()

Uu

+[RR]_CIPHERING_MODE_COMPLETE()
+[RR]_DISCONNECT()
+[RR]_CONNECTION_REQUEST()
+[RR]_CHANNEL_MODE_MODIFY_ack()
+[RR]_PAGING_RESPONSE()

Um

+[MAP]_UPDATE_LOCATION_ack()
+[MAP]_INSERT_SUBSCRIBER_DATA()

MAP

+[RR]_CIPHERING_MODE_COMMAND()
+[RR]_CHANNEL_RELEASE()
+[RR]_UA()
+[RR]_IMMEDIATE_ASSIGNMENT()
+[RR]_CHANNEL_MODE_MODIFY()

Um

-imsi : String
-domain : String
-role : String
-followOn : Boolean
-registered : Boolean
-connectId : Integer

MS

BSS

HLR

RNS

MSS

Megaco

MGW

Megaco

<<use>>

<<use>>

<<use>>

1

1

0..*

1

<<use>>

0..*

0..*

1

1

0..*

1

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

0..*

0..*

<<use>>

<<use>>

<<use>>

<<use>>

Figure 3. Domain model excerpt.
MM messagespackage MM[]

-authenticationResponseParamenterSRES : byte4

AUTHENTICATION_RESPONSE

-CMServiceType : byte1/2
-cipheringKeySequenceNumber : byte1/2
-mobileStationClassmark2 : byte4
-mobileIdentity : byte2-9

CM_SERVICE_REQUEST

-cipheringKeySequenceNumber : byte1/2
-spareHalfOctet : byte1/2
-authenticationParameterRAND : byte16

AUTHENTICATION_REQUEST

+locationUpdatingType : Integer
-cipheringKeySequenceNumber : byte1/2
-locationAreaIdentification : byte5
-mobileStationClassmark1 : byte1
-mobileIdentity : byte2-9
+domain : String

LOCATION_UPDATING_REQUEST

TMSI_REALLOCATION_COMPLETE

-locationAreaIdentification : byte5

LOCATION_UPDATING_ACCEPT

-protocolDiscriminator : byte1/2
-skipIndicator : byte1/2
-messageType : byte1

MM

-mobileIndentity : byte2-10

IDENTITY_RESPONSE

-identityType : byte1/2
-spare half octet : byte1/2

IDENTITY_REQUEST

(a)
state machine LocationUpdate LocationUpdate[]

 : ReleaseChannel

 : Authentication

 : Ciphering

idle

 / [MM]_LOCATION_UPDATING_ACCEPT()

[MM]_LOCATION_UPDATING_REQUEST() [msg.domain == domain]

(b)

Figure 4. Data model example and Behavioral model
example.

in the previous models. Test configuration models (Figure 5)
are used to represent specific test setup configurations using
object diagrams.
Test Design. The SM is used as an input for the test design
phase from where test cases are obtained for either online

293

m s # 1 : M S

 d o m a i n = " 2 G "

 f o l l o w O n = f a l s e

 i m s i = " 2 3 4 8 0 0 0 0 0 0 0 0 9 2 1 "

 r o l e = " M O C "

m s # 2 : M S

 d o m a i n = " 2 G "

 f o l l o w O n = f a l s e

 i m s i = " 2 3 4 8 0 0 0 0 0 0 0 0 9 2 2 "

 r o l e = " M T C "

m s # 3 : M S

 d o m a i n = " 3 G "

 f o l l o w O n = f a l s e

 i m s i = " 2 3 4 8 0 0 0 0 0 0 0 0 9 2 3 "

 r o l e = " "

b s s # 1 : B S S

b s s # 2 : B S S

r n s # 1 : R N S

 : MSS

Figure 5. Test setup configuration example.

or offline testing. In this paper, we will focus on online
testing only. The Conformiq Qtronic testing tool [12] is
employed as the test case design tool. Qtronic accepts as
input a SM of the SUT from which it automatically designs
test cases according to the selected coverage criteria. The
input model can be expressed as a combination of UML state
machines and Java-like action language, which in our case
study example, is automatically generated from the UML
SMs via a model transformation [13]. For test generation,
different coverage criteria types can be manually selected
from the GUI of the tool like requirements, state, transitions,
paths, conditional, or statement coverage. The generated test
cases are sequences of input/output messages and their data
values derived from the SMs to be sent/received by the SUT.
Adaptation. As the designed test cases are at the same
abstraction level as the SM, an adapter is used to concretize
the tests. Qtronic communicates with the adapter via mes-
sages carrying a generic data type, datum, which can be
used to represent any concrete data type (string, integer, or
composite data types). The adapter transforms the datum into
concrete data types and then sends them to the SUT via the
specific interface (e.g., ports, sockets). It is also the adapter
that is in charge of receiving output messages from the
SUT, abstracting and forwarding them to Qtronic. Qtronic
will compare the received messages with the expected ones
and provide a verdict for each test in part. A test report
is provided with statistics about the test run regarding the
number of generated test cases, pass/failed verdicts, coverage
reports.
Analysis. As the Qtronic model of the SUT is automatically
generated from the UML models, requirements will be prop-
agated as well. Thus, when tests are generated and executed
by Qtronic, the tool will keep track of which requirements
have been covered, in which test cases, and what was the
verdict of the test cases covering each requirement. At the
end of the test run, we collect information from the test log
about what requirements have been covered and validated
by the generated set of test cases. Using requirements

traceability one can also trace back the test cases to the SMs
from which they where generated [14]. Such an approach
proved beneficial in identifying the source of failed test cases
and in debugging the models.

One well-known issue in the current testing practice is
the fact that detecting the source of an error is a non-
trivial problem. Typically the source of the error can be
either in the SUT, in the SM, or in the adapter. In our
case study example, several errors have been discovered and
they originated from all three sources. For instance, some
errors originated from inconsistencies discovered in the SM,
which were due to misunderstanding of requirements or to
incomplete validation of models before testing. Other errors
have been found in the adapter, as well as in the SUT.

3.2. Case Study 2: GUI Testing of a Mobile Appli-
cation

TEMA toolset [15] is targeted for GUI testing of mobile
applications and has been successfully applied in finding de-
fects from applications already on the market [16]. Modern
smartphones include several applications, such as calendar,
camera, and media player that resemble their desktop coun-
terparts closely in the terms of functionality. However, due
to the limitations of mobile devices in display and keyboard
size, the GUIs are usually somewhat simpler.

General approach. In TEMA toolset, there are three logical
parts in the test setup. The TM contains the behavior of the
SUT modeled from a user perspective, the test generation
heuristic selects the real actions and checks that the SUT
is probed with, and the adaptation that executes actions and
checks at the SUT. The test generation heuristics can be seen
as a black box where the TM goes in and a sequence of test
operations comes out. The operations are handed over to the
adapter, which takes care of their execution. The results of
execution are returned to the generation heuristics, which
can use them to further guide the generation.

The TM is not created directly. What is created is a model
package, which contains a number of model components. At
the beginning of a test run the components are composed
into the TM based on the test configuration, for example,
how many devices are to be included in the test run and what
functionality is to be tested in each. The model components
fall into four logical categories: action machines, refinement
machines, localization tables and data tables.

Action machines are the most important of the model
components. They are behavioral models which define what
is tested by describing the functionality of the SUT with
user operations. A user operation is a function of the SUT
offered to the user, such as sending a text message or playing
a sound clip. They can be thought of as small-scale use
cases. User operations are generic in nature and not tied to
the details of the UI. This allows the action machines to

294

be reused for different SUTs, such as Symbian and Linux
phones.

A single action machine can be seen as a process in
a single processor multitasking system. A single action
machine is active at a time; the others are inactive, but retain
their states and can resume execution when swapped into
activity. This corresponds to the behavior of applications in
smartphones: one application is in active use while others
remain in the background. In practice it is often necessary
to use several action machines to model a single application
in order to limit the size of the individual models. In such
a case the models are synchronized tightly to prevent them
from acting independently.

Refinement machines contain the UI implementation for
the user operations in action machines. The implementation
is a generally linear sequence of test operations. The result is
similar to macro expansion: in model composition the user
operations are divided into starting and ending phases, and
the test operations inserted in between. Localization tables
are used to perform a similar task for individual actions
by replacing symbolic names with UI text strings. User
operations and test operations correspond to action words
and keywords described in [17], [18].

Data tables contain the data used in test generation.
Unlike localization tables, this data can be structured, such
as the contents of a multimedia message or full contact infor-
mation. Data tables are accessed in data statements, which
are Python code embedded into user and test operations.
Data statements can also be use other Python functionality,
such as the date and time libraries.

When the TM is assembled, action machines and re-
finement machines are combined in a variant of process
algebraic parallel composition. The composition may be
performed either all at once at the beginning of the test
run, or on the fly during it. The composed model, as well
as both action and refinement machines, use the LSTS
(Labeled State Transition System) state machine semantics.
The formalism is described in more detail in [19]. The
effects of localization and data tables are factored into the
executed operations later on, as they are selected by the test
generation heuristics.

The events of a test run are recorded in a log, which can
be used to repeat the test run or debug it. Since the log
contains the executed action words, it can also be used to
map the test run back to requirements.

Test modeling process. Concerning the relation of TEMA
models to other artifacts, they model the end user behavior,
i.e., what can be done through the GUI. Thus, they corre-
spond to high level GUI specification on the behavioral part.
However, they do not contain any information other than
what is needed for testing through a GUI; implementations
details, GUI widgets etc. are not referred to.

Figure 6 illustrates the TEMA test modeling process. The

SUT UI Design

Functional
Behavior

UI
Behavior

Model
Architecture

Action
Machines

Refinement
Machines

Requirements

determine observe observe determineextrapolate

plan

model

design model

refine actions

static analysis

Test
Model

compose compose

testing

Mental Model

Model Components

Test Model

Source Material

Figure 6. The TEMA test modeling process.

source material for the models may be a list of requirements,
a UI design document or model, a working SUT, or some
combination. From these, the modeler creates a mental
model of the functionality to be modeled, and develops a
plan for the model architecture, that is, what models will
be created and how they interact. Based on the architecture,
the functionality to be modeled is incorporated into action
machines. Working with the action machines and their
interactions may help the modeler to further develop his
mental model of functionality, and might even uncover bugs
and other issues. If information on the UI behavior is avail-
able, the modeler can then create refinement machines to
implement the functionality of the action machines. Finally,
the action machines and refinement machines (if available)
will be combined into a single TM, which can be used for
testing. A usable TM can be created without refinement
machines, but tests generated from such a model would be
abstract and not automatically executable.

Most of the TEMA model library has been created using
reverse engineering, i.e. using the applications running on
the actual device. However, we have also made one exper-
iment where a certain application was first modeled using
reverse engineering and then remodeled using a detailed GUI
specification after a major revision to the user interface. The
results indicated that there is no difference in the modeling
effort. Obviously, the latter is more desirable way to create
models, provided that detailed enough GUI specifications are

295

available while the functionality is still being implemented.

Case study example. As a case study example, we will
study the models of the Messaging application. The appli-
cation is a good representative, since it contains many dif-
ferent kinds of functionalities. Furthermore, it deals with the
connections between multiple phones, and can thus be used
to illustrate our methods for testing a number of systems
in conjunction. Messaging is large enough that representing
it with a single model would be highly impractical. We
will thus have several model components which together
represent the whole application.

The core of the Messaging models are four action ma-
chines corresponding to the most significant views of the
application: Main, Inbox, SMS (short messages) and MMS
(multi-media messages). These models are mostly concerned
with control-related aspects of Messaging, such as moving
between the views. The SMS and MMS models handle the
creation of messages, although not sending them. Another
model similar to these four is Startup, which is responsible
for launching and exiting the application.

The Inbox model performs tasks related to the messages
within the inbox, such as opening or deleting them. Since
these tasks depend on the existence of messages, we will add
two models to keep track of them: Messages and Messages
Interface. The Messages model is essentially a variable for
keeping count of the messages. Since a state machine cannot
hold an infinite count, the number is abstracted into three
choices: messages exist, no messages exist, and unknown.
Messages Interface, as the name implies, acts as an interface
for Messages, simplifying its use.

The sending and reception of messages are tasks complex
enough to warrant their own models: Sender (Figure 7) and
Receiver. The main complication is that the test configu-
ration may include multiple phones, which means multiple
potential Receivers. The primary task of the Sender model
is therefore to activate the correct Receiver model to accept
the message.

For all these action machines we need corresponding
refinement machines (Figure 8) to implement their actions.
Refinement machines are generally relatively simple to de-
sign, since the only thing necessary is to define the keyword
sequences for the action words. For greater flexibility, the
refinement machines do not include GUI text strings, but
only abstract names referring to them. The actual text is
defined in localization tables (Figure 9).

The SMS and MMS models obtain the contents of the
messages they create from data tables. For example, the
Multimedia Messages data table (Figure 10) contains items
that define the subject and text of a message, as well as the
types and names of attachments.

With these model components we can perform the model
composition to obtain the executable TM. During the com-
position we define the actual devices for which the model

ta@PARENT: Reset
SleepState

SleepState

SleepState

Sender

WAKEapp<@PARENT: CallSendMessage>

awSwitchTarget

SLEEPtgt<Begin Synchronization>

WAKEtgt<End Synchronization: Failure>

WAKEtgt<End Synchronization: Success>

REQtgt<ReceivesMessagesSynchronized>

awSendMessage

SLEEPapp<@PARENT: ReturnSendMessage: Success>

SLEEPtgt<SendMessage>

WAKEts

REQALLtgt<Unprime Targets>

SLEEPapp<@PARENT: ReturnSendMessage: Failure>

Figure 7. Example of an action machine: the Sender
model.

Sender-rm start_awSendMessage
kw_PressHardKey <SoftLeft>

end_awSendMessage
start_awSwitchTarget kw_SelectMenu '§MESSAGING_MESSAGE_MENU_SEND§'

kw_SetTarget $(OUT = syncTarget)$

end_awSwitchTarget

Figure 8. Example of a refinement machine: the
Sender-rm model.

Messaging en
MESSAGING_MESSAGE_MENU_SEND Send
MESSAGING_MMS Multimedia
MESSAGING_MMS_MENU_IMAGE Image
MESSAGING_MMS_MENU_INSERTEXISTING Insert object
MESSAGING_MMS_MENU_SOUNDCLIP Sound clip
MESSAGING_MMS_MENU_VIDEOCLIP Video clip

Figure 9. Part of the Messaging localization table.

multimediamessages(subject,text,objects):
[('Multimedia Message', 'Multimedia message with an image.',
[('IMAGE','multimedia')]),
('Multimedia Message', 'Multimedia message with a sound clip.',
[('SOUNDCLIP','multimedia')]),
('Multimedia Message', 'Multimedia message with a video clip.',
[('VIDEOCLIP','multimedia')]),
('Multimedia Message', 'Multimedia message with everything.',
[('IMAGE','multimedia'),('SOUNDCLIP','multimedia'),
('VIDEOCLIP','multimedia')])]

Figure 10. Example of a data table: MMS messages.

is intended, for example certain two phones which we want

296

to test sending messages to each other. Copies of all the
necessary components are made for each included device.

The composition process also automatically creates some
new model components which are composed along with the
manually created ones. The most important of these is the
Task Switcher, which manages the active model within a
single device. A similar model is the Target Switcher, which
manages the active device. The last one is the Synchronizer,
which is used by models such as Sender to perform the
synchronization between models based on data.

Figure 11 shows a highly abstracted view of the composed

Receiver

Sender SynchronizerCreate SMS

Inbox

MainTask Switcher Startup

Create MMS

Target Switcher

Messages Interface

Messages
activate phone 1

activate Messaging

start Messaging

close Messaging

create SMS

create MMS

prime phone 1

send message

receive message

to/from inbox

view/close message

Figure 11. An abstracted view of the composed Mes-
saging model for a single phone SUT.

Messaging model for a single phone, including the au-
tomatically generated model components. The connections
between the model components correspond to the executable
model, but the control flows within individual components
have been shortened and simplified. The internal structure of
Messages and Messages Interface is not shown at all. A TM
for multiple applications or phones would be considerably
more complicated.

4. Analysis

In this section, we analyze the practical differences of
using SMs or TMs for model-based testing. Figure 12
summarizes the model-based testing process used in both
case studies. As it can be observed, the case study example 1,
shown on left hand side, uses SMs and test setup information
to generate TMs. In the second case study example, shown
on the right hand side of Figure 12, TMs are created by
parallel composition of models.

Viewpoint of Modeling. As discussed in the beginning of
this paper, one difference between SM and TM is in the
way the expected behavior of the SUT is specified with
respect to its interfaces; SM provides an internal viewpoint,
whereas the TM provides an external viewpoint of the SUT.
In fact, either of the two model types can be seen as a
mirrored version of the other (TM inputs are similar to the
SM outputs.)

Figure 12. System Models and Test Models.

Purpose of Modeling. Concerning the purpose of modeling,
the main and most obvious difference between SMs and
TMs is the reason for which they are developed in the first
place. If the TMs are developed solely for testing, SMs can
be primarily developed for system development (however,
SMs are simpler and more abstract than implementation
models) and then used for testing as well. Thus, the SMs can
be (partly) reused between different phases of the software
life cycle, namely between development/implementation and
testing, whereas TMs are only used for the latter. Both types
of models typically omit some details and are in this sense
incomplete descriptions of the SUT.

Requirements. It is usually considered that tests provide a
”second opinion” on the requirements: if both the imple-
mentation and the tests have been derived from the same
source, i.e. the informal requirements, by developers and
testers, respectively, tests not only test the implementation
but can effectively reveal problems also in the requirements
and in the way they have been interpreted by the developers.
On the other hand, SMs are typically derived only once
and then used for both implementation and testing purposes.
Moreover, if the same models are used for automatic code
and test generation, the tests can only reveal problems in
the design and code generation phases of the development
process and in the code generator.

Model Construction and Maintenance. Both types of mod-
els can either be obtained in a top-down approach, following
the traditional software development process, or bottom-up

297

following a reverse engineering approach as depicted in the
left side and the right side of Figure 12, respectively. While
this is an orthogonal issue to whether use TMs or SMs, it has
some practical implications. Reverse engineering obviously
requires that the SUT is already mature enough. While
this may seem as a significant limitation of the bottom-
up approach from the practical perspective, model-based
testing, as any test automation at the system level, requires
the SUT to be in any case mature enough for automatic
test execution, limiting its use in the early phases of the
development. However, modeling can typically reveal even
more defects than test execution, and it does not require the
SUT in the top-down approach. While this approach benefits
from being able to produce models before the SUT is even
partially implemented, the models may need considerable
maintenance when changes occur in the requirements during
the implementation phase. However, maintenance is also
needed in the case of reverse-engineering, when the version
of the SUT changes, for instance.

Modeling Effort. Based on our experience, there are no
significant differences in the effort needed to create the
models, either SM or TM. In both cases, it is worthwhile to
do static checks on the models to find inconsistencies; in SM
case, this can reveal problems also in the actual requirements
already before the implementation is started. However, in
SM approach, any specification errors in models that are
propagated to SUT are difficult to identify. On the other
hand, in the reverse-engineering based approaches, both for
SM and TM, it is easy to miss requirements that have not
been implemented. It is also possible to model irrelevant im-
plementation details, thus good abstraction skills are needed.
Moreover, encoding the test oracle in the models requires
additional information. If no specifications are available,
such information can be provided by heuristic consistency
[20] (consistent with user expectations, purpose, etc.).

Modeling Notations. According to our observation, TMs
and SMs are not dependent on the modeling notations used.
For instance, in the second case study example (Section 3.2),
the TMs are modeled using LSTS (Labeled State Transition
System) which can be used to model SMs, too. Similarly,
TMs can be modeled using UML models. However, in prac-
tice UML models can be seen as more suitable for modeling
SMs as UML has rich set of diagrams for representing
internals of a system.

Black-box or White-box. The TMs are used to specify in-
teractions with the SUT from an external perspective. Hence,
it can be concluded that TMs are more suitable for black-box
testing. On the other hand, the SMs specify internals of the
SUT, in detail or abstractly, using some graphical notation
or code. Now depending on the abstraction level of SMs,

one can conclude that SMs are more suitable for white-box,
or less strictly speaking, for gray-box testing.

Coverage Criteria. The two most commonly used coverage
criteria are code coverage (the statements, paths, or deci-
sions) and requirement coverage. In TM based approaches,
implementation is seen as a black-box thus it is hard to give
any verdict about how much of the implementation code
has been covered by generated test cases unless source code
is instrumented for this purpose. Therefore, requirement
coverage is mostly used in this case. On the other hand, in
SM based approaches, both code and requirement coverage
can be observed, again provided that the implementation
code is available for such analysis.

Fault-detection. It can be concluded that both TM and SM
based approaches are equally effective in finding bugs. It
can not be concluded that one is superior to the other in
fault detection. It also depends on the details that models
represent. Whereas, the quality of models is also another
factor.

5. Conclusions and Future work

In this paper, we have compared two approaches to
model-based testing, one using SMs and the other using
TMs. The former are developed from the perspective of the
implementation, while the latter sees the implementation as
a black-box. In the terms of reactive systems, TMs provide
stimuli and observe the SUT reactions, while the SMs expect
the stimuli and provide reactions.

Even though some may claim that the use of SMs and
TMs differ significantly, our conclusion is that the differ-
ence between the two lies somewhat in the eye of the
beholder. However, first considering the overall software
development process, if there are some development models
that can be used for test generation (state machines etc.), it
should be easier to transform those automatically or semi-
automatically to SMs than to TMs. On the other hand,
the differences may be domain-specific; in GUI testing, for
instance, TMs describing the user behavior seem much more
natural modeling paradigm than using SMs. Second, top-
down test modeling, as traditional test case development,
provides a ”second opinion” on the requirements and may
thus reveal requirements based issues effectively.

Model-based testing has been in industry and academia
for more than a decade and today several commercial and
academic tools exist. However, we have not found any re-
lated work comparing difference between using SM and TM
for model-based testing. There have been few comparisons
in the literature (see [21] and [22] for example) between
different model-based testing tools and techniques but these
do not relate to our work presented in this paper.

298

In our future work we plan to elaborate our analysis
by taking more case studies into account and extending
the analysis to other application domains. We also hope,
with this paper, to spark the interest of the software testing
community on this issue.

6. Acknowledgement

Tampere University of Technology gratefully acknowl-
edges partial funding from Tekes, Nokia, Ixonos, Symbio,
Cybercom Plenware, F-Secure, Qentinel, Prove Expertise, as
well as the Academy of Finland (grant number 121012). Åbo
Akademi University acknowledges financial support from
Tekes under the ITEA2 D-MINT project.

References

[1] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker,
A. Wiles, and C. Willcock, “An introduction to the testing and
test control notation TTCN-3,” Comput. Netw., vol. 42, no. 3,
pp. 375–403, 2003.

[2] “JUnit 4,” http://www.junit.org.

[3] D. Graham, E. V. Veenendaal, I. Evans, and R. Black, Foun-
dations of Software Testing ISTQB Certification. Cengage
Learning, 2008.

[4] “Unified Modeling Language 2,” http://www.uml.org/, April
2009.

[5] P. Baker, Z. R. Dai, J. Grabowski, . Haugen, S. Lucio, E.
Samuelsson, I. Schieferdecker and C. Williams, “UML 2
Testing Profile,” conquest 2004, ASQF Press, September 2004,
Nuremberg, Germany.

[6] M. Busch, Z. R. Dai, R. Chaparadza, A. Hoffmann, L.
Lacmene, T. Ngwangwen, G. C. Ndem, H.Ogawa, D. Ser-
banescu, I. Schieferdecker and J. Zander-Nowicka, “Model
Transformer for Test Generation from Test Models,” conquest
2006, September 2006.

[7] S. Nogueira, A. Sampaio, and A. Mota, “Guided test generation
from csp models,” in ICTAC, 2008, pp. 258–273.

[8] J. Tretmans, “Conformance testing with labelled transition sys-
tems: implementation relations and test generation,” Comput.
Netw. ISDN Syst., vol. 29, no. 1, pp. 49–79, 1996.

[9] M. Utting and B. Legeard, Practical Model-Based Testing: A
tools approach. Morgan Kaufmann Publishers, 2006.

[10] “SysML (Systems Modeling Language),”
http://www.sysml.org/, April 2009.

[11] J. Abbors, “Increasing the Quality of UML Models Used for
Automatic Test Generation,” Master’s thesis, Åbo Akademi
University, 2009.

[12] “Conformiq Qtronic,” http://www.conformiq.com/.

[13] F. Abbors, T. Pääjärvi, R. Teittinen, D. Truşcan, and J. Lilius,
“Transformational Support for Model-Based Testing – from
UML to QML,” in Proceedings of Model Based Testing in
Practice (MoTiP’09) workshop, 2009.

[14] F. Abbors, D. Truşcan, and J. Lilius, “Tracing Requirements
in a Model-Based Testing Approach,” in Proceedings of The
First International Conference on Advances in System Testing
and Validation Lifecycle (VALID 2009), 2009.

[15] A. Jääskeläinen, M. Katara, A. Kervinen, H. Heiskanen,
M. Maunumaa, and T. Pääkkönen, “Model-based testing ser-
vice on the web,” in Proc. TESTCOM/FATES 2008, ser. Lecture
Notes in Computer Science. Springer, Jun. 2008, no. 5047,
pp. 38–53.

[16] A. Jääskeläinen, M. Katara, A. Kervinen, M. Maunumaa,
T. Pääkkönen, T. Takala, and H. Virtanen, “Automatic GUI
test generation for smartphone applications - an evaluation,”
in Proc. Software Engineering in Practice track of the 31st In-
ternational Conference on Software Engineering (ICSE 2009).
IEEE CS, May 2009, pp. 112–122 (companion volume).

[17] M. Fewster and D. Graham, Software Test Automation: Ef-
fective use of test execution tools. Addison–Wesley, 1999.

[18] H. Buwalda, “Action figures,” STQE Magazine, March/April
2003, pp. 42–47.

[19] A. Kervinen, M. Maunumaa, T. Pääkkönen, and M. Katara,
“Model-based testing through a GUI,” in Proceedings of the
5th International Workshop on Formal Approaches to Testing
of Software (FATES 2005), ser. Lecture Notes in Computer
Science, no. 3997. Springer, 2006, pp. 16–31.

[20] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in
Software Testing: A Context-Driven Approach. Wiley, 2001.

[21] J. M. Clarke, “Automated test generation from a behavioral
model,” in Proceedings of the Eleventh International Software
Quality Week, 1998.

[22] A. Hartman, “Model based test generation tools,” http://www.
agedis.de/documents/ModelBasedTestGenerationTools cs.pdf.
Accessed October 2009.

299

96. Tomi Westerlund
97. Kalle Saari
98. Tomi Kärki
99. Markus M. Mäkelä

100. Roope Vehkalahti

101. Anne-Maria Ernvall-Hytönen

102. Chang Li
103. Tapio Pahikkala

104. Denis Shestakov
105. Sampo Pyysalo
106. Anna Sell
107. Dorina Marghescu

108. Tero Säntti

109. Kari Salonen
110. Pontus Boström

111. Camilla J. Hollanti

112. Heidi Himmanen
113. Sébastien Lafond

114. Evgeni Tsivtsivadze
115. Petri Salmela

116. Siamak Taati
117. Vladimir Rogojin

118. Alexey Dudkov
119. Janne Savela

120. Kristian Nybom
121. Johanna Tuominen
122. Teijo Lehtonen
123. Eeva Suvitie

124. Linda Mannila

125. Hanna Suominen

126. Tuomo Saarni
127. Johannes Eriksson
128. Tero Jokela

129. Ville Lukkarila

130. Qaisar Ahmad Malik

, Time Aware Modelling and Analysis of Systems-on-Chip

, On the Frequency and Periodicity of Infinite Words

, Similarity Relations on Words: Relational Codes and Periods

, Essays on Software Product Development: A Strategic

Management Viewpoint

, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations

, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms

, Parallelism and Complexity in Gene Assembly

, New Kernel Functions and Learning Methods for Text and Data

Mining

, Search Interfaces on the Web: Querying and Characterizing

, A Dependency Parsing Approach to Biomedical Text Mining

, Mobile Digital Calendars in Knowledge Work

, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks

, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems

, Setup Optimization in High-Mix Surface Mount PCB Assembly

, Formal Design and Verification of Systems Using Domain-

Specific Languages

, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs

, On Transmission System Design for Wireless Broadcasting

, Simulation of Embedded Systems for Energy Consumption

Estimation

, Learning Preferences with Kernel-Based Methods

, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method

, Conservation Laws in Cellular Automata

, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation

, Chip and Signature Interleaving in DS CDMA Systems

, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels

, Low-Density Parity-Check Codes for Wireless Datacast Networks

, Formal Power Analysis of Systems-on-Chip

, On Fault Tolerance Methods for Networks-on-Chip

, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms

, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation

, Machine Learning and Clinical Text: Supporting Health

Information Flow

, Segmental Durations of Speech

, Tool-Supported Invariant-Based Programming

, Design and Analysis of Forward Error Control Coding and Signaling

for Guaranteeing QoS in Wireless Broadcast Systems

, On Undecidable Dynamical Properties of Reversible One-

Dimensional Cellular Automata

, Combining Model-Based Testing and Stepwise Formal

Development

Turku Centre for Computer Science

TUCS Dissertations

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

ISBN 978-952-12-2467-6

ISSN 1239-1883

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics

Department of Information Technologies

Institute of Information Systems Sciences

�

�

�

�

Q
a
is

a
r A

h
m

a
d
 M

a
lik

C
o
m

b
in

in
g
 M

o
d
e
l-B

a
s
e
d
 T

e
s
tin

g
 a

n
d
 S

te
p
w

is
e
 F

o
rm

a
l
D

e
v
e
lo

p
m

e
n
t

Q
a
is

a
r A

h
m

a
d
 M

a
lik

C
o
m

b
in

in
g
 M

o
d
e
l-B

a
s
e
d
 T

e
s
tin

g
 a

n
d
 S

te
p
w

is
e
 F

o
rm

lt D
e
v
e
lo

p
m

e
n
t

	I Research Summary
	Introduction
	Research problems
	Research methodology
	Research setting
	Organization of the thesis

	Model-Based Testing
	Software Testing
	Model-Based Testing Process
	Taxonomy of Model-Based Testing
	Scenario-Based Testing

	Formal Software Development by Refinement
	The Event-B Method
	Proof obligations for specifications in Event-B
	Refinement in Event-B

	UML-B

	Contributions of the Thesis
	Scenario-based Testing and Formal Development
	Related Work

	Modeling with UML-B for Model-based Testing
	Related Work

	Comparative Study of Modeling Subjects in Model-based Testing
	Related Work

	Overview of the Papers
	Paper I: Synthesis of Scenario Based Test Cases from B Models
	Paper II: Model-based Testing Using Scenarios and Event-B Refinements
	Paper III: Requirement-driven Scenario-based Testing Using Formal Stepwise Development
	Paper IV: Using UML Models and Formal Verification in Model-Based Testing
	Paper V: Model-Based Testing using System vs. Test Models -What is the difference?

	Mapping over Taxonomy of Model-Based Testing

	Discussion
	Testing vs. Formal Verification
	Model-Based Testing vs. Formal Verification

	Summary and Conclusions
	Bibliography

	II Original Publications

