Defect Theorems and

 Infinite Words

 Infinite Words}

Ján Maňuch

Defect Theorems and
 Infinite Words

Ján Maňuch

To be presented, with the permission of the Faculty of Mathematics and Natural Sciences of the University of Turku, for public criticism in the Auditorium of the Computer Science Department on June 28th, 2002, at 12 noon.

University of Turku
Department of Mathematics
FIN-20014 Turku, Finland
2002

SUPERVISOR

Professor Juhani Karhumäki
Department of Mathematics
University of Turku
FIN-20014 Turku, Finland

Opponent

Professor Christian Choffrut
Université Denis Diderot - Paris VII, LIAFA
Tour 55-56, 1er étage, 2 place Jussieu
F-75251 Paris Cedex 05, France

Reviewers

Professor Wojciech Rytter
Department of Computer Science
Liverpool University
Peach Street, Liverpool L69 7ZF, U.K.
Professor Lila Kari
Department of Computer Science
University of Western Ontario
London, Ontario Canada N6A 5B7

ISBN 951-29-2288-3
ISSN 1239-1883
Painosalama Oy
Turku, Finland (2002)

To the country of thousands of lakes

Acknowledgments

I am immensely thankful to my supervisor, Professor Juhani Karhumäki, who invited me to Finland, introduced me to the many interesting problems of Combinatorics on Words, showed me how to cope with them, and guided me through all the steps of scientific life. He also took care of my well-being in Finland, gave me the honor to visit his cozy home several times and even let me experience his hobby, bird banding, in Finnish wilderness.

I would also like to thank the co-authors of the articles on which the thesis is based: Dr Wojciech Plandowski - my first experience of intense scientific cooperation, Dr Julien Cassaigne - who impressed me with his adventurous soul, and RNDr Pavol Ďuriš - with whom I spent many hours discussing the presence and the future of Mathematics, Computer Science, Artificial Intelligence and this World.

Many thanks to my reviewers, Professor Wojciech Rytter and Professor Lila Kari, for carefully reading my thesis. I am very grateful to Professor Christian Choffrut for accepting to be my opponent.

I have also benefited from the research cooperation between the University of Turku and the RWTH Aachen in Germany which resulted in solving two open problems.

Turku Centre for Computer Science together with the Department of Mathematics at the University of Turku provided me with excellent working conditions. Therefore I will use this opportunity to thank all the people who make these institutions work perfectly, starting from the secretaries, with special thanks to Leena Palmulaakso-Nylund, and ending with the directors of TUCS, Professor Ralph Back and Professor Timo Järvi, and the leader of the department, Professor Juhani Karhumäki.

Turku, June 2002

Ján Maňuch

Contents

1 Introduction 1
2 Preliminaries 5
2.1 Basic definitions 5
2.2 Defect theorems and ranks 10
2.3 Graph Lemma 12
2.4 Periodicity 13
2.5 Conjugacy 14
3 Defect theorems for bi-infinite words 17
3.1 The general case 17
3.2 The two-element case 30
3.2.1 The defect theorem 30
3.2.2 Comments on Theorem 3.11 38
3.2.3 The maximal number of X-ambiguous bi-infinite words 40
3.2.4 Existence of an X-ambiguous bi-infinite word 44
4 A cumulative defect effect: an example 49
4.1 Bi-infinite words possessing 3 different X-factorizations 51
4.1.1 Proof of Lemma 4.3 56
4.1.2 Proof of Theorem 4.2 64
4.2 A connection to the Critical Factorization Theorem 66
5 Conjugacy of binary sets 71
5.1 General considerations 72
5.2 Binary sets X and Y 74
5.3 The commutative case 75
5.4 The non-commutative case 75
5.5 Characterization of sets Z in the cases $X t=t Y$ and $t X=Y t$. 78
5.5.1 The maximal $Z \in \mathcal{Z}_{X, Y}$ in the case $X t=t Y$ 79
5.5.2 All sets $Z \in \mathcal{Z}_{X, Y}$ in the case $X t=t Y$ 81
5.5.3 The case $t X=Y t$ 82
5.6 The complete characterization 83
6 On the computational complexity of infinite words 85
6.1 The computational complexity of infinite words 86
6.2 Iterative devices generating infinite words 87
6.3 Do dgsm's have logarithmic space complexity? 89
6.4 Logarithmic space complexity 93
6.5 Separation of double and triple D0L TAG systems 94
Bibliography 97
A Proof of Lyndon and Schützenberger Lemma 101

Chapter 1

Introduction

In this work we attack different problems of Combinatorics on Words.
Combinatorics on Words is a rather new field of Theoretical Computer Science, although the first papers on words were written already at the beginning of 20 th century by A. Thue, $c f$. [Th]. A pioneering paper on modern Combinatorics on Words is [LeS]. Actually, this paper deals with some problems related to several topics studied in this work, cf. mainly Section 3.2 and Chapter 5. The first monograph on Combinatorics on Words appeared as late as in the year 1983: [Lo] - a common project of several mathematicians. Recently, the book is followed by two new surveys on the field: [ChK] - studying combinatorial properties of words from the point of view of Formal Languages, and, just appeared, the new Lothaire: "Algebraic combinatorics on words".

One of the fundamental results on words is the defect theorem, cf. [Lo] and [BPPR]. Intuitively it states that if n words satisfy a non-trivial relation then these words can be expressed as products of at most $n-1$ words. Actually, as discussed in [ChK], for example, there does not exist just one defect theorem but several ones depending on restrictions put on the required $n-1$ words. It is also well-known that the non-trivial relation above can be replaced by a weaker condition, namely by the non-trivial one-way infinite relation, cf. [HK] or [Br].

The goal of Chapter 3 is to look for defect theorems for bi-infinite words. In a strict sense such results do not exist: the set $X=\{a b, b a\}$ of words satisfies a bi-infinite non-trivial relation since $(a b)^{\mathbb{Z}}=(b a)^{\mathbb{Z}}$, but there exists no word t such that $X \subseteq t^{+}$. However, we are going to prove several results which can be viewed as defect theorems for bi-infinite words.

To describe the results of Chapter 3, let w be a bi-infinite word, i.e., an element of $\Sigma^{\mathbb{Z}}$, and X a finite subset of Σ^{+}. We say that w possesses an X factorization if $w \in X^{\mathbb{Z}}$, and that w possesses two different X-factorizations, if it possesses two X-factorizations such that they do not match at least in one point of w. Further, the combinatorial rank of a set X, denoted by $\operatorname{rank}_{\mathrm{c}}(X)$, is
the cardinality of the smallest set Y such that $X \subseteq Y^{+}$. We prove the following results:

- Section 3.1: If a non-periodic bi-infinite word w has two different X factorizations then the combinatorial rank of X, denoted by $\operatorname{rank}_{\mathrm{c}}(X)$, is at most $\operatorname{card}(X)-1$. Moreover, if $\operatorname{rank}_{\mathrm{c}}(X)=\operatorname{card}(X)$ then the number of bi-infinite words with two different X-factorizations is at most $\frac{1}{2} \operatorname{size}(X)$.
- Section 3.2: Let $X=\{\alpha, \beta\}$ be a two-element code. If a bi-infinite word w possesses two different X-factorizations then either the X-factorizations are shift-equivalent and there exists a word $t \in \alpha \beta^{+} \cup \alpha^{+} \beta$ such that $w=t^{\mathbb{Z}}$, or the primitive roots of α and β are conjugates. Moreover, there are at most two bi-infinite word possessing two different X-factorizations.

We want to emphasize that a restriction to non-periodic bi-infinite words is necessary, as shown by the example of $X=\{a b, b a\}$, and even more that the above theorems require to consider the combinatorial rank. The later restriction is quite interesting since in all previous defect theorems, see [ChK] and Section 2.2, any of the notions of the rank can be used to witness the defect effect.

The results in Section 3.2 are related to some considerations of [LeS] and to the main result of [LRLR]. In fact, as we realized recently, the main theorem of Section 3.2, Theorem 3.11, can be, after some effort, deduced from considerations of these two papers. However, our proof is self-contained and essentially shorter, and moreover formulated directly to yield a defect-type of theorem.

As argued in [HKP] defect theorems can be viewed as a weak dimension property of words. It is weak since a finite set X of words can satisfy several different, or independent as it is formalized in [HKP], relations without forcing a larger defect effect than 1, i.e., a larger defect effect than is forced by a single relation. In Chapter 4 we ask to find conditions (on relations or sets of words) which yield a cumulative defect effect, i.e., if the set X of n words satisfy k relations then X is of rank at most $n-k$.

There are only very few results known in this direction. The Graph Lemma, $c f$. Lemma 2.3 in Section 2.3, is such an example where the type of relations is restricted, cf. [ChK, HK]. A similar deep result is proved in [Br], extending ideas of [Ka1, Ka2, Ho], where it is shown that if X is a code and has unbounded synchronizing delay in both directions then the rank of X is at most $\operatorname{card}(X)-2$.

In Chapter 4, we interpret, in a natural way, a relation on words from X as a double X-factorization of some infinite word. We ask if the fact that a non-periodic bi-infinite word possesses k disjoint X-factorizations implies that $\operatorname{rank}_{\mathrm{c}}(X) \leq \operatorname{card}(X)-k+1, c f$. Problem 4.1. By our defect theorem for biinfinite words (Theorem 3.3 in Section 3.1), the answer is "yes" in the case $k=2$.

In Section 4.1 we prove that if X is a prefix set then the answer is affirmative also in the case $k=3$.

Further, in Section 4.2, we consider the connections of the above problem in the case $k=\operatorname{card}(X)$ to the Critical Factorization Theorem, or more precisely, to the conjecture about its application stated in [Lo]. We will give several examples that the conjecture is false, and hence we are not able to obtain a positive answer to our problem in the case $k=\operatorname{card}(X)$. However, as a consequence of the application of the Critical Factorization Theorem we have that the number of disjoint X-factorizations of a non-periodic bi-infinite word is at most $\operatorname{card}(X)$.

The defect theorems motivated a research on words equations starting by a seminal paper of Makanin in 1976, cf. [Mak]. Despite the fact that many fundamental problems, such as the exact complexity of the satisfiability problem, $c f .[\mathrm{Pl}]$, or the maximal size of independent systems of equations in n variables, $c f$. [HKP], are not solved, one can say that there exists a deep and rich theory on word equations.

If language equations, as extensions of word equations, are considered the situation changes drastically: almost nothing is known about those. Recently, the commutation equation $X Z=Z X$ for languages has been studied in a number of papers, cf. [Ra, CKO, KPe, HP, Ka3, KLP] for a survey. In certain cases, for example when $\operatorname{card}(X) \leq 3$ or X is a code, it is completely solved: Z must be of the form $Z=\cup_{i \in I} \varrho(X)^{i}$ with $I \subseteq \mathbb{N}$, and $\varrho(X)$ being the primitive root of X, i.e., the minimal set having the set X as its power. In these cases this characterization gives an affirmative answer to an old problem of Conway, $c f$. [Co], asking whether the (unique) maximal set Z commuting with a given rational X is also rational. Note also that, in these cases, the sets X and Z are expressible as unions of powers of a common set, i.e., the commutation equation for languages in these particular cases causes a defect effect. As an example in [CKO] shows, this is not true in the general case even for the commutation equation.

In Chapter 5 we will consider the conjugacy equation $X Z=Z Y$. Since, even the commutation equation seems to be a rather difficult problem solved only in special cases, we cannot expect the conjugacy equation to be easy. Hence, we will concentrate on the one of the simplest cases when both the sets X and Y are binary. We are able to solve this problem completely, i.e., to characterize all binary sets X and Y for which there exists a non-empty set Z such that $X Z=Z Y$, as well as to characterize such sets Z. However, even in this very restricted case we cannot witness a defect effect, cf. Example 5.2 in Chapter 5.

Finally, in Chapter 6 we look at infinite words from a different perspective. In [CuK] and [HKL] two new areas of investigation were introduced:

- the descriptional complexity of infinite words, i.e., the comparative measure how complicated simple mechanisms are needed to generate particular
infinite words;
- the computational complexity of infinite words, i.e., the measure how much resources (such as time and space) are needed to generate a certain infinite word by a Turing machine.

The second paper concentrates on relations between these two complexities.
In [CuK, HKL, HK] several interesting problems are proposed. In Chapter 6 we solve a few of these problems, or in fact, in some cases, we show that they are equivalent to well-known hard open problems in the complexity theory of Turing machines.

In Section 6.3 we consider the open problem, proposed in [HKL], namely whether all infinite words generated by iterating deterministic generalized sequential machines, dgsm's for short, have logarithmic space complexity. As shown already in [HKL], the answer is "yes" if the dgsm has the maximal, i.e., exponential, growth. We show that it is so also in the case when the dgsm has a smallest non-trivial growth $(\Theta(n \log n))$. In [Le] it is claimed that the answer to the problem is affirmative in general. Here we show that the problem is equivalent to an other hard open problem of complexity theory asking whether unary classes of languages P and DLOG are equivalent. Therefore, we believe that in the proof of [Le] some case must have been overlooked.

Another problem proposed in [HKL] is to find a concrete infinite word which cannot be generated in logarithmic space. In Section 6.4 we show that it is exactly as hard as the problem to find a concrete language, which does not belong to DSPACE (n).

Finally, in Section 6.5 we separate the classes of infinite words generated by double and triple D0L TAG systems as it was conjectured in [CuK].

A special attention is paid to the presentation. The definitions and proofs in this work are illustrated with the numerous figures, and we believe that they make the content of the work more comprehensive.

The thesis is based on the following papers [KMP, Man, KM, CKM, DM].

Chapter 2

Preliminaries

2.1 Basic definitions

In this section we fix our terminology and recall some basic notions and definitions of Combinatorics on Words. For undefined notions we refer a reader to [Lo] or [ChK]. We will pay the most of our attention to the notions of bi-infinite words and their factorizations which we will study in Chapters 3 and 4.

Let Σ be a finite non-empty set, called an alphabet. Elements of Σ are called letters, and finite sequences of letters are called words. The number of letters in the sequence, forming a word u, is the length of u, which we denote by $|u|$. In particular, the word of length 0 is called the empty word, and denoted by 1. The set of all words (resp. all non-empty words) over Σ is denoted by Σ^{*} (resp. Σ^{+}). The set Σ^{*} is naturally equipped with the operation concatenation, denote by ".", also called product. Obviously, each word has the unique representation as product of letters. Hence, Σ^{*} (resp. Σ^{+}) is the free monoid (resp. the free semigroup) generated by Σ.

We define three relations on words:

- u is a prefix of v, denoted by $u \leq v$, if there exists a word z such that $v=u z ;$
- u is a suffix of v, if there exists a word z such that $v=z u$;
- u is a factor of v, if there exist words x and y such that $v=x u y$.

In the case when $u \neq v$, we call any of the above three relations proper. The relation " u is proper prefix of v " is denoted by $u<v$. We denote by $\operatorname{Pref}(v)$, $\operatorname{pref}(v), \operatorname{Suff}(v), \operatorname{suff}(v), \operatorname{Fact}(v)$, the sets of all prefixes, proper prefixes, suffixes, proper suffixes, factors of a word v, respectively. All these notions can be generalized for the sets of words in a natural way.

Let u and v be words. If u is a prefix (resp. a suffix) of v then the word z such that $v=u z$ (resp. $v=z u$) is called the left quotient (resp. the right quotient) of v by u, denoted by $u^{-1} v$ (resp. $v u^{-1}$).

We say that words u and v are left comparable (resp. right comparable) if one of u and v is a prefix (resp. a suffix) of the other. Further, we say that a pair of words (u, v) matches a word w at a position $\left(w_{1}, w_{2}\right)$ if $w=w_{1} w_{2}, u$ and w_{1} are right comparable, and v and w_{2} are left comparable.

Let $a_{1}, \ldots, a_{n} \in \Sigma$ be the sequence of letters of a word v, i.e., $v=a_{1} \ldots a_{n}$. The mirror image of the word v is the word $a_{n} \ldots a_{1}$, denoted by v^{R}. The mirror image of a set $X=\left\{x_{1}, \ldots, x_{m}\right\}$ is the set $X^{\mathrm{R}}=\left\{x_{1}^{\mathrm{R}}, \ldots, x_{m}^{\mathrm{R}}\right\}$.

The sets of all infinite and bi-infinite words over Σ are denoted by $\Sigma^{\mathbb{N}}$ and $\Sigma^{\mathbb{Z}}$, respectively. Formally, an infinite word is a mapping $w: \mathbb{N} \rightarrow \Sigma$, and a bi-infinite word is a mapping $w: \mathbb{Z} \rightarrow \Sigma$. Usually, we write an infinite word w as

$$
w=w_{0} w_{1} \ldots, \quad \text { with } w_{i}=w(i) \text { for all } i \in \mathbb{N}
$$

and similarly, we write a bi-infinite word w as

$$
w=\ldots w_{-1} w_{0} w_{1} \ldots, \quad \text { with } w_{i}=w(i) \text { for all } i \in \mathbb{Z}
$$

It is obvious that a bi-infinite word w and the bi-infinite word w^{\prime} defined as $w^{\prime}(k)=w\left(k_{0}+k\right)$ for all $k \in \mathbb{Z}$ and a fixed $k_{0} \in \mathbb{Z}$ represent the same word. Hence, by definition, we will consider w and w^{\prime} as different representations of the same bi-infinite word.

Example 2.1. The bi-infinite word

$$
w=(a b)^{\mathbb{Z}}=\ldots a b a b \ldots
$$

has exactly two representations

$$
w_{1}(n)=\left\{\begin{array}{l}
a ; n \text { is even, } \tag{2.1}\\
b ; n \text { is odd, }
\end{array} \quad \text { and } \quad w_{2}(n)=\left\{\begin{array}{l}
a ; n \text { is odd }, \\
b ; n \text { is even } .
\end{array}\right.\right.
$$

A factorization of a word v is any sequence $\left(v_{1}, \ldots, v_{k}\right)$ of words such that

$$
v=v_{1} v_{2} \ldots v_{k} .
$$

If the words v_{1}, \ldots, v_{k} are elements of a set X, we say that the sequence $\left(v_{1}, \ldots, v_{k}\right)$ is an X-factorization of v. Similarly, an X-interpretation of v is any sequence v_{1}, \ldots, v_{k} of words of X such that

$$
p v s=v_{1} v_{2} \ldots v_{k}
$$

Figure 2.1: An illustration how the factorization F factorizes the word w.
for some words p and s satisfying $|p|<\left|v_{1}\right|$ and $|s|<\left|v_{k}\right|$.
A factorization of a bi-infinite word $w \in \Sigma^{\mathbb{Z}}$ is an increasing function F : $\mathbb{Z} \rightarrow \mathbb{Z}$. The range of F is called the set of starting positions, denoted by $F(\mathbb{Z})$. Indeed, the factorization F factorizes a bi-infinite word w into words:

$$
\ldots, \alpha_{w, F}(-1), \alpha_{w, F}(0), \alpha_{w, F}(1), \ldots,
$$

where

$$
\alpha_{w, F}(i)=w_{F(i)} w_{F(i)+1} \ldots w_{F(i+1)-1}, \quad \text { for all } i \in \mathbb{Z},
$$

i.e., the position $F(i)$ is the starting position of the factor $\alpha_{w, F}(i)$ in w, as depicted in Figure 2.1. Note that the way how a factorization factorizes a biinfinite word depends on the representation of the bi-infinite word:

Example 2.2. Let $F(n)=2 n$ be a factorization and consider two representations (2.1) of the bi-infinite word $(a b)^{\mathbb{Z}}$. Then F factorizes w_{1} into factors $\alpha_{w_{1}, F}(n)=a b$, and w_{2} into factors $\alpha_{w_{2}, F}(n)=b a$, for all $n \in \mathbb{Z}$.

It is obvious that a factorization F and the factorization F^{\prime} defined as $F^{\prime}(k)=F\left(k_{0}+k\right)$, for all $k \in \mathbb{Z}$, and a fixed $k_{0} \in \mathbb{Z}$ factorize the bi-infinite word w in the same way. Hence, similarly as for bi-infinite words, we will consider F and F^{\prime} as different representations of the same factorization.

We say that two factorizations F_{1} and F_{2} are

- different, if they are not the same, i.e., $F_{1}(\mathbb{Z}) \neq F_{2}(\mathbb{Z})$;
- disjoint, whenever the starting positions of all factors in F_{1} are distinct from the ones in F_{2}, i.e., $F_{1}(\mathbb{Z}) \cap F_{2}(\mathbb{Z})=\emptyset$;
- shift-equivalent with respect to a representation of a bi-infinite word w, if there is a $k_{0} \in \mathbb{Z}$ such that for all $k \in \mathbb{Z}, \alpha_{w, F_{1}}(k)=\alpha_{w, F_{2}}\left(k_{0}+k\right)$.

Let us illustrate the above relations between factorizations on an example:

Figure 2.2: Three factorizations of the bi-infinite word a^{Z}.

Figure 2.3: Three factorizations of the bi-infinite word $w_{1}=(a b)^{Z}$.
Example 2.3. Consider the bi-infinite word $w=a^{\mathbb{Z}}$ (it has only one representation) and the following three factorizations:

$$
\begin{aligned}
& F_{1}(n)=2 n, \\
& F_{2}(n)=2 n+1, \\
& F_{3}(n)=2 n+2 .
\end{aligned}
$$

As it can be seen in Figure 2.2

- the factorizations F_{1} and F_{3} are the same, i.e., different representations of the same factorizations. Indeed, $F_{1}(\mathbb{Z})=2 \mathbb{Z}=F_{3}(\mathbb{Z})$;
- the factorizations F_{1} and F_{2} are disjoint, since $F_{1}(\mathbb{Z}) \cap F_{2}(\mathbb{Z})=2 \mathbb{Z} \cap(2 \mathbb{Z}+$ 1) $=\emptyset$.

In addition factorizations F_{1} and F_{2} are shift-equivalent with respect to w, since $\alpha_{w, F_{1}}(n)=a a=\alpha_{w, F_{2}}(n)$ for all $n \in \mathbb{Z}$. However, this is not true if we consider the bi-infinite word w_{1}, defined in Example (2.1), instead. Indeed, as Figure 2.3 shows, $\alpha_{w_{1}, F_{1}}(n)=a b$ and $\alpha_{w_{1}, F_{2}}(n)=b a$ for all $n \in \mathbb{Z}$.

Finally, we define a special type of factorizations, which we will study in more details in Chapter 3. Let X be a set of non-empty words. Let Fact (w, F)
be the set of all the factors into which F factorizes w, i.e.,

$$
\operatorname{Fact}(w, F)=\left\{\alpha_{w, F}(n) ; n \in \mathbb{Z}\right\}
$$

If $\operatorname{Fact}(w, F) \subseteq X$, we say that F is an X-factorization of the bi-infinite word w, and that w possesses an X-factorization F.

Next, we would like to define the mirror images of bi-infinite words and their factorizations in the way that the factors into which the mirror image of a factorization F factorizes the mirror image of a bi-infinite word w would be the mirror images of the factors into which F factorizes w. One way how to do it is as follows:

We define the mirror image w^{R} of a bi-infinite word w by the following formula

$$
w^{\mathrm{R}}(n)=w(-n-1), \quad \text { for all } n \in \mathbb{Z},
$$

and the mirror image F^{R} of a factorization F by the formula

$$
F^{\mathrm{R}}(n)=-F(-n+1), \quad \text { for all } n \in \mathbb{Z}
$$

This definition is sound since F^{R} is also a growing function. Moreover, $F(\mathbb{Z})=$ $-F^{\mathrm{R}}(\mathbb{Z})$. The reader can check that the following conditions are satisfied for all $i \in \mathbb{Z}$

$$
\begin{align*}
w^{\mathrm{R}}\left(F^{\mathrm{R}}(i)\right) & =w(F(-i+1)-1), \quad \text { and } \\
\alpha_{w^{\mathrm{R}}, F^{\mathrm{R}}}(i) & =\left(\alpha_{w, F}(-i)\right)^{\mathrm{R}} . \tag{2.2}
\end{align*}
$$

Therefore, $\operatorname{Fact}\left(w^{\mathrm{R}}, F^{\mathrm{R}}\right)=(\operatorname{Fact}(w, F))^{\mathrm{R}}$, and in particular, if F is an X-factorization of a bi-infinite word w then F^{R} is an X^{R}-factorization of w^{R}.

If a bi-infinite word possesses at least two different X-factorizations, we say that it is X-ambiguous. Let $\operatorname{Amb}(X)$ denote the set of all X-ambiguous biinfinite words.

Example 2.4. Consider the set $X=\{a b, b a\}$. Then the bi-infinite word $(a b)^{\mathbb{Z}}$ is X-ambiguous, since it possesses two different X-factorizations:

$$
\cdots \widehat{b a b a b a b a b} \cdots
$$

On the other hand the bi-infinite word ${ }^{\mathbb{N}}(a b)(b a)^{\mathbb{N}}$ is not X-ambiguous, it can be factorize over X in the unique way:

Indeed, any other factorization over a set containing only 2-letter words would require that $b b \in X$ (depicted with a dashed line).

Note that the above properties of bi-infinite words (possessing an X-factorization and being X-ambiguous) were, in fact, defined for a particular representation of a bi-infinite word. But, clearly, if a representation of a bi-infinite word possesses an X-factorization (resp. is X-ambiguous) then all representations of that bi-infinite word do so.

2.2 Defect theorems and ranks

The defect theorem is one of the fundamental results on words, $c f$. [Lo, BPPR]. Intuitively it states that if n words satisfy a non-trivial relation then these words can be expressed as products of at most $n-1$ words. Actually, as discussed in [ChK], for example, there does not exist just one defect theorem but several ones depending on restrictions put on the required $n-1$ words.

We say that words x and y commute if they satisfy the equation $x y=y x$. The following conditions are equivalent, $c f$. [Lo]:

- words x and y commute;
- words x and y satisfy a non-trivial equation;
- words x and y have a common power;
- there exists a word t such that $x, y \in t^{*}$;
- $\rho(x)=\rho(y)$ (see Section 2.4).

The above claim is one of the basic facts of the theory of Combinatorics on Words. It can be viewed as an example of a defect effect for $n=2$. Indeed, the condition $x, y \in t^{*}$ expresses that the "dimension" of the set $\{x, y\}$ is 1 .

Hence, defect theorems can be viewed as different dimension properties of sets of words. We have several ways how define "dimension". There are two main approaches, combinatorial and algebraic.

The combinatorial rank of $X \subseteq \Sigma^{+}$is defined by the formula

$$
\operatorname{rank}_{\mathrm{c}}(X)=\min \left\{\operatorname{card}(Y) ; \quad X \subseteq Y^{+}\right\}
$$

In order to give algebraic definitions of the dimension of a set of words, we have to define the following properties. We call a submonoid M of Σ^{*}

- stable if for all $u, v, u w, w v \in M$ then also $w \in M$;
- right unitary if for all $u, u w \in M$ then also $w \in M$;
- left unitary if for all $v, w v \in M$ then also $w \in M$.

The above properties relate to the codes, prefix sets and suffix sets, respectively. We say that a set of words X is a code if it satisfies the following condition: for all integers $n, m \geq 1$ and words $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in X$

$$
x_{1} \ldots x_{n}=y_{1} \ldots y_{m} \quad \text { implies } \quad n=m \text { and } x_{i}=y_{i} \text { for } i=1, \ldots, n \text {. }
$$

Further, we say that a set of words X is a prefix set (resp. a suffix set) if no word of X is a prefix (resp. a suffix) of another. The relations between properties of submonoids of Σ^{*} and properties of sets of words can be expressed as follows:

Lemma 2.1. [BP] A submonoid of Σ^{*} is

- stable if and only if it is a free submonoid if and only if its minimal generating set is a code;
- right unitary if and only if its minimal generating set is a prefix set;
- left unitary if and only if its minimal generating set is a suffix set.

Note that the intersection preserves any of the above properties. Therefore, we can define the smallest free (resp. right unitary) submonoid of Σ^{*} which contains X by the formulas:

$$
\begin{gathered}
\operatorname{FM}(X)=\bigcap_{\substack{X \subseteq M \subseteq \Sigma^{*} \\
M \\
\text { is free }}} M, \\
\operatorname{RUM}(X)=\bigcap_{\substack{X \subseteq M \subseteq \Sigma^{*} \\
M \text { is right unitary }}} M .
\end{gathered}
$$

The minimal generating set of $\operatorname{FM}(X)$ (resp. $\operatorname{RUM}(X))$ is called the free (resp. prefix) hull of X, denoted by \hat{X}_{f} (resp. by \hat{X}_{p}).

Finally, we can define free and prefix ranks:

$$
\operatorname{rank}_{\mathrm{f}}(X)=\operatorname{card}\left(\hat{X}_{\mathrm{f}}\right) \quad \text { and } \quad \operatorname{rank}_{\mathrm{p}}(X)=\operatorname{card}\left(\hat{X}_{\mathrm{p}}\right)
$$

Let us recall the defect theorems formulated for the free and prefix ranks.
Theorem 2.2. [BPPR, Lo] For each finite set $X \subseteq \Sigma^{+}$we have

- $\operatorname{rank}_{\mathrm{f}}(X) \leq \operatorname{card}(X)$, and moreover, the equality holds if and only if X is a code;
- $\operatorname{rank}_{\mathrm{p}}(X) \leq \operatorname{card}(X)$, and moreover, the equality implies that X is a code.

The above defined ranks satisfy the following condition

$$
\operatorname{rank}_{\mathrm{c}}(X) \leq \operatorname{rank}_{\mathrm{p}}(X) \leq \operatorname{rank}_{\mathrm{f}}(X) \leq \operatorname{card}(X)
$$

The following example (based on Example 4.1 of [ChK]) shows the above ranks define the different properties of sets of words.

Example 2.5. Consider the set

$$
X=\{a a, a a b a, b a c, c b b, b b a a, b a a\} .
$$

The only minimal non-trivial relation in X^{+}is

$$
a a . b a c . b b a a=a a b a . c b b . a a .
$$

Since X^{+}is a subset of $\operatorname{FM}(X)$ which is stable, we conclude that $\operatorname{FM}(X)$ contains the words $b a, c$ and $b b$. Now the set

$$
X_{1}=\{a a, b a, c, b b, b a a\}
$$

is a code such that X_{1}^{+}contains X^{+}and the elements $b a, c$ and $b b$ are necessarily contained in $\operatorname{FM}(X)$, hence it is the free hull \hat{X}_{f} of X.

Obviously, the set $X_{1}^{+}=\operatorname{FM}(X)$ is a subset of $\operatorname{RUM}(X)$. The set X_{1} is not a prefix set, hence by the right unitary condition, we have that $a \in \operatorname{RUM}(X)$. Similarly, we obtain that the set

$$
\{a, b a, c, b b\}
$$

is the prefix hull \hat{X}_{p} of X. Clearly, the combinatorial rank of X is 3 . Consequently, we can conclude that

$$
3=\operatorname{rank}_{\mathrm{c}}(X)<\operatorname{rank}_{\mathrm{p}}(X)<\operatorname{rank}_{\mathrm{f}}(X)<\operatorname{card}(X)=6
$$

2.3 Graph Lemma

In order to formulate one crucial lemma, we need some terminology. We associate a finite set $X \subseteq \Sigma^{+}$with a graph $\mathcal{G}_{X}=\left(V_{X}, E_{X}\right)$, called the dependency graph of X, as follows: the set V_{X} of vertices of \mathcal{G}_{X} equals to X, and the set E_{X} of edges of \mathcal{G}_{X} is defined by the condition

$$
(x, y) \in E_{X} \quad \text { iff } \quad x X^{\mathbb{N}} \cap y X^{\mathbb{N}} \neq \emptyset .
$$

Then we have:

Lemma 2.3. [ChK, HK] For each finite set $X \subseteq \Sigma^{+}$, the prefix (resp. combinatorial) rank of X is at most the number of connected components of \mathcal{G}_{X}.

Note that in Lemma 2.3 the fact that the set X contains only non-empty words is crucial. Therefore, any time we will use the lemma, we have to be sure that all words occurring in the relations are non-empty.

Second, note that if the set X satisfies a finite relation

$$
x_{1} \ldots x_{n}=y_{1} \ldots y_{m}
$$

then it can be easily extended to an infinite one. Hence, in such a case, the dependency graph of X contains also the edge $\left(x_{1}, y_{1}\right)$.

Let $\operatorname{size}(X)$ be the sum of lengths of words of X, also called the size of the set X.

2.4 Periodicity

Let $v=a_{1} \ldots a_{n}$ be a word with $a_{1}, \ldots a_{n} \in \Sigma$ as its sequence of letters. If there exists an integer $p \in \mathbb{N}$ such that for every integer $i=1, \ldots, n-p, a_{i}=a_{i+p}$, then we say that p is a period of v. The minimal period of v is called the period of v, and denoted by $\operatorname{per}(v)$.

Let w be an infinite word. If there exists a positive integer p such that for every $n \in \mathbb{N}, w(n)=w(n+p)$, we say that w is periodic with a period p. If there exist integers $p>0$ and $n_{0} \geq 0$ such that for every integer $n \geq n_{0}$, $w(n)=w(n+p)$, then we say that w is ultimately periodic.

Let w be a bi-infinite word. If there exists a positive integer p such that for every $n \in \mathbb{Z}, w(n)=w(n+p)$, we say that w is periodic with a period p. Let F be a factorization of w. We say that F is periodic if there exist an integer $k \geq 1$ and words x_{0}, \ldots, x_{k-1} such that

$$
\alpha_{w, F}(i)=x_{i \bmod k}, \quad \text { for all } i \in \mathbb{Z}
$$

Every word v can be expressed in the form $v=u^{n}$, where $n \geq 1$. The word u satisfying this condition is called a root of v. The root of the minimal length is called the primitive root of v, denoted by $\rho(v)$. A word v is primitive if $\rho(v)=v$.

The following lemma claims that for a primitive word u the situation when u is an inner factor of $u u$, see Figure 2.4, cannot occur.

Lemma 2.4. [ChK] If the word u satisfies the relation

$$
u u=p u s \quad \text { with } p, s \neq 1,
$$

then u is non-primitive. Moreover, there is a primitive word t such that

$$
u, p, s \in t^{+}
$$

Figure 2.4: An illustration of the situation which cannot occur if u is primitive.

Lemma 2.5 (Fine and Wilf). [FW] Let $u, v \in \Sigma^{+}$. The words u and v are powers of a common word if and only if the words $u^{\mathbb{N}}$ and $v^{\mathbb{N}}$ have a common prefix of a length at least $|u|+|v|-\operatorname{gcd}(|u|,|v|)$.

As a corollary of Lemma 2.5 we have
Lemma 2.6. [LeS] If non-empty words x, y and z satisfying the relation $x^{m} y=$ z^{n} (resp. $y x^{m}=z^{n}$) for some integers $m, n \geq 1$ then, either $|z|>(m-1)|x|$, or all the words x, y and z are powers of a common word.

Proof. Consider the equation $x^{m} y=z^{n}$. If $|z| \leq(m-1)|x|$ then $|x|+|z| \leq\left|x^{m}\right|$, and thus the words x^{m} and z^{n} have a common prefix of a length at least $|x|+|z|$. By Lemma 2.5, the words x and z commute which implies that all the words x, y and z are powers of a common word. The proof for the equation $y x^{m}=z^{n}$ is essentially the same.

In [LyS] a more intricate result was shown.
Lemma 2.7. [LyS] If non-empty words x, y and z satisfying the relation $x^{m} y^{n}=$ z^{p} for some integers $m, n, p \geq 2$ then they are powers of a common word.

However, the original proof in [LyS] is rather long and proved in a more general settings of free groups. Therefore, we refer a reader to a much shorter proof in [Sh].

2.5 Conjugacy

We say that two words u and v are conjugates if there exist words p and q such that

$$
u=p q \quad \text { and } \quad v=q p .
$$

We define a mapping c : $\Sigma^{*} \rightarrow \Sigma^{*}$, called cyclic permutation, by the formulas

$$
\begin{aligned}
\mathrm{c}(1) & =1 \\
\mathrm{c}\left(a_{1} \ldots a_{n}\right) & =a_{2} \ldots a_{n} a_{1},
\end{aligned}
$$

where $a_{1}, \ldots, a_{n} \in \Sigma$. The equivalent definition of the conjugacy of x and y can be expressed as: words x and y are conjugates if there exists an integer k such that $x=\mathrm{c}^{k}(y)$.

As a consequence of Lemma 2.5 we have the following useful lemma and its corollary.

Lemma 2.8. [LeS] Let $u, v \in \Sigma^{+}$. The primitive roots of u and v are conjugates if and only if the words $u^{\mathbb{N}}$ and $v^{\mathbb{N}}$ have a common factor of length at least $|u|+|v|-\operatorname{gcd}(|u|,|v|)$.

Corollary 2.9. If words u and v are conjugates then u is primitive if and only if v is primitive.

The last, less obvious but very useful, characterization of a pair of conjugate words is formulated in the following lemma.

Lemma 2.10. [Lo] Two non-empty words u and v satisfy the relation

$$
u t=t v
$$

for some word t if and only if there exist words p and q such that $p q$ is primitive and

$$
u=(p q)^{i}, \quad v=(q p)^{i}, \quad \text { and } \quad t \in p(q p)^{*} \quad \text { for some } i \geq 1,
$$

i.e., u and v are conjugates.

Chapter 3

Defect theorems for bi-infinite words

The goal of this chapter is to look for defect theorems for bi-infinite words. In a strict sense such results do not exist:

Example 3.1. The set $X=\{a b, b a\}$ is a code and of the combinatorial rank 2, although the bi-infinite word $(a b)^{\mathbb{Z}}$ possesses two disjoint, and even non-shiftequivalent, X-factorizations:

i.e., the set X satisfies a bi-infinite non-trivial relation $(a b)^{\mathbb{Z}}=(b a)^{\mathbb{Z}}$.

However, we are going to prove several results which can be viewed as defect theorems for bi-infinite words. In Section 3.1 we will prove that if a non-periodic bi-infinite word w has two different X-factorizations then the combinatorial rank $\operatorname{rank}_{\mathrm{c}}(X)$ of X is less than $\operatorname{card}(X)$. In Section 3.2 we will refine this result for the sets X containing only two elements.

In first two sections we will also discuss the maximal number of X-ambiguous bi-infinite words, showing that if X is a finite set of the maximal combinatorial rank then this number is always finite, and moreover, it is at most 2 , if X is a binary code.

3.1 The general case

In this section we prove a defect theorem for bi-infinite words. Frequently we illustrate our proofs by pictures. In these pictures a horizontal double line

Figure 3.1: An illustration of $\left(F_{1} \triangleright F_{2}, X\right)$-difference $t=w_{n} \ldots w_{m-1}$. Note that $F_{1}(i)=n$ and $F_{2}(j+1)=m$.
expresses a bi-infinite word with two X-factorizations F_{1}, F_{2}. The sequences of words in the factorization F_{1} are depicted below the line by consecutive arcs, similarly the sequences of words in F_{2} are depicted by arcs, which are above the line. For example, in Figure 3.1 we consider words $\alpha_{w, F_{1}}(i), \alpha_{w, F_{2}}(j) \in X$, such that the words $\alpha_{w, F_{1}}(i)$ are factors of w defined by the factorization F_{1} and the words $\alpha_{w, F_{2}}(j)$ are factors of w defined by F_{2}.

Consider a finite non-empty set $X \subseteq \Sigma^{+}$and an X-ambiguous bi-infinite word w possessing X-factorizations F_{1} and F_{2}. The set of starting positions of one factorization $\left(F_{1}(\mathbb{Z})\right.$ or $\left.F_{2}(\mathbb{Z})\right)$ factorizes the bi-infinite word w into words of X. The set of starting positions of both factorizations, $F_{1}(\mathbb{Z}) \cup F_{2}(\mathbb{Z})$, factorizes w into some other words, which we call X-differences.

Formally, for every starting position $n \in F_{1}(\mathbb{Z})$ find the minimal starting position $m \in F_{2}(\mathbb{Z})$ such that $n \leq m$. Since F_{2} is a growing function we know that such a starting position exists. We call the word

$$
t=w_{n} w_{n+1} \ldots w_{m-1}
$$

an $\left(F_{1} \triangleright F_{2}, X\right)$-difference, and we say that there is an occurrence of the ($F_{1} \triangleright$ $\left.F_{2}, X\right)$-difference t in w at the position n, or, shortly, that n is an occurrence of the ($F_{1} \triangleright F_{2}, X$)-difference t. The situation is depicted in Figure 3.1.

Similarly, for every starting position $n \in F_{1}(\mathbb{Z})$ find the maximal starting position $m \in F_{2}(\mathbb{Z})$ such that $m \leq n$. We call the word

$$
t=w_{m} w_{m+1} \ldots w_{n-1}
$$

an $\left(F_{1} \triangleleft F_{2}, X\right)$-difference, and we say that there is an occurrence of the ($F_{1} \triangleleft$ $\left.F_{2}, X\right)$-difference t in w at the position n.

In Figure 3.2 we can see an example how factorizations F_{1} and F_{2} factorize the bi-infinite word w into different types of X-differences.

We define the following sets of X-differences:

Figure 3.2: An example how factorizations F_{1} and F_{2} factorize the bi-infinite word w into ($F_{1} \triangleright F_{2}, X$)-differences (dotted rectangles), $\left(F_{1} \triangleleft F_{2}, X\right)$-differences (right-oblique hatched rectangles), ($F_{2} \triangleright F_{1}, X$)-differences (gray rectangles) and ($F_{2} \triangleleft F_{1}, X$)-differences (left-oblique hatched rectangles).

- $\operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)$ is the set of all $\left(F_{1} \triangleright F_{2}, X\right)$-differences in w;
- $\operatorname{Diff}_{X}\left(w, F_{1} \triangleleft F_{2}\right)$ is the set of all $\left(F_{1} \triangleleft F_{2}, X\right)$-differences in w;
- $\operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{2}\right\} \triangleright\right)=\operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right) \cup \operatorname{Diff}_{X}\left(w, F_{2} \triangleright F_{1}\right)$.

For every position $n \in F_{1}(\mathbb{Z})$ there is an ($F_{1} \triangleright F_{2}, X$)-difference t and an ($F_{1} \triangleleft F_{2}, X$)-difference t^{\prime} in w at the position n. Moreover, $t t^{\prime} \in X$ is a factor of w defined by the factorization F_{2}. Note also that

$$
\begin{aligned}
& \operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right) \subseteq \operatorname{Pref}\left(X^{+}\right) \cap \operatorname{suff}(X) \quad \text { and } \\
& \operatorname{Diff}_{X}\left(w, F_{1} \triangleleft F_{2}\right) \subseteq \operatorname{pref}(X) \cap \operatorname{Suff}\left(X^{+}\right) .
\end{aligned}
$$

Further, we define the following sets of occurrences:

- $\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)$ is the set of all occurrences of $\left(F_{1} \triangleright F_{2}, X\right)$-difference t in w;
- $\operatorname{Occ}_{X}\left(w, F_{1} \triangleleft F_{2}, t\right)$ is the set of all occurrences of $\left(F_{1} \triangleleft F_{2}, X\right)$-difference t in w.

Clearly, the sets $\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)$ with $t \in \operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)$ (resp. Occ ${ }_{X}\left(w, F_{1} \triangleleft\right.$ $\left.F_{2}, t\right)$ with $\left.t \in \operatorname{Diff}_{X}\left(w, F_{1} \triangleleft F_{2}\right)\right)$ form a decomposition of the set of starting positions $F_{1}(\mathbb{Z})$. Note also that

$$
\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)+|t| \subseteq F_{2}(\mathbb{Z}) \quad \text { and } \quad \operatorname{Occ}_{X}\left(w, F_{1} \triangleleft F_{2}, t\right)-|t| \subseteq F_{2}(\mathbb{Z}) .
$$

Observation 3.1. If there is a position $n \in F_{1}(\mathbb{Z}) \cap F_{2}(\mathbb{Z})$ (hence, factorizations F_{1} and F_{2} are not disjoint) then there is an occurrence of the ($F_{1} \triangleright F_{2}, X$)-difference (resp. of the ($F_{1} \triangleleft F_{2}, X$)-difference) 1 at the position n. Obviously, we have

$$
\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, 1\right)=\operatorname{Occ}_{X}\left(w, F_{1} \triangleleft F_{2}, 1\right)=F_{1}(\mathbb{Z}) \cap F_{2}(\mathbb{Z}) .
$$

Hence, if F_{1} and F_{2} are disjoint then $1 \notin \operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)$, $\operatorname{Diff}_{X}\left(w, F_{1} \triangleleft F_{2}\right)$.

Figure 3.3: An illustration of correspondence between occurrences of the ($F_{1} \triangleright F_{2}, X$)-difference t in w and the ($F_{1}^{\mathrm{R}} \triangleleft F_{2}^{\mathrm{R}}, X^{\mathrm{R}}$)-difference t^{R} in w^{R}. Note that $m=n+|t|$ and, for example, by $(2.2), \alpha_{w^{\mathrm{R}}, F_{2}^{\mathrm{R}}}(-j)=\left(\alpha_{w, F_{2}}(j)\right)^{\mathrm{R}}$.

Observation 3.2. If we take the mirror image of bi-infinite word w, then an ($F_{1} \triangleright F_{2}, X$)-differences t becomes the ($F_{1}^{\mathrm{R}} \triangleleft F_{2}^{\mathrm{R}}, X^{\mathrm{R}}$)-difference t^{R}, i.e.,

$$
\operatorname{Diff}_{X^{\mathrm{R}}}\left(w^{\mathrm{R}}, F_{1}^{\mathrm{R}} \triangleleft F_{2}^{\mathrm{R}}\right)=\left(\operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)\right)^{\mathrm{R}}
$$

It is easy to check, see Figure 3.3, that we have the following equality for the sets of occurrences of the $\left(F_{1} \triangleright F_{2}, X\right)$-difference t in w and the $\left(F_{1}^{\mathrm{R}} \triangleleft F_{2}^{\mathrm{R}}, X^{\mathrm{R}}\right)$ difference t^{R} in w^{R} :

$$
\operatorname{Occ}_{X^{\mathrm{R}}}\left(w^{\mathrm{R}}, F_{1}^{\mathrm{R}} \triangleleft F_{2}^{\mathrm{R}}, t^{\mathrm{R}}\right)=-\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)-1 .
$$

Observation 3.3. The following claims about the numbers of X-differences and their occurrences follow immediately:

- since $\operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right) \subseteq \operatorname{Pref}\left(X^{+}\right) \cap \operatorname{suff}(X)$, there is only finitely many of ($F_{1} \triangleright F_{2}, X$)-differences;
- there is infinitely many of occurrences of $\left(F_{1} \triangleright F_{2}, X\right)$-differences;
- by pigeon hole principle the above claims imply that there is an $\left(F_{1} \triangleright F_{2}, X\right)$ difference with infinitely many of its occurrences.

Figure 3.4: An example of a finite t-pair $\left(f_{1}, f_{2}\right), t \in \operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)$. There is an occurrence of an ($F_{1} \triangleright F_{2}, X$)-difference t^{\prime} between occurrences n_{1} and n_{2} of t, but since n_{1} and n_{2} are consecutive, we have necessarily $t^{\prime} \neq t$.

Let w be a bi-infinite word possessing X-factorizations F_{1} and F_{2}, and let $t \in \operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)$ be an $\left(F_{1} \triangleright F_{2}, X\right)$-difference. We say that two occurrences of $t, n_{1}, n_{2} \in \operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)$, with $n_{1}<n_{2}$, are consecutive if the is no occurrence $n \in \operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)$ such that $n_{1}<n<n_{2}$.

Consider two consecutive occurrences $n_{1}<n_{2}$ of an ($F_{1} \triangleright F_{2}, X$)-difference t. Let the factor of the bi-infinite word w between the beginnings of occurrences of t at positions n_{1} and n_{2} be a word f_{1}, and similarly, the factor of w between the ends of the occurrences of t at positions n_{1} and n_{2} be a word f_{2}. We will call the pair of words $\left(f_{1}, f_{2}\right)$ a finite t-pair. An example of a finite t-pair is in Figure 3.4.

Formally, a finite t-pair is a pair of words $\left(f_{1}, f_{2}\right)$ such that

$$
\begin{aligned}
& f_{1}=w_{n_{1}} w_{n_{1}+1} \ldots w_{n_{2}-1} \\
& f_{2}=w_{n_{1}+|t|} w_{n_{1}+|t|+1} \ldots w_{n_{2}+|t|-1}
\end{aligned}
$$

where $n_{1}<n_{2}$ are consecutive occurrences of an $\left(F_{1} \triangleright F_{2}, X\right)$-difference t. Since, $\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right) \subseteq F_{1}(\mathbb{Z})\left(\right.$ resp. $\left.\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)+|t| \subseteq F_{2}(\mathbb{Z})\right)$ we have that $f_{1} \in X^{+}$(resp. $f_{2} \in X^{+}$). Notice also that for any finite t-pair $\left(f_{1}, f_{2}\right)$ we have that $f_{1} t=t f_{2}$.

Further, assume that for an ($F_{1} \triangleright F_{2}, X$)-difference t, the set of occurrences $\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)$ has a maximum. Let it be n. Then, an infinite t-pair is a pair of infinite words $\left(f_{1}, f_{2}\right)$ such that

$$
\begin{aligned}
& f_{1}=w_{n} w_{n+1} \cdots, \\
& f_{2}=w_{n+|t|} w_{n+|t|+1} \cdots .
\end{aligned}
$$

Similarly, we have that $f_{1}, f_{2} \in X^{\mathbb{N}}$ and $f_{1}=t f_{2}$. Note also that for every $t \in \operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)$ there is at most one infinite t-pair.

Finally, a t-pair is either a finite, or an infinite t-pair. In the same way one can define t-pairs also for $t \in \operatorname{Diff}_{X}\left(w, F_{1} \triangleleft F_{2}\right)$, see Figure 3.5.

Figure 3.5: An example of a finite t-pair $\left(f_{1}, f_{2}\right), t \in \operatorname{Diff}_{X}\left(w, F_{1} \triangleleft F_{2}\right)$.

An essential tool for proving the defect theorem for bi-infinite words is the Graph Lemma (Lemma 2.3). To use the Graph Lemma we have to be sure that all words involved are non-empty, hence we would like to exclude the cases when there are X-differences t with $t=1$. By Observation 3.1, it is enough to assume that the X-factorizations of an X-ambiguous bi-infinite word are disjoint. First, let us deal with the case when the X-factorizations are not disjoint.

Lemma 3.1. Let $X \subseteq \Sigma^{+}$be a finite non-empty set and w an X-ambiguous bi-infinite word possessing two different joint X-factorizations F_{1} and F_{2}. Then $\operatorname{rank}_{\mathrm{c}}(X)<\operatorname{card}(X)$.

Proof. The result follows by Lemma 2.3. Indeed, the parts of factorizations F_{1} and F_{2} to the right (respectively, to the left) from the place where they are joint form an infinite relation

$$
\alpha_{w, F_{1}}(i) \alpha_{w, F_{1}}(i+1) \cdots=\alpha_{w, F_{2}}(j) \alpha_{w, F_{2}}(j+1) \ldots
$$

over X (respectively,

$$
\alpha_{w, F_{1}}(i-1)^{\mathrm{R}} \alpha_{w, F_{1}}(i-2)^{\mathrm{R}} \cdots=\alpha_{w, F_{2}}(j-1)^{\mathrm{R}} \alpha_{w, F_{2}}(j-2)^{\mathrm{R}} \cdots
$$

over X^{R}). Since the factorizations are different, at least one of these two relations is non-trivial.

In the case of disjoint X-factorizations we have the following crucial lemma:
Lemma 3.2. Let $X \subseteq \Sigma^{+}$be a finite non-empty set, w an X-ambiguous biinfinite word possessing two disjoint X-factorization F_{1} and F_{2}, and t an $\left(F_{1} \triangleright\right.$ $\left.F_{2}, X\right)$-difference (resp. an $\left(F_{1} \triangleleft F_{2}, X\right)$-difference). If there exist two different t-pairs $\left(f_{1}, f_{2}\right)$ and $\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ then $\operatorname{rank}_{\mathrm{c}}(X)<\operatorname{card}(X)$.

The situation considered in Lemma 3.2, in the case when both t-pairs are finite, is depicted in Figure 3.6.

Figure 3.6: An illustration of the situation considered in Lemma 3.2: $t \in \operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}\right)$ and $f_{1}, f_{1}^{\prime}, f_{2}, f_{2}^{\prime} \in X^{+}$.

Figure 3.7: An illustration of the situation of the proof in the case $\left|p_{1}\right|>\left|t p_{2}\right|$.

Proof. We will consider only the case when $t \in \operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)$ and both t pairs $\left(f_{1}, f_{2}\right)$ and $\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ are finite. The reader can check that in all other cases the proof is essentially the same (all what is needed is to change the notation in some places). By Observation 3.1, t is non-empty.

Let $p_{i} \in X^{*}$, be the longest common prefix of f_{i}, f_{i}^{\prime} over the alphabet X and $r_{i}, r_{i}^{\prime} \in X^{*}$ their corresponding suffices, i.e., we have that $f_{i}=p_{i} r_{i}, f_{i}^{\prime}=p_{i} r_{i}^{\prime}$, for $i=1,2$. If $\left|p_{1}\right|=\left|t p_{2}\right|$ then the factorizations are not disjoint, a contradiction. Therefore, we will consider only two cases: either $\left|p_{1}\right|>\left|t p_{2}\right|$, or $\left|p_{1}\right|<\left|t p_{2}\right|$.
Case $\left|p_{1}\right|>\left|t p_{2}\right|$. Let $p_{1}=t p_{2} s$, for some $s \in \Sigma^{+}$. The situation is depicted in Figure 3.7. Since $\left|r_{2}\right|>|s|$ (resp. $\left|r_{2}^{\prime}\right|>|s|$), both r_{2} and r_{2}^{\prime} must be nonempty. Let words $x, x^{\prime} \in X$ be the first letters of r_{2}, r_{2}^{\prime} over the alphabet X, i.e., $r_{2}=x q_{2}$ and $r_{2}^{\prime}=x^{\prime} q_{2}^{\prime}$, for some $q_{2}, q_{2}^{\prime} \in X^{*}$. By definition of words r_{2} and r_{2}^{\prime}, necessarily $x \neq x^{\prime}$. We have the following three equations over the set $X \cup\{t, s\} \subseteq \Sigma^{+}:$

$$
s r_{1} t=r_{2}=x q_{2}, \quad s r_{1}^{\prime} t=r_{2}^{\prime}=x^{\prime} q_{2}^{\prime}, \quad t p_{2} s=p_{1}
$$

Since $x \neq x^{\prime}$, the dependency graph of $X \cup\{t, s\}$ (see Section 2.3) has at least 3 edges which do not form a triangle. Consequently, the number of connected components of the graph is at most $\operatorname{card}(X)-1$. By Lemma 2.3, we obtain

$$
\operatorname{rank}_{\mathrm{c}}(X) \leq \operatorname{rank}_{\mathrm{c}}(X \cup\{t, s\}) \leq \operatorname{card}(X)-1 .
$$

Figure 3.8: An illustration of the situation of the proof in the case $\left|p_{1}\right|<\left|t p_{2}\right|$.

Figure 3.9: An illustration of the situation of the proof in the case when $\left|p_{1}\right|<\left|t p_{2}\right|$ and $r_{1}=r_{2}=1$.

Case $\left|p_{1}\right|<\left|t p_{2}\right|$. Let $p_{1} s=t p_{2}$, for some $s \in \Sigma^{+}$. The situation is depicted in Figure 3.8. If both r_{1} and r_{1}^{\prime} are non-empty, we obtain, as in the previous case, the following equations over $X \cup\{t, s\} \subseteq \Sigma^{+}$:

$$
s r_{2}=r_{1} t=x q_{1} t, \quad s r_{2}^{\prime}=r_{1}^{\prime} t=x^{\prime} q_{1}^{\prime} t, \quad t p_{2}=p_{1} s
$$

where $r_{1}=x q_{1}$ and $r_{1}^{\prime}=x^{\prime} q_{1}^{\prime}$ with $x, y \in X$ and $q_{1}, q_{1}^{\prime} \in X^{*}$. By Lemma 2.3, we obtain a defect effect:

$$
\operatorname{rank}_{\mathrm{c}}(X) \leq \operatorname{rank}_{\mathrm{c}}(X \cup\{t, s\}) \leq \operatorname{card}(X)-1
$$

Hence, assume that, for instance, $r_{1}=1$, implying $t=s r_{2}$. This contradicts the definition of ($F_{1} \triangleright F_{2}, X$)-differences, unless also $r_{2}=1$. We have that $p_{1}=f_{1}, p_{2}=f_{2}$ and $s=t$, see Figure 3.9. Let $x \in X$ be the last letter over the alphabet X of f_{2} and $y \in X$ the first letter over X of r_{1}^{\prime} (note that $r_{1}^{\prime} \neq 1$, otherwise the t-pairs $\left(f_{1}, f_{2}\right)$ and $\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ are the same). Since $\left(f_{1}, f_{2}\right)$ is a t-pair and t is an $\left(F_{1} \triangleright F_{2}, X\right)$-difference, we have that $|t|<|x|$. Hence, there is an occurrence of t at the starting position of y, cf. Figure 3.9, which is a contradiction with the fact that $\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ is a t-pair.

Remark 3.1. Note that the inequality

$$
\operatorname{rank}_{\mathrm{c}}(X) \leq \operatorname{rank}_{\mathrm{c}}(X \cup\{t, s\}),
$$

used in the proof above, does not hold in general for other types of rank. Indeed, consider any prefix code X over the alphabet $\{a, b\}$. If we take $t=a$ and $s=b$ then both the free and the prefix ranks of the set $X \cup\{t, s\}$ are equal to 2 , while the free and prefix ranks of the set X are equal to $\operatorname{card}(X)$.

As a consequence of the observations and the lemmas above we obtain the defect theorem for bi-infinite words.

Theorem 3.3. Let $X \subseteq \Sigma^{+}$be a finite non-empty set and w an X-ambiguous bi-infinite word possessing two different X-factorizations F_{1} and F_{2}. The combinatorial rank of X is less than $\operatorname{card}(X)$, or both the word w and the X-factorizations F_{1} and F_{2} are periodic. Moreover, if the combinatorial rank of X equals to card (X) then the number of X-ambiguous bi-infinite words is at most $\operatorname{size}(X)-\operatorname{card}(X)$, in particular, it is finite.
Proof. If F_{1} and F_{2} are not disjoint the result follows by Lemma 3.1. Let t be any of the ($F_{1} \triangleright F_{2}, X$)-differences with infinitely many occurrences (there is at least one, cf. Observation 3.3). This means that the set $\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)$ is not bounded.

To prove that the bi-infinite word w is periodic we need to divide it completely into t-pairs. This can be done, $c f$. the definition of t-pairs, only if the set $\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)$ is not bounded from the left, i.e., it does not have a minimum. Without lost of generality we can assume that. Indeed, if the set $\operatorname{Occ}_{X}\left(w, F_{1} \triangleright F_{2}, t\right)$ has a minimum then, since it is not bounded, it is not bounded from the right. In such a case the set $\operatorname{Occ}_{X^{\mathrm{R}}}\left(w^{\mathrm{R}}, F_{1}^{\mathrm{R}} \triangleleft F_{2}^{\mathrm{R}}, t^{\mathrm{R}}\right)$ is not bounded from the left, hence we can consider the mirror image of w instead.

Therefore, assume that the bi-infinite word w is entirely divided into (finite and possibly one infinite) t-pairs. If any two of these t-pairs are not the same then, by Lemma 3.2, we have that $\operatorname{rank}_{\mathrm{c}}(X)<\operatorname{card}(X)$.

Now, assume that $\operatorname{rank}_{\mathrm{c}}(X)=\operatorname{card}(X)$. By Lemma 3.2, there is a unique t pair $\left(f_{1}^{t}, f_{2}^{t}\right)$, and therefore, the bi-infinite word, as well as both X-factorizations F_{1} and F_{2}, are periodic with

$$
w=\left(f_{1}^{t}\right)^{\mathbb{Z}}=\left(f_{2}^{t}\right)^{\mathbb{Z}} .
$$

Further, since every X-ambiguous bi-infinite word w is periodic, every ($F_{1} \triangleright$ F_{2}, X)-difference t (resp. every ($F_{2} \triangleright F_{1}, X$)-difference t) has infinitely many occurrences in w, i.e., as above, there is the unique t-pair, which uniquely specifies the whole bi-infinite word w. Therefore, any two different X-ambiguous bi-infinite words w and w^{\prime} do not contain any common X-difference:

$$
\operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{2}\right\} \triangleright\right) \cap \operatorname{Diff}_{X}\left(w^{\prime},\left\{F_{1}, F_{2}\right\} \triangleright\right)=\emptyset .
$$

By Observation 3.3, $\operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{2}\right\} \triangleright\right) \subseteq \operatorname{Pref}\left(X^{+}\right) \cap \operatorname{suff}(X)$, hence there is at most

$$
\operatorname{card}\left(\operatorname{Pref}\left(X^{+}\right) \cap \operatorname{suff}(X)\right) \leq \operatorname{card}(\operatorname{suff}(X)) \leq \operatorname{size}(X)-\operatorname{card}(X)
$$

X-ambiguous bi-infinite words.
We will need the following definition to state a corollary of Theorem 3.3 which we will use later. Consider a periodic bi-infinite word w and a set $X \subseteq \Sigma^{+}$such that

$$
w=\left(x_{1} x_{2} \ldots x_{k}\right)^{\mathbb{Z}}
$$

with $x_{1}, \ldots, x_{k} \in X$. Let $\left[x_{1} x_{2} \ldots x_{k}\right]_{w}^{\mathbb{Z}}$ denote the set of all X-factorizations F of w such that the sequence of factors of w by F is

$$
\ldots, x_{1}, x_{2}, \ldots, x_{k}, x_{1}, x_{2}, \ldots, x_{k}, \ldots
$$

Obviously, the factorizations in $\left[x_{1} x_{2} \ldots x_{k}\right]_{w}^{\mathbb{Z}}$ are periodic and pairwise shiftequivalent.

Corollary 3.4. Let $X \subseteq \Sigma^{+}$be a finite non-empty set such that $\operatorname{rank}_{\mathrm{c}}(X)=$ $\operatorname{card}(X)$ and w an X-ambiguous bi-infinite word possessing two different X-factorizations F_{1} and F_{2}. For every t-pair $\left(f_{1}, f_{2}\right)$ we have

$$
w=f_{1}^{\mathbb{Z}}=f_{2}^{\mathbb{Z}}, \quad F_{1} \in\left[f_{1}\right]_{w}^{\mathbb{Z}} \quad \text { and } \quad F_{2} \in\left[f_{2}\right]_{w}^{\mathbb{Z}}
$$

Theorem 3.3 deserves a few comments.
First, the possibility that the two factorizations are both periodic cannot be ruled out, as the following example shows:

Example 3.2. Let $X=\{a b, b c, c a\}$. Then we have $\operatorname{rank}_{\mathrm{c}}(X)=\operatorname{rank}_{\mathrm{f}}(X)=$ $3=\operatorname{card}(X)$. Note also that the bi-infinite word $(a b c)^{\mathbb{Z}}$ has two disjoint, but shift-equivalent, X-factorizations:

Second, as the following example shows, the combinatorial rank cannot be replaced by the free rank, for instance. This latter remark is quite interesting since in all previous defect theorems, see [ChK], either of our notions of the rank, or even some others, can be used to witness the defect effect.

Example 3.3. Let $X=\{a, b a b, b a a b\}$. The word $(b a a)^{\mathbb{Z}}$ has two different X factorizations, namely the ones depicted as

They are clearly shift-equivalent. On the other hand the word

$$
w=\ldots b a b a b a a b a a b \cdots={ }^{\mathbb{N}}(b a) b(a a b)^{\mathbb{N}}
$$

also has two different X-factorizations, which, however, are not shift-equivalent

In the both cases above the two factorizations are disjoint. Clearly, $\operatorname{rank}_{\mathrm{c}}(X)=$ 2 , since $X \subseteq\{a, b\}^{+}$, but for no word s the inclusion $X \subseteq s^{+}$holds. On the other hand, since X is a prefix code we conclude that $\operatorname{rank}_{\mathrm{p}}(X)=\operatorname{rank}_{\mathrm{f}}(X)=3$.

Finally, the upper bound "size $(X)-\operatorname{card}(X)$ " for the number of X-ambiguous bi-infinite words in the case that $\operatorname{rank}_{\mathrm{c}}(X)=\operatorname{card}(X)$ can be, most likely, essentially improved. In fact, we conjecture that the upper bound is "card (X) ". In the next section we will show that this conjecture is true if the cardinality of the set X is 2 . The following example shows that we cannot expect a better upper bound.

Example 3.4. For arbitrary integer $n \geq 1$ let $X=\left\{a_{1} a_{1}, a_{2} a_{2}, \ldots, a_{n} a_{n}\right\}$ be a set of words over the alphabet $\left\{a_{1}, \ldots, a_{n}\right\}$. Clearly, $\operatorname{rank}_{\mathrm{c}}(X)=\operatorname{card}(X)$ and each of the periodic bi-infinite words $a_{1}^{\mathbb{Z}}, \ldots, a_{n}^{\mathbb{Z}}$ has two disjoint shift-equivalent factorizations, hence $\operatorname{card}(\operatorname{Amb}(X)) \geq n=\operatorname{card}(X)$.

The next example shows that the estimation ($c f$. the end of proof of Theorem 3.3)

$$
\operatorname{card}(\operatorname{Amb}(X)) \leq \operatorname{card}\left(\operatorname{Pref}\left(X^{+}\right) \cap \operatorname{suff}(X)\right)
$$

is not suitable for improving the upper bound.
Example 3.5. Let $n \geq 1$ be an integer and let $X=\left\{(a b)^{n},(b a)^{n}\right\}$. We have

$$
\operatorname{card}(\operatorname{pref}(X) \cap \operatorname{suff}(X))=4 n-2=\operatorname{size}(X)-\operatorname{card}(X),
$$

with the set X being a prefix code, and so $\operatorname{rank}_{\mathrm{c}}(X)=\operatorname{rank}_{\mathrm{p}}(X)=\operatorname{rank}_{\mathrm{f}}(X)=$ $\operatorname{card}(X)$. However, similarly as in Example 2.4, there exists only one X-ambiguous bi-infinite word $w=(a b)^{\mathbb{Z}}$. In fact, it possesses $2 n$ disjoint X-factorizations. For instance, if $n=2$, then the bi-infinite word $w=(a b)^{\mathbb{Z}}$ has the following 4 factorizations:

Let us number the above factorizations F_{1}, \ldots, F_{4} from up to down. Then

$$
\begin{aligned}
& \operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{2}\right\} \triangleright\right)=\{a, b a b\}, \\
& \operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{3}\right\} \triangleright\right)=\{b, a b a\}, \\
& \operatorname{Diff}_{X}\left(w,\left\{F_{2}, F_{3}\right\} \triangleright\right)=\{a b\}, \text { and } \\
& \operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{4}\right\} \triangleright\right)=\{b a\} .
\end{aligned}
$$

Hence, the sets of X-differences in w are disjoint, although they relate to the same bi-infinite word w. This property is not considered in the proof of Theorem 3.3.

However, we can refine the analysis of the last part of the proof of Theorem 3.3 to get a slightly better bound.

Theorem 3.5. Let $X \subseteq \Sigma^{+}$be a finite non-empty set. If $\operatorname{rank}_{\mathrm{c}}(X)=\operatorname{card}(X)$ then the number of X-ambiguous bi-infinite words is at most $\frac{1}{2} \operatorname{size}(X)$.

Proof. The main idea of the proof is based on the fact that the sets of X-differences $\operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{2}\right\} \triangleright\right)$ are singletons only in a special case, which cannot appear more often than $\operatorname{card}(X)$ times.

Indeed, let k be the number of X-ambiguous bi-infinite words for which the set $\operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{2}\right\} \triangleright\right)$ is a singleton (here F_{1} and F_{2} are any two different X-factorizations of the bi-infinite word w). Then

$$
\begin{aligned}
\operatorname{card}(\operatorname{Amb}(X)) & \leq k+\frac{\operatorname{card}\left(\operatorname{Pref}\left(X^{+}\right) \cap \operatorname{suff}(X)\right)-k}{2} \\
& \leq \frac{k}{2}+\frac{1}{2}(\operatorname{size}(X)-\operatorname{card}(X))
\end{aligned}
$$

Now, if we prove that $k \leq \operatorname{card}(X)$, we have that $\operatorname{card}(\operatorname{Amb}(X)) \leq \frac{1}{2} \operatorname{size}(X)$, and we are done.

Let us consider an X-ambiguous bi-infinite word w possessing X-factorizations F_{1} and F_{2} such that $\operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{2}\right\} \triangleright\right)=\{t\}$ is a singleton. Assume that there is an occurrence of $\left(F_{1} \triangleright F_{2}, X\right)$-difference t in w at a position n. Let i, j be integers such that $F_{1}(i)=n$ and $F_{2}(j)=n+|t|$. If $\left|\alpha_{w, F_{1}}(i)\right| \leq|t|$, see Figure 3.10, then there is an occurrence of an ($F_{1} \triangleright F_{2}, X$)-difference s at the position $m=n+\left|\alpha_{w, F_{1}}(i)\right|$. But this is impossible since s is a proper suffix of t and $\operatorname{Diff}_{X}\left(w, F_{1} \triangleright F_{2}\right)$ is a singleton.

Figure 3.10: The case $\left|\alpha_{w, F_{1}}(i)\right| \leq|t|$ of the proof of Theorem 3.5.

Figure 3.11: The case $\left|\alpha_{w, F_{1}}(i)\right|>|t|$ of the proof of Theorem 3.5.

Hence, assume that $\left|\alpha_{w, F_{1}}(i)\right|>|t|$. Then, the word s defined by the equation $\alpha_{w, F_{1}}(i)=t s$ is an $\left(F_{2} \triangleright F_{1}, X\right)$-difference with an occurrence in w at the position $l=n+|t|$, see Figure 3.11. Therefore, we have that $s=t$ and

$$
t t=\alpha_{w, F_{1}}(i) \in X .
$$

Clearly, there is at most $\operatorname{card}(X)$ words t which satisfy the condition $t t \in X$, and hence also at most $\operatorname{card}(X)$ sets $\operatorname{Diff}_{X}\left(w,\left\{F_{1}, F_{2}\right\} \triangleright\right)$ which are singletons.

3.2 The two-element case

The restriction of Theorem 3.3 to two-element sets yields the following consequence.

Corollary 3.6. Consider a binary set $X=\{\alpha, \beta\} \subseteq \Sigma^{+}$. Let w be an X ambiguous bi-infinite word possessing two different X-factorizations F_{1} and F_{2}. Then either the words α and β commute, or the bi-infinite word w and both the X-factorizations F_{1} and F_{2} are periodic.

In this section we will refine the result above: we will characterize all binary sets X allowing the existence of an X-ambiguous bi-infinite word. We will also prove, as conjectured in general in Section 3.1, that for any binary code X there are at most $\operatorname{card}(X)=2 X$-ambiguous bi-infinite words, and at most one X ambiguous bi-infinite word such that its X-factorizations contain together both elements of X. Actually, in the second case, it can happen that the both X factorizations consist of single elements of X, but then, necessarily, these two elements are different.

3.2.1 The defect theorem

Let X be a binary set containing non-empty words and let w be an X-ambiguous bi-infinite word. We will distinguish two cases. Either, the two factorizations of the X-ambiguous bi-infinite word w consist of only one element of X, or they they contain together both elements of X. In the first case, the situation is obvious: As an immediate consequence of Lemma 2.4 we have.

Claim 3.7. Consider a unary set $Y=\{\alpha\}$ with $\alpha \in \Sigma^{+}$. Let w be an $Y-$ ambiguous bi-infinite word possessing two different Y-factorizations F_{1} and F_{2}. Then α is not primitive and the factorizations $F_{1}, F_{2} \in[\alpha]_{w}^{\mathbb{Z}}$ are shift-equivalent.

The other case is more interesting. In this case we will say that an X ambiguous bi-infinite word is proper. Let us start with an auxiliary lemma and its two corollaries.

Lemma 3.8. Let p and q be non-empty words such that $p q$ is primitive and let $n \geq 1$ be an integer. If the pair ($p q, q p$) matches the word $p(q p)^{n}$ at a position (u, v) then one of the following conditions holds:
(i) $u=p$ and $v=(q p)^{n}$;
(ii) $n=1$ and there are a primitive word sand integers $i, j \geq 1$ such that

$$
u=p s^{i}, \quad v=s^{j} p \quad \text { and } \quad q=s^{i+j} ;
$$

(iii) $u=(p q)^{n}$ and $v=p$.

Figure 3.12: The all possibilities where the pair $(p q, q p)$ can match the word $p(q p)^{n}$.

Similarly, if the pair $(q p, p q)$ matches the word $p(q p)^{n}$ at a position (u, v) then one of the following conditions holds:
(i) $u=1$ and $v=p(q p)^{n}$;
(ii) $n=1$ and $|p|<|u|<|p q|$;
(iii) $u=p(q p)^{n}$ and $v=1$.

Proof. We will prove only the first part of the claim, since the second one can be proved in the same way. Assume that the pair $(p q, q p)$ matches the word $p(q p)^{n}$ at a position (u, v). If ($p q, q p$) matches the beginning (i.e., $u=1$) or the end of $p(q p)^{n}(i . e ., v=1)$ then, clearly, $p q=q p$, a contradiction with the primitiveness of $p q$. Otherwise, there are 5 possibilities, see Figure 3.12:
(1) $u=p$ and $v=(q p)^{n}$;
(2) $u=(p q)^{k}$ and $v=p(q p)^{n-k}$ for an integer $1 \leq k \leq n$;
(3) the pair matches the first p, i.e., u is a proper non-empty prefix of p;
(4) the pair matches the first q, i.e., $u=p t_{1}$ where t_{1} is a proper non-empty prefix of q;
(5) the pair matches anywhere after the first $p q$, but not at the end of any $(p q)^{k}$, with $1 \leq k \leq n$, i.e., $|u|>|p q|$ and $u \notin(p q)^{+}$.

Let us analyze all the cases. The case (1) is the case (i) of the lemma. In the case (2), if $k<n$ then $q p$ and $p(q p)^{n-k}$ are left comparable, and thus $p q=q p$, a contradiction. In the case (2) with $k=n$ we have the case (iii) of the lemma. In the case (3) the word $q p$ of the pair $(p q, q p)$ is an inner factor of the prefix $p q p$ of $p(q p)^{n}$. Hence, by Lemma 2.4, we have that $q p$ is non-primitive. By Corollary 2.9, this is a contradiction with the primitiveness of $p q$. Similarly, in

Figure 3.13: The situation in the case (4) with $n=1$.
the case (5) the word $p q$ of the pair $(p q, q p)$ is an inner factor of a factor $p q p$ of $p(q p)^{n}$, a contradiction.

Finally, in the case (4), if $n \geq 2$, the word $q p$ of the pair ($p q, q p$) is an inner factor of the factor $q p q$ of $p(q p)^{n}$ starting after the first p, again a contradiction. Hence, we have that $n=1$. The situation is depicted in Figure 3.13. It follows, by Lemma 2.4, that q is non-primitive, and that there are a primitive word s and integers $i, j \geq 1$ such that $u_{1}=s^{j}, u_{2}=s^{i}$ and $q=s^{i+j}$. This is evidently, the case (ii) of the lemma.

Lemma 3.8 has two straightforward corollaries.
Corollary 3.9. Let p and q be non-empty words such that $p q$ is primitive and $|p|=|q|$ and let $n \geq 1$ be an integer. Then the pair ($p q, q p$) does not match the word $p(q p)^{n}$ at any position.

Proof. Assume that $(p q, q p)$ matches $p(q p)^{n}$ at a position (u, v). By Lemma 3.8, we have to consider 3 cases.
Case (i). We have that $u=p$ and $p q$ are right comparable. Since $|p|=|q|$, this implies $p=q$, a contradiction with the primitiveness of $p q$.
Case (ii). Since $u=p s^{i}$ and $p q=p s^{i+j}$ are right comparable, we have that also p and $p s^{j}$ are right comparable. Since $\left|s^{j}\right|<|q|=|p|, s^{j}$ is a suffix of p. Similarly, we have that s^{i} is a prefix of p. By the length argument, $p=s^{i} s^{j}=q$, a contradiction.
Case (iii). The same as the case (i).
Corollary 3.10. Let p and q be non-empty words such that $p q$ is primitive and let $n \geq 1$ be an integer. Then $p(q p)^{n}$ and $q(p q)^{n}$ are not conjugates.

Proof. Assume that $p(q p)^{n}$ and $q(p q)^{n}$ are conjugates. Then necessarily

- $|p|=|q|$; and
- $p(q p)^{n}$ is a factor of $q(p q)^{n} q(p q)^{n}$, and hence, the pair ($p q, q p$) matches the word $p(q p)^{n}$.

By Corollary 3.9, this is a contradiction.

Figure 3.14: An illustration of a finite t-pair $\left(f_{1}, f_{2}\right)$. In the picture $f_{1} \in X^{+}$(resp. $f_{2} \in X^{+}$) is a product of factors of w by the factorization F_{1} (resp. by the factorization F_{2}).

Now we are ready to prove the main result of this section.
Theorem 3.11. Consider a binary set $X=\{\alpha, \beta\}$ with $\alpha, \beta \in \Sigma^{+}$. Let w be a proper X-ambiguous bi-infinite word possessing two different X-factorizations F_{1} and F_{2}. Then at least one of the following conditions is satisfied:
(i) α and β commute; or
(ii) the primitive roots of α and β are conjugates, $w=\alpha^{\mathbb{Z}}=\beta^{\mathbb{Z}}$, and $F_{1} \in[\alpha]_{w}^{\mathbb{Z}}$ and $F_{2} \in[\beta]_{w}^{\mathbb{Z}}$, or vice versa; or
(iii) there exists an integer $n \geq 1$ such that either $w=\left(\alpha \beta^{n}\right)^{\mathbb{Z}}$ and $F_{1}, F_{2} \in$ $\left[\alpha \beta^{n}\right]_{w}^{\mathbb{Z}}$ with α primitive, or $w=\left(\beta \alpha^{n}\right)^{\mathbb{Z}}$ and $F_{1}, F_{2} \in\left[\beta \alpha^{n}\right]_{w}^{\mathbb{Z}}$ with β primitive.

Observation 3.4. Note that in the case (iii), the factorizations F_{1} and F_{2} are necessarily shift-equivalent. Hence, by Lemma 2.4, in the case $w=\left(\alpha \beta^{n}\right)^{\mathbb{Z}}$ (resp. $w=\left(\beta \alpha^{n}\right)^{\mathbb{Z}}$), $\alpha \beta^{n}$ (resp. $\beta \alpha^{n}$) is non-primitive.

Proof. We can assume that α and β do not commute, otherwise we are in the case (i). In particular, by Lemma 3.1, the X-factorizations F_{1} and F_{2} are necessarily disjoint. Our goal is to find a finite t-pair $\left(f_{1}, f_{2}\right)$, see Figure 3.14. Then, by Corollary 3.4, we have an explicit characterization of the bi-infinite word w and its X-factorizations F_{1} and F_{2}.

It is enough to prove the theorem in the case when α and β are both primitive. Indeed, in all other cases we replace the set X by the set $\bar{X}=\{\rho(\alpha), \rho(\beta)\}$, and the X-factorizations F_{1} and F_{2} by \bar{X}-factorizations \bar{F}_{1} and \bar{F}_{2} defined in a natural way such that $F_{1}(\mathbb{Z}) \subseteq \bar{F}_{1}(\mathbb{Z})$ and $F_{2}(\mathbb{Z}) \subseteq \bar{F}_{2}(\mathbb{Z})$, and the claim will follow. If \bar{X}-factorizations \bar{F}_{1} and \bar{F}_{2} will become joint, we have the case (i). In the case (iii) with $w=\left(\rho(\alpha) \rho(\beta)^{n}\right)^{\mathbb{Z}}$ we have necessarily that $\rho(\alpha)=\alpha$, i.e., α is primitive. Similarly, in the case (iii) with $w=\left(\rho(\beta) \rho(\alpha)^{n}\right)^{\mathbb{Z}}, \beta$ is primitive.

Consider the factors of w defined by the X-factorization F_{1}. We have 3 possibilities: either $\operatorname{Fact}\left(w, F_{1}\right)=\{\alpha\}$, or $\operatorname{Fact}\left(w, F_{1}\right)=\{\beta\}$, or $\operatorname{Fact}\left(w, F_{1}\right)=$ $\{\alpha, \beta\}$. In the first case, if $\alpha \in \operatorname{Fact}\left(w, F_{2}\right)$, see Figure 3.15, we have a contradiction with the primitiveness of α, by Lemma 2.4. Therefore, $\operatorname{Fact}\left(w, F_{2}\right)=\{\beta\}$,

Figure 3.15: An illustration of the situation when $F_{1} \in[\alpha]_{w}^{\mathbb{Z}}$ and F_{2} produces α as a factor of w.

Figure 3.16: All possible coverings of the position $F_{1}(k+1)$ by a factor $\alpha_{w, F_{2}}(l)$.
and so, $F_{1} \in[\alpha]_{w}^{\mathbb{Z}}$ and $F_{2} \in[\beta]_{w}^{\mathbb{Z}}$. By Lemma 2.8, α and β are conjugates: the case (ii). A similar argument can be applied in the second case.

Finally, consider the case $\operatorname{Fact}\left(w, F_{1}\right)=\{\alpha, \beta\}$. Since, by Corollary 3.6, F_{1} is periodic, there is an integer $k \in \mathbb{Z}$ such that $\alpha_{w, F_{1}}(k)=\alpha$ and $\alpha_{w, F_{1}}(k+1)=\beta$. Without loss of generality we can assume that $|\alpha| \leq|\beta|$. In Figure 3.16 we can see all the possibilities, (a), (b) and (c), how a factor $\alpha_{w, F_{2}}(l)$ of w defined by F_{2}, for some integer $l \in \mathbb{Z}$, covers the position $F_{1}(k+1)$, i.e., $F_{2}(l)<F_{1}(k+1)<$ $F_{2}(l+1)$.

Case (a). If we forget about the relation between the lengths of α and β, this case is symmetric to the case (b). Hence, it is enough to prove the result in the case (b) without using the assumption about the lengths.

Case (b). We have that $\alpha_{w, F_{2}}(l)=\beta$. If the factor $\alpha_{w, F_{2}}(l+1)$ is also β then,

Figure 3.17: The situation in the case (b). Note that $z_{\mathrm{R}}=\alpha_{w, F_{1}}(k+2)$ and $z_{\mathrm{L}}=\alpha_{w, F_{2}}(l-1)$.

Figure 3.18: The situation in the case (b) when the sequences of β 's exceed α 's on both sides.
by Lemma 2.4, β is not primitive, a contradiction. Hence, we have the situation shown in Figure 3.17. Now, if $z_{\mathrm{R}}=\alpha$ or $z_{\mathrm{L}}=\alpha$ then $v_{1}=v_{2}$ and we have a v_{1}-pair ($\alpha \beta, \beta \alpha$). By Corollary 3.4, we are in the case (iii). Thus assume that $z_{\mathrm{R}}=z_{\mathrm{L}}=\beta$.

We can repeat the above consideration taking $\alpha_{w, F_{1}}(k+3)$ as z_{R} and $\alpha_{w, F_{2}}(l-$ 2) as z_{L}. Again, if z_{R} or z_{L} is equal to α, we arrive into the case (iii) with $w=\left(\alpha \beta^{2}\right)^{\mathbb{Z}}$. Otherwise, we will continue the same process until, either we find a t-pair $\left(\alpha \beta^{n}, \beta^{n} \alpha\right.$) for some integer $n \geq 1$, or the sequences of β 's exceed α 's, i.e., $\alpha_{w, F_{1}}(k)$ on the left side and $\alpha_{w, F_{2}}(l+1)$ on the right side. Note that, by the length argument, this will happen on both sides at the same time. The situation in the later case is depicted in Figure 3.18.

Now again, if $z_{\mathrm{L}}=\beta$ or $z_{\mathrm{R}}=\beta$ then, since $\left|v_{1}\right|=\left|v_{2}\right|$, we have that $v_{1}=v_{2}$, and hence we are again in the case (iii) with $w=\left(\alpha \beta^{n}\right)^{\mathbb{Z}}$. Thus assume that $z_{\mathrm{L}}=z_{\mathrm{R}}=\alpha$. We have $\beta=v_{3} t=t v_{4}$, which, by Lemma 2.10, yields

$$
v_{3}=(p q)^{m_{1}}, \quad v_{4}=(q p)^{m_{1}}, \quad t=p(q p)^{m_{2}}, \quad \text { and } \quad \beta=p(q p)^{m_{1}+m_{2}}
$$

for some words p and q such that $p q$ is primitive and some integers $m_{1} \geq 1$ and $m_{2} \geq 0$. We have the following two equations

$$
\begin{align*}
\alpha_{w, F_{1}}(k) & =\alpha=s_{1} \beta^{n-2} v_{3}=s_{1}\left[p(q p)^{m_{1}+m_{2}}\right]^{n-2}(p q)^{m_{1}} \quad \text { and } \\
\alpha_{w, F_{2}}(l+1) & =\alpha=v_{4} \beta^{n-2} s_{2}=(q p)^{m_{1}}\left[p(q p)^{m_{1}+m_{2}}\right]^{n-2} s_{2} \tag{3.1}
\end{align*}
$$

We observe that α ends with $p q$ and starts with $q p$. This means that the pair of words ($p q, q p$) matches the word $\alpha_{w, F_{1}}(k+n)=\beta=p(q p)^{m_{1}+m_{2}}$ at the position $F_{2}(l+2)$, cf. the bigger black point in Figure 3.18. By Lemma 3.8, we have 3 possibilities:

Case $s_{2}=p$. Note that, by the length argument, $\left|s_{1}\right|=\left|s_{2}\right|$. Thus, since s_{1} is a suffix of $\beta=p(q p)^{m_{1}+m_{2}}$, we have that $s_{1}=p$. Equations (3.1) yield that p and q commute, a contradiction with the primitiveness of $p q$.

Figure 3.19: The situation in the case (c).
Case $s_{2}=p s^{i}$ and $q=s^{i+j}$ for some word s and integers $i, j \geq 1$. As above, we have that $s_{1}=s^{i} p$. Since $i<i+j$, Equations (3.1) yield a non-trivial equation over the set $\{p, s\}$, again a contradiction.
Case $s_{2}=(p q)^{m_{1}+m_{2}}$ and $v_{2}=p$. We have that $s_{1}=(q p)^{m_{1}+m_{2}}$. To avoid the contradiction above, we have to assume that $m_{2}=0$. Then, Equations (3.1) will become identical. Note that we have $\alpha, \beta \in\{p, q\}^{+}$. Hence the following infinite equation, again $c f$. Figure 3.18,

$$
\begin{equation*}
v_{2} \alpha_{w, F_{1}}(k+n+1) \alpha_{w, F_{1}}(k+n+2) \cdots=\alpha \alpha_{w, F_{2}}(l+3) \alpha_{w, F_{2}}(l+4) \cdots \tag{3.2}
\end{equation*}
$$

is an equation over the set $\{p, q\}$. Since $v_{2}=p$ and, by Equations (3.1), $\alpha=$ $(q p)^{m_{1}}\left[p(q p)^{m_{1}}\right]^{n-2}(p q)^{m_{1}}$, Equation (3.2) is non-trivial. So again, we have a contradiction.

We concluded that the case when $z_{\mathrm{R}}=\alpha$ cannot happen.
Case (c). Using the same considerations, as in the previous case, either we find a t-pair ($\alpha^{n} \beta, \beta \alpha^{n}$): the case (iii) with $w=\left(\beta \alpha^{n}\right)^{\mathbb{Z}}$, for some integer $n \geq 1$, or we come to the situation depicted in Figure 3.19. In the second case we can immediately write the following equations

$$
\begin{align*}
& v_{1} v_{3}=\alpha_{w, F_{1}}(k+1-n)=\alpha=\alpha_{w, F_{2}}(l+n)=v_{4} v_{2}, \quad \text { and } \tag{3.3}\\
& \quad v_{3} \alpha^{n-1} \beta=v_{3} \alpha_{w, F_{1}}(k+2-n) \ldots \alpha_{w, F_{1}}(k+1) \\
& =\alpha_{w, F_{2}}(l) \ldots \alpha_{w, F_{2}}(l+n-1) v_{4}=\beta \alpha^{n-1} v_{4} \tag{3.4}
\end{align*}
$$

for some words v_{1}, v_{2}, v_{3} and v_{4} such that $\left|v_{1}\right|=\left|v_{2}\right|$ and $\left|v_{3}\right|=\left|v_{4}\right|, c f$. Figure 3.19. We will distinguish two possibilities:

Case $z_{\mathrm{R}}=\alpha$. As it is shown in Figure 3.19, $v_{3} v_{1}$ is a prefix of $\alpha_{w, F_{2}}(l)=\beta=$ $\alpha_{w, F_{1}}(k+2)$. Hence, the pair $\left(v_{3}, v_{1}\right)$ matches the word $\alpha_{w, F_{2}}(l+n) \alpha_{w, F_{2}}(l+$ $n+1)=\alpha \alpha=v_{1} v_{3} v_{1} v_{3}$. Since $\alpha=v_{1} v_{3}$ is primitive, the match must be at the position $\left(v_{1} v_{3}, v_{1} v_{3}\right)$. Then, necessarily, $v_{2}=v_{3}$, say equal to p, and $v_{1}=v_{4}$,

Figure 3.20: The situation in the case (c) with $z_{\mathrm{R}}=\alpha$.

Figure 3.21: The situation in the case (c) with $z_{\mathrm{R}}=\beta$.
say equal to q, cf. Figure 3.20. Moreover, we have that $|p|=\left|v_{3}\right|=\left|v_{4}\right|=|q|$. Consequently, Equation (3.4) implies that the words $v_{3} \alpha^{n-1}=p(q p)^{n-1}$ and $\alpha^{n-1} v_{4}=q(p q)^{n-1}$ are conjugates. By Corollary 3.10, this is a contradiction.

Case $z_{\mathrm{R}}=\beta$. The situation is depicted in Figure 3.21. By the length argument, it is obvious that $|t|=\left|v_{2}\right|=\left|v_{1}\right|$. Hence, since v_{1} is a suffix of $\alpha_{w, F_{2}}(l-1)=$ $\beta=\alpha_{w, F_{2}}(l+n+1), c f$. Figure 3.19, we have that $t=v_{1}$. Similarly, since $v_{2} v_{4}$ (resp. $v_{4} t$) is a suffix of $\alpha_{w, F_{1}}(k+1)=\beta$ (resp. $\alpha_{w, F_{2}}(l+n+1)=\beta$) of the length $|\alpha|$, necessarily, $v_{2} v_{4}=v_{4} t=v_{4} v_{1}$. We obtain the following system of equations with unknowns $Y=\left\{\alpha, \beta, v_{1}, v_{2}, v_{3}, v_{4}\right\}$:

$$
\begin{aligned}
v_{2} v_{4} & =v_{4} v_{1} & & \text { (by the argument above) }, \\
\alpha & =v_{1} v_{3}=v_{4} v_{2} & & \text { (by Equation }(3.3)), \\
v_{3} \alpha^{n-1} \beta & =\beta \alpha^{n-1} v_{4} & & \text { (by Equation (3.4)), } \\
v_{2} \beta & =v_{2} \alpha_{w, F_{2}}(l+n+1) & & \\
& =\alpha_{w, F_{1}}(k+2) v_{1}=\beta v_{1} & & (c f . \text { Figure 3.21). }
\end{aligned}
$$

The dependency graph associated with this system is connected, and hence all unknowns commute, in particular α and β, a contradiction. This completes the proof of the theorem.

3.2.2 Comments on Theorem 3.11

Theorem 3.11 deserves a few comments.
The theorem is related to the main result of [LRLR]:
Theorem 3.12. [LRLR] Let $X=\{x, y\} \subset A^{+}$be a code. If $w \in X^{+}$such that $|w| \geq|x|+2|y|$ admits an X-interpretation disjoint from w then one of the following conditions is satisfied:
(1) x and y are powers of two conjugates, and $w \in x^{+} \cup y^{+}$;
(2) x and y are not powers of two conjugates, and there is a non-primitive word $z \in x^{*} y \cup x y^{*}$ such that w is a factor of a word in z^{+}.

Indeed, Theorem 3.11 can be deduced by the theorem above and by Theorem 3.15 which was stated and partially proved in [LeS], cf. Subsection 3.2.3 which contains the full proof of this theorem. However, our proof of Theorem 3.11 is self-contained and essentially shorter, and moreover formulated directly to yield a defect-type of theorem.

The number of different X-factorizations of an X-ambiguous bi-infinite word is very different in the cases (i)-(iii) of the theorem. In the case (i) there exist non-denumerably many such X-factorizations, in the case (ii) there are finitely many different X-factorizations, and if we consider all shift-equivalent X-factorizations as the same, then there are exactly two of them. Finally, in the case (iii) there are also finitely many different X-factorizations, which are all shift-equivalent. This actually means that in the case (iii) no bi-infinite word can be expressed in two different ways as a product of words from X. Hence, indeed, Theorem 3.11 shows a defect effect of a two-element set for bi-infinite factorizations.

In Theorem 3.11 we showed that if the words of X do not commute and their primitive roots are not conjugates then only the case (iii) is possible. But if they do not commute and are conjugates then the theorem allows either the case (ii) or the case (iii). In the sequel we will prove that in this situation only the case (ii) is possible.

Lemma 3.13. If α and β are different conjugates then all elements of the set $\alpha \beta^{+} \cup \alpha^{+} \beta$ are primitive.

Proof. Since α and β are conjugates, they are of the same length. Hence, they do not commute, otherwise they would be equal.

Assume, for instance, that $\alpha \beta^{n}$ for an $n \geq 1$ is not primitive. We have that $\alpha \beta^{n}=t^{i}$ for a primitive word t and an integer $i \geq 2$. If $n=1$ and i is even then, immediately, $\alpha=\beta$, which is a contradiction. If $n=1$ and i is odd, say $i=2 m+1$, we have that $\alpha=t^{m} p$ and $\beta=q t^{m}$, where $t=p q$. Since α and β are
conjugates, by Corollary 3.10, we have a contradiction with the primitiveness of $t=p q$.

It remains to consider the case $n \geq 2$. By Lemma 2.6, $|t|>(n-1)|\beta|$. On the other hand, $i|t|=|\alpha|+n|\beta|=(n+1)|\beta|$ which implies that $n+1>i(n-1)$. Since $n, i \geq 2$, this yields $n=i=2$. We have $\alpha \beta^{2}=t^{2}$. Since $|\alpha|=|\beta|$, it follows that there are words p and q such that $|p|=|q|, \beta=p q$ and $t=\alpha p=q \beta=q p q$. Hence, $p=q$ and $\alpha=\beta$, a contradiction.

A slightly weaker variant of Lemma 3.13 was proved in [LeS]. It states, under the additional assumption that α and β are primitive, that all the words in $\alpha \beta^{*} \cup \alpha^{*} \beta$ are primitive. The lemma yields the following improvement of Theorem 3.11.

Theorem 3.14. Consider a binary set $X=\{\alpha, \beta\}$ with $\alpha, \beta \in \Sigma^{+}$. Let w be a proper X-ambiguous bi-infinite word possessing two different X-factorizations F_{1} and F_{2}. Then at exactly one of the following conditions is satisfied:
(i) α and β commute; or
(ii) the primitive roots of α and β are different conjugates, $w=\alpha^{\mathbb{Z}}=\beta^{\mathbb{Z}}$, and $F_{1} \in[\alpha]_{w}^{\mathbb{Z}}$ and $F_{2} \in[\beta]_{w}^{\mathbb{Z}}$, or vice versa; or
(iii) α and β do not commute and there exists an integer $n \geq 1$ such that either $w=\left(\alpha \beta^{n}\right)^{\mathbb{Z}}$ and $F_{1}, F_{2} \in\left[\alpha \beta^{n}\right]_{w}^{\mathbb{Z}}$ with α primitive, or $w=\left(\beta \alpha^{n}\right)^{\mathbb{Z}}$ and $F_{1}, F_{2} \in\left[\beta \alpha^{n}\right]_{w}^{\mathbb{Z}}$ with β primitive.

Proof. If $\rho(\alpha) \neq \rho(\beta)$ then α and β do not commute, hence the cases (i) and (ii) are exclusive. Obviously, the cases (i) and (iii) do so. Thus, it suffices to show that the conditions

- the primitive roots of α and β are different conjugates;
- the case (iii)
cannot happen at the same time. Assume to the contrary that $\rho(\alpha)$ and $\rho(\beta)$ are conjugates and, for instance, $w=\left(\alpha \beta^{n}\right)^{\mathbb{Z}}$ with $\alpha=\rho(\alpha)$ primitive and $F_{1}, F_{2} \in$ $\left[\alpha \beta^{n}\right]_{w}^{\mathbb{Z}}$. Let k be an integer such that $\beta=\rho(\beta)^{k}$. Then, by Observation 3.4, $\alpha \beta^{n}=\rho(\alpha) \rho(\beta)^{n k}$ is non-primitive. By Lemma 3.13, it follows that $\rho(\alpha)$ and $\rho(\beta)$ are equal, a contradiction.

Note that the case (i) characterize the situation when the primitive roots of α and β are equal, the case (ii) the situation when they are different conjugates, and finally, the case (iii) the situation when they are not even conjugates.

3.2.3 The maximal number of X-ambiguous bi-infinite words

Let $X=\{\alpha, \beta\} \subseteq \Sigma^{+}$be a binary set. In Theorem 3.3 we have proved that if the combinatorial rank of the set X equals to $\operatorname{card}(X)$ then the number of X-ambiguous bi-infinite words is finite. In this section we will prove that in the two-element case, for each set X, there are at most two X-ambiguous bi-infinite words, and at most one proper X-ambiguous bi-infinite word.

In the case (i) when $\operatorname{rank}_{\mathrm{c}}(X)=1$, since the both elements of X are powers of a common word t, the only possible X-ambiguous bi-infinite word is $t^{\mathbb{Z}}$. The situation is also trivial in the case (ii) when the primitive roots of elements of X are conjugates: by Theorem 3.14, the only possible X-ambiguous bi-infinite word is $w=\alpha^{\mathbb{Z}}=\beta^{\mathbb{Z}}$.

Finally, consider the case (iii) when the primitive roots of α and β are not conjugates. By Claim 3.7, there are at most two non-proper X-ambiguous bi-infinite words: $\alpha^{\mathbb{Z}}$ with α non-primitive and $\beta^{\mathbb{Z}}$ with β non-primitive. By Theorem 3.11, any proper X-ambiguous bi-infinite word is of the form $\left(\alpha \beta^{n}\right)^{\mathbb{Z}}$, with α primitive, or $\left(\alpha^{n} \beta\right)^{\mathbb{Z}}$, with β primitive. Moreover, by Observation 3.4, the word $\alpha \beta^{n}$ or the word $\alpha^{n} \beta$ is non-primitive, respectively. Hence, the number of X-ambiguous (resp. proper X-ambiguous) bi-infinite words is equal to the number of non-primitive elements of the set $\alpha \beta^{*} \cup \alpha^{*} \beta$ (resp. $\alpha \beta^{+} \cup \alpha^{+} \beta$).

As we stated in the previous subsection, cf. Lemma 3.13, if α and β are different conjugates then all the words in the set $\alpha \beta^{+} \cup \alpha^{+} \beta$ are primitive. Now, we are interested in a similar result in the general case assuming only that α and β do not commute. Such a result was stated in $[\mathrm{LeS}]$ as follows:

Theorem 3.15. [LeS] Let α and β be two different primitive words. Then at most one word in the set $\alpha \beta^{+} \cup \alpha^{+} \beta$ is non-primitive.

There is an outline of the proof of the claim in the end of [LeS] which refers to the proof of another theorem in the paper. Here, we will give a full proof in the form of the following two lemmas.

Lemma 3.16. Let α and β be two different primitive words. Then for integers any $n, m \geq 0$ such that $n \neq m$, at most one of the words $\alpha \beta^{n}$ and $\alpha \beta^{m}$ is non-primitive.

Proof. Assume on the contrary that both $\alpha \beta^{n}$ and $\alpha \beta^{m}$ are non-primitive with $m<n$. If $m=0$ the claim is obvious, so assume that $m \geq 1$, implying $n \geq 2$. We have

$$
\left.\begin{array}{r}
\alpha \beta^{n}=s^{i} \tag{3.5}\\
\alpha \beta^{m}=t^{j}
\end{array}\right\} \quad \text { and therefore also } \quad s^{i}=t^{j} \beta^{n-m}
$$

for some primitive words s and t and integers $i, j \geq 2$. Now if $n-m \geq 2$ then, by Lemma 2.7, s, t and β are powers of a common word, and so are α and β,
which is a contradiction. So we can assume $m=n-1$, and thus equation (3.5) simplifies to $s^{i}=t^{j} \beta$.

By Lemma 2.6, we have
and similarly, by (3.5),

$$
\begin{equation*}
|s|>(n-1)|\beta| \geq|\beta|, \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\text { implying } \quad|t|+|\beta|>(i-1)|s| \tag{3.7}
\end{equation*}
$$

Inequalities (3.7) and (3.8) implies

$$
|t|+|\beta| \stackrel{(3.8)}{>}(i-1)|s| \stackrel{(3.7)}{>}(i-1)(j-1)|t|,
$$

and hence, we obtain

$$
|\beta|>[(i-1)(j-1)-1] \cdot|t|,
$$

$$
\text { and similarly, by (3.6) and (3.8), } \quad|t|>[(i-1)(n-1)-1] .|\beta| .
$$

Now, if $|t|>|\beta|$, the expression $(i-1)(j-1)-1$ is necessarily equal to 0 , implying $i=j=2$. Similarly, if $|t|<|\beta|$, we have that $i=n=2$. Let us consider these two case separately.
Case $|t|>|\beta|$ and $i=j=2$. The equation $\alpha \beta^{n}=t^{2}$ implies that $t=x \beta$ for some $x \neq 1$. Thus equation (3.5) yields to $s^{2}=t^{2} \beta=x \beta x \beta \beta$, which implies that $|\beta|$ is an even integer, $|x \beta|<|s|$ and $\frac{3}{2}|\beta|<|s|$. Hence, we can write $s=x \beta y=z \beta_{2} \beta$ for some $y, z \neq 1$, where $|y|=\left|\beta_{2}\right|=\frac{|\beta|}{2}, \beta=\beta_{1} \beta_{2}$ and $|x|=|z|$. We can divide this equation into two parts: $x=z$ and $\beta y=\beta_{2} \beta$, where the second one, by Lemma 2.4, contradicts the primitiveness of β.
Case $|t|<|\beta|$ and $i=n=2$. The inequality (3.6) simplifies to $|s|>|\beta|>|t|$. By the equations $\alpha \beta=t^{j}$ and $\alpha \beta^{2}=s^{2}$ we can write $\beta=x t$ and $s=y t$ for some $x, y \neq 1$. Hence, Equation (3.5) yields ytyt $=t^{j} \beta$. We have that $|y t|=|s|=\left|t^{j}\right|+|\beta|-|s|<\left|t^{j}\right|$, so that we can write $y t z=t^{j}, z \neq 1$. Now, by Lemma 2.4, either t is not primitive, or t matches with some t in t^{j} in the above equation, but then we have $y=t^{k}$, and hence also $s=t^{k+1}$, so that the words t and s commute.

In both cases we arrive into a contradiction.
Lemma 3.17. Let α and β be two different primitive words. Then for any integers $n, m \geq 0$ such that $(n, m) \neq(1,1)$, at most one of the words $\alpha \beta^{n}$ and $\alpha^{m} \beta$ is non-primitive.

Proof. The cases $m=0$ and $n=0$ are trivial. The case $m=1$ is a special case of Lemma 3.16. In the case $n=1$ we can exchange α with β, while considering their mirror images, and we are again in the case $m=1$. We will

Figure 3.22: The situation in the case $\alpha^{2} \beta=t^{2}$ and $\alpha \beta^{n}=s^{i}$ with $n \geq 2$.
use this argument several times later on, and we will refer to it as to the reverse argument. Consider $n, m \geq 2$ and assume on the contrary that $\alpha \beta^{n}=s^{i}$ and $\alpha^{m} \beta=t^{j}$ for some integers $i, j \geq 2$ and primitive words s and t. By Lemma 2.6, we have

$$
\begin{equation*}
|s|>(n-1)|\beta| \geq|\beta|, \quad|t|>(m-1)|\alpha| \geq|\alpha| . \tag{3.9}
\end{equation*}
$$

Hence

$$
\begin{align*}
|\alpha|=i|s|-n|\beta| & >(i n-i-n)|\beta|, \tag{3.10}\\
|\beta|=j|t|-m|\alpha| & >(j m-j-m)|\alpha|,
\end{align*}
$$

which implies that

$$
[(i-1)(n-1)-1] \cdot[(j-1)(m-1)-1]<1 .
$$

Therefore, we have that either $i=n=2$, or $j=m=2$. By the reverse argument, the first case is equivalent to the second one. Hence, let us consider only the case $j=m=2$. If $|t|<|\beta|$ then, by (3.9), we obtain

$$
|\alpha| \stackrel{(3.9)}{<}|t|<|\beta| \stackrel{(3.9)}{<}|s| .
$$

Together with Inequalities (3.10) we have that $(i-1)(n-1)-1<1$ which implies that also $i=n=2$. Now, by the reverse argument: the inequality $|s|>|\alpha|$ transforms to the inequality $|t|>|\beta|$. Therefore, without loss of generality, we can assume that $|t|>|\beta|$. We have the situation depicted in Figure 3.22, where $\beta=u_{1} u_{2}$ with $\left|u_{1}\right|=\left|u_{2}\right|=\frac{1}{2}|\beta|$ and $\alpha=\alpha^{\prime} u_{1}=u_{2} \alpha^{\prime}$.

Since $u_{2} \alpha^{\prime}=\alpha^{\prime} u_{1}$, Lemma 2.10 gives us

$$
\left.\begin{array}{rl}
u_{2} & =(p q)^{k} \\
u_{1} & =(q p)^{k} \\
\alpha^{\prime} & =p(q p)^{l}
\end{array}\right\} \quad \text { and therefore } \quad\left\{\begin{array}{l}
\alpha=p(q p)^{k+l} \\
\beta=(q p)^{k}(p q)^{k}
\end{array}\right.
$$

where $k \geq 1, l \geq 0$ and $p q$ is primitive. We may assume $p, q \neq 1$. Now considering the last occurrence of s in Figure 3.22, by (3.9), we can write $s=$
$s^{\prime} \beta=s^{\prime}(q p)^{k}(p q)^{k}$ for some word s^{\prime}. We also have

$$
|s|=|\alpha|+n|\beta|-(i-1)|s| \leq|\alpha|+n|\beta|-|s| \stackrel{(3.9)}{<}|\alpha|+|\beta|,
$$

which yields

$$
s^{\prime}(q p)^{k}(p q)^{k} r=s r=\alpha \beta=\underbrace{p(q p)^{2 k+l}}_{v}(p q)^{k},
$$

for some $r \neq 1$. The first occurrence of $q p$ in s after s^{\prime} must match with $q p$ in w, otherwise $q p$ is not primitive. But then, since $r \neq 1$, the first occurrence of $p q$ in s after $s^{\prime}(q p)^{k}$ matches with some $q p$ in v, so we have that $p q=q p$, which is again a contradiction with the primitiveness of $p q$.

Obviously, Lemmas 3.16 and 3.17 imply Theorem 3.15. Nevertheless, Theorem 3.15 is not directly applicable to our problem, since we cannot assume that α and β are primitive. As an immediate corollary of Lemma 2.7 and Theorem 3.15 we have

Corollary 3.18. Let α and β be two different primitive words. Then at most one word in the set $\alpha^{+} \beta^{+}$is non-primitive.

This yields
Corollary 3.19. Let α and β be two non-commuting words. Then

- at most 1 word in $\alpha \beta^{+} \cup \alpha^{+} \beta$ is non-primitive;
- at most 2 words in $\alpha \beta^{*} \cup \alpha^{*} \beta$ are non-primitive.

Proof. The first part of the claim follows by the relation

$$
\alpha \beta^{+} \cup \alpha^{+} \beta \subseteq \rho(\alpha)^{+} \rho(\beta)^{+}
$$

and Corollary 3.18 .
Consider the second part. Note that $\alpha \beta^{*} \cup \alpha^{*} \beta=\alpha \beta^{+} \cup \alpha^{+} \beta \cup\{\alpha, \beta\}$. Hence, if at most one of the words α and β in non-primitive then the result follows by the first part of the claim. Otherwise, we have $\alpha \beta^{+} \cup \alpha^{+} \beta \subseteq \rho(\alpha)^{2+} \rho(\beta)^{2+}$, where v^{2+} is an abbreviation for $v v^{+}$. Since α and β do not commute, by Lemma 2.7, all words in $\rho(\alpha)^{2+} \rho(\beta)^{2+}$ are primitive. Consequently, if α and β are both non-primitive then all the other words in $\alpha \beta^{*} \cup \alpha^{*} \beta$ are primitive.

Finally, let us apply Corollary 3.19 to our problem. As a consequence of Corollary 3.19 and the considerations in the beginning of this section we obtain

Theorem 3.20. Consider a binary set $X=\{\alpha, \beta\}$ with $\alpha, \beta \in \Sigma^{+}$. There is at most one proper X-ambiguous bi-infinite word and at most two X-ambiguous bi-infinite words.

The following example shows that the result is sharp.
Example 3.6. There are exactly two types of the binary sets X such that $\operatorname{card}(\operatorname{Amb}(X))=2, c f$. proof of Corollary 3.19.

The obvious case is when both α and β are non-primitive and their primitive roots are not conjugates. Then $\alpha^{\mathbb{Z}}$ and $\beta^{\mathbb{Z}}$ are two different X-ambiguous biinfinite words. Note that none of them is proper.

The less obvious case is when one of the words α and β is non-primitive, they do not commute and there is an integer $n \geq 1$ such that $\alpha \beta^{n}$ (resp. $\alpha^{n} \beta$) is non-primitive. As an example, take $\alpha=b a a b$ and $\beta=(a b a b a)^{2}$ non-primitive. Then $w_{1}=\beta^{\mathbb{Z}}$ and $w_{2}=(\alpha \beta)^{\mathbb{Z}}$ are different X-ambiguous bi-infinite words:

and

$$
w_{2}=\cdots a \mid b a b a a b a b a b a a b a b a b a b a b a b a b a
$$

Note that only the bi-infinite word w_{2} is proper.

3.2.4 Existence of an X-ambiguous bi-infinite word

Let X be a binary set containing non-empty words. In the previous subsection we proved that there is at most one proper X-ambiguous bi-infinite word and at most two X-ambiguous bi-infinite words. A natural question to ask is when such words exist. The answer is easy for the non-proper X-ambiguous bi-infinite words: such a word exists if and only if α or β is non-primitive. Hence, let us concentrate on the existence of a proper X-ambiguous bi-infinite word.

One can observe that there are sets X for which there is no proper X ambiguous bi-infinite word. For example, take a set $X=\Sigma=\{a, b\}$. We say that a family of sets of words with the same cardinality k is parameterizable if it can be described in terms of k formulas with word and integer parameters, $c f$. Section 9.3 of [Lo] for details. Here, we are going to prove that the family of binary sets X for which there exists a proper X-ambiguous bi-infinite word is parameterizable.

In the case (i) of Theorem 3.11, when words of X are powers of a common word t, the bi-infinite word $t^{\mathbb{Z}}$ has infinitely many X-factorizations. In particular, in this case there is always an X-ambiguous bi-infinite word. In the case (ii), when the primitive roots of the words of $X=\{\alpha, \beta\}$ are conjugates, the biinfinite word $\alpha^{\mathbb{Z}}=\beta^{\mathbb{Z}}$ has exactly two different X-factorizations, so it is proper X-ambiguous.

Consider now the last case, the case (iii), and a set $X=\{\alpha, \beta\}$. By Theorem 3.11, an X-ambiguous bi-infinite word is of the form $\left(\alpha \beta^{n}\right)^{\mathbb{Z}}$, where $\alpha \beta^{n}$ is non-primitive, or $\left(\alpha^{n} \beta\right)^{\mathbb{Z}}$, where $\alpha^{n} \beta$ is non-primitive, i.e., there are integers $n \geq 1, i \geq 2$ and a primitive word $s \in \Sigma^{+}$such that

$$
\begin{equation*}
\alpha \beta^{n}=s^{i} \quad \text { or } \quad \alpha^{n} \beta=s^{i} . \tag{3.11}
\end{equation*}
$$

Conversely, if for some $n \geq 1$ and $i \geq 2$ at least one of equations (3.11) has a solution then, clearly, the bi-infinite word $\left(\alpha \beta^{n}\right)^{\mathbb{Z}}$ (resp. $\left(\alpha^{n} \beta\right)^{\mathbb{Z}}$) has exactly i shift-equivalent, but different X-factorizations. We formalize this as a lemma.

Lemma 3.21. Let $X=\{\alpha, \beta\} \subseteq \Sigma^{+}$be a binary set. Assume that the primitive roots of α and β are not conjugates. Then there is a proper X-ambiguous biinfinite word if and only if one of the equations $\alpha \beta^{n}=s^{i}$ and $\alpha^{n} \beta=s^{i}$, with $n \geq 1, i \geq 2$, has a solution.

We shall also give a characterization of the solutions of the equations (3.11). We need the following lemma.

Lemma 3.22. All non-periodic solutions of the equation

$$
\begin{equation*}
u_{1} u_{2}=u_{3}\left(u_{2} u_{3}\right)^{m}, \quad m \geq 1 \tag{3.12}
\end{equation*}
$$

are of the form

$$
\begin{align*}
& u_{3}=q p \\
& u_{2}=p(q p)^{k} \tag{3.13}\\
& u_{1}=u_{3}\left(u_{2} u_{3}\right)^{m-1} p q,
\end{align*}
$$

where $p, q \in \Sigma^{+}, k \geq 0$.
Proof. It is easy to check that (3.13) is really a solution of equation (3.12). Now we shall prove that if equation (3.12) has a non-periodic solution, then it is of the form (3.13). We proceed by induction.

Consider first the case $m=1$. We have the equation $u_{1} u_{2}=u_{3} u_{2} u_{3}$. It is obvious that $\left|u_{1}\right|>\left|u_{3}\right|$, so we can write $u_{1}=u_{3} t$. The equation transforms into $t u_{2}=u_{2} u_{3}$, which has, by Lemma 2.10, the only solutions $t=p q, u_{3}=q p$ and $u_{2}=p(q p)^{k}, k \geq 0$. This implies that $u_{1}=q p p q$, so we have a solution of the form (3.13) for $m=1$.

Consider now equation (3.12) with $m \geq 2$. Again we have that $\left|u_{1}\right|>\left|u_{3}\right|$, so we can substitute $u_{1}=u_{3} t$ and equation (3.12) becomes $t u_{2}=u_{2} u_{3}\left(u_{2} u_{3}\right)^{m-1}$. By Lemma 2.10, we have $t=u v, u_{3}\left(u_{2} u_{3}\right)^{m-1}=v u, u_{2}=u(v u)^{l}$ for an integer $l \geq 0$. If $l \geq 1$, then $|v u|=\left|u_{3}\left(u_{2} u_{3}\right)^{m-1}\right| \geq 2|u|+|v|+\left|u_{3}\right|$. This implies that $u=u_{3}=1$, which leads to a periodic solution. Hence, consider the case $l=0$. We have that $u_{2}=u, u_{1}=u_{3} u_{2} v$ and $v u_{2}=u_{3}\left(u_{2} u_{3}\right)^{m-1}$. Now we can apply

Figure 3.23: The situation when $|s|<\left|\beta^{n}\right|$ and $n=1$.
induction hypothesis on the last equation and we obtain that all non-periodic solutions are of the form

$$
u_{3}=q p, \quad u_{2}=p(q p)^{k}, \quad v=u_{3}\left(u_{2} u_{3}\right)^{m-2} p q, \quad k \geq 0,
$$

which implies $u_{1}=u_{3} u_{2} v=u_{3}\left(u_{2} u_{3}\right)^{m-1} p q$. We obtained exactly solution (3.13), which completes the proof.

The following lemma gives us the characterization of solutions of equation (3.11), and hence also of sets X allowing an X-ambiguous bi-infinite word in the case (iii).

Lemma 3.23. Assume that words α and β do not commute. All solutions of the equation $\alpha \beta^{n}=s^{i}$ satisfying $n \geq 1, i \geq 2$ are

$$
\begin{align*}
\beta & =p(q p)^{j}, \\
s & =q p \beta^{n-1}, \tag{3.14}\\
\alpha & =s^{i-1} \beta^{-1} p q,
\end{align*}
$$

where $p, q \in \Sigma^{+}, j \geq 0$ and $j<i$ if $n=1$.
Proof. It is easy to check that (3.14) is a solution of equation (3.11). For the converse implication we analyze the following 3 cases:

Case $|s|>\left|\beta^{n}\right|$. Then we have that $\alpha=s^{i-1} q$ and $s=q \beta^{n}$ for some $q \neq 1$. This is solution (3.14) for $j=0, p=\beta$.

Case $|s|<\left|\beta^{n}\right|$ and $n=1$. The situation is depicted in Figure 3.23. According to the figure we can write

$$
\beta=p(q p)^{j}, \quad s=q p, \quad \alpha=q(p q)^{i-j-1}
$$

where $p, q \neq 1$ and $j<i$. Since

$$
s^{i-1} \beta^{-1} p q=(q p)^{i-1}\left[p(q p)^{j}\right]^{-1} p q=(q p)^{i-j-1} q=\alpha,
$$

Figure 3.24: The situation when $|s|<\left|\beta^{n}\right|$ and $n \geq 2$.
we have the solution (3.14) with $n=1$.
Case $|s|<\left|\beta^{n}\right|$ and $n \geq 2$. Since we are looking for non-periodic solutions, by Lemma 2.6, necessarily $|s|>\left|\beta^{n-1}\right|$. Hence, we have a situation shown in Figure 3.24. According to this figure we can write $\beta=u_{2} u_{3}, \alpha=s^{i-2} u_{1}$ and $u_{1} u_{2}=s=u_{3} \beta^{n-1}=u_{3}\left(u_{2} u_{3}\right)^{n-1}$, which is equation (3.12). Now, Lemma 3.22 implies

$$
\begin{aligned}
\beta & =u_{2} u_{3}=p(q p)^{k+1}=p(q p)^{j}, \text { for } j=k+1, \\
s & =u_{1} u_{2}=u_{3}\left(u_{2} u_{3}\right)^{n-2} p q p(q p)^{k}=q p \beta^{n-2} \beta=q p \beta^{n-1}, \text { and } \\
\alpha & =s^{i-2} u_{1}=s^{i-2} u_{3}\left(u_{2} u_{3}\right)^{n-2} p q=s^{i-2} q p \beta^{n-2} \beta \beta^{-1} p q=s^{i-1} \beta^{-1} p q .
\end{aligned}
$$

This is exactly solution (3.14).
The following theorem summarizes the previous results.
Theorem 3.24. Consider a binary set $X \subseteq \Sigma^{+}$. There exists a proper X ambiguous bi-infinite word if and only if at least one of the following conditions is satisfied:
(i) $X=\left\{p^{n}, p^{m}\right\}$, where $p \in \Sigma^{+}$and $n, m \geq 1$,
(ii) $X=\left\{(p q)^{n},(q p)^{m}\right\}$, where $p, q \in \Sigma^{+}$and $n, m \geq 1$,
(iii) $X=\{\alpha, \beta\}$, where

$$
\beta=p(q p)^{j}, \quad \alpha=\left(q p \beta^{n-1}\right)^{i-1} \beta^{-1} p q
$$

for $p, q \in \Sigma^{+}, n \geq 1, i \geq 2, j \geq 0$ and if $n=1$ then $j<i$.
Notice, that in the last case of Theorem 3.24 the occurrence of β^{-1} can be eliminated, but we prefer this form for its simplicity. This theorem shows that the family of the two-element sets X, such that there exists a proper X ambiguous bi-infinite word, is parameterizable. Such a characterization can be used to generate all such sets.

Example 3.7. Let us choose in (3.14) $p=a, q=b, n=2, i=2$ and $j=2$. We have

$$
\beta=a b a b a, \quad s=b a a b a b a, \quad \alpha=b a a b .
$$

The bi-infinite word $\left(\alpha \beta^{2}\right)^{\mathbb{Z}}$ has two different shift-equivalent X-factorizations:

Chapter 4

A cumulative defect effect: an example

In Section 2.2 we have recalled the fundamental result of Combinatorics on Words: if a set of n non-empty words satisfies a non-trivial relation then the rank, i.e., the dimension, of the set is at most $n-1$. This property is called a defect effect. However, the dimension properties of words are rather weak, a system of k independent relations in n unknowns does not force usually a defect effect by k, i.e., the rank of the set of unknowns is often greater than $n-k$, and sometimes even equal to $n-1$. The simplest example of this behavior can be found in [ChK]:

Example 4.1. [ChK] The system

$$
x z y=y z x \quad \text { and } \quad x z z y=y z z x
$$

of equations is independent, since the former has a solution

$$
x=a b a \quad y=a \quad \text { and } \quad z=b
$$

which is not a solution of the later, while the later has a solution

$$
x=a b b a \quad y=a \quad \text { and } \quad z=b
$$

which is not a solution of the former. However, they have a common solution of degree two

$$
x=a \quad y=a \quad \text { and } \quad z=b .
$$

The more complicated and convincing examples can be found in [KPl]. [KPl] contains an example of a system of n^{3} independent equations in $5 n$ unknowns which forces only the minimal defect effect by 1 .

This inspires an interesting problem area to find conditions (on relations or on sets of words) which imply a cumulative defect effect, i.e., if the set X of n words satisfy k relations then X has a rank at most $n-k$.

There are only very few results in this direction. The Graph Lemma, i.e., Lemma 2.3 of Section 2.3, is such an example where the type of relations is restricted. A similar deep result is proved in [Br], extending ideas of [Ka1, Ka2, Ho], where it is shown that if X is a code and has an unbounded synchronizing delay in both directions then the rank of X is at most card $(X)-2$.

In this chapter we will show another example of a cumulative defect effect for bi-infinite words. We interpret, in a natural way, a relation on words from X as a double X-factorization of an infinite word. In fact, we consider only the case when a bi-infinite word possesses k disjoint X-factorizations which we interpret as $k-1$ non-trivial relations. We ask the following:

Problem 4.1. Let X be a finite set of words and w a non-periodic bi-infinite word. Is it true that if w possesses k disjoint X-factorizations, for $k \leq \operatorname{card}(X)$, then the combinatorial rank of X is at most $\operatorname{card}(X)-k+1$?

Our starting point is the result proved in Section 3.1 (Theorem 3.3) stating that if a non-periodic bi-infinite word possesses two different X-factorizations then the rank of X is at most $\operatorname{card}(X)-1$. Hence, Problem 4.1 is solved affirmatively in the case $k=2$. As emphasized at the end of Section 3.1 it is essential to use the notion of the combinatorial rank and to assume that the bi-infinite word is non-periodic, cf. Examples 3.2 and 3.3. In the general case it is also necessary to assume that the X-factorizations are disjoint:

Example 4.2. Consider a finite set X of words such that $\operatorname{rank}_{\mathrm{c}}(X)=\operatorname{card}(X)-$ 1. Hence, X is not a code and it satisfies a non-trivial relation

$$
v=x_{1} \ldots x_{n}=y_{1} \ldots y_{m}
$$

for some $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in X$. Let x be an element of X not equal to v. Then the non-periodic bi-infinite word

$$
w={ }^{\mathbb{N}} v x v^{\mathbb{N}}
$$

has infinitely many different X-factorizations of the form

$$
{ }^{\mathbb{N}}\left\{x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\} x\left\{x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\}^{\mathbb{N}}
$$

but we have a defect effect by only 1 .
We do not have either a counterexample or a proof for larger values of k. However, we are able to prove the following results. If a non-periodic biinfinite word possesses 3 disjoint X-factorizations, where X is a prefix code,
then the combinatorial rank of X is at most $\operatorname{card}(X)-2$. As we shall see in Section 4.1, even this simple case seems to be quite complicated to prove. In the case $k=\operatorname{card}(X)$, Problem 4.1 implies a contradiction: w is a non-periodic bi-infinite word with an X-factorization and $X \subseteq t^{+}$for a non-empty word t, hence it is equivalent to the problem to show that a non-periodic bi-infinite word can possess at most $\operatorname{card}(X)-1$ disjoint X-factorizations. In Section 4.2, we solve, based on the Critical Factorization Theorem and its application, a slightly weaker version of this problem, i.e., we show that the maximal number of disjoint X-factorizations of a non-periodic bi-infinite word is $\operatorname{card}(X)$.

The notions of independent relations is formalized in [HKP].

4.1 Bi-infinite words possessing 3 different X-factorizations

In this section we will show that in the case when X is a prefix set, if a nonperiodic bi-infinite word possesses 3 different X-factorizations then we have a cumulative defect effect: the combinatorial rank of X is at $\operatorname{most} \operatorname{card}(X)-2$.

The following two examples show that, as we have seen in Chapter 3, the combinatorial rank is essential to obtain a defect effect for bi-infinite words. We will use these two examples later on to illustrate the proof of the main result of this chapter.

Example 4.3. Let $X=\{\alpha, \beta, \gamma, \delta\}$, where $\alpha=a a, \beta=b a a b, \gamma=b a a a a b$ and $\delta=a b a$. The non-periodic bi-infinite word

$$
w_{1}=\ldots a a b . a a b . a a a a b . a a a a b \cdots={ }^{\mathbb{N}}(a a b)(a a a a b)^{\mathbb{N}}
$$

has three different X-factorizations: $F_{1}={ }^{\mathbb{N}}(\beta \alpha)(\gamma \alpha \alpha)^{\mathbb{N}}, F_{2}={ }^{\mathbb{N}}(\alpha \beta)(\alpha \alpha \gamma)^{\mathbb{N}}$ and $F_{3}={ }^{\mathbb{N}} \delta(\alpha \delta)^{\mathbb{N}}$, which are pairwise non-shift-equivalent and are depicted as follows:

Clearly, these three factorizations are pairwise disjoint and also non-periodic. Moreover, $\operatorname{rank}_{\mathrm{c}}(X)=2$, since $X \subseteq\{a, b\}^{+}$, but for no word s the inclusion $X \subseteq s^{+}$holds. On the other hand, since X is a prefix code we conclude that $\operatorname{rank}_{\mathrm{p}}(X)=\operatorname{rank}_{\mathrm{f}}(X)=4$.

Example 4.4. Let X be the same set as in the previous example. Take any non-periodic bi-infinite word w_{2} in the set $\{a a b a a b, a a b a a a a b\}^{\mathbb{Z}}$. Any such biinfinite word has 3 different X-factorizations: $F_{1} \in\{\alpha \beta, \alpha \gamma\}^{\mathbb{Z}}, F_{2} \in\{\alpha \beta, \alpha \alpha \beta\}^{\mathbb{Z}}$
and $F_{3} \in\{\delta \delta, \delta \alpha \delta\}^{\mathbb{Z}}$, assuming that elements in the sets are selected in the same order as for w_{2}. For example, consider a part of w_{2} in the form:

$$
w_{2}=\ldots a a b a a b . a a b a a a a b . a a b a a b . a a b a a b \ldots
$$

The corresponding parts of three X-factorizations are depicted as follows:

Again, three X-factorizations are pairwise disjoint, non-shift-equivalent and nonperiodic, assuming that the bi-infinite word w_{2} is so.

Examples 4.3 and 4.4 together with Example 3.3 and Theorem 3.3 show that in order to obtain the defect effect for bi-infinite words we have to use the combinatorial rank. It is also necessary to consider non-periodic X-factorizations or non-periodic bi-infinite words:

Example 4.5. In this example we show that for any positive integer k, there is a binary prefix set X without any defect effect and a periodic bi-infinite word with k disjoint X-factorizations.

Let $X=\{\alpha, \beta\}$, where $\alpha=a$ and $\beta=(b a)^{k-1} b$. Clearly, the bi-infinite word $w=(a b)^{\mathbb{Z}}$ has k disjoint X-factorizations of the form $(\alpha \beta)^{\mathbb{Z}}$. They are all shift-equivalent, but different. On the other hand, we have that $\operatorname{rank}_{\mathrm{c}}(X)=2=$ $\operatorname{card}(X)$.

To prove the defect theorem we need the following simple lemma.
Lemma 4.1. Consider words $x, y, x^{\prime}, y^{\prime}, v \in \Sigma^{+}$and $z_{1}, z_{2}, w_{1}, w_{2} \in \Sigma^{*}$ satisfying equations

$$
\begin{equation*}
x z_{1}=v y w_{1} \quad \text { and } \quad x^{\prime} z_{2}=v y^{\prime} w_{2} \tag{4.1}
\end{equation*}
$$

If $y=x, y^{\prime}=x^{\prime}$ or $y=x^{\prime}, y^{\prime}=x$, i.e., if $\left\{x, x^{\prime}\right\}=\left\{y, y^{\prime}\right\}$, then x and x^{\prime} are left comparable, i.e., one is a prefix of the other.

Proof. Consider, for example, the first case: $y=x$ and $y^{\prime}=x^{\prime}$. Without loss of generality we can assume $|x| \leq\left|x^{\prime}\right|$. If $\left|x^{\prime}\right| \leq|v|$ then $x^{\prime} \leq v$ and also $x \leq v$, which implies that $x \leq x^{\prime}$, and we are done. Hence assume $\left|x^{\prime}\right|>|v|$, i.e., $v<x^{\prime}$. Now, if $|x| \leq|v|$ then $x \leq v \leq x^{\prime}$ and we are again done. Thus, the only case we have to consider is the case $\left|x^{\prime}\right| \geq|x|>|v|$. We can substitute $x=v \bar{x}, x^{\prime}=v \bar{x}^{\prime}$ for some $\bar{x}, \bar{x}^{\prime} \in \Sigma^{+}$. The equations (4.1) transforms into

$$
\bar{x} z_{1}=v \bar{x} w_{1} \quad \text { and } \quad \bar{x}^{\prime} z_{2}=v \bar{x}^{\prime} w_{2}
$$

Figure 4.1: An illustration of the definition of t_{i} 's.

We obtained the system of equations of the same type, but with $|\bar{x}|<|x|$ and $\left|\bar{x}^{\prime}\right|<\left|x^{\prime}\right|$. Hence, after a finite number of steps it must happen that the x 's obtained, say \tilde{x} and \tilde{x}^{\prime}, are left comparable. Clearly, if $\bar{x}, \bar{x}^{\prime}$ are left comparable then so are x, x^{\prime}. Inductively, we obtain that x and x^{\prime} are left comparable.

In the second case the proof is the same.
Now, we can state and prove the main theorem of this chapter. Since the proof of the theorem and the two auxiliary lemmas is quite long and technical, we will illustrate the proof on examples. In fact, we will perform the proof on the bi-infinite words w_{1} and w_{2} defined in Examples 4.3 and 4.4.

Theorem 4.2. Consider a prefix set $X \subseteq \Sigma^{+}$. Let w be a bi-infinite word over Σ with 3 different X-factorizations F_{0}, F_{1}, F_{2}. If the word w is non-periodic then the combinatorial rank of X is at most $\operatorname{card}(X)-2$.

Before we start to prove the theorem, let us define technical notions of X differences, triples and minimal triples. Consider a bi-infinite word w possessing three disjoint X-factorizations F_{0}, F_{1}, F_{2}. Take an arbitrary factor $\alpha_{w, F_{0}}\left(n_{0}\right) \in$ X of w defined by the X-factorization F_{0}, and find, for $i=1,2$, the minimal starting point $F_{i}\left(n_{i}\right) \in F_{i}(\mathbb{Z})$ such that $F_{i}\left(n_{i}\right) \geq F_{0}\left(n_{0}\right)$, see Figure 4.1. Let us denote the word

$$
w_{F_{0}\left(n_{0}\right)} w_{F_{0}\left(n_{0}\right)+1} \ldots w_{F_{i}\left(n_{i}-1\right)-1}
$$

by t_{i}. We call the pair $\left(t_{1}, t_{2}\right)$ an X-difference, or more precisely, an X-difference with respect to the triple $\left(F_{0}, F_{1}, F_{2}\right)$, and we call the position $F_{0}\left(n_{0}\right)$ an occurrence of the X-difference $\left(t_{1}, t_{2}\right)$. Note that t_{1} and t_{2} are always left comparable.

Assume that we have an occurrence $F_{0}\left(n_{0}\right)$ of an X-difference $\left(t_{1}, t_{2}\right)$ followed by an occurrence $F_{0}\left(m_{0}\right)$ of an X-difference $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ in w. Figure 4.2 depicts such a situation, when $\left|t_{1}\right| \leq\left|t_{2}\right|$ and $\left|t_{1}^{\prime}\right| \leq\left|t_{2}^{\prime}\right|$. Consider the following 3 factors of w

$$
\begin{aligned}
& f_{0}=\alpha_{w, F_{0}}\left(n_{0}\right) \alpha_{w, F_{0}}\left(n_{0}+1\right) \ldots \alpha_{w, F_{0}}\left(m_{0}-1\right), \\
& f_{1}=\alpha_{w, F_{1}}\left(n_{1}\right) \alpha_{w, F_{1}}\left(n_{1}+1\right) \ldots \alpha_{w, F_{1}}\left(m_{1}-1\right) \quad \text { and } \\
& f_{2}=\alpha_{w, F_{2}}\left(n_{2}\right) \alpha_{w, F_{2}}\left(n_{2}+1\right) \ldots \alpha_{w, F_{2}}\left(m_{2}-1\right) .
\end{aligned}
$$

Figure 4.2: An illustration of a $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple with $\left|t_{1}\right| \leq\left|t_{2}\right|$ and $\left|t_{1}^{\prime}\right| \leq\left|t_{2}^{\prime}\right|$..

The triple $\left(f_{0}, f_{1}, f_{2}\right)$ is called a $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple, and the position $F_{0}\left(n_{0}\right)$ is called an occurrence of the $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple. Note that a $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple $\left(f_{0}, f_{1}, f_{2}\right)$ satisfies

$$
\begin{equation*}
f_{0} t_{1}^{\prime}=t_{1} f_{1} \quad \text { and } \quad f_{0} t_{2}^{\prime}=t_{2} f_{2} \tag{4.2}
\end{equation*}
$$

We say that an occurrence $F_{0}(n)$ of an X-difference $\left(\tilde{t}_{1}, \tilde{t}_{2}\right)$ occurs inside of an occurrence $F_{0}(m)$ of a triple $\left(f_{0}, f_{1}, f_{2}\right)$, if $F_{0}(m) \leq F_{0}(n)<F_{0}(m)+\left|f_{0}\right|$. Note that the definition above does not depend on the choice of the occurrences of the X-difference (resp. the triple), hence the definition applies also directly to X-differences (resp. triples). If there is no occurrence of X-difference $\left(t_{1}, t_{2}\right)$ or $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ inside a $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple, we say that the triple is minimal.

Example 4.6. Let us illustrate the previous definitions on the bi-infinite word w_{1} from Example 4.3. Take as α_{0}, for instance, the first α in the factorization F_{0} depicted in the figure of Example 4.3. Then $\alpha_{1}=\beta, t_{1}=a a b$ and $\alpha_{2}=\delta$, $t_{2}=a$:

Hence, we have an occurrence of X-difference ($a a b, a$) marked above with two black lines. Taking as α_{0} the first γ in the factorization F_{0} we find an occurrence of X-difference $(b, b a)$. We have an $(a a b, a, b, b a)$-triple $(\alpha \beta \alpha, \alpha \beta, \delta \delta \delta)$:

It contains inside of it occurrences of X-differences $(b, b a)$ and $(a a b, a)$, hence it is not minimal. On other hand the following $(b, b a, a a b, a)$-triple $(\gamma \alpha, \alpha \alpha \gamma, \alpha \delta \alpha)$ is minimal, since it contains inside of it only an occurrence of X-difference (aaaab,a):

Indeed, here it is important to remember that the order of the factorizations is fixed.

The proof of Theorem 4.2 is similar to that of Theorem 3.3 assuming we have already proved the following two lemmas:

Lemma 4.3. Consider a prefix set $X \subseteq \Sigma^{+}$. Let w be a bi-infinite word over Σ with 3 different X-factorizations F_{0}, F_{1}, F_{2}. If there are non-empty words t_{1} and t_{2} such that the bi-infinite word w possesses two different minimal $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$ triples then $\operatorname{rank}_{\mathrm{c}}(X) \leq \operatorname{card}(X)-2$.

Lemma 4.4. Consider a prefix set $X \subseteq \Sigma^{+}$. Let w be a bi-infinite word over Σ with 3 different X-factorizations F_{0}, F_{1}, F_{2}. If there are non-empty words t_{1}, t_{2}, t_{1}^{\prime} and t_{2}^{\prime} such that the bi-infinite word w possesses
(i) a minimal $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$-triple without any occurrence of the X-difference ($t_{1}^{\prime}, t_{2}^{\prime}$) inside;
(ii) a minimal $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple; and
(iii) a minimal $\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple
then $\operatorname{rank}_{\mathrm{c}}(X) \leq \operatorname{card}(X)-2$.

Rather technical Lemmas 4.3 and 4.4 can be proved in the similar way. Hence, we will give a full proof of Lemma 4.3 and, after that, we will point out the differences between the proofs of these two lemmas. Now, let us illustrate the situations these two lemmas deal with on an example.

Example 4.7. In Example 4.4 we have exactly the situation considered in Lemma 4.3. Any non-periodic bi-infinite word

$$
w_{2} \in\{a a b a a b, a a b a a a a b\}^{\mathbb{Z}}
$$

contains exactly two different minimal ($a a b, a, a a b, a)$-triples $(\alpha \beta, \alpha \beta, \delta \delta)$ and $(\alpha \gamma, \alpha \alpha \beta, \delta \alpha \delta)$.

Further, Example 4.3 is an illustration of the case considered in Lemma 4.4. The bi-infinite word

$$
w_{1}={ }^{\mathbb{N}}(a a b)(a a a a b)^{\mathbb{N}}
$$

contains:
(i) the minimal ($a a b, a, a a b, a)$-triple $(\alpha \beta, \alpha \beta, \delta \delta)$ without any occurrence of the X-difference ($a a a a b, a$) inside;
(ii) the minimal ($a a b, a, a a a a b, a)$-triple $(\alpha \gamma, \alpha \alpha \beta, \delta \alpha \delta)$; and
(iii) the minimal (aaaab, a, aaaab, a)-triple ($\alpha \alpha \gamma, \alpha \alpha \gamma, \alpha \delta \alpha \delta)$.

4.1.1 Proof of Lemma 4.3

Proof. Let us consider two different minimal $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$-triples $\left(f_{0}, f_{1}, f_{2}\right)$ and $\left(f_{0}^{\prime}, f_{1}^{\prime}, f_{2}^{\prime}\right)$. Without loss of generality we can assume that $\left|f_{0}\right| \leq\left|f_{0}^{\prime}\right|$ and $t_{1}<t_{2}$. Note that $t_{1} \neq t_{2}$ since factorizations F_{1}, F_{2} are disjoint.

Denote $t_{0}=1$ and let $s_{1}, s_{2} \in \Sigma^{+}$be such words that $t_{1}=s_{1}, t_{2}=t_{1} s_{2}$. We define, for $0 \leq a \leq b \leq 2$,

$$
s_{(a, b]}=s_{a+1} \ldots s_{b}
$$

Notice that for $a=b, s_{(a, b]}=1$; for $0 \leq a \leq 2, t_{a}=s_{(0, a]}$; and for $a \leq b \leq c$, $s_{(a, c]}=s_{(a, b]} s_{(b, c]}$. Next, we define \pm-notation: for arbitrary $a, b \in\{0,1,2\}$ let

$$
s_{(a, b]}^{+}=\left\{\begin{array}{l}
s_{(a, b]}, \text { if } a<b, \\
1, \text { otherwise },
\end{array} \quad s_{(a, b]}^{-}=\left\{\begin{array}{l}
s_{(b, a]}, \text { if } b<a, \\
1, \text { otherwise } .
\end{array}\right.\right.
$$

Equations (4.2) imply

$$
\begin{equation*}
f_{a}^{(\prime)} s_{(a, b]}=s_{(a, b]} f_{b}^{(\prime)}, \text { for } a<b \tag{4.3}
\end{equation*}
$$

Equation (4.3), for each $a<b$, represents actually two equations: one with and one without the primed symbols, hence the notation $f^{(\prime)}$. Note that for $a=0$

Figure 4.3: An illustration of the definition of $p_{i}, r_{i}, r_{i}^{\prime}$ for $i=0$.

Figure 4.4: An illustration of u_{i} 's.
we have only another transcription of Equations (4.2) and for $a=1, b=2$ we have

$$
f_{1} s_{2}=s_{2} f_{2}, \quad f_{1}^{\prime} s_{2}=s_{2} f_{2}^{\prime}
$$

Using our \pm-notation we can restate Equation (4.3) for any $0 \leq a, b \leq 2$:

$$
\begin{equation*}
s_{(a, b]}^{-} f_{a}^{(\prime)} s_{(a, b]}^{+}=s_{(a, b]}^{+} f_{b}^{(\prime)} s_{(a, b]}^{-} . \tag{4.4}
\end{equation*}
$$

Indeed, it is easy to check that for $a<b$ and $b<a$ we get exactly Equation (4.3) and for $a=b$ a tautology $f_{a}^{(\prime)}=f_{b}^{(\prime)}$.

Let $p_{i} \in X^{*}$ be a common prefix of f_{i}, f_{i}^{\prime} over the alphabet X and let $r_{i}, r_{i}^{\prime} \in X^{*}$ be words such that $f_{i}=p_{i} r_{i}$ and $f_{i}^{\prime}=p_{i} r_{i}^{\prime}$ (see Figure 4.3).

Note that if $f_{i}=f_{i}^{\prime}$ for any $i=1,2,3$ then, by (4.2) and the choice of $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$-triples, $f_{i}=f_{i}^{\prime}$ for all $i=1,2,3$. This is impossible since X is a code and the triples are different. Thus, since $\left|f_{0}\right| \leq\left|f_{0}^{\prime}\right|$ we have that $r_{i}^{\prime} \neq 1$ for all i.

Let i_{0}, i_{1}, i_{2} be the order of the ends of p_{i} 's in the bi-infinite word w, as depicted in Figure 4.4. Note that since the X-factorizations are disjoint, the words u_{1}, u_{2} are non-empty. Hence, we have that $\left|t_{i_{0}} p_{i_{0}}\right|<\left|t_{i_{1}} p_{i_{1}}\right|<\left|t_{i_{2}} p_{i_{2}}\right|$, where, we remind, $t_{0}=1$.

Example 4.7 (continued). Let us change the indexes of factorizations F_{1} and F_{2}, so that the condition $t_{1}<t_{2}$ is satisfied. Hence, we will consider $(a, a a b, a, a a b)$-triples $(\alpha \beta, \delta \delta, \alpha \beta)$ and $(\alpha \gamma, \delta \alpha \delta, \alpha \alpha \beta)$ with $s_{1}=a$ and $s_{2}=a b$. Then

$$
\begin{array}{lll}
p_{0}=\alpha, & r_{0}=\beta, & r_{0}^{\prime}=\gamma, \\
p_{1}=\delta, & r_{1}=\delta, & r_{1}^{\prime}=\alpha \delta, \\
p_{2}=\alpha, & r_{2}=\beta, & r_{2}^{\prime}=\alpha \beta .
\end{array}
$$

Figure 4.5: A hypothetical situation in which an α between the end of f_{0} and the end of $f_{i_{j+1}}$ would exist.

Since $\left|p_{0}\right|<\left|t_{1} p_{1}\right|<\left|t_{2} p_{2}\right|$, the order of p_{i} 's is $i_{0}=0, i_{1}=1$ and $i_{2}=2$, and $u_{1}=b a$ and $u_{2}=a$.

We have

$$
\begin{equation*}
t_{i_{0}} p_{i_{0}} u_{1}=t_{i_{1}} p_{i_{1}}, \quad t_{i_{1}} p_{i_{1}} u_{2}=t_{i_{2}} p_{i_{2}}, \quad t_{i_{0}} p_{i_{0}} u_{1} u_{2}=t_{i_{2}} p_{i_{2}} \tag{4.5}
\end{equation*}
$$

Taking the first equation and multiplying both sides by $r_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-}$we obtain

$$
s_{\left(0, i_{0}\right]} p_{i_{0}} u_{1} r_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-}=t_{i_{0}} p_{i_{0}} u_{1} r_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-} \stackrel{(4.5)}{=} t_{i_{1}} p_{i_{1}} r_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-}=s_{\left(0, i_{1}\right]} f_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-}
$$

This is equivalent to

$$
s_{\left(i_{0}, i_{1}\right]}^{-} p_{i_{0}} u_{1} r_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-}=s_{\left(i_{0}, i_{1}\right]}^{+} f_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-} \stackrel{(4.4)}{=} s_{\left(i_{0}, i_{1}\right]}^{-} f_{i_{0}} s_{\left(i_{0}, i_{1}\right]}^{+}=s_{\left(i_{0}, i_{1}\right]}^{-} p_{i_{0}} r_{i_{0}} s_{\left(i_{0}, i_{1}\right]}^{+},
$$

hence $u_{1} r_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-}=r_{i_{0}} s_{\left(i_{0}, i_{1}\right]}^{+}$. In the similar way we obtain

$$
\begin{align*}
u_{1} r_{i_{1}}^{(\prime)} s_{\left(i_{0}, i_{1}\right]}^{-} & =r_{i_{0}}^{(\prime)} s_{\left(i_{0}, i_{1}\right]}^{+}, \tag{4.6}\\
u_{2} r_{i_{2}}^{(\prime)} s_{\left(i_{1}, i_{2}\right]}^{-} & =r_{i_{1}(\prime)}^{\left(s_{\left(i_{1}, i_{2}\right]},\right.} \tag{4.7}\\
u_{1} u_{2} r_{i_{2}}^{(\prime)} s_{\left(i_{0}, i_{2}\right]}^{-} & =r_{i_{0}}^{(\prime)} s_{\left(i_{0}, i_{2}\right]}^{+} . \tag{4.8}
\end{align*}
$$

If $r_{i_{j}}=1$, for $j=0,1$ then Equations (4.6) and (4.7) imply $s_{\left(i_{j}, i_{j+1}\right]}^{+} \neq 1$, and hence also $i_{j}<i_{j+1}$ and $\left|r_{i_{j+1}}\right|<\left|s_{\left(i_{j}, i_{j+1}\right]}\right| \leq\left|t_{i_{j+1}}\right|$. By the definition of the X-differences, we then obtain $r_{i_{j+1}}=1$, otherwise there is an $\alpha \in X$ in the X factorization $F_{i_{j+1}}$, which ends before the end of $f_{i_{j+1}}$ and after the end of f_{0}, as illustrated in Figure 4.5. But this is impossible by the definition of X-differences, see Figure 4.1.
We have three possibilities:
(i) $r_{i_{0}}=r_{i_{1}}=r_{i_{2}}=1, i_{0}<i_{1}<i_{2} ;$
(ii) $r_{i_{0}} \neq 1, r_{i_{1}} \neq 1$;
by (4.6) and (4.7)

Figure 4.6: A part of the dependency graph in the case (ii).
(iii) $r_{i_{0}} \neq 1, r_{i_{1}}=r_{i_{2}}=1, i_{1}<i_{2}$.

Case (i). In this case there is an occurrence of the X-difference $\left(t_{1}, t_{2}\right)$ inside the minimal $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$-triple $\left(f_{0}^{\prime}, f_{1}^{\prime}, f_{2}^{\prime}\right)$, which is a contradiction.
Case (ii). Let $x, x^{\prime}, y, y^{\prime} \in X$ be the first letters of $r_{i_{0}}, r_{i_{0}}^{\prime}, r_{i_{1}}, r_{i_{1}}^{\prime}$, respectively. Hence, $r_{i_{0}}^{(\prime)}=x^{(\prime)} \bar{r}_{i_{0}}^{(\prime)}$ and $r_{i_{1}}^{(\prime)}=y^{(\prime)} \bar{r}_{i_{1}}^{(\prime)}$ with some $\bar{r}_{i_{0}}, \bar{r}_{i_{0}}^{\prime}, \bar{r}_{i_{1}}, \bar{r}_{i_{1}}^{\prime} \in X^{*}$. Clearly, since $p_{i_{0}}$ and $p_{i_{1}}$ are the maximal common prefixes, $x \neq x^{\prime}$ and $y \neq y^{\prime}$. Using this notation Equations (4.6) transform to

$$
\begin{array}{ll}
u_{1} y & \overbrace{\bar{r}_{i_{1}} s_{\left(i_{0}, i_{1}\right]}^{-}}^{w_{1}}=x \\
u_{1} y^{\prime} & \underbrace{}_{\underbrace{\bar{r}_{i_{1}}^{\prime} s_{\left(i_{0}, i_{1}\right]}}_{w_{2}}}=x^{\prime}
\end{array} \underbrace{\bar{r}_{1}^{\prime} s_{0}}_{\underbrace{\bar{r}_{i_{0}} s_{\left(i_{0}, i_{1}\right]}^{+}}_{z_{2}}}+,
$$

Hence, by Lemma 4.1, the pair $\left\{x, x^{\prime}\right\}$ is different from the pair $\left\{y, y^{\prime}\right\}$.
The dependency graph contains at least 6 distinct edges, as shown in Figure $4.6, \operatorname{card}(X)+4$ vertices and, most importantly, at most card $(X)-2$ components. Hence, we can bound the combinatorial rank of X using the Graph Lemma:

$$
\operatorname{rank}_{\mathrm{c}}(X) \leq \operatorname{rank}_{\mathrm{c}}\left(X \cup\left\{u_{1}, u_{2}, s_{1}, s_{2}\right\}\right) \leq \operatorname{card}(X)-2 .
$$

Example 4.9 (continued). We have that $x=\beta, x^{\prime}=\gamma, y=\delta$ and $y^{\prime}=\alpha$, so $\left\{x, x^{\prime}\right\} \neq\left\{y, y^{\prime}\right\}$. By Equations (4.3), (4.6) and (4.7) the set X satisfies the following 6 equalities:

$$
\begin{array}{clll}
\alpha \beta s_{1}=a a . b a a b \cdot a & =a \cdot a b a \cdot a b a & =s_{1} \delta \delta, \\
\delta \delta s_{2}=a b a \cdot a b a \cdot a b & =a b \cdot a a \cdot b a a b & =s_{2} \alpha \beta, \\
u_{1} \delta=b a \cdot a b a & =b a a b \cdot a & =\beta s_{1}, \\
u_{1} \alpha \delta=b a \cdot a a \cdot a b a & =b a a a a b \cdot a & =\gamma s_{1}, \\
u_{2} \beta=a \cdot b a a b & & =a b a \cdot a b & =\delta s_{2}, \\
u_{2} \alpha \beta=a \cdot a a \cdot b a a b & =a a \cdot a b a \cdot a b & =\alpha \delta s_{2} .
\end{array}
$$

Figure 4.7: An illustration of Equations (4.11) and (4.12).

Hence, the dependency graph

has 2 components, so by the Graph Lemma, $\operatorname{rank}_{\mathrm{c}}(X) \leq 2$.
Let us consider the remaining case.
Case (iii). Let us recall Equations (4.8), where we set $r_{i_{2}}=1$:

$$
\begin{equation*}
u_{1} u_{2} s_{\left(i_{0}, i_{2}\right]}^{-}=r_{i_{0}} s_{\left(i_{0}, i_{2}\right]}^{+}, \quad u_{1} u_{2} r_{i_{2}}^{\prime} s_{\left(i_{0}, i_{2}\right]}^{-}=r_{i_{0}}^{\prime} s_{\left(i_{0}, i_{2}\right]}^{+} \tag{4.9}
\end{equation*}
$$

Assume that $r_{i_{0}}^{(\prime)}$ starts with $x^{(\prime)} \in X$, where again x must be different from x^{\prime}. Note that x and x^{\prime} are connected in the dependency graph through u_{1}. If $|x| \leq\left|u_{1} u_{2}\right|$ then x and x^{\prime} are left comparable, a contradiction to the prefix property of X. Thus, we have that $u_{1} u_{2}<x$, which implies that $s_{\left(i_{0}, i_{2}\right]}^{-} \neq 1$, and also $i_{1}<i_{2}<i_{0}$. Therefore, $i_{0}=2, i_{1}=0$ and $i_{2}=1$. Equations (4.9) simplify to

$$
\begin{equation*}
u_{1} u_{2} s_{2}=r_{2}, \quad u_{1} u_{2} r_{1}^{\prime} s_{2}=r_{2}^{\prime} \tag{4.10}
\end{equation*}
$$

where r_{2} and r_{2}^{\prime} start with x and x^{\prime}, respectively.
Since $r_{0}=r_{1}=1$, Equation (4.3) for $a=0, b=1$ implies

$$
\begin{equation*}
s_{1} p_{1}=p_{0} s_{1} . \tag{4.11}
\end{equation*}
$$

Again since $r_{0}=r_{1}=1$, Equation (4.7) without primes gives $u_{2}=s_{1}$. Hence, Equation (4.7) with primes simplifies to

$$
\begin{equation*}
s_{1} r_{1}^{\prime}=r_{0}^{\prime} s_{1} \tag{4.12}
\end{equation*}
$$

Figure 4.7 illustrates the parts of factorizations $F_{i_{1}}$ and $F_{i_{2}}$ corresponding to Equations (4.11) and (4.12).

Let us analyze Equations (4.11) and (4.12). For $j=0,1$, let \tilde{p}_{j} be the maximal common prefix of $p_{j}=f_{j}$ and r_{j}^{\prime} over the alphabet X and let $p_{j}=\tilde{p}_{j} \tilde{r}_{p_{j}}$ and $r_{j}^{\prime}=\tilde{p}_{j} \tilde{r}_{r_{j}^{\prime}}$, for some $\tilde{p}_{j}, \tilde{r}_{p_{j}}, \tilde{r}_{r_{j}^{\prime}} \in X^{*}$. There are two possibilities:
(a) \tilde{p}_{0} ends later than \tilde{p}_{1}, i.e., $\tilde{p}_{0}=s_{1} \tilde{p}_{1} u$ for some $u \in \Sigma^{+}$;
(b) \tilde{p}_{1} ends later than \tilde{p}_{0}, i.e., $\tilde{p}_{0} u=s_{1} \tilde{p}_{1}$ for some $u \in \Sigma^{+}$.

Since the factorizations F_{0} and F_{1} are disjoint, u must be non-empty.
Case (iii.a). Equations (4.11) and (4.12) imply

$$
u \tilde{r}_{p_{0}} s_{1}=\tilde{r}_{p_{1}}, \quad u \tilde{r}_{r_{0}^{\prime}} s_{1}=\tilde{r}_{r_{1}^{\prime}} .
$$

Note that both, $\tilde{r}_{p_{1}}$ and $\tilde{r}_{r_{1}^{\prime}}$, are non-empty. Hence, we can assume that $\tilde{r}_{p_{1}}$ and $\tilde{r}_{r_{1}^{\prime}}$ start with different symbols y and y^{\prime}, and so, y and y^{\prime} are connected in the dependency graph through u. It is enough to show that the pair $\left\{y, y^{\prime}\right\}$ is different from the pair $\left\{x, x^{\prime}\right\}$, since after that the end of the proof is essentially the same as the one in the case (ii). Using Equations (4.3) and (4.10) we derive

$$
\begin{array}{ll}
\overbrace{u_{1} u_{2} \tilde{p}_{1}}^{v} \tilde{r}_{r_{1}^{\prime}} s_{2} \stackrel{(4.10)}{=} & r_{2}^{\prime} \\
\underbrace{u_{1} u_{2} \tilde{p}_{2}}_{v} \tilde{r}_{p_{1}} s_{2}=u_{1} u_{2} f_{1} s_{2} \stackrel{(4.3)}{=} u_{1} u_{2} s_{2} f_{2} \stackrel{(4.10)}{=} & r_{2} f_{2} .
\end{array}
$$

Setting in Lemma 4.1, $v=u_{1} u_{2} \tilde{p}_{1}$ we obtain $\left\{y, y^{\prime}\right\} \neq\left\{x, x^{\prime}\right\}$.
Example 4.10. Consider again the set $X=\{\alpha, \beta, \gamma, \delta\}$ from Example 4.3. Recall that $\alpha=a a, \beta=b a a b, \gamma=b a a a a b$ and $\delta=a b a$. Take any non-periodic word w_{3} in the set $\{a a b a a b, a a b a a b a a\}^{\mathbb{Z}}$. It has 3 different X-factorizations in the sets: $\{\alpha \beta, \alpha \beta \alpha\}^{\mathbb{Z}},\{\delta \delta, \delta \delta \alpha\}^{\mathbb{Z}}$ and $\{\alpha \beta, \alpha \gamma\}^{\mathbb{Z}}$. Note that this example is equivalent to Example 4.4, we have only changed order of X-factorizations.

The pieces of all 3 factorizations of w_{3} can be illustrated as follows:

We have two different ($a, a a b, a, a a b$)-triples $(\alpha \beta, \delta \delta, \alpha \beta)$ and ($\alpha \beta \alpha, \delta \delta \alpha, \alpha \gamma$), with $s_{1}=a, s_{2}=a b$ and

$$
\begin{array}{lll}
p_{0}=\alpha \beta, & r_{0}=1, & r_{0}^{\prime}=\alpha, \\
p_{1}=\delta \delta, & r_{1}=1, & r_{1}^{\prime}=\alpha, \\
p_{2}=\alpha, & r_{2}=\beta, & r_{2}^{\prime}=\gamma .
\end{array}
$$

The order of p_{i} 's is $i_{0}=2, i_{1}=0$ and $i_{2}=1$ with $u_{1}=b$ and $u_{2}=a=s_{1}$. This is the case (iii). It is easy to check that the set X satisfies Equations (4.11) and (4.12):

$$
s_{1} \delta \delta=\alpha \beta s_{1}, \quad s_{1} \alpha=\alpha s_{1} .
$$

Next, we have

$$
\begin{array}{lll}
\tilde{p}_{0}=\alpha, & \tilde{r}_{p_{0}}=\beta, & \tilde{r}_{r_{0}^{\prime}}=1, \\
\tilde{p}_{1}=1, & \tilde{r}_{p_{1}}=\delta \delta, & \tilde{r}_{r_{1}^{\prime}}=\alpha .
\end{array}
$$

Hence, $\left|s_{1} \tilde{p}_{1}\right|<\left|\tilde{p}_{0}\right|$, i.e., \tilde{p}_{0} ends in w_{3} later than \tilde{p}_{1}, so we are in the case (a) with $u=a$. Equations (4.11) and (4.12) imply

$$
u \beta s_{1}=\delta \delta, \quad u s_{1}=\alpha
$$

hence, α and δ are connected through u in the dependency graph of the set X. On other hand Equations (4.10)

$$
u_{1} u_{2} s_{2}=\beta, \quad u_{1} u_{2} \alpha s_{2}=\gamma
$$

imply that β and γ are connected through u_{1}. Hence again, the dependency graph has 2 components:

Finally, we arrive to the last case of the proof.
Case (iii.b). The proof is similar as in the previous case. Equations (4.11) and (4.12) imply

$$
\begin{equation*}
\tilde{r}_{p_{0}} s_{1}=u \tilde{r}_{p_{1}}, \quad \tilde{r}_{r_{0}^{\prime}} s_{1}=u \tilde{r}_{r_{1}^{\prime}} \tag{4.13}
\end{equation*}
$$

Equation (4.3) implies that s_{2} is a prefix of $f_{1}=p_{1}=\tilde{p}_{1} \tilde{r}_{p_{1}}$. We will show that x and x^{\prime} are left comparable, and hence X is not a prefix.

First, assume that $s_{2}<\tilde{p}_{1}$. Since, by (4.10), $x<r_{2}=u_{1} u_{2} s_{2}$, it is enough to show that x^{\prime} and $u_{1} u_{2} s_{2}$ are left comparable. Again by Equation (4.10) we have that $x^{\prime}<r_{2}^{\prime}=u_{1} u_{2} r_{1}^{\prime} s_{2}=u_{1} u_{2} \tilde{p}_{1} \tilde{r}_{r_{1}^{\prime}} s_{2}$. And since $s_{2}<\tilde{p}_{1}, x^{\prime}$ and $u_{1} u_{2} s_{2}$ are left comparable.

Second, assume that $\left|\tilde{p}_{1}\right|<\left|s_{2}\right|$, i.e., $s_{2}=\tilde{p}_{1} \omega$ for some $\omega \in \Sigma^{+}$. By the definition of X-differences, we have that $\left|\tilde{p}_{0} \tilde{r}_{p_{0}}\right|=\left|p_{0}\right|=\left|f_{0}\right|=\left|f_{2}\right|>\left|s_{1} s_{2}\right|$. On the other hand, $\left|\tilde{p}_{0}\right|<\left|\tilde{p}_{0} u\right|=\left|s_{1} \tilde{p}_{1}\right|<\left|s_{1} s_{2}\right|$. Therefore, the word $\tilde{r}_{p_{0}}$ must be non-empty. If also $\tilde{r}_{r_{0}^{\prime}} \neq 1$ then we can proceed as in the case (a) choosing y and y^{\prime} to be the starting symbols of $\tilde{r}_{p_{0}}$ and $\tilde{r}_{r_{0}^{\prime}}$ over the alphabet X.

Unfortunately, it can also happen that $\tilde{r}_{r_{0}^{\prime}}=1$. Let us consider this case. We have that $r_{0}^{\prime}=\tilde{p}_{0}$. The word \tilde{p}_{1} in r_{1}^{\prime} depicted in Figure 4.7 should end after

Figure 4.8: An illustration of triples $\left(f_{0}, f_{1}, f_{2}\right)$ (down) and ($f_{0}^{\prime}, f_{1}^{\prime}, f_{2}^{\prime}$) (up) in the case (iii.b) when $\tilde{r}_{r_{0}^{\prime}}$ is the empty word. Note that triples are same to the left from the dashed line, but they can differ to the right from it, and that $u_{2}=s_{1}$.
the beginning of s_{1}. By the definition of X-differences, this is possible only if $r_{1}^{\prime}=\tilde{p}_{1}$ and $\tilde{r}_{r_{1}^{\prime}}=1$. The second of Equations (4.13) implies $u=s_{1}$, so we have

$$
s_{1} \tilde{p}_{1}=\tilde{p}_{0} s_{1}, \text { by }(4.12), \quad s_{1} \tilde{r}_{p_{1}}=\tilde{r}_{p_{0}} s_{1}, \text { by (4.13). }
$$

Thus, we can perform the same kind of analysis as we did for Equations (4.11) and (4.12). Then either $\tilde{r}_{p_{0}}<\tilde{p}_{0}$, or $\tilde{p}_{0}<\tilde{r}_{p_{0}}$, or the words \tilde{p}_{0} and $\tilde{r}_{p_{0}}$ are not left comparable. In the first case, we will show that x and x^{\prime} are left comparable, as we wanted. In the second case, we obtain again equations of type (4.11) and (4.12), and we can continue inductively. Since the words in the new equations are shorter, we have to arrive to one of the other two cases after a final number of steps. In the third case, we can take the starting symbols of \tilde{p}_{0} and $\tilde{r}_{p_{0}}$ over the alphabet X for the values of y and y^{\prime} and proceed as in the case (a).

Hence, consider the first case $\tilde{r}_{p_{0}}<\tilde{p}_{0}$. Multiplying this relation by s_{1} and using Equations (4.13) we obtain $\tilde{r}_{p_{1}}<\tilde{p}_{1}$. Since $\tilde{p}_{1} \omega=s_{2}<f_{1}=\tilde{p}_{1} \tilde{r}_{p_{1}}$, we have that $\omega<\tilde{r}_{p_{1}}<\tilde{p}_{1}$. Hence:

$$
u_{1} u_{2} s_{2}=u_{1} u_{2} \tilde{p}_{1} \omega<u_{1} u_{2} \tilde{p}_{1} \tilde{p}_{1}<u_{1} u_{2} \tilde{p}_{1} \tilde{p}_{1} \omega=u_{1} u_{2} \tilde{p}_{1} s_{2}=u_{1} u_{2} r_{1}^{\prime} s_{2},
$$

which together with Equation (4.10) gives that x^{\prime} and $u_{1} u_{2} s_{2}$ are left comparable. This is, as we have seen before, a contradiction.

The proof of Lemma 4.4 can be done in the same way as the proof above. The existence of a $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple $\left(\bar{f}_{0}, \bar{f}_{1}, \bar{f}_{2}\right)$ implies that the set $X \cup\left\{t_{1}^{\prime}, t_{2}^{\prime}\right\}$ satisfies the following relations

$$
\bar{f}_{0} t_{1}^{\prime}=t_{1}^{\prime} \bar{f}_{1} \quad \text { and } \quad \bar{f}_{0} t_{2}^{\prime}=t_{2}^{\prime} \bar{f}_{2} .
$$

Hence, in the dependency graph of any set containing $X \cup\left\{t_{1}^{\prime}, t_{2}^{\prime}\right\}$ the words t_{1}^{\prime} and t_{2}^{\prime} are connected to some elements of X.

Now, let us consider the minimal $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$-triple $\left(f_{0}, f_{1}, f_{2}\right)$ and the minimal $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple $\left(f_{0}^{\prime}, f_{1}^{\prime}, f_{2}^{\prime}\right)$ instead of two different minimal $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$ triples, $c f$. the beginning of the proof of Lemma 4.3. We can follow the lines of the proof of Lemma 4.3 just changing t_{1} to t_{1}^{\prime} (resp. t_{2} to t_{2}^{\prime}) at the ends of some equations. Any time we use Lemma 2.3 (the Graph Lemma) to show a defect effect by 2 we have to add the words t_{1}^{\prime} and t_{2}^{\prime} to the set of vertices of the dependency graph. But, as we have mentioned above, these two vertices are connected to some elements of X, hence Lemma 2.3 can be applied to force the same defect effect.

4.1.2 Proof of Theorem 4.2

Proof. Since X is a prefix set, we can assume that all three X-factorizations are pairwise disjoint. Lemmas 4.3 and 4.4 imply that if we assume that the combinatorial rank of X is at least $\operatorname{card}(X)-1$ then any two minimal $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$-triples are equal, and there cannot occur all following three triples in w : a $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$ triple without any occurrence of X-difference $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ inside, a $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple and a $\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple. Since t_{1}, t_{2} are suffixes of words in X, there are only finitely many different X-differences. By the pigeon hole principle, there exists an X-difference ($t_{1}^{\prime}, t_{2}^{\prime}$), which occurs an infinite number of times in the word w. Each two consecutive occurrences define the minimal $\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple. If there are infinitely many occurrences to the right and also to the left from an arbitrary position in w then, clearly, all three X-factorizations and the bi-infinite word w are periodic, which is a contradiction.

Hence, without loss of generality we assume that there are occurrences of $\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple only to the right from a position n. Therefore, by the pigeon hole principle, there must be an X-difference (t_{1}, t_{2}) occurring an infinite number of times to the left from the position n in w. Clearly, a $\left(t_{1}, t_{2}, t_{1}, t_{2}\right)$-triple occurring to the left from the position n in w does not contain any occurrence of X-difference $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$. Obviously, there is a $\left(t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)$-triple in the word w, which is a contradiction.

Note that in the proof of Theorem 4.2 we have used the fact that at least 1 of the X-factorizations is non-periodic, and not the fact that the bi-infinite word w is non-periodic. Hence, we have proved the following theorem:

Theorem 4.5. Consider a prefix set $X \subseteq \Sigma^{+}$. Let w be a bi-infinite word over Σ with 3 disjoint X-factorizations F_{0}, F_{1}, F_{2}. If at least one of three X-factorizations is non-periodic then the combinatorial rank of X is at most $\operatorname{card}(X)-2$.

Nevertheless, under assumption that X is a prefix, this theorem is equivalent to Theorem 4.2. The following example shows that in Theorem 4.5, but not in Theorem 4.2 , we have to put some assumptions on the set X, for example, that it is a code.

Example 4.11. Let $X=\{\alpha, \beta, \gamma\}$, where $\alpha=a b a b a, \beta=b$ and $\gamma=a b a b a b$. Then the periodic bi-infinite word $w=(a b)^{\mathbb{Z}}$ has three disjoint X-factorizations of the form $\{\alpha \beta, \gamma\}^{\mathbb{Z}}$. We can choose them to be non-periodic and not shiftequivalent. The combinatorial rank of the set X is 2 , so in this case the defect effect is only by 1 .

4.2 A connection to the Critical Factorization Theorem

In this section we look at how the Critical Factorization Theorem is connected to Problem 4.1 in the cases $k=\operatorname{card}(X)$ and $k=\operatorname{card}(X)+1$.

First, we will recall the Critical Factorization Theorem and its application, $c f$. Chapter 8 in [Lo]. We need a few definitions.

Let w be a finite word. We say that an integer $p \geq 1$ is a local period of w at the position $\left(w_{1}, w_{2}\right)$, if there is a word z of the length p such that (z, z) matches w at the position $\left(w_{1}, w_{2}\right)$. The minimal local period of w at the position $\left(w_{1}, w_{2}\right)$ is called the local period of w at the position $\left|w_{1}\right|$, denoted by $\operatorname{lper}\left(w,\left|w_{1}\right|\right)$. Further, we say that the position $1<i<|w|$ in w is critical, if $\operatorname{lper}(w, i)=\operatorname{per}(w)$.

Theorem 4.6 (Critical Factorization Theorem). For any $w \in \Sigma^{*}$ with the period $p(w)>1$ every sequence of $p(w)-1$ consecutive positions contains a critical one.

Let X be a set of non-empty words and let sequences of elements of X, x_{1}, \ldots, x_{n} and $x_{1}^{\prime}, \ldots, x_{m}^{\prime}$, be two X-interpretations of w, i.e., there are words $p, s, p^{\prime}, s^{\prime}$ such that

$$
\begin{aligned}
p w s & =x_{1} \ldots x_{n} \quad \text { and } \\
p^{\prime} w s^{\prime} & =x_{1}^{\prime} \ldots x_{m}^{\prime}
\end{aligned}
$$

We say that X-interpretations x_{1}, \ldots, x_{n} and $x_{1}^{\prime}, \ldots, x_{m}^{\prime}$ are disjoint, if for all integers $i \leq n$ and $j \leq m$, we have that $p^{-1} x_{1} \ldots x_{i} \neq p^{\prime-1} x_{1}^{\prime} \ldots x_{j}^{\prime}$.

The application of the Critical Factorization Theorem states, $c f$. [Lo]:
Proposition 4.7. Let $w \in \Sigma^{+}$and $X \subseteq \Sigma^{+}$be a finite set satisfying $\operatorname{per}(x)<$ $\operatorname{per}(w)$ for all $x \in X$. Then w has at most $\operatorname{card}(X)$ disjoint X-interpretations.

Already in [Lo] it was noted that the bound in the proposition is close to the optimal: for each $n \geq 2$, words of the form $w \in\left(a^{2 n-2} b\right)^{+}$have exactly n disjoint X-interpretations where $X=\left\{a^{n}, b, a b a, \ldots, a^{n-1} b a^{n-1}\right\}$ contains $n+1$ elements.

In [Lo] it was also conjectured that the exact value in Proposition 4.7 is $\operatorname{card}(X)-1$. This conjecture is inspired by Schützenberger conjecture stated in $[\mathrm{Sc}]$ which in addition assumes that the set X satisfies an another algebraic property. It is out of scope of this work to restate the original conjecture, and so an interested reader is referred to [$\mathrm{Sc}, \mathrm{Pe} 2$] for details. If the conjecture in [Lo] would be true then it would imply that a non-periodic bi-infinite word can possess at most $\operatorname{card}(X)-1$ disjoint X-factorizations, which is also an immediate consequence of an affirmative answer to our Problem 4.1 in the case
$k=\operatorname{card}(X)$. However, the following examples show that the conjecture is false, and hence also, that the bound in Proposition 4.7 is optimal.

Example 4.12. For any integer $n \geq 2$ consider the set $X=\left\{\alpha_{1}, \ldots, \alpha_{n-1}, \beta\right\}$ with $\alpha_{i}=a^{i} b a^{i}$ and $\beta=b a^{n} b$. Note that $\operatorname{card}(X)=n$ and that $\operatorname{per}\left(\alpha_{i}\right)=i+1$ and $\operatorname{per}(\beta)=n+1$. The word $w=b a^{n} b a^{n-1} b$ has the period $\operatorname{per}(w)=2 n+1$, hence Proposition 4.7 implies that w has at most n disjoint X-interpretations. The following list of X-interpretations of w shows that the word w has exactly $n=\operatorname{card}(X)$ of X-interpretations.

$$
\begin{aligned}
\alpha_{1} \alpha_{n-1} \beta & =\quad a \overbrace{b a \cdot a^{n-1} b a^{n-1} \cdot b}^{w} a^{n} b \\
\alpha_{2} \alpha_{n-2} \alpha_{1} & =a^{2} \overbrace{b a^{2} \cdot a^{n-2} b a^{n-2} \cdot a b}^{w} a \\
\ldots & \\
\alpha_{i} \alpha_{n-i} \alpha_{i-1} & =\quad a^{i} \overbrace{b a^{i} \cdot a^{n-i} b a^{n-i} \cdot a^{i-1} b}^{w} a^{i-1} \\
\ldots & \\
\alpha_{n-1} \alpha_{1} \alpha_{n-2} & =a^{n-1} \overbrace{b a^{n-1} \cdot a b a \cdot a^{n-2} b}^{w} a^{n-2} \\
\beta \alpha_{n-1} & =\overbrace{b a^{n} b \cdot a^{n-1} b}^{w} a^{n-1}
\end{aligned}
$$

Hence, Proposition 4.7 is optimal.
Note that the X-interpretations above are parts of n disjoint shift-equivalent X-factorizations in

$$
\left[\beta \alpha_{n-1} \alpha_{1} \alpha_{n-2} \alpha_{2} \ldots \alpha_{1} \alpha_{n-1}\right]_{w}^{\mathbb{Z}}
$$

of the periodic bi-infinite word $w=\left(b a^{n} b a^{n-1}\right)^{\mathbb{Z}}$.
The above example shows that the conjecture stated in [Lo] is not valid. An interesting problem is to find the sufficient conditions in terms of notions of Combinatorics on Words such that the conjecture would turn true. Next, we will show that that two straightforward approaches in this direction do not give the desired result.

Note that in Example 4.12 the maximal ratio between the periods of elements of the set X and the period of the word w is $\frac{n+1}{2 n+1}>\frac{1}{2}$. One possible additional assumption of the conjecture could be restricting the ratio above to $1 / 2$ or smaller. Unfortunately, the following example shows that the maximal ratio between the periods can be arbitrary small without decreasing the number of X-interpretations.

Example 4.13. Take an arbitrary integers $n \geq 1$ and $p \geq 1$. Consider the set $X=\left\{\alpha_{i} ; \quad i=1, \ldots, n\right\}$ with $\alpha_{i}=a^{i} b\left(a^{n} b\right)^{p-1} a^{i}$ and the word $w=\left(\left(a^{n} b\right)^{p} a\right)^{2}$. Obviously,

$$
\text { for every } i=1, \ldots, n \quad \operatorname{per}\left(\alpha_{i}\right)=n+1, \quad \text { and } \quad \operatorname{per}(w)=p(n+1)+1
$$

Thus, the ratio between the period of any element of X and the period of w is $\frac{n+1}{p(n+1)+1}<\frac{1}{p}$. On the other hand, for every $i=0, \ldots, n-1$ we have

$$
w=a^{i} \alpha_{n-i} \alpha_{i+1} a^{-i},
$$

and thus, the word w had $n=\operatorname{card}(X)$ disjoint X-interpretations

$$
\alpha_{n} \alpha_{1}, \alpha_{2} \alpha_{n-1} \alpha_{2}, \ldots, \alpha_{n-1} \alpha_{2} \alpha_{n-1}, \alpha_{n} \alpha_{1} \alpha_{n}
$$

The all examples above the combinatorial rank of the set X is 2 . Therefore, we can ask if a condition on the combinatorial rank could help.

Example 4.14. Consider any set X over the alphabet Σ such that a word w has card (X) disjoint X-interpretations and the periods of elements of X are strictly smaller than the period of w. Let c be a new letter and let g and h be two morphisms from Σ to $\Sigma \cup\{c\}$ defined as follows: for every $a \in \Sigma$

$$
g(a)=a c \quad \text { and } \quad h(a)=c a
$$

Let $\bar{X}=g(X) \cup h(X), \bar{w}=g(w)$. Obviously, the word \bar{w} has $\operatorname{card}(\bar{X})=$ $2 \operatorname{card}(X)$ disjoint X-interpretations. Moreover, $\operatorname{per}(\bar{w})=2 \operatorname{per}(w)$ and, for every $x \in X, \operatorname{per}(g(x))=\operatorname{per}(h(x))=2 \operatorname{per}(x)$. Finally, $\operatorname{rank}_{\mathrm{c}}(\bar{X})=\operatorname{rank}_{\mathrm{c}}(X)+$ 1.

Example 4.14 shows that putting a condition on the combinatorial rank of X in the form of a lower bound by a constant is not sufficient. As an open problem remains the question if setting $\operatorname{rank}_{\mathrm{c}}(X)$ close to $\operatorname{card}(X)$ would fix the problem.

Note that a more trivial counterexample to the problem stated in [Lo] was pointed out already in [Ha]: the word $w=b a^{n+1} b$ has $n X$-interpretations, where $X=\left\{a^{i} b a^{n+1-i} ; \quad i=1, \ldots, n\right\}$. However, the maximal period of words in $X, n+1$, is almost equal to the period of $w, n+2$.

Finally, let us come back to Problem 4.1 posed in the beginning of this chapter. As a corollary of Proposition 4.7 we have the following result.

Corollary 4.8. Let X be a set of non-empty words and w a non-periodic biinfinite word. Then w can possess at most $\operatorname{card}(X)$ disjoint X-factorizations.

4.2. A CONNECTION TO THE CRITICAL FACTORIZATION THEOREM69

Proof. Let $w_{i} \in \Sigma, i \in \mathbb{Z}$ be letters of the bi-infinite word w :

$$
w=\ldots w_{-2} w_{-1} w_{0} w_{1} w_{2} \ldots
$$

We define the sequence $\left\{u_{i}\right\}_{i \geq 0}$ of finite words as follows

$$
u_{i}=w_{-i} \ldots w_{-1} w_{0} w_{1} \ldots w_{i}
$$

Clearly, $\operatorname{per}\left(u_{i+1}\right) \geq \operatorname{per}\left(u_{i}\right)$. This implies that the sequence $\left\{\operatorname{per}\left(u_{i}\right)\right\}_{i \geq 0}$ is nondecreasing. Assume that it is upper bounded, i.e., there are positive integers j, p such that, for all $i \geq j, \operatorname{per}\left(u_{i}\right)=p$. Then the bi-infinite word w is periodic with a period p, which is a contradiction. Thus, there exists a positive integer j such that $\operatorname{per}\left(u_{j}\right)$ is greater than the periods of words in X. Assume that w possesses card $(X)+1$ disjoint X-factorizations. We can construct, in a natural way, $\operatorname{card}(X)+1$ disjoint X-interpretations of the word u_{j}. But this together with Proposition 4.7 yields a contradiction.

Chapter 5

Conjugacy of binary sets

A natural extension of word equations are language equations. Despite the fact that there is a rather rich theory on word equations, almost nothing is known about that of languages. Even the simples equation, i.e., the commutation equation $X Z=Z X$ for languages, which has been recently studied in a number of papers, is solved only in some special cases, for example when $\operatorname{card}(X) \leq 3$ or when X is a code, $c f$. [CKO, Ra, KPe, HP, Ka3, KLP]. In all these cases Z must be of the form $Z=\cup_{i \in I} \varrho(X)^{i}$ with $I \subseteq \mathbb{N}$, and $\varrho(X)$ being the primitive root of X, i.e., the minimal set having the set X as its power. Hence, we have that both sets X and Z are expressible in terms of one set using operations: the concatenation ".", the Kleene star "*" and the union " \cup ". This can be viewed as a defect effect for languages. However, as an example of [CKO] shows, in general, a relation on languages, or even a commutation equation, do not always cause a defect effect:

Example 5.1. Consider the sets $X=\{a, a a a, b, b a, a b, a b a\}$ and $Z=X \cup\{a a\}$. X and Z satisfy the commutation equation $X Z=Z X$, but they cannot be expressed as unions of powers of a common set.

In this chapter we study the conjugacy equation

$$
\begin{equation*}
X Z=Z Y . \tag{5.1}
\end{equation*}
$$

for languages. Since the commutation equation is a special case of the conjugacy equation, the conjugacy equation for languages cannot be easy. Therefore, we will study the conjugacy equation in the case when the sets X and Y are binary. Surprisingly, even in this very restricted case we cannot witness a defect effect.

Example 5.2. Consider the binary sets $X=\{a b, a b a c a\}$ and $Y=\{b a, c a a b a\}$, and the singleton set $Z=\{a b a\}$. The sets X, Y and Z satisfy the conjugacy equation $X Z=Z Y$, but they cannot be expressed in terms of two sets using the operations ".", "*" and " \cup ".

In the word case the conjugacy equation has well-known solution and actually, as we have seen in Section 2.5, it is one of the several characterizations of two words which are conjugates. For languages we take (5.1) as a definition of conjugacy. We say that languages X and Y are conjugates, in symbols $X \sim Y$, if there exists a non-empty set Z such that (X, Y, Z) is a solution of (5.1). If this is the case we also say that X and Y are conjugated via Z, and we write $X \sim_{Z} Y$. Note that stricter definition of conjugacy of codes, corresponding to what we call word type solutions, was studied in [Pe1].

5.1 General considerations

In this section we will study some properties of the conjugacy equation in the general setting. We show that in special cases Equation (5.1) has only, so-called, word type solutions, while in general also other solutions are possible even for a unary set Z.

Let us recall that the conjugacy equation $x z=z y$ for non-empty words has a well known general solution, $c f$. Lemma 2.10:

$$
\exists p, q \in \Sigma^{*} \text { such that } x=p q, y=q p \text { and } z \in(p q)^{*} p
$$

As is immediate to check the words can be replaced by languages (or finite languages) to obtain solutions of the conjugacy equation $X Z=Z Y$ for languages: triples

$$
\begin{equation*}
X=P Q, \quad Y=Q P, \quad \text { and } \quad Z=\bigcup_{i \in I}(P Q)^{i} P \tag{5.2}
\end{equation*}
$$

for $P, Q \subseteq \Sigma^{*}$ and $I \subseteq \mathbb{N}$, are solutions. They are referred to as word type solutions. The conjugacy equation (5.1) has always word type solutions. In some cases these are the only possible solutions. For example, if the sets X, Y and Z are prefix codes, or if the sets X and Y are uniform, i.e., consist of words of a fixed length, then Equation (5.1) has only word type solutions. This follows from the fact that the monoids of prefix codes, $c f$. [Pe1], and of uniform non-empty languages are free. Consequently, we formulate:
Proposition 5.1. Consider prefix codes X, Y and Z such that $X, Y \neq\{1\}$. If the sets satisfy the conjugacy equation (5.1) then there exist prefix codes $P, Q \subseteq$ Σ^{*} and an integer $i \in \mathbb{N}$ such that $X=P Q, Y=Q P$ and $Z=(P Q)^{i} P$.

If we assume that the sets X and Y are uniform, we can decompose the set Z into uniform subsets, and clearly, (X, Y) is a solution of (5.1) for each such subset of the set Z as well. Therefore, we have the following proposition:

Proposition 5.2. If sets X, Y and Z satisfy the conjugacy equation (5.1) and $X, Y \neq\{1\}$ are uniform then there exist uniform sets $P, Q \subseteq \Sigma^{*}$ and $I \subseteq \mathbb{N}$ such that $X=P Q, Y=Q P$ and $Z=\cup_{i \in I}(P Q)^{i} P$.

However, not all solutions are of the word type, even for a unary set Z :
Example 5.3. $Z=\{a a\}, X=Y=\{a, a a a\}$ is a solution of the conjugacy equation (5.1), which is not of the word type. However, this is not a minimal solution, since (X, Y) can be obtained as a union of two solutions $X_{1}=Y_{1}=\{a\}$ and $X_{2}=Y_{2}=\{a a a\}$ while keeping $Z=\{a a\}$. These "smaller" solutions are of the word type.

An example of a binary prefix code Z, which allows a minimal solution not being of the word type, is as follows:

Example 5.4. $Z=\{a, b a\}, X=\{a, a b, a b b, b a, b a b b\}, Y=\{a, b a, b b a, b b b a\}$ is a solution of (5.1). This is a minimal solution, but not of the word type. Indeed, the only solutions contained in (X, Y) are: $X_{1}=Y_{1}=\{a, b a\}, X_{2}=\{a b b, b a b b\}$ and $Y_{2}=\{b b a, b b b a\}$, and their union which does not form the whole (X, Y). Note that here X and Y are of different cardinality.

Now, let us study the basic properties of the conjugacy equation. Assume that sets X, Y and Z satisfy Equation (5.1). Then necessarily

$$
\min _{x \in X}|x|+\min _{z \in Z}|z|=\min _{z \in Z}|z|+\min _{y \in Y}|y|,
$$

and therefore also

$$
\begin{equation*}
\min _{x \in X}|x|=\min _{y \in Y}|y| . \tag{5.3}
\end{equation*}
$$

Moreover, the sets

$$
X_{1}=\left\{x_{1} \in X: \quad\left|x_{1}\right|=\min _{x \in X}|x|\right\} \quad \text { and } \quad Y_{1}=\left\{y_{1} \in Y: \quad\left|y_{1}\right|=\min _{y \in Y}|y|\right\}
$$

are conjugated via $Z_{1}=\left\{z_{1} \in Z: \quad\left|z_{1}\right|=\min _{z \in Z}|z|\right\}$.
Further, if $1 \in X$ then $X_{1}=Y_{1}=\{1\}$, and so $1 \in Y$. Obviously, all languages containing the empty word are conjugated with each other via the set Σ^{*}. In the sequel, we assume that $1 \notin X$ and $1 \notin Y$, i.e., $X_{1}, Y_{1} \neq\{1\}$. Since all the sets X_{1}, Y_{1} and Z_{1} are uniform, by Proposition 5.2, necessarily

$$
X_{1}=P Q, \quad Y_{1}=Q P, \quad \text { and } \quad Z_{1}=(P Q)^{i} P
$$

for some non-negative integer i and uniform sets P and Q. Hence, we have the following proposition:

Proposition 5.3. Let $X \sim_{Z} Y$ with $X, Y \subseteq \Sigma^{+}$and Z non-empty. Let X_{1} (resp. Y_{1}, Z_{1}) be the set of the elements of X (resp. Y, Z) of the minimal length. There exist uniform sets P and Q and an integer $i \geq 0$ such that $X_{1}=P Q$, $Y_{1}=Q P$, and $Z_{1}=(P Q)^{i} P$. In particular, if $\left|X_{1}\right|=1$ or $\left|Y_{1}\right|=1$ then P and Q must be singletons and $X_{1}=\left\{(u v)^{m}\right\}, Y_{1}=\left\{(v u)^{m}\right\}, Z_{1}=\left\{(u v)^{k_{1}} u\right\}$ for some words u and v, where $u v$ is primitive, and some integers $m \geq 1$ and $k_{1} \geq 0$.

We finish this section with the following simple but useful facts.
Proposition 5.4. If sets X, Y and Z satisfy the conjugacy equation (5.1) then
(i) for every positive integer $n, X^{n} Z=Z Y^{n}$;
(ii) $Z \subseteq \operatorname{Pref}\left(X^{+}\right) \cap \operatorname{Suff}\left(Y^{+}\right)$.

5.2 Binary sets X and Y

In this and the following sections we will focus our study on the case when the sets X and Y are binary. We will be able to characterize completely all the solutions of the conjugacy equation in this case, i.e., all triples (X, Y, Z) satisfying the conjugacy equation with X and Y binary.

Although, it might seem that the complete characterization in such a simple case is easy, we will need several technical lemmas to accomplish this task. We will divide them to several sections to make our considerations more comprehensive.

In this section we fix our notations, state a simple result which will be used several times later, and in the end, explain the logical structure of the following sections.

Let $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$be binary sets with $\left|x_{1}\right| \leq$ $\left|x_{2}\right|$ and $\left|y_{1}\right| \leq\left|y_{2}\right|$ and let Z be a non-empty set such that $X Z=Z Y$. Note that, by (5.3), $\left|x_{1}\right|=\left|y_{1}\right|$.

We divide the set Z into the pairwise disjoint layers:

$$
Z=Z_{1} \uplus Z_{2} \uplus Z_{3} \uplus \ldots,
$$

where for all $z_{1}, z_{2} \in Z_{i},\left|z_{1}\right|=\left|z_{2}\right|$ and for all $z_{1} \in Z_{i}, z_{2} \in Z_{i+1},\left|z_{1}\right|<\left|z_{2}\right|$. Hence, for instance, the set Z_{1} contains all shortest elements of the set Z.

We will need the following lemma which belongs to the folklore of the theory of Combinatorics on Words.

Lemma 5.5. If a word z satisfies the equation $(u v)^{k} z=z(v u)^{k}$ with uv primitive, $v \neq 1$ and $k \geq 1$, then $z \in(u v)^{*} u$.

Proof. Let $x=(u v)^{k}$ and $y=z v$. Then $x y=(u v)^{k} z v=z(v u)^{k} v=z v(u v)^{k}=$ $y x$. The words x and y commute, and therefore have the same primitive root, $u v$. Let $y=(u v)^{l}$ for some $l \geq 1$ (note that $|y| \geq|v|>0$). Then $z=(u v)^{l-1} u \in$ $(u v)^{*} u$.

Finally, let us describe the way how we are going to characterize all solutions, i.e., all triples (X, Y, Z), of the conjugacy equations with X and Y binary. First, we will characterize all X and Y such that $X Z=Z Y$ for some non-empty set
Z. In Sections 5.3 and 5.4 we will consider separately two main cases: the commutative case and the non-commutative case, depending on whether x_{1} and x_{2} commute or do not. Further, in the non-commutative case we distinguish two cases: $\left|x_{1}\right|=\left|x_{2}\right|$ and $\left|x_{1}\right|<\left|x_{2}\right|$, which, by Proposition 5.3, coincide with the cases $\left|y_{1}\right|=\left|y_{2}\right|$ and $\left|y_{1}\right|<\left|y_{2}\right|$, respectively. In the commutative case and the non-commutative case with $\left|x_{1}\right|=\left|x_{2}\right|$ we will immediately obtain also the characterization of the sets Z. In the last case the situation is more intricate, therefore, we will deal with this case in a separate section, namely, Section 5.5. In this case, by Lemma 5.10, there exists a word t such that either $X t=t Y$ or $t X=Y t$, where t represents the singleton set $\{t\}$. In Subsections 5.5.1-3 we will determine all possible Z 's in terms of X and t satisfying (5.1) and one of the above conditions. Finally, in Section 5.6 we will combine all the results and obtain the characterization of all solutions of the conjugacy equations in the case when the sets X and Y are binary.

5.3 The commutative case

In this section we consider the case when x_{1} and x_{2} commute.
Lemma 5.6. Let sets $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$, with $\left|x_{1}\right| \leq\left|x_{2}\right|$ and $\left|y_{1}\right| \leq\left|y_{2}\right|$, be conjugates via a non-empty set Z. If $x_{1}, x_{2} \in t^{+}$, where t is primitive, then there is a word s such that $y_{1}, y_{2} \in s^{+}$and words t and s are conjugates, i.e., $t=u v$ and $s=v u$ for some words $u, v \in \Sigma^{*}$. Moreover, the set Z satisfies that $Z \subseteq(u v)^{*} u$.

Proof. Take an arbitrary word $z \in Z$. By Proposition 5.4, for any integers $n>0$ and $i=1,2$ there are integers $i_{1}, \ldots, i_{n} \in\{1,2\}$ and $z^{\prime} \in Z$ such that

$$
z y_{i}^{n}=x_{i_{1}} \ldots x_{i_{n}} z^{\prime} \in t^{+} z^{\prime} .
$$

If we take $n \geq 2$ such that $|z|+2\left|y_{i}\right| \leq n\left|x_{1}\right|$, then $z y_{i}^{2}$ is a prefix of t^{ω}. This implies that $z=t^{m_{z}} u_{z}$, for some integer $m_{z} \geq 0$ and some word u_{z}, a proper prefix of t. Let $t=u_{z} v_{z}$ and $s_{z}=v_{z} u_{z}$. Then $z \in\left(u_{z} v_{z}\right)^{*} u_{z}$ and y_{i}^{2} is a prefix of s_{z}^{ω}. Note that since t is primitive, so is s_{z}. Since $\left|y_{2}\right| \geq\left|y_{1}\right|=\left|x_{1}\right| \geq|t|=\left|s_{z}\right|$, by Lemma 2.5, we have that y_{1} (resp. y_{2}) commutes with s_{z}. Since s_{z} is primitive, we have $\rho\left(y_{1}\right)=\rho\left(y_{2}\right)=s_{z}$, i.e., we can conclude that $y_{1}, y_{2} \in s_{z}^{+}$.

Now, it suffices to prove that for all $z, \bar{z} \in Z, u_{z}=u_{\bar{z}}$ and $v_{z}=v_{\bar{z}}$. Since $s_{z}=\rho\left(y_{1}\right)=s_{\bar{z}}$, we have $u_{z} v_{z} u_{\bar{z}}=u_{\bar{z}} v_{\bar{z}} u_{\bar{z}}=u_{\bar{z}} v_{z} u_{z}$. Further, since $v_{z} \neq 1$, by Lemma 5.5, we have $u_{\bar{z}} \in\left(u_{z} v_{z}\right)^{*} u_{z}$, which implies $u_{\bar{z}}=u_{z}$. We are done.

5.4 The non-commutative case

In what follows we will assume that x_{1} and x_{2}, and similarly, y_{1} and y_{2}, do not commute. As an immediate consequence of Proposition 5.3 we have that the
lengths of x_{1} and x_{2} are equal if and only if the lengths of y_{1} and y_{2} do so:
Corollary 5.7. Let sets $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$, with $\left|x_{1}\right| \leq\left|x_{2}\right|$ and $\left|y_{1}\right| \leq\left|y_{2}\right|$, be conjugates via a non-empty set Z. Words x_{1} and x_{2} have the same length, if and only if words y_{1} and y_{2} have so.

Now, we will consider the simplest case when the sizes of words in X and Y are equal.

Lemma 5.8. Let sets $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$be conjugates via a non-empty set Z. If $\left|x_{1}\right|=\left|x_{2}\right|=\left|y_{1}\right|=\left|y_{2}\right|$ then there are words u, v and p such that $|u|=|v|$ and a set $I \subseteq \mathbb{N}$ such that one of the following conditions is satisfied:
(i) $X=\{p u, p v\}, Y=\{u p, v p\}$ and $Z=\bigcup_{i \in I} X^{i} p$,
(ii) $X=\{u p, v p\}, Y=\{p u, p v\}$ and $Z=\bigcup_{i \in I} X^{i}\{u, v\}$.

Proof. Notice that the sets X and Y are uniform, so as a consequence of Proposition 5.2 there are sets $P, Q \subseteq \Sigma^{*}$ and $I \subseteq \mathbb{N}$ such that $X=P Q, Y=Q P$ and $Z=\cup_{i \in I}(P Q)^{i} P$. Now, if $\operatorname{card}(X)=2$ then either $\operatorname{card}(P)=1$ and $\operatorname{card}(Q)=2$ (the case (i) with $P=\{p\}$ and $Q=\{u, v\}$), or $\operatorname{card}(P)=2$ and $\operatorname{card}(Q)=1$ (the case (ii) with $P=\{u, v\}$ and $Q=\{p\}$).

Observation 5.1. Note that in the case (i) of Lemma 5.8 we have $X p=p Y$, and similarly, in the case (ii) we have $p X=Y p$.

In the case when the lengths of words in X and Y are not all the same we need the following 2 lemmas:

Lemma 5.9. Let sets $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$, with $\left|x_{1}\right| \leq\left|x_{2}\right|$ and $\left|y_{1}\right| \leq\left|y_{2}\right|$, be conjugates via a non-empty set Z. If $\left|x_{2}\right| \neq\left|y_{2}\right|$ then x_{1} and x_{2} commute.

Proof. We will prove the claim only in the case $\left|x_{2}\right|<\left|y_{2}\right|$. By symmetry, the claim can be proved in the same way also in the case $\left|x_{2}\right|>\left|y_{2}\right|$. Hence, assume that $\left|x_{2}\right|<\left|y_{2}\right|$, and let z_{1} be an element of Z of the minimal length. By Proposition 5.4, for any positive integer n, the word $w=x_{1}^{n} x_{2} z_{1}$ belongs to the set $Z Y^{n+1}$. Hence, we have $w=z^{\prime} y_{i_{1}} \ldots y_{i_{n+1}}$ for some $i_{1}, \ldots, i_{n+1} \in\{1,2\}$ and $z^{\prime} \in Z$. As z_{1} was chosen of minimal length, $\left|z^{\prime}\right| \geq\left|z_{1}\right|$; recall also that $\left|y_{i_{j}}\right| \geq\left|y_{1}\right|=\left|x_{1}\right|$ and $\left|y_{2}\right|>\left|x_{2}\right|$. If for any $j \in\{1, \ldots, n+1\}$ we have $i_{j}=2$ then

$$
|w|=\left|z^{\prime}\right|+\left|y_{i_{1}}\right|+\cdots+\left|y_{i_{n+1}}\right| \geq\left|z^{\prime}\right|+n\left|y_{1}\right|+\left|y_{2}\right|>\left|z_{1}\right|+n\left|x_{1}\right|+\left|x_{2}\right|,
$$

a contradiction since $|w|=n\left|x_{1}\right|+\left|x_{2}\right|+\left|z_{1}\right|$. Therefore $i_{1}=\ldots=i_{n+1}=1$, i.e., $w=x_{1}^{n-1} x_{1} x_{2} z_{1}=z^{\prime} y_{1}^{n+1}$. By a similar argument, we obtain $x_{1}^{n-1} x_{2} x_{1} z_{1}=$ $z^{\prime \prime} y_{1}^{n+1}$ for some $z^{\prime \prime} \in Z$. If we take an integer n such that $(n+1)\left|y_{1}\right| \geq\left|x_{1} x_{2} z_{1}\right|$, we find that the words $x_{1} x_{2} z_{1}$ and $x_{2} x_{1} z_{1}$ have the same length and are both suffixes of y_{1}^{n+1}, therefore are equal. Hence, x_{1} and x_{2} commute.

Lemma 5.10. Let sets $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$be conjugates via a non-empty set Z. If $\left|x_{1}\right|=\left|y_{1}\right|<\left|x_{2}\right|=\left|y_{2}\right|$ then either x_{1} and x_{2} commute, or x_{2} and y_{2} are conjugates. Moreover, in the second case there exists a word t such that either $x_{1} \sim_{t} y_{1}$ and $x_{2} \sim_{t} y_{2}$, i.e., $X t=t Y$, or $y_{1} \sim_{t} x_{1}$ and $y_{2} \sim_{t} x_{2}$, i.e., $t X=Y t$.

Proof. By Proposition 5.3, we know that there exist words u and v and integers k_{1} and m such that $u v$ is primitive, $x_{1}=(u v)^{m}, y_{1}=(v u)^{m}$ and $Z_{1}=\left\{z_{1}\right\}$, where $z_{1}=(u v)^{k_{1}} u$. Note that $x_{1} \sim_{(u v)^{i} u} y_{1}$ for any $i \geq 0$. We have either $x_{2} z_{1}=z_{1} y_{2}$, or $x_{2} z_{1}=z^{\prime} y_{1}$, for some $z^{\prime} \in Z$. In the first case, we have immediately that x_{2} and y_{2} are conjugates via z_{1}, and we are done. In the second case, let Z^{\prime} be the set of words in Z having the same length as z^{\prime}.

We construct a sequence $\left\{z^{(i)}\right\}_{i \geq 1}$ in Z^{\prime}. Let $z^{(1)}=z^{\prime}$. For any $i \geq 1$ we have, either $x_{1} z^{(i)}=z^{(i+1)} y_{1}$, or $x_{1} z^{(i)}=z_{1} y_{2}$. First, assume that the second case never happens. We have $x_{1}^{i} z^{(j)}=z^{(i+j)} y_{1}^{i}$ for all $i \geq 1$ and $j \geq 1$. Hence all $z^{(j)}$ are suffixes of y_{1}^{i} for some big enough integer i, and therefore they are equal. Then $x_{1} z^{\prime}=z^{\prime} y_{1}$, and by Lemma 5.5 , we have $z^{\prime} \in(u v)^{*} u$. Using

$$
\begin{equation*}
x_{2} z_{1}=z^{\prime} y_{1} \tag{5.4}
\end{equation*}
$$

we obtain $x_{2} \in(u v)^{+}$, hence x_{1} and x_{2} commute.
Now, assume that there is a non-negative integer n such that for all $i=$ $1, \ldots, n, x_{1} z^{(i)}=z^{(i+1)} y_{1}$ and $x_{1} z^{(n+1)}=z_{1} y_{2}$. These equalities imply that

$$
\begin{equation*}
x_{1}^{n+1} z^{\prime}=x_{1} x_{1}^{n} z^{(1)}=x_{1} z^{(n+1)} y_{1}^{n}=z_{1} y_{2} y_{1}^{n} \tag{5.5}
\end{equation*}
$$

Equations (5.4) and (5.5) imply that

$$
(u v)^{m(n+1)} x_{2}(u v)^{k_{1}} u=x_{1}^{n+1} x_{2} z_{1}=z_{1} y_{2} y_{1}^{n+1}=(u v)^{k_{1}} u y_{2}(v u)^{m(n+1)}
$$

Now, if $m(n+1) \leq k_{1}$ then we have that $x_{1} \sim_{t} y_{1}$ and $x_{2} \sim_{t} y_{2}$ for $t=$ $(u v)^{k_{1}-m(n+1)} u$. Otherwise, $y_{1} \sim_{t} x_{1}$ and $y_{2} \sim_{t} x_{2}$ for $t=(v u)^{m(n+1)-k_{1}-1} v$. In both cases we have that x_{2} and y_{2} are conjugates.

5.5 Characterization of the sets Z in the cases $X t=$ $t Y$ and $t X=Y t$.

In the above sections we have proved that if $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=$ $\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$are conjugates, with $\left|x_{1}\right| \leq\left|x_{2}\right|$ and $\left|y_{1}\right| \leq\left|y_{2}\right|$, then either

- x_{1} and x_{2} commute; or
- the lengths of all elements of X and Y are equal; or
- $\left|x_{1}\right|=\left|y_{1}\right|<\left|x_{2}\right|=\left|y_{2}\right|$.

In the first two case we have also characterized all Z 's via which the sets are conjugated, cf. Lemmas 5.6 and 5.8. Such a characterization is missing in the last case, $c f$. Lemma 5.10. The goal of this section and its three subsections is to complete Lemma 5.10.

Assume that x_{1} and x_{2} do not commute and that $\left|x_{1}\right|=\left|y_{1}\right|<\left|x_{2}\right|=\left|y_{2}\right|$. Then, by Lemma 5.10 there is a word t such that either
(a) $X t=t Y$, i.e., $x_{1} t=t y_{1}$ and $x_{2} t=t y_{2}$; or
(b) $t X=Y t$, i.e., $t x_{1}=y_{1} t$ and $t x_{2}=y_{2} t$.

Since x_{1} and y_{1} (resp. x_{2} and y_{2}) are conjugates via the same word t, by Lemma 2.10, we have that

$$
\begin{array}{cll}
x_{1}=(u v)^{m} & \text { and } & y_{1}=(v u)^{m}, \\
x_{2}=(p q)^{i} & \text { and } & y_{2}=(q p)^{i}, \tag{5.6}
\end{array}
$$

where $u v$ and $p q$ are primitive, $m, i \geq 1$ are integers, and,
(a) $t=(u v)^{M} u=(p q)^{N} p$,
(b) $t=(v u)^{M} v=(q p)^{N} q$,
respectively, for some $M, N \geq 0$.
Before we start analyzing the above two case, let us define the minimal and maximal sets Z via which X and Y are conjugated. Assume that X and Y are conjugates. Let $\mathcal{Z}_{X, Y}$ be the class of all non-empty sets Z such that $X \sim_{Z} Y$. Obviously, if $X \sim_{Z_{1}} Y$ and $X \sim_{Z_{2}} Y$ for some $Z_{1}, Z_{2} \in \mathcal{Z}_{X, Y}$ then also $X \sim_{Z_{1} \cup Z_{2}} Y$. Consequently, there exists the unique maximal set $Z_{\mathrm{MAX}} \in \mathcal{Z}_{X, Y}$ such that for all $Z^{\prime} \in \mathcal{Z}_{X, Y}, Z^{\prime} \subseteq Z_{\mathrm{MAX}}$. Dually to the notion of the maximal $Z_{\text {MAX }}$, we call a set $Z \in \mathcal{Z}_{X, Y}$ minimal, if there are no $Z_{1}, Z_{2} \in \mathcal{Z}_{X, Y}$ such that

$$
Z_{1}, Z_{2} \subset Z \quad \text { and } \quad Z=Z_{1} \cup Z_{2} .
$$

Of course, there might be several minimal sets Z. Clearly, all finite sets $Z \in \mathcal{Z}_{X, Y}$ can be expressed as unions of minimal sets Z.

Finally, let us prove one simple lemma for the later use.

Lemma 5.11. Let $x_{1}=(u v)^{m}$, and let $a, b \geq 0$ be integers. If $x_{2} \sim_{(u v)^{a} u} y_{2}$ and $x_{2} \sim_{(u v)^{b} u} y_{2}$ with $a \neq b$ then x_{1} and x_{2} commute. Similarly, if $x_{2} \sim_{(u v)}{ }^{a} u y_{2}$ and $y_{2} \sim_{(v u)^{b} v} x_{2}$ then x_{1} and x_{2} commute.

Proof. Without the lost of generality we can assume that $a>b$. We have

$$
x_{2}(u v)^{a} u=(u v)^{a} u y_{2}=(u v)^{a-b}(u v)^{b} u y_{2}=(u v)^{a-b} x_{2}(u v)^{b} u
$$

hence $x_{2}(u v)^{a-b}=(u v)^{a-b} x_{2}$. By the defect theorem x_{2} and $u v$, and hence also, x_{1} an x_{2}, commute.

The proof of the second claim is completely the same.

5.5.1 The maximal $Z \in \mathcal{Z}_{X, Y}$ in the case $X t=t Y$

Consider binary codes $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$which satisfy the condition $X t=t Y$, and hence, also (5.6) and (5.7a). Let $Z_{\text {MAX }}$ be the maximal solution of the equation $X Z=Z Y$. It is easy to check that $X^{*} t$ is a solution of $X Z=Z Y$, hence we have that $X^{*} t$ is a subset of Z_{MAX}.

We will show that $Z_{\mathrm{MAX}}=X^{*} t$. Assume that it is not the case, and let Z_{0} be the set of the shortest elements in $Z_{\mathrm{MAX}}-X^{*} t$. Now, take an arbitrary element $z \in Z_{0}$. Similarly, as in the proof of Lemma 5.10 we can built the sequence of elements of Z_{MAX} as follows:

$$
\begin{align*}
& z^{(1)}=z \\
& x_{1} z^{(l)}=z^{(l+1)} y_{1}, \quad \text { for } l=1, \ldots, n_{z}^{\prime} \tag{5.8}\\
& x_{1} z^{\left(n_{z}^{\prime}+1\right)}=z^{\prime} y_{2}, \quad \text { if } n_{z}^{\prime}<\infty
\end{align*}
$$

where $n_{z}^{\prime} \geq 0$ is an integer or infinity.
Case $n_{z}^{\prime}=\infty$ for all $z \in Z_{0}$. Then, similarly as in the proof of Lemma 5.10, we have that all $z^{(l)}$'s are equal to $z=(u v)^{\alpha} u$. Since, by assumption, this is true for all $z \in Z_{0}$, the set Z_{0} is a singleton. Note that $\alpha \neq M$, otherwise $z=t \in X^{*} t$.

We have that either $x_{2} z=\bar{z} y_{2}$, or $x_{2} z=\bar{z}^{(1)} y_{1}$. In the first case, since $|\bar{z}|=|z|$ and Z_{0} is a singleton, we have that either $\bar{z}=z=(u v)^{\alpha} u$, which leads to a contradiction by Lemma 5.11 , or $\bar{z} \in X^{*} t$. Let $\bar{z}=x_{i_{1}} \ldots x_{i_{d}} t$, for some integer $d \geq 0$. We have

$$
x_{2}(u v)^{\alpha-M}=x_{i_{1}} \ldots x_{i_{d}} x_{2}
$$

Since $\alpha \neq M$, this is a non-trivial equation. Applying the defect theorem we obtain that x_{1} and x_{2} commute.

Hence, assume that

$$
\begin{equation*}
x_{2} z=\bar{z}^{(1)} y_{1} \tag{5.9}
\end{equation*}
$$

Again, consider the following sequence of elements of Z_{MAX} :

$$
\begin{align*}
& x_{1} \bar{z}^{(l)}=\bar{z}^{(l+1)} y_{1}, \quad \text { for } l=1, \ldots, n, \\
& x_{1} \bar{z}^{(n+1)}=\bar{z}^{\prime} y_{2}, \quad \text { if } n<\infty, \tag{5.10}
\end{align*}
$$

where $n \geq 0$ is an integer or infinity.
In the case, $n=\infty$, we have, as above, that $\bar{z}^{(1)}=(u v)^{\beta} u$ for some integer $\beta \geq 0$. Then, by (5.9), $x_{2}=(u v)^{m+\beta-\alpha}$, hence x_{1} and x_{2} commute, a contradiction.

Hence, assume that n is finite. By Equations (5.9) and (5.10) we have

$$
\begin{equation*}
x_{1}^{n+1} x_{2} z=\bar{z}^{\prime} y_{2} y_{1}^{n+1} . \tag{5.11}
\end{equation*}
$$

Since $|z|=\left|\bar{z}^{\prime}\right|$ and Z_{0} is a singleton, we have that either $\bar{z}^{\prime}=z=(u v)^{\alpha} u$, or $\bar{z}^{\prime} \in X^{*} t$. In the first case, if $\alpha<m(n+1)$ then Equation (5.11) implies that $y_{2} \sim_{(v u)^{m(n+1)-\alpha-1} v} x_{2}$, which is a contradiction by Lemma 5.11. On the other hand, if $\alpha \geq m(n+1)$ then $x_{2} \sim_{(u v)^{\alpha-m(n+1)}}{ } y_{2}$, hence by Lemma 5.11, we have that $\alpha-m(n+1)=M$. But then we can write z in the form: $z=x_{1}^{n+1} t \in X^{*} t$, a contradiction.

In the second case, let $\bar{z}^{\prime}=x_{i_{1}} \ldots x_{i_{d}} t$ for some integer $d \geq 0$. By Equation (5.11)

$$
x_{1}^{n+1} x_{2}(u v)^{\alpha-M}=x_{i_{1}} \ldots x_{i_{d}} x_{2} x_{1}^{n+1} .
$$

If $(u v)^{\alpha-M} \neq x_{1}^{n+1}$ then this is a non-trivial equation, implying that x_{1} and x_{2} commute by the defect theorem. If $(u v)^{\alpha-M}=x_{1}^{n+1}$ then $z=x_{1}^{n+1} t \in X^{*} t$, a contradiction.

Case n_{z}^{\prime} is finite for an element $z \in Z_{0}$. By Equation (5.8) we have

$$
\begin{equation*}
x_{1}^{n_{z}^{\prime}+1} z=z^{\prime} y_{2} y_{1}^{n_{z}^{\prime}}, \tag{5.12}
\end{equation*}
$$

where $\left|z^{\prime}\right|<|z|$, hence $z^{\prime} \in X^{*} t$. Let $z^{\prime}=x_{i_{1}} \ldots x_{i_{d}}$, for some integer $d \geq 0$. Therefore,

$$
\begin{equation*}
x_{1}^{n_{z}^{\prime}+1} z=x_{i_{1}} \ldots x_{i_{d}} x_{2} x_{1}^{n_{z}^{\prime}} t . \tag{5.13}
\end{equation*}
$$

We can assume that $z \notin(u v)^{*} u$, otherwise we have that x_{1} and x_{2} commute by the defect theorem.

One can construct a similar sequence of elements of Z_{MAX} as (5.8) starting from $z y_{1}$, instead of $x_{1} z$. Since $z \notin(u v)^{*} u$, only the second case is possible: there is an integer $n_{z}^{\prime \prime} \geq 0$ and $z^{\prime \prime} \in Z_{\mathrm{MAX}}$ such that, similarly as in (5.12),

$$
\begin{equation*}
z y_{1}^{n_{z}^{\prime \prime}+1}=x_{1}^{n_{z}^{\prime \prime}} x_{2} z^{\prime \prime} . \tag{5.14}
\end{equation*}
$$

Again, $\left|z^{\prime \prime}\right|<|z|$, hence we can write $z^{\prime \prime}$ in the form $z^{\prime \prime}=x_{j_{1}} \ldots x_{j_{e}} t$, for some integer $e \geq 0$. Putting Equations (5.12) and (5.14) together, we obtain

$$
\begin{aligned}
z^{\prime} y_{2} y_{1}^{n_{z}^{\prime}+n_{z}^{\prime \prime}+1} & =x_{1}^{n_{z}^{\prime}+n_{z}^{\prime \prime}+1} x_{2} z^{\prime \prime}, \quad \text { hence, } \\
x_{i_{1}} \ldots x_{i_{d}} t y_{2} y_{1}^{n_{z}^{\prime}+n_{z}^{\prime \prime}+1} & =x_{1}^{n_{z}^{\prime}+n_{z}^{\prime \prime}+1} x_{2} x_{j_{1}} \ldots x_{j_{l}}, \quad \text { hence, } \\
x_{i_{1}} \ldots x_{i_{d}} x_{2} x_{1}^{n_{z}^{\prime}+n_{z}^{\prime \prime}+1} & =x_{1}^{n_{z}^{\prime}+n_{z}^{\prime \prime}+1} x_{2} x_{j_{1}} \ldots x_{j_{l}} .
\end{aligned}
$$

If $x_{i_{1}}=\cdots=x_{i_{n_{z}^{\prime}+1}^{\prime}}=x_{1}$ then, by Equation (5.13), $z=x_{i_{n_{z}^{\prime}+2}} \ldots x_{i_{d}} x_{2} x_{1}^{n_{z}^{\prime}} t \in$ $X^{*} t$. Otherwise, we have a non-trivial equation, and by the defect theorem, x_{1} and x_{2} commute. In any case, we arrive to a contradiction.

We have proved the following result:
Claim 5.12. Let $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$be binary codes. If $X t=t Y$ then the maximal solution of the conjugacy equation $X Z=Z Y$ is $Z_{\mathrm{MAX}}=X^{*} t$.

5.5.2 All sets $Z \in \mathcal{Z}_{X, Y}$ in the case $X t=t Y$

Consider binary codes $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$which satisfy the conditions $X t=t Y$, (5.6) and (5.7a). Recall that $\mathcal{Z}_{X, Y}$ is the class of all non-empty sets Z such that $X \sim_{Z} Y$. We have proved above that the maximal $Z \in \mathcal{Z}_{X, Y}$ is $Z_{\mathrm{MAX}}=X^{*} t$. Next, we will show that all the minimal sets $Z \in \mathcal{Z}_{X, Y}$ are of the form $X^{d} t$ for some integer $d \geq 0$, and that all sets $Z \in \mathcal{Z}_{X, Y}$ are unions of the minimal ones. Obviously, all sets $Z \in \mathcal{Z}_{X, Y}$ are subsets of $X^{*} t$. It is enough to show the following lemma:

Lemma 5.13. Let $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$be binary codes such that $X t=t Y$. Let $Z \in \mathcal{Z}_{X, Y}$ be a solution of the conjugacy equation. If $x_{i_{1}} \ldots x_{i_{d}} t \in Z$ then $X^{d} t \subseteq Z$.
Proof. Assume on the contrary that there is a $\bar{z}=x_{j_{1}} \ldots x_{j_{d}} t \notin Z$. Since $X^{d} Z=Z Y^{d}$, there exist $y_{k_{1}}, \ldots, y_{k_{d}} \in Y$ and $z^{\prime} \in Z$, such that

$$
x_{j_{1}} \ldots x_{j_{d}} z=z^{\prime} y_{k_{1}} \ldots y_{k_{d}}
$$

Since, by Claim 5.12, $Z \subseteq X^{*} t$, we can write z^{\prime} in the form $z^{\prime}=x_{l_{1}} \ldots x_{l_{e}} t$, for some integer $e \geq 0$. Therefore, we have

$$
\begin{aligned}
x_{j_{1}} \ldots x_{j_{d}} x_{i_{1}} \ldots x_{i_{d}} t & =x_{l_{1}} \ldots x_{l_{e}} t y_{k_{1}} \ldots y_{k_{d}}, \quad \text { hence, } \\
x_{j_{1}} \ldots x_{j_{d}} x_{i_{1}} \ldots x_{i_{d}} & =x_{l_{1}} \ldots x_{l_{e}} x_{k_{1}} \ldots x_{k_{d}} .
\end{aligned}
$$

As the consequence of the defect theorem and the fact that x_{1} and x_{2} do not commute, we have that the equation above must be trivial, i.e., $d=e, x_{j_{r}}=x_{l_{r}}$ and $x_{i_{r}}=x_{k_{r}}$, for all $r=1, \ldots, d$. But this is a contradiction, since then $\bar{z}=z^{\prime} \in Z$.

Corollary 5.14. Let $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$be binary codes such that $X t=t Y$. All minimal sets $Z \in \mathcal{Z}_{X, Y}$ are of the form $X^{d} t$ for some integer $d \geq 0$, and all sets $Z \in \mathcal{Z}_{X, Y}$ can be expressed in the form $Z=\cup_{d \in I} X^{d} t$ for some index set I.

5.5.3 The case $t X=Y t$

Consider binary codes $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$which satisfy the condition $t X=Y t$, (5.6) and (5.7b). Assume that $Z \in \mathcal{Z}_{X, Y}$ is a solution of the conjugacy equation $X Z=Z Y$. Then $\tilde{Z}=t Z t$ is a solution of the equation $Y Z=Z X$. Indeed, we have

$$
Y \tilde{Z}=Y t Z t=t X Z t=t Z Y t=t Z t X=\tilde{Z} X .
$$

Since \tilde{Z} is a solution of the conjugacy equation $Y Z=Z X$ satisfying $Y t=t X$, Corollary 5.14 yields that there exists an index set I such that

$$
t Z t=\tilde{Z}=\bigcup_{d \in I} Y^{d} t=\bigcup_{d \in I} t X^{d} .
$$

This implies that $\cup_{d \in I} X^{d}=Z t$, and therefore, for every index $d \in I$ and for every word $w \in X^{d}, t$ is a suffix of w, and so $|t| \leq|w|$.

Let τ be the minimal integer such that for every word $w \in X^{\tau},|w| \geq|t|$. The above implies that the index set I contains only the indexes greater or equal τ, i.e., $I \subseteq\{\tau, \tau+1, \ldots\}$. Hence, we can write that $\cup_{d \in I} X^{\tau+d}=Z t$, where I is now any index set. Moreover, since $t X^{\tau+d}=Y^{\tau+d} t$, the conditions $Z=\cup_{d \in I} X^{\tau+d} t^{-1}$ and $Z t=\cup_{d \in I} X^{\tau+d}$ are equivalent.

We showed that if Z is a solution of the conjugacy equation $X Z=Z Y$, i.e., if $Z \in \mathcal{Z}_{X, Y}$, then it can be expressed in the form $Z=\cup_{d \in I} X^{\tau+d} t^{-1}$. On the other hand, it is easy to check that if Z is in this form then it is a solution of the conjugacy equation $X Z=Z Y$. Indeed, assume that $Z=\cup_{d \in I} X^{\tau+d} t^{-1}$. Then $Z t=\cup_{d \in I} X^{\tau+d}$, and we have

$$
X Z t=X \bigcup_{d \in I} X^{\tau+d}=\bigcup_{d \in I} X^{\tau+d} X=Z t X=Z Y t
$$

and hence, $X Z=Z Y$.
The following claim follows easily:
Claim 5.15. Let $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$be binary codes such that $t X=Y t$. Let τ be the minimal integer such that for every word $w \in X^{\tau},|w| \geq|t|$. All minimal sets $Z \in \mathcal{Z}_{X, Y}$ are of the form $X^{\tau+d} t^{-1}$ for some integer $d \geq 0$, the maximal $Z \in \mathcal{Z}_{X, Y}$ is $X^{\tau} X^{*} t^{-1}$, and all sets $Z \in \mathcal{Z}_{X, Y}$ are of the form $Z=\cup_{d \in I} X^{\tau+d} t^{-1}$, for some index set I.

5.6 The complete characterization

Combining all lemmas proved above we obtain the following characterization of all solutions of the conjugacy equation in the case when the sets X and Y are binary.

Theorem 5.16. Let $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$with $\left|x_{1}\right| \leq\left|x_{2}\right|$ and $\left|y_{1}\right| \leq\left|y_{2}\right|$ be conjugates via a non-empty set Z, i.e., $X \sim_{Z} Y$. Then at least one of the following conditions holds true:
(i) $x_{1} x_{2}=x_{2} x_{1}, y_{1} y_{2}=y_{2} y_{1}$, i.e., words x_{1} and x_{2} (resp. y_{1} and y_{2}) commute, $\left|x_{1}\right|=\left|y_{1}\right|$, and moreover, the words x_{1} and y_{1} are conjugates, i.e., there are words u and v such that $u v$ is primitive, $x_{1} \in(u v)^{+}$and $y_{1} \in(v u)^{+}$. Finally, the set Z satisfies $Z \subseteq(u v)^{*} u$;
(ii) there exists a word t such that, either $X t=t Y$ and $Z=\cup_{d \in I} X^{d} t$, for some index set I, or $t X=Y t$ and $Z=\cup_{d \in I} X^{\tau+d} t^{-1}$ for some index set I, where $\tau \geq 0$ is the minimal integer such that for every word $w \in X^{\tau}$, $|w| \geq|t|$.

Conversely, if the sets $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}, Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$and $Z \neq \emptyset$ with $\left|x_{1}\right| \leq\left|x_{2}\right|$ and $\left|y_{1}\right| \leq\left|y_{2}\right|$ satisfy either (i) or (ii), then $X \sim_{Z} Y$.

Proof. The first part of theorem is a consequence of several claims we have proved above: If $\left|x_{1}\right|=\left|x_{2}\right|$ or $\left|y_{1}\right|=\left|y_{2}\right|$, by Corollary 5.7 and Lemma 5.8, we are in the case (ii) with $t=p$. If $\left|x_{1}\right|<\left|x_{2}\right|=\left|y_{2}\right|$, by Lemma 5.10, we are also in the case (ii). Otherwise, by Lemma $5.9, x_{1}$ and x_{2} commute, and, by Lemma 5.6, we are in the case (i). Further, in the case (ii), the characterization of the set Z follows by Observation 5.1, Corollary 5.14 and Claim 5.15.

Conversely, assume that X and Y satisfy one of the above conditions. The case (i) is straightforward. In the case (ii) the result follows by Corollary 5.14 and Claim 5.15.

Note that the notation $x \sim_{z} y$ means $x z=z y$, and therefore not necessarily implies that $y \sim_{z} x$. In fact, if words x, y, z satisfy both $x \sim_{z} y$ and $y \sim_{z} x$ then they all commute.

The following two corollaries are approaches to merge conditions (i) and (ii) of Theorem 5.16 into one to obtain a more compact form. In the first one we restrict the lengths of elements of X and Y.

Corollary 5.17. Let $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$with $\left|x_{1}\right|=$ $\left|y_{1}\right|$ and $\left|x_{2}\right|=\left|y_{2}\right|$. Then X and Y are conjugates if and only if there exists a single word t such that $X t=t Y$ or $t X=Y t$.

In the second one we consider the conjugacy via finite sets Z. In such case, similarly as we show that the lengths of the shortest elements of X and Y are equal, one can show that the same is true for the longest elements. Therefore, the following corollary is an immediate consequence of the previous one:

Corollary 5.18. Let $X=\left\{x_{1}, x_{2}\right\} \subseteq \Sigma^{+}$and $Y=\left\{y_{1}, y_{2}\right\} \subseteq \Sigma^{+}$. Then X and Y are conjugated via a finite non-empty set Z if and only if there exists a single word t such that $X t=t Y$ or $t X=Y t$.

Chapter 6

On the computational complexity of infinite words

In Chapters 3 and 4 we have focused on combinatorial properties of infinite words. In $[\mathrm{CuK}]$ and [HKL] two new areas of investigation were introduced:

- the descriptional complexity of infinite words, i.e., the comparative measure how complicated simple mechanisms are needed to generate particular infinite words;
- the computational complexity of infinite words, i.e., the measure how much resources (such as time and space) are needed to generate a certain infinite word by a Turing machine.
The second paper concentrates on relations between these two complexities. Further results in this direction can be found in [HK].

In [CuK, HKL, HK] several interesting problems are proposed. In this chapter we will show that even some of the simplest problems proposed are equivalent to well-known hard open problems in the complexity theory of Turing machines.

In Section 6.1 we recall the definition of the computational complexity, while in Section 6.2 we define several simple methods for generating infinite words:

- iterating a morphism, the most commonly used method introduced already in [Th];
- iterating a deterministic generalized sequential machine (a dgsm for short), i.e., a deterministic finite state transducer;
- double and triple D0L TAG systems.

In Section 6.3 we study an open problem, proposed in [HKL], namely whether all infinite words generated by iterating dgsm's have logarithmic space complexity. The problem has an affirmative answer in two special cases. First, it was
shown in [HKL] that the greatest possible growth of a dgsm is exponential and that infinite words generated by such dgsm's have logarithmic space complexity. Second, here we show that the smallest non-trivial growth is $\Theta(n \log n)$ and that, similarly, dgsm's with such a growth generate infinite words which have logarithmic space complexity.

The general problem has been attacked in [Le], claiming that the answer is affirmative. On the other hand, in Section 6.3 we also show that this problem is equivalent to an other hard open problem asking whether unary classes of languages P and DLOG (denoted u-P and u-DLOG, respectively) are equivalent. One can easily observe that u - $\mathrm{P}=\mathrm{u}$-DLOG if and only if $\mathrm{U}_{c>0} \operatorname{DTIME}\left(c^{n}\right)=$ DSPACE (n).

In [HKL] another interesting problem is proposed: to find a concrete infinite word which cannot be generated in logarithmic space. It is mentioned already in [HK] that this problem is at least as hard as to prove $L \notin$ DLOG for some $L \in$ NP. In Section 6.4 we show that it is exactly as hard as the problem to find a concrete language, which does not belong to $\operatorname{DSPACE}(n)$. Note that even the problem to find a concrete language, which does not belong to DSPACE $(\log n)=$ DLOG is a hard open problem.

Finally, in Section 6.5 we separate the classes of infinite words generated by double and triple D0L TAG systems as it was conjectured in [CuK].

6.1 The computational complexity of infinite words

The best way how to define the computational complexity of an object is to describe it in the terms of Turing machines. For example, the Kolmogorov complexity of a finite word is the size of the smallest Turing machine generating the word, cf. [Ko]. In the case of infinite words we will use the model of computation based on the k-tape Turing machine, which consists of

1. a finite state control;
2. k one-way infinite working tapes (we assume that there is a beginning on the left of the tape, but the tape is infinite to the right) each containing one two-way read/write head (i.e., the head can move in both directions within the tape);
3. one infinite output tape containing one one-way write-only head.

We assume that the k-tape Turing machine starts in the initial state with all tapes empty and behaves as a usual Turing machine. We say that the k-tape Turing machine generates an infinite word $w \in \Sigma^{\mathbb{N}}$ if

1. in each step of the computation, the content of the output tape is a prefix of w;
2. for each prefix u of w, there is an integer n such that u is a prefix of the content of the output tape after n steps of the computation.

Let M be a k-tape Turing machine generating a word w. The time and space complexities of M are functions $T_{M}: \mathbb{N} \rightarrow \mathbb{N}$ and $S_{M}: \mathbb{N} \rightarrow \mathbb{N}$ defined as follows:

- $T_{M}(n)$ is the smallest number of steps of the computation of M when the prefix of w of length n is already written on the output tape;
- $S_{M}(n)$ is the space complexity of working tapes during first $T_{M}(n)$ steps of the computation, i.e., the maximum of lengths of words written on working tapes.

Finally, for any integer function $s: \mathbb{N} \rightarrow \mathbb{N}$ we define the following complexity classes:

- $\operatorname{GTIME}(s)=\left\{w \in \Sigma^{\mathbb{N}}\right.$; there exists a k-tape Turing machine M generating w and $T_{M}(n) \leq s(n)$ for all $\left.n \geq 1\right\}$;
- $\operatorname{GSPACE}(s)=\left\{w \in \Sigma^{\mathbb{N}}\right.$; there exists a k-tape Turing machine M generating w and $S_{M}(n) \leq s(n)$ for all $\left.n \geq 1\right\}$;

It follows from the speed-up argument, as in ordinary complexity theory, that functions $s(n)$ and $c . s(n)$, where c is a constant, define the same space complexity classes of infinite words, i.e., $\operatorname{GSPACE}(s)=\operatorname{GSPACE}(c . s)$.

6.2 Iterative devices generating infinite words

In this section we define several simple methods used for generating infinite words. The simplest and most commonly used method is to iterate a morphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$: if h is non-erasing and for a letter $a \in \Sigma, a$ is a prefix of $h(a)$, then there exists the limit

$$
w=\lim _{n \rightarrow \infty} h^{n}(a) .
$$

An illustrative scheme how the infinite word w is generated by the morphism h is depicted in Figure 6.1.

A natural generalization of this method is to use a more powerful mapping in the iteration: a deterministic generalized sequential machine, a dgsm for short. A dgsm τ is defined by

1. a finite set of states Q;
2. the initial state $q_{0} \in Q$;

Figure 6.1: An illustration of the process of generating an infinite word w by iterating a morphism h. The reading head R is at the third position reading a letter c and the writing head W is at the position $|h(a)|+|h(b)|+1$ prepared to write the word $h(c)$.

Figure 6.2: An illustration of the process of generating an infinite word w by iterating a $\operatorname{dgsm} \tau$. Note that $\tau_{q_{1}}$ is a variant of the $\operatorname{dgsm} \tau$ with the initial state q_{1}.
3. an input alphabet Σ and an output alphabet Δ (we will assume $\Delta=\Sigma$ in this note to be able to iterate the dgsm τ);
4. a transition relation $\delta \subseteq Q \times \Sigma \times \Delta^{*} \times Q$, where δ is a partial function $Q \times \Sigma \rightarrow \Delta^{*} \times Q$.

A sequence of transitions

$$
\alpha=\left(q_{0}, u_{1}, v_{1}, q_{1}\right)\left(q_{1}, u_{2}, v_{2}, q_{2}\right) \ldots\left(q_{k-1}, u_{k}, v_{k}, q_{k}\right)
$$

is a computation of τ with the input $I(\alpha)=u_{1} u_{2} \ldots u_{k}$ and the output $O(\alpha)=$ $v_{1} v_{2} \ldots v_{k}$. Obviously, for an input $u \in \Sigma^{*}$ there exists at most one computation α of τ such that $I(\alpha)=u$. Hence, the mapping $\tau(u)=O\left(I^{-1}(u)\right)$ is a welldefined partial function. As a convention we assume throughout that all dgsm's are non-erasing, i.e., $\delta \subseteq Q \times \Sigma \times \Delta^{+} \times Q$. A mechanism of generating an infinite word by iterating a dgsm τ is illustrated in Figure 6.2.

The further generalization of above methods leads to double DOL TAG systems which consist of two infinite one-way tapes each containing a one-way read-only head and a one-way write-only head. In each step of the generation both read-only heads read a symbol and move right to the next square while the write-only heads write the corresponding outputs to the first empty squares of these tapes. We assume that the infinite word generated by a double D0L TAG

Figure 6.3: An illustration of the process of generating an infinite word w by a double D0L TAG system containing rewriting rules $\binom{a_{1}}{b_{1}} \rightarrow\binom{\alpha_{1}}{\beta_{1}}$ and $\binom{a_{2}}{b_{2}} \rightarrow\binom{\alpha_{2}}{\beta_{2}}$.
system is written on the first tape. A double D0L TAG system can be specified in the terms of rewriting rules of the form:

$$
\binom{a}{b} \rightarrow\binom{\alpha}{\beta} \text {, where } a, b \in \Sigma, \alpha, \beta \in \Sigma^{+} .
$$

Figure 6.3 shows an idea how a double D0L TAG system works.
Assuming that in each rewriting rule, $|\beta|=1$, we get a mechanism which iterates a dgsm. Finally, we can define triple DOL TAG systems by extending the number of tapes to three.

6.3 Do dgsm's have logarithmic space complexity?

In this section we study the following problem proposed in [HKL]:

- are all infinite words generated by iterating dgsm's in GSPACE $(\log n)$?

First, let us recall one result of [HKL] stating that an infinite word generated by a dgsm which has an exponential growth has logarithmic space complexity. Here, the growth of a dgsm τ is an integer function $g: \mathbb{N} \rightarrow \mathbb{N}$, where $g(n)$ is the length of $\tau^{n}(a)$. Note that for a dgsm the exponential growth is the maximal possible growth.

Next, we show that the smallest non-trivial growth of a dgsm is $\Theta(n \log n)$ and that dgsm's with the growth $\Theta(n \log n)$ generate infinite words which have logarithmic space complexity. More precisely:

Lemma 6.1. If a dgsm has the growth $o(n \log n)$ then it generates an ultimately periodic infinite word. Such an infinite word can be generated in constant space.

Proof. Let τ be a dgsm with the growth $o(n \log n)$ generating an infinite word $w=w_{1} w_{2} \ldots$, with $w_{i} \in \Sigma$. Let $\tau_{q}(z)$ (resp. $\left.\sigma_{q}(z)\right)$ be the output (resp. the last state) of the dgsm τ after reading the input z and starting in the state q.

We define two sequences of words and a sequence of states of the dgsm τ. Let a be the starting symbol, q_{0} be the initial state and let $\tau(a)=\tau_{q_{0}}(a)=a v$. Then put

$$
\begin{array}{lll}
u_{1}=a, & v_{1}=v, & q_{1}=\sigma_{q_{0}}(a) \\
u_{n}=u_{n-1} v_{n-1}, & v_{n}=\tau_{q_{n-1}}\left(v_{n-1}\right), & q_{n}=\sigma_{q_{n-1}}\left(v_{n-1}\right)
\end{array}
$$

Observe that $\tau^{n}(a)=u_{n+1}=u_{n} v_{n}=\cdots=u_{1} v_{1} v_{2} \ldots v_{n}$. This implies $1+$ $\sum_{j=1}^{n}\left|v_{j}\right|=\left|\tau^{n}(a)\right|=o(n \log n)$. Next, we estimate the length of the increment: $\left|v_{n}\right|$. Since the $\operatorname{dgsm} \tau$ is non-erasing, we have that $\left|v_{i}\right|<\left|v_{n}\right|$ for all $i<n$. This implies

$$
n\left|v_{n}\right| \leq \sum_{j=n+1}^{2 n}\left|v_{j}\right| \leq \sum_{j=1}^{2 n}\left|v_{j}\right|=o(2 n \log 2 n)=o(n \log n)
$$

Hence, $\left|v_{n}\right|=o(\log n)$, i.e., for any constant c there exists an integer n such that $c^{\left|v_{n}\right|}<n$. If we take $c=\operatorname{card}(\Sigma)+1$, there must be a repetition among the words v_{1}, \ldots, v_{n}, say $v_{i}=v_{i+k}$ for some integers $i, i+k \leq n$ and $k>0$. Then $v_{j}=v_{j+k}$ for all $j \geq i$, hence the infinite word $w=u_{1} v_{1} v_{2} v_{3} \ldots$ is ultimately periodic and it can be then generated in constant space, $c f$. [HKL], Lemma 3.1.

Lemma 6.2. An infinite word generated by a dgsm with the growth $\Theta(n \log n)$ has logarithmic space complexity.

Proof. Let τ be a dgsm with the growth $\Theta(n \log n)$ generating an infinite word $w=w_{1} w_{2} \ldots$ Consider the sequences $\left\{u_{n}\right\}_{n \geq 0},\left\{v_{n}\right\}_{n \geq 0},\left\{q_{n}\right\}_{n \geq 0}$ defined in the previous proof.

We construct a Turing machine M generating w as follows. In the first step it writes u_{1} on the output tape, v_{1} on the first tape and it sets to the state q_{1}. In each step $n>1$, it simulates the $\operatorname{dgsm} \tau$ on the input written on the first tape starting in the state q_{n-1}. The output of the simulation of τ is written, at the same time, to the output tape and to some temporary tape, so that after the simulation it can be copied back to the first tape. Hence, in the end of the step n the first tape contains the word v_{n}. The last state of the simulation of τ in the step n is q_{n}, from which the simulation continues in the next step.

The space needed to generate the m-th letter of w is at most $\left|v_{n}\right|$, where n is an integer such that v_{n} contains the letter w_{m}, i.e.,

$$
\sum_{i=1}^{n-1}\left|v_{i}\right|<m \leq \sum_{i=1}^{n}\left|v_{i}\right|
$$

One can show in the same way as in in the proof of Lemma 6.1 that $\left|v_{n}\right|=$ $\mathcal{O}(\log n)$. Moreover, since $n \leq 1+\sum_{i=1}^{n-1}\left|v_{i}\right| \leq m$, we have that $\left|v_{n}\right|=\mathcal{O}(\log n)=$ $\mathcal{O}(\log m)$. Hence, the Turing machine M works in logarithmic space.

We have seen that the infinite words generated by iterating dgsm's with the maximal or the minimal non-trivial growth have logarithmic space complexity. Intuitively, one could expect that by combining the proof techniques in these two cases we could prove that all infinite words generated by iterating any dgsm's have such complexity, i.e., to obtain an affirmative answer to the problem stated in the beginning of this section. In fact, such an attempt to prove this result can be found in [Le]. However, here, we prove that the problem is equivalent to the hard open problem whether classes of unary languages u-DLOG and u-P are equivalent.

This in some sense contradicts the result of [Le] that all infinite words generated by iterating dgsm's have logarithmic space complexity: if the result in [Le] is correct then, together with the following theorem, we have that $\mathrm{D}-\operatorname{EXPTIME}=\operatorname{DSPACE}(n)$, which is unlikely. Since [Le] gives only a sketch of the proof of the result, we are unable to check if it is correct, but we believe that some case has been overlooked in [Le].

Finally, let us prove our result claiming that the problem whether all infinite words generated by iterating dgsm's have logarithmic space complexity is a difficult one.

Theorem 6.3. All infinite words generated by iterating dgsm's have logarithmic space complexity if and only if $\mathrm{u}-\mathrm{P}=\mathrm{u}-\mathrm{DLOG}$.

Proof. First, let us assume that $\mathrm{u}-\mathrm{P}=\mathrm{u}$-DLOG. Take a dgsm τ over a finite alphabet Σ generating an infinite word $w=w_{1} w_{2} \ldots$. We prove that the space complexity of w is $\mathcal{O}(\log n)$. It is obvious that there is a 1-tape Turing machine M generating the word w in quadratic time. Consider the languages $L_{c}=$ $\left\{0^{n} ; n \geq 1, w_{n}=c\right\}$ for all $c \in \Sigma$. Note that L_{c} is a unary language. We can easily construct a Turing machine recognizing L_{c} in quadratic time using the Turing machine M. By the assumption there exist Turing machines M_{c} recognizing the languages L_{c} in logarithmic space. Now, consider a 3 -tape Turing machine, which runs M_{c} 's to generate the n-th letter of w by using the third tape as a working tape. It stores the binary representation of n on the first tape and the position of the head of Turing machine M_{c} on the second tape. Before each run of any M_{c} it erases the working tape and writes "the position 1" on the second tape. It runs M_{c} for each letter c of the alphabet of τ until some M_{c} accepts, and then it writes the letter c on the output tape. In each step of the simulation of any M_{c} it checks whether the position represented on the second tape is the last one. Clearly such a machine generates the word w in logarithmic space.

Second, assume that all words generated by iterating a dgsm have logarithmic space complexity. Take a Turing machine M working in polynomial time, i.e., $T(M)=\mathcal{O}\left(n^{k}\right)$, recognizing a language $L \subseteq 0^{*}$. We construct a 1-tape Turing machine M^{\prime} with the tape divided into three layers. On the first layer it generates unary inputs in increasing order, on the second layer it simulates computations of M on the input stored on the first layer, and on the third layer it writes 1 , if the computation ends in an accepting state, or 0 , if it ends in a rejecting state. Before each simulation it erases the second and third layers of the tape.

Now, consider a dgsm τ which carries out the computations

$$
C_{i} \rightarrow C_{i+1}, \text { for } i \geq 0,
$$

where C_{i} corresponds to the i-th configuration of M^{\prime}. It also maps the starting letter $\$$ into the starting configuration of M^{\prime}. Clearly, the iteration of τ will generate an infinite word: the sequence $W=\$ C_{0} C_{1} C_{2} \ldots$ of all configurations of the computation of the Turing machine M^{\prime}. By the assumption the infinite word W has logarithmic space complexity, i.e., there exists a Turing machine $M^{\prime \prime}$ generating W in logarithmic space. Finally, we define a Turing machine $M^{\prime \prime \prime}$ recognizing L, which on the input 0^{n} runs $M^{\prime \prime}$, but instead of writing the bits of W to the output tape, it compares its input with the input on the first layer of each generated configuration, and moreover, it checks the first letter on the third layer of each generated configuration. When the compared inputs coincide and the first letter on the third layer is 0 or 1 then the Turing machine $M^{\prime \prime \prime}$ halts in the rejecting or in the accepting state, respectively. Otherwise, it continues in generating bits of the next configuration. Clearly, $M^{\prime \prime \prime}$ recognizes the language L.

Now, it suffices to show that $M^{\prime \prime \prime}$ works in logarithmic space. Let $C_{i_{n}}$ be the configuration in which M^{\prime} writes 0 or 1 on the first place of the third layer, while the first layer contains 0^{n}. Hence in the block of configurations $B_{n}=$ $C_{i_{n-1}+1} \ldots C_{i_{n}}, M^{\prime}$ erases the second and the third layer of the tape, changes the input on the first layer to 0^{n} and runs the Turing machine M on this input. Since M works in time $\mathcal{O}\left(n^{k}\right)$ the length of any configuration in block B_{n} is at most $\mathcal{O}\left(n^{k}\right)$ and the number of configurations in B_{n} is at most $\mathcal{O}\left(n^{k}\right)$. Hence the length of the block B_{n} is at most $\mathcal{O}\left(n^{2 k}\right)$. The Turing machine $M^{\prime \prime \prime}$ generates the first x blocks of configurations on the input 0^{x} until it halts. Hence it generates the prefix of the infinite word W of length

$$
\sum_{n=0}^{x}\left|B_{n}\right|=\mathcal{O}\left(x^{2 k+1}\right)
$$

Since $M^{\prime \prime}$ works in logarithmic space, $M^{\prime \prime \prime}$ will use space $\mathcal{O}(\log x)$ to carry out the computation on the input 0^{x}.

6.4 Logarithmic space complexity

The second part of Problem 5.2 in [HK] asks to find a specific infinite word which cannot be generated in logarithmic space. We show that this problem is as hard as the problem to find a "natural" specific language which does not belong to $\operatorname{DSPACE}(n)$, and this is a hard open problem. (By a "natural" language we mean a language which is not obtain by diagonalization.)

Notation 6.1. Denote the n-th binary word in lexicographical order by lex (n). Note that for $n \geq 1, \operatorname{bin}(n)=1 \operatorname{lex}(n)$.

Definition 6.2. Let w be an infinite binary word and $L \subseteq\{0,1\}^{*}$ an binary language. We say that w determines the language L if for every positive integer n, the n-th letter of w is 1 if and only if lex (n) belongs to L.

Theorem 6.4. Let w be an infinite binary word and L the language determined by the word w. Then the word w is in GSPACE $(\log n)$ if and only if L belongs to DSPACE (n).

Proof. First, assume that w has logarithmic space complexity. Let M be a Turing machine generating w in logarithmic space. We construct a Turing machine M^{\prime} recognizing the language L. Let lex (n) be the word on the input tape of M^{\prime}, where n is a positive integer. The length of the input is $\Theta(\log n)$. M^{\prime} simulates M in the following way: it remembers only the last letter generated by M and counts the number of them on a special working tape. When this number is equal to n, it stops and accepts the input if and only if the last output letter was 1 .

Since M uses only $\Theta(\log n)$ space to generate the first n output letters and the same space is needed for counting the number of output letters, M^{\prime} works in space $\Theta(\log n)$, which is linear to the length of the input. Hence, $L \in \operatorname{DSPACE}(n)$.

Next, assume that $L \in \operatorname{DSPACE}(n)$. So we have a Turing machine M recognizing L in linear space. Let M^{\prime} be a Turing machine such that it generates words in lexicographical order on the first working tape and runs M on each generated word. Depending on if the word was accepted or rejected it writes 1 or 0 on the output tape. Clearly, the length of the n-th word on the first working tape is $\Theta(\log n)$. M works in linear space, hence in space $\Theta(\log n)$. Therefore, M^{\prime} uses logarithmic space to generate the n-th letter: $w \in \operatorname{GSPACE}(\log n)$.

As a consequence we have that if we would be able to show about a specific infinite word that it does not belong to GSPACE $(\log n)$, then we would have also a specific language which does not belong to $\operatorname{DSPACE}(n)$, and vice versa. Note, that even the problem to show that a specific language does not belong to DSPACE $(\log n)$ is open.

6.5 Separation of double and triple DOL TAG systems

In the Section 6 of [HKL] is mentioned that the generation of infinite words by double D0L TAG systems is a very powerful mechanism, and that it is not known any concrete example of an infinite word which cannot be generated by this mechanism, although by a diagonalization argument such words clearly exist. In $[\mathrm{CuK}]$ (Conjecture 4) is conjectured that there exists an infinite word that can be generated by a triple D0L TAG system, but not by any double D0L TAG system. In what follows we are going to give the whole class of infinite words which cannot be generated by any double D0L TAG system. Combining this result with some results in $[\mathrm{CuK}]$ we can also give an affirmative answer to Conjecture 4 of $[\mathrm{CuK}]$. First, let us fix some notation.

Notation 6.3. Let $w=c_{1} \ldots c_{n}$ be a word with $c_{i} \in \Sigma$. Then $\operatorname{symb}(w)=$ $\left\{c_{i}, 1 \leq i \leq n\right\}$ denotes the set of all symbols occurring in the word.

Theorem 6.5. Let $s: \mathbb{N} \rightarrow \mathbb{N}$ be an integer function such that $s(i) \in 2^{\omega(i)}$, i.e., $s(i)$ grows faster than exponentially. Then the infinite word

$$
w=10^{s(1)} 10^{s(2)} 10^{s(3)} \ldots
$$

cannot be generated by any double DOL TAG system.
Proof. Assume that w can be generated by a double D0L TAG system, and let τ be such a system. Let M be the set of all symbols occurring on the second tape of τ and B the maximal number of symbols written on any tape in one step, i.e.,

$$
B=\max \left\{\max (|\alpha|,|\beta|), \text { where }\binom{a}{b} \rightarrow\binom{\alpha}{\beta} \text { is a rewriting rule of } \tau\right\} .
$$

Let $w_{i}=10^{s(i)}$. First, we show that for any constant $k \geq 1$, there is a positive integer j such that

$$
\begin{equation*}
s(j)+1=\left|w_{j}\right|>k\left|w_{1} \ldots w_{j-1} 1\right|+1 . \tag{6.1}
\end{equation*}
$$

Since $s(i) \in 2^{\omega(i)}$, for any number $c>1$, there is an integer j such that

$$
\begin{aligned}
& \left|w_{j}\right|>c^{j} \\
& \left|w_{i}\right| \leq c^{i} \text { for all } 1 \leq i \leq j-1 .
\end{aligned}
$$

Then we have

$$
k\left|w_{1} \ldots w_{j-1} 1\right| \leq k \sum_{i=0}^{j-1} c^{i} \leq k \cdot \frac{c^{j}-1}{c-1}
$$

Taking $c=k+1$, we get $k\left|w_{1} \ldots w_{j-1} 1\right|+1 \leq c^{j}<\left|w_{j}\right|$.
Consider that we are reading the first 0 of $w_{j}=10^{s(j)}$ in the word w. Let u_{1} (resp. v_{1}) be the word written on the first (resp. second) tape between the reading and the writing head. And let, recursively, u_{l} (resp. v_{l}) be the word added on the first (resp. second) tape after reading v_{l-1}. Note that for all $l \geq 1$, we have that $\left|v_{1} \ldots v_{l-1}\right|<\left|u_{1} \ldots u_{l}\right|$.

We define also a set $M_{0} \subseteq M$ as follows. For $x \in M$, let $\binom{0}{x} \rightarrow\binom{\alpha}{\beta}$ be a rule of τ. Then, $x \in M_{0}$ if and only if $\alpha \in 0^{+}$. Hence, M_{0} contains every symbol $x \in M$ such that when reading 0 on the first tape and the symbol x on the second tape, it writes only 0 's on the first tape.

Assume that for some $i \geq 1$,

$$
\begin{equation*}
\sum_{l=1}^{i}\left|u_{l}\right| \leq s(j) \tag{6.2}
\end{equation*}
$$

By (6.2), the words u_{1}, \ldots, u_{i} contain only 0 's, hence when reading the words v_{1}, \ldots, v_{i-1}, only 0 's are written on the first tape. Since $\left|v_{1} \ldots v_{l-1}\right|<\left|u_{1} \ldots u_{l}\right|$, we have also that while reading the words v_{1}, \ldots, v_{i-1}, only 0 's are read from the first tape.

Consider the following oriented graph. The vertices are elements of M. There is an arc $x \rightarrow y$, if there is a rule $\binom{0}{x} \rightarrow\binom{\alpha}{\beta}$ in τ such that $y \in \operatorname{symb}(\beta)$ (see Notation 6.3). For $X \subseteq M$, let $\operatorname{clos}(X)$ be the set of all vertices of the graph to which we reach from any vertex of X following the arcs. If $\operatorname{clos}\left(\operatorname{symb}\left(v_{1}\right)\right) \subseteq$ M_{0} then since $u_{1} \in 0^{+}$, we have, by induction, that $u_{l} \in 0^{+}$and $\operatorname{symb}\left(v_{l}\right) \subseteq$ $\operatorname{clos}\left(\operatorname{symb}\left(v_{1}\right)\right) \subseteq M_{0}$ for all $l \geq 1$. This is a contradiction since there must be u_{l} containing 1 .

Hence, there must be an oriented path starting in a vertex of $\operatorname{symb}\left(v_{1}\right)$ and ending in a vertex of $M-M_{0}$ of length at most $\operatorname{card}\left(M_{0}\right)$. Let i_{0} be the length of the shortest of such paths. If we prove that (6.2) holds for $i=\operatorname{card}(M)+1 \geq$ $\operatorname{card}\left(M_{0}\right)+2 \geq i_{0}+2$ then, since during reading $v_{1}, \ldots, v_{i_{0}+1}$ only 0 's are read and written on the first tape, we have that $\operatorname{symb}\left(v_{1}\right), \ldots, \operatorname{symb}\left(v_{i_{0}}\right) \subseteq M_{0}$ and $\operatorname{symb}\left(v_{i_{0}+1}\right) \cap\left(M-M_{0}\right) \neq \emptyset$. This implies that $1 \in \operatorname{symb}\left(u_{i_{0}+2}\right)$ contradicting (6.2).

Now it suffices to prove that Equation (6.2) holds for $i=\operatorname{card}(M)+1$. After reading one symbol, the system τ can write on any tape at most B symbols. Hence, we have that $\left|u_{l+1}\right|,\left|v_{l+1}\right| \leq B\left|v_{l}\right|$ for all $l \geq 1$. We estimate the left hand side of (6.2):

$$
\begin{equation*}
\sum_{l=1}^{\operatorname{card}(M)+1}\left|u_{l}\right| \leq\left|u_{1}\right|+\sum_{l=2}^{\operatorname{card}(M)+1} B^{l-1}\left|v_{1}\right| \leq \max \left(\left|u_{1}\right|,\left|v_{1}\right|\right) . \sum_{l=0}^{\operatorname{card}(M)} B^{l} . \tag{6.3}
\end{equation*}
$$

Notice that $T=\sum_{l=0}^{\operatorname{card}(M)} B^{l}$ is a constant for τ.

Next, we estimate $\left|u_{1}\right|$ and $\left|v_{1}\right|$. Consider the situation when the reading heads are on the $(n+1)$-th symbols of both tapes. Then on each tape n symbols have already been read and hence at most $B n$ symbols written. So, there is at most $(B-1) n$ symbols between writing and reading head on each tape. This implies

$$
\begin{equation*}
\max \left(\left|u_{1}\right|,\left|v_{1}\right|\right) \leq(B-1)\left|w_{1} \ldots w_{j-1} 1\right| . \tag{6.4}
\end{equation*}
$$

Taking $k=T(B-1)$, we obtain

$$
\sum_{l=1}^{\operatorname{card}(M)+1}\left|u_{l}\right| \stackrel{(6.3)}{\leq} T \cdot \max \left(\left|u_{1}\right|,\left|v_{1}\right|\right) \stackrel{(6.4)}{\leq} T(B-1)\left|w_{1} \ldots w_{j-1} 1\right| \stackrel{(6.1)}{<} s(j)
$$

as desired.
Let us recall one result proved in Examples 11 and 13 of [CuK].
Lemma 6.6. Let $s: \mathbb{N} \rightarrow \mathbb{N}$ be an integer function which is computable, i.e., can be computed by a Turing machine. Then there exists an integer function $t: \mathbb{N} \rightarrow \mathbb{N}$ such that $t(n) \geq s(n)$ for all $n \geq 1$ and the word

$$
w=10^{t(1)} 10^{t(2)} 10^{t(3)} \ldots
$$

can be generated by a triple DOL TAG system. Moreover, such a function t can be effectively computed.

The proof of the lemma is based on the following idea. Let M be a Turing machine computing unary strings $1^{s(1)}, 1^{s(2)}, \ldots$ and let τ be a dgsm generating the sequence of configurations of the computation of M. We can easily extend the dgsm τ to a triple D0L TAG system by coding all letters generated by τ to 0 , except for the last letters of the strings in the sequence $1^{s(1)}, 1^{s(2)}, \ldots$, which are coded to 1 . Together with our result we have the following corollary.

Corollary 6.7. There exists an infinite word which can be generated by a triple DOL TAG system, but not by any double DOL TAG system.

Hence, the inclusion "double $\mathrm{D} 0 \mathrm{~L} \subseteq$ triple D0L" is proper, as conjectured in Conjecture 4 in $[\mathrm{CuK}]$.

Bibliography

[AL] Albert, M.H., Lawrence, J., A proof of Ehrenfeucht's conjecture, Theoret. Comput. Sci. 41, no. 1, pp. 121-123 (1985).
[BP] Berstel, J., Perrin, D., Theory of codes, Pure and Applied Mathematics, Vol. 117, Orlando etc.: Academic Press (1985).
[BPPR] Berstel, J., Perrin, D., Perrot, J.F., Restivo, A., Sur le théorème du défaut, J. Algebra 60, no. 1, pp. 169-180 (1979).
[Br] Bruyère, V., Codes, Chap. 7 in: M. Lothaire, Algebraic combinatorics on words, Cambridge University Press (2002).
[ChK] Choffrut, C., Karhumäki, J., Combinatorics of words, in: G. Rozenberg and A. Salomaa (eds), Handbook of formal languages, Vol. 1, Springer, Berlin, pp. 329-438 (1997).
[CKM] Cassaigne, J., Karhumäki, J., Man̆uch, J., On conjugacy of languages, Theor. Inform. Appl. (to appear).
[CKO] Choffrut, C., Karhumäki, J., Ollinger, N., The commutation of finite sets: a challenging problem, in: Proc. of WORDS (Rouen, 1999), Theoret. Comput. Sci. 273, no. 1-2, pp. 69-79 (2002).
[Co] Conway, J.H., Regular algebra and finite machines, Chapman and Hall Mathematics Series, London (1971).
[CuK] Culik K. II, Karhumäki, J., Iterative devices generating infinite words, Int. J. Found. Comput. Sci. 5, no. 1, pp. 69-97 (1994).
[DM] Ďuriš, P., Maňuch, J., On the computational complexity of infinite words, Theoret. Comput. Sci. (to appear).
[Ei] Eilenberg, S., Automata, languages and machines, Pure and Applied Mathematics, Vol. 58, Academic Press, New York (1974).
[FW] Fine, N.J., Wilf, H.S., Uniqueness theorems for periodic functions, Proc. Amer. Math. Soc. 16, pp. 109-114 (1965).
[Gu] Guba, V.S., Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems, Mat. Zametki 40, no. 3, pp. 321324 (1986).
[Ha] Harju, T., On factorizations of words, Bulletin of the EATCS 24, p. 217 (1984).
[HK] Harju, T., Karhumäki, J., On the defect theorem and simplifiability, Semigroup Forum 33, no. 2, pp. 199-217 (1986).
[HKL] Hromkovič, J., Karhumäki, J., Lepistö, A., Comparing descriptional and computational complexity of infinite words, in: Proc. of Results and trends in theoretical computer science (Graz, 1994), Lecture Notes in Comput. Sci. 812, Springer, Berlin, pp. 169-182 (1994).
[HKP] Harju, T., Karhumäki, J., Plandowski, W., Independent systems of
 words, Cambridge University Press (2002).
[Ho] Honkala, J., A defect property of codes with unbounded delays, Discrete Appl. Math. 21, no. 3, pp. 261-264 (1988).
[HP] Harju, T., Petre, I., On commutation and primitive roots of codes, TUCS Technical Report 402 (2001).
[Ka1] Karhumäki, J., On three-element codes, in: Proc. of Eleventh international colloquium on automata, languages and programming (Antwerp, 1984), Theoret. Comput. Sci. 40, pp. 3-11 (1985).
[Ka2] Karhumäki, J., A property of three-element codes, Theoret. Comput. Sci. 41, no. 2-3, pp. 215-222 (1985).
[Ka3] Karhumäki, J., Combinatorial and computational problems of finite sets of words, in: Proc. of MCU'01, Lecture Notes in Comput. Sci. 2055, pp. 69-81 (2001).
[KLP] Karhumäki, J., Latteux, M., Petre, I., The commutation with codes and ternary sets of words, (a manuscript).
[KM] Karhumäki, J., Maňuch, J., Multiple factorizations of words and defect effect, Theoret. Comput. Sci. 273, no. 1-2, pp. 81-97 (2002).
[KMP] Karhumäki, J., Maňuch, J., Plandowski, W., A defect theorem for bi-infinite words, Theoret. Comput. Sci. (to appear).
[Ko] Kolmogorov, A.N., Three approaches to the quantitative definition of information, Internat. J. Comput. Math. 2, pp. 157-168 (1968).
[KPl] Karhumäki, J., Plandowski, W., On the size of independent systems of equations in semigroups, in: Proc. of 19th International Symposium on Mathematical Foundations of Computer Science (Košice, 1994), Theoret. Comput. Sci. 168, no. 1, pp. 105-119 (1996).
[KPe] Karhumäki, J., Petre, I., On the centralizer of a finite set, in: Proc. of Automata, languages and programming (Geneva, 2000), Lecture Notes in Comput. Sci. 1853, Springer, Berlin, pp. 536-546 (2000).
[Le] Leiss, E.L., Language equations, Monographs in Computer Science, Springer-Verlag, New York (1999).
[LeS] Lentin, A., Schützenberger, M.-P., A combinatorial problem in the theory of free monoids, in: Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), Univ. North Carolina Press, pp. 128-144 (1969).
[Lo] Lothaire, M., Combinatorics on words, Encyclopedia of Mathematics and its Applications 17, Addison-Wesley Publishing Co., Reading, Mass. (1983).
[LRLR] Le Rest, E., Le Rest, M. Sur la combinatoire des codes à deux mots, Theoret. Comput. Sci. 41, no. 1, pp. 61-80 (1985).
[LyS] Lyndon, R.C., Schützenberger, M.P., The equation $a^{M}=b^{N} c^{P}$ in a free group, Michigan Math. J. 9, pp. 289-298 (1962).
[Mak] Makanin, G.S., The problem of solvability of equations in a free semigroup, Mat. Sb. 103(145), no. 2, pp. 147-236 (1977) (English transl. in Math. USSR Sb. 32, pp. 129-198 (1979)).
[Man] Maňuch, J., Defect effect of bi-infinite words in the two-element case, Discrete Math. Theor. Comput. Sci. 4, No. 2, pp. 273-290 (2001).
[Pe1] Perrin, D., Codes conjugués, Information and Control 20, pp. 222-231 (1972).
[Pe2] Perrin, D., Sur les groupes dans les monoides finis, in: Proc. of Noncommutative structures in algebra and geometric combinatorics (Naples, 1978), Quad. Ric. Sci. 109, CNR, Rome, pp. 27-36 (1981).
[Pl] Plandowski, W., Satisfiability of word equations with constants is in PSPACE, in Proc. of FOCS'99, IEEE, pp. 495-500 (1999).
[Ra] Ratoandromanana, B., Codes et motifs, RAIRO Inform. Theor. Appl. 23, no. 4, pp. 425-444 (1989).
[Sc] Schützenberger, M.-P., A property of finitely generated submonoids of free monoids, in: Proc. of Algebraic theory of semigroups (Proc. 6th Algebraic Conf., Szeged, 1976), Colloq. math. Soc. János Bolyai 20, North-Holland, pp. 545-576 (1979).
[Sh] Shyr, H.J., Free monoids and languages, CSLI Lecture Notes, Taichung (Taiwan), Hon Min Book Company (1991).
[Th] A. Thue, Über unendliche zeichenreihen, Norske Vid. Selsk. Skr., I Mat. Nat. KI., Kristiania 7, pp. 1-22 (1906).

Appendix A

Proof of Lyndon and Schützenberger Lemma

Let us proof Lemma 2.7. Our proof is based on that in [Sh], however, the use of not very difficult results, i.e., of Lemmas 2.6 and 3.8 , will make our proof shorter.

Proof of Lemma 2.7. Let $m, n, p \geq 2$ be integers. Assume that the word equation $x^{m} y^{n}=z^{p}$ has a non-periodic solution. Lemma 2.6 yields immediately

$$
\begin{align*}
& |z|>(m-1)|x| \geq|x|, \quad \text { and } \tag{A.1}\\
& |z|>(n-1)|y| \geq|y| .
\end{align*}
$$

Hence, $4|z|>m|x|+n|y|=p|z|$, i.e., we have that either $p=2$, or $p=3$.
Case $p=3$. If $m \geq 3$ and $n \geq 3$ then, by (A.1), we have $|z|>2|x|$ and $|z|>2|y|$. Hence, as above,

$$
3|z|>(m-1)|x|+(n-1)|y|+|x|+|y|=p|z|,
$$

a contradiction. Therefore, without lost of generality we can assume that $m=2$.
Again, by (A.1), we obtain

$$
\begin{aligned}
& n|y|=\quad 3|z|-2|x|>\quad 3|z|-2|z|=|z|>(n-1)|y|, \quad \text { and } \\
& 2|x|=3|z|-(n-1)|y|-|y|>3|z|-|z|-|z|=|z|>|x| .
\end{aligned}
$$

We have the situation depicted in Figure A.1, i.e., there are non-empty words x_{1}, x_{2}, y_{1} and y_{2} such that

$$
\begin{equation*}
x=x_{1} x_{2}, \quad y=y_{1} y_{2}, \quad \text { and } \quad z=x x_{1}=x_{2} y_{1}=y_{2} y^{n-1} \tag{A.2}
\end{equation*}
$$

By the length argument we have that $\left|y_{1}\right|=2\left|x_{1}\right|$. Since, by (A.2), both x_{1} and y_{1} are suffixes of z, there is a non-empty word y_{0} such that $y_{1}=y_{0} x_{1}$. Note

Figure A.1: The situation in the case $x^{2} y^{n}=z^{3}$.
that $\left|x_{1}\right|=\left|y_{0}\right|$. It follows that $x_{1} x_{2}=x_{2} y_{0}$, i.e., by Lemma 2.10, there are words p, q and integers $k \geq 1$ and $l \geq 0$ such that $p q$ is primitive and

$$
x_{1}=(p q)^{k}, \quad y_{0}=(q p)^{k}, \quad \text { and } \quad x_{2}=p(q p)^{l}
$$

Therefore,

$$
\begin{equation*}
p(q p)^{l+k} p(p q)^{k}=x_{2} y_{0} x_{1}=x_{2} y_{1} \stackrel{(\mathrm{~A} .2)}{=} y_{2} y^{n-1}=y_{2}\left[(q p)^{k}(p q)^{k} y_{2}\right]^{n-1} \tag{A.3}
\end{equation*}
$$

Further, by (A.1) and (A.2) it follows that

$$
\left|y_{0}\right|+\left|x_{1}\right|+\left|y_{2}\right|=|y| \stackrel{(\mathrm{A} .1)}{<}|z| \stackrel{(\mathrm{A} .2)}{=}\left|x x_{1}\right|=2\left|x_{1}\right|+\left|x_{2}\right|
$$

which implies that $\left|y_{2}\right|<\left|x_{2}\right|$. Hence,

$$
\left|y_{2}(q p)^{k}\right|<\left|x_{2}(q p)^{k}\right|=\left|p(q p)^{l+k}\right|
$$

Together with Equation (A.3) this yields that the pair ($q p, p q$) matches the word $p(q p)^{l+k}$. By Lemma 3.8 we have 3 possibilities. Either the pair matches the beginning of the word $p(q p)^{l+k}$, i.e., $y_{2}(q p)^{k}=1$; or it matches the end of the word, i.e., $p(q p)^{l+k}=y_{2}(q p)^{k}$ and $p(p q)^{k}=(p q)^{k} y_{2}\left[(q p)^{k}(p q)^{k} y_{2}\right]^{n-2}$; or $l+k=1$. The first case leads to a contradiction, since y_{2} is non-empty. In the second case, we have a non-trivial equation over $\{p, q\}$, a contradiction with the primitiveness of $p q$. In the last case we have $l=0$ and $k=1$. Equation (A.3) simplifies to $p q p p p q=y_{2}\left(q p p q y_{2}\right)^{n-1}$. By the length argument we have that $n=2$ and $\left|y_{2}\right|=|p|$. Obviously, this implies that $y_{2}=p$ and $p q=q p$, again a contradiction with the primitiveness of $p q$.

Case $p=2$. Assume that (x, y, z) is a solution of the equation $x^{m} y^{n}=z^{2}$ such that z is of the minimal length. By (A.1), without lost of generality, there are words x_{1} and x_{2} such that

$$
x=x_{1} x_{2}, \quad \text { and } \quad z=x^{m-1} x_{1}=x_{2} y^{n}
$$

This implies $x_{2}^{2} y^{n}=x_{2} x^{m-1} x_{1}=\left(x_{2} x_{1}\right)^{m}$. If $m \geq 3$ then the contradiction follows by the above considered cases. If $m=2$ then, since $\left|x_{2} x_{1}\right|=|x|<|z|$, we have a contradiction with the minimality of $|z|$.

