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Chapter 1

Introduction

In this work we attack different problems of Combinatorics on Words.

Combinatorics on Words is a rather new field of Theoretical Computer Sci-
ence, although the first papers on words were written already at the beginning
of 20th century by A. Thue, cf. [Th]. A pioneering paper on modern Combina-
torics on Words is [LeS]. Actually, this paper deals with some problems related
to several topics studied in this work, ¢f. mainly Section 3.2 and Chapter 5.
The first monograph on Combinatorics on Words appeared as late as in the
year 1983: [Lo] — a common project of several mathematicians. Recently, the
book is followed by two new surveys on the field: [ChK] — studying combinato-
rial properties of words from the point of view of Formal Languages, and, just
appeared, the new Lothaire: “Algebraic combinatorics on words”.

One of the fundamental results on words is the defect theorem, cf. [Lo]
and [BPPR]. Intuitively it states that if n words satisfy a non-trivial relation
then these words can be expressed as products of at most n — 1 words. Actually,
as discussed in [ChK], for example, there does not exist just one defect theorem
but several ones depending on restrictions put on the required n — 1 words. It is
also well-known that the non-trivial relation above can be replaced by a weaker
condition, namely by the non-trivial one-way infinite relation, cf. [HK] or [Br].

The goal of Chapter 3 is to look for defect theorems for bi-infinite words. In
a strict sense such results do not exist: the set X = {ab,ba} of words satisfies
a bi-infinite non-trivial relation since (ab)* = (ba)%, but there exists no word ¢
such that X C ¢T. However, we are going to prove several results which can be
viewed as defect theorems for bi-infinite words.

To describe the results of Chapter 3, let w be a bi-infinite word, ¢.e., an
element of ¥Z, and X a finite subset of ¥*. We say that w possesses an X-
factorization if w € X?%, and that w possesses two different X-factorizations, if
it possesses two X-factorizations such that they do not match at least in one
point of w. Further, the combinatorial rank of a set X, denoted by rank.(X), is

1



2 CHAPTER 1. INTRODUCTION

the cardinality of the smallest set Y such that X C Y. We prove the following
results:

e Section 3.1: If a non-periodic bi-infinite word w has two different X-
factorizations then the combinatorial rank of X, denoted by rank.(X), is
at most card(X)—1. Moreover, if rank.(X) = card(X) then the number of
bi-infinite words with two different X-factorizations is at most % size(X).

e Section 3.2: Let X = {«, 5} be a two-element code. If a bi-infinite word
w possesses two different X-factorizations then either the X-factorizations
are shift-equivalent and there exists a word ¢t € aBT U a™f8 such that
w = t#, or the primitive roots of a and /3 are conjugates. Moreover, there
are at most two bi-infinite word possessing two different X -factorizations.

We want to emphasize that a restriction to non-periodic bi-infinite words is
necessary, as shown by the example of X = {ab,ba}, and even more that the
above theorems require to consider the combinatorial rank. The later restric-
tion is quite interesting since in all previous defect theorems, see [ChK] and
Section 2.2, any of the notions of the rank can be used to witness the defect
effect.

The results in Section 3.2 are related to some considerations of [LeS] and to
the main result of [LRLR]. In fact, as we realized recently, the main theorem of
Section 3.2, Theorem 3.11, can be, after some effort, deduced from considerations
of these two papers. However, our proof is self-contained and essentially shorter,
and moreover formulated directly to yield a defect-type of theorem.

As argued in [HKP] defect theorems can be viewed as a weak dimension
property of words. It is weak since a finite set X of words can satisfy several
different, or independent as it is formalized in [HKP], relations without forcing
a larger defect effect than 1, i.e., a larger defect effect than is forced by a single
relation. In Chapter 4 we ask to find conditions (on relations or sets of words)
which yield a cumulative defect effect, i.e., if the set X of n words satisfy k
relations then X is of rank at most n — k.

There are only very few results known in this direction. The Graph Lemma,
¢f. Lemma 2.3 in Section 2.3, is such an example where the type of relations
is restricted, ¢f. [ChK, HK]. A similar deep result is proved in [Br], extending
ideas of [Kal, Ka2, Hol, where it is shown that if X is a code and has unbounded
synchronizing delay in both directions then the rank of X is at most card(X)—2.

In Chapter 4, we interpret, in a natural way, a relation on words from X
as a double X-factorization of some infinite word. We ask if the fact that a
non-periodic bi-infinite word possesses k disjoint X-factorizations implies that
rank.(X) < card(X) — k + 1, ¢f. Problem 4.1. By our defect theorem for bi-
infinite words (Theorem 3.3 in Section 3.1), the answer is “yes” in the case k = 2.



In Section 4.1 we prove that if X is a prefiz set then the answer is affirmative
also in the case k = 3.

Further, in Section 4.2, we consider the connections of the above problem in
the case k = card(X) to the Critical Factorization Theorem, or more precisely, to
the conjecture about its application stated in [Lo]. We will give several examples
that the conjecture is false, and hence we are not able to obtain a positive answer
to our problem in the case & = card(X). However, as a consequence of the
application of the Critical Factorization Theorem we have that the number of
disjoint X -factorizations of a non-periodic bi-infinite word is at most card(X).

The defect theorems motivated a research on words equations starting by
a seminal paper of Makanin in 1976, cf. [Mak]|. Despite the fact that many
fundamental problems, such as the exact complexity of the satisfiability problem,
cf. [Pl], or the maximal size of independent systems of equations in n variables,
cf. [HKP], are not solved, one can say that there exists a deep and rich theory
on word equations.

If language equations, as extensions of word equations, are considered the
situation changes drastically: almost nothing is known about those. Recently,
the commutation equation X7 = ZX for languages has been studied in a num-
ber of papers, c¢f. [Ra, CKO, KPe, HP, Ka3, KLP] for a survey. In certain
cases, for example when card(X) < 3 or X is a code, it is completely solved: Z
must be of the form Z = U;cso(X)" with I C N, and o(X) being the primitive
root of X, i.e., the minimal set having the set X as its power. In these cases
this characterization gives an affirmative answer to an old problem of Conway,
cf. [Co], asking whether the (unique) maximal set Z commuting with a given
rational X is also rational. Note also that, in these cases, the sets X and Z are
expressible as unions of powers of a common set, i.e., the commutation equa-
tion for languages in these particular cases causes a defect effect. As an example
in [CKO] shows, this is not true in the general case even for the commutation
equation.

In Chapter 5 we will consider the conjugacy equation XZ = ZY . Since, even
the commutation equation seems to be a rather difficult problem solved only in
special cases, we cannot expect the conjugacy equation to be easy. Hence, we
will concentrate on the one of the simplest cases when both the sets X and Y
are binary. We are able to solve this problem completely, i.e., to characterize
all binary sets X and Y for which there exists a non-empty set Z such that
XZ = ZY, as well as to characterize such sets Z. However, even in this very
restricted case we cannot witness a defect effect, ¢f. Example 5.2 in Chapter 5.

Finally, in Chapter 6 we look at infinite words from a different perspective.
In [CuK] and [HKL] two new areas of investigation were introduced:

e the descriptional complexity of infinite words, i.e., the comparative mea-
sure how complicated simple mechanisms are needed to generate particular
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infinite words;

e the computational complezity of infinite words, i.e., the measure how much
resources (such as time and space) are needed to generate a certain infinite
word by a Turing machine.

The second paper concentrates on relations between these two complexities.

In [CuK, HKL, HK] several interesting problems are proposed. In Chapter 6
we solve a few of these problems, or in fact, in some cases, we show that they
are equivalent to well-known hard open problems in the complexity theory of
Turing machines.

In Section 6.3 we consider the open problem, proposed in [HKL], namely
whether all infinite words generated by iterating deterministic generalized se-
quential machines, dgsm’s for short, have logarithmic space complexity. As
shown already in [HKL], the answer is “yes” if the dgsm has the maximal, i.e.,
exponential, growth. We show that it is so also in the case when the dgsm has a
smallest non-trivial growth (©(nlogn)). In [Le] it is claimed that the answer to
the problem is affirmative in general. Here we show that the problem is equiva-
lent to an other hard open problem of complexity theory asking whether unary
classes of languages P and DLOG are equivalent. Therefore, we believe that in
the proof of [Le| some case must have been overlooked.

Another problem proposed in [HKL] is to find a concrete infinite word which
cannot be generated in logarithmic space. In Section 6.4 we show that it is
exactly as hard as the problem to find a concrete language, which does not
belong to DSPACE(n).

Finally, in Section 6.5 we separate the classes of infinite words generated by
double and triple DOL TAG systems as it was conjectured in [CuK].

A special attention is paid to the presentation. The definitions and proofs
in this work are illustrated with the numerous figures, and we believe that they
make the content of the work more comprehensive.

The thesis is based on the following papers [KMP, Man, KM, CKM, DM].



Chapter 2

Preliminaries

2.1 Basic definitions

In this section we fix our terminology and recall some basic notions and defi-
nitions of Combinatorics on Words. For undefined notions we refer a reader to
[Lo] or [ChK]. We will pay the most of our attention to the notions of bi-infinite
words and their factorizations which we will study in Chapters 3 and 4.

Let X be a finite non-empty set, called an alphabet. Elements of 3 are called
letters, and finite sequences of letters are called words. The number of letters
in the sequence, forming a word u, is the length of u, which we denote by |ul.
In particular, the word of length 0 is called the empty word, and denoted by 1.
The set of all words (resp. all non-empty words) over ¥ is denoted by £* (resp.
Y1), The set ¥* is naturally equipped with the operation concatenation, denote
by “.”, also called product. Obviously, each word has the unique representation
as product of letters. Hence, ¥* (resp. 1) is the free monoid (resp. the free
semigroup) generated by X.

We define three relations on words:

e u is a prefir of v, denoted by u < v, if there exists a word z such that
v =uz;

e u is a suffix of v, if there exists a word z such that v = zu;
e u is a factor of v, if there exist words x and y such that v = zuy.

In the case when u # v, we call any of the above three relations proper. The
relation “u is proper prefix of v” is denoted by u < v. We denote by Pref(v),
pref(v), Suff(v), suff(v), Fact(v), the sets of all prefixes, proper prefixes, suf-
fixes, proper suffixes, factors of a word v, respectively. All these notions can be
generalized for the sets of words in a natural way.

5



6 CHAPTER 2. PRELIMINARIES

Let u and v be words. If u is a prefix (resp. a suffix) of v then the word
z such that v = uz (resp. v = zu) is called the left quotient (resp. the right
quotient) of v by u, denoted by u~lv (resp. vu~1).

We say that words w and v are left comparable (resp. right comparable) if
one of v and v is a prefix (resp. a suffix) of the other. Further, we say that a
pair of words (u,v) matches a word w at a position (wi,ws) if w = wiwse, v and
w; are right comparable, and v and ws are left comparable.

Let ay,...,a, € ¥ be the sequence of letters of a word v, i.e., v =ay ... ay,.
The mirror image of the word v is the word ay, . .. a1, denoted by vR. The mirror
image of a set X = {x1,...,Zm,} is the set XR = {zR, ... zR}.

The sets of all infinite and bi-infinite words over ¥ are denoted by N and
%, respectively. Formally, an infinite word is a mapping w : N — ¥, and a
bi-infinite word is a mapping w : Z — . Usually, we write an infinite word w
as

w=wowi ..., with w; = w(¢) for all s € N,

and similarly, we write a bi-infinite word w as
w=...w_1wowi ..., with w; = w(?) for all ¢ € Z.

It is obvious that a bi-infinite word w and the bi-infinite word w’ defined as
w'(k) = w(ko + k) for all k € Z and a fixed kg € Z represent the same word.
Hence, by definition, we will consider w and w’ as different representations of
the same bi-infinite word.

Example 2.1. The bi-infinite word

w = (ab)? =...abab...

has exactly two representations

o M B 3 dd
wi(n) = a; n '1s even, and ws(n) = a; n '1s odd, (2.1)
b; mn is odd, b; n is even.

A factorization of a word v is any sequence (v, ..., vg) of words such that

V=vU1Vy...V.

If the words vi,...,v; are elements of a set X, we say that the sequence
(v1,...,vg) is an X -factorization of v. Similarly, an X -interpretation of v is
any sequence vi, ..., U; of words of X such that

pUS = V1V ... Uk
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aw,p(i) aw,p(i + 1)

wi i1 e fwe— wy |

[position Jj= F(z)] Iposition k=F(+ 1)]

Figure 2.1: An illustration how the factorization F' factorizes the word w.

for some words p and s satisfying |p| < |v1| and |s| < |vg].

A factorization of a bi-infinite word w € X% is an increasing function F :
Z — Z. The range of F is called the set of starting positions, denoted by F(Z).
Indeed, the factorization F' factorizes a bi-infinite word w into words:

ooy 0y P(—1), a,F(0), 00 p(1), . . -,

where
o, F (1) = Wp@HWFE)41 - - WFi+1)-1, for all i € Z,
i.e., the position F'(¢) is the starting position of the factor a,, r(i) in w, as

depicted in Figure 2.1. Note that the way how a factorization factorizes a bi-
infinite word depends on the representation of the bi-infinite word:

Example 2.2. Let F(n) = 2n be a factorization and consider two represen-
tations (2.1) of the bi-infinite word (ab)?. Then F factorizes w; into factors
Qy,,7(n) = ab, and wy into factors ay, p(n) = ba, for all n € Z.

It is obvious that a factorization F' and the factorization F’ defined as
F'(k) = F(kg+k), for all k € Z, and a fixed kg € Z factorize the bi-infinite word
w in the same way. Hence, similarly as for bi-infinite words, we will consider F'
and F' as different representations of the same factorization.

We say that two factorizations F; and F> are

o different, if they are not the same, i.e., F1(Z) # F3(Z);

e disjoint, whenever the starting positions of all factors in F; are distinct
from the ones in Fy, i.e., F1(Z) N F3(Z) = 0;

o shift-equivalent with respect to a representation of a bi-infinite word w, if
there is a kg € Z such that for all k € Z, o, F, (k) = aw,r, (ko + k).

Let us illustrate the above relations between factorizations on an example:
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awaFS(_2) awaFS(_l) aw7F3(0)

Figure 2.2: Three factorizations of the bi-infinite word a”.

Quyy, Fi(—1) Qyy ,F1(0) Qo Fy (1)
4 Y Y N\
awl,Fg(—l) awl,Fg(O)

a b a b a b

Qo ,F3(—2) Qoyy,F3(—1) Aoy, F3(0)

Figure 2.3: Three factorizations of the bi-infinite word w: = (ab)Z.

Example 2.3. Consider the bi-infinite word w = a? (it has only one represen-
tation) and the following three factorizations:

Fl(n) :27’L,
Fy(n)=2n+1,
F3(n) =2n+2.

As it can be seen in Figure 2.2

e the factorizations F; and F3 are the same, i.e., different representations of
the same factorizations. Indeed, Fi(Z) = 2Z = F3(Z);

e the factorizations F} and F; are disjoint, since F1(Z) N F>(Z) = 2ZN (2Z+
1) = 0.

In addition factorizations F; and Fy are shift-equivalent with respect to w,
since o,y (N) = @@ = oy, (n) for all n € Z. However, this is not true if we
consider the bi-infinite word wj, defined in Example (2.1), instead. Indeed, as
Figure 2.3 shows, ay,,r; (n) = ab and oy, 1, (n) = ba for all n € Z.

Finally, we define a special type of factorizations, which we will study in
more details in Chapter 3. Let X be a set of non-empty words. Let Fact(w, F')
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be the set of all the factors into which F' factorizes w, i.e.,
Fact(w, F) = {aw,r(n); n € Z}.

If Fact(w, F) C X, we say that F is an X -factorization of the bi-infinite word
w, and that w possesses an X-factorization F.

Next, we would like to define the mirror images of bi-infinite words and
their factorizations in the way that the factors into which the mirror image of a
factorization F' factorizes the mirror image of a bi-infinite word w would be the
mirror images of the factors into which F' factorizes w. One way how to do it is
as follows:

We define the mirror image wR of a bi-infinite word w by the following
formula

wR(n) =w(-n—1), forallneZ,

and the mirror image FR of a factorization F by the formula
FR(n) = —F(—n+1), forallneZ.

This definition is sound since FR is also a growing function. Moreover, F(Z) =
—FR(Z). The reader can check that the following conditions are satisfied for all
1EZ
wR(FR()) =w(F(-i+1)—1), and
oy, e (i) = (0w, p(—1))". (2.2)

Therefore, Fact(wR, FR) = (Fact(w, F))R, and in particular, if F' is an X-factor-
ization of a bi-infinite word w then FR is an XR-factorization of wR.

If a bi-infinite word possesses at least two different X-factorizations, we say
that it is X -ambiguous. Let Amb(X) denote the set of all X-ambiguous bi-
infinite words.

Example 2.4. Consider the set X = {ab,ba}. Then the bi-infinite word (ab)Z
is X-ambiguous, since it possesses two different X-factorizations:

On the other hand the bi-infinite word N(ab)(ba)" is not X-ambiguous, it
can be factorize over X in the unique way:

.
~-



10 CHAPTER 2. PRELIMINARIES

Indeed, any other factorization over a set containing only 2-letter words
would require that bb € X (depicted with a dashed line).

Note that the above properties of bi-infinite words (possessing an X -factor-
ization and being X-ambiguous) were, in fact, defined for a particular represen-
tation of a bi-infinite word. But, clearly, if a representation of a bi-infinite word
possesses an X-factorization (resp. is X-ambiguous) then all representations of
that bi-infinite word do so.

2.2 Defect theorems and ranks

The defect theorem is one of the fundamental results on words, cf. [Lo, BPPR].
Intuitively it states that if n words satisfy a non-trivial relation then these words
can be expressed as products of at most n — 1 words. Actually, as discussed
in [ChK], for example, there does not exist just one defect theorem but several
ones depending on restrictions put on the required n — 1 words.

We say that words = and y commute if they satisfy the equation zy = yx.
The following conditions are equivalent, cf. [Lo]:

e words x and y commute;

e words x and y satisfy a non-trivial equation;
e words « and y have a common power;

e there exists a word ¢ such that x,y € t*;

e p(z) = p(y) (see Section 2.4).

The above claim is one of the basic facts of the theory of Combinatorics on
Words. It can be viewed as an example of a defect effect for n = 2. Indeed, the
condition z,y € t* expresses that the “dimension” of the set {x,y} is 1.

Hence, defect theorems can be viewed as different dimension properties of
sets of words. We have several ways how define “dimension”. There are two
main approaches, combinatorial and algebraic.

The combinatorial rank of X C ¥ is defined by the formula

rank.(X) = min{card(Y); X CY*}.

In order to give algebraic definitions of the dimension of a set of words, we
have to define the following properties. We call a submonoid M of ¥*

e stable if for all u, v, uw,wv € M then also w € M;

o right unitary if for all u,uw € M then also w € M;
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e left unitary if for all v,wv € M then also w € M.

The above properties relate to the codes, prefix sets and suffix sets, respec-
tively. We say that a set of words X is a code if it satisfies the following condition:
for all integers n,m > 1 and words Z1,...,%n,Y1,---,Ym € X

T1...Tp =Y1...Ym 1mpliess n=mand z; =y; fort=1,...,n.

Further, we say that a set of words X is a prefiz set (resp. a suffix set) if no word
of X is a prefix (resp. a suffix) of another. The relations between properties of
submonoids of X* and properties of sets of words can be expressed as follows:

Lemma 2.1. [BP] A submonoid of ¥* is

o stable if and only if it is a free submonoid if and only if its minimal gen-
erating set is a code;

o right unitary if and only if its minimal generating set is a prefix set;
o left unitary if and only if its minimal generating set is a suffix set.

Note that the intersection preserves any of the above properties. Therefore,
we can define the smallest free (resp. right unitary) submonoid of ¥* which
contains X by the formulas:

FM(X)= () M,

XCMCx*
M is free

RUM(X) = N M.

XCMCxE*
M is right unitary

The minimal generating set of FM(X) (resp. RUM(X)) is called the free (resp.
prefir) hull of X, denoted by X¢ (resp. by Xp).
Finally, we can define free and prefix ranks:

rank;(X) = card(X;) and rank,(X) = card(X,).
Let us recall the defect theorems formulated for the free and prefix ranks.
Theorem 2.2. [BPPR, Lo| For each finite set X C £t we have

e rank¢(X) < card(X), and moreover, the equality holds if and only if X is
a code;

e rank,(X) < card(X), and moreover, the equality implies that X is a code.
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The above defined ranks satisfy the following condition
rank.(X) < rankp(X) < rank¢(X) < card(X),

The following example (based on Example 4.1 of [ChK]) shows the above
ranks define the different properties of sets of words.

Example 2.5. Consider the set
X = {aa, aaba, bac, cbb, bbaa, baa} .
The only minimal non-trivial relation in X is
aa.bac.bbaa = aaba.cbb.aa .

Since X T is a subset of FM(X ) which is stable, we conclude that FM(X) contains
the words ba, ¢ and bb. Now the set

X1 = {aa, ba,c,bb, baa}

is a code such that X f contains X T and the elements ba, c and bb are necessarily
contained in FM(X), hence it is the free hull X; of X.

Obviously, the set X;” = FM(X) is a subset of RUM(X). The set X; is not
a prefix set, hence by the right unitary condition, we have that a € RUM(X).
Similarly, we obtain that the set

{a,ba,c,bb}

is the prefix hull Xp of X. Clearly, the combinatorial rank of X is 3. Conse-
quently, we can conclude that

3 = rank.(X) < rank,(X) < ranks(X) < card(X) =6.

2.3 Graph Lemma

In order to formulate one crucial lemma, we need some terminology. We asso-
ciate a finite set X C X% with a graph Gx = (Vx, Ex), called the dependency
graph of X, as follows: the set Vx of vertices of Gx equals to X, and the set Ex
of edges of Gx is defined by the condition

(z,y) € Ex iff zXNnyxN£0p.

Then we have:
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Lemma 2.3. [ChK, HK] For each finite set X C XV, the prefiz (resp. combi-
natorial) rank of X is at most the number of connected components of Gx .

Note that in Lemma 2.3 the fact that the set X contains only non-empty
words is crucial. Therefore, any time we will use the lemma, we have to be sure
that all words occurring in the relations are non-empty.

Second, note that if the set X satisfies a finite relation

Tl T =Yl---Ym,

then it can be easily extended to an infinite one. Hence, in such a case, the
dependency graph of X contains also the edge (z1,¥1)-

Let size(X) be the sum of lengths of words of X, also called the size of the
set X.

2.4 Periodicity

Let v =aq...a, be a word with aq,...a, € X as its sequence of letters. If there
exists an integer p € N such that for every integer ¢« = 1,...,n —p, a; = a;4p,
then we say that p is a period of v. The minimal period of v is called the period
of v, and denoted by per(v).

Let w be an infinite word. If there exists a positive integer p such that
for every n € N, w(n) = w(n + p), we say that w is periodic with a period p.
If there exist integers p > 0 and ng > 0 such that for every integer n > ny,
w(n) = w(n + p), then we say that w is ultimately periodic.

Let w be a bi-infinite word. If there exists a positive integer p such that for
every n € Z, w(n) = w(n + p), we say that w is periodic with a period p. Let F
be a factorization of w. We say that F'is periodic if there exist an integer k£ > 1
and words xg, ..., T 1 such that

CKU,,F(Z.) = T mod k> for all 1 € Z.

Every word v can be expressed in the form v = v”, where n > 1. The word u
satisfying this condition is called a root of v. The root of the minimal length is
called the primitive root of v, denoted by p(v). A word v is primitive if p(v) = v.

The following lemma claims that for a primitive word u the situation when
u is an inner factor of uu, see Figure 2.4, cannot occur.

Lemma 2.4. [ChK] If the word u satisfies the relation
uy = pus with p,s # 1,
then u is non-primitive. Moreover, there is a primitive word t such that

u,p,s€t+.
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Figure 2.4: An illustration of the situation which cannot occur if u is primitive.

Lemma 2.5 (Fine and Wilf). [FW] Let u,v € ¥*. The words u and v are
powers of a common word if and only if the words u® and v have a common
prefic of a length at least |u| + |v| — ged(|ul, |v]).

As a corollary of Lemma 2.5 we have

Lemma 2.6. [LeS] If non-empty words =, y and z satisfying the relation ™y =
2" (resp. yx™ = 2") for some integers m,n > 1 then, either |z| > (m — 1)|z|,
or all the words x,y and z are powers of a common word.

Proof. Consider the equation 2™y = z". If |z| < (m—1)|z| then |z|+]|z| < |2™|,
and thus the words 2™ and 2" have a common prefix of a length at least |z|+|z|.
By Lemma 2.5, the words z and z commute which implies that all the words
x,y and z are powers of a common word. The proof for the equation yx™ = 2"
is essentially the same. ]

In [LyS] a more intricate result was shown.

Lemma 2.7. [LyS]| If non-empty words x, y and z satisfying the relation x™y"™ =
zP for some integers m,n,p > 2 then they are powers of a common word.

However, the original proof in [LyS] is rather long and proved in a more
general settings of free groups. Therefore, we refer a reader to a much shorter
proof in [Sh].

2.5 Conjugacy

We say that two words u and v are conjugates if there exist words p and ¢ such
that
u=pq and v =gqp.

We define a mapping ¢ : ¥* — ¥*| called cyclic permutation, by the formulas
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where aq, ..., a, € 3. The equivalent definition of the conjugacy of  and y can
be expressed as: words x and y are conjugates if there exists an integer k such
that = = c*(y).

As a consequence of Lemma 2.5 we have the following useful lemma and its
corollary.

Lemma 2.8. [LeS| Let u,v € ¥*. The primitive roots of u and v are conjugates
if and only if the words uY and vN have a common factor of length at least
|ul + [v] — ged([ul, |v]).

Corollary 2.9. If words u and v are conjugates then u is primitive if and only
if v is primitive.

The last, less obvious but very useful, characterization of a pair of conjugate
words is formulated in the following lemma.

Lemma 2.10. [Lo|] Two non-empty words u and v satisfy the relation
ut = tv

for some word t if and only if there exist words p and q such that pq is primitive
and

u=(pg)', v=I(qp)’, and tep(gp)* forsomei>1,

i.e., u and v are conjugates.
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Chapter 3

Defect theorems for bi-infinite
words

The goal of this chapter is to look for defect theorems for bi-infinite words. In
a strict sense such results do not exist:

Example 3.1. The set X = {ab,ba} is a code and of the combinatorial rank 2,
although the bi-infinite word (ab)Z possesses two disjoint, and even non-shift-
equivalent, X-factorizations:

i.e., the set X satisfies a bi-infinite non-trivial relation (ab)? = (ba)Z.

However, we are going to prove several results which can be viewed as defect
theorems for bi-infinite words. In Section 3.1 we will prove that if a non-periodic
bi-infinite word w has two different X-factorizations then the combinatorial rank
rank;(X) of X is less than card(X). In Section 3.2 we will refine this result for
the sets X containing only two elements.

In first two sections we will also discuss the maximal number of X-ambiguous
bi-infinite words, showing that if X is a finite set of the maximal combinatorial
rank then this number is always finite, and moreover, it is at most 2, if X is a
binary code.

3.1 The general case

In this section we prove a defect theorem for bi-infinite words. Frequently we
illustrate our proofs by pictures. In these pictures a horizontal double line

17
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v, 7, (7) o, (7 + 1)

Y t Y

"wn,1 Wp, ‘ ‘wmfl Wm ‘

A A A

Qu, Fy (Z - 1) Qu,F, (z) Qu,F, (z + 1)

position n

Figure 3.1: An illustration of (Fy > F», X )-difference ¢t = wy, ... wm—_1. Note that Fi(i) = n
and F(5 + 1) = m.

expresses a bi-infinite word with two X-factorizations Fi, Fy. The sequences of
words in the factorization F; are depicted below the line by consecutive arcs,
similarly the sequences of words in F5 are depicted by arcs, which are above
the line. For example, in Figure 3.1 we consider words oy, (1), Q.1 (J) € X,
such that the words o, F, () are factors of w defined by the factorization F; and
the words i, (j) are factors of w defined by F.

Consider a finite non-empty set X C X' and an X-ambiguous bi-infinite
word w possessing X-factorizations F; and F5. The set of starting positions of
one factorization (Fi(Z) or F5(Z)) factorizes the bi-infinite word w into words of
X. The set of starting positions of both factorizations, F1(Z)U F5(Z), factorizes
w into some other words, which we call X -differences.

Formally, for every starting position n € Fj(Z) find the minimal starting
position m € Fy(Z) such that n < m. Since Fj is a growing function we know
that such a starting position exists. We call the word

t = wpWpt1 ... Wy—1

an (Fy > Fy, X)-difference, and we say that there is an occurrence of the (Fy >
F,, X)-difference ¢ in w at the position n, or, shortly, that n is an occurrence of
the (F1 > Fy, X)-difference ¢. The situation is depicted in Figure 3.1.

Similarly, for every starting position n € Fj(Z) find the maximal starting
position m € Fy(Z) such that m < n. We call the word

t = WnWmt1 ... Wn_1

an (F1 < Fy, X)-difference, and we say that there is an occurrence of the (Fi <
F, X)-difference ¢ in w at the position n.

In Figure 3.2 we can see an example how factorizations F; and Fj factorize
the bi-infinite word w into different types of X-differences.

We define the following sets of X-differences:
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R +1) aurn(+2)  cwr(+3) awr(i+4)

Y __ 1 Y N

NNNNNANY NNN\NNNNN\\N

YIS S A, XXX,

Loz 7 XXX

Qu,F, (7’) Quy, Fy (7’ + 1) Ay, Fy (7’ + 3) Cw,Fy (7’ + 4)

Figure 3.2: An example how factorizations F; and F» factorize the bi-infinite word w into
(F1> Fa, X)-differences (dotted rectangles), (F1 <F2, X)-differences (right-oblique hatched rect-
angles), (Fa > F1, X)-differences (gray rectangles) and (Fz < F1, X)-differences (left-oblique
hatched rectangles).

e Diff x (w, F1 > F») is the set of all (F} > Fy, X)-differences in w;
e Diff x (w, F1 < F3) is the set of all (F} < Fy, X)-differences in w;
° Diﬁx(’w, {Fl, F2}l>) = Diﬁx(’w, Fi> F2) U Diﬁx(’w, Fy> Fl).

For every position n € Fy(Z) there is an (F) > Fy, X)-difference ¢ and an
(F1 < Fy, X)-difference ¢’ in w at the position n. Moreover, tt' € X is a factor of
w defined by the factorization F5. Note also that

Diff x (w, Fy > F3) C Pref(X ") Nsuff(X) and
Diff x (w, Fy < F») C pref(X) N Suff(X™T).
Further, we define the following sets of occurrences:
e Occx(w, Fy > Fy,t) is the set of all occurrences of (Fj > Fy, X)-difference ¢
in w;
e Occx(w, F1 < Fy,t) is the set of all occurrences of (Fy < Fy, X)-difference ¢
in w.

Clearly, the sets Occx (w, F1>Fy, t) with t € Diff x (w, Fi>F») (resp. Occx (w, Fi<
Fy,t) with ¢t € Diff x(w, F1 < F3)) form a decomposition of the set of starting
positions Fi(Z). Note also that

OCCX(’U),F1 I>F2,t) + |t| C Fz(Z) and OCCX(U),Fl < Fg,t) — |t| C FQ(Z).

Observation 3.1. If there is a position n € F1(Z)NF2(Z) (hence, factorizations
F and F are not disjoint) then there is an occurrence of the (Fy > Fy, X)-dif-
ference (resp. of the (F} < Fy, X)-difference) 1 at the position n. Obviously, we
have

OCCX(’UJ, Fiv> Fs, 1) = OCCX(’LU, Fi < Fs, ].) = Fl(Z) N FQ(Z).

Hence, if F} and F» are disjoint then 1 ¢ Diff x (w, Fy > F»), Diff x (w, F1 < F3).
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w1 (7) Pos. ™

~N
< \ ///

~ O\ -
~' Z
/X\

/

|pos. —m — 1| < awR,F;‘(_J)\
(~ N
~ / tR ~

)

Figure 3.3: An illustration of correspondence between occurrences of the (Fy > Fz, X)-differ-
ence ¢ in w and the (Ff < FR, X®)-difference t* in w®. Note that m = n + |t| and, for example,

by (2.2), g, s (1) = (e, (1)*

Observation 3.2. If we take the mirror image of bi-infinite word w, then an
(Fy > Fy, X)-differences ¢t becomes the (FR a FR) XR)-difference R, i.e.,

Diff yr (wR, FR « FR) = (Diff x (w, Fy > F»))R.
It is easy to check, see Figure 3.3, that we have the following equality for the

sets of occurrences of the (Fj > Fy, X)-difference ¢ in w and the (FRR < FR, XR)-

difference tR in wk:

Occyr(wR, FR A FR R) = — Ocex (w, Fi > Fy,t) — 1.
Observation 3.3. The following claims about the numbers of X-differences

and their occurrences follow immediately:

e since Diff x (w, Fy > F») C Pref(X ™) Nsuff(X), there is only finitely many
of (F1 > Fy, X)-differences;

e there is infinitely many of occurrences of (F} > Fy, X )-differences;

e by pigeon hole principle the above claims imply that there is an (F1>F», X)-
difference with infinitely many of its occurrences.
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f2

i () /i (G+1) s ( +2) N (G +4)
Y g N

t t' t

A A

A
() \ cwnl+D)  own+2) J\  our(i+3)
(o5 7] f

Figure 3.4: An example of a finite t-pair (f1, f2), t € Diff x (w, F1>F2). There is an occurrence
of an (Fy > F», X)-difference t' between occurrences n1 and no of ¢, but since ni and ns are
consecutive, we have necessarily t' # t.

Let w be a bi-infinite word possessing X -factorizations F; and F3, and let
t € Diff x (w, F1 > F») be an (F} > Fp, X)-difference. We say that two occurrences
of t, ni,n2 € Occx(w, F1 > Fy,t), with n; < ng, are consecutive if the is no
occurrence n € Occx (w, Fy > Fy, t) such that ny < n < no.

Consider two consecutive occurrences n; < ng of an (Fj > Fy, X)-difference
t. Let the factor of the bi-infinite word w between the beginnings of occurrences
of ¢t at positions n; and no be a word f;, and similarly, the factor of w between
the ends of the occurrences of ¢ at positions n; and ne be a word fo. We will
call the pair of words (fi1, f2) a finite t-pair. An example of a finite ¢-pair is in
Figure 3.4.

Formally, a finite t-pair is a pair of words (f1, f2) such that

fl = WnyWny41 - - Wny—1,
fa= W+t Wny 4|t +1 - - - Wng+|t|—1>

where n; < ng are consecutive occurrences of an (Fj > Fy, X )-difference ¢. Since,
Occx (w, F1 > Fy,t) C Fi(Z) (resp. Occx(w, Fi > Fa,t) + |t| C F5(Z)) we have
that fi € X (resp. fo € XT). Notice also that for any finite t-pair (f1, f2) we
have that fit = tfs.

Further, assume that for an (Fj > Fy, X)-difference ¢, the set of occurrences
Occx (w, F1 > F»,t) has a maximum. Let it be n. Then, an infinite t-pair is a
pair of infinite words (f1, f2) such that

fl = WpWn+1---,

f2= W [t| Wt [¢[+1 - -+ -
Similarly, we have that fi, fo € XN and fi = tfo. Note also that for every
t € Diff x (w, F; > F») there is at most one infinite ¢-pair.

Finally, a t-pair is either a finite, or an infinite ¢-pair. In the same way one
can define t-pairs also for ¢ € Diff x (w, F1 < F3), see Figure 3.5.
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f2
tur()  [fowmG+1l)  awmG+2) O\ o1, (7 + 4)
g ‘
t t
j\ j\
0 / Qo r (i + 1) o (i + 2) @, (i + 3)

(pos. n1j f1

Figure 3.5: An example of a finite t-pair (f1, f2), t € Diffx (w, F1 < F»).

An essential tool for proving the defect theorem for bi-infinite words is the
Graph Lemma (Lemma 2.3). To use the Graph Lemma we have to be sure that
all words involved are non-empty, hence we would like to exclude the cases when
there are X-differences ¢ with ¢t = 1. By Observation 3.1, it is enough to assume
that the X-factorizations of an X-ambiguous bi-infinite word are disjoint. First,
let us deal with the case when the X-factorizations are not disjoint.

Lemma 3.1. Let X C X7 be a finite non-empty set and w an X -ambiguous
bi-infinite word possessing two different joint X -factorizations F1 and Fs. Then
rank.(X) < card(X).

Proof. The result follows by Lemma 2.3. Indeed, the parts of factorizations F}
and F3 to the right (respectively, to the left) from the place where they are joint
form an infinite relation

Qu, Fy (i)awyFl (Z + 1) T = O,y (j)O‘W,Fz (.7 + 1) s

over X (respectively,

R R

o, (i = DR i (1 = 2) -+ = 0w, (7 — DR o, (7~ 2)

over XR). Since the factorizations are different, at least one of these two relations
is non-trivial. O

In the case of disjoint X-factorizations we have the following crucial lemma:

Lemma 3.2. Let X C X be a finite non-empty set, w an X-ambiguous bi-
infinite word possessing two disjoint X -factorization Fy and Fy, and t an (Fy >
Fy, X)-difference (resp. an (Fy < Fy, X)-difference). If there exist two different
t-pairs (f1, f2) and (fi, f3) then rank.(X) < card(X).

The situation considered in Lemma 3.2, in the case when both t-pairs are
finite, is depicted in Figure 3.6.
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f2 f2

fi fi

Figure 3.6: An illustration of the situation considered in Lemma 3.2: ¢t € Occx (w, F1 > F3)
and f17f{7f27fé € X+~

fo f3
/
p2 T2 P2 !
Y
t | s ] tl - It | s ] t
A
n 1 n 7"1
fi fi

Figure 3.7: An illustration of the situation of the proof in the case |p1| > |tp2|.

Proof. We will consider only the case when ¢ € Diff x (w, F; > F>) and both t-
pairs (f1, f2) and (f1, f3) are finite. The reader can check that in all other cases
the proof is essentially the same (all what is needed is to change the notation in
some places). By Observation 3.1, ¢ is non-empty.

Let p; € X*, be the longest common prefix of f;, f/ over the alphabet X and
i, € X* their corresponding suffices, i.e., we have that f; = p;r;, f] = pir}, for
i = 1,2. If |p1| = |tp2| then the factorizations are not disjoint, a contradiction.
Therefore, we will consider only two cases: either |pi| > |tps], or |p1| < |tp2].

Case |p1| > |tpz|. Let py = tpas, for some s € ©T. The situation is depicted
in Figure 3.7. Since |ra| > |s| (resp. |rh] > |s]), both ro and ) must be non-
empty. Let words z,2’ € X be the first letters of rq,7) over the alphabet X,
i.e., ro = zqe and rh = 2'q)}, for some g2,q5 € X*. By definition of words ry
and 7}, necessarily z # z’. We have the following three equations over the set
X U{ts}Cxt:

/ / )
srit =12 = xq2, sTit =19 = T'qy, tp2s = p1 .

Since = # ', the dependency graph of X U {t,s} (see Section 2.3) has at least
3 edges which do not form a triangle. Consequently, the number of connected
components of the graph is at most card(X) — 1. By Lemma 2.3, we obtain

rank.(X) < rank.(X U{t,s}) < card(X)—1.
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f2 f3
p2 ) p2 TS
Y
t s el - ¢t [ s | t
A
N 1 n 7"’1
fi fi

Figure 3.8: An illustration of the situation of the proof in the case |p1| < |tp2|.

fo 5

!/
h rh

f1

Figure 3.9: An illustration of the situation of the proof in the case when |p1| < |tp2| and
TEL =T = 1.

Case |p1| < |tp2|. Let p1s = tpo, for some s € . The situation is depicted in
Figure 3.8. If both r; and 7] are non-empty, we obtain, as in the previous case,
the following equations over X U {t,s} C XT:

sro = rit = xqit, sry =rit = a'q)t, tp2 = p18,

where r1 = zq; and r} = 2'¢] with z,y € X and ¢1,¢] € X*. By Lemma 2.3,
we obtain a defect effect:

rank.(X) < rank.(X U{t,s}) < card(X) —1.

Hence, assume that, for instance, 71 = 1, implying ¢ = sry. This contradicts
the definition of (Fj > F, X)-differences, unless also r = 1. We have that
p1 = fi1, p2 = fo and s = t, see Figure 3.9. Let z € X be the last letter
over the alphabet X of fy and y € X the first letter over X of 7] (note that
r] # 1, otherwise the t-pairs (fi, f2) and (ff, f3) are the same). Since (f1, f2)
is a t-pair and ¢ is an (Fj > Fy, X)-difference, we have that |¢| < |z|. Hence,
there is an occurrence of ¢ at the starting position of y, c¢f. Figure 3.9, which is
a contradiction with the fact that (f{, f3) is a t-pair.

O
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Remark 3.1. Note that the inequality
rank.(X) < rank.(X U {t,s}),

used in the proof above, does not hold in general for other types of rank. Indeed,
consider any prefix code X over the alphabet {a,b}. If we take t = a and s = b
then both the free and the prefix ranks of the set X U{t, s} are equal to 2, while
the free and prefix ranks of the set X are equal to card(X).

As a consequence of the observations and the lemmas above we obtain the
defect theorem for bi-infinite words.

Theorem 3.3. Let X C X1 be a finite non-empty set and w an X -ambiguous
bi-infinite word possessing two different X -factorizations F1 and Fy. The com-
binatorial rank of X is less than card(X), or both the word w and the X -fac-
torizations F1 and Fy are periodic. Moreover, if the combinatorial rank of X
equals to card(X) then the number of X -ambiguous bi-infinite words is at most
size(X) — card(X), in particular, it is finite.

Proof. If 7 and F, are not disjoint the result follows by Lemma 3.1. Let ¢t be
any of the (F1 > Fy, X)-differences with infinitely many occurrences (there is at
least one, cf. Observation 3.3). This means that the set Occx(w, F1 > Fy, t) is
not bounded.

To prove that the bi-infinite word w is periodic we need to divide it com-
pletely into t-pairs. This can be done, c¢f. the definition of t-pairs, only if the
set Occx(w, Fy > Fy,t) is not bounded from the left, i.e., it does not have a
minimum. Without lost of generality we can assume that. Indeed, if the set
Occx (w, F1>F»,t) has a minimum then, since it is not bounded, it is not bounded
from the right. In such a case the set Occyr(wR, FR < FR tR) is not bounded
from the left, hence we can consider the mirror image of w instead.

Therefore, assume that the bi-infinite word w is entirely divided into (finite
and possibly one infinite) ¢-pairs. If any two of these t-pairs are not the same
then, by Lemma 3.2, we have that rank.(X) < card(X).

Now, assume that rank.(X) = card(X). By Lemma 3.2, there is a unique ¢-
pair (f}, f), and therefore, the bi-infinite word, as well as both X-factorizations
Fy and F3, are periodic with

t\Z t\Z

w = (f1)" = (f2)"
Further, since every X-ambiguous bi-infinite word w is periodic, every (Fj >
F,, X)-difference t (resp. every (Fy > Fi, X)-difference ¢) has infinitely many
occurrences in w, i.e., as above, there is the unique ¢-pair, which uniquely spec-

ifies the whole bi-infinite word w. Therefore, any two different X-ambiguous
bi-infinite words w and w’ do not contain any common X-difference:

Diff x (w, { F1, F2}>) N Diﬁ'X(w', {F1, Fa}>) = 0.
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By Observation 3.3, Diff x (w, {Fy, Fo}>) C Pref(X ™) Nsuff(X), hence there
is at most

card(Pref(X ™) Nsuff(X)) < card(suff(X)) < size(X) — card(X)
X-ambiguous bi-infinite words. O

We will need the following definition to state a corollary of Theorem 3.3 which
we will use later. Consider a periodic bi-infinite word w and a set X C X* such
that

w=(z122... xk)Z

with z1,...,2x € X. Let [z122...7%]% denote the set of all X-factorizations F
of w such that the sequence of factors of w by F' is

ey L1y T2y oo g Ly L1y L2y e oo gy Lhgyoer o

Z

., are periodic and pairwise shift-

Obviously, the factorizations in [z1z2. .. zk]
equivalent.

Corollary 3.4. Let X C X7 be a finite non-empty set such that rank.(X) =
card(X) and w an X -ambiguous bi-infinite word possessing two different X -fac-
torizations F1 and Fy. For every t-pair (f1, fo) we have

w=fl=f, FRelfil, ad Felfli.

Theorem 3.3 deserves a few comments.
First, the possibility that the two factorizations are both periodic cannot be
ruled out, as the following example shows:

Example 3.2. Let X = {ab,bc,ca}. Then we have rank.(X) = ranks(X) =
3 = card(X). Note also that the bi-infinite word (abc)? has two disjoint, but
shift-equivalent, X-factorizations:

Second, as the following example shows, the combinatorial rank cannot be
replaced by the free rank, for instance. This latter remark is quite interesting
since in all previous defect theorems, see [ChK], either of our notions of the
rank, or even some others, can be used to witness the defect effect.

Example 3.3. Let X = {a,bab, baab}. The word (baa)? has two different X-
factorizations, namely the ones depicted as
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They are clearly shift-equivalent. On the other hand the word
w = ...bababaabaab - - - = N (ba)b(aab)"

also has two different X -factorizations, which, however, are not shift-equivalent

In the both cases above the two factorizations are disjoint. Clearly, rank.(X) =
2, since X C {a,b}", but for no word s the inclusion X C s* holds. On the other
hand, since X is a prefix code we conclude that rank,(X) = ranke(X) = 3.

Finally, the upper bound “size(X) — card(X)” for the number of X-ambig-
uous bi-infinite words in the case that rank.(X) = card(X) can be, most likely,
essentially improved. In fact, we conjecture that the upper bound is “card(X)”.
In the next section we will show that this conjecture is true if the cardinality
of the set X is 2. The following example shows that we cannot expect a better
upper bound.

Example 3.4. For arbitrary integer n > 1 let X = {aja1,az2a2,...,ana,} be a
set of words over the alphabet {ay,...,a,}. Clearly, rank.(X) = card(X) and
each of the periodic bi-infinite words aZ, ..., aZ has two disjoint shift-equivalent

factorizations, hence card(Amb(X)) > n = card(X).

The next example shows that the estimation (cf. the end of proof of Theorem 3.3)
card(Amb(X)) < card(Pref(X*) N suff(X))

is not suitable for improving the upper bound.

Example 3.5. Let n > 1 be an integer and let X = {(ab)", (ba)™}. We have
card(pref(X) Nsuff (X)) = 4n — 2 = size(X) — card(X),

with the set X being a prefix code, and so rank.(X) = rank,(X) = ranks(X) =
card(X). However, similarly as in Example 2.4, there exists only one X-ambigu-
ous bi-infinite word w = (ab)Z. In fact, it possesses 2n disjoint X-factorizations.
For instance, if n = 2, then the bi-infinite word w = (ab)? has the following 4
factorizations:
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Let us number the above factorizations Fi, ..., Fy from up to down. Then

Diﬁx(’w, {Fl, F2}1>) = {CL, bab},
Diﬁx(’w, {Fl, F3}l>) = {b, aba},
Diff x (w, { F2, F3}>) = {ab}, and
DiffX(w, {Fl, F4}l>) = {ba}

Hence, the sets of X-differences in w are disjoint, although they relate to the
same bi-infinite word w. This property is not considered in the proof of Theo-
rem 3.3.

However, we can refine the analysis of the last part of the proof of Theo-
rem 3.3 to get a slightly better bound.

Theorem 3.5. Let X C &% be a finite non-empty set. If rank.(X) = card(X)
then the number of X -ambiguous bi-infinite words is at most %size(X ).

Proof. The main idea of the proof is based on the fact that the sets of X-dif-
ferences Diff x (w, { F1, F2}>) are singletons only in a special case, which cannot
appear more often than card(X) times.

Indeed, let k£ be the number of X-ambiguous bi-infinite words for which
the set Diff x (w, {F1, F2}>) is a singleton (here F; and F, are any two different
X-factorizations of the bi-infinite word w). Then

card(Pref(X ™) Nsuff(X)) — k
2
(size(X) — card(X)).

+

card(Amb(X)) <

IA
ICTIESIES

_l_

N | =
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Now, if we prove that k < card
and we are done.

Let us consider an X-ambiguous bi-infinite word w possessing X -factoriza-
tions Fy and Fj such that Diff x (w, {F1, F2}>) = {t} is a singleton. Assume
that there is an occurrence of (F} > Fy, X)-difference ¢ in w at a position n. Let
i,j be integers such that Fi(i) = n and Fy(j) = n + [t|. If |aw,m (3)] < [t], see
Figure 3.10, then there is an occurrence of an (Fy > F», X)-difference s at the
position m = n + |aw, F (¢)|. But this is impossible since s is a proper suffix of ¢
and Diff x (w, F1 > F») is a singleton.

X), we have that card(Amb(X)) < § size(X),
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()

Figure 3.10: The case |aw,r, (i)| < |¢| of the proof of Theorem 3.5.

iy (G — 1)

t S

()

Figure 3.11: The case |auw,r, (i)| > || of the proof of Theorem 3.5.

Hence, assume that |, (¢)| > |t|. Then, the word s defined by the equation
Qy, R, (i) = ts is an (Fp>Fp, X)-difference with an occurrence in w at the position
[ = n +|t|, see Figure 3.11. Therefore, we have that s =t and

tt = Oéw’Fl(i) € X.

Clearly, there is at most card(X) words ¢ which satisfy the condition tt € X,
and hence also at most card(X) sets Diff x (w, { F1, F»}>) which are singletons.
O
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3.2 The two-element case

The restriction of Theorem 3.3 to two-element sets yields the following conse-
quence.

Corollary 3.6. Consider a binary set X = {a,8} C It. Let w be an X-
ambiguous bi-infinite word possessing two different X -factorizations Fy and F>.
Then either the words a and 5 commute, or the bi-infinite word w and both the
X -factorizations F and F» are periodic.

In this section we will refine the result above: we will characterize all binary
sets X allowing the existence of an X-ambiguous bi-infinite word. We will also
prove, as conjectured in general in Section 3.1, that for any binary code X there
are at most card(X) = 2 X-ambiguous bi-infinite words, and at most one X-
ambiguous bi-infinite word such that its X-factorizations contain together both
elements of X. Actually, in the second case, it can happen that the both X-
factorizations consist of single elements of X, but then, necessarily, these two
elements are different.

3.2.1 The defect theorem

Let X be a binary set containing non-empty words and let w be an X-ambiguous
bi-infinite word. We will distinguish two cases. Either, the two factorizations of
the X-ambiguous bi-infinite word w consist of only one element of X, or they
they contain together both elements of X. In the first case, the situation is
obvious: As an immediate consequence of Lemma 2.4 we have.

Claim 3.7. Consider a unary set Y = {a} with « € . Let w be an Y-
ambiguous bi-infinite word possessing two different Y -factorizations F1 and Fb.

Then « is not primitive and the factorizations Fy, F» € [a]é are shift-equivalent.

The other case is more interesting. In this case we will say that an X-
ambiguous bi-infinite word is proper. Let us start with an auxiliary lemma and
its two corollaries.

Lemma 3.8. Let p and q be non-empty words such that pq is primitive and let
n > 1 be an integer. If the pair (pq,qp) matches the word p(gp)™ at a position
(u,v) then one of the following conditions holds:
(i) u=p and v = (gp)";
(ii) n =1 and there are a primitive word s and integers i,j > 1 such that
J +3j

u = ps’, v=2¢p and qg=s"1;

(iii) u = (pg)™ and v = p.
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Figure 3.12: The all possibilities where the pair (pg, gp) can match the word p(gp)™.

Similarly, if the pair (gp, pq) matches the word p(gp)™ at a position (u,v) then
one of the following conditions holds:

(i) uw=1 and v = p(qp)";
(ii) n =1 and |p| < |u| < |pq|;

(1ii) u = p(gp)"” and v = 1.

Proof. We will prove only the first part of the claim, since the second one can be
proved in the same way. Assume that the pair (pg, ¢p) matches the word p(gp)™
at a position (u,v). If (pg, gp) matches the beginning (i.e., u = 1) or the end of
p(gp)™ (i.e., v = 1) then, clearly, pq = gp, a contradiction with the primitiveness
of pq. Otherwise, there are 5 possibilities, see Figure 3.12:

1) u=pand v = (gp)"

(
(2) u = (pq)* and v = p(gp)"~* for an integer 1 < k < n;

(3) the pair matches the first p, i.e., u is a proper non-empty prefix of p;
(4)

4) the pair matches the first g, i.e., © = pt; where ¢; is a proper non-empty

prefix of ¢;

(5) the pair matches anywhere after the first pg, but not at the end of any
(pg)¥, with 1 <k <n, d.e., [u] > |pg| and u ¢ (pg)*.

Let us analyze all the cases. The case (1) is the case () of the lemma. In the
case (2), if k < n then gp and p(gp)"~* are left comparable, and thus pg = gp,
a contradiction. In the case (2) with £ = n we have the case (i) of the lemma.
In the case (3) the word gp of the pair (pg,gp) is an inner factor of the prefix
pgp of p(gp)". Hence, by Lemma 2.4, we have that gp is non-primitive. By
Corollary 2.9, this is a contradiction with the primitiveness of pg. Similarly, in
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Figure 3.13: The situation in the case (4) with n = 1.

the case (5) the word pq of the pair (pg, gp) is an inner factor of a factor pgp of
p(gp)™, a contradiction.

Finally, in the case (4), if n > 2, the word g¢p of the pair (pqg, gp) is an inner
factor of the factor gpg of p(gp)™ starting after the first p, again a contradiction.
Hence, we have that n = 1. The situation is depicted in Figure 3.13. It follows,
by Lemma 2.4, that ¢ is non-primitive, and that there are a primitive word s
and integers i, j > 1 such that u; = s7, us = s* and ¢ = s**7. This is evidently,
the case (ii) of the lemma. O

Lemma 3.8 has two straightforward corollaries.

Corollary 3.9. Let p and q be non-empty words such that pq is primitive and
Ip| = |q| and let n > 1 be an integer. Then the pair (pq, gp) does not match the
word p(qp)™ at any position.

Proof. Assume that (pg, gp) matches p(gp)™ at a position (u,v). By Lemma 3.8,
we have to consider 3 cases.

Case (i). We have that u = p and pq are right comparable. Since |p| = |g|, this
implies p = ¢, a contradiction with the primitiveness of pq.

Case (7). Since u = ps® and pg = ps'tJ are right comparable, we have that
also p and ps’ are right comparable. Since |s7| < |q| = |p|, s/ is a suffix of p.
Similarly, we have that s’ is a prefix of p. By the length argument, p = s*s’ = g,
a contradiction.

Case (74). The same as the case (7). O

Corollary 3.10. Let p and q be non-empty words such that pq is primitive and
let n > 1 be an integer. Then p(qp)™ and q(pq)™ are not conjugates.

Proof. Assume that p(gp)™ and ¢(pg)™ are conjugates. Then necessarily
* |p|=qg|; and

e p(gp)™ is a factor of q(pq)"q(pq)™, and hence, the pair (pg, gp) matches the
word p(gp)™.

By Corollary 3.9, this is a contradiction. O
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Figure 3.14: An illustration of a finite -pair (f1, f2). In the picture fi € X% (resp. fo € X ™)
is a product of factors of w by the factorization Fy (resp. by the factorization F3).

Now we are ready to prove the main result of this section.

Theorem 3.11. Consider a binary set X = {a, 8} with a,3 € +. Let w be
a proper X -ambiguous bi-infinite word possessing two different X -factorizations
Fy, and Fy. Then at least one of the following conditions is satisfied:

(i) a and B commute; or

(i) the primitive roots of a and [ are conjugates, w = a? = B%, and
Fy € [a)% and F; € [B|Z, or vice versa; or

(iii) there exists an integer n > 1 such that either w = (a8™)% and Fy, F €
[@B™% with o primitive, or w = (Ba™)? and Fi,Fy € [Ba™% with B
primitive.

Observation 3.4. Note that in the case (%), the factorizations F; and F are
necessarily shift-equivalent. Hence, by Lemma 2.4, in the case w = (a™)? (resp.
w = (Ba™)%), a™ (resp. fa™) is non-primitive.

Proof. We can assume that a and 8 do not commute, otherwise we are in the case
(i). In particular, by Lemma 3.1, the X-factorizations F; and F» are necessarily
disjoint. Our goal is to find a finite ¢-pair (f1, f2), see Figure 3.14. Then, by
Corollary 3.4, we have an explicit characterization of the bi-infinite word w and
its X-factorizations F; and Fj.

It is enough to prove the theorem in the case when o and 3 are both primitive.
Indeed, in all other cases we replace the set X by the set X = {p(a), p(8)},
and the X-factorizations F; and Fy by X-factorizations Fy and F; defined in a
natural way such that Fy(Z) C Fi(Z) and F»(Z) C F3(Z), and the claim will
follow. If X-factorizations Fy and Fy will become joint, we have the case (i). In
the case (i) with w = (p(a)p(B)™)? we have necessarily that p(a) = a, i.e., a
is primitive. Similarly, in the case (iii) with w = (p(8)p(a)™)%, B is primitive.

Consider the factors of w defined by the X-factorization F;. We have 3
possibilities: either Fact(w, F1) = {a}, or Fact(w, F1) = {8}, or Fact(w, F1) =
{a, B}. In the first case, if a € Fact(w, F2), see Figure 3.15, we have a contradic-
tion with the primitiveness of a, by Lemma 2.4. Therefore, Fact(w, F3) = {8},
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Figure 3.15: An illustration of the situation when Fy € [a]%, and F» produces « as a factor
of w.

B0 « 2O) 5
T 1 | 17 U |
@ B @ B

Figure 3.16: All possible coverings of the position Fi(k + 1) by a factor a, (1)

and so, F} € [a]% and F» € [B]%. By Lemma 2.8, a and 3 are conjugates: the
case (ii). A similar argument can be applied in the second case.

Finally, consider the case Fact(w, F1) = {«, 8}. Since, by Corollary 3.6, F} is
periodic, there is an integer k € Z such that oy, p (k) = o and oy, (K+1) = 5.
Without loss of generality we can assume that || < |3]. In Figure 3.16 we can
see all the possibilities, (a), (b) and (c), how a factor ay, g, (1) of w defined by Fs,
for some integer [ € Z, covers the position Fy(k + 1), i.e., Fo(l) < Fi(k+1) <

F(1+1).

Case (a). If we forget about the relation between the lengths of o and 3, this
case is symmetric to the case (b). Hence, it is enough to prove the result in the
case (b) without using the assumption about the lengths.

Case (b). We have that ay, g, (l) = 5. If the factor ay, g, (I + 1) is also § then,

[v1 v |

Figure 3.17: The situation in the case (b). Note that zr = auw,r, (k+2) and 21 = qu,m, ([—1).
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Figure 3.18: The situation in the case (b) when the sequences of 3’s exceed a’s on both
sides.

by Lemma 2.4, (8 is not primitive, a contradiction. Hence, we have the situation
shown in Figure 3.17. Now, if zg = a or 21, = « then v; = vy and we have a
vi-pair (af, fa). By Corollary 3.4, we are in the case (i7). Thus assume that
zZr = 21, = 0.

We can repeat the above consideration taking a., r, (k+3) as zr and o, m, (I—
2) as zr,. Again, if zg or zp, is equal to «, we arrive into the case (%ii) with
w = (aB?)%. Otherwise, we will continue the same process until, either we find
a t-pair (af", ") for some integer n > 1, or the sequences of 3’s exceed a’s,
i.e., ay F, (k) on the left side and g, (I + 1) on the right side. Note that,
by the length argument, this will happen on both sides at the same time. The
situation in the later case is depicted in Figure 3.18.

Now again, if z;, = 8 or zg = 8 then, since |v1| = |vz|, we have that v] = va,
and hence we are again in the case (i) with w = (a8")%. Thus assume that
z1, = zr = a. We have 3 = vst = tvy, which, by Lemma 2.10, yields

v3 = (pg)™, wa=(gp)™, t=p(gp)™, and B =p(gp)™ ™,
for some words p and ¢ such that pg is primitive and some integers m; > 1 and
mg > 0. We have the following two equations

m1+m2]n72( mi

. (k) = a = 516" %v3 = s1[p(qp) pg)™ and

3.1
o, (1 +1) = a = vaB" 252 = (gp)™ [p(gp)™ ™2 s, . 3.1

We observe that a ends with pg and starts with gp. This means that the
pair of words (pg, gp) matches the word a, r, (k +n) = 8 = p(gp)™1™2 at the
position Fa(l + 2), cf. the bigger black point in Figure 3.18. By Lemma 3.8, we
have 3 possibilities:

Case s = p. Note that, by the length argument, |s1| = |s2|. Thus, since s; is a
suffix of 8 = p(gp)™*t™2, we have that s; = p. Equations (3.1) yield that p and
q commute, a contradiction with the primitiveness of pq.
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Figure 3.19: The situation in the case (c).

Case sy = ps' and q = s'17 for some word s and integers i, j > 1. As above, we
have that s; = s'p. Since i < i + j, Equations (3.1) yield a non-trivial equation
over the set {p, s}, again a contradiction.

Case s2 = (pg)™ ™2 and vy = p. We have that s; = (gp)™ ™™2. To avoid the
contradiction above, we have to assume that ms = 0. Then, Equations (3.1)
will become identical. Note that we have a, 8 € {p,q}*. Hence the following
infinite equation, again cf. Figure 3.18,

veaw. (K +n+ 1o r(E+n+2)- - = aawr(l+3)owr(l+4)... (3.2)

is an equation over the set {p,q}. Since vo = p and, by Equations (3.1), a =
(gp)™ [p(qp)™]"2(pq)™, Equation (3.2) is non-trivial. So again, we have a
contradiction.

We concluded that the case when zg = a cannot happen.

Case (c). Using the same considerations, as in the previous case, either we find
a t-pair (a"B3,Ba™): the case (i) with w = (Ba™)%, for some integer n > 1,
or we come to the situation depicted in Figure 3.19. In the second case we can
immediately write the following equations

v1v3 = .y (B +1—n) =a=ayr(l+n) =v4v2, and (3.3)
030" B = v3a F (K +2—n) ... o p (k+1) (3.4)
=i (1) .. ol +n— 1wy = Ba™ oy, '
for some words vy, v2,v3 and vg such that |vi| = |vs| and |vs| = |v4]|, ¢f. Fig-

ure 3.19. We will distinguish two possibilities:

Case zr = a. As it is shown in Figure 3.19, vsv; is a prefix of . p,(I) = 8 =
ay,F, (k + 2). Hence, the pair (v3,v1) matches the word ay, g, (I + n)ay, (1 +
n+ 1) = aa = vivsvvs. Since a = vyv3 is primitive, the match must be at the
position (vjvs,vivs). Then, necessarily, v = v3, say equal to p, and v; = vy,
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Figure 3.20: The situation in the case (c) with zr = a.
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Figure 3.21: The situation in the case (c) with zr = 3.

say equal to g, c¢f. Figure 3.20. Moreover, we have that |p| = |vs| = |v4| = |q|-
Consequently, Equation (3.4) implies that the words vza™ ! = p(gp)” ! and

a" vy = q(pg)"~! are conjugates. By Corollary 3.10, this is a contradiction.

Case zr = B. The situation is depicted in Figure 3.21. By the length argument,
it is obvious that |t| = |va| = |vi|. Hence, since v; is a suffix of . p, (I — 1) =
B = o, (I +n+ 1), ¢f. Figure 3.19, we have that ¢ = vy. Similarly, since vovy
(resp. wat) is a suffix of ay p (E+ 1) = B (resp. awr (I +n+ 1) = B) of the
length |o|, necessarily, vovs = vat = vqv1. We obtain the following system of
equations with unknowns Y = {a, 8, v1,v2,v3,v4}:

V94 = V401 (by the argument above),
Q= U1U3 = V4V (by Equation (3.3)),
v3a™ 1B = Ba" Lty (by Equation (3.4)),
v2ff = v, (I + 1+ 1)
= ay,r (k+2)v1 = Py (cf. Figure 3.21).

The dependency graph associated with this system is connected, and hence all
unknowns commute, in particular a and [, a contradiction. This completes the
proof of the theorem. O
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3.2.2 Comments on Theorem 3.11

Theorem 3.11 deserves a few comments.
The theorem is related to the main result of [LRLR]:

Theorem 3.12. [LRLR] Let X = {z,y} C A" be a code. If w € X' such
that |w| > ||+ 2|y| admits an X -interpretation disjoint from w then one of the
following conditions is satisfied:

(1) = and y are powers of two conjugates, and w € T Uy™;

(2) x and y are not powers of two conjugates, and there is a non-primitive

word z € x*y U xy* such that w is a factor of a word in z™.

Indeed, Theorem 3.11 can be deduced by the theorem above and by Theo-
rem 3.15 which was stated and partially proved in [LeS|, c¢f. Subsection 3.2.3
which contains the full proof of this theorem. However, our proof of Theo-
rem 3.11 is self-contained and essentially shorter, and moreover formulated di-
rectly to yield a defect-type of theorem.

The number of different X-factorizations of an X-ambiguous bi-infinite word
is very different in the cases (i)—(7ii) of the theorem. In the case (i) there exist
non-denumerably many such X-factorizations, in the case (i) there are finitely
many different X-factorizations, and if we consider all shift-equivalent X-fac-
torizations as the same, then there are exactly two of them. Finally, in the
case (4ii) there are also finitely many different X-factorizations, which are all
shift-equivalent. This actually means that in the case (%ii) no bi-infinite word
can be expressed in two different ways as a product of words from X. Hence,
indeed, Theorem 3.11 shows a defect effect of a two-element set for bi-infinite
factorizations.

In Theorem 3.11 we showed that if the words of X do not commute and
their primitive roots are not conjugates then only the case (i) is possible. But
if they do not commute and are conjugates then the theorem allows either the
case (i) or the case (7). In the sequel we will prove that in this situation only
the case (7i) is possible.

Lemma 3.13. If a and B are different conjugates then all elements of the set
aBt Ua™B are primitive.

Proof. Since @ and S are conjugates, they are of the same length. Hence, they
do not commute, otherwise they would be equal.

Assume, for instance, that 8™ for an n > 1 is not primitive. We have that
af™ = t' for a primitive word ¢ and an integer ¢ > 2. If n = 1 and i is even
then, immediately, @« = §, which is a contradiction. If n = 1 and 7 is odd, say
1 = 2m—+ 1, we have that a = tp and 8 = qt™, where t = pq. Since « and S are
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conjugates, by Corollary 3.10, we have a contradiction with the primitiveness of
t =pgq.

It remains to consider the case n > 2. By Lemma 2.6, |t| > (n — 1)|5|. On
the other hand, i|t| = |a|+n|B| = (n+ 1)|8] which implies that n+1 > i(n—1).
Since n,i > 2, this yields n = i = 2. We have a8% = t2. Since |a| = |3], it follows
that there are words p and ¢ such that |p| = |q|, 8 = pq and t = ap = ¢ = qpq.
Hence, p = g and a = 3, a contradiction. O

A slightly weaker variant of Lemma 3.13 was proved in [LeS]. It states,
under the additional assumption that o and 3 are primitive, that all the words
in af* U a*f are primitive. The lemma yields the following improvement of
Theorem 3.11.

Theorem 3.14. Consider a binary set X = {a, 3} with a, 3 € . Let w be
a proper X -ambiguous bi-infinite word possessing two different X -factorizations
Fy and F5. Then at exactly one of the following conditions is satisfied:

(i) a and B commute; or

(ii) the primitive roots of a and B are different conjugates, w = o’ = B,
and Fy € [a)% and Fy € [B)%, or vice versa; or

w w?’

(11i) o and [ do not commute and there exists an integer n > 1 such that
either w = (af™)? and F1, F> € [af™% with o primitive, or w = (Ba™)?
and Fy, Fy € [fa™% with B primitive.

Proof. If p(a) # p(B) then a and S do not commute, hence the cases (i) and
(7i) are exclusive. Obviously, the cases (i) and (%ii) do so. Thus, it suffices to
show that the conditions

e the primitive roots of o and § are different conjugates;
e the case (iii)

cannot happen at the same time. Assume to the contrary that p(«) and p(53) are
conjugates and, for instance, w = (a")% with o = p(«) primitive and Fy, F, €
[@B™%. Let k be an integer such that 8 = p(8)*. Then, by Observation 3.4,
aB™ = p(a)p(B)™ is non-primitive. By Lemma 3.13, it follows that p(a) and
p(B) are equal, a contradiction. O

Note that the case (i) characterize the situation when the primitive roots of
a and [ are equal, the case (7i) the situation when they are different conjugates,
and finally, the case (iii) the situation when they are not even conjugates.
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3.2.3 The maximal number of X-ambiguous bi-infinite words

Let X = {a,8} C T be a binary set. In Theorem 3.3 we have proved that
if the combinatorial rank of the set X equals to card(X) then the number of
X-ambiguous bi-infinite words is finite. In this section we will prove that in the
two-element case, for each set X, there are at most two X-ambiguous bi-infinite
words, and at most one proper X-ambiguous bi-infinite word.

In the case (i) when rank.(X) = 1, since the both elements of X are powers
of a common word t, the only possible X-ambiguous bi-infinite word is t%. The
situation is also trivial in the case (ii) when the primitive roots of elements of
X are conjugates: by Theorem 3.14, the only possible X-ambiguous bi-infinite
word is w = o = Z.

Finally, consider the case (i) when the primitive roots of a and [ are
not conjugates. By Claim 3.7, there are at most two non-proper X-ambiguous
bi-infinite words: o with o non-primitive and $% with S non-primitive. By
Theorem 3.11, any proper X-ambiguous bi-infinite word is of the form (a3")Z,
with o primitive, or (a”$)%, with # primitive. Moreover, by Observation 3.4,
the word a8" or the word o™ is non-primitive, respectively. Hence, the number
of X-ambiguous (resp. proper X-ambiguous) bi-infinite words is equal to the
number of non-primitive elements of the set a8* U a*f (resp. a8t Ua™p).

As we stated in the previous subsection, c¢f. Lemma 3.13, if @ and S are
different conjugates then all the words in the set a3T Ua™ 3 are primitive. Now,
we are interested in a similar result in the general case assuming only that «
and 8 do not commute. Such a result was stated in [LeS]| as follows:

Theorem 3.15. [LeS] Let a and B be two different primitive words. Then at
most one word in the set afT Uat B is non-primitive.

There is an outline of the proof of the claim in the end of [LeS| which refers
to the proof of another theorem in the paper. Here, we will give a full proof in
the form of the following two lemmas.

Lemma 3.16. Let o and B be two different primitive words. Then for integers
any n,m > 0 such that n # m, at most one of the words aff™ and af™ is
non-primitive.

Proof. Assume on the contrary that both 8" and 8™ are non-primitive with
m < n. If m = 0 the claim is obvious, so assume that m > 1, implying n > 2.

We have

af" =s' : ,
: and therefore also s' =¢/g" ™, (3.5)
af™ =t

for some primitive words s and t and integers 4,5 > 2. Now if n —m > 2 then,
by Lemma 2.7, s, t and 8 are powers of a common word, and so are « and S,
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which is a contradiction. So we can assume m = n — 1, and thus equation (3.5)
simplifies to s* = t7 .
By Lemma 2.6, we have

sl > (n=DIB=[6],  (3.6)
and similarly, by (3.5), ls| > (7 — 1)|¢], (3.7)
implying lt|+ 18] > (i —1)|s]|. (3.8)

Inequalities (3.7) and (3.8) implies

(3.8) . 3.7 )
L[+ 18] > (@ —Dls| > (i-1)(F -1,
and hence, we obtain

161> (0 =1)(G = 1) = 1].]¢],
and similarly, by (3.6) and (3.8), lt| > [(4 —1)(n—1) —1].|5].

Now, if |t| > |B|, the expression (¢ — 1)(j — 1) — 1 is necessarily equal to 0,
implying ¢ = 7 = 2. Similarly, if |¢| < |3|, we have that ¢ = n = 2. Let us
consider these two case separately.

Case |t| > |B] and i = j = 2. The equation af" = t? implies that t = z3 for
some r # 1. Thus equation (3.5) yields to s> = t?8 = zBz3, which implies
that |B| is an even integer, |z3| < |s| and 3|B| < |s|. Hence, we can write
s = zfy = 2P0 for some y,z # 1, where |y| = |B2] = ‘;ﬂ, B = p182 and
|z| = |z|. We can divide this equation into two parts: z = z and By = B2/,
where the second one, by Lemma 2.4, contradicts the primitiveness of .

Case |t| < |B| and i = n = 2. The inequality (3.6) simplifies to |s| > [3] > [t].
By the equations o8 = t/ and af? = s®> we can write 8 = zt and s = yt
for some x,y # 1. Hence, Equation (3.5) yields ytyt = /3. We have that
lyt| = |s| = || + |B] — |s| < |t/], so that we can write ytz =/, z # 1. Now, by
Lemma 2.4, either ¢ is not primitive, or ¢ matches with some ¢ in ¢/ in the above
equation, but then we have y = t*, and hence also s = t**1, so that the words ¢
and s commute.

In both cases we arrive into a contradiction. O

Lemma 3.17. Let o and (B be two different primitive words. Then for any
integers n,m > 0 such that (n,m) # (1,1), at most one of the words af"™ and
a™pB is non-primitive.

Proof. The cases m = 0 and n = 0 are trivial. The case m = 1 is a special
case of Lemma 3.16. In the case n = 1 we can exchange « with 3, while
considering their mirror images, and we are again in the case m = 1. We will



42 CHAPTER 3. DEFECT THEOREMS FOR BI-INFINITE WORDS

n>2
——
a a B B
o |uylusg o |u ‘u2 U1 ‘ug
t t
s s

Figure 3.22: The situation in the case o’8 = t* and a8™ = s* with n > 2.

use this argument several times later on, and we will refer to it as to the reverse
argument. Consider n,m > 2 and assume on the contrary that a8"™ = s* and
a™pB = tJ for some integers i, j > 2 and primitive words s and ¢t. By Lemma 2.6,

we have

s| > =18l =B8],  [t|>(m—1)|a] > |af. (3.9)

Hence . . .
o] = ils| —nlf| > (in—i ~ |4, 510
8] = jlt| = mla| > (jm — j —m)|a|,

which implies that

(i—-D(n-1)-1]- [ -1(m—-1)—1] <1.

Therefore, we have that either ¢ = n = 2, or j = m = 2. By the reverse
argument, the first case is equivalent to the second one. Hence, let us consider
only the case j = m = 2. If |t| < |3 then, by (3.9), we obtain

(3.9) (3.9)
la] <t <[B] < |s].

Together with Inequalities (3.10) we have that (i —1)(n—1)—1 < 1 which implies
that also ¢ = n = 2. Now, by the reverse argument: the inequality |s| > |
transforms to the inequality |¢| > |3|. Therefore, without loss of generality, we
can assume that |t| > |3]|. We have the situation depicted in Figure 3.22, where
B = ujug with |u1| = |us| = 3|8| and & = a'us = usc.

Since uga’ = a’uy, Lemma 2.10 gives us

uz = (pg)"
. a = p(gp)**!
u1 = (gqp) and therefore N
/ ! B = (ap)"(pq)
o' = p(gp)

where £ > 1, [ > 0 and pq is primitive. We may assume p,q # 1. Now
considering the last occurrence of s in Figure 3.22, by (3.9), we can write s =
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s'8 = s'(qp)*(pq)* for some word s’. We also have

. (3.9)
|s| = la +n|B| = (i = 1)|s| < |a| +n|B8] = [s] < |a|+ 8],

which yields

s'(qp)*(pg)*r = sr = af = p(qp)**
——

v

pg)*,

for some r # 1. The first occurrence of ¢gp in s after s’ must match with gp in
w, otherwise gp is not primitive. But then, since r # 1, the first occurrence of
pq in s after s’ (qp)k matches with some ¢p in v, so we have that pg = ¢p, which
is again a contradiction with the primitiveness of pq. O

Obviously, Lemmas 3.16 and 3.17 imply Theorem 3.15. Nevertheless, Theo-
rem 3.15 is not directly applicable to our problem, since we cannot assume that «
and (3 are primitive. As an immediate corollary of Lemma 2.7 and Theorem 3.15
we have

Corollary 3.18. Let o and 8 be two different primitive words. Then at most
one word in the set a™ BT is non-primitive.

This yields

Corollary 3.19. Let a and B be two non-commuting words. Then
e at most 1 word in aBT UatB is non-primitive;
e at most 2 words in af* U a*B are non-primitive.

Proof. The first part of the claim follows by the relation
aftuatp Cp(a)"p(B)*

and Corollary 3.18.

Consider the second part. Note that af*Ua*8 = afTUa™BU{a, 8}. Hence,
if at most one of the words a and 8 in non-primitive then the result follows by
the first part of the claim. Otherwise, we have o™ UatB C p(a)?Tp(B)?T,
where v?1 is an abbreviation for vvt. Since a and B do not commute, by
Lemma 2.7, all words in p(a)?Tp(B8)?** are primitive. Consequently, if o and 3
are both non-primitive then all the other words in a* U o*3 are primitive. [

Finally, let us apply Corollary 3.19 to our problem. As a consequence of
Corollary 3.19 and the considerations in the beginning of this section we obtain

Theorem 3.20. Consider a binary set X = {«, 3} with a,3 € X, There is
at most one proper X -ambiguous bi-infinite word and at most two X -ambiguous
bi-infinite words.
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The following example shows that the result is sharp.

Example 3.6. There are exactly two types of the binary sets X such that
card(Amb(X)) = 2, ¢f. proof of Corollary 3.19.

The obvious case is when both a and 8 are non-primitive and their primitive
roots are not conjugates. Then o and A% are two different X-ambiguous bi-
infinite words. Note that none of them is proper.

The less obvious case is when one of the words @ and ( is non-primitive,
they do not commute and there is an integer n > 1 such that a8"™ (resp. a"f) is
non-primitive. As an example, take a = baab and B = (ababa)? non-primitive.
Then w; = 8% and ws = (aB)? are different X-ambiguous bi-infinite words:

wi = -+ ldbldblaablalbaablablaablablaalblalbal - - -
and
P N
wy = - |ablalbldablablablddbalblalblalalblalblal - - -
R S A et senessrneeneet 2

Note that only the bi-infinite word wsy is proper.

3.2.4 Existence of an X-ambiguous bi-infinite word

Let X be a binary set containing non-empty words. In the previous subsection
we proved that there is at most one proper X-ambiguous bi-infinite word and
at most two X-ambiguous bi-infinite words. A natural question to ask is when
such words exist. The answer is easy for the non-proper X-ambiguous bi-infinite
words: such a word exists if and only if o or 8 is non-primitive. Hence, let us
concentrate on the existence of a proper X-ambiguous bi-infinite word.

One can observe that there are sets X for which there is no proper X-
ambiguous bi-infinite word. For example, take a set X = ¥ = {a,b}. We say
that a family of sets of words with the same cardinality k is parameterizable if
it can be described in terms of k formulas with word and integer parameters,
cf. Section 9.3 of [Lo| for details. Here, we are going to prove that the family
of binary sets X for which there exists a proper X-ambiguous bi-infinite word
is parameterizable.

In the case (i) of Theorem 3.11, when words of X are powers of a common
word ¢, the bi-infinite word t% has infinitely many X-factorizations. In partic-
ular, in this case there is always an X-ambiguous bi-infinite word. In the case
(#), when the primitive roots of the words of X = {a, 8} are conjugates, the bi-
infinite word a? = B% has exactly two different X-factorizations, so it is proper
X-ambiguous.
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Consider now the last case, the case (i), and a set X = {a,}. By The-
orem 3.11, an X-ambiguous bi-infinite word is of the form (a3")%, where a3"
is non-primitive, or (a"3)%, where o is non-primitive, i.e., there are integers
n > 1,4 > 2 and a primitive word s € ¥ such that

af"=s" or a"B=s". (3.11)

Conversely, if for some n > 1 and ¢ > 2 at least one of equations (3.11) has a
solution then, clearly, the bi-infinite word (af"™)% (resp. (a"B)%) has exactly i
shift-equivalent, but different X -factorizations. We formalize this as a lemma.

Lemma 3.21. Let X = {a, 3} C I be a binary set. Assume that the primitive
roots of a and [ are mot conjugates. Then there is a proper X -ambiguous bi-
infinite word if and only if one of the equations af™ = s* and o™ = s, with
n>1,1> 2, has a solution.

We shall also give a characterization of the solutions of the equations (3.11).
We need the following lemma.

Lemma 3.22. All non-periodic solutions of the equation

urug = ug(uguz)™, m>1 (3.12)
are of the form
usz = 4qp,
us = p(qp)", (3.13)

uy = uz(uguz)™ 'pq,

where p,q € X7, k > 0.

Proof. Tt is easy to check that (3.13) is really a solution of equation (3.12). Now
we shall prove that if equation (3.12) has a non-periodic solution, then it is of
the form (3.13). We proceed by induction.

Consider first the case m = 1. We have the equation ujus = ugusus. It is
obvious that |ui| > |ug|, so we can write u; = ugt. The equation transforms
into tug = ugus, which has, by Lemma 2.10, the only solutions ¢ = pq, us = qp
and ug = p(qp)k, k > 0. This implies that u; = gppq, so we have a solution of
the form (3.13) for m = 1.

Consider now equation (3.12) with m > 2. Again we have that |ui| > |us|, so
we can substitute u; = ugt and equation (3.12) becomes tug = ugus(uguz)™!.
By Lemma 2.10, we have t = uv, uz(ugu3)™ = vu, up = u(vu)’ for an integer
[ >0. If I > 1, then |vu| = |ug(ugus)™ | > 2|u| + |v| + |ug|. This implies that
u = ug = 1, which leads to a periodic solution. Hence, consider the case [ = 0.
We have that ug = u, u; = ugugv and vus = ug(uguz)™ *. Now we can apply
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Figure 3.23: The situation when |s| < |[3"]| and n = 1.

induction hypothesis on the last equation and we obtain that all non-periodic
solutions are of the form

Uz =4qgp, u2= p(qp)ka v = U3(U2ug)m72pq, k > 07

which implies u; = uguqv = u3(uzu3)m*1pq. We obtained exactly solution
(3.13), which completes the proof. O

The following lemma gives us the characterization of solutions of equa-
tion (3.11), and hence also of sets X allowing an X-ambiguous bi-infinite word
in the case ().

Lemma 3.23. Assume that words o and B do not commute. All solutions of
the equation of™ = s* satisfyingn > 1, i > 2 are

B = plap),
s =qpB" ", (3.14)
a=s""6""pq,

where p,q € X7, 5>0and j <iifn=1.
Proof. Tt is easy to check that (3.14) is a solution of equation (3.11). For the

converse implication we analyze the following 3 cases:

Case |s| > |B"|. Then we have that a = s°~!q and s = ¢B" for some q # 1. This
is solution (3.14) for j =0, p = 3.

Case |s| < |B™] and n = 1. The situation is depicted in Figure 3.23. According
to the figure we can write

B=plgp), s=gqp, a=q(pg) 7,

where p,q # 1 and j < ¢. Since

ij-1

$ 18 pg = (ap) " [p(ap)’] ' pa = (ap)' T g = a,
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n>2
a B B
Uy U2 ug| |
S S S

Figure 3.24: The situation when |s| < |[3"]| and n > 2.

we have the solution (3.14) with n = 1.

Case |s| < |8"| and n > 2. Since we are looking for non-periodic solutions,
by Lemma 2.6, necessarily |s| > |3"~!|. Hence, we have a situation shown in
Figure 3.24. According to this figure we can write 8 = ugus, a = s 2u; and
uruz = 8 = ugfB" ! = ug(ugu3)™ !, which is equation (3.12). Now, Lemma 3.22
implies
= = b+l _ I for i=k+1

B = uguz = p(qp) plgp)’, for j =k +1,

s = wiup = uz(uzus)"pap(qp)* = qpB"*f = qpp" ", and

a=s"ur = 5" ug(ugus)" Ppg = 5" 2qpp" BB pg =516 pg.
This is exactly solution (3.14). O

The following theorem summarizes the previous results.

Theorem 3.24. Consider a binary set X C Xt. There exists a proper X -

ambiguous bi-infinite word if and only if at least one of the following conditions
is satisfied:

(i) X = {p",p™}, where p € X and n,m > 1,
(i) X = {(pq)™, (¢gp)™}, where p,q € 1 and n,m > 1,
(iii) X = {a, B}, where

B=plap), a=(awb" )8 pa,
forp,geXt, n>1,i>2,5>0 andif n =1 then j <i.

Notice, that in the last case of Theorem 3.24 the occurrence of f~! can
be eliminated, but we prefer this form for its simplicity. This theorem shows
that the family of the two-element sets X, such that there exists a proper X-
ambiguous bi-infinite word, is parameterizable. Such a characterization can be
used to generate all such sets.
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Example 3.7. Let us choose in (3.14) p=a,gq=b,n=2,i=2and j =2. We
have
B = ababa, s = baababa, « = baab.

The bi-infinite word («/3?)% has two different shift-equivalent X-factorizations:

a P Ba B

B g > B g @



Chapter 4

A cumulative defect effect: an
example

In Section 2.2 we have recalled the fundamental result of Combinatorics on
Words: if a set of n non-empty words satisfies a non-trivial relation then the
rank, i.e., the dimension, of the set is at most n — 1. This property is called
a defect effect. However, the dimension properties of words are rather weak, a
system of k independent relations in n unknowns does not force usually a defect
effect by k, i.e., the rank of the set of unknowns is often greater than n — k, and
sometimes even equal to n — 1. The simplest example of this behavior can be
found in [ChK]:

Example 4.1. [ChK] The system
T2Y = Yzx and TZ2Y = YZZT
of equations is independent, since the former has a solution
r=aba y=a and z=0D
which is not a solution of the later, while the later has a solution
r=abba y=a and z=0>

which is not a solution of the former. However, they have a common solution of
degree two
r=a y=a and z=0»>.

The more complicated and convincing examples can be found in [KP]]. [KP]]
contains an example of a system of n3 independent equations in 5n unknowns
which forces only the minimal defect effect by 1.

49
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This inspires an interesting problem area to find conditions (on relations or
on sets of words) which imply a cumulative defect effect, i.e., if the set X of n
words satisfy k relations then X has a rank at most n — k.

There are only very few results in this direction. The Graph Lemma, i.e.,
Lemma 2.3 of Section 2.3, is such an example where the type of relations is
restricted. A similar deep result is proved in [Br], extending ideas of [Kal, Ka2,
Ho|, where it is shown that if X is a code and has an unbounded synchronizing
delay in both directions then the rank of X is at most card(X) — 2.

In this chapter we will show another example of a cumulative defect effect
for bi-infinite words. We interpret, in a natural way, a relation on words from
X as a double X-factorization of an infinite word. In fact, we consider only
the case when a bi-infinite word possesses k disjoint X-factorizations which we
interpret as k — 1 non-trivial relations. We ask the following:

Problem 4.1. Let X be a finite set of words and w a non-periodic bi-infinite
word. Is it true that if w possesses k disjoint X -factorizations, for k < card(X),
then the combinatorial rank of X is at most card(X) —k+1?

Our starting point is the result proved in Section 3.1 (Theorem 3.3) stating
that if a non-periodic bi-infinite word possesses two different X-factorizations
then the rank of X is at most card(X) — 1. Hence, Problem 4.1 is solved
affirmatively in the case k = 2. As emphasized at the end of Section 3.1 it is
essential to use the notion of the combinatorial rank and to assume that the
bi-infinite word is non-periodic, ¢f. Examples 3.2 and 3.3. In the general case it
is also necessary to assume that the X-factorizations are disjoint:

Example 4.2. Consider a finite set X of words such that rank.(X) = card(X)—
1. Hence, X is not a code and it satisfies a non-trivial relation

V=221.--Tpn =Yl ---Ym

for some x1,...,%pn,Y1,...,Ym € X. Let  be an element of X not equal to v.
Then the non-periodic bi-infinite word

w = NUQ’J’UN

has infinitely many different X -factorizations of the form
N{azl...a:n,yl...ym}m{xl...xn,yl...ym}N,
but we have a defect effect by only 1.

We do not have either a counterexample or a proof for larger values of
k. However, we are able to prove the following results. If a non-periodic bi-
infinite word possesses 3 disjoint X-factorizations, where X is a prefix code,
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then the combinatorial rank of X is at most card(X) — 2. As we shall see in
Section 4.1, even this simple case seems to be quite complicated to prove. In
the case k = card(X), Problem 4.1 implies a contradiction: w is a non-periodic
bi-infinite word with an X-factorization and X C t* for a non-empty word ¢,
hence it is equivalent to the problem to show that a non-periodic bi-infinite
word can possess at most card(X) — 1 disjoint X -factorizations. In Section 4.2,
we solve, based on the Critical Factorization Theorem and its application, a
slightly weaker version of this problem, i.e., we show that the maximal number
of disjoint X-factorizations of a non-periodic bi-infinite word is card(X).
The notions of independent relations is formalized in [HKP].

4.1 Bi-infinite words possessing 3 different X-factor-
izations

In this section we will show that in the case when X is a prefix set, if a non-
periodic bi-infinite word possesses 3 different X-factorizations then we have a
cumulative defect effect: the combinatorial rank of X is at most card(X) — 2.

The following two examples show that, as we have seen in Chapter 3, the
combinatorial rank is essential to obtain a defect effect for bi-infinite words. We
will use these two examples later on to illustrate the proof of the main result of
this chapter.

Example 4.3. Let X = {a,3,7,d}, where o = aa, f = baab, v = baaaab and
0 = aba. The non-periodic bi-infinite word

wy = . ..aab.aab.aaaab.aaaab - - - = N (aab)(aaaab)N

has three different X-factorizations: F; = N(Ba)(yaa)N, Fy = N(ap)(aay)N
and 3 = N§(ad)N, which are pairwise non-shift-equivalent and are depicted as
follows:

Blal - -

S
i=ad
1S |
12
>
1S |
S
A=l
1S |
1S
>
S |
S
i=al
S |
2 |
S |
2|
>
S |
)
S |
S
S
S |
2 |
S |
2|
>
S |
)
S |
)

Clearly, these three factorizations are pairwise disjoint and also non-periodic.
Moreover, rank.(X) = 2, since X C {a,b}", but for no word s the inclusion
X C sT holds. On the other hand, since X is a prefix code we conclude that
rankp (X) = ranke(X) = 4.

Example 4.4. Let X be the same set as in the previous example. Take any
non-periodic bi-infinite word wo in the set {aabaab, aabaaaab}’?. Any such bi-
infinite word has 3 different X-factorizations: Fy € {af8, a7}, F; € {af, aa}”
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and F3 € {66, 5ad}”, assuming that elements in the sets are selected in the same
order as for wy. For example, consider a part of wy in the form:

w9 = ...aabaab.aabaaaab.aabaab.aabaab . . . .

The corresponding parts of three X-factorizations are depicted as follows:

N VO S SN N b

- lala b[a\a['b alalblaalalalblalal bﬁa\a(b aa bﬁa\aﬁ) ald) b} 000

Again, three X -factorizations are pairwise disjoint, non-shift-equivalent and non-
periodic, assuming that the bi-infinite word ws is so.

Examples 4.3 and 4.4 together with Example 3.3 and Theorem 3.3 show
that in order to obtain the defect effect for bi-infinite words we have to use the
combinatorial rank. It is also necessary to consider non-periodic X-factoriza-
tions or non-periodic bi-infinite words:

Example 4.5. In this example we show that for any positive integer k, there is
a binary prefix set X without any defect effect and a periodic bi-infinite word
with k disjoint X-factorizations.

Let X = {a,B}, where @ = a and 8 = (ba)*~'b. Clearly, the bi-infinite
word w = (ab)? has k disjoint X-factorizations of the form (a8)%. They are all
shift-equivalent, but different. On the other hand, we have that rank.(X) =2 =
card(X).

To prove the defect theorem we need the following simple lemma.

Lemma 4.1. Consider words x,y,z',y’,v € LT and z1, z3, w1, ws € B* satisfy-
ing equations
Tz1 = vywr and 'z = vy'wsy. (4.1)

Ify==z,y =2 ory=2a,y =z, ie, if {z,2'} = {y,y'}, then  and =’ are
left comparable, i.e., one is a prefix of the other.

Proof. Consider, for example, the first case: y = z and y' = z’. Without loss
of generality we can assume |z| < |2/|. If |2'| < |v| then 2’ < v and also z < v,
which implies that z < z’, and we are done. Hence assume |z/| > |v|, i.e., v < /.
Now, if |z| < |v| then z < v < 2’ and we are again done. Thus, the only case we
have to consider is the case |z'| > |z| > |v|. We can substitute z = vz, ' = vZ’
for some Z,z’ € ¥*. The equations (4.1) transforms into

— — ! —/
Tz1 = VTWq and T 29 = VT wy.
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oy, F; (nz - 1) pos. Fl(m)

t;

pos. Fo(no) Oy, F, (no)
Figure 4.1: An illustration of the definition of t;’s.

We obtained the system of equations of the same type, but with |Z| < |z| and
|Z'| < |z'|. Hence, after a finite number of steps it must happen that the z’s
obtained, say Z and ', are left comparable. Clearly, if Z,Z’ are left comparable
then so are z,z’. Inductively, we obtain that x and z’ are left comparable.

In the second case the proof is the same. O

Now, we can state and prove the main theorem of this chapter. Since the
proof of the theorem and the two auxiliary lemmas is quite long and technical,
we will illustrate the proof on examples. In fact, we will perform the proof on
the bi-infinite words wy and wy defined in Examples 4.3 and 4.4.

Theorem 4.2. Consider a prefiz set X C X, Let w be a bi-infinite word over
3 with 3 different X -factorizations Fy, F1, Fs. If the word w is non-periodic then
the combinatorial rank of X is at most card(X) — 2.

Before we start to prove the theorem, let us define technical notions of X-
differences, triples and minimal triples. Consider a bi-infinite word w possessing
three disjoint X -factorizations Fy, F1, F». Take an arbitrary factor o, (no) €
X of w defined by the X-factorization Fp, and find, for ¢ = 1,2, the minimal
starting point Fj(n;) € F;(Z) such that F;(n;) > Fy(ng), see Figure 4.1. Let us
denote the word

WEy (no)WFy(no)+1 « -+ » WE;(n;—1)—1

by t;. We call the pair (t1,t2) an X-difference, or more precisely, an X-dif-
ference with respect to the triple (Fy, F1, F3), and we call the position Fp(ng)
an occurrence of the X-difference (¢1,¢2). Note that ¢; and ty are always left
comparable.

Assume that we have an occurrence Fy(ng) of an X -difference (¢1,t2) followed
by an occurrence Fp(mg) of an X-difference (¢,t}) in w. Figure 4.2 depicts such
a situation, when |t1]| < |t2| and |t}| < |t5]. Consider the following 3 factors of w

fo = aw Fy(n0)aw, ko (no + 1) . .. awy 1y (Mo — 1),
fl = Oy, Fy (nl)aw,Fl(
(

f2 = Oy, Fy (n2)aw,F2

ni+1)...0pF(m —1) and

n2+1)...04w7p2(m2 - 1).
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F2(n2) f2 c X+ Fl(ml)
Fi(ny) e fle x+t / N Fa(ma)
t1ito it
Fy(no) fo € Xt Fy(mo)

Figure 4.2: An illustration of a (t1,t2, t1, t5)-triple with |¢t1] < [t2| and |t}] < [t5]..

The triple (fo, f1, f2) is called a (t1,t2,t],t)-triple, and the position Fy(ng) is
called an occurrence of the (t1,t2,1t],t5)-triple. Note that a (¢1,t2,t],th)-triple
(fo, f1, f2) satisfies

foti=t1fi  and  foty =tafa. (4.2)

We say that an occurrence Fy(n) of an X-difference (£1,%2) occurs inside of
an occurrence Fy(m) of a triple (fo, f1, f2), if Fo(m) < Fy(n) < Fo(m) + | fol-
Note that the definition above does not depend on the choice of the occurrences
of the X-difference (resp. the triple), hence the definition applies also directly
to X-differences (resp. triples). If there is no occurrence of X-difference (t1,t2)
or (t),t5) inside a (t1, t2, ], th)-triple, we say that the triple is minimal.

Example 4.6. Let us illustrate the previous definitions on the bi-infinite word
wi from Example 4.3. Take as g, for instance, the first « in the factorization
Fp depicted in the figure of Example 4.3. Then oy = 5, t1 = aab and as = 6,
to = a:

a2
FQ: ;
a1
F1 P e ~
lala|blalalblalalb
Fy N nersmeneet™
(&%)

Hence, we have an occurrence of X-difference (aab,a) marked above with two
black lines. Taking as ayg the first 7 in the factorization Fy we find an occurrence
of X-difference (b, ba). We have an (aab, a, b, ba)-triple (afa, af3,866):
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) ) )
Fy: ‘ :
P! B

e Y .

Fy: — —

-+ lalalblalalblala|bla
0 T D — \

« B a

It contains inside of it occurrences of X-differences (b,ba) and (aab,a), hence it
is not minimal. On other hand the following (b, ba, aab, a)-triple (ya, aay, ada)
is minimal, since it contains inside of it only an occurrence of X-difference
(aaaab, a):

«a ) o
R - N
a « Y
s
Fy: —
- |blalalalalblalalalald
Fy: e - N—
¥ «a

Indeed, here it is important to remember that the order of the factorizations is
fixed.

The proof of Theorem 4.2 is similar to that of Theorem 3.3 assuming we
have already proved the following two lemmas:

Lemma 4.3. Consider a prefiz set X C 1. Let w be a bi-infinite word over ¥
with 3 different X -factorizations Fy, F1, Fy. If there are non-empty words t1 and
ta such that the bi-infinite word w possesses two different minimal (t1,t2,t1,%2)-
triples then rank.(X) < card(X) — 2.

Lemma 4.4. Consider a prefiz set X C X, Let w be a bi-infinite word over
Y with 3 different X -factorizations Fy, F1, Fy. If there are non-empty words t1,
ta, t and t, such that the bi-infinite word w possesses

(i) a minimal (t1,t2,t1,t2)-triple without any occurrence of the X -difference
(t],t5) inside;

(it) a minimal (t1,12,t],t5)-triple; and
(iii) a minimal (t),t5,t],t5)-triple

then rank(X) < card(X) — 2.
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Rather technical Lemmas 4.3 and 4.4 can be proved in the similar way.
Hence, we will give a full proof of Lemma 4.3 and, after that, we will point out
the differences between the proofs of these two lemmas. Now, let us illustrate
the situations these two lemmas deal with on an example.

Example 4.7. In Example 4.4 we have exactly the situation considered in
Lemma 4.3. Any non-periodic bi-infinite word

wy € {aabaab, aabaaaab}”

contains exactly two different minimal (aab, a,aab, a)-triples (af3, a3,00) and
(ay, a3, dad).
Further, Example 4.3 is an illustration of the case considered in Lemma, 4.4.
The bi-infinite word
wy = N (aab)(aaaab)Y

contains:

(i) the minimal (aab, a, aab, a)-triple (af, af,dd) without any occurrence of
the X-difference (aaaab, a) inside;

(ii) the minimal (aab, a,aaaab, a)-triple (ay, aaf, dad); and

(iii) the minimal (aaaabd, a,aaaab, a)-triple (aay, aay, adad).

4.1.1 Proof of Lemma 4.3

Proof. Let us consider two different minimal (¢1, t2, t1, t2)-triples (fo, f1, f2) and
(5, f1, f5). Without loss of generality we can assume that |fo| < |f3] and ¢ < t2.
Note that ¢; # 2 since factorizations Fj, F» are disjoint.

Denote tg = 1 and let s1,s2 € 1 be such words that ¢; = s1, to = t152. We
define, for 0 < a <b < 2,

S(a’b] = Sg+1---Sp-

Notice that for a = b, s = 1; for 0 < a < 2, {5 = 5(g,4); and for a < b <,
S(ac] = 5(a,b|S(b,e]- Next, we define +-notation: for arbitrary a,b € {0,1,2} let

o S(ap)y if @ <V, o S(ba)y If b <a,
(a,b] (a,b]

1, otherwise, 1, otherwise.
Equations (4.2) imply
ftg')s(%b] = S(a) fb('), fora <b. (4.3)

Equation (4.3), for each a < b, represents actually two equations: one with and
one without the primed symbols, hence the notation f(). Note that for a = 0
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po |ro] -+ |po| 7o

fo fo

Figure 4.3: An illustration of the definition of p;, r;,r; for i = 0.

pip €Fy, pi, €F,  pi €F

Ul U2

Figure 4.4: An illustration of u;’s.

we have only another transcription of Equations (4.2) and for a = 1,b = 2 we
have

f1s2 = s2f2, fis2 = safy.

Using our *-notation we can restate Equation (4.3) for any 0 < a,b < 2:

- - (" —
s(a,b]f,gl)s?;’b] = Sa,b]fb S(ap " (4.4)

Indeed, it is easy to check that for a < b and b < a we get exactly Equation (4.3)

and for a = b a tautology fg) = fb(').

Let p; € X* be a common prefix of f;, f/ over the alphabet X and let
ri,7; € X* be words such that f; = p;r; and f] = p;r} (see Figure 4.3).

Note that if f; = f] for any ¢ = 1,2,3 then, by (4.2) and the choice of
(t1,t2,t1,t2)-triples, f; = f} for all ¢ = 1,2,3. This is impossible since X is a
code and the triples are different. Thus, since |fy| < |fj| we have that r} # 1 for
all 3.

Let ig,%1,72 be the order of the ends of p;’s in the bi-infinite word w, as
depicted in Figure 4.4. Note that since the X-factorizations are disjoint, the
words w1, ug are non-empty. Hence, we have that |t;,p;,| < |ti,0i;| < |tiyDis,
where, we remind, tyg = 1.

Example 4.7 (continued). Let us change the indexes of factorizations Fj
and Fb, so that the condition t; < ty is satisfied. Hence, we will consider
(a, aab, a, aab)-triples (af, 09, af) and (o, dad, aaf) with s; = a and sy = ab.
Then

Po = a, ro = [, o =",

p1 =6, ry =9, r'lzaé,

P2 = @, re = 3, ry =af.
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fij

a Tiin

tij+1 tij+1

fo

Figure 4.5: A hypothetical situation in which an o between the end of f, and the end of
fi;4, would exist.

Since |po| < |t1p1] < |t2pz2], the order of p;’s is igp = 0, iy = 1 and ix = 2, and
u1 = ba and us = a.

We have
tigPigU1l = tiy Diy » iy Diy U2 = tiyDiy tipPipU1u2 = tiyDs, - (4'5)
Taking the first equation and multiplying both sides by r,-ls&[] i) We obtain

BNCES _
8(0,i0]Pio U171 8 54 3,1 = BioPioU1Tin 85 ;) Bia Pia Tia S (4 53] = 8(0,11fir 30,411 -

This is equivalent to

(4.4)

e T €
8 10,11 P30 Y1 i1 8 (i 1] = S (i0,ia)Fi1 5 (io,in] 8 i0,i1] 505 (ioyin] = S(io,ir]PioTi05 (30,1]

. — _ . + . . .
hence ULTi1 S (30 511 = TS (ig i) In the similar way we obtain

(1) g~ 0
Y1741 S (ioyia) — o szo,il]’ (4.6)

( ) - (n
U2y i ia] = Tix (o ial (4.7)
u1u2r( )S(lo iz] T T([’])S?;O’h]. (4.8)

If r;; = 1, for j = 0,1 then Equations (4.6) and (4.7) imply s(z i) # 1, and
hence also i; < 441 and |1y, | < 84,40 < [ti;5.]- By the definition of the
X-differences, we then obtain r;; , = 1, otherwise there is an a € X in the X-
factorization Fj,,, which ends before the end of f;, , and after the end of fo, as
illustrated in Figure 4.5. But this is impossible by the definition of X -differences,
see Figure 4.1.

We have three possibilities:

(i) Tio = Tip = Tig = 1, i < 11 < 19;

(11) Tio 7é la Tiy 7é 1)
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by (4.6) and (4.7)

by (4.3) 4s2 fi

|

Figure 4.6: A part of the dependency graph in the case (ii).

(iii) Tio 7é 1, Tiy = Tipg = 1, 41 < 12.

Case (i). In this case there is an occurrence of the X-difference (#1,%2) inside

the minimal (¢1, t2, t1, t2)-triple (£, f1, f3), which is a contradiction.

Case (ii). Let z,2',y,y’ € X be the first letters of ry,, 7] ,7i;,7;,, respectively.
Hence, rz(;) = m(’)fg) and rg) = y(')Fg) with some 74,7 ,7i;,7;, € X*. Clearly,
since p;, and p;, are the maximal common prefixes, z # z’ and y # y'. Using
this notation Equations (4.6) transform to

w1 zZ1
—— /—’b
u1ry rils(io,il] = Tiﬂs(ig,il] y
! = o= _ -+
ury rils(io,h] =T Tlos(ig,il] .
N—— ——
w2 z2

Hence, by Lemma 4.1, the pair {z,z'} is different from the pair {y,y'}.

The dependency graph contains at least 6 distinct edges, as shown in Fig-
ure 4.6, card(X) + 4 vertices and, most importantly, at most card(X) — 2 com-
ponents. Hence, we can bound the combinatorial rank of X using the Graph
Lemma:

rank:(X) < rank¢(X U {u1, u, s1,s2}) < card(X) — 2.

Example 4.9 (continued). We have that + = 8, 2’ =, y = 0 and ¢ = «,
so {z,2'} # {y,y'}. By Equations (4.3), (4.6) and (4.7) the set X satisfies the

following 6 equalities:

afsy = aa.baab.a = a.aba.aba = $100,
0dse = aba.aba.ab = ab.aa.baab = ssaf,
u10 = ba.aba = baab.a = fs1,

uiad = ba.aa.aba = baaaab.a = ys1,
ug3 = a.baab = aba.ab = 039,

ug = a.aa.baab = aa.aba.ab = adss.
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/

p1 = f1 1

S1 S1| - | S1 S1

/

po = fo )
Figure 4.7: An illustration of Equations (4.11) and (4.12).

Hence, the dependency graph
Bow vy
*r—1e—0

S1 o u 0 S2
*———e—o—o—o

has 2 components, so by the Graph Lemma, rank.(X) < 2.

Let us consider the remaining case.
Case (iii). Let us recall Equations (4.8), where we set 7, = 1:

. ot I e B
ULUDS ;o i1 = TioS (o sl ULURT, 8 50 a1 = TioS(ioia] (4.9)

Assume that 7'1([? starts with () € X, where again = must be different from
z'. Note that x and z’ are connected in the dependency graph through w;. If
|z| < |ujug| then z and z’ are left comparable, a contradiction to the prefix
property of X. Thus, we have that ujus < x, which implies that s&oﬂ.z] # 1, and
also 41 < 42 < ip. Therefore, iy = 2, 33 = 0 and i2 = 1. Equations (4.9) simplify
to

U1USy = T2, ULUT] 82 = T, (4.10)

where 7o and 7}, start with = and z', respectively.
Since rg = r; = 1, Equation (4.3) for a = 0, b = 1 implies

$1P1 = Pos1 - (4.11)
Again since 79 = 71 = 1, Equation (4.7) without primes gives us = s;. Hence,
Equation (4.7) with primes simplifies to

s17T] =181 - (4.12)

Figure 4.7 illustrates the parts of factorizations Fj, and F;, corresponding to
Equations (4.11) and (4.12).

Let us analyze Equations (4.11) and (4.12). For j = 0,1, let p; be the
maximal common prefix of p; = f; and r;- over the alphabet X and let p; = p;7p;
and r;- = ﬁjf,,;, for some p;, ij,FT; € X*. There are two possibilities:
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(a) Po ends later than py, i.e., Py = s1p1u for some u € XT;
(b) p1 ends later than py, i.e., ppu = s1p; for some u € 7.

Since the factorizations Fy and Fy are disjoint, » must be non-empty.

Case (iii.a). Equations (4.11) and (4.12) imply
ufposl = FPI? uf,631 = 1"~Tll.

Note that both, 75, and FTrl, are non-empty. Hence, we can assume that 7p,
and 7, start with different symbols y and ', and so, y and ¥’ are connected in
the dependency graph through w. It is enough to show that the pair {y,y'} is
different from the pair {z, z'}, since after that the end of the proof is essentially
the same as the one in the case (ii). Using Equations (4.3) and (4.10) we derive

v

— (4.10) ,

U1U2P1 Tr’l S2 = T,
- . (4.10)

uU2P1 Tp 82 = urusfisy = ujugsafo = rafa.

———

v
Setting in Lemma 4.1, v = ujusp; we obtain {y,y'} # {z,z'}.

Example 4.10. Consider again the set X = {a,f,7,d} from Example 4.3.

Recall that o = aa, § = baab, v = baaaab and § = aba. Take any non-periodic

word ws in the set {aabaab, aabaabaa}?. It has 3 different X-factorizations in

the sets: {afB,apa}?, {66,06a}” and {aB,ay}%. Note that this example is

equivalent to Example 4.4, we have only changed order of X-factorizations.
The pieces of all 3 factorizations of ws can be illustrated as follows:

F @ 6 ...... F @
2 s V5 ] 2 s V5 a
Fl | Fl |
. a}aba\a\b a}a\b a}aba\a\b\a[aaa\b
Fy C/ ..................... = Fy C/ ..................... a
a Ji o B o

We have two different (a,aab, a,aab)-triples (af,00,af) and (afa,dda, ay),
with s; = a, s3 = ab and

/
p():a/Ba ’I"():l, g = &,
/
p1:667 7‘121, rn=a,
/
P2 =a, r2 =B, ryg =1
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The order of p;’s is ig = 2, 41 = 0 and i3 = 1 with u; = b and us = a = s;.
This is the case (iii). It is easy to check that the set X satisfies Equations (4.11)
and (4.12):

8100 = afs, s1a = sy .
Next, we have
ﬁ():aa Fpo:Ba 7;7'(’):17
p1 =1, Tp, = 00, Py = .

Hence, |s1p1] < |pol, i.e., po ends in ws later than p;, so we are in the case (a)
with v = a. Equations (4.11) and (4.12) imply

ufs1 = 69, us1 = «,

hence, o and § are connected through w in the dependency graph of the set X.
On other hand Equations (4.10)

uiuzss = f, ULUQS = Y

imply that f and 7 are connected through w;. Hence again, the dependency
graph has 2 components:

Finally, we arrive to the last case of the proof.
Case (iii.b). The proof is similar as in the previous case. Equations (4.11) and
(4.12) imply
TpoS1 = UTp,, Tpb S1 = UTypr . (4.13)

Equation (4.3) implies that sg is a prefix of fi = p1 = p17p,. We will show that
z and z' are left comparable, and hence X is not a prefix.

First, assume that s2 < p1. Since, by (4.10), z < ro = uju2se, it is enough
to show that =’ and ujugss are left comparable. Again by Equation (4.10) we
have that ' < r) = ujugriss = u1uP17y s2. And since sz < pi, z' and ujugsy
are left comparable.

Second, assume that |p1]| < |sg|, i.e., s2 = Prw for some w € Lt. By the
definition of X -differences, we have that |po7p,| = |po| = |fo| = |f2| > |s152]. On
the other hand, |po| < [Pou| = |s1P1| < |s1s2|. Therefore, the word 7y, must be
non-empty. If also Tt # 1 then we can proceed as in the case (a) choosing y
and 3’ to be the starting symbols of 7, and Frr OVer the alphabet X.

Unfortunately, it can also happen that Tt = 1. Let us consider this case.
We have that rj = pp. The word p; in 7} depicted in Figure 4.7 should end after
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| f3
fpg 3 7"’2 = .’I?I \
4 /\/ ! N
f1 1
[ m N
4 D1 Tpy 4 D1 h
51 2 181 W) w1 ug 51 52
X
\ ]50 fpo 3 130 /
N T 0 J
£ |
f2
‘ ~
f D2 ro=2x
fi=p
( |
51 52 51 s2
fo=mpo 3

Figure 4.8: An illustration of triples (fo, f1, f2) (down) and (f5, fi, f3) (up) in the case (iii.b)
when 7., is the empty word. Note that triples are same to the left from the dashed line, but
they can differ to the right from it, and that us = s1.

the beginning of s;. By the definition of X-differences, this is possible only if
ry = p1 and Tyt = 1. The second of Equations (4.13) implies u = s1, so we have

s1P1 = posi1, by (4.12), $17p, = TpyS1, by (4.13).

Thus, we can perform the same kind of analysis as we did for Equations (4.11)
and (4.12). Then either 7, < po, or pg < Tp,, or the words py and 7p, are
not left comparable. In the first case, we will show that = and z’ are left
comparable, as we wanted. In the second case, we obtain again equations of
type (4.11) and (4.12), and we can continue inductively. Since the words in the
new equations are shorter, we have to arrive to one of the other two cases after
a final number of steps. In the third case, we can take the starting symbols of
Po and 7p, over the alphabet X for the values of y and 3’ and proceed as in the
case (a).

Hence, consider the first case 7p, < po. Multiplying this relation by s; and
using Equations (4.13) we obtain 7, < p1. Since prw = s2 < fi = P17p,, We
have that w < 75, < p1. Hence:

~ ~ o~ ~ o~ ~ ’
ULU282 = U U2P1W < UTU2P1P1 < U1U2PIPIW = ULU2P1S2 = U1U2T(S2,
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which together with Equation (4.10) gives that 2’ and ujugss are left comparable.
This is, as we have seen before, a contradiction. O

The proof of Lemma 4.4 can be done in the same way as the proof above.
The existence of a (t1, ta, t}, th)-triple (fo, f1, f2) implies that the set X U{t},t5}
satisfies the following relations

fot1 =t fi and Joth =thfa.

Hence, in the dependency graph of any set containing X U {¢},¢,} the words t}
and ¢}, are connected to some elements of X.

Now, let us consider the minimal (1, ta, t1, t2)-triple (fo, f1, f2) and the mini-
mal (t1,te,t), th)-triple (f}, fi, f5) instead of two different minimal (¢1, t2, t1, t2)-
triples, c¢f. the beginning of the proof of Lemma 4.3. We can follow the lines
of the proof of Lemma 4.3 just changing ¢, to | (resp. t2 to t}) at the ends of
some equations. Any time we use Lemma 2.3 (the Graph Lemma) to show a
defect effect by 2 we have to add the words ¢} and ¢, to the set of vertices of
the dependency graph. But, as we have mentioned above, these two vertices are
connected to some elements of X, hence Lemma, 2.3 can be applied to force the
same defect effect.

4.1.2 Proof of Theorem 4.2

Proof. Since X is a prefix set, we can assume that all three X-factorizations are
pairwise disjoint. Lemmas 4.3 and 4.4 imply that if we assume that the combina-
torial rank of X is at least card(X)—1 then any two minimal (¢1, t2, t1, t2)-triples
are equal, and there cannot occur all following three triples in w: a (1, t2, t1, t2)-
triple without any occurrence of X-difference (¢}, t5) inside, a (¢1, t2, t], th)-triple
and a (), th,t],t5)-triple. Since t,ty are suffixes of words in X, there are only
finitely many different X-differences. By the pigeon hole principle, there exists
an X-difference (¢},t,), which occurs an infinite number of times in the word
w. Each two consecutive occurrences define the minimal (¢}, t5, ¢}, t5)-triple. If
there are infinitely many occurrences to the right and also to the left from an ar-
bitrary position in w then, clearly, all three X-factorizations and the bi-infinite
word w are periodic, which is a contradiction.

Hence, without loss of generality we assume that there are occurrences of
(t),t5, ¢}, th)-triple only to the right from a position n. Therefore, by the pigeon
hole principle, there must be an X-difference (¢1,¢2) occurring an infinite number
of times to the left from the position n in w. Clearly, a (¢1,t2,t1,t2)-triple
occurring to the left from the position n in w does not contain any occurrence
of X-difference (t],t,). Obviously, there is a (t1, t2, ], th)-triple in the word w,
which is a contradiction. O
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Note that in the proof of Theorem 4.2 we have used the fact that at least
1 of the X-factorizations is non-periodic, and not the fact that the bi-infinite
word w is non-periodic. Hence, we have proved the following theorem:

Theorem 4.5. Consider a prefiz set X C X1, Let w be a bi-infinite word over
Y with 3 disjoint X -factorizations Fy, F1, Fy. If at least one of three X -factor-
izations is non-periodic then the combinatorial rank of X is at most card(X) —2.

Nevertheless, under assumption that X is a prefix, this theorem is equivalent
to Theorem 4.2. The following example shows that in Theorem 4.5, but not in
Theorem 4.2, we have to put some assumptions on the set X, for example, that
it is a code.

Example 4.11. Let X = {«, 3,7}, where a = ababa, f = b and v = ababab.
Then the periodic bi-infinite word w = (ab)? has three disjoint X-factorizations
of the form {af,7}*. We can choose them to be non-periodic and not shift-
equivalent. The combinatorial rank of the set X is 2, so in this case the defect
effect is only by 1.
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4.2 A connection to the Critical Factorization Theo-
rem

In this section we look at how the Critical Factorization Theorem is connected
to Problem 4.1 in the cases k = card(X) and k = card(X) + 1.

First, we will recall the Critical Factorization Theorem and its application,
cf. Chapter 8 in [Lo]. We need a few definitions.

Let w be a finite word. We say that an integer p > 1 is a local period
of w at the position (wi,ws), if there is a word z of the length p such that
(2, z) matches w at the position (wj,ws). The minimal local period of w at the
position (wy,ws) is called the local period of w at the position |w;|, denoted by
Iper(w, |wi|). Further, we say that the position 1 < i < |w| in w is critical, if
Iper(w, i) = per(w).

Theorem 4.6 (Critical Factorization Theorem). For any w € ¥* with the
period p(w) > 1 every sequence of p(w) — 1 consecutive positions contains a
critical one.

Let X be a set of non-empty words and let sequences of elements of X,
Z1,...,&n and x,..., 2, , be two X-interpretations of w, i.e., there are words
p,s,p', s such that

pws =x1...T, and

/

[
PwWS =Ty...Ty,.

We say that X-interpretations z1,...,z, and zi,..., 2}, are disjoint, if for all
integers ¢ < n and j < m, we have that p~lz;...x; # p’_lw’l .. a:;

The application of the Critical Factorization Theorem states, cf. [Lo]:

Proposition 4.7. Let w € ¥ and X C X7 be a finite set satisfying per(z) <
per(w) for all x € X. Then w has at most card(X) disjoint X -interpretations.

Already in [Lo] it was noted that the bound in the proposition is close to
the optimal: for each n > 2, words of the form w € (a?*~2b)* have exactly n
disjoint X-interpretations where X = {a",b,aba,...,a™ *ba™ '} contains n + 1
elements.

In [Lo] it was also conjectured that the exact value in Proposition 4.7 is
card(X) — 1. This conjecture is inspired by Schiitzenberger conjecture stated
in [Sc| which in addition assumes that the set X satisfies an another algebraic
property. It is out of scope of this work to restate the original conjecture, and
so an interested reader is referred to [Sc, Pe2] for details. If the conjecture
in [Lo] would be true then it would imply that a non-periodic bi-infinite word
can possess at most card(X) — 1 disjoint X-factorizations, which is also an
immediate consequence of an affirmative answer to our Problem 4.1 in the case
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k = card(X). However, the following examples show that the conjecture is false,
and hence also, that the bound in Proposition 4.7 is optimal.

Example 4.12. For any integer n > 2 consider the set X = {ay,...,an_1,8}
with a; = a’ba’ and 8 = ba™b. Note that card(X) = n and that per(a;) =i+ 1
and per(8) = n + 1. The word w = ba™ba™ ‘b has the period per(w) = 2n + 1,
hence Proposition 4.7 implies that w has at most n disjoint X-interpretations.
The following list of X-interpretations of w shows that the word w has exactly
n = card(X) of X-interpretations.

w
——

10y, 18 = aba.a” 'ba™ ' .ba"b
w

Qs 01 =  a’ba’.a” %ba" 2.aba

w
Qi1 = a' bat.a” ba™ .t that !

w

A

(e N
Q10102 = a” L ba™ L.aba.a™ 2ba" 2

w

—
Bo,_1 = ba"b.a™ ha" !

Hence, Proposition 4.7 is optimal.
Note that the X-interpretations above are parts of n disjoint shift-equivalent
X-factorizations in

[Ban_1010n_202 . .. 10015

of the periodic bi-infinite word w = (ba"ba™ 1)Z.

The above example shows that the conjecture stated in [Lo] is not valid.
An interesting problem is to find the sufficient conditions in terms of notions of
Combinatorics on Words such that the conjecture would turn true. Next, we
will show that that two straightforward approaches in this direction do not give
the desired result.

Note that in Example 4.12 the maximal ratio between the periods of elements
of the set X and the period of the word w is 2’:1111 > % One possible additional
assumption of the conjecture could be restricting the ratio above to 1/2 or
smaller. Unfortunately, the following example shows that the maximal ratio
between the periods can be arbitrary small without decreasing the number of

X-interpretations.
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Example 4.13. Take an arbitrary integers n > 1 and p > 1. Consider the set
X ={a;; i=1,...,n} with a; = a’b(a™b)P 'a’ and the word w = ((a™b)Pa)?.
Obviously,

for every i =1,...,n per(ej) =n+1, and per(w)=pn+1)+1.

Thus, the ratio between the period of any element of X and the period of w is
;#1%4—1 < %. On the other hand, for every ¢ =0,...,n — 1 we have
w = a'an_joip107",

and thus, the word w had n = card(X) disjoint X-interpretations

A0, O20n 102, ..., Qn 102051, Cpn10y .

The all examples above the combinatorial rank of the set X is 2. Therefore,
we can ask if a condition on the combinatorial rank could help.

Example 4.14. Consider any set X over the alphabet ¥ such that a word w
has card(X) disjoint X-interpretations and the periods of elements of X are
strictly smaller than the period of w. Let ¢ be a new letter and let g and h be
two morphisms from 3 to ¥ U {c} defined as follows: for every a € &

g(a) =ac  and h(a) = ca.

Let X = g(X)Uh(X), @ = g(w). Obviously, the word @ has card(X) =
2card(X) disjoint X-interpretations. Moreover, per(w) = 2per(w) and, for
every x € X, per(g(z)) = per(h(z)) = 2 per(z). Finally, rank.(X) = rank.(X)+
1.

Example 4.14 shows that putting a condition on the combinatorial rank of
X in the form of a lower bound by a constant is not sufficient. As an open
problem remains the question if setting rank.(X) close to card(X) would fix the
problem.

Note that a more trivial counterexample to the problem stated in [Lo] was
pointed out already in [Ha]: the word w = ba™*'b has n X-interpretations,
where X = {a’ba"*!"%; i=1,...,n}. However, the maximal period of words
in X, n+ 1, is almost equal to the period of w, n + 2.

Finally, let us come back to Problem 4.1 posed in the beginning of this
chapter. As a corollary of Proposition 4.7 we have the following result.

Corollary 4.8. Let X be a set of non-empty words and w a non-periodic bi-
infinite word. Then w can possess at most card(X) disjoint X -factorizations.
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Proof. Let w; € %, i € Z be letters of the bi-infinite word w:
W=...W_2W_1WWLW3 . . . .

We define the sequence {u;}i>o of finite words as follows
Ui = W_j ... W_1WQW] - .. Wj .

Clearly, per(u;y1) > per(u;). This implies that the sequence {per(u;)}i>0 is non-
decreasing. Assume that it is upper bounded, i.e., there are positive integers
J,p such that, for all ¢ > j, per(u;) = p. Then the bi-infinite word w is periodic
with a period p, which is a contradiction. Thus, there exists a positive integer
j such that per(u;) is greater than the periods of words in X. Assume that w
possesses card(X) + 1 disjoint X-factorizations. We can construct, in a natural
way, card(X) + 1 disjoint X-interpretations of the word u;. But this together
with Proposition 4.7 yields a contradiction. U
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Chapter 5

Conjugacy of binary sets

A natural extension of word equations are language equations. Despite the fact
that there is a rather rich theory on word equations, almost nothing is known
about that of languages. Even the simples equation, i.e., the commutation
equation X Z = ZX for languages, which has been recently studied in a number
of papers, is solved only in some special cases, for example when card(X) < 3
or when X is a code, c¢f. [CKO, Ra, KPe, HP, Ka3, KLP]. In all these cases Z
must be of the form Z = U;cro(X)? with I C N, and o(X) being the primitive
root of X, i.e., the minimal set having the set X as its power. Hence, we have
that both sets X and Z are expressible in terms of one set using operations: the
concatenation “.”, the Kleene star “*” and the union “U”. This can be viewed
as a defect effect for languages. However, as an example of [CKO] shows, in
general, a relation on languages, or even a commutation equation, do not always
cause a defect effect:

Example 5.1. Consider the sets X = {a, aaa,b,ba,ab,aba} and Z = X U {aa}.
X and Z satisfy the commutation equation XZ = ZX, but they cannot be
expressed as unions of powers of a common set.

In this chapter we study the conjugacy equation
XZ=2Y. (5.1)

for languages. Since the commutation equation is a special case of the conjugacy
equation, the conjugacy equation for languages cannot be easy. Therefore, we
will study the conjugacy equation in the case when the sets X and Y are binary.
Surprisingly, even in this very restricted case we cannot witness a defect effect.

Example 5.2. Consider the binary sets X = {ab,abaca} and Y = {ba, caaba},
and the singleton set Z = {aba}. The sets X, Y and Z satisfy the conjugacy
equation XZ = ZY, but they cannot be expressed in terms of two sets using
the operations “.”, “*” and “U”.

71
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In the word case the conjugacy equation has well-known solution and actu-
ally, as we have seen in Section 2.5, it is one of the several characterizations of
two words which are conjugates. For languages we take (5.1) as a definition of
conjugacy. We say that languages X and Y are conjugates, in symbols X ~ Y,
if there exists a non-empty set Z such that (X,Y, Z) is a solution of (5.1). If
this is the case we also say that X and Y are conjugated via Z, and we write
X ~z Y. Note that stricter definition of conjugacy of codes, corresponding to
what we call word type solutions, was studied in [Pel].

5.1 General considerations

In this section we will study some properties of the conjugacy equation in the
general setting. We show that in special cases Equation (5.1) has only, so-called,
word type solutions, while in general also other solutions are possible even for a
unary set Z.

Let us recall that the conjugacy equation xz = zy for non-empty words has
a well known general solution, ¢f. Lemma 2.10:

dp,q € ¥* such that z = pq, y = gp and z € (pq)*p.

As is immediate to check the words can be replaced by languages (or finite lan-
guages) to obtain solutions of the conjugacy equation XZ = ZY for languages:
triples

X=PQ, Y=QP, and Z=[]J(PQ)P (5.2)

i€l

for P,QQ C ¥* and I C N, are solutions. They are referred to as word type
solutions. The conjugacy equation (5.1) has always word type solutions. In
some cases these are the only possible solutions. For example, if the sets X,
Y and Z are prefix codes, or if the sets X and Y are uniform, i.e., consist of
words of a fixed length, then Equation (5.1) has only word type solutions. This
follows from the fact that the monoids of prefix codes, cf. [Pel], and of uniform
non-empty languages are free. Consequently, we formulate:

Proposition 5.1. Consider prefiz codes X, Y and Z such that X,Y # {1}. If
the sets satisfy the conjugacy equation (5.1) then there exist prefix codes P,Q C
¥* and an integer i € N such that X = PQ, Y = QP and Z = (PQ)'P.

If we assume that the sets X and Y are uniform, we can decompose the set
Z into uniform subsets, and clearly, (X,Y) is a solution of (5.1) for each such
subset of the set Z as well. Therefore, we have the following proposition:

Proposition 5.2. If sets X, Y and Z satisfy the conjugacy equation (5.1) and
X,Y # {1} are uniform then there exist uniform sets P,Q C ¥* and I C N such
that X = PQ,Y = QP and Z = U;c1(PQ)'P.
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However, not all solutions are of the word type, even for a unary set Z:

Example 5.3. Z = {aa}, X =Y = {a,aaa} is a solution of the conjugacy
equation (5.1), which is not of the word type. However, this is not a minimal
solution, since (X, Y") can be obtained as a union of two solutions X; = Y; = {a}
and Xy =Y, = {aaa} while keeping Z = {aa}. These “smaller” solutions are of
the word type.

An example of a binary prefix code Z, which allows a minimal solution not
being of the word type, is as follows:

Example 5.4. Z = {a,ba}, X = {a, ab, abb,ba,babb}, Y = {a, ba, bba, bbba} is a
solution of (5.1). This is a minimal solution, but not of the word type. Indeed,
the only solutions contained in (X,Y) are: X; =Y, = {a,ba}, Xo = {abb, babb}
and Yo = {bba,bbba}, and their union which does not form the whole (X,Y).
Note that here X and Y are of different cardinality.

Now, let us study the basic properties of the conjugacy equation. Assume
that sets X, Y and Z satisfy Equation (5.1). Then necessarily

min |z| + min |z| = min |z| + min |y|,
zeX z€Z 2€Z ey

and therefore also

in || = min |y . 5.3
ggglwl ggglyl (5.3)

Moreover, the sets

Xi={meX: |o]=mipls} and Yi={meY: [ul=minl}

are conjugated via Z1 = {z1 € Z: |z1| = min,ez |z|}.

Further, if 1 € X then X; = Y7 = {1}, and so 1 € Y. Obviously, all
languages containing the empty word are conjugated with each other via the set
¥*. In the sequel, we assume that 1 ¢ X and 1 ¢ Y, i.e., X1,Y; # {1}. Since
all the sets X1, Y7 and Z; are uniform, by Proposition 5.2, necessarily

X;=PQ, Y1=QP, and Z, = (PQ)'P

for some non-negative integer ¢ and uniform sets P and ). Hence, we have the
following proposition:

Proposition 5.3. Let X ~z Y with X,Y C X1 and Z non-empty. Let X
(resp. Y1, Z1) be the set of the elements of X (resp. Y, Z) of the minimal length.
There exist uniform sets P and Q) and an integer ¢ > 0 such that X1 = PQ,
Y1 = QP, and Z; = (PQ)'P. In particular, if |X1| = 1 or |Y1| = 1 then P
and Q must be singletons and X; = {(uv)™}, Y1 = {(vu)™}, Z1 = {(uv)*1u}
for some words u and v, where uv is primitive, and some integers m > 1 and
k1 > 0.
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We finish this section with the following simple but useful facts.
Proposition 5.4. If sets X, Y and Z satisfy the conjugacy equation (5.1) then
(i) for every positive integer n, X"Z = ZY™;
(ii) Z C Pref(X*)NSuff(Y1).

5.2 Binary sets X and Y

In this and the following sections we will focus our study on the case when
the sets X and Y are binary. We will be able to characterize completely all
the solutions of the conjugacy equation in this case, i.e., all triples (X,Y, Z)
satisfying the conjugacy equation with X and Y binary.

Although, it might seem that the complete characterization in such a simple
case is easy, we will need several technical lemmas to accomplish this task. We
will divide them to several sections to make our considerations more compre-
hensive.

In this section we fix our notations, state a simple result which will be used
several times later, and in the end, explain the logical structure of the following
sections.

Let X = {z1,22} C X" and Y = {y1,92} C =" be binary sets with |z;| <
|z2] and |y1| < |y2| and let Z be a non-empty set such that XZ = ZY. Note
that, by (5.3), |z1| = [y1].

We divide the set Z into the pairwise disjoint layers:

Z =719 2y 3 ...,

where for all 21,29 € Z;, |z1| = |22] and for all 21 € Z;,20 € Z;11, |21] < |22].
Hence, for instance, the set Z; contains all shortest elements of the set Z.

We will need the following lemma which belongs to the folklore of the theory
of Combinatorics on Words.

k

Lemma 5.5. If a word z satisfies the equation (uv)*z = z(vu)* with uwv primi-

tive, v # 1 and k > 1, then z € (uv)*u.

k k k _

Proof. Let = (uwv)* and y = zv. Then zy = (uwv)*zv = 2(vu)kv = 2v(uv)
yx. The words = and y commute, and therefore have the same primitive root,
wv. Let y = (uv) for some [ > 1 (note that |y| > |v| > 0). Then z = (uv)'~lu €
(uv)*u. O

Finally, let us describe the way how we are going to characterize all solutions,
i.e., all triples (X, Y, Z), of the conjugacy equations with X and Y binary. First,
we will characterize all X and Y such that XZ = ZY for some non-empty set
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Z. In Sections 5.3 and 5.4 we will consider separately two main cases: the
commutative case and the non-commutative case, depending on whether z; and
x9 commute or do not. Further, in the non-commutative case we distinguish

two cases: |z1| = |z2| and |z1| < |z2|, which, by Proposition 5.3, coincide with
the cases |y1| = |y2| and |y1| < |y2|, respectively. In the commutative case and
the non-commutative case with |x1| = |z2| we will immediately obtain also the

characterization of the sets Z. In the last case the situation is more intricate,
therefore, we will deal with this case in a separate section, namely, Section 5.5.
In this case, by Lemma 5.10, there exists a word ¢ such that either Xt = tY
or tX = Yt, where t represents the singleton set {¢t}. In Subsections 5.5.1-3
we will determine all possible Z’s in terms of X and ¢ satisfying (5.1) and one
of the above conditions. Finally, in Section 5.6 we will combine all the results
and obtain the characterization of all solutions of the conjugacy equations in the
case when the sets X and Y are binary.

5.3 The commutative case

In this section we consider the case when x; and x5 commute.

Lemma 5.6. Let sets X = {z1,z2} C I and Y = {y1,y2} C 7T, with
|z1| < |z2| and |y1| < |ye|, be conjugates via a non-empty set Z. If 1,z € tT,
where t is primitive, then there is a word s such that y1,y2 € s and words t and
s are conjugates, i.e., t = uv and s = vu for some words u,v € X*. Moreover,
the set Z satisfies that Z C (uv)*u.

Proof. Take an arbitrary word z € Z. By Proposition 5.4, for any integers n > 0
and 7 = 1,2 there are integers i1, ...,1, € {1,2} and 2z’ € Z such that

! !
2yt =@y, ...m 2 €T

If we take n > 2 such that |z| + 2|y;| < n|z1|, then zy? is a prefix of t*. This
implies that z = t"™+u,, for some integer m, > 0 and some word u,, a proper
prefix of t. Let t = u,v, and s, = v u,. Then z € (u,v,)*u, and yf is a prefix of
s¢. Note that since ¢ is primitive, so is s,. Since |y2| > |y1| = |z1| > |t| = |sz|, by
Lemma 2.5, we have that y; (resp. y2) commutes with s,. Since s, is primitive,
we have p(y1) = p(y2) = s, i.e., we can conclude that y1,y2 € s7.

Now, it suffices to prove that for all z,z € Z, u, = uz and v, = vz. Since
s, = p(y1) = sz, we have u,v,uz = uzvzuz = uzv,u,. Further, since v, # 1, by
Lemma 5.5, we have uz € (u,v;)*u,, which implies uz = u,. We are done. [

5.4 The non-commutative case

In what follows we will assume that x1 and z3, and similarly, y; and ¥y, do not
commute. As an immediate consequence of Proposition 5.3 we have that the
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lengths of z; and x2 are equal if and only if the lengths of y; and y9 do so:

Corollary 5.7. Let sets X = {z1,72} C X1 and Y = {y1,52} C X7, with
|z1] < |z2| and |y1] < |y2|, be conjugates via a non-empty set Z. Words x1 and
9 have the same length, if and only if words y, and y2 have so.

Now, we will consider the simplest case when the sizes of words in X and Y
are equal.

Lemma 5.8. Let sets X = {x1,z2} C Xt and Y = {y1,y2} C =t be conjugates
via a non-empty set Z. If |x1| = |z2| = |y1| = |y2| then there are words u, v and
p such that |u| = |v| and a set I C N such that one of the following conditions
is satisfied:

(i) X = {pu,pv}, Y = {up,vp} and Z = |J X'p,
el

(i) X = {up,vp}, Y = {pu,pv} and Z = |J X*{u,v}.
el
Proof. Notice that the sets X and Y are uniform, so as a consequence of Propo-
sition 5.2 there are sets P,QQ C X* and I C N such that X = PQ, Y = QP and
Z = Uic1(PQ)'P. Now, if card(X) = 2 then either card(P) = 1 and card(Q) = 2
(the case (i) with P = {p} and Q = {u,v}), or card(P) = 2 and card(Q) =1
(the case () with P = {u,v} and Q = {p}). O

Observation 5.1. Note that in the case (i) of Lemma 5.8 we have Xp = pY,
and similarly, in the case (i) we have pX = Yp.

In the case when the lengths of words in X and Y are not all the same we
need the following 2 lemmas:

Lemma 5.9. Let sets X = {r1,22} C LT and Y = {y1,y2} C =, with
|z1] < |z2| and |y1| < |y2|, be conjugates via a non-empty set Z. If |xa| # |ya|
then x1 and 9 commute.

Proof. We will prove the claim only in the case |z3| < |y2|. By symmetry, the
claim can be proved in the same way also in the case |z2| > |y2|. Hence, assume
that |z2| < |y2|, and let z; be an element of Z of the minimal length. By
Proposition 5.4, for any positive integer n, the word w = z7z221 belongs to the
set ZY"™t!, Hence, we have w = 2'Yiy - Yiny, for some iy,... i1 € {1,2}
and z' € Z. As z; was chosen of minimal length, |z'| > |z1|; recall also that
|ys;| > |y1] = |z1| and |ya| > |za|. If for any j € {1,...,n + 1} we have i; = 2
then

wl =12 +[yis |+ + Yinga| 2 2| + nlwn] + ly2| > |21] + nlza]| + |22,
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a contradiction since |w| = n|z1| + |x2| + |2z1]|. Therefore iy = ... = ip41 = 1,
ie,w= x?_lxlmzl = z’y’f“. By a similar argument, we obtain x’f_la;gxlzl =
2"y for some 2" € Z. If we take an integer n such that (n+1)|y1| > |z12221],
we find that the words z1x22; and zex12; have the same length and are both
suffixes of y?“, therefore are equal. Hence, z; and x2 commute. O

Lemma 5.10. Let sets X = {z1,22} C X" and Y = {y1,y2} C T be conju-
gates via a non-empty set Z. If |z1| = |y1| < |z2| = |y2| then either z1 and x:
commute, or 2 and y2 are conjugates. Moreover, in the second case there exists
a word t such that either x1 ~¢ y1 and xo ~¢ yo, i.e., Xt =tY, or y; ~¢ x1 and
Yo ~t T2, i.e., tX =YL

Proof. By Proposition 5.3, we know that there exist words v and v and integers
k1 and m such that wv is primitive, z; = (uv)™, y; = (vu)™ and Z; = {21},
where z; = (uv)*wu. Note that z; ~(uwv)iu Y1 for any i > 0. We have either
Toz1 = 21Y2, OT xaz1 = 2'y1, for some 2z’ € Z. In the first case, we have
immediately that zo and y» are conjugates via z;, and we are done. In the
second case, let Z’ be the set of words in Z having the same length as z’.

We construct a sequence {z(i)}izl in Z'. Let 2(1) = 2/, For any i > 1 we
have, either xlz(i) = z(iH)yl, or xlz(i) = 21y2. First, assume that the second
case never happens. We have miz(j) = z(”j)yi for all > 1 and 5 > 1. Hence
all z) are suffixes of y} for some big enough integer i, and therefore they are
equal. Then z12’ = 2'y;, and by Lemma 5.5, we have 2’ € (uv)*u. Using

xo21 = 2'y1, (5.4)

we obtain z3 € (uv)™, hence z1 and x5 commute.
Now, assume that there is a non-negative integer n such that for all ¢ =
1,...,n, z12 = 20ty and 212" = 2;ys. These equalities imply that

x’f+lz' = :vlzv’l’z(l) = xlz("ﬂ)yi’ = 219297 - (5.5)

Equations (5.4) and (5.5) imply that
(uv)m("+1)x2(uv)k1u = $71L+1$221 = zlygyihLl = (uv)kluyg(vu)m(”+1) .
Now, if m(n + 1) < k; then we have that z1 ~; y1 and z2 ~; yo for ¢t =

k1—m(n+1) : ~ ~ m(n+1)—k1—1
. wise, = .
(uv) u. Otherwise, y; ~; 1 and y2 ~¢ zo for t = (vu) v. In
both cases we have that x5 and y2 are conjugates. O
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5.5 Characterization of the sets Z in the cases Xt =
tY and tX =Yt.

In the above sections we have proved that if X = {z1,22} C 1" and Y =
{y1,y2} C LT are conjugates, with |z1| < |z2| and |y1]| < |y2|, then either

e x; and z3 commute; or

e the lengths of all elements of X and Y are equal; or

o |z1| = |y1] < z2| = 92|

In the first two case we have also characterized all Z’s via which the sets are
conjugated, c¢f. Lemmas 5.6 and 5.8. Such a characterization is missing in the
last case, ¢f. Lemma 5.10. The goal of this section and its three subsections is
to complete Lemma, 5.10.

Assume that z; and z9 do not commute and that |z1| = |y1| < |z2| = |ya|.
Then, by Lemma 5.10 there is a word ¢ such that either

(a) Xt=1tY, i.e., x1t = ty; and zat = tys; or
(b) tX =Yt, i.e., txy = yit and txg = yot.

Since z; and y; (resp. x2 and y2) are conjugates via the same word ¢, by
Lemma 2.10, we have that

1 = (uv)™ and 1= (vu)™,
()" n =) .
z3=(pg)* and  y»=(qp)",
where uv and pq are primitive, m,7 > 1 are integers, and,
a) t=(uw)Mu= N ,
(a) (uv) (pq)™p (5.7)

(b) t=(vu)™v=(qp)"q,

respectively, for some M, N > 0.

Before we start analyzing the above two case, let us define the minimal
and maximal sets Z via which X and Y are conjugated. Assume that X and
Y are conjugates. Let Zxy be the class of all non-empty sets Z such that
X ~z Y. Obviously, if X ~z, Y and X ~z, Y for some Z1, Z> € Zx y then also
X ~z,uz, Y. Consequently, there exists the unique mazimal set Zyiax € Zxy
such that for all Z’ € Zxy, Z' C Zmax. Dually to the notion of the maximal
Zvax, we call a set Z € Zxy minimal, if there are no Z1, Zs € Zx y such that

Z1,49 C Z and Z = Z1 U Zs.

Of course, there might be several minimal sets Z. Clearly, all finite sets Z € Zx y
can be expressed as unions of minimal sets Z.
Finally, let us prove one simple lemma for the later use.
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Lemma 5.11. Let z; = (uv)™, and let a,b > 0 be integers. If T3 ~(yy)ay Y2 and
T2 ~(y)by Y2 With a # b then x1 and z2 commute. Similarly, if T2 ~(yp)ay Y2
and yo ~ (vu)by T2 then x1 and To commute.

Proof. Without the lost of generality we can assume that a > b. We have

oo (uv)%u = (uv)®uys = (uw)® °(uww) uys = (uv)? bz (uv)bu,

hence zo(uv)*® = (uv)? Pz5. By the defect theorem z3 and uv, and hence also,
r1 an xp, commute.
The proof of the second claim is completely the same. O

5.5.1 The maximal Z € Zxy in the case Xt =tY

Consider binary codes X = {x1,z2} C X7 and Y = {y1,y2} C X* which satisfy
the condition Xt = tY, and hence, also (5.6) and (5.7a). Let Zyax be the
maximal solution of the equation XZ = ZY. It is easy to check that X*t is a
solution of XZ = ZY, hence we have that X*t is a subset of Zyax.

We will show that Zyax = X*t. Assume that it is not the case, and let Zj be
the set of the shortest elements in Zyax — X*t. Now, take an arbitrary element
z € Zy. Similarly, as in the proof of Lemma 5.10 we can built the sequence of
elements of Zyax as follows:

A = 4
xlz(l) = Z(l+1)y1, for I = 1, e 7n;7 (58)
212D = 2y ifnl < oo,

where n/, > 0 is an integer or infinity.

Case n!, = co for all z € Zy. Then, similarly as in the proof of Lemma 5.10, we
have that all z)’s are equal to z = (uv)®u. Since, by assumption, this is true for
all z € Zjy, the set Zj is a singleton. Note that o # M, otherwise z =t € X*t.

We have that either xoz = Zyo, or z2z = Z(I)yl. In the first case, since
|Z| = |z| and Z) is a singleton, we have that either Z = z = (uv)®u, which leads
to a contradiction by Lemma 5.11, or z € X*t. Let z = z;, ... z;,t, for some
integer d > 0. We have

a:g(uv)a_M =Tiy ... TiyT2 .

Since @ # M, this is a non-trivial equation. Applying the defect theorem we
obtain that x; and x9 commute.
Hence, assume that
zoz = zWy; . (5.9)
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Again, consider the following sequence of elements of Zyax:

:Ulf(l) = Z(H—l)yla forl=1,...,n, (5.10)
2 2" = 2y, if n < o0, |

where n > 0 is an integer or infinity.

In the case, n = oo, we have, as above, that z(!) = (uv)ﬂu for some in-
teger # > 0. Then, by (5.9), 2o = (uv)™"#~% hence z; and x5 commute, a
contradiction.

Hence, assume that n is finite. By Equations (5.9) and (5.10) we have

e gz = Zypyt . (5.11)

Since |z| = |Z/| and Z) is a singleton, we have that either z’ = z = (uv)®u, or
z' € X*t. In the first case, if & < m(n + 1) then Equation (5.11) implies that
Y2 ~(py)mnt)—a-1, T2, which is a contradiction by Lemma 5.11. On the other
hand, if @« > m(n+1) then z9 ™~ (uv)a—m(n+1)y Y2, hence by Lemma 5.11, we have
that o —m(n+ 1) = M. But then we can write z in the form: z = 277t € X*t,
a contradiction.

In the second case, let Z’ = z;, ...x;,t for some integer d > 0. By Equa-

tion (5.11)

n+1 -M _ n+1
]z (uv)® =Tjy ... TiTox] .

If (uv)>M £ x’lﬂ'l then this is a non-trivial equation, implying that z; and z2
commute by the defect theorem. If (uv)*M = 277! then z = 27Tt € X*t, a
contradiction.

Case n’, is finite for an element z € Zy. By Equation (5.8) we have
x?;+1z = z'ygyffz, (5.12)

where |2/| < |z|, hence 2’ € X*t. Let 2’ = x;, ...x;,t, for some integer d > 0.
Therefore,
:v?’zﬂz =z .. .:Eid$2$7f’zt. (5.13)

We can assume that z ¢ (uv)*u, otherwise we have that z; and z2 commute by
the defect theorem.

One can construct a similar sequence of elements of Zyax as (5.8) starting
from zyi, instead of z1z. Since z ¢ (uv)*u, only the second case is possible:
there is an integer n > 0 and 2" € Zyax such that, similarly as in (5.12),

" 1 "
zy?”L = x1* 302", (5.14)
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Again, |2"| < |z|, hence we can write z” in the form 2" = z;, ... z; t, for some
integer e > 0. Putting Equations (5.12) and (5.14) together, we obtain

nl+n’/+1 n,+n+1
z'ygyler =t =x15+ =T202", hence,
n! +n//+1 n' +nu+1
Tiy o Tigtyoy” 7 =x1° 7 xowj, ...w;t, hence,

,nl +n//+1 nl +nu+1
Tiy - - TiyT2x” 7 =xF 7

2Ly -« - Ty -
Ifzy=--= Ti,,, =T1 then, by Equation (5.13), z = Tiy o .xidmga:rfzt €
X*t. Otherwise, we have a non-trivial equation, and by the defect theorem, x;
and x2 commute. In any case, we arrive to a contradiction.

We have proved the following result:

Claim 5.12. Let X = {z1,22} C X7 and Y = {y1,y2} C X" be binary codes.
If Xt = tY then the mazimal solution of the conjugacy equation X7 = ZY is
Zyvax = X*t.

5.5.2 All sets Z € Zxy in the case Xt =tY

Consider binary codes X = {z1,2z2} € " and Y = {y1,y2} € ¥T which
satisfy the conditions Xt =tY, (5.6) and (5.7a). Recall that Zx y is the class
of all non-empty sets Z such that X ~z Y. We have proved above that the
maximal Z € Zxy is Zmax = X*t. Next, we will show that all the minimal
sets Z € Zx,y are of the form X9t for some integer d > 0, and that all sets
Z € Zx,y are unions of the minimal ones. Obviously, all sets Z € Zx y are
subsets of X*¢. It is enough to show the following lemma:;:

Lemma 5.13. Let X = {z1,22} C X" and Y = {y1,y2} C X7 be binary codes
such that Xt =tY. Let Z € Zxy be a solution of the conjugacy equation. If
Ty ... Tigt € Z then X C Z.

Proof. Assume on the contrary that there is a z = zj, ...zt ¢ Z. Since
X7 = ZY4, there exist yi,,..., Yk, € Y and 2’ € Z, such that
Ljy - Tjg2 = z'ykl e Ykyg -

Since, by Claim 5.12, Z C X*t, we can write 2’ in the form 2’ = z;, ...z ¢, for
some integer e > 0. Therefore, we have

Tj .. TjTiy .. Tt =y . 2 tYk, ... Yk,, hence,

Ljy o TjyTiy o Tjy = XYy o LTy - - Thy -
As the consequence of the defect theorem and the fact that x; and zo do not
commute, we have that the equation above must be trivial, i.e., d = e, =, = x,

and z; = x,, for all » = 1,...,d. But this is a contradiction, since then
z=7¢€Z. O
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Corollary 5.14. Let X = {z1,72} C X1 and Y = {y1,92} C T be binary
codes such that Xt = tY. All minimal sets Z € Zxy are of the form Xt
for some integer d > 0, and all sets Z € Zxy can be expressed in the form
Z = Uger X% for some index set I.

5.5.3 The case tX =Yt

Consider binary codes X = {x1,z2} C X7 and Y = {y1, 92} C X* which satisfy
the condition tX = Y't, (5.6) and (5.7b). Assume that Z € Zxy is a solution of
the conjugacy equation XZ = ZY. Then Z = tZt is a solution of the equation
YZ = ZX. Indeed, we have

YZ =YtZt =tXZt =tZYt =t7tX = ZX .

Since Z is a solution of the conjugacy equation YZ = ZX satisfying Yt = tX,
Corollary 5.14 yields that there exists an index set I such that

tZt:Z:UYdt:Uth.
del del

This implies that Uge; X? = Zt, and therefore, for every index d € I and for
every word w € X4, t is a suffix of w, and so |¢| < |w|.

Let 7 be the minimal integer such that for every word w € X7, |w| > |¢].
The above implies that the index set I contains only the indexes greater or
equal 7, i.e., I C {r,7 +1,...}. Hence, we can write that Uge; X"+ = Zt,
where I is now any index set. Moreover, since tX71% = Y7+9¢ the conditions
Z =Uger X ™1 and Zt = Uger X712 are equivalent.

We showed that if Z is a solution of the conjugacy equation XZ = ZY, i.e.,
if Z € Zxy, then it can be expressed in the form Z = UdeIXT“lt*l. On the
other hand, it is easy to check that if Z is in this form then it is a solution of the
conjugacy equation XZ = ZY. Indeed, assume that Z = Uge; X779 1. Then
Zt = Uger X7, and we have

xXzZt=XJx=JXTMX = ZtX = ZYt,
del del

and hence, XZ = ZY.
The following claim follows easily:

Claim 5.15. Let X = {z1,22} C X" and Y = {y1,y2} C T be binary codes
such that tX = Yt. Let 7 be the minimal integer such that for every word
w € X7, |w| > [|t|. All minimal sets Z € Zxy are of the form X791 for
some integer d > 0, the marimal Z € Zx )y 1s X7X*t71, and all sets Z € Zxy
are of the form Z = Uge; X741, for some index set I.
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5.6 The complete characterization

Combining all lemmas proved above we obtain the following characterization of
all solutions of the conjugacy equation in the case when the sets X and Y are
binary.

Theorem 5.16. Let X = {x1,22} C X1 and Y = {y1,92} C X with |z1| < |2
and |y1| < |yz2| be conjugates via a non-empty set Z, i.e., X ~z Y. Then at least
one of the following conditions holds true:

(i) r1ze = 21, Y1Y2 = You1, i.e., words x1 and x2 (resp. y1 and y2)
commute, |z1| = |y1|, and moreover, the words 1 and y; are conjugates,
i.e., there are words v and v such that uv is primitive, x; € (uv)™ and
y1 € (vu)™. Finally, the set Z satisfies Z C (uv)*u;

(i3) there ewists a word t such that, either Xt = tY and Z = Ugcr X%, for
some index set I, or tX =Yt and Z = Uger X741 for some index set
1, where 7 > 0 is the minimal integer such that for every word w € X7,
w] > [t].

Conversely, if the sets X = {x1,22} C X7, Y = {y1,92} C =" and Z # 0 with
|z1] < |z2| and |y1| < |y2| satisfy either (i) or (ii), then X ~z Y.

Proof. The first part of theorem is a consequence of several claims we have
proved above: If |z1| = |z2| or |y1| = |y2|, by Corollary 5.7 and Lemma 5.8, we
are in the case (ii) with ¢ = p. If |z1| < |z2| = |y2|, by Lemma 5.10, we are
also in the case (ii). Otherwise, by Lemma 5.9, z; and x2 commute, and, by
Lemma 5.6, we are in the case (i). Further, in the case (ii), the characterization
of the set Z follows by Observation 5.1, Corollary 5.14 and Claim 5.15.
Conversely, assume that X and Y satisfy one of the above conditions. The
case (i) is straightforward. In the case (ii) the result follows by Corollary 5.14
and Claim 5.15. U

Note that the notation  ~, y means xz = zy, and therefore not necessarily
implies that y ~, . In fact, if words x, ¥y, z satisfy both  ~, y and y ~, = then
they all commute.

The following two corollaries are approaches to merge conditions (i) and (ii)
of Theorem 5.16 into one to obtain a more compact form. In the first one we
restrict the lengths of elements of X and Y.

Corollary 5.17. Let X = {z1,22} C X" and Y = {y1,y2} C T with |z1| =
ly1]| and |z2| = |y2|. Then X and Y are conjugates if and only if there exists a
single word t such that Xt =tY ortX =Yt.
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In the second one we consider the conjugacy via finite sets Z. In such case,
similarly as we show that the lengths of the shortest elements of X and Y are
equal, one can show that the same is true for the longest elements. Therefore,
the following corollary is an immediate consequence of the previous one:

Corollary 5.18. Let X = {z1,22} C X" and Y = {y1,52} C . Then X and
Y are conjugated via a finite non-empty set Z if and only if there exists a single
word t such that Xt =tY ortX =Yt.



Chapter 6

On the computational
complexity of infinite words

In Chapters 3 and 4 we have focused on combinatorial properties of infinite
words. In [CuK] and [HKL] two new areas of investigation were introduced:

e the descriptional complexity of infinite words, ¢.e., the comparative mea-
sure how complicated simple mechanisms are needed to generate particular
infinite words;

e the computational complexity of infinite words, i.e., the measure how much
resources (such as time and space) are needed to generate a certain infinite
word by a Turing machine.

The second paper concentrates on relations between these two complexities.
Further results in this direction can be found in [HK].

In [CuK, HKL, HK] several interesting problems are proposed. In this chap-
ter we will show that even some of the simplest problems proposed are equivalent
to well-known hard open problems in the complexity theory of Turing machines.

In Section 6.1 we recall the definition of the computational complexity, while
in Section 6.2 we define several simple methods for generating infinite words:

e iterating a morphism, the most commonly used method introduced already
in [Th];

e iterating a deterministic generalized sequential machine (a dgsm for short),
i.e., a deterministic finite state transducer;

e double and triple DOL TAG systems.

In Section 6.3 we study an open problem, proposed in [HKL], namely whether
all infinite words generated by iterating dgsm’s have logarithmic space complex-
ity. The problem has an affirmative answer in two special cases. First, it was

85
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shown in [HKL] that the greatest possible growth of a dgsm is exponential and
that infinite words generated by such dgsm’s have logarithmic space complex-
ity. Second, here we show that the smallest non-trivial growth is ©(nlogn) and
that, similarly, dgsm’s with such a growth generate infinite words which have
logarithmic space complexity.

The general problem has been attacked in [Le], claiming that the answer is
affirmative. On the other hand, in Section 6.3 we also show that this problem
is equivalent to an other hard open problem asking whether unary classes of
languages P and DLOG (denoted u-P and u-DLOG, respectively) are equivalent.
One can easily observe that u-P = u-DLOG if and only if U.>o DTIME(c") =
DSPACE(n).

In [HKL] another interesting problem is proposed: to find a concrete infinite
word which cannot be generated in logarithmic space. It is mentioned already
in [HK] that this problem is at least as hard as to prove L ¢ DLOG for some
L € NP. In Section 6.4 we show that it is exactly as hard as the problem to find
a concrete language, which does not belong to DSPACE(n). Note that even the
problem to find a concrete language, which does not belong to DSPACE(logn) =
DLOG is a hard open problem.

Finally, in Section 6.5 we separate the classes of infinite words generated by
double and triple DOL TAG systems as it was conjectured in [CuK].

6.1 The computational complexity of infinite words

The best way how to define the computational complexity of an object is to
describe it in the terms of Turing machines. For example, the Kolmogorov
complexity of a finite word is the size of the smallest Turing machine generating
the word, c¢f. [Ko]. In the case of infinite words we will use the model of
computation based on the k-tape Turing machine, which consists of

1. a finite state control;

2. k one-way infinite working tapes (we assume that there is a beginning on
the left of the tape, but the tape is infinite to the right) each containing
one two-way read/write head (i.e., the head can move in both directions
within the tape);

3. one infinite output tape containing one one-way write-only head.

We assume that the k-tape Turing machine starts in the initial state with
all tapes empty and behaves as a usual Turing machine. We say that the k-tape
Turing machine generates an infinite word w € XN if

1. in each step of the computation, the content of the output tape is a prefix
of w;
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2. for each prefix u of w, there is an integer n such that u is a prefix of the
content of the output tape after n steps of the computation.

Let M be a k-tape Turing machine generating a word w. The time and space
complexities of M are functions Ty : N — N and Sjs : N — N defined as follows:

e T)r(n) is the smallest number of steps of the computation of M when the
prefix of w of length n is already written on the output tape;

e Sy (n) is the space complexity of working tapes during first Ths(n) steps
of the computation, i.e., the maximum of lengths of words written on
working tapes.

Finally, for any integer function s : N — N we define the following complexity
classes:

e GTIME(s) = {w € £, there exists a k-tape Turing machine M generating
w and Ty (n) < s(n) for all n > 1};

e GSPACE(s) = {w € XN; there exists a k-tape Turing machine M gener-
ating w and Sps(n) < s(n) for all n > 1};

It follows from the speed-up argument, as in ordinary complexity theory,
that functions s(n) and c.s(n), where c is a constant, define the same space
complexity classes of infinite words, i.e., GSPACE(s) = GSPACE(c.s).

6.2 Iterative devices generating infinite words

In this section we define several simple methods used for generating infinite
words. The simplest and most commonly used method is to iterate a morphism
h : ¥* — ¥*: if h is non-erasing and for a letter a € X, a is a prefix of h(a),
then there exists the limit

w = nl;rrgoh (a).

An illustrative scheme how the infinite word w is generated by the morphism h
is depicted in Figure 6.1.

A natural generalization of this method is to use a more powerful mapping in
the iteration: a deterministic generalized sequential machine, a dgsm for short.

A dgsm 7 is defined by
1. a finite set of states Q;

2. the initial state gg € Q;
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h(a) h(b)

w = a‘b‘c‘ ‘

t
R W

Figure 6.1: An illustration of the process of generating an infinite word w by iterating a
morphism h. The reading head R is at the third position reading a letter ¢ and the writing
head W is at the position |h(a)| + |h(b)| + 1 prepared to write the word h(c).

7(a) 7q1 (b)

w=[a|ble] |

t
R W

S-=»

\QO\Ql\fD\ \

Figure 6.2: An illustration of the process of generating an infinite word w by iterating a
dgsm 7. Note that 74, is a variant of the dgsm 7 with the initial state g;.

3. an input alphabet ¥ and an output alphabet A (we will assume A = ¥ in
this note to be able to iterate the dgsm 7);

4. a transition relation § C Q x ¥ x A* x Q, where J is a partial function
QxX—=>A"xQ.

A sequence of transitions

a = (QO,U1,111,Q1)(Q1,U2,122,Q2) e (Qkfl,uk,vk,%)

is a computation of 7 with the input I(a) = ujusg ... ux and the output O(a) =
v1V2 . .. V. Obviously, for an input u € ¥* there exists at most one computation
a of 7 such that I(a) = u. Hence, the mapping 7(u) = O(I (u)) is a well-
defined partial function. As a convention we assume throughout that all dgsm’s
are non-erasing, i.e., 6 C Q x X x AT x Q. A mechanism of generating an infinite
word by iterating a dgsm 7 is illustrated in Figure 6.2.

The further generalization of above methods leads to double DOL TAG sys-
tems which consist of two infinite one-way tapes each containing a one-way
read-only head and a one-way write-only head. In each step of the generation
both read-only heads read a symbol and move right to the next square while the
write-only heads write the corresponding outputs to the first empty squares of
these tapes. We assume that the infinite word generated by a double DOL TAG
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a1 a2

w = |a1]asas] |

t
R W W
¢ ¢
b1 |2 |bs]
b1 B2

Figure 6.3: An illustration of the process of generating an infinite word w by a double DOL

TAG system containing rewriting rules (‘;11) — (g;) and (Z;) — (gz)

system is written on the first tape. A double DOL TAG system can be specified
in the terms of rewriting rules of the form:

<Z> — (g), where a,be &, a, € =T

Figure 6.3 shows an idea how a double DOL TAG system works.

Assuming that in each rewriting rule, || = 1, we get a mechanism which
iterates a dgsm. Finally, we can define triple DOL TAG systems by extending
the number of tapes to three.

6.3 Do dgsm’s have logarithmic space complexity?
In this section we study the following problem proposed in [HKL]:
e are all infinite words generated by iterating dgsm’s in GSPACE(logn)?

First, let us recall one result of [HKL] stating that an infinite word generated
by a dgsm which has an exponential growth has logarithmic space complexity.
Here, the growth of a dgsm 7 is an integer function g : N — N, where g(n) is the
length of 7"(a). Note that for a dgsm the exponential growth is the maximal
possible growth.

Next, we show that the smallest non-trivial growth of a dgsm is ©(nlogn)
and that dgsm’s with the growth ©(nlogn) generate infinite words which have
logarithmic space complexity. More precisely:

Lemma 6.1. If a dgsm has the growth o(nlogn) then it generates an ultimately
periodic infinite word. Such an infinite word can be generated in constant space.
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Proof. Let 7 be a dgsm with the growth o(nlogn) generating an infinite word
w = wiws..., with w; € 3. Let 74(z) (resp. o4(2)) be the output (resp. the
last state) of the dgsm 7 after reading the input z and starting in the state q.

We define two sequences of words and a sequence of states of the dgsm 7.
Let a be the starting symbol, go be the initial state and let 7(a) = 74,(a) = av.
Then put

up = a, v =, Q1 = 0g(a)

Up = Up—1VUn—1, Un = an71(vn—1)7 an = O-qnfl(vn_l)'
Observe that 7™(a) = upy1 = Upvy = -+ = uVIVy...V,. This implies 1 +
> i=1lvil =|m"(a)| = o(nlogn). Next, we estimate the length of the increment:

|up|. Since the dgsm 7 is non-erasing, we have that |v;| < |v,| for all ¢ < n. This
implies

2n 2n
nlvp| < Z lvj| < Z |vj| = o(2nlog 2n) = o(nlogn).
jont i=1

Hence, |v,| = o(logn), i.e., for any constant ¢ there exists an integer n such that
clnl < n. If we take ¢ = card(X)+ 1, there must be a repetition among the words

Vl,...,Vp, Sy V; = V;4} for some integers 7,7+k < n and k > 0. Then v; = v;44
for all § > ¢, hence the infinite word w = ujvivovs. .. is ultimately periodic and
it can be then generated in constant space, cf. [HKL], Lemma 3.1. O

Lemma 6.2. An infinite word generated by a dgsm with the growth ©(nlogn)
has logarithmic space complexity.

Proof. Let T be a dgsm with the growth ©(nlogn) generating an infinite word
w = wiwy.... Consider the sequences {up}n>0, {Vn}tn>0, {qn}n>0 defined in
the previous proof.

We construct a Turing machine M generating w as follows. In the first step
it writes w1 on the output tape, v; on the first tape and it sets to the state q.
In each step n > 1, it simulates the dgsm 7 on the input written on the first
tape starting in the state g,—1. The output of the simulation of 7 is written, at
the same time, to the output tape and to some temporary tape, so that after
the simulation it can be copied back to the first tape. Hence, in the end of the
step n the first tape contains the word v,,. The last state of the simulation of 7
in the step n is g, from which the simulation continues in the next step.

The space needed to generate the m-th letter of w is at most |v,|, where n
is an integer such that v, contains the letter w,, i.e.,

n—1 n
Z|vl| <m§2|vi|.
i=1 i=1
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One can show in the same way as in in the proof of Lemma 6.1 that |v,| =
O(logn). Moreover, since n < 1+377' [v;| < m, we have that |v,| = O(logn) =
O(logm). Hence, the Turing machine M works in logarithmic space. O

We have seen that the infinite words generated by iterating dgsm’s with the
maximal or the minimal non-trivial growth have logarithmic space complexity.
Intuitively, one could expect that by combining the proof techniques in these two
cases we could prove that all infinite words generated by iterating any dgsm’s
have such complexity, i.e., to obtain an affirmative answer to the problem stated
in the beginning of this section. In fact, such an attempt to prove this result
can be found in [Le]. However, here, we prove that the problem is equivalent
to the hard open problem whether classes of unary languages u-DLOG and u-P
are equivalent.

This in some sense contradicts the result of [Le] that all infinite words
generated by iterating dgsm’s have logarithmic space complexity: if the re-
sult in [Le] is correct then, together with the following theorem, we have that
D-EXPTIME = DSPACE(n), which is unlikely. Since [Le| gives only a sketch
of the proof of the result, we are unable to check if it is correct, but we believe
that some case has been overlooked in [Le].

Finally, let us prove our result claiming that the problem whether all infinite
words generated by iterating dgsm’s have logarithmic space complexity is a
difficult one.

Theorem 6.3. All infinite words generated by iterating dgsm’s have logarithmic
space complezity if and only if u-P = u-DLOG.

Proof. First, let us assume that u-P = u-DLOG. Take a dgsm 7 over a finite
alphabet X generating an infinite word w = wyws .... We prove that the space
complexity of w is O(logn). It is obvious that there is a 1-tape Turing machine
M generating the word w in quadratic time. Consider the languages L. =
{0"; n > 1, w, = ¢} for all ¢ € ¥. Note that L. is a unary language. We
can easily construct a Turing machine recognizing L. in quadratic time using
the Turing machine M. By the assumption there exist Turing machines M,
recognizing the languages L. in logarithmic space. Now, consider a 3-tape Turing
machine, which runs M_.’s to generate the n-th letter of w by using the third
tape as a working tape. It stores the binary representation of n on the first tape
and the position of the head of Turing machine M, on the second tape. Before
each run of any M, it erases the working tape and writes “the position 1”7 on
the second tape. It runs M, for each letter c of the alphabet of 7 until some M,
accepts, and then it writes the letter ¢ on the output tape. In each step of the
simulation of any M. it checks whether the position represented on the second
tape is the last one. Clearly such a machine generates the word w in logarithmic
space.
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Second, assume that all words generated by iterating a dgsm have logarithmic
space complexity. Take a Turing machine M working in polynomial time, i.e.,
T(M) = O(n*), recognizing a language L C 0*. We construct a 1-tape Turing
machine M’ with the tape divided into three layers. On the first layer it generates
unary inputs in increasing order, on the second layer it simulates computations
of M on the input stored on the first layer, and on the third layer it writes 1, if
the computation ends in an accepting state, or 0, if it ends in a rejecting state.
Before each simulation it erases the second and third layers of the tape.

Now, consider a dgsm 7 which carries out the computations

CZ' — Ci_|_1, for ¢ > 0,

where C; corresponds to the i-th configuration of M’. It also maps the starting
letter $ into the starting configuration of M’. Clearly, the iteration of 7 will
generate an infinite word: the sequence W = $CyC1C> ... of all configurations
of the computation of the Turing machine M'. By the assumption the infinite
word W has logarithmic space complexity, i.e., there exists a Turing machine
M'" generating W in logarithmic space. Finally, we define a Turing machine
M recognizing L, which on the input 0" runs M”, but instead of writing the
bits of W to the output tape, it compares its input with the input on the first
layer of each generated configuration, and moreover, it checks the first letter
on the third layer of each generated configuration. When the compared inputs
coincide and the first letter on the third layer is 0 or 1 then the Turing machine
M' halts in the rejecting or in the accepting state, respectively. Otherwise, it
continues in generating bits of the next configuration. Clearly, M"’ recognizes
the language L.

Now, it suffices to show that M"’ works in logarithmic space. Let C; be
the configuration in which M’ writes 0 or 1 on the first place of the third layer,
while the first layer contains 0”. Hence in the block of configurations B, =
Ci, 1+1...Ci,, M erases the second and the third layer of the tape, changes
the input on the first layer to 0™ and runs the Turing machine M on this input.
Since M works in time O(n*) the length of any configuration in block B, is at
most O(n¥) and the number of configurations in B, is at most O(n*). Hence the
length of the block B, is at most O(n?*). The Turing machine M"” generates the
first « blocks of configurations on the input 0® until it halts. Hence it generates
the prefix of the infinite word W of length

Y IBal = O(z*) .
n=0

Since M" works in logarithmic space, M"" will use space O(logz) to carry out
the computation on the input 0%. U
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6.4 Logarithmic space complexity

The second part of Problem 5.2 in [HK] asks to find a specific infinite word which
cannot be generated in logarithmic space. We show that this problem is as hard
as the problem to find a “natural” specific language which does not belong to
DSPACE(n), and this is a hard open problem. (By a “natural” language we
mean a language which is not obtain by diagonalization.)

Notation 6.1. Denote the n-th binary word in lexicographical order by lex(n).
Note that for n > 1, bin(n) = 1lex(n).

Definition 6.2. Let w be an infinite binary word and L C {0,1}* an binary
language. We say that w determines the language L if for every positive integer
n, the n-th letter of w is 1 if and only if lex(n) belongs to L.

Theorem 6.4. Let w be an infinite binary word and L the language determined
by the word w. Then the word w is in GSPACE(logn) if and only if L belongs
to DSPACE(n).

Proof. First, assume that w has logarithmic space complexity. Let M be a Tur-
ing machine generating w in logarithmic space. We construct a Turing machine
M’ recognizing the language L. Let lex(n) be the word on the input tape of M’,
where n is a positive integer. The length of the input is ©(logn). M’ simulates
M in the following way: it remembers only the last letter generated by M and
counts the number of them on a special working tape. When this number is
equal to n, it stops and accepts the input if and only if the last output letter
was 1.

Since M wuses only O(logn) space to generate the first n output letters
and the same space is needed for counting the number of output letters, M’
works in space O(logn), which is linear to the length of the input. Hence,
L € DSPACE(n).

Next, assume that L € DSPACE(n). So we have a Turing machine M
recognizing L in linear space. Let M’ be a Turing machine such that it generates
words in lexicographical order on the first working tape and runs M on each
generated word. Depending on if the word was accepted or rejected it writes 1
or 0 on the output tape. Clearly, the length of the n-th word on the first working
tape is ©(logn). M works in linear space, hence in space O(logn). Therefore,
M’ uses logarithmic space to generate the n-th letter: w € GSPACE(logn). O

As a consequence we have that if we would be able to show about a specific
infinite word that it does not belong to GSPACE(logn), then we would have
also a specific language which does not belong to DSPACE(n), and vice versa.
Note, that even the problem to show that a specific language does not belong
to DSPACE(logn) is open.
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6.5 Separation of double and triple DOL TAG sys-
tems

In the Section 6 of [HKL] is mentioned that the generation of infinite words
by double DOL TAG systems is a very powerful mechanism, and that it is not
known any concrete example of an infinite word which cannot be generated
by this mechanism, although by a diagonalization argument such words clearly
exist. In [CuK] (Conjecture 4) is conjectured that there exists an infinite word
that can be generated by a triple DOL TAG system, but not by any double DOL
TAG system. In what follows we are going to give the whole class of infinite
words which cannot be generated by any double DOL TAG system. Combining
this result with some results in [CuK] we can also give an affirmative answer to
Conjecture 4 of [CuK]. First, let us fix some notation.

Notation 6.3. Let w = ¢;...¢, be a word with ¢; € 3. Then symb(w) =
{¢i, 1 <i < n} denotes the set of all symbols occurring in the word.

Theorem 6.5. Let s : N — N be an integer function such that s(i) € 2°0), i.e.,
s() grows faster than exponentially. Then the infinite word

w = 10°M10°?10°G) .
cannot be generated by any double DOL TAG system.

Proof. Assume that w can be generated by a double DOL TAG system, and let
7 be such a system. Let M be the set of all symbols occurring on the second
tape of 7 and B the maximal number of symbols written on any tape in one
step, i.e.,

B = max{max(|al, |3|), where (Z) - <g

) is a rewriting rule of 7} .

Let w; = 10°(). First, we show that for any constant & > 1, there is a positive
integer j such that

3(j)+1:|wj| >k|w1...wj_11|—|—1. (61)
Since (i) € 2¢(9) | for any number ¢ > 1, there is an integer j such that
jwj| > ¢,
lwi| < forall1<i<j—1.
Then we have
j—1

Elwy ... wj11] < kzci <k-
=0

d—1
c—1"
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Taking ¢ = k + 1, we get k|wy ... w;j 11| +1 < ¢ < |wy).

Consider that we are reading the first 0 of w; = 10°) in the word w. Let
up (resp. v1) be the word written on the first (resp. second) tape between the
reading and the writing head. And let, recursively, u; (resp. v;) be the word
added on the first (resp. second) tape after reading v;_;. Note that for alll > 1,
we have that |vy ... 1| < |up...u.

We define also a set My C M as follows. For © € M, let (2) — (g) be a rule
of 7. Then, z € My if and only if & € 0". Hence, My contains every symbol
x € M such that when reading 0 on the first tape and the symbol x on the
second tape, it writes only 0’s on the first tape.

Assume that for some 7 > 1,

S il < (). (6.2)
=1

By (6.2), the words wj,...,u; contain only 0’s, hence when reading the words
v1,...,0;_1, only 0’s are written on the first tape. Since |v; ... v 1| < |ug ...y,
we have also that while reading the words vy,...,v;—1, only 0’s are read from

the first tape.

Counsider the following oriented graph. The vertices are elements of M. There
is an arc x — v, if there is a rule (2) — (g) in 7 such that y € symb(f3) (see
Notation 6.3). For X C M, let clos(X) be the set of all vertices of the graph
to which we reach from any vertex of X following the arcs. If clos(symb(vy)) C
My then since u; € 07, we have, by induction, that w; € 0% and symb(v;) C
clos(symb(v1)) € My for all [ > 1. This is a contradiction since there must be
u; containing 1.

Hence, there must be an oriented path starting in a vertex of symb(v;) and
ending in a vertex of M — M of length at most card(Mj). Let ¢y be the length
of the shortest of such paths. If we prove that (6.2) holds for ¢ = card(M)+1 >
card(My) 4+ 2 > ip + 2 then, since during reading vy, ..., v;,+1 only 0’s are read
and written on the first tape, we have that symb(v;),...,symb(v;,) € My and
symb(vi,4+1) N (M — Mp) # 0. This implies that 1 € symb(u;,+2) contradicting
(6.2).

Now it suffices to prove that Equation (6.2) holds for ¢ = card(M )+ 1. After
reading one symbol, the system 7 can write on any tape at most B symbols.
Hence, we have that |uji1], |vir1| < Bl for all I > 1. We estimate the left
hand side of (6.2):

card(M)+1 card(M)+1 card(M)
Z lug| < |ug] + Z B!y | < max(|uy, |v1]). Z B'.  (6.3)
=1 =2

Notice that 7' = anrd ) Bl is a constant for .
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Next, we estimate |u;| and |v1|. Consider the situation when the reading
heads are on the (n+ 1)-th symbols of both tapes. Then on each tape n symbols
have already been read and hence at most Bn symbols written. So, there is at
most (B — 1)n symbols between writing and reading head on each tape. This
implies

max(|uil, [vi|) < (B —1)|wy ... wj—11]. (6.4)

Taking k = T'(B — 1), we obtain

card(M)+1

(6.3) (6.4) 6.1)
> fwl < Tomax(|ual, jvi]) < T(B = 1wy ..wj_1l] < s(j)
=1
as desired. O

Let us recall one result proved in Examples 11 and 13 of [CuK].

Lemma 6.6. Let s : N — N be an integer function which is computable, i.e.,
can be computed by a Turing machine. Then there exists an integer function
t: N — N such that t(n) > s(n) for alln > 1 and the word

w = 10tW10t@10tG)

can be generated by a triple DOL TAG system. Moreover, such a function t can
be effectively computed.

The proof of the lemma is based on the following idea. Let M be a Turing
machine computing unary strings 15(1), 15(2) . and let 7 be a dgsm generating
the sequence of configurations of the computation of M. We can easily extend
the dgsm 7 to a triple DOL TAG system by coding all letters generated by 7 to
0, except for the last letters of the strings in the sequence 15() 15() . which
are coded to 1. Together with our result we have the following corollary.

Corollary 6.7. There exists an infinite word which can be generated by a triple
DOL TAG system, but not by any double DOL TAG system.

Hence, the inclusion “double DOL C triple DOL” is proper, as conjectured in
Conjecture 4 in [CuK].
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Appendix A

Proof of Lyndon and
Schutzenberger Lemma

Let us proof Lemma 2.7. Our proof is based on that in [Sh], however, the use
of not very difficult results, i.e., of Lemmas 2.6 and 3.8, will make our proof
shorter.

Proof of Lemma 2.7. Let m,n,p > 2 be integers. Assume that the word equa-
tion z™y™ = zP has a non-periodic solution. Lemma 2.6 yields immediately

|z| > (m —1)|z| > |z|, and

2] > (n— Dyl = lyl. (A1)

Hence, 4|z| > m|z| + n|y| = p|z|, i.e., we have that either p =2, or p = 3.

Casep = 3. If m > 3 and n > 3 then, by (A.1), we have |z| > 2|z| and |z| > 2|y|.
Hence, as above,

3lz[ > (m = Dfz[ + (n = Dyl + [z] + [y| = plz],

a contradiction. Therefore, without lost of generality we can assume that m = 2.
Again, by (A.1), we obtain

nly| = 3zl = 2|z > 3[z| = 2[z| = |z[ > (n = 1)[y[, and
2| = 3lz| = (n = Dyl = |yl > 3|z| = |2 = |z = [2] > |=].

We have the situation depicted in Figure A.l, i.e., there are non-empty words
1, x2,y1 and yo such that

T =172, Y =1vvYy2, and  z =z = 2oy = Yoy (A.2)

By the length argument we have that |y;| = 2|z1|. Since, by (A.2), both z;
and y; are suffixes of z, there is a non-empty word yg such that y; = yox1. Note
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n>2

1 Z2 Y1 Y2

Figure A.1l: The situation in the case z°y" = 2°.

that |z1] = |yo|. It follows that zjx9 = x2yop, i.e., by Lemma 2.10, there are
words p, ¢ and integers k > 1 and [ > 0 such that pq is primitive and

z1= ()",  wo=()*  and w2 =p(gp).
Therefore,

A2 N e
p(ap) Fp(pq)* = zayors = 21 X gyt = mol(ap)*(pa)Fye]" L. (A.3)

Further, by (A.1) and (A.2) it follows that
)

)l+k

(Al (A.2)
lyol + |z1] + [y2| = [yl < |2| =" |zz1| = 2|21 + |72,

which implies that |y2| < |z2|. Hence,

ly2(ap)*| < |z2(qp)¥| = Ip(ap)' ™.

Together with Equation (A.3) this yields that the pair (gp, pq) matches the word
p(gp)'t*. By Lemma 3.8 we have 3 possibilities. Either the pair matches the
beginning of the word p(gp)**, i.e., ya(gp)® = 1; or it matches the end of
the word, i.e., p(qp)"** = y2(gp)* and p(pg)* = (pq)*v2l(qp)* (pg)*ya]™ 2; or
I+ k = 1. The first case leads to a contradiction, since ¥ is non-empty. In the
second case, we have a non-trivial equation over {p, ¢}, a contradiction with the
primitiveness of pg. In the last case we have | = 0 and k = 1. Equation (A.3)
simplifies to pgpppq = y2(qppgy2)"~!. By the length argument we have that
n = 2 and |ya2| = |p|. Obviously, this implies that y» = p and pg = ¢p, again a
contradiction with the primitiveness of pq.

Case p = 2. Assume that (z,y, z) is a solution of the equation z™y" = 22 such
that z is of the minimal length. By (A.1), without lost of generality, there are
words z1 and x9 such that

1

T =122, and z=xm 11 = 22y

This implies z3y™ = zoz™ ‘o1 = (x221)™. If m > 3 then the contradiction
follows by the above considered cases. If m = 2 then, since |zoz1| = |z| < |2],
we have a contradiction with the minimality of |z|. O



