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Abstract

Since its introduction, fuzzy set theory has become a useful tool in the mathematical
modelling of problems in Operations Research and many other fields. The number of
applications is growing continuously. In this thesis we investigate a special type of fuzzy
set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as
possibility distributions) have been widely used in quantitative analysis in recent decades.

In this work two measures of interactivity are defined for fuzzy numbers, the possi-
bilistic correlation and correlation ratio. We focus on both the theoretical and practical
applications of these new indices. The approach is based on the level-sets of the fuzzy
numbers and on the concept of the joint distribution of marginal possibility distributions.
The measures possess similar properties to the corresponding probabilistic correlation
and correlation ratio. The connections to real life decision making problems are empha-
sized focusing on the financial applications.

We extend the definitions of possibilistic mean value, variance, covariance and cor-
relation to quasi fuzzy numbers and prove necessary and sufficient conditions for the
finiteness of possibilistic mean value and variance. The connection between the con-
cepts of probabilistic and possibilistic correlation is investigated using an exponential
distribution.

The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy
Pay-Off method. This model for real option valuation is based on findings from earlier
real option valuation models. We illustrate the use of number of different types of fuzzy
numbers and mean value concepts with the method and provide a real life application.
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Sammanfattning

Diffus mängdlära (eng. “fuzzy set theory”) har blivit ett användbart verktyg fär matem-
atisk modellering av problem inom operationsanalys samt även inom många andra
omr̊aden. Antalet tillämpningar ökar kontinuerligt. I denna avhandling undersöks en
speciell typ av diffusa mängder, det vill säga diffusa tal (eng. “fuzzy numbers”). Diffusa
tal (som i avhandlingen kommer att beaktas som mäjlighetsdistributioner, eng. “possi-
bility distributions”) har använts i stor utsträckning inom kvantitativ analys under de
senaste decennierna.

I detta arbete kommer tv̊a mått av interaktivitet att definieras för diffusa tal, möjlighets
(eng. “possibilistic”) korrelation och korrelationsförh̊allande. Vi fokuserar b̊ade p̊a den
teoretiska och praktiska tillämpningen av dessa nya index. Metoden bygger p̊a redan
etablerade niv̊a-uppsättningar av diffusa tal och p̊a ett begrepp gällande marginella
möjlighetsdistributioner. Dessa har liknande egenskaper som motsvarande “traditionella”
sannolikhetskorrelationer. Genom att fokusera p̊a finansiella tillämpningar granskar vi
praktiska tillämpningsmöjligheter inom beslutsfattandeprocessen.

Vi bygger vidare p̊a definitionerna av möjliga (eng. “possibilistic”) medel-värden,
varians, kovarians och korrelation till kvasi diffusa tal och vi stipulerar nödvändiga och
tillräckliga villkor för ändlighet av möjlighets-medelvärde och varians. Sambandet mel-
lan begreppen sannolikhets- och möjlighetskorrelation utreds med hjälp av en exponen-
tiell fördelning.

Vi demonstrerar användningen av diffusa tal i praktiska tillämpningar av den s̊a
kallade “fuzzy pay-off” metoden. Denna modell för värdering av olika handlingsalterna-
tiv är baserad p̊a resultat fr̊an tidigare värderingsmodeller för realoptioner. Vi illustrerar
ocks̊a användandet av den nya metoden genom praktiska tillämpningar.
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Chapter 1

Introduction

The role of uncertainty is inherent in the mathematical modelling of decision-making
problems and in their applications. The inevitable presence of uncertainty in complex
environments facilitates the development of new techniques to aid the decision makers
in risk assessment and mitigation. There exist several definitions of uncertainty in the
literature so it is important to clarify what we mean by it. In [1] uncertainty is defined
as a situation in which one has no (or limited) knowledge about which of several states
of nature has occurred or will occur. This definition highlights the observation that
uncertainty is not only present in future events but it also pertains to the analysis of the
past.

To examine this from a different perspective, it is evident that uncertain variables
should be classified at least into two classes [24]:

• subject to intrinsic variability (randomness),

• totally deterministic but anyway ill-known, either because they pertain to the
future, or because of the lack of knowledge (incomplete information).

Since in these two cases the sources of uncertainty are different by nature, the appropriate
mathematical models to handle different settings have to be choosen carefully [47].

In the class of problems subject to randomness, the traditional choice is that of
using probability theory based methods (stochastic processes, statistical estimations,
queueing theory). The reliability of these models when facing incomplete information
is not straightforward. The theory of fuzzy sets was introduced in 1965 by Zadeh [106]
as a tool to represent and analyse quantities which possess uncertain features different
from randomness, and later [111] possibility theory was developed based on fuzzy sets.
Since the introduction of fuzzy sets into decision analysis (one of the first papers in this
direction was the influential contribution of Bellman and Zadeh [2]), this theory was
proved to be an efficient tool to manage problems when facing incomplete knowledge
and an alternative model to probability theory in situations when its use is not well-
grounded.
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In a recent paper [25], Dubois specified the main application areas of fuzzy set theory
in decision sciences:

• Gradual preference relations [37].

• Multicriteria aggregation techniques [42].

• Fuzzy interval computations to cope with uncertainty in numerical aggregation
[97].

• Fuzzy interval comparison to choose between alternatives with fuzzy ratings [96].

• Linguistic variables to model human-originated information [108, 109, 110].

1.1 Quantitative view on fuzzy numbers

One of the most attractive features of probability theory is the existence of some prop-
erly defined normative measures. As the concepts of mean value, variance, covariance
and correlation coefficient are well-known and extensively used measures of different
characteristics of probability distributions, it has been an important research question
since the introduction of fuzzy sets and possibility theory, to formulate the corresponding
definitions for possibility distributions (if they are meaningful in this context). As one
of the first systematic approaches, it is important to mention the interval-valued mean
value of a fuzzy number [28], which is based on random sets.

In 2001, Carlsson and Fullér defined the possibilistic mean value and variance of
a fuzzy number [9] and their definition only uses the concepts of possibility theory
independently of probabilities. These concepts have been studied and applied in many
fields since their introduction. In the following years, Carlsson, Fullér and Majlender
introduced the notion of possibilistic covariance and correlation [13, 39] using the same
approach. Although the interaction of possibility distributions has already been defined
in [108, 109, 110], this novel definitions of covariance and correlation provide a tool to
obtain proper estimations concerning the relationships of the variables in a complex
model which is essential in many applications.

Example 1.1. Interactivity plays a very fundamental role in financial mathematics and
portfolio optimization. Suppose, an investor has an existing portfolio of stocks and he/she
has an option to choose between two new assets which can be included in the portfolio.
Assuming that the expected return will be the same whatever option is chosen, how can
it be decided, which one to invest in? From the general theory of portfolio optimization,
it is known that in order to minimize the risk, the best choice is the portfolio with the
minimum aggregated variance. To estimate the variance, it is naturally essential to
utilize a measure which can provide a reliable assessment of risk. Without appropriate
measures, the identification of promising business opportunities becomes very difficult.
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1.2 Fuzzy logic in real life decisions

The standard process of handling uncertainty in real life decision making can be sum-
marized in 3 main steps [65]:

• Reduce uncertainty by a thorough information search,

• Quantify the residue that cannot be reduced,

• Plug the result into some formal scheme that incorporates uncertainty as a factor
in the selection of a precourse of action.

In line with the previously mentioned distinction of different types of uncertainties,
Koopmans [52] classifies them into two groups: (a) environment related uncertainties,
which are unpredictable, and the decision maker has no (or hardly any) means to prevent
them; (b) uncertainties related to the inaccuracy of the decision maker which is rooted
in the lack of aprropriate knowledge or simply in wrong judgements. The uncertainties
belonging to the second group are highly related to the behavioural acpects of decision
making and cannot be described by a model which builds on the intrinsic variability of
events. These are the cases when fuzzy set theory can provide a useful tool.

When the traditionally used crisp estimations are replaced by fuzzy numbers, we can
express in the models the inaccuracy of human perception. This approach also applies
to the cases when the existing historical data is not reliable enough to be the basis of the
estimation of future events (in stock markets, unexpected events happen more and more
frequently [91]), or there is no historical data at all (real options are usually based on
investments which cannot be observed in real markets). This makes these models more
realistic, as they do not simplify uncertain distribution-like observations to a single point
estimate that conveys the sensation of no-uncertainty (like the net present value of an
asset).

1.3 Research problems and the structure of the thesis

The dissertation investigates three main problems:

• interactivity measures of fuzzy numbers,

• generalization of characteristic measures to quasi fuzzy numbers,

• the application of fuzzy numbers in real world decisions, specifically in real option
analysis.

Chapters 2 and 3 provide the research methodology and the basic definitions re-
quired for the detailed analysis, respectively. In this section, we shortly summarize the
contributions from the different chapters and specify the connections to the published
papers.
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Interacivity measures

A measure of possibilistic correlation between fuzzy numbers A and B has been defined
in [13] as their possibilistic covariance divided by the square root of the product of their
possibilistic variances. In this paper the authors proved that the correlation coefficient
takes its value from the [−1, 1] interval if the level-sets of the joint distribution are
convex. In Chapter 4 of this thesis, an example is shown to illustrate that this property
does not necessarily hold when the level-sets are non-convex. After this a new index
of interactivity is defined for fuzzy numbers which always takes its value from the unit
interval and possesses similar properties to the probabilistic correlation coefficient. This
can be seen as a new/alternative possibilistic correlation. The behaviour of this new
concept is illustrated through a series of examples describing the most important and
commonly used joint distributions. This chapter is supported by the following original
publications:

• Robert Fullér, József Mezei and Péter Várlaki. An improved index of interactivity
for fuzzy numbers, Fuzzy Sets and Systems 165 (2011), 56-66.

• Robert Fullér, József Mezei and Péter Várlaki. Some Examples of Computing
the Possibilistic Correlation Coefficient from Joint Possibility Distributions, in:
Imre J. Rudas, János Fodor, Janusz Kacprzyk eds., Computational Intelligence
in Engineering, Studies in Computational Intelligence Series, 313(2010), Springer,
153-169.

To answer the question whether it is possible to define a different interactivity mea-
sure for fuzzy numbers which reflects different properties of the marginal distributions
than the correlation, in Chapter 5 the correlation ratio of fuzzy numbers is defined
based on the definition of the probabilistic correlation ratio. This new notion is not
a simple modification of the correlation, it describes a different point of view on the
relationships between possibility distributions. When one has to deal with a problem of
great complexity and a very complicated structure of interaction between the variables,
it is always advisable to examine it from different perspectives, and this new definition
provides an alternative tool to analyse the sensitivity of decisions (for example in a port-
folio optimization problem in possibilistic settings). This chapter is based on the original
paper:

• Robert Fullér, József Mezei and Péter Várlaki. A Correlation Ratio for Possibility
Distributions, in: E. Hüllermeier, R. Kruse, and F. Hoffmann eds., Proceedings
of the International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU 2010), June 28 - July 2, 2010,
Dortmund, Germany, Lecture Notes in Artificial Intelligence, 6178(2010), Springer-
Verlag, Berlin Heidelberg, 178-187.
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Quasi fuzzy numbers

In most of the applications, although theoretically the final result can take its value
anywhere in the set of real numbers, in practice the tails of the distributions are truncated
to obtain a fuzzy number with bounded support (in most of the cases the simplest
distribution, a trapezoidal or triangular fuzzy number). This is common in possibilistic
modelling, not in statistics. Recent years in the financial markets have shown that it is
not possible to overestimate the effect of specific events [91]. In these cases the use of
fuzzy numbers with infinite tail (quasi fuzzy numbers) can provide a solution. In Chapter
6 the problem of the generalization of the characteristic measures to quasi fuzzy numbers
is investigated and a subset of them is identified which possesses certain properties
(finiteness of mean value and variance). The following original paper contributes to this
chapter:

• Christer Carlsson, Robert Fullér and József Mezei. A Quantitative Approach to
Quasi Fuzzy Numbers, IFSA World Congress, June 21-25, 2011, Surabaya, Indone-
sia, FN-001-1-FN-001-6.

The fuzzy pay-off method

Fuzzy sets are sets that allow gradation of belonging, such as ”the value of a future
cash flow at year 5 is about 5000”. This means that fuzzy sets can be used to formal-
ize inaccuracy that exists in human decision making and as a representation of vague,
uncertain or imprecise knowledge, e.g., future cash-flow estimation. Chapter 7 presents
a new method for valuation of real options from fuzzy numbers which is based on the
previous literature on real option valuation, especially the findings presented in [21] and
the model is illustrated by a selection of different types of fuzzy numbers. Two different
concepts of mean value for fuzzy numbers are employed and the results are compared.
Finally, the method is illustrated by a real world decision making example (valuation of
patents). This chapter is based on the original publications

• Mikael Collan, Robert Fullér and József Mezei. A Fuzzy Pay-off Method for
Real Option Valuation, Journal of Applied Mathematics and Decision Sciences,
2009(2009), 1-14.

• Mikael Collan, Robert Fullér and József Mezei. A Fuzzy Pay-Off Method for Real
Option Valuation: Credibilistic Approach, in: Y. Gunalay and S. Kadipasaoglu,
S. eds., Proceedings of the 3rd International Conference on Applied Operational
Research - ICAOR 2011, Istanbul, Turkey, 267-276.
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Chapter 2

Methodology

This dissertation can be positioned in the intersection of two research fields:

• Operations Research (OR): mathematical modelling has always been an essential
part of OR. The aim of these methods is to help organizations and decision makers
to find the optimal solution (or a solution which is as close to optimal as it is
possible). Probabilistic modelling has played a fundamental role in OR from the
beginning and after the introduction of fuzzy sets, possibility theory also became
a very popular research topic, particularly in decision analysis.

• Financial mathematics: the theory of option valuation has been a very significant
research direction in the last decades. In Chapter 7 real options are considered
which are different from financial options by nature. In general, the models used for
valuing this type of investments are originated from financial options, not taking
into consideration the unique characteristics inherent to real options. Our aim is
to propose a model which incorporates the specific properties of real options.

In this chapter first a short description of these two research fields is presented with
the focus on the modelling of uncertainty in OR and finance. The research philosophies
adapted in the thesis are specified and finally a section is provided on the nature of
probabilistic and possibilistic modelling.

2.1 Operations Research

Operations Research is an aid for the executive in making his decisions by providing
him with the needed quantitative information based on the scientific method of analysis
[85, 73]. Operations Research was formally developed during the Second World War to
plan and organize military operations in a more efficient way than ever before. Since its
introduction, the scope of Operations Research has been extended to a wide range of
fields and the developed mathematical models became indisposable in the everyday ac-
tivities of organizations and provide an efficient way to solve various problems (inventory
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analysis, project management, resource allocation, routing, scheduling). The interactive
process of problem solving through Operational Research can be summarized in the
following 3 steps:

1. The identification of all the possible alternative solutions for the problem.

2. Using a mathematical model (and taking into account the preferences of the de-
cision maker), the aim is to find the optimal solution if it is possible. If the
complexity of the problem makes it impossible to identify the optimal solution in
an acceptable timeframe, heuristic methods can be employed to find a satisfactory
solution.

3. The decision maker reflects his opinion about the solutions found, and if one of
them is accepted, it can be tested in a real life situation. If the derived alternatives
do not meet the requirements of the decision maker, a new solution has to be found
by refining the model based on new specifications.

In order to provide an efficient and useful tool for organizations, a mathematical
model has to possess 3 essential properties [43]: understandable, verifiable and repro-
ducible. When modelling an operational/decision-making problem, first we need to
understand a set of activities constituting a complex system, then utilize this knowledge
to predict or improve the performance of the system in a verifiable way, and this process
should be reproducible.

The modelling of uncertainty plays a fundamental role in Operations Research and
specifically in decision making. Uncertainty can emerge from various sources [49]:

• act-event sequences,

• event-event sequences,

• value of consequences,

• appropriate decision processes,

• future preferences and actions,

• one’s (in)ability to affect future events.

This thesis is mostly concerned with two of these problems:(a) appropriate decision
processes require appropriate and reliable decision models (the construction of normative
measures to quantify the available knowledge in a processable and useful way); (b)
value of consequences: before a company takes on an investment opportunity, a reliable
estimation of the value of this investment is required, even in situations when there is not
enough historical data available to employ for example statistical models. The methods
in this case should be built on the subjective judgements of the decision makers.

10



Multiobjective optimization

The general purpose of multiobjective/multicriteria optimization [32] is to find a com-
promise when there are several (more than one) objectives present, which conflict each
other. It is required in practical applications that the offered solution should be the best-
fit to the needs of the decision maker. This compromise between conflicting objectives
is termed as an optimality principle. Contrary to the single objective case, the optimal-
ity in multicriteria optimization can be defined in various ways, for example Pareto or
proper Pareto optimality, weak efficiency, lexicographic optimality. The choice of the
optimality principle in a given problem depends on the type of the solution required and
specified by the decision maker. Optimization with multiple objectives also appeared in
the context of fuzzy set theory [114].

A general multicriteria optimization problem has the following form

min
x∈S

{f1(x), f2(x), . . . , fk(x)},

where fi : R
n → R are the objective functions. S ⊂ R

n is the set of all possible solutions
(feasible set in the decision space). The points in the image of the feasible set, Z ⊂ R

k,
are termed objective vectors and denoted by z = f(x) = (f1(x), f2(x), . . . , fk(x))T . The
most commonly used optimality principle is the following:

Definition 2.1 ([32]). An objective vector z∗ ∈ Z is Pareto optimal or efficient if there
does not exist another objective vector z ∈ Z such that zi ≤ z∗i for all i ∈ Ik and zj < z∗j
for at least one index j.

Example 2.1. A portfolio selection problem can be formalized in terms of a bi-objective
optimization problem: the two objectives are the expected return and the variance of
the portfolio. Assuming the risk aversion of the investors, the expected return has to
be maximized and simultaneously the variance has to be minimized. If 3 portfolios are
considered with returns and variances listed in Table 2.1, when employing the Pareto

Return Variance

P1 100 30

P2 120 35

P3 80 40

Table 2.1: Simple example for portfolio selection

principle it can be seen that P1 and P2 dominate P3, but this rule does not help to
decide between the first 2 portfolios: in terms of return P2 is better, but P1 offers smaller
variance.

To handle the situations when there are several non-dominated solutions present (as
in the previous example), the usage of trade-offs is suggested. If the decision maker
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is able to quantify his preferences, for example: 10 units of increase in the return and
5 units of decrease in the variance can be considered equivalent to him, then in the
previous example, P2 is the portfolio with the best performance. In [46], the concept of
trade-offs has been formulated in terms of a cone of trade-off directions. This approach
is investigated further by Mäkelä, Nikulin and Mezei in [77, 76].

2.2 Mathematics in finance

Mathematical finance aims at constructing formal mathematical models to help decision
makers in the financial markets. “The secret of success in financial management is to
increase value” [6]: this can be facilitated by finding the appropriate answers to two
crucial problems:

1. Which investment opportunities should be undertaken by the company?

2. What is the exact amount of capital to be invested in the carefully chosen as-
sets/projects?

One of the simplest, but most commonly used methods to estimate the value of an
asset is the net present value (NPV) [36] which is the total present value of a time
series of cash flows. It is a standard method for using the time value of money to value
long-term projects. The cash inflow/outflow for every time period is discounted back to
its present value and the value of the investment is simply the sum of these discounted
cash-flows:

NPV =
T

∑

t=0

Ct

(1 + r)t
,

where r is the discount rate and Ct is the net cash flow at time t. In this thesis the main
focus is on the pricing of (real) options which cannot be valued by this simple method.

Option pricing

A financial option is the right - but not the obligation - to engage in a future transaction
concerning a financial asset (or assets) at a price fixed in the contract between the buyer
and the seller.

• A call option gives the buyer of the option the right to buy the underlying asset
at a fixed price (strike price) at the expiration date or at any time prior to the
expiration date (European or American call options, respectively).

• A put option gives the buyer of the option the right to sell the underlying asset
at a fixed price at the expiration date or at any time prior to the expiration date
(European or American put options).
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Example 2.2. In plain words it means that if an investor buys a call option, he/she
will exercise it at the expiration date (in case of the European option) if the price of
the underlying stock in the market is higher than the strike price and this difference is
large enough to compensate for the price of the option in order to realize profit from the
transaction. In case of a put option, the market price has to be lower than the strike
price to realize the profit.

The difference between the European and American options lies in the expiration
date: the American option can be exercised anytime befor the expiration. This difference
makes it more difficult to calculate the price of an American option while there exist
several pricing formulas to calculate the value of European options. It is important to
note that because of the possibility to exercise the option anytime before expiration, the
price of an American option cannot be lower the the corresponding European option on
the same underlying asset.

There exist several ways to determine the value of a financial option, the three most
commonly used models originate from the 1970s:

• The Black-Scholes model [3]: the value of the option is described by a partial
differential equation and the solution is based on the existence of a perfect hedging.

• Binomial model [20]: a discrete time model in which the value of the option at a
timepoint corresponds to a node in a binomial tree. It is important to note that the
solution of this model approximates the solution derived from the Black-Scholes
equation.

• Monte-Carlo model [4]: the price of the option is obtained as the discounted average
of “possible” values which are generated by simulations of the process.

Since its introduction, the Black-Scholes model became the most widely used valua-
tion method. It is worthwile to recall the assumptions which are necessary in order to
obtain the price of the option through the partial differential equation [3]:

• There is a constant and known interest rate.

• The stock price follows a random walk in continuous time with a variance rate
proportional to the square of the stock price. The variance of the undelying asset
is constant.

• There are no dividens or transaction costs.

• It is possible to borrow any fraction of the price of a security to buy it or to hold
it, at the short-term interest rate.

• There are no penalties to short selling.

13



To formulate the price of a European call option obtained from the Black-Scholes
model, the following notations will be used: S is the price of the stock, C(x, t) is the
price of a European call option at time t, c is the strike price of the option, r is the
annualized risk-free interest rate, σ is the volatility of the stock’s returns and T is the
date of expiry. Then the value of the option is:

C(x, t) = xN(d1) − cer(t−T )N(d2),

where N denotes the standard normal cumulative distribution function,

d1 =
ln(x

c ) + (r + σ2

2 )(T − t)

σ
√

T − t

and

d2 =
ln(x

c ) + (r − σ2

2 )(T − t)

σ
√

T − t
= d1 − σ

√
T − t.

A similar formula can be derived for a call option.

In [11], Carlsson and Fullér introduced the possibilistic version of the Black-Scholes
model where the price of the stock and the strike price are represented by trapezoidal
fuzzy numbers. In the paper, the model is used to determine the value of a real option.

The term real option was introduced in [75] and it refers to the valuation of options
where the undelying asset is non-financial. For example, a real life investment or an
R&D project can be seen as an option and modelled by using the theory of traditional
financial assets. The main factors, where a real option differs from a financial one, are
the following [5, 94, 90]: the maturity is always longer; the value can be increased by
managerial decisions; large value; the value depends on the competition; real options are
not traded (there exixts no market of real investments). These fundamental differences
raise the question of the applicability of the traditional valuation methods in the context
of real options. This problem will be further investigated in Chapter 7.

2.3 Philosophical aspects

As this thesis is concerned with mathematical methods and the application of the models
to real life practical problems, the most important philosophy underlying the research
process is positivism. The principles of positivism were described by August Comte in
the 19th century for the first time. One of the main components of positivism is the
scientific method which replaces the methaphysics in all sciences, thus claiming that the
logic behind every type of particular research should be the same, independently of the
the phenomenon.

In particular in mathematics, the seeds of positivism can be observed starting from
the ancient Greek scientists. One of the most important contributors of positivism in
mathematical sciences was Bertrand Russell, who published his monumental work, the
Principia Mathematica co-written by Alfred North Whitehead in the 1910’s. The aim
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of this book is to show that every mathematical statement can be derived from a small
set of axioms using only mathematical logic. The ideas of Russell’s book (together with
Ludwig Wittgenstein’s Tractatus Logico-Philosophicus) had significant influence on the
development of the logical positivism. This movement can be characterized by two main
propositions:

• Verifiability: a statement is meaningful, if it can be verified in finite number of
steps

• Unified Science: not only the driving methodology, but a unified scientific language
in all the sciences

Although this ’radical’ direction of positivism slowly disappeared from the main stream
of philosophy of science as some of its ideas proved to be inapplicable in many areas, in
developing mathematical models this interpretation can not be overlooked.

Another important principle of positivism is the testability (empirical investigation).
This aspect becomes especially crucial when developing mathematical models for fi-
nancial problems. The last decades have seen many attempts to provide a reasonable
mathematical description of financial markets but it would be very difficult to find one
of them which would stand against the theory of falsifiability ([91]).

Probably the most influential philosophical approach for my research has been the
work of Imre Lakatos. His book, Proofs and Refutations [56] describes the progress of
mathematics through a series of attempts to prove a theorem. Every step of the process
originates from a counterexample to the previous proposal and results in a proof which
generalizes and accumulates all the proceeding useful ideas and tries to correct the mis-
takes (this idea of progress motivated for example the new definition of correlation for
fuzzy numbers). Another important contribution of Lakatos is the proper formalization
of the definition of a research programme ([57, 58]). He classified research into progres-
sive and degenerate cases and introduced the concept of pseudoscience (which does not
make any novel observations or discover previously unknown facts). For example, he
reasoned that the neoclassical theory of economics is a pseudoscience. If we examine the
development of fuzzy set theory and how it has found its way to practical applications
(besides the uncountably many theoretical contributions), it is safe to claim that this
research programme proved to be a progressive scientific theory in terms of Lakatos.

2.4 Possibilistic and probabilistic modelling

To avoid any confusion about the topic of this thesis, it is important to clarify that
although probability and possibility theory will be used extensively, the scope of this
thesis is different from the theory of uncertain or fuzzy probabilities. This subject is
well-represented by imprecise probabilities (lower and upper probabilities [23], belief
functions [87]). It is well-known that every possibility distribution can be investigated
as an upper probability: it defines a unique set of admissible probability distributions.
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Instead of defining the characteristics of fuzzy numbers by using this set of probability
distributions (as in [28]), we use the fundamental structure of level-sets and define a
uniform distribution on these sets.

There has been a long lasting debate amongst the researchers in probability and
possibility theory about the superiority of one of these directions. I do not think that “the
only satisfactory description of uncertainty is probability” [64] or “probability theory
should be based on fuzzy logic” [112]. It always depends on the structure of a problem
to decide which one of the available tools is more appropriate. To define the set of
problems in which possibility theory is maybe more reasonable, we should turn to an
article which was written almost 20 years before the introduction of fuzzy sets: if a
theory has been developed as a reaction to the lack of appropriate models to solve some
specific problems, this can clearly justify its usefulness.

In [101] (the article was analysed in [86]), Weaver mentioned a trichotomy of scientific
problems:

• ’Problems of simplicity’: that physical science before 1900 was largely concerned
with.

• ’Problems of disorganized complexity’: the number of variables is very large, the
behaviour of the variables is individually erratic but the system as a whole possesses
certain orderly and analyzable average properties.

• ’Problems of organized complexity’: problems which involve dealing simultaneously
with a sizable number of factors which are interrelated into an organic whole; to
explain them something more is needed than the mathematics of averages.

The potential application area of possibility theory lies in this region of organized com-
plexity and recent years have seen a series of successful possibilistic models from finance
[8] to health care applications [61], not only in the system design, which was the original
intention behind the development of fuzzy sets.
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Chapter 3

Preliminaries

This chapter provides a brief overview of the fundamentals of probability and possibility
theory which are neccessary for the formulation of the problems described in the following
chapters. First the definition of a monotone measure [98] is recalled since probability
and possibility measures are special cases of this construct:

Definition 3.1 (Normalized monotone measure). Let X be a non-empty set and C any
σ-algebra of its subsets, then a set function m : C → [0, 1] is a normalized monotone
measure if it satisfies

1. m(∅) = 0,m(X) = 1

2. A ⊆ B ⇒ m(A) ≤ m(B) ∀A,B ∈ C.

Definition 3.2 (Probability measure). A probability measure, P, is an additive normal-
ized monotone measure, i.e.

P(A ∪ B) = P(A) + P(B)

for any disjoint subsets A and B of the event space.

Note that probability is sufficient to describe the likelihood of an event thanks to the
autoduality property, i.e. P(A) = 1 − P(Ā).

Definition 3.3 (Possibility). A (normalized) possibility measure, Pos, is a maxitive
normalized monotone measure, i.e.

Pos(
⋃

i∈I

Ai) = sup
i

Pos(Ai)

for any family {Ai|Ai ∈ P (X), i ∈ I}, where I is an arbitrary index set.

But it is not autodual; thus another function is needed:
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Definition 3.4 (Necessity measure). A necessity function, Nec, is a normalized mono-
tone measure defined as

Nec(
⋂

i∈I

Ai) = inf
i

Nec(Ai)

for any family {Ai|Ai ∈ P (X), i ∈ I}, where I is an arbitrary index set.

As it was discussed in the Introduction, probability and possibility measures can
represent two different types of uncertainty:

1. Uncertainty due to variability of observations.

2. Uncertainty due to incomplete information.

3.1 Probability theory

The mathematics of probability has it roots in the 17th (Pascal) and 18th century
(Bernoulli); here modern probability theory is considered which was introduced by Kol-
mogorov [51], when he developed the formal system of axioms based on measure theory.
For a comprehensive description of probability theory and applications, see [33, 34]. Here
we are only concerned with continuous distributions: the domain will be denoted by Ω
and F ⊂ 2Ω is the set of events. The key concept in probability theory is the notion of
a random variable. In the most general form, a random variable is a function

X : Ω → M,

which is (F,G)-measurable (where (M,G) is a measurable space). This property means
that for every A ∈ G its preimage, X−1(A) belongs to F . In this thesis only real-valued
random variables are used (in this case G corresponds to the Borel σ-algebra), it is
worth to formulate this property in this special case (using that it is sufficient to check
the measurability on a generating set of the σ-algebra):

X : Ω → R is a random variable ⇐⇒ {ω ∈ Ω | X(ω) ≤ t} ∈ F,∀t ∈ R.

Another important notion is the cumulative distribution function of a random vari-
able which describes the probability distribution of X:

FX(t) = P (X ≤ t),∀t ∈ R.

In other words, it determines the probability that the random variable falls within the
interval [a, b]:

P (a ≤ X ≤ b) = FX(b) − FX(a).

Insted of using the cumulative distribution function to determine probabilities, we will
employ the density function, fX , of a random variable, which is the derivative of the
function FX , from which it follows that

P (a ≤ X ≤ b) =

∫ b

a
fX(x)dx.
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Generally, for any arbitrary set, A ⊆ R : P (X ∈ A) =
∫

A fX(x)dx.

In practical problems, we usually deal with families of probability distributions of
random variables (for example Gaussian, Gamma). The parameters which can help to
identify particular members of these families (and in general play a fundamental role in
probability theory) consist of a set of characteristic measures. First of all, it is a very
important question, what is the ’average value’ of a distribution. This can be captured
by the expected value (mean value) of a random variable (since E will be used for the
possibilistic mean value, to avoid any confusion, throughout the thesis M will stand for
the expectation of a probability distribution):

M(X) =

∫

R

xdFX(x) =

∫

R

xfX(x)dx.

An important property of the expected value is the linearity.

The next important question after the expected value is to determine the average
distance of the outcomes from the average value (in other words the deviation from the
expectation). The square of this distance is calculated as

var(X) = M((X − M(X))2) = M(X2) − M(X)2.

This measure is termed as the variance of the random variable X.

Example 3.1. Since the uniform distribution will play a crucial role and will be used
in the thesis extensively, it is important to calculate its characteristics. The probability
density function of a continuous uniform distribution taking its values from the [a, b]
interval is the following (the uniform distribution will be denoted by U):

f(x) =







1

b − a
, if a ≤ x ≤ b

0 otherwise

Using this, it is easy to calculate the mean value and the variance based on the definitions:

M(U) =
1

b − a

∫ b

a
xdx =

a + b

2

and

var(U) =
1

b − a

∫ b

a

(

x − a + b

2

)2

dx =
(b − a)2

12
.

In most cases, problems cannot be solved simply by examining a single distribution.
When there are several variables considered, it is essential to measure the dependencies
between distributions. For example, if we want to determine the optimal portfolio of
stocks described by random variables, it is necessary to consider the joint effects of
particular assets.
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Before the definition of different dependency measures, it is necessary to recall the
notion of a joint distribution: if X and Y are two random variables, then the joint
distribtuion function of (X,Y ) is

FX,Y (t, s) = P (X ≤ t, Y ≤ s),∀t, s ∈ R.

As in the one dimensional case, the joint density function, fX,Y , is the derivative
of the distribution function with respect to t and s. X and Y are called the marginal
distributions of the joint distribution. The relation between X and Y are completely
described by the joint density function, moreover, the marginal density functions can be
obtained in the following way:

fX(t) =

∫

R

fX,Y (t, y)dy, fY (s) =

∫

R

fX,Y (x, s)dx.

X and Y are said to be independent if

fX,Y (t, s) = fX(t)fY (s).

Using these concepts, it is possbile to define different dependency measures for ran-
dom variables. The covariance of X and Y is defined as:

cov(X,Y ) = M((X − M(X))(Y − M(Y ))) = M(XY ) − M(X)M(Y )

=

∫

R2

tsfX,Y (t, s)dtds −
(

∫

R

tfX(t)dt

)(
∫

R

sfY (s)ds

)

.

The covariance is an absolute measure of the relationship between the variables. The
value of the covariance indicates how much the variables change together: if it is greater
than 0 then the two variables tend to increase or decrease together; if it is smaller than
0 then an increase in one of them implies a decrease in the other one in average. It is
important to note, that the covariance of independent variables is 0, but 0 covariance
does not imply independence.

To define a relative measure of dependency (interactivity), the correlation coefficient
was introduced:

ρ(X,Y ) =
cov(X,Y )

√

var(X)var(Y )
,

where X and Y are random variables with non-zero variances. It is worthwhile to
mention some of the important properties of the correlation.

Proposition 3.1. If X and Y are random variables with non-zero variance, then:

1. −1 ≤ ρ(X,Y ) ≤ 1.

2. If X and Y are independent, then ρ(X,Y ) = 0.

3. ρ(X,Y ) = 1 if and only if X = aY + b, where a > 0, b ∈ R (perfect correlation).
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4. ρ(X,Y ) = −1 if and only if X = aY + b, where a < 0, b ∈ R (perfect anticorrela-
tion).

Another important measure is the correlation ratio, it will be introduced before the
definition of the possibilistic correlation ratio in Chapter 5.

3.2 Fuzzy sets, fuzzy numbers and possibility theory

Fuzzy sets were introduced by Zadeh in 1965 [106]. The concept of fuzzy sets extends the
definition of the classical (crisp) sets. In the classical (bi-valued) case, the membership
value of an element can take two possible values: 1 (it belongs to the set) or 0 (it
does not belong to the set). In fuzzy logic this restriction is weakened by allowing any
membership values from the unit interval. Formally, a fuzzy set, A, is a set of ordered
pairs, where the first element is taken from a crisp set X and the second element is a
value from [0, 1]. Based on this definition, we can construct a function:

µA : X → [0, 1],

which is termed as the membership function.
A fuzzy number A is a fuzzy set in R with a normal (there exists an x ∈ R such that

µA(x) = 1), fuzzy convex and continuous membership function of bounded support. The
family of fuzzy numbers is denoted by F . Fuzzy numbers can be considered as possibility
distributions:

Pos(B ⊂ R) = sup
x∈B

µA(x)

A γ-level set of a fuzzy set A in R
m is defined by [A]γ = {x ∈ R

m : A(x) ≥ γ} if γ > 0
and [A]γ = cl{x ∈ R

m : A(x) > γ} (the closure of the support of A) if γ = 0. A fuzzy
set C in R

2 is said to be a joint possibility distribution of fuzzy numbers A,B ∈ F , if it
satisfies the relationships

max{y ∈ R | C(x, y)} = A(x) and max{x ∈ R | C(x, y)} = B(y),

for all x, y ∈ R. Furthermore, A and B are called the marginal possibility distributions
of C. In the following we will suppose that C is given in such a way that a uniform
distribution can be defined on [C]γ for all γ ∈ [0, 1]. Marginal possibility distributions
are always uniquely defined from their joint possibility distribution by the principle of
falling shadows.

Let C be a joint possibility distribution with marginal possibility distributions A,B ∈
F , and let [A]γ = [a1(γ), a2(γ)] and [B]γ = [b1(γ), b2(γ)], γ ∈ [0, 1]. Then A and B are
said to be non-interactive if their joint possibility distribution is A × B,

C(x, y) = min{A(x), B(y)},

for all x, y ∈ R, which can be written in the form, [C]γ = [A]γ × [B]γ , that is, [C]γ is
rectangular subset of R

2, for any γ ∈ [0, 1]. If A and B are non-interactive then for any
x ∈ [A]γ and any y ∈ [B]γ the ordered pair (x, y) will be in [C]γ for any γ ∈ [0, 1].
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Another extreme situation is when [C]γ is a line segment in R
2. For example, let the

diagonal beam,
C(x, y) = xχ{x=y}(x, y),

for any x, y ∈ [0, 1] , be the joint possibility distribution of marginal possibility distribu-
tions A(x) = x and B(y) = y . Then [C]γ is a line segment [(γ, γ), (1, 1)] in R

2 for any
γ ∈ [0, 1]. Furthermore, if one takes a point, x, from the γ-level set of A then one can
take only y = x from the γ-level set of B for the pair (x, y) to belong to [C]γ .

In possibility theory we can use the principle of average value of appropriately cho-
sen real-valued functions to define mean value, variance, covariance and correlation of
possibility distributions. A function f : [0, 1] → R is said to be a weighting function if f
is non-negative, monotone increasing and satisfies the following normalization condition:

∫ 1

0
f(γ)dγ = 1.

Different weighting functions can give different (case-dependent) importances to level-
sets of possibility distributions.

The f -weighted possibilistic mean value of a possibility distribution A ∈ F is the f -
weighted average of probabilistic mean values of the respective uniform distributions on
the level sets of A (recall that the mean value of Uγ is M(Uγ) = 1/2(a1(γ) + a2(γ)) and
its variance is computed by var(Uγ) = 1/12(a2(γ)− a1(γ))2). ). That is, the f -weighted
possibilistic mean value of A ∈ F , with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1], is defined by [38],

Ef (A) =

∫ 1

0
M(Uγ)f(γ)dγ =

∫ 1

0

a1(γ) + a2(γ)

2
f(γ)dγ, (3.1)

where Uγ is a uniform probability distribution on [A]γ for all γ ∈ [0, 1]. This definition
is based on the Goetschel-Voxman ordering of fuzzy numbers [41].

It should be noted that the choice of uniform probability distribution on the level
sets of possibility distributions is not without reason. It is assumed that each point of a
given level set is equally possible and then Laplace’s principle of Insufficient Reason can
be applied: if elementary events are equally possible, they should be equally probable
(for more details and generalization of principle of Insufficient Reason see [24]). The
idea of equipping the alpha-cuts with uniform probability is not new and refers to early
ideas of simulation of fuzzy sets by Yager [102], and possibility/probability transforms
by Dubois et al [30] as well as the pignistic transform of Smets [89].

For f(γ) ≡ 1, the f -weighted possibilistic mean value coincides with the (i) generative
expectation of fuzzy numbers introduced by Chanas and M. Nowakowski in [14]; (ii)
middle-point-of-the-mean-interval defuzzification method proposed by by Yager [102].

There exist several other ways to define mean values of fuzzy numbers: Dubois and
Prade [28] defined an interval-valued expectation of fuzzy numbers, viewing them as
consonant random sets. They also showed that this expectation remains additive in the
sense of addition of fuzzy numbers. Using evaluation measures, Yoshida et al. [105]
introduced a possibility mean, a necessity mean and a credibility mean of fuzzy numbers
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that are different from (3.1). Surveying the results in quantitative possibility theory,
Dubois [24] showed that some notions (e.g. cumulative distributions, mean values) in
statistics can naturally be interpreted in the language of possibility theory.

The f -weighted possibilistic covariance between marginal possibility distributions of
a joint possibility distribution is defined as the f -weighted average of probabilistic co-
variances between marginal probability distributions whose joint probability distribution
is uniform on each level-set of the joint possibility distribution. That is, the f -weighted
possibilistic covariance between A,B ∈ F , (with respect to their joint distribution C),
can be written as [39],

Covf (A,B) =

∫ 1

0
cov(Xγ , Yγ)f(γ)dγ. (3.2)

where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ for
all γ ∈ [0, 1], and cov(Xγ , Yγ) denotes their probabilistic covariance. It should be noted
that the possibilistic covariance is an absolute measure of interactivity between marginal
possibility distributions.

The measure of f -weighted possibilistic variance of A is the f -weighted average of
the probabilistic variances of the respective uniform distributions on the level sets of A.
That is, the f -weighted possibilistic variance of A is defined as the covariance of A with
itself [39]

Varf (A) = Covf (A,A) =

∫ 1

0
var(Uγ)f(γ)dγ =

∫ 1

0

(a2(γ) − a1(γ))2

12
f(γ)dγ. (3.3)

There exist other approaches to define variance of fuzzy numbers: Dubois et al. [31]
defined the potential variance of a symmetric fuzzy interval by viewing it as a family of
its α-cut.

There exist several other definitons of expected value, variance and covariance of
fuzzy random variables , e.g. Kwakernaak [53, 54], Puri and Ralescu [82], Körner [55],
Watanabe and Imaizumi [100], Feng et al. [35], Näther [78] and Shapiro [88].
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Chapter 4

Possibilistic correlation of Fuzzy

numbers

A measure of possibilistic covariance between marginal possibility distributions of a joint
possibility distribution can be defined as the f -weighted average of probabilistic covari-
ances between marginal probability distributions whose joint probability distribution is
defined to be uniform on the γ-level sets of their joint possibility distribution [39]. This
is an absolute measure of interactivity. A measure of possibilistic correlation between
marginal possibility distributions of a joint possibility distribution is a relative measure
of interactivity.

The main drawback of the measure of possibilistic correlation introduced in [13] that
it does not necessarily take its values from [−1, 1] if some level-sets of the joint possibility
distribution are not convex. A new normalization technique is needed.

In this chapter a new index of interactivity between marginal distributions of a
joint possibility distribution will be introduced, which is defined for the whole family of
joint possibility distributions. Namely, each level set of a joint possibility distribution
is equipped with a uniform probability distribution, then the probabilistic correlation
coefficient is computed between its marginal probability distributions, and then the new
index of interactivity is defined as the weighted average of these coefficients over the set
of all membership grades. These weights (or importances) can be given by weighting
functions.

Example 4.1. Let A(x) = 1 − x and B(y) = 1 − y be fuzzy numbers with joint distri-
bution, F , is defined by the Lukasiewitz t-norm. In this case

F (x, y) = max{A(x) + B(y) − 1, 0} = max{1 − x − y, 0},

and [F ]γ = {(x, y) | x + y ≤ 1 − γ} is of symmetric triangular form for any 0 ≤
γ < 1. If we take, for example, λ = 0.4 then the pair (0.3, 0.2) belongs to [F ]0.4 since
0.3+0.2 ≤ 1−0.4, but the pair (0.4, 0.4) does not. In this approach a uniform probability
distribution is defined on [F ]0.4 with marginal probability distributions denoted by X0.4
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and Y0.4. The expected value of this uniform probability distribution, (0.2, 0.2), will be
nothing else but the center of mass (or gravity) of the set [F ]0.4 of homogeneous density
(for calculations see Section 4.2). Then the probabilistic correlation coefficient, denoted
by ρ(X0.4, Y0.4), will be negative since the ’strength’ of pairs (x, y) ∈ [F ]0.4 that are
discordant (i.e. (x − 0.2)(y − 0.2) < 0) is bigger than the ’strength’ of those ones that
are concordant (i.e. (x − 0.2)(y − 0.2) > 0). Then the index of interactivity is defined
as the weighted average of these correlation coefficients over the set of all membership
grades.

A measure of possibilistic correlation between marginal possibility distributions A
and B of a joint possibility distribution C has been defined in [13] as their possibilistic
covariance divided by the square root of the product of their possibilistic variances. That
is, the f -weighted measure of possibilistic correlation of A,B ∈ F , (with respect to their
joint distribution C), is defined as [13],

ρold
f (A,B) =

Covf (A,B)
√

Varf (A)
√

Varf (B)

=

∫ 1
0 cov(Xγ , Yγ)f(γ)dγ

(

∫ 1
0 var(Uγ)f(γ)dγ

)1/2(
∫ 1
0 var(Vγ)f(γ)dγ

)1/2

(4.1)

where Uγ and Vγ are uniform probability distributions on [A]γ and [B]γ , respectively.
Thus, the possibilistic correlation represents an average degree to which Xγ and Yγ are
linearly associated as compared to the dispersions of Uγ and Vγ . We have the following
result [13]: if [C]γ is convex for all γ ∈ [0, 1] then −1 ≤ ρold

f (A,B) ≤ 1 for any f .

The presence of weighting function is not crucial in the theory: it can be simply
removed from consideration by choosing f(γ) ≡ 1.

Note 4.1. There exist several other ways to define correlation coefficient for fuzzy num-
bers, e.g. Liu and Kao [68] used fuzzy measures to define a fuzzy correlation coefficient
of fuzzy numbers and they formulated a pair of nonlinear programs to find the α-cut
of this fuzzy correlation coefficient, then, in a special case, Hong [48] showed an exact
calculation formula for this fuzzy correlation coefficient. Vaidyanathan [95] introduced
a new measure for the correlation coefficient between triangular fuzzy variables called
credibilistic correlation coefficient.

4.1 An improved index of interactivity for fuzzy numbers

The main drawback of the definition of the former index of interactivity (4.1) is that it
does not necessarily take its values from [−1, 1] if some level-sets of the joint possibility
distribution are not convex. For example, consider a joint possibility distribution defined
by

C(x, y) = 4x · χT (x, y) + 4/3(1 − x) · χS(x, y), (4.2)
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Figure 4.1: Not convex γ-level set.

where

T =
{

(x, y) ∈ R
2 | 0 ≤ x ≤ 1/4, 0 ≤ y ≤ 1/4, x ≤ y

}

,

S =
{

(x, y) ∈ R
2 | 1/4 ≤ x ≤ 1, 1/4 ≤ y ≤ 1, y ≤ x

}

,

and

[C]γ =
{

(x, y) ∈ R
2 | γ/4 ≤ x ≤ 1/4, x ≤ y ≤ γ/4

}

⋃

{

(x, y) ∈ R
2 | 1/4 ≤ x ≤ 1 − 3/4γ, 1/4 ≤ y ≤ x

}

.

It can be easily seen that [C]γ is not a convex set for any γ ∈ [0, 1) (see Fig. 4.1).

Then the marginal possibility distributions of (4.2) are computed by

A(x) = B(x) =











4x, if 0 ≤ x ≤ 1/4
4

3
(1 − x), if 1/4 ≤ x ≤ 1

0, otherwise

After some computations one obtains that ρold
f (A,B) ≈ 1.562 for any weighting

function f . The result is a value bigger than one since the variance of the first marginal
distribution, Xγ , exceeds the variance of the uniform distribution on the same support.

Now a new index of interactivity is introduced between marginal distributions A
and B of a joint possibility distribution C as the f -weighted average of the probabilis-
tic correlation coefficients between the marginal probability distributions of a uniform
probability distribution on [C]γ for all γ ∈ [0, 1]. That is,
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Definition 4.1. The f -weighted index of interactivity of A,B ∈ F (with respect to their
joint distribution C) is defined by

ρf (A,B) =

∫ 1

0
ρ(Xγ , Yγ)f(γ)dγ (4.3)

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)

and, where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ

for all γ ∈ [0, 1].

In other words, the (f -weighted) index of interactivity is nothing else, but the f -
weighted average of the probabilistic correlation coefficients ρ(Xγ , Yγ) for all γ ∈ [0, 1].
It is clear that for any joint possibility distribution this new correlation coefficient always
takes its value from the interval [−1, 1], since ρ(Xγ , Yγ) ∈ [−1, 1] for any γ ∈ [0, 1]

and
∫ 1
0 f(γ)dγ = 1. As for the joint possibility distribution defined by (4.2) we get

ρf (A,B) ≈ 0.786 for any f . Since ρf (A,B) measures an average index of interactivity
between the level sets of A and B, sometimes this measure will be termed as the f -
weighted possibilistic correlation coefficient.

4.2 An example

Consider the case, when A(x) = B(x) = (1 − x) · χ[0,1](x), for x ∈ R, that is [A]γ =
[B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose that their joint possibility distribution is given
by F (x, y) = (1 − x − y) · χT (x, y), where

T =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x + y ≤ 1

}

.

A γ-level set of F is computed by

[F ]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x + y ≤ 1 − γ

}

.

The density function of a uniform distribution on [F ]γ can be written as

f(x, y) =







1
∫

[F ]γ dxdy
, if (x, y) ∈ [F ]γ

0 otherwise

=







2

(1 − γ)2
, if (x, y) ∈ [F ]γ

0 otherwise

The marginal functions are obtained as

f1(x) =







2(1 − γ − x)

(1 − γ)2
, if 0 ≤ x ≤ 1 − γ

0 otherwise
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f2(y) =







2(1 − γ − y)

(1 − γ)2
, if 0 ≤ y ≤ 1 − γ

0 otherwise

One can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [F ]γ for all γ ∈ [0, 1]:

M(Xγ) =
2

(1 − γ)2

∫ 1−γ

0
x(1 − γ − x)dx =

1 − γ

3

and,

M(Yγ) =
2

(1 − γ)2

∫ 1−γ

0
y(1 − γ − y)dy =

1 − γ

3
.

The variations of Xγ and Yγ can be calculated with the formula var(X) = M(X2) −
M(X)2 :

M(X2
γ ) =

2

(1 − γ)2

∫ 1−γ

0
x2(1 − γ − x)dx =

(1 − γ)2

6

and,

var(Xγ) = M(X2
γ ) − M(Xγ)2 =

(1 − γ)2

6
− (1 − γ)2

9
=

(1 − γ)2

18
.

And similarly

var(Yγ) =
(1 − γ)2

18
.

Using that

M(XγYγ) =
2

(1 − γ)2

∫ 1−γ

0

∫ 1−γ−x

0
xydydx =

(1 − γ)2

12
,

cov(Xγ , Yγ) = M(XγYγ) − M(Xγ)M(Yγ) = −(1 − γ)2

36
,

the probabilisctic correlation of the random variables can be calculated as

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
= −1

2
.

And finally the f -weighted possibilistic correlation of A and B:

ρf (A,B) =

∫ 1

0
−1

2
f(γ)dγ = −1

2
.

Using the former definition (4.1) one would obtain ρold
f (A,B) = −1/3 for the correlation

coefficient (see [13] for details).
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4.3 Some important cases

Non-interactive fuzzy numbers

If A and B are non-interactive then their joint possibility distribution is defined by
C = A × B. Since all [C]γ are rectangular and the probability distribution on [C]γ is
defined to be uniform we get cov(Xγ , Yγ) = 0, for all γ ∈ [0, 1]. So Covf (A,B) = 0 and
ρf (A,B) = 0 for any weighting function f .

Perfect correlation

Fuzzy numbers A and B are said to be in perfect correlation, if there exist q, r ∈ R,
q 6= 0 such that their joint possibility distribution is defined by [13]

C(x1, x2) = A(x1) · χ{qx1+r=x2}(x1, x2) = B(x2) · χ{qx1+r=x2}(x1, x2), (4.4)

where χ{qx1+r=x2}, stands for the characteristic function of the line

{(x1, x2) ∈ R
2|qx1 + r = x2}.

In this case

[C]γ =
{

(x, qx + r) ∈ R
2
∣

∣x = (1 − t)a1(γ) + ta2(γ), t ∈ [0, 1]
}

where [A]γ = [a1(γ), a2(γ)]; and [B]γ = q[A]γ + r, for any γ ∈ [0, 1], and, finally,

B(x) = A

(

x − r

q

)

,

for all x ∈ R. Furthermore, A and B are in a perfect positive [see Fig. 4.3] (negative
[see Fig. 4.2]) correlation if q is positive (negative) in (4.4).

If A and B have a perfect positive (negative) correlation then from ρ(Xγ , Yγ) = 1
(ρ(Xγ , Yγ) = −1) [see [13] for details], for all γ ∈ [0, 1], we get ρf (A,B) = 1 (ρf (A,B) =
−1) for any weighting function f .

The case of pure shadows

Consider the case, when the joint possibility distribution is nothing else but the marginal
distributions themselves. Let

A(x) = B(x) = (1 − x) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0, 1−γ], for γ ∈ [0, 1]. Suppose that their joint possibility
distribution is given by ’pure shadows’ (the marginal distributions themselves),

C(x, y) = (1 − x − y) · χT (x, y),
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Figure 4.2: Perfect negative correlation.

Figure 4.3: Perfect positive correlation.

where

T =
{

(x, 0) ∈ R
2 | 0 ≤ x ≤ 1

}

⋃

{

(0, y) ∈ R
2 | 0 ≤ y ≤ 1

}

.

That is,

C(x, y) =







A(x) if y = 0
B(y) if x = 0
0 otherwise
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A γ-level set of C is computed by

[C]γ =
{

(x, 0) ∈ R
2 | 0 ≤ x ≤ 1 − γ

}

⋃

{

(0, y) ∈ R
2 | 0 ≤ y ≤ 1 − γ

}

.

Since all γ-level sets of C are degenerated, i.e. their integrals vanish, everything can
be computed as a limit of integrals. All the quantities are calculated with the γ-level
sets:

[C]γδ =
{

(x, y) ∈ R
2 | 0 ≤ x ≤ 1 − γ, 0 ≤ y ≤ δ

}

⋃

{

(x, y) ∈ R
2 | 0 ≤ y ≤ 1 − γ, 0 ≤ x ≤ δ

}

.

First the expected value and variance of Xγ and Yγ is calculated as:

M(Xγ) = lim
δ→0

1
∫

[C]γ
δ
dydx

∫

[C]γδ

xdx =
1 − γ

4
,

M(X2
γ ) = lim

δ→0

1
∫

[C]γ
δ
dydx

∫

[C]γδ

x2dx =
(1 − γ)2

6
,

var(Xγ) = M(X2
γ ) − M(Xγ)2 =

(1 − γ)2

6
− (1 − γ)2

16
=

5(1 − γ)2

48
.

Because of the symmetry, the results are the same for Yγ . We need to calculate their
covariance,

M(XγYγ) = lim
δ→0

1
∫

[C]γδ
dxdy

∫

[C]γδ

xydydx = 0,

Using this we obtain,

cov(Xγ , Yγ) = −(1 − γ)2

16
,

and for the correlation,

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
= −3

5
.

Finally we obtain the f -weighted possibilistic correlation:

ρf (A,B) =

∫ 1

0
−3

5
f(γ)dγ = −3

5
.

In this extremal case, the joint distribution is unequivocally constructed from the knowl-
edge that C(x, y) = 0 for any interior point (x, y) of the unit square. The reason for
this negative correlation is the following: for example, for γ = 0.4 the center of mass
of [C]0.4 is (0.15, 0.15) and the crucial point here is that if any point, x, is chosen from
[A]0.4 then the only possible choice from [B]0.4 can be y = 0, and this y = 0 is always less
than 0.15, independently of the choice of x. In [C]0.4 the strength of discordant points is
much bigger than the strength of concordant points, with respect to the reference point
(0.15, 0.15).
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Joint Distribution: (1 −√
x −√

y)

Consider the case, when

A(x) = B(x) = (1 −√
x) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0, (1 − γ)2], for γ ∈ [0, 1]. Suppose that their joint
possibility distribution is given by:

C(x, y) = (1 −√
x −√

y) · χT (x, y),

where

T =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x +

√
y ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x +

√
y ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise

=







6

(1 − γ)4
, if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =







6(1 − γ −√
x)2

(1 − γ)4
, if 0 ≤ x ≤ (1 − γ)2

0 otherwise

f2(y) =







6(1 − γ −√
y)2

(1 − γ)4
, if 0 ≤ y ≤ (1 − γ)2

0 otherwise

One can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1] :

M(Xγ) =
6

(1 − γ)4

∫ (1−γ)2

0
x(1 − γ −√

x)2dx =
(1 − γ)2

5

M(Yγ) =
6

(1 − γ)4

∫ (1−γ)2

0
y(1 − γ −√

y)2dy =
(1 − γ)2

5

The variations of Xγ and Yγ can be obtained as

M(X2
γ ) =

6

(1 − γ)4

∫ (1−γ)2

0
x2(1 − γ −√

x)2dx =
(1 − γ)4

14
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var(Xγ) = M(X2
γ ) − M(Xγ)2 =

(1 − γ)4

14
− (1 − γ)4

25
=

9(1 − γ)4

350
.

And similarly

var(Yγ) =
9(1 − γ)4

350
.

Using that

cov(Xγ , Yγ) = M(XγYγ) − M(Xγ)M(Yγ) = −13(1 − γ)4

700
,

the probabilisctic correlation of the random variables is:

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
= −13

18
≈ −0.722.

And finally the f -weighted possibilistic correlation of A and B:

ρf (A,B) = −
∫ 1

0

13

18
f(γ)dγ = −13

18
.

4.4 Upper bound for the correlation in a special case

The purpose of this section is to calculate the possibilistic correlation of two fuzzy
numbers, A(x) and B(x), in the case when their joint distribution is

C(x, y) =







A(x), if y = 0
B(y), if x = 0

0, otherwise

From that it follows, that [C]γ = [A]γ ∪ [B]γ . First a lemma about probability ditri-
butions with the same structure is needed: a distribution, what is uniform on the set
{(x, 0) | a ≤ x ≤ b} ∪ {(0, y) | a ≤ y ≤ b} . The marginals are X, with the support [a, b],
and Y , with the support [c, d]. The notation Z will stand for the uniform joint distribu-
tion. The following lemma can be proven about the probabilistic correlation of X and
Y :

Lemma 4.1.

ρ(X,Y ) = −3

√

t(a, b, c, d)

s(a, b, c, d)
,

where t(a, b, c, d) = (b2 − a2)2(d2 − c2)2 and s(a, b, c, d) = [4(b − a + d − c)(b3 − a3) −
3(b2 − a2)2][4(b − a + d − c)(d3 − c3) − 3(d2 − c2)2].

Proof. It is easy to prove, that in this case

M(X) =
b2 − a2

2(b − a + d − c)
, M(X2) =

b3 − a3

3(b − a + d − c)
,
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M(Y ) =
d2 − c2

2(b − a + d − c)
, M(Y 2) =

d3 − c3

3(b − a + d − c)
.

From these results we obtain the variance of X and Y :

var(X) = M(X2) − M(X)2 =
4(b − a + d − c)2(b3 − a3) − 3(b2 − a2)2

12(b − a + d − c)2
,

var = M(Y 2) − M(Y )2 =
4(b − a + d − c)2(d3 − c3) − 3(d2 − c2)2

12(b − a + d − c)2
.

Since M(XY ) = 0, the covariance has the following form:

cov(X,Y ) = −(b2 − a2)(d2 − c2)

4(b − a + d − c)2
.

Now the correlation can be calculated easily:

ρ(X,Y ) =
cov(X,Y )

√

var(X)
√

var(Y )
= −3

√

t(a, b, c, d)

s(a, b, c, d)
.

Since −1 ≤ ρ(X,Y ) ≤ 1 for any distributions, the following can be seen easily:

Corrolary 4.1. For any a, b, c, d real numbers, such that a < b, c < d :

√

t(a, b, c, d)

s(a, b, c, d)
≤ 1

3
.

The values a, b, c, d determine the value of the correlation, so the notation ρ(a, b, c, d)
can be used.

Example 4.2. Suppose a = c = 0, then the following results can be obtained:

M(X) =
b2

2(b + d)
, M(X2) =

b3

3(b + d)
, var(X) =

b3(b + 4d)

12(b + d)2
,

M(Y ) =
d2

2(b + d)
, M(Y 2) =

d3

3(b + d)
, var(Y ) =

d3(d + 4b)

12(b + d)2
,

cov(X,Y ) = − b2d2

4(b + d)2
,

ρ(X,Y ) = −3

√

bd

(b + 4d)(d + 4b)
.

If b = d = 1, then ρ(X,Y ) = −3

5
.
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If a = c and b = d, the formula is simplified into the form:

ρ(X,Y ) = − 3(b + a)2

5(b + a)2 − 8ab
.

From the example one can see, that this is −3

5
, in the case when a = 0 and b = 1. It is

necessary now to show, that this is the upper bound, if 0 ≤ a.

ρ(X,Y ) = − 3(b + a)2

5(b + a)2 − 8ab
≤ −3

5

holds if and only if

(b + a)2

5(b + a)2 − 8ab
≥ −1

5
⇔ 5(b + a)2 ≥ 5(b + a)2 − 8ab,

which is true if and only if 0 ≥ −8ab, so from 0 ≤ a ≤ b it can be seen that the correlation

in this case is always between −1 and −3

5
. And in the example distributions were found

with correlation coefficient −3

5
, so this is the least upper bound.

Any fuzzy number can be described in the following form [27]:

A(x) =



























L(
a − x

α
), if a − α ≤ x ≤ a

1, if a ≤ x ≤ b

R(
x − b

β
), if b ≤ x ≤ b + β

0 otherwise

where [a, b] is the peak of A, a and b are the lower and upper modal values; L and R are
shape functions: [0, 1] → [0, 1], with L(0) = R(0) = 1 and L(1) = R(1) = 0, which are
non-increasing, continuous mappings.

The previous observations about probability distributions can be used to describe
the correlation in the mentioned case. In this case [C]γ = [a1(γ), a2(γ)] ∪ [b1(γ),2 (γ)],
with a uniform distribution on this set with marginals Xγ and Yγ . Their correlation is
exactly what was calculated before, with a = a1(γ), b = a2(γ), c = b1(γ), b = b2(γ). It
means that the possibilistic correlation can be written in the following form:

ρf (A,B) =

∫ 1

0
ρ(a1(γ), a2(γ), b1(γ), b2(γ))f(γ)dγ (4.5)

Since the numbers a1(γ), a2(γ), b1(γ), b2(γ) satisfy the requirements of the previous
reasoning and f is a weighting function, it can be easily seen that in this case

ρf (A,B) ≤ −3

5
.
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4.5 Portfolio optimization using the Possibilistic Correla-

tion

In this section the use of the possibilistic correlation is demonstrated in portfolio opti-
mization [70]. In this example there are 3 assets considered, which are represented by
fuzzy numbers:

A1(x) = A2(x) = (1 − x2) · χ[0,1](x)

and

A3(x) = (1 − x) · χ[0,1](x).

It is easy to see that E(A3) =
1

6
, E(A1) = E(A2) =

4

15
and Var(A3) =

1

72
,Var(A1) =

Var(A2) =
1

36
. In the following the pairwise correlation coefficients will be computed.

Joint Distribution of (A1, A3) and (A2, A3): (1 − x2 − y)

The same joint distribution will be used for (A1, A3) and (A2, A3), so it is sufficient to
calculate the first one. Suppose that their joint possibility distribution is given by:

C(x, y) = (1 − x2 − y) · χT (x, y),

where

T =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise

=







3

2(1 − γ)
3

2

, if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

fA1
(x) =







3(1 − γ − x2)

2(1 − γ)
3

2

, if 0 ≤ x ≤ √
1 − γ

0 otherwise

fA3
(y) =







3
√

1 − γ − y

2(1 − γ)
3

2

, if 0 ≤ y ≤ 1 − γ

0 otherwise
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One can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1] :

M(Xγ) =
3

2(1 − γ)
3

2

∫

√
1−γ

0
x(1 − γ − x2)dx =

3
√

1 − γ

8

M(Yγ) =
3

2(1 − γ)
3

2

∫

√
1−γ

0
y
√

1 − γ − ydy =
2(1 − γ)

5
.

The variations of Xγ and Yγ can be obtained as:

M(X2
γ ) =

3

2(1 − γ)
3

2

∫

√
1−γ

0
x2(1 − γ − x2)dx =

1 − γ

5

var(Xγ) = M(X2
γ ) − M(Xγ)2 =

1 − γ

5
− 9(1 − γ)

64
=

19(1 − γ)

320
.

M(Y 2
γ ) =

3

2(1 − γ)
3

2

∫ 1−γ

0
y2

√

1 − γ − ydy =
8(1 − γ)2

35
.

var(Yγ) = M(Y 2
γ ) − M(Yγ)2 =

8(1 − γ)2

35
− 4(1 − γ)2

25
=

12(1 − γ)2

175
.

The covariance of Xγ and Yγ :

cov(Xγ , Yγ) = M(XγYγ) − M(Xγ)M(Yγ) = −(1 − γ)
3

2

40
,

and one can calculate the probabilistic correlation of the random variables:

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
= −

√

35

228
≈ −0.392.

And finally the f -weighted possibilistic correlation of A1 and A3 (and also of A2 and
A3):

ρf (A1, A3) =

∫ 1

0
−

√

35

228
f(γ)dγ = −

√

35

228
.

Joint distribution of (A1, A2): (1 − x2 − y2)

Suppose that the joint possibility distribution of A1 and A2 is given by:

C(x, y) = (1 − x2 − y2) · χT (x, y),

where

T =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1

}

.
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A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise

=







4

(1 − γ)π
, if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

fA1
(x) =







4
√

1 − γ − x2

(1 − γ)π
, if 0 ≤ x ≤ 1 − γ

0 otherwise

fA2
(y) =







4
√

1 − γ − y2

(1 − γ)π
, if 0 ≤ y ≤ 1 − γ

0 otherwise

One can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1] :

M(Xγ) =
4

(1 − γ)π

∫

√
1−γ

0
x
√

1 − γ − x2dx =
4
√

1 − γ

3π

M(Yγ) =
4

(1 − γ)π

∫

√
1−γ

0
y
√

1 − γ − y2dy =
4
√

1 − γ

3π
.

The variations of Xγ and Yγ are:

M(X2
γ ) =

4

(1 − γ)π

∫

√
1−γ

0
x2

√

1 − γ − x2dx =
1 − γ

4

var(Xγ) = M(X2
γ ) − M(Xγ)2 =

1 − γ

4
− 16(1 − γ)

9π2
=

(1 − γ)(9π2 − 64)

36π2
.

And similarly

var(Yγ) =
(1 − γ)(9π2 − 64)

36π2
.

Using that

cov(Xγ , Yγ) = M(XγYγ) − M(Xγ)M(Yγ) =
(1 − γ)(9π − 32)

18π2
,

the probabilisctic correlation of the random variables can be obtained as

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
=

2(9π − 32)

(9π2 − 64)
≈ −0.302.

And finally the f -weighted possibilistic correlation of A1 and A2:

ρf (A,B) =

∫ 1

0

2(9π − 32)

(9π2 − 64)
f(γ)dγ =

2(9π − 32)

(9π2 − 64)
.
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Portfolio optimization

The traditional portfolio optimization problem has the folloving form:

max
n

∑

i=1

xiE(Ai)−

θ





n
∑

i=1

x2
i Var(A1) +

n
∑

i=1

∑

j 6=i

xixj

√

Var(Ai)Var(Aj)ρ(Ai, Aj)





subject to

n
∑

i=1

xi = 1

(4.6)

where xi is the weight of asset Ai and θ is the risk tolerance factor.

After solving this simple quadratic optimization problem with the parameters ob-
tained before, one can find that for all θ < 2, 88, the optimal portfolio is obtained when
the money is equally distributed between A1 and A2, and A3 is not included in the port-
folio (x1 = x2 = 1

2 , x3 = 0.) If θ increases (which means that assets with large variance
are penalized), x3 starts to increase, since the added variance of A3 to the portfolio is
low, and for large values of θ, A3 becomes the dominant asset of the portfolio.

4.6 Trapezoidal marginal distributions

In this section the correlation of two trapezoidal fuzzy numbers will be calculated. Con-
sider now the case,

A(x) = B(x) =















x, if 0 ≤ x ≤ 1
1, if 1 ≤ x ≤ 2

3 − x, if 2 ≤ x ≤ 3
0, otherwise

for x ∈ R, that is [A]γ = [B]γ = [γ, 3−γ], for γ ∈ [0, 1]. Suppose that the joint possibility
distribution of these two trapezoidal marginal distributions - a truncated pyramid - is
given by:

C(x, y) =















y, if 0 ≤ x ≤ 3, 0 ≤ y ≤ 1, x ≤ y, x ≤ 3 − y
1, if 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, x ≤ y
x, if 0 ≤ x ≤ 1, 0 ≤ y ≤ 3, y ≤ x, x ≤ 3 − y
0, otherwise

Then [C]γ =
{

(x, y) ∈ R
2 | γ ≤ x ≤ 3 − γ, γ ≤ y ≤ 3 − x

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise

=







2

(3 − 2γ)2
, if (x, y) ∈ [C]γ

0 otherwise
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The marginal functions are obtained as

f1(x) =







2(3 − γ − x)

(3 − 2γ)2
, if γ ≤ x ≤ 3 − γ

0 otherwise

and,

f2(y) =







2(3 − γ − y)

(3 − 2γ)2
, if γ ≤ y ≤ 3 − γ

0 otherwise

One can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1]:

M(Xγ) =
2

(3 − 2γ)2

∫ 3−γ

γ
x(3 − γ − x)dx =

γ + 3

3

and,

M(Yγ) =
2

(3 − 2γ)2

∫ 3−γ

γ
y(3 − γ − y)dy =

γ + 3

3

The variations of Xγ and Yγ can be calculated as:

M(X2
γ ) =

2

(3 − 2γ)2

∫ 3−γ

γ
x2(3 − γ − x)dx =

2γ2 + 9

6

and,

var(Xγ) = M(X2
γ ) − M(Xγ)2 =

2γ2 + 9

6
− (γ + 3)2

9
=

(3 − 2γ)2

18
.

And similarly we obtain

var(Yγ) =
(3 − 2γ)2

18
.

Using the relationship,

cov(Xγ , Yγ) = M(XγYγ) − M(Xγ)M(Yγ) = −(3 − 2γ)2

36
,

the probabilistic correlation of the random variables is obtained as:

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
= −1

2
.

And finally the f -weighted possibilistic correlation of A and B is,

ρf (A,B) = −
∫ 1

0

1

2
f(γ)dγ = −1

2
.
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4.7 Time Series With Fuzzy Data

A time series with fuzzy data is referred to as fuzzy time series. Consider a fuzzy time
series indexed by t ∈ (0, 1],

At(x) =

{

1 − x

t
, if 0 ≤ x ≤ t

0 otherwise
and A0(x) =

{

1, if x = 0
0 otherwise

It is easy to see that in this case,

[At]
γ = [0, t(1 − γ)], γ ∈ [0, 1].

If t1, t2 ∈ [0, 1], then the joint possibility distribution of the corresponding fuzzy numbers
is given by:

C(x, y) =

(

1 − x

t1
− y

t2

)

· χT (x, y),

where

T =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

x

t1
+

y

t2
≤ 1

}

.

Then [C]γ =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

x

t1
+

y

t2
≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise

That is,

f(x, y) =







2

t1t2(1 − γ)2
, if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =







2(1 − γ − x
t1

)

t1(1 − γ)2
, if 0 ≤ x ≤ t1(1 − γ)

0 otherwise

and,

f2(y) =







2(1 − γ − y
t2

)

t2(1 − γ)2
, if 0 ≤ y ≤ t2(1 − γ)

0 otherwise

One can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1] :

M(Xγ) =
2

t1(1 − γ)2

∫ t1(1−γ)

0
x(1 − γ − x

t1
)dx =

t1(1 − γ)

3
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and

M(Yγ) =
2

t2(1 − γ)2

∫ t2(1−γ)

0
y(1 − γ − y

t2
)dy =

t2(1 − γ)

3
.

We calculate now the variations of Xγ and Yγ as,

M(X2
γ ) =

2

t1(1 − γ)2

∫ t1(1−γ)

0
x2(1 − γ − x

t1
)dx =

t21(1 − γ)2

6

and,

var(Xγ) = M(X2
γ ) − M(Xγ)2 =

t21(1 − γ)2

6
− t21(1 − γ)2

9
=

t21(1 − γ)2

18
.

And in a similar way,

var(Yγ) =
t22(1 − γ)2

18
.

From,

cov(Xγ , Yγ) = − t1t2(1 − γ)2

36
,

the probabilisctic correlation of the random variables can be calculated as

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
= −1

2
.

The f -weighted possibilistic correlation of At1 and At2 is

ρf (At1 , At2) =

∫ 1

0
−1

2
f(γ)dγ = −1

2
.

Thus the autocorrelation function of this fuzzy time series is constant. Namely,

R(t1, t2) = −1

2
,

for all t1, t2 ∈ [0, 1].

4.8 Discussion

A novel measure of (relative) index of interactivity was introduced between marginal
distributions A and B of a joint possibility distribution C. The starting point of the
approach is to equip the γ-level sets of the joint possibility distribution with uniform
probability distributions. Then the correlation coefficient between its marginal prob-
ability distributions is considered to be an index of interactivity between the γ-level
sets of A and B. This new index of interactivity is meaningful for any joint possibility
distribution and possesses similar properties to the probabilistic correlation coefficient.
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Chapter 5

Possibilistic correlation ratio

In statistics, the correlation ratio is a measure of the relationship between the statistical
dispersion within individual categories and the dispersion across the whole population
or sample. The correlation ratio was originally introduced by Pearson [79] as part of
analysis of variance and it was extended to random variables by Kolmogorov [51] as,

η2(X|Y ) =
D2[E(X|Y )]

D2(X)
,

where X and Y are random variables. If X and Y have a joint probability density func-
tion, denoted by f(x, y), then η2(X|Y ) can be computed using the following formulas:

E(X|Y = y) =

∫ ∞

−∞
xf(x|y)dx

and

D2[E(X|Y )] = E(E(X|y) − E(X))2,

where

f(x|y) =
f(x, y)

f(y)
.

In recent years the correlation ratio is recognized as a key notion in global sensitivity
analysis [72].

Note 5.1. The correlation ratio measures the functional dependence between X and
Y . It takes on values between 0 (no functional dependence) and 1 (purely deterministic
dependence). It is worth noting that if E(X|Y = y) is a linear function of y (i.e. there
is a linear relationship between random variables E(X|Y ) and Y ) this will give the same
result as the square of the correlation coefficient, otherwise the correlation ratio will
be larger in magnitude. It can therefore be used for judging non-linear relationships.
Also note that the correlation ratio is asymmetrical by nature since the two random
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variables fundamentally do not play the same role in the functional relationship; in
general, η2(X|Y ) 6= η2(Y |X). One can obtain a symmetrical definition using

η2(X,Y ) = max
{

η2(X|Y ), η2(Y |X)
}

.

Also important to note that the correlation ratio is invariant to multiplicative changes
in the first argument:

η2(kX|Y ) = η2(X|Y )

The following important theorem characterizes the relationship between the correla-
tion and correlation ratio:

Theorem 5.1.

η2(X|Y ) = sup
f

ρ2(X, f(Y )),

where the supremum is taken for all the functions f , such that f(Y ) has finite variance.
The correlation can reach its maximum if f(y) = aE(X|Y = y) + b.

The difference between η2(X|Y ) and ρ2(X,Y ) can be interpreted as the degree of
non-linearity between X and Y :

η2(X|Y ) − ρ2(X,Y ) =
1

D2(X)

{

min
a,b

E(Y − (aX + b))2 − min
f

E(Y − f(X))2
}

.

Example 5.1. The use of the correlation ratio can be illustrated in a very simple ex-
ample. Suppose we have two probability distributions, X and Y , with two-dimensional
standard normal joint distribution, and the correlation coefficient of X and Y is r. Then
the relationship between X and Y 2 is clearly not linear, so their correlation coefficient
is 0. But if r is close to 1, the relationship between X and Y 2 is still very strong. And
in this case the correlation ratio takes the value r2.

5.1 A Correlation Ratio for Marginal Possibility Distribu-

tions

The principle of expected value of appropriately chosen functions on fuzzy sets can be
used to define the correlation ratio of fuzzy numbers. Namely, one can equip each
level set of a possibility distribution (represented by a fuzzy number) with a uniform
probability distribution, then apply their standard probabilistic calculation, and then
define measures on possibility distributions by integrating these weighted probabilistic
notions over the set of all membership grades.

Definition 5.1. Let A and B be the marginal possibility distributions of a given joint
possibility distribution C. Then the f -weighted possibilistic correlation ratio of marginal
possibility distribution A with respect to marginal possibility distribution B is defined by

η2
f (A|B) =

∫ 1

0
η2(Xγ |Yγ)f(γ)dγ (5.1)
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where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ for
all γ ∈ [0, 1], and η2(Xγ |Yγ) denotes their probabilistic correlation ratio.

The f -weighted possibilistic correlation ratio of the fuzzy number A on B is nothing
else, but the f -weighted average of the probabilistic correlation ratios η2(Xγ |Yγ) for all
γ ∈ [0, 1].

The following properties can be easily checked based on the definition.

Lemma 5.1. • The correlation ratio takes on values between 0 and 1.

• The correlation ratio is asymmetrical since the marginal distributions fundamen-
tally do not play the same role in the functional relationship; in general, η2(A|B) 6=
η2(B|A). A symmetrical definition can be obtained using

η2(A,B) = max
{

η2(A|B), η2(B|A)
}

.

• If E(Xγ |Yγ = y) is linear function of y (i.e. there is a linear relationship between
random variables E(Xγ |Yγ) and Yγ) for every γ ∈ [0, 1] this will give the same result
as the square of the correlation coefficient (ρ(A,B)), otherwise the correlation ratio
will be larger in magnitude.

• If A and B are symmetrical fuzzy numbers, then

η2(A|B) = η2(B|A) = 0.

5.2 Computation of Correlation Ratio: Some Examples

In this section the f -weighted possibilistic correlation ratio will be computed for joint
possibility distributions (1 − x − y), (1 − x2 − y), (1 − √

x − y), (1 − x2 − y2) and
(1 −√

x −√
y) defined on proper subsets of the unit square.

A Linear Relationship

Consider the case, when

A(x) = B(x) = (1 − x) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose that their joint
possibility distribution is given by C(x, y) = (1 − x − y) · χT (x, y), where

T =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x + y ≤ 1

}

.

Then [C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x + y ≤ 1 − γ

}

. The density function of a uni-
form distribution on [C]γ is

f(x, y) =







2

(1 − γ)2
if (x, y) ∈ [C]γ

0 otherwise
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The marginal functions are obtained as

f1(x) =







2(1 − γ − x)

(1 − γ)2
if 0 ≤ x ≤ 1 − γ

0 otherwise

f2(y) =







2(1 − γ − y)

(1 − γ)2
if 0 ≤ y ≤ 1 − γ

0 otherwise

For the correlation ration one needs to calculate the conditional probalility distribution:

E(X|Y = y) =

∫ 1−γ−y

0
xf(x|y)dx =

∫ 1−γ−y

0
x

f(x, y)

f2(y)
dx =

1 − γ − y

2
,

where 0 ≤ x ≤ 1 − γ. The next step is to calculate the variation of this distribution:

D2[E(X|Y )] = E(E(X|y) − E(X))2

=

∫ 1−γ

0
(
1 − γ − y

2
− 1 − γ

3
)2

2(1 − γ − y)

(1 − γ)2
dy

=
(1 − γ)2

72
.

Using the relationship

D2(Xγ) =
(1 − γ)2

18
,

the probabilistic correlation of Xγ on Yγ is obtained as

η2(Xγ |Yγ) =
1

4
.

From this the f -weighted possibilistic correlation ratio of A with respect to B is,

η2
f (A|B) =

∫ 1

0

1

4
f(γ)dγ =

1

4
.

Note 5.2. In this simple case

η2
f (A|B) = η2

f (B|A) = [ρf (A,B)]2,

since E(Xγ |Yγ = y) is a linear function of y:

E(Xγ |Yγ = y) =
1 − γ − y

2
=

1 − γ

3
− y

2
+

1 − γ

6

=
1 − γ

3
− 1

2
y −

(

− 1

2

)

× 1 − γ

3

=
1 − γ

3
− 1

2

(

y − 1 − γ

3

)

= E(Xγ) − ρ(Xγ , Yγ)(y − E(Yγ)).
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A Nonlinear Relationship

Consider the case, when
A(x) = (1 − x2) · χ[0,1](x),

B(x) = (1 − y) · χ[0,1](y),

for x ∈ R, that is [A]γ = [0,
√

1 − γ], [B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose that their
joint possibility distribution is given by:

C(x, y) = (1 − x2 − y) · χT (x, y),

where
T =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise

=







3

2(1 − γ)
3

2

if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =







3(1 − γ − x2)

2(1 − γ)
3

2

if 0 ≤ x ≤ √
1 − γ

0 otherwise

f2(y) =







3
√

1 − γ − y

2(1 − γ)
3

2

if 0 ≤ y ≤ 1 − γ

0 otherwise

For the correlation ratio one needs to calculate the conditional probability distribution:

E(Y |X = x) =

∫ 1−γ−x2

0
yf(y|x)dy =

∫ 1−γ−x2

0
y
f(x, y)

f1(x)
dy =

1 − γ − x2

2
,

where 0 ≤ y ≤ 1 − γ. The next step is to calculate the variation of this distribution:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=

∫

√
1−γ

0
(
1 − γ − x2

2
− 2(1 − γ)

5
)2

3(1 − γ − x2)

2(1 − γ)
3

2

dx

=
2(1 − γ)2

175
.
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Using the relationship

D2(Yγ) =
12(1 − γ)2

175
,

the probabilistic correlation ratio of Yγ with respect to Xγ is obtained as

η2(Yγ |Xγ) =
1

6
.

From this the f -weighted possibilistic correlation ratio of B with respect to A is,

η2
f (B|A) =

∫ 1

0

1

6
f(γ)dγ =

1

6
.

Similarly, from D2[E(X|Y )] =
3(1 − γ)

320
, and from

D2(Xγ) =
19(1 − γ)

320
,

one obtains,

η2
f (A|B) =

∫ 1

0

3

19
f(γ)dγ =

3

19
.

That is η2
f (B|A) 6= η2

f (A|B).

Joint Distribution: (1 −√
x − y)

Consider the case, when
A(x) = (1 −√

x) · χ[0,1](x),

B(x) = (1 − y) · χ[0,1](y),

for x ∈ R, that is [A]γ = [0, (1 − γ)2], [B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose that their
joint possibility distribution is given by:

C(x, y) = (1 −√
x − y) · χT (x, y),

where
T =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x + y ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x + y ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise

=







3

(1 − γ)3
if (x, y) ∈ [C]γ

0 otherwise
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The marginal functions are obtained as

f1(x) =







3(1 − γ −√
x)

(1 − γ)3
if 0 ≤ x ≤ (1 − γ)2

0 otherwise

f2(y) =







3(1 − γ − y)2

(1 − γ)3
if 0 ≤ y ≤ 1 − γ

0 otherwise

For the correlation ratio we need to calculate the conditional probability distribution:

E(Y |X = x) =

∫ 1−γ−√
x

0
yf(y|x)dy =

∫ 1−γ−√
x

0
y
f(x, y)

f1(x)
dy =

1 − γ −√
x

2
,

where 0 ≤ y ≤ 1 − γ. The next step is to calculate the variation of this distribution:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=

∫ (1−γ)2

0
(
1 − γ −√

x

2
− 1 − γ

4
)2

3(1 − γ −√
x)

(1 − γ)3
dx

=
(1 − γ)2

80
.

Using the relationship

D2(Yγ) =
3(1 − γ)2

80
,

one obtains that the probabilistic correlation ratio of Yγ with respect to Xγ is

η2(Yγ |Xγ) =
1

3
.

From this the f -weighted possibilistic correlation ratio of B with respect to A is,

η2
f (B|A) =

∫ 1

0

1

3
f(γ)dγ =

1

3
.

Similarly, from D2[E(X|Y )] =
3(1 − γ)4

175
, and from

D2(Xγ) =
37(1 − γ)4

700
,

we obtain:

η2
f (A|B) =

∫ 1

0

12

37
f(γ)dγ =

12

37
.
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A Ball-Shaped Joint Distribution

Consider the case, when

A(x) = B(x) = (1 − x2) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0,
√

1 − γ], for γ ∈ [0, 1]. Suppose that their joint
possibility distribution is ball-shaped, that is,

C(x, y) = (1 − x2 − y2) · χT (x, y),

where
T =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise

=







4

(1 − γ)π
if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =







4
√

1 − γ − x2

(1 − γ)π
if 0 ≤ x ≤ 1 − γ

0 otherwise

f2(y) =







4
√

1 − γ − y2

(1 − γ)π
if 0 ≤ y ≤ 1 − γ

0 otherwise

For the correlation ratio, the conditional probability distribution has to be calculated:

E(Y |X = x) =

∫

√
1−γ−x2

0
yf(y|x)dy =

∫

√
1−γ−x2

0
y
f(x, y)

f1(x)
dy =

√

1 − γ − x2

2
,

where 0 ≤ y ≤ √
1 − γ. The next step is to calculate the variation of this distribution:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=

∫

√
1−γ

0
(

√

1 − γ − x2

2
− 4

√
1 − γ

3π
)2

4
√

1 − γ − x2

π(1 − γ)
dx

=
(1 − γ)(27π2 − 256)

144π2
.
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Using the relationship

D2(Yγ) =
(1 − γ)(9π2 − 64)

36π2
,

one obtains that the probabilistic correlation ratio of Yγ with respect to Xγ is

η2(Yγ |Xγ) =
27π2 − 256

36π2 − 256
.

Finally, we get that the f -weighted possibilistic correlation ratio of B with respect A is,

η2
f (B|A) =

∫ 1

0

27π2 − 256

36π2 − 256
f(γ)dγ =

27π2 − 256

36π2 − 256
.

Joint Distribution: (1 −√
x −√

y)

Consider the case, when

A(x) = B(x) = (1 −√
x) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0, (1 − γ)2], for γ ∈ [0, 1]. Suppose that their joint
possibility distribution is given by:

C(x, y) = (1 −√
x −√

y) · χT (x, y),

where

T =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x +

√
y ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x +

√
y ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =







1
∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise

=







6

(1 − γ)4
if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =







6(1 − γ −√
x)2

(1 − γ)4
if 0 ≤ x ≤ (1 − γ)2

0 otherwise

f2(y) =







6(1 − γ −√
y)2

(1 − γ)4
if 0 ≤ y ≤ (1 − γ)2

0 otherwise
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For the correlation ratio, the conditional probability distribution has to be computed:

E(Y |X = x) =

∫ (1−γ−√
x)2

0
yf(y|x)dy =

∫ (1−γ−√
x)2

0
y
f(x, y)

f1(x)
dy =

(1 − γ −√
x)2

2
,

where 0 ≤ y ≤ (1 − γ)2. The next step is to calculate the variation of this distribution:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=

∫ (1−γ)2

0
(
(1 − γ −√

x)2

2
− (1 − γ)2

5
)2

6(1 − γ −√
x)2

(1 − γ)4
dx

=
19(1 − γ)4

1400
.

Using the relationship

D2(Yγ) =
9(1 − γ)4

350
,

one obtains that the probabilistic correlation of Yγ with respect to Xγ is,

η2(Yγ |Xγ) =
19

36
.

That is, the f -weighted possibilistic correlation ratio of B with respect to A is,

η2
f (B|A) =

∫ 1

0

19

36
f(γ)dγ =

19

36
.

5.3 Discussion

In this chapter a correlation ratio is introduced for marginal possibility distributions of
joint possibility distributions and this new principle is illustrated by five examples. This
new concept has properties similar to the probabilistic correlation ratio. One possible
direction for applications is sensitivity analysis. The main drawback of the correlation
ratio is that there is an inherent problem with computing (or even estimating) it in a
simple manner: the calculation of the conditional expectation is not a straightforward
task even in the simplest situations. If this problem of estimation can be solved in an
efficient way, the applications for example in portfolio optimization would be promising.
One possible way would be the generalization of the method described in [62].
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Chapter 6

Quasi Fuzzy Numbers

A quasi fuzzy number A is a fuzzy set of the real line with a normal, fuzzy convex and
continuous membership function satisfying the limit conditions [10]

lim
t→∞

µA(t) = 0, lim
t→−∞

µA(t) = 0.

A quasi triangular fuzzy number (see Fig. 6.1) is a quasi fuzzy number with a unique
maximizing point. Furthermore, we call Q the family of all quasi fuzzy numbers. Quasi
fuzzy numbers can also be considered as possibility distributions [29]. If A is a quasi
fuzzy number, then [A]γ is a closed convex (compact) subset of R for any γ > 0. a1(γ)
denotes the left-hand side and a2(γ) denotes the right-hand side of the γ-cut, of A for
any γ ∈ [0, 1].

Different weighting functions can give different (case-dependent) importances to γ-
levels sets of quasi fuzzy numbers. It is motivated in part by the desire to give less
importance to the lower levels of fuzzy sets [41] (it is why the weighting function f
should be monotone increasing).

6.1 Possibilistic Mean Value, Variance, Covariance and

Correlation of Quasi Fuzzy Numbers

The possibilistic mean (or expected value), variance and covariance can be defined from
the measure of possibilistic interactivity (as shown in [13, 39, 40]). If f(γ) = 1 for all
γ ∈ [0, 1] then we get from 3.1

Ef (A) =

∫ 1

0
E(Uγ)f(γ)dγ =

∫ 1

0

a1(γ) + a2(γ)

2
dγ.

In this chapter the natural weighting function, f(γ) = 2γ, will be used. In this case
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Figure 6.1: A quasi triangular fuzzy number with membership function e−|x|.

the possibilistic mean value is defined by,

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ

=

∫ 1

0
γ(a1(γ) + a2(γ))dγ,

(6.1)

which is the definition originally introduced by Carlsson and Fullér in 2001 [9]. We note
here that from the equality

E(A) =

∫ 1

0
γ(a1(γ) + a2(γ))dγ

=

∫ 1

0
γ · a1(γ) + a2(γ)

2
dγ

∫ 1

0
γ dγ

,

it follows that E(A) is nothing else but the level-weighted average of the arithmetic
means of all γ-level sets, that is, the weight of the arithmetic mean of a1(γ) and a2(γ)
is just γ.

The concept of possibilistic mean value can be extended to the family of quasi fuzzy
numbers:
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Definition 6.1. The f -weighted possibilistic mean value of A ∈ Q is defined as

Ef (A) =

∫ 1

0
E(Uγ)f(γ)dγ =

∫ 1

0

a1(γ) + a2(γ)

2
f(γ)dγ,

where Uγ is a uniform probability distribution on [A]γ for all γ > 0. The value of Ef (A)
does not depend on the boundedness of the support of A.

The possibilistic mean value is originally defined for fuzzy numbers (i.e. quasi fuzzy
numbers with bounded support). If the support of a quasi fuzzy number A is unbounded
then its possibilistic mean value might not exist. However, for a symmetric quasi fuzzy
number, A, it is easy to see that Ef (A) = a, where a is the center of symmetry, for any
weighting function f .

In the following a family of quasi fuzzy numbers will be characterized for which it is
possible to calculate the possibilistic mean value. First an example is shown for a quasi
triangular fuzzy number that does not have a mean value.

Example 6.1. Consider the following quasi triangular fuzzy number

µA(x) =







0 if x ≤ 0
1√

x + 1
if 0 ≤ x

In this case

a1(γ) = 0, a2(γ) =
1

γ2
− 1,

and its possibilistic mean value can not be computed, since the following integral does
not exist (not finite),

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ =

∫ 1

0

(

1

γ2
− 1

)

γdγ =

∫ 1

0

(

1

γ
− γ

)

dγ.

This example is very important: if the membership function of the quasi fuzzy num-
ber tends to zero slower than the function 1/

√
x then it is not possible to calculate the

possibilistic mean value, (clearly, the value of the integral will be infinite), otherwise the
possibilistic mean value does exist.

To show this, suppose that there exists ε > 0, such that the membership function of
quasi fuzzy number A satisfies the property,

µA(x) = O(x− 1

2
−ε)

if x → +∞. This means that there exist M and x0 ∈ R such that,

µA(x) ≤ Mx− 1

2
−ε,
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if x > x0 and where M is a positive real number. Thus the possibilistic mean value of
A is bounded from above by

M
1

−

1
2
−ε

multiplied by the possibilistic mean value of a quasi fuzzy number with membership
function x− 1

2
−ε plus an additional constant (because of the properties of a quasi fuzzy

number, the interval [0, x0] accounts for a finite value in the integral).
Suppose that,

µA(x) =











0 if x < 0

1 if 0 ≤ x ≤ 1

x− 1

2
−ε if x ≥ 1

A similar reasoning holds for negative fuzzy numbers with membership function (−x)−
1

2
−ε.

Then we get,

a1(γ) = 0, a2(γ) = γ
1

−

1
2
−ε ,

and since
ε − 1

2

ε + 1
2

6= 1,

we can calculate the possibilistic mean value of A as,

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ =

∫ 1

0
γ
− 1

ε+ 1
2 γdγ

=

∫ 1

0
γ
− ε− 1

2

ε+ 1
2 dγ = (ε +

1

2
)

[

γ
1

ε+ 1
2

]1

0

= ε + 1/2

Theorem 6.1. If A is a non-symmetric quasi fuzzy number then Ef (A) exists if and
only if there exist real numbers ε, δ > 0 , such that,

µA(x) = O
(

x− 1

2
−ε

)

,

if x → +∞ and

µA(x) = O
(

(−x)−
1

2
−δ

)

,

if x → −∞.

Note 6.1. If one considers other weighting functions, a sufficient and necessary condi-

tion is µA(x) = O(x−1−ε), when x → +∞ (in the worst case, when f(γ) = 1,
1

γ
is the

critical growth rate.)

Example 6.2. Consider the following quasi triangular fuzzy number (depicted in Fig.
6.2),

µA(x) =







0 if x ≤ 0
1

x + 1
if 0 ≤ x
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Figure 6.2: Quasi triangular fuzzy number 1/(x + 1), x ≥ 0.

In this case

a1(γ) = 0, a2(γ) =
1

γ
− 1,

and its possibilistic mean value is,

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ =

∫ 1

0

(

1

γ
− 1

)

γdγ

=

∫ 1

0
(1 − γ)dγ = 1/2.

This example is very important: the volume of A can not be normalized since
∫ ∞
0 µA(x)dx

does not exist. In other words, µA can not be considered as a density function of any
random variable.

The measure of f -weighted possibilistic variance of a fuzzy number A is the f -
weighted average of the probabilistic variances of the respective uniform distributions
on the level sets of A. That is, the f -weighted possibilistic variance of A is defined by
3.3

Varf (A) =

∫ 1

0
var(Uγ)f(γ)dγ =

∫ 1

0

(a2(γ) − a1(γ))2

12
f(γ)dγ.

The concept of possibilistic variance can be extended to the family of quasi fuzzy
numbers:

Definition 6.2. The measure of f -weighted possibilistic variance of a quasi fuzzy num-
ber A is the f -weighted average of the probabilistic variances of the respective uniform
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distributions on the level sets of A. That is, the f -weighted possibilistic variance of A is
defined by

Varf (A) =

∫ 1

0
var(Uγ)f(γ)dγ =

∫ 1

0

(a2(γ) − a1(γ))2

12
f(γ)dγ.

where Uγ is a uniform probability distribution on [A]γ for all γ > 0. The value of Varf (A)
does not depend on the boundedness of the support of A. If f(γ) = 2γ then the notation
Var(A) will be used.

From the definition it follows that in this case there can be no distinction made
between the symmetric and non-symmetric case. And it is also obvious, because of the
square of the a1(γ) and a2(γ) functions in the definition, that the decreasing rate of the
membership function has to be the square of the rate determined in case of the mean
value. One can conclude:

Theorem 6.2. If A is a quasi fuzzy number then Var(A) exists if and only if there exist
real numbers ε, δ > 0, such that

µA(x) = O(x−1−ε)

if x → +∞ and

µA(x) = O((−x)−1−δ),

if x → −∞.

Note 6.2. When considering other weighting functions, one needs to require that

µA(x) = O(x−2−ε),

when x → +∞ (in the worst case, when f(γ) = 1,
1√
γ

is the critical growth rate.)

Example 6.3. Consider again the quasi triangular fuzzy number,

µA(x) =







0 if x ≤ 0
1

x + 1
if 0 ≤ x

In this case we have,

a1(γ) = 0, a2(γ) =
1

γ
− 1,

and its possibilistic variance does not exist since

∫ 1

0

(a2(γ) − a1(γ))2

12
2γdγ =

∫ 1

0

(1/γ − 1)2

12
2γdγ = ∞.
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The f -weighted measure of possibilistic covariance between A,B ∈ F , (with respect
to their joint distribution C), defined by 3.2, can be written as

Covf (A,B) =

∫ 1

0
cov(Xγ , Yγ)f(γ)dγ,

where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ for
all γ ∈ [0, 1], and cov(Xγ , Yγ) denotes their probabilistic covariance.

Definition 6.3. The f -weighted measure of possibilistic covariance between A,B ∈ Q,
(with respect to their joint distribution C), is defined by,

Covf (A,B) =

∫ 1

0
cov(Xγ , Yγ)f(γ)dγ,

where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ for
any γ > 0.

It is easy to see that the possibilistic covariance is an absolute measure in the sense
that it can take any value from the real line.

The concept of possibilistic correlation can be extended in a similar way to the family
of quasi fuzzy numbers.

Definition 6.4. The f -weighted possibilistic correlation coefficient of A,B ∈ Q (with
respect to their joint distribution C) is defined by

ρf (A,B) =

∫ 1

0
ρ(Xγ , Yγ)f(γ)dγ

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)

and, where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ

for any γ > 0.

6.2 Probability versus Possibility: The Case of Exponen-

tial Function

In this section the possibilistic mean value and variance of a quasi triangular fuzzy
number defined by the membership function e−x, x ≥ 0, will be investigated. It can also
be seen as a density function of a standard exponential random variable (see Fig. 6.3).
In probability theory and statistics, the exponential distribution is a family of continuous
probability distributions. It describes the time between events in a Poisson process, i.e.
a process in which events occur continuously and independently at a constant average
rate.
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Figure 6.3: Quasi triangular fuzzy number and density function of an exponential random
variable with parameter one: e−x, x ≥ 0.

Consider the following quasi triangular fuzzy number

µA(x) =

{

0 if x < 0

e−x if x ≥ 0.

From
∫ ∞
0 µA(x)dx = 1 it follows that µA can also be considered as the density function

of a standard exponential random variable (with parameter one). It is well-known that
the mean value and the variance of this probability distribution is equal to one. In the
fuzzy case,

a1(γ) = 0, a2(γ) = − ln γ,

its possibilistic mean value is

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ =

∫ 1

0
−(ln γ)γdγ =

1

4
,

and its possibilistic variance is,

Var(A) =

∫ 1

0

(a2(γ) − a1(γ))2

12
2γdγ

=

∫ 1

0

(− ln γ)2

6
γdγ =

1

24
.

Let C be the joint possibility distribution, defined by the membership function,

µC(x, y) = e−(x+y), x ≥ 0, y ≥ 0,
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of quasi fuzzy numbers A and B with membership functions

µA(x) = e−x, x ≥ 0, and µB(y) = e−y, y ≥ 0.

In other words, the membership function of C is defined by a simple multiplication (by
Larsen t-norm [59]) of the membership values of µA(x) and µB(y), that is, µC(x, y) =
µA(x) × µB(y). The γ-cut of C can be computed by

[C]γ = {(x, y) | x + y ≤ − ln γ; x, y ≥ 0}.

Then

M(Xγ) = M(Yγ) = − ln γ

3
,

M(X2
γ ) = M(Y 2

γ ) =
(ln γ)2

6
,

and,

var(Xγ) = M(X2
γ ) − M(Xγ)2 =

(ln γ)2

6
− (ln γ)2

9
=

(ln γ)2

18
.

Similarly,

var(Yγ) =
(ln γ)2

18
.

Furthermore,

M(XγYγ) =
(ln γ)2

12
,

cov(Xγ , Yγ) = M(XγYγ) − M(Xγ)M(Yγ) = −(ln γ)2

36
.

The probabilistic correlation can be computed as

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
= −1

2
.

That is, ρ(Xγ , Yγ) = −1/2 for any γ > 0. Consequently, their possibilistic correlation
coefficient is, ρf (A,B) = −1/2 for any weighting function f .

On the other hand, in a probabilistic context, µC(x, y) = µA(x) × µB(y) = e−(x+y)

can be also considered as the joint density function of independent exponential marginal
probability distributions with parameter one. That is, in a probabilistic context, their
(probabilistic) correlation coefficient is equal to zero.

Note 6.3. The probabilistic correlation coefficient between two standard exponential
marginal probability distributions cannot go below (1 − π2/6). Really, the lower limit,
denoted by τ , can be computed from,

τ =

∫ ∞

0

∫ ∞

0

(

1 − e−x − e−y)+ − (1 − e−x)(1 − e−y)
)

dxdy
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= −
∫ ∞

0

∫ ∞

0
e−xe−ydxdy +

∫∫

0<x,0<y, 1<e−x+e−y

(1 − e−x − e−y)+dxdy

= −1 +

∫∫

0<x, 0<y, 1<e−x+e−y

(2e−x − 1)dxdy

using the substitutions u = e−x, v = e−y,

τ = −1 +

∫∫

u<1, v<1, u+v>1

(

2

u
− 1

uv

)

dudv = −1 +

∫ 1

0

1

u

∫ 1

0

(

2 − 1

v

)

dvdu

= 1 +

∫ 1

0

2u + log(1 − u)

u
du = −1 +

∫ 1

0

log(1 − u)

u
du

=

∫ 1

0

∞
∑

k=1

uk−1

k
du = 1 −

∞
∑

k=1

1

k2
= 1 − π2

6
.

In the case of possibility distributions there is no known lower limit [44].

If the joint possibility distribution C is given by the minimum operator (Mamdani
t-norm [69]),

µC(x, y) = min{µA(x), µB(y)} = min{e−x, e−y},
x ≥ 0, y ≥ 0, then A and B are non-interactive marginal possibility distributions and,
therefore, their possibilistic correlation coefficient equals to zero.

6.3 Discussion

The principles of possibilistic mean value, variance, covariance and correlation of fuzzy
numbers were generalized to a more general class of fuzzy quantities: to quasi fuzzy
numbers. Some conditions were shown for the existence of possibilistic mean value and
variance for quasi fuzzy numbers.
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Chapter 7

The Fuzzy Pay-off Method

Real option valuation (ROV) is based on the observation that the possibilities finan-
cial options give their holder resemble the possibilities to invest in real investments and
possibilities found within real investments, i.e., managerial flexibility - “an irreversible
investment opportunity is much like a financial call option” [80]. In other words, real
option valuation handles investment opportunities as options and values them with op-
tion valuation models. Real options are useful as a model for strategic and operational
decision-making, and as a valuation and numerical analysis tool. This chapter focuses
on the use of real options in quantitaive analysis, and particularly on the derivation of
the real option value for a given investment opportunity.

Real options are commonly valued with the same methods that have been used
to value financial options and most of the methods are complex and demand a good
understanding of the underlying mathematics, issues that make their use difficult in
practice. Since all of the traditional methods were designed to value financial options,
when using them in real option context, the decision makers have to be aware of the
significant differences between financial and real options (as it was shortly described in
Chapter 3).

A novel approach to real option valuation was presented in [21], [71], and in [22],
where the real option value is calculated from a pay-off distribution, derived from a
probability distribution of the NPV for a project that is generated with a (Monte-
Carlo) simulation. The authors show that the results from the method converge to
the results from the analytical Black-Scholes method. The method presented greatly
simplifies the calculation of the real option value. The method does not suffer from the
problems associated with the assumptions connected to the market processes and used
in the Black-Scholes and the binomial option valuation methods. The method utilizes
cash-flow scenario based estimation of the future outcomes to derive the future pay-off
distribution the way profitability analysis is commonly done in companies.

Uncertainty in the financial investment context means that it is in practice impossible
to give absolutely correct estimates of, e.g., future cash-flows. There may be a number
of reasons for this, see, e.g., [50].
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Fuzzy sets can be used to formalize inaccuracy that exists in human decision making
and as a representation of vague, uncertain or imprecise knowledge, e.g., “a future cash
flow at year ten is about x euro”. “Fuzzy set-based methodologies blur the traditional
line between qualitative and quantitative analysis, since the modeling may reflect more
the type of information that is available rather than researchers’ preferences” [92] and
indeed in economics “the use of fuzzy subsets theory leads to results that could not be
obtained by classical methods” [81].

To estimate future cash flows and discount rates ”One usually employs educated
guesses, based on expected values or other statistical techniques” [8], which is consistent
with the use of fuzzy numbers. In practical applications the most used fuzzy numbers
are trapezoidal and triangular fuzzy numbers. They are used, because they make many
operations possible and are intuitively understandable and interpretable.

Fuzzy numbers (fuzzy logic) have been adopted to option valuation models in (bino-
mial) pricing an option with a fuzzy payoff, e.g., in [74], and in Black-Scholes valuation
of financial options in, e.g., [104]. There are also some option valuation models that
present a combination of probability theory and fuzzy sets, e.g., [115]. Fuzzy numbers
have also been applied to the valuation of real options in, e.g., [11], [16], and [12]. More
recently there are a number of papers that present the application of fuzzy RO models in
the industry setting, e.g., [15]; [93]. There are also specific fuzzy models for the analysis
of the value of optionality for very large industrial real investments, e.g., [17].

In the following a new method for valuation of real options using fuzzy numbers
is presented. The model is based on the previous literature on real option valuation,
especially the findings in [21]. The use of the method is illustrated with a selection of
different types of fuzzy numbers. Then the concept of credibility measure is recalled
and incorporated into the model. Finally, a real world example on patent valuation is
provided.

7.1 New Fuzzy Pay-Off Method for Valuation of Real Op-

tions from Fuzzy Numbers

[71] and [21] present a practical probability theory based method for the calculation of
real option value (ROV) and show that the method and results from the method are
mathematically equivalent to the Black-Sholes formula [3]. The method is based on
simulation generated probability distributions for the NPV of future project outcomes.
The method implies that: “the real-option value can be understood simply as the average
net profit appropriately discounted to Year 0, the date of the initial R & D investment
decision, contingent on terminating the project if a loss is forecasted at the future launch
decision date”. The project outcome probability distributions are used to generate a
payoff distribution, where the negative outcomes (subject to terminating the project)
are truncated into one chunk that will cause a zero payoff, and where the probability
weighted average value of the resulting payoff distribution is the real option value.

Fuzzy numbers can be used in representing the expected future distribution of possi-
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Figure 7.1: Triangular fuzzy number (a possibility distribution), defined by three points
[a, α, β] describing the NPV of a prospective project; (20% and 80% are for illustration
purposes only)

ble project costs and revenues, and hence also the profitability (NPV) outcomes. When
using fuzzy numbers the fuzzy NPV itself is the payoff distribution from the project.

The method presented in [21] implies that the weighted average of the positive out-
comes of the payoff distribution is the real option value; in the case with fuzzy numbers,
the weighted average is the possibilistic mean value of the positive NPV outcomes.

Real option value is calculated from the fuzzy NPV as:

FROV =
A(positive)

A(total)
× Fuzzy mean(positiveNPV side) (7.1)

It is easy to see that when the whole fuzzy number is above zero, the ROV is the
possibilistic mean of the number, and when the whole fuzzy number is below zero, the
ROV is 0.

The new method is based on the observations that real option value is the probabil-
ity weighted average of the positive values of a payoff distribution of a project, which
is nothing more than the fuzzy NPV of the project, and that for fuzzy numbers the
probability weighted average of the positive values of the payoff distribution is nothing
else than the weighted possibilistic mean of the positive values of the fuzzy NPV.

7.2 Calculating the ROV with the Fuzzy Pay-Off Method

with a Selection of Different Types of Fuzzy Numbers

As the form of a fuzzy number may vary the most used forms are the triangular and
trapezoidal fuzzy numbers. First, the positive area and the possibilistic mean of the
positive area of a triangular fuzzy pay-off A = (a, α, β) are calculated in the case of
a − α < 0 < a. Variable z, where 0 ≤ z ≤ α, represents the distance of a general cut
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point from a−α at which the triangular fuzzy number (distribution) is divided into two
parts - for this purpose the variable z gets the value α−a (to calculate the positive part
of A). The notation

(A|z)(t) =

{

0 if t ≤ a − α + z

A(t) otherwise

is used for the membership function of the right-hand side of a triangular fuzzy number
truncated at point a − α + z, where 0 ≤ z ≤ α.

Then the possibilistic mean value of this truncated triangular fuzzy number can be
calculated as

E(A|z) = I1 + I2 =

∫ z1

0
γ(2a − α + z + (1 − γ)β)dγ+

∫ 1

z1

γ(2a − (1 − γ)α + (1 − γ)β)dγ

(7.2)

where

z1 = 1 − α − z

α
=

z

α

After computing the integrals, one obtains the following:

z1 = 1 − α − z

α
=

z

α

I1 =

∫ z1

0
[(2a − α + z + β)γ − βγ2]dγ = (2a − α + z + β)

z2

2α2
− β

z3

3α3

I2 =

∫ 1

z1

[(2a + β − α)γ − γ2(β − α)]dγ = (2a + β − α)(
1

2
− z2

2α2
) − (β − α)(

1

3
− z3

3α3
)

I1 + I2 = (2a − α + z + β) × z2

2α2
− β × z3

3α3
+ (2a + β − α) × (

1

2
− z2

2α2
)−

(β − α) × (
1

3
− z3

3α3
) =

z3

2α2
+

2a − α + β

2
+

α − β

3
− α

z3

3α3

E =
z3

6α2
+ a +

β − α

6

To derive the real option value with the above formulas, the ratio between the positive
area of the triangular fuzzy number and the total area of the same number has to be
calculated and multiplied with the possibilistic mean value of the positive part of the
number (E), according to what is depicted in Fig. 7.1.

In the following, the possibilistic mean value is calculated for the positive part of a
trapezoidal fuzzy pay-off distribution and the same for a special form of fuzzy pay-off
distribution.
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A trapezoidal fuzzy pay-off distribution is defined as

A(u) =



























u

α
− a1 − α

α
if a1 − α ≤ u ≤ a1

1 if a1 ≤ u ≤ a2
u

−β
+

a2 + β

β
if a2 ≤ u ≤ a2 + β

0 otherwise

with γ-level sets [A]γ = [γα + a1 − α,−γβ + a2 + β]. The possibilistic mean value of A
is the following:

E(A) =

∫ 1

0
γ(γα + a1 − α − γβ + a2 + β)dγ

= (a1 − α + a2 + β)
1

2
+ (β − α)

1

3

=
a1 + a2

2
+

β − α

6

The mean value has to be calculated in 5 different cases depending on the position
of z:

1. z < a1 − α : E(A | z) = E(A).

2. a1 − α < z < a1:γz =
z

α
− a1 − α

α
,

[A]γ =

{

(z,−γβ + a2 + β) if γ ≤ γz

(γα + a1 − α,−γβ + a2 + β) if γz ≤ γ ≤ 1,

E(A | z) =

∫ γz

0
γ(z − γβ + a2 + β)dγ +

∫ 1

γz

γ(γα + a1 − α − γβ + a2 + β)dγ

=
a1 + a2

2
+

β − α

6
+ (z − a1 + α)

γ2
z

2
− α

γ3
z

3
.

3. a1 < z < a2 : γz = 1,

[A]γ = [z,−γβ + a2 + β],

E(A | z) =

∫ 1

0
γ(z − γβ + a2 + β)dγ =

z + a2

2
+

β

6
.

4. a2 < z < a2 + β : γz = z
−β + a2+β

β ,

[A]γ = [z,−γβ + a2 + β], if γ < γz,

E(A | z) =

∫ γz

0
γ(z − γβ + a2 + β)dγ = (z + a2 + β)

γ2
z

2
− β

γ3
z

3
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Figure 7.2: Illustration of the special case

5. a2 + β < z : E(A | z) = 0.

In the case depicted in Fig. 7.2, the managers have already performed the analysis
of three scenarios and have assigned probabilities to each scenario (adding to 100%).
These ’probabilities’ are assigned to the scenarios to obtain a fuzzy set:

A(u) =























(γ3 − γ1)
u

α
− (γ3 − γ1)

a − α

α
+ γ1 if a − α ≤ u ≤ a

γ3 if u = a

(γ2 − γ3)
u

β
− (γ2 − γ3)

a

β
+ γ3 if a ≤ u ≤ a + β

0 otherwise
The fuzzy mean value can be calculated as:

E(A) =

∫ 1

0
γ(a1(γ) + a2(γ))dγ =

∫ 1

0
γa1(γ)dγ +

∫ 1

0
γa2(γ)dγ

where
∫ 1

0
γa1(γ)dγ =

∫ γ1

0
γ(a − α)dγ +

∫ γ3

γ1

γ(
γ − γ1

γ3 − γ1
α + a − α)dγ

= (a − α)
γ2
1

2
+ (a − α − αγ1

γ3 − γ1
)(

γ2
3

2
− γ2

1

2
) +

α

γ3 − γ1
(
γ3
3

3
− γ3

1

3
)

∫ 1

0
γa2(γ)dγ =

∫ γ2

0
γ(a + β)dγ +

∫ γ3

γ2

γ(
γ − γ3

γ2 − γ3
β + a)dγ

= (a + β)
γ2
2

2
+ (a − βγ3

γ2 − γ3
)(

γ2
3

2
− γ2

2

2
) +

β

γ2 − γ3
(
γ3
3

3
− γ3

2

3
)

E(A) =
γ2
1

2

αγ1

γ3 − γ1
+

γ2
2

2
(β +

βγ3

γ2 − γ3
) +

γ2
3

2
(2a − α − αγ1

γ3 − γ1
− βγ3

γ2 − γ3
) − γ3

1

3

α

γ3 − γ1

−γ3
2

3

β

γ2 − γ3
+

γ3
3

3
(

α

γ3 − γ1
+

β

γ2 − γ3
)

The mean value has to be calculated in 4 different cases depending on the position
of z:
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1. z < a − α : E(A | z) = E(A).

2. a − α < z < a:γz = (γ3 − γ1)
z

α
− (γ3 − γ1)

a − α

α
+ γ1,

E(A | z) =
γ2

z

2
(z − a + α +

αγ1

γ3 − γ1
) +

γ2
2

2
(β +

βγ3

γ2 − γ3
)+

γ2
3

2
(2a − α − αγ1

γ3 − γ1
− βγ3

γ2 − γ3
) − γ3

z

3

α

γ3 − γ1

−γ3
2

3

β

γ2 − γ3
+

γ3
3

3
(

α

γ3 − γ1
+

β

γ2 − γ3
).

3. a < z < a + β : γz = (γ2 − γ3)
z

β
− (γ2 − γ3)

a

β
+ γ3,

E(A | z) =
γ2

z

2
(z + a − β

γ2 − γ3
) +

γ2
2

2
(β +

βγ3

γ2 − γ3
) +

γ3
z

3

βγ3

γ2 − γ3
− γ3

2

3

β

γ2 − γ3
.

4. a + β < z : E(A | z) = 0.

7.3 Credibility measure

The self-duality of a probability distribution is an essential property: if one can esti-
mate the probability of an event, the probability of the complement can be calculated
straightforwardly. To give an example in the context of real options: if the probability
that the value of an investment will increase in the following two months is p, then the
probability that the value will decrease is 1 − p. In practical problems, this provides a
clear interpretation and facilitates the work of the decision makers. In contrast, if a tri-
angular fuzzy number with center a is considered as a representation for the value of an
investment, the possibility that this value is greater than a is 1, and the possibility that
it is smaller than a is 1 as well. From a managerial perspective, this type of information
is quite confusing and fails to provide useful support in the decision making process.
To overcome this feature in real life applications, one possible way is to use a credibil-
ity measure instead of possibility. It preserves all the essential and useful properties of
possibility (and necessity) and provides an easy interpretation of the results.

Although the concept of possibility measure [111] has been widely used, it has no
self-duality property. This was the main motivation behind the concept of credibility
measure which was first defined in [66], where the authors used this subclass of fuzzy
measures to define the expected value of a fuzzy random variable ξ. Later, credibility
theory was founded by Liu ([67]), and in ([63]) Li and Liu gave the following four axioms
as a sufficient and necessary condition for a credibility measure (Θ is a nonempty set
and P(Θ) is the power set of Θ):
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1. Cr {Θ} = 1

2. Cr is increasing, i.e., Cr {C} ≤ Cr {D} whenever C ⊂ D

3. Cr is self-dual, i.e., Cr {C} + Cr {Cc} = 1 for any C ∈ P(Θ)

4. Cr {⋃i Ci} ∧ 0.5 = supi Cr {Ci} for any {Ci} with Cr {Ci} ≤ 0.5.

Definition 7.1 (Credibility measure). A set function, Cr, is called a credibility measure
if it satisfies the first four axioms.

It is easy to see that Cr {∅} = 0, and that the credibility measure takes value between
0 and 1. It can also be proved that a credibility measure is subadditive ([67]):

Cr {C ∪ D} ≤ Cr {C} + Cr {D} for anyC,D ∈ P(Θ).

To establish the connection between a fuzzy variable and a credibility measure, both
defined on the credibility space (Θ,P(Θ),Cr), a fuzzy variable, A, can be seen as a
function from this space to the set of real numbers, and its membership function can be
derived from the credibility measure by

µ(x) = (2Cr {A = x}) ∧ 1, x ∈ R.

{A ∈ B} is termed as a fuzzy event, where B is a set of real numbers.

However, in practice a fuzzy variable is specified by its membership function. In
this case we can calculate the credibility of fuzzy events by the credibility inversion
theorem([67]):

Theorem 7.1. Let A be a fuzzy variable with membership function µ. Then for any set
B of real numbers, we have

Cr {A ∈ B} =
1

2
(sup
x∈B

µ(x) + 1 − sup
x∈Bc

µ(x)).

With this formula it is possible to interpret the credibility in terms of the possi-
bility and necessity measure, since supx∈B µ(x) and 1 − supx∈Bc µ(x) are nothing else
but Pos(B) and Nec(B), respectively. Using this two measures, the theorem can be
formulated as

Cr {B} =
1

2
(Pos(B) + Nec(B)). (7.3)

Note 7.1. If the credibility measure is defined using the equation (7.3), then Li and Liu
in [63] proved that this is equivalent to the definition using the four axioms.

Example 7.1. In this example, the credibility of events is calculated in case of a trian-
gular fuzzy number with peak (or center) a, left width α > 0 and right width β > 0. From
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the definition of credibility measure, the credibility of the event {A ≤ x} is the following:

Cr {A ≤ x} =







































0 if x ≤ a − α

1

2
− a − x

2α
if a − α ≤ x ≤ a

1

2
+

x − a

2β
if a ≤ x ≤ a + β

0 if a + β ≤ x

7.3.1 Expected value using the credibility measure

In [66], as the first application of the credibility measure, the authors proposed a novel
concept of expected value for normalized fuzzy variables motivated by the theory of
Choquet integrals (a fuzzy variable is said to be normalized, if there exists x0 ∈ R such
that µA(x0) = 1):

Definition 7.2 (Expected value). The expected value of a normalized fuzzy variable, ξ,
is defined by

Ec[ξ] =

∫ ∞

0
Cr {ξ ≥ r} dr −

∫ 0

−∞
Cr {ξ ≤ r}dr,

provided that at least one of the integrals is finite.

It is important to note that fuzzy numbers are normalized fuzzy variables by defini-
tion.

Example 7.2. Let A = (a, α, β) be a triangular fuzzy number. From the definition, the
credibilistic expected value of A is obtained as:

Ec[A] = a +
β − α

4
.

If A = (a1, a2, α, β) is a trapezoidal fuzzy number defined by the membership function

µA(x) =







































1 − a1 − x

α
if a1 − α ≤ x ≤ a1

1 if a1 ≤ x ≤ a2

1 − x − a2

β
if a2 ≤ x ≤ a2 + β

0 otherwise,

then the credibilistic expected value of A is

Ec[A] =
a1 + a2

2
+

β − α

4
.

Credibility theory and specifically the credibilistic expected value has been applied to
problems from different areas: portfolio optimization ([113]), facility location problem in
B2C e-commerce ([60]), transportation problems ([103]), logistics network design ([83]).
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7.4 The Fuzzy Pay-off method with the credibilistic expec-

tation

To use the credibility measure and the credibilistic expected value in this real option
environment seems to be a natural choice. To compare the results with the possibilistic
mean value, the same examples will be used. In case of credibilistic expected value, the
calculation of the mean of the positive part is simply

Ec[A+] =

∫ ∞

0
Cr {A ≥ r}dr.

When the positive area and the mean of the positive area of a triangular fuzzy pay-off
are calculated, we have to consider 4 cases:

• Case 1: 0 < a − α. In this case we have

Ec(A+) = Ec(A) = a +
β − α

4
.

Note 7.2. The possibilistic mean value of a triangular fuzzy number is Ep(A) =

a +
β − α

6
. Comparing this value to the result above, one can observe that

|Ep(A) − a| ≤ |Ec(A) − a| .

Also important to note, that Ep(A) ≤ Ec(A) if and only if the left width, α, is
smaller than the right width, β.

• Case 2: a − α < 0 < a. Then the credibilistic expected value has the following
form:

Ec[A+] =

∫ ∞

0
Cr {A ≥ r}dr =

∫ a

0
(
1

2
+

a − r

2α
)dr +

∫ a+β

a
(
1

2
− r − a

2β
)dr

=
a

2
+

a2

4α
+

β

4

• Case 3: a < 0 < a + β. In this case

Ec[A+] =

∫ ∞

0
Cr {A ≥ r}dr =

∫ a+β

0
(
1

2
− r − a

2β
)dr =

a

2
+

a2

4β
+

β

4
.

• Case 4: a + β < 0. Then it is easy to see that E(A+) = 0

If the NPV (pay-off) distribution is represented by a trapezoidal fuzzy number (with
γ-level sets [A]γ = [γα + a1 − α,−γβ + a2 + β]), the credibility has the following form:
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Cr {A ≤ r} =























































0 if r ≤ a1 − α

1

2
− a − x

2α
if a1 − α ≤ x ≤ a1

1

2
if a1 ≤ x ≤ a2

1

2
+

x − a

2β
if a2 ≤ x ≤ a2 + β

0 if a2 + β ≤ x

Then to calculate the credibilistic expected value for the positive part, we need to
consider the following five cases:

• Case 1: 0 < a1 − α. In this case we have Ec(A+) = Ec(A).

Ec(A+) = Ec(A) =
a1 + a2

2
+

β − α

4
.

Note 7.3. The possibilistic mean value of a trapezoidal fuzzy number is Ep(A) =
a1 + a2

2
+

β − α

6
. Comparing this value to the result above, it can be observed that

|Ep(A) − a| ≤ |Ec(A) − a| .

Also important to note, that Ep(A) ≤ Ec(A) if and only if the left width, α, is
smaller than the right width, β.

• Case 2: a1 − α < 0 < a1. Then the credibilistic expected value can be calculated
as:

Ec[A+] =

∫ a1

0
(
1

2
+

a1 − r

2α
)dr +

∫ a2

a1

1

2
dr +

∫ a2+β

a2

(
1

2
− r − a2

2β
)dr

=
a2

2
+

a2
1

4α
+

β

4
.

• Case 3: a1 < 0 < a2. In this case

Ec[A+] =

∫ a2

0

1

2
dr +

∫ a2+β

a2

(
1

2
− r − a2

2β
)dr =

a2

2
+

β

4
.

• Case 4: a2 < 0 < a2 + β. In this case we have

Ec[A+] =

∫ a2+β

0
(
1

2
− r − a2

2β
)dr =

a2

2
+

a2
2

4β
+

β

4
.

• Case 5: a2 + β < z. Then it is easy to see that E(A|z) = 0
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7.5 Patent Valuation with the Fuzzy Pay-off Method

Patent valuation and analysis is gaining more and more interest as companies want to
optimize their patent portfolios and are seeking for more efficient ways to do so [99, 19].
Much of IPR and patent analysis is conducted on qualitative basis, but there is an
interest for methods that can provide qualitative analysis for patent valuation, see e.g.,
[84].

A general patent application process requires the following major outlays [7]:

• Initial local application fee.

• PCT filing fee at the x1 month, where x1 < 12 months.

• Major costs associated with internationalizing a patent application (in national
phase) at the x2 month, where x2 < 30 months.

The follow-on commercial project has the following cash inflows and capital outlays:
(i) expected cash inflows over the n-year period, which can be represented by CI0,
CI1,...,CIn; (ii) expected outlays over the n-year period (including the outlay of year t),
which are CO0, CO1,...,COn.

A patent application program can be seen as a compound real option with the first
(call) option as the patent application, with the corresponding strike price being the
present value (as of T = 0) of the capital outlays for the application program I0, which
is defined as follows:

I0 = Initial local application fee +
PCT filing fee

(1 + r)
x1
12

+

Major costs required in national phase

(1 + r)
x2
12

(7.4)

where r is the risk-free interest rate. The opportunity to invest in the follow-on com-
mercialization project can be treated as the second (call) option with time to maturity
of t years, whose underlying asset and exercise price is the present value (as of T = 0)
of the commercial project’s expected future profits and the one-off investment of K
respectively.

In the model, the cash inflows and outflows are given by four scenarios(taking into
account the uncertainty concerning mainly the income in the second phase) and crisp
numbers, respectively:

• Initial local application fee, PCT filing fee and the costs associated with interna-
tionalizing a patent application are fixed (there is no uncertainty involved) and
thus will be represented as crisp numbers.

• Expected cash inflows from the patent exploitation will be represented as trape-
zoidal fuzzy numbers in the form of CIj = (aj , bj , αj , βj).
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Table 7.1: Cost and revenue cash-flow and present value of a patent with four scenarios
in the commercialization phase

Years (starting from
year t)

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8

Cash inflow

a − α (minimum possi-
ble)

1000 1300 1000 1800 1300 1600 1700 1400 2000

a (minimum best guess) 2000 2300 2100 2300 1500 2000 1900 1600 2500

b (maximum best guess) 2500 2900 2600 2800 1700 2600 2700 1900 3200

b + β (maximum possi-
ble)

3500 3700 3200 3300 2000 3000 3300 2400 3500

Present value of cash

inflow

opportunity cost of capital k = 15%

a − α (minimum possi-
ble)

1000 1130,43 756,14 1183,53 743,28 795,48 734,96 526,31 653,80

a (minimum best guess) 2000 2000,00 1587,90 1512,29 857,63 994,35 821,42 601,50 817,25

b (maximum best guess) 2500 2521,74 1965,97 1841,05 971,98 1292,66 1167,28 714,28 1046,09

b + β (maximum possi-
ble)

3500 3217,39 2419,66 2169,80 1143,51 1491,53 1426,68 902,25 1144,16

Cash outflows 1200 1500 1500 2000 900 2000 2500 800 1200

Present value of cash

outflows

risk-free rate r = 4%

1200 1442,30 1386,83 1777,99 769,32 1643,85 1975,78 607,93 876,82

Profit

a − α -200 -311,87 -630,69 -594,46 -26,04 -848,37 -1240,82 -81,62 -223,02

a 800 557,69 201,06 -265,70 88,30 -649,50 -1154,36 -6,43 -59,57

b 1300 1079,43 579,13 63,05 202,65 -351,19 -808,50 106,34 169,25

b + β 2300 1775,08 1032,82 391,81 374,18 -152,32 -549,10 294,31 267,32
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• The representation of the outlays over the post-grant can be crisp, but for a more
general description they may also be described in terms of fuzzy numbers when
the uncertainty concerning the costs is significant. It is important to mention that
a crisp number, c, can be seen as the trapezoidal fuzzy number c̃ = (c, c, 0, 0).
Even if the value of the outlays is known precisely, they can still be included in
the model as possibility distributions.

For simplicity, it is assumed that the the patent is granted at year t = 3 and is
commercialized immediately. The values of the cash inflows and outflows (and their
present values as of year t = 3) during the 8-year commercialization project are listed in
Table 7.1. The final outcome (the cumulative present value) at the end of the 8th year
is a trapezoidal fuzzy number A = (a, b, α, β) = (−488.51, 2340.19, 3668.41, 3393.93).
Using the formula for trapezoidal fuzzy numbers (in our case a < 0 < b), the real option
value can be calculated as ROV = 1101.83.

To calculate the value of the first option, the parameters are the following: initial
local application fee is 100, the PCT filling fee is 200, the cost required in the national
phase is 150, x1 is 12 months and x2 is 30 months. Using these numbers, one obtains
that I0 = 428.3. When we compare this to the present value of the ROV at the beginning
of the application program (as of T = 0), the result is

max(ROV ∗ − I0, 0) = 296.17,

which means that, for the company, it is profitable to file the patent application.

7.6 Discussion

There is reason to expect that the simplicity of the presented method is an advantage
over more complex methods. Using triangular and trapezoidal fuzzy numbers make very
easy implementations possible; this opens avenues for real option valuation to find its
way to more practitioners. The method is flexible as it can be used when the fuzzy NPV
is generated from scenarios or as fuzzy numbers from the beginning of the analysis.

As cash flows taking place in the future come closer, information changes, and uncer-
tainty is reduced this should be reflected in the fuzzy NPV, the more there is uncertainty
the wider the distribution should be, and when uncertainty is reduced the width of the
distribution should decrease. Only under full certainty should the distribution be rep-
resented by a single number, as the method uses fuzzy NPV there is a possibility to
have the size of the distribution decrease with a lesser degree of uncertainty, this is an
advantage vis--vis probability based methods.

The common decision rules for ROV analysis are applicable with the ROV derived
with the presented method. The single number NPV needed for comparison purposes
can be derived from the (same) fuzzy NPV by calculating the fuzzy mean value. This
means that in cases when all the values of the fuzzy NPV are greater than zero the single
number NPV equals ROV, which indicates immediate investment.
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Chapter 8

Conclusions and future research

Coping with uncertainty is a fundamental part of a decision making process. In real life
problems it is hardly the case that every source of uncertainty can be reduced before
taking action. The representation of incomplete information (deterministic uncertainty)
has been a very active research field in the last decades and it will continue to grow
due to the increasing importance of the topic. Fuzzy set theory is one of the developed
theories to handle deterministic uncertainty. The research problems of the thesis concern
a special type of fuzzy sets, namely fuzzy numbers.

When there are several uncertain variables present, an essential question is the mod-
elling and interpretation of the interrelation between these variables. In the context of
random variables, there exist well-established measures of interactivity to quantify the
relationships between distributions. Correlation for fuzzy numbers was introduced in
[13], but this measure is not always meaningful: when the level-sets of the joint distri-
bution is not convex, the value of this coefficient can take its value outside the [−1, 1]
interval. In Chapter 4 we have defined a novel measure of (relative) index of interactivity
between marginal distributions A and B of a joint possibility distribution C.

This new index of interactivity is meaningful for any joint possibility distribution.
This correlation coefficient is considered to be an index of interactivity between the
γ-level sets of A and B. If [C]γ is rectangular for 0 ≤ γ < 1 then A and B are non-
interactive and their index of interactivity is equal to zero. In the general case we have
used the probabilistic correlation coefficient to measure the interactivity between the
γ-level sets of A and B, which, loosely speaking, measures the ’strength’ of concordant
points as to the ’strength’ of discordant points of [C]γ with respect to the center of
mass of [C]γ . The use of this interactivity index was demonstrated through a series of
examples with the most important joint distributions. This new concept can be applied
in different areas of Operations Research and financial mathematics. One potential field
can be the analysis of fuzzy time series where it can serve as a meaningful autocorrelation
function.

In Chapter 5, we have introduced a correlation ratio for marginal possibility distribu-
tions of joint possibility distributions and illustrated this new principle by five examples.
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This new concept has properties similar to the probabilistic correlation ratio. This
measure can provide additional information concerning the interrelation of varibles One
possible direction for applications is sensitivity analysis: if A is a set of fuzzy numbers
A1, . . . , An, then η2

f (G(A)|Ai) represents the fraction of the variance of G(A) which is
”explained” by Ai . The main drawback of the correlation ratio is that there is an inher-
ent problem with computing (or even estimating) it in a simple manner: the calculation
of the conditional expectation E(G(A)|Ai) is not a straightforward task even in the
simplest situations. If this problem of estimation can be solved in an effective way, the
applications for example in portfolio estimation would be especially useful.

In Chapter 6, we have generalized the principles of possibilistic mean value, variance,
covariance and correlation of fuzzy numbers to a more general class of fuzzy quantities:
to quasi fuzzy numbers. We have shown some conditions for the existence of possi-
bilistic mean value and variance for quasi fuzzy numbers. These results demonstrate
that there is a wide class of quasi fuzzy numbers which can be considered in practical
applications which require finite average properties but at the same time can include
alternatives which are very unlikely to happen (although possible). These alternatives
are usually overlooked in most of the real life applications which can result in disastrous
consequences.

The methods of real option analysis and valuation in the recent years try to include
decision makers already in the process of model construction by building the distributions
on the basis of subjective judgements, as a result new models specifically built for this
purpose have started to emerge. These models are not based on the strict assumptions
of the classical financial option valuation models, but have adopted new views on the
modeling of options and real options. The fuzzy pay-off method presented in Chapter
7 is one example of such models. It is based on cash-flow estimates from managers to
form a simple pay-off distribution for the future that is then treated as a fuzzy number.
From this fuzzy number the real option value can be calculated. Credibility theory is
a construct that has been created to supplement the mea-surement of uncertainty and
here it has been used in the context of real option valuation. The credibilistic expected
value has been used for calculation and was compared to the possibilistic version of the
model. Offering different choices in the derivation of the expected value is important.
The simplicity of the presented methods can be an advantage in many situations over
more complex real option valuation methods. Triangular and trapezoidal fuzzy numbers
(represented by just three or four parameters) can be interpreted and processed in a very
straightforward way; this opens avenues for real option valuation to more practitioners.
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Abstract: In this paper we generalize the principles of possibilistic mean value, variance, covariance and correlation
of fuzzy numbers to quasi fuzzy numbers. We will show some necessary and sufficient conditions for the existence
of possibilistic mean value and variance for quasi fuzzy numbers. Considering the standard exponential probability
distribution as a quasi fuzzy number we will compare the possibilistic and the probabilistic correlation coefficients.

I. INTRODUCTION
A fuzzy number A is a fuzzy set in R with a normal, fuzzy
convex and continuous membership function of bounded
support. The family of fuzzy numbers is denoted by F . A
quasi fuzzy number A is a fuzzy set of the real line with a
normal, fuzzy convex and continuous membership function
satisfying the limit conditions [2]

lim
t→∞

µA(t) = 0, lim
t→−∞

µA(t) = 0.

A quasi triangular fuzzy number is a quasi fuzzy number
with a unique maximizing point. Furthermore, we call Q the
family of all quasi fuzzy numbers. Quasi fuzzy numbers can
also be considered as possibility distributions [6]. A γ-level
set of a fuzzy set A in Rm is defined by [A]γ = {x ∈ Rm :
µA(x) ≥ γ}, if γ > 0 and [A]γ = cl{x ∈ Rm : µA(x) > γ}
(the closure of the support of A) if γ = 0.

If A is a fuzzy number, then [A]γ is a closed convex
(compact) subset of R for all γ ∈ [0, 1]. If A is a quasi
fuzzy number, then [A]γ is a closed convex (compact)
subset of R for any γ > 0. Let us introduce the notations
a1(γ) = min[A]γ , a2(γ) = max[A]γ In other words, a1(γ)
denotes the left-hand side and a2(γ) denotes the right-hand
side of the γ-cut, of A for any γ ∈ [0, 1]. A fuzzy set C in
R2 is said to be a joint possibility distribution of quasi fuzzy
numbers A,B ∈ Q, if it satisfies the relationships max{x |
µC(x, y)} = µB(y), max{y | µC(x, y)} = µA(x), for all
x, y ∈ R. Furthermore, A and B are called the marginal
possibility distributions of C. A function f : [0, 1] → R
is said to be a weighting function if f is non-negative,
monoton increasing and satisfies the following normalization
condition ∫ 1

0

f(γ)dγ = 1.

Different weighting functions can give different (case-
dependent) importances to γ-levels sets of quasi fuzzy
numbers. It is motivated in part by the desire to give less
importance to the lower levels of fuzzy sets [11] (it is why
f should be monotone increasing).

Fig. 1. A quasi triangular fuzzy number with membership function e−|x|.

II. POSSIBILISTIC MEAN VALUE, VARIANCE,
COVARIANCE AND CORRELATION OF QUASI
FUZZY NUMBERS

The possibilistic mean (or expected value), variance and
covariance can be defined from the measure of possibilistic
interactivity (as shown in [3], [9], [10]) but for simplicity, we
will present the concept of possibilistic mean value, variance,
covariance in a pure probabilistic setting. Let A ∈ F be
fuzzy number with [A]γ = [a1(γ), a2(γ)] and let Uγ denote
a uniform probability distribution on [A]γ , γ ∈ [0, 1]. Recall
that the probabilistic mean value of Uγ is equal to

M(Uγ) =
a1(γ) + a2(γ)

2
,

and its probabilistic variance is computed by

var(Uγ) =
(a2(γ)− a1(γ))

2

12
.

The f -weighted possibilistic mean value (or expected value)
of A ∈ F is defined as [8]

Ef (A) =

∫ 1

0

E(Uγ)f(γ)dγ =

∫ 1

0

a1(γ) + a2(γ)

2
f(γ)dγ,
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where Uγ is a uniform probability distribution on [A]γ for
all γ ∈ [0, 1]. If f(γ) = 1 for all γ ∈ [0, 1] then we get

Ef (A) =

∫ 1

0

E(Uγ)f(γ)dγ =

∫ 1

0

a1(γ) + a2(γ)

2
dγ.

That is, f(γ) ≡ 1 the f -weighted possibilistic mean
value coincides with the (i) generative expectation of fuzzy
numbers introduced by Chanas and Nowakowski in ([4],
page 47); (ii) middle-point-of-the-mean-interval defuzzica-
tion method proposed by Yager in ([15], page161). In this
paper we will use the natural weighting function f(γ) = 2γ.
In this case the possibilistic mean value is, denoted by E(A),
defined by,

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ

=

∫ 1

0

γ(a1(γ) + a2(γ))dγ,

(1)

which the possibilistic mean value of A originally introduced
by Carlsson and Fullér in 2001 [1]. We note here that from
the equality

E(A) =

∫ 1

0

γ(a1(γ) + a2(γ))dγ

=

∫ 1

0

γ · a1(γ) + a2(γ)

2
dγ∫ 1

0

γ dγ

,

it follows that E(A) is nothing else but the level-weighted
average of the arithmetic means of all γ-level sets, that is,
the weight of the arithmetic mean of a1(γ) and a2(γ) is just
γ.

Note 1. There exist several other ways to define mean
values of fuzzy numbers, e.g. Dubois and Prade [5] defined
an interval-valued expectation of fuzzy numbers, viewing
them as consonant random sets. They also showed that
this expectation remains additive in the sense of addition
of fuzzy numbers. Using evaluation measures, Yoshida et
al [16] introduced a possibility mean, a necessity mean
and a credibility mean of fuzzy numbers that are different
from (1). Surveying the results in quantitative possibility
theory, Dubois [7] showed that some notions (e.g. cumu-
lative distributions, mean values) in statistics can naturally
be interpreted in the language of possibility theory.

Now we will extend the concept of possibilistic mean
value to the family of quasi fuzzy numbers.

Definition II.1. The f -weighted possibilistic mean value of
A ∈ Q is defined as

Ef (A) =

∫ 1

0

E(Uγ)f(γ)dγ =

∫ 1

0

a1(γ) + a2(γ)

2
f(γ)dγ,

where Uγ is a uniform probability distribution on [A]γ for
all γ > 0. The value of Ef (A) does not depend on the
boundedness of the support of A.

The possibilistic mean value is originally defined for
fuzzy numbers (i.e. quasi fuzzy numbers with bounded
support). If the support of a quasi fuzzy number A is
unbounded then its possibilistic mean value might even not
exist. However, for a symmetric quasi fuzzy number A we
get Ef (A) = a, where a is the center of symmetry, for any
weighting function f .

Now we will characterize the family of quasi fuzzy
numbers for which it is possible to calculate the possibilistic
mean value. First we show an example for a quasi triangular
fuzzy number that does not have a mean value.

Example II.1. Consider the following quasi triangular fuzzy
number

µA(x) =


0 if x ≤ 0
1√
x+ 1

if 0 ≤ x

In this case

a1(γ) = 0, a2(γ) =
1

γ2
− 1,

and its possibilistic mean value can not be computed, since
the following integral does not exist (not finite),

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ

=

∫ 1

0

(
1

γ2
− 1

)
γdγ =

∫ 1

0

(
1

γ
− γ

)
dγ.

Note 2. This example is very important: if the membership
function of the quasi fuzzy number tends to zero slower than
the function 1/

√
x then it is not possible to calculate the

possibilistic mean value, (clearly, the value of the integral
will be infinitive), otherwise the possibilistic mean value does
exist.

To show this, suppose that there exists ε > 0, such that
the membership function of quasi fuzzy number A satisfies
the property,

µA(x) = O(x− 1
2−ε)

if x → +∞. This means that there exists and x0 ∈ R such
that,

µA(x) ≤ Mx− 1
2−ε,

if x > x0 and where M is a positive real number. So the
possibilistic mean value of A is bonded from above by

M
1

− 1
2
−ε

multiplied by the possibilistic mean value of a quasi fuzzy
number with membership function x− 1

2−ε plus an additional
constant (because of the properties of a quasi fuzzy number
we know that the interval [0, x0] accounts for a finite value
in the integral).
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Suppose that,

µA(x) =


0 if x < 0

1 if 0 ≤ x ≤ 1

x− 1
2−ε if x ≥ 1

A similar reasoning holds for negative fuzzy numbers with
membership function (−x)−

1
2−ε. Then we get,

a1(γ) = 0, a2(γ) = γ
1

− 1
2
−ε ,

and since
ε− 1

2

ε+ 1
2

̸= 1,

we can calculate the possibilistic mean value of A as,

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ =

∫ 1

0

γ
− 1

ε+1
2 γdγ

=

∫ 1

0

γ
−

ε− 1
2

ε+1
2 dγ = (ε+

1

2
)

[
γ

1

ε+1
2

]1
0

= ε+ 1/2

Theorem II.1. If A is a non-symmetric quasi fuzzy number
then Ef (A) exists if and only if there exist real numbers
ε, δ > 0 , such that,

µA(x) = O
(
x− 1

2−ε
)
,

if x → +∞ and

µA(x) = O
(
(−x)−

1
2−δ

)
,

if x → −∞.

Note 3. If we consider other weighting functions, we need
to require that µA(x) = O(x−1−ε), when x → +∞ (in the

worst case, when f(γ) = 1,
1

γ
is the critical growth rate.)

Example II.2. Consider the following quasi triangular fuzzy
number,

µA(x) =

 0 if x ≤ 0
1

x+ 1
if 1 ≤ x

In this case we have,

a1(γ) = 0, a2(γ) =
1

γ
− 1,

and its possibilistic mean value is,

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ =

∫ 1

0

(
1

γ
− 1

)
γdγ

=

∫ 1

0

(1− γ)dγ = 1/2.

This example is very important since the volume of A can not
be normalized since

∫∞
0

µA(x)dx does not exist. In other
words, µA can not be considered as a density function of
any random variable.

Fig. 2. Quasi triangular fuzzy number 1/(x+ 1), x ≥ 0.

The measure of f -weighted possibilistic variance of a
fuzzy number A is the f -weighted average of the probabilis-
tic variances of the respective uniform distributions on the
level sets of A. That is, the f -weighted possibilistic variance
of A is defined by [9]

Varf (A) =

∫ 1

0

var(Uγ)f(γ)dγ

=

∫ 1

0

(a2(γ)− a1(γ))
2

12
f(γ)dγ.

Now we will extend the concept of possibilistic variance
to the family of quasi fuzzy numbers.

Definition II.2. The measure of f -weighted possibilistic
variance of a quasi fuzzy number A is the f -weighted
average of the probabilistic variances of the respective
uniform distributions on the level sets of A. That is, the
f -weighted possibilistic variance of A is defined by

Varf (A) =

∫ 1

0

var(Uγ)f(γ)dγ

=

∫ 1

0

(a2(γ)− a1(γ))
2

12
f(γ)dγ.

where Uγ is a uniform probability distribution on [A]γ for
all γ > 0. The value of Varf (A) does not depend on the
boundedness of the support of A. If f(γ) = 2γ then we
simple write Var(A).

From the definition it follows that in this case we can
not make any distinction between the symmetric and non-
symmetric case. And it is also obvious, since in the definition
we have the square of the a1(γ) and a2(γ) functions, that
the decreasing rate of the membership function has to be the
square of the mean value case. We can conclude:

Theorem II.2. If A is a quasi fuzzy number then Var(A)
exists if and only if there exist real numbers ε, δ > 0, such

µA(x) = O(x−1−ε)

if x → +∞ and

µA(x) = O((−x)−1−δ),
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if x → −∞.

Note 4. If we consider other weighting functions, we need
to require that

µA(x) = O(x−2−ε),

when x → +∞ (in the worst case, when f(γ) = 1,
1
√
γ

is

the critical growth rate.)

Example II.3. Consider again the quasi triangular fuzzy
number,

µA(x) =

 0 if x ≤ 0
1

x+ 1
if 1 ≤ x

In this case we have,

a1(γ) = 0, a2(γ) =
1

γ
− 1,

and its possibilistic variance does not exist since∫ 1

0

(a2(γ)− a1(γ))
2

12
2γdγ =

∫ 1

0

(1/γ − 1)2

12
2γdγ = ∞.

In 2004 Fullér and Majlender [9] introduced a measure
of possibilistic covariance between marginal distributions of
a joint possibility distribution C as the expected value of the
interactivity relation between the γ-level sets of its marginal
distributions. In 2005 Carlsson, Fullér and Majlender [3]
showed that the possibilistic covariance between fuzzy num-
bers A and B can be written as the weighted average
of the probabilistic covariances between random variables
with uniform joint distribution on the level sets of their
joint possibility distribution C. The f -weighted measure of
possibilistic covariance between A,B ∈ F , (with respect to
their joint distribution C), defined by [9], can be written as

Covf (A,B) =

∫ 1

0

cov(Xγ , Yγ)f(γ)dγ,

where Xγ and Yγ are random variables whose joint distribu-
tion is uniform on [C]γ for all γ ∈ [0, 1], and cov(Xγ , Yγ)
denotes their probabilistic covariance.

Now we will extend the concept of possibilistic covari-
ance to the family of quasi fuzzy numbers.

Definition II.3. The f -weighted measure of possibilistic
covariance between A,B ∈ Q, (with respect to their joint
distribution C), is defined by,

Covf (A,B) =

∫ 1

0

cov(Xγ , Yγ)f(γ)dγ,

where Xγ and Yγ are random variables whose joint distri-
bution is uniform on [C]γ for any γ > 0.

It is easy to see that the possibilistic covariance is an
absolute measure in the sense that it can take any value
from the real line. To have a relative measure of interactivity
between marginal distributions Fullér, Mezei and Várlaki

introduced the normalized covariance in 2010 (see [10]). A
normalized f -weighted index of interactivity of A,B ∈ F
(with respect to their joint distribution C) is defined by

ρf (A,B) =

∫ 1

0

ρ(Xγ , Yγ)f(γ)dγ

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√
var(Yγ)

and, where Xγ and Yγ are random variables whose joint
distribution is uniform on [C]γ for all γ ∈ [0, 1].

In other words, the (f -weighted) index of interactivity is
nothing else, but the f -weighted average of the probabilistic
correlation coefficients ρ(Xγ , Yγ) for all γ ∈ [0, 1]. It is
clear that for any joint possibility distribution this correlation
coefficient always takes its value from interval [−1, 1], since
ρ(Xγ , Yγ) ∈ [−1, 1] for any γ ∈ [0, 1] and

∫ 1

0
f(γ)dγ = 1.

Since ρf (A,B) measures an average index of interactivity
between the level sets of A and B, we may call this measure
as the f -weighted possibilistic correlation coefficient.

Now we will extend the concept of possibilistic correla-
tion to the family of quasi fuzzy numbers.

Definition II.4. The f -weighted possibilistic correlation co-
efficient of A,B ∈ Q (with respect to their joint distribution
C) is defined by

ρf (A,B) =

∫ 1

0

ρ(Xγ , Yγ)f(γ)dγ

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√
var(Yγ)

and, where Xγ and Yγ are random variables whose joint
distribution is uniform on [C]γ for any γ > 0.

III. PROBABILITY VERSUS POSSIBILITY:
THE CASE OF EXPONENTIAL FUNCTION
Now we will calculate the possibilistic mean value and
variance of a quasi triangular fuzzy number defined by
the membership function e−x, x ≥ 0, which can also be
seen as a density function of a standard exponential random
variable. In probability theory and statistics, the exponential
distribution is a family of continuous probability distribu-
tions. It describes the time between events in a Poisson
process, i.e. a process in which events occur continuously
and independently at a constant average rate.

Consider the following quasi triangular fuzzy number

µA(x) =

{
0 if x < 0

e−x if x ≥ 0

From
∫∞
0

µA(x)dx = 1 it follows that µA can also be
considered as the density function of a standard exponential
random variable (with parameter one). It is well-known
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Fig. 3. Quasi triangular fuzzy number and density function of an
exponential random variable with parameter one: e−x, x ≥ 0.

that the mean value and the variance of this probability
distribution is equal to one. In the fuzzy case we have,

a1(γ) = 0, a2(γ) = − ln γ,

and its possibilistic mean value is

E(A) =

∫ 1

0

a1(γ) + a2(γ)

2
2γdγ =

∫ 1

0

−(ln γ)γdγ =
1

4
,

and its possibilistic variance is,

Var(A) =

∫ 1

0

(a2(γ)− a1(γ))
2

12
2γdγ

=

∫ 1

0

(− ln γ)2

6
γdγ =

1

24
.

Let C be the joint possibility distribution, defined by the
membership function,

µC(x, y) = e−(x+y), x ≥ 0, y ≥ 0,

of quasi fuzzy numbers A and B with membership functions

µA(x) = e−x, x ≥ 0, and µB(y) = e−y, y ≥ 0.

In other words, the membership function of C is defined
by a simple multiplication (by Larsen t-norm [13]) of the
membership values of µA(x)and µB(y), that is, µC(x, y) =
µA(x)× µB(y). The γ-cut of C can be computed by

[C]γ = {(x, y) | x+ y ≤ − ln γ; x, y ≥ 0}.
Then

M(Xγ) = M(Yγ) = −
ln γ

3
,

M(X2
γ) = M(Y 2

γ ) =
(ln γ)2

6
,

and,

var(Xγ) = M(X2
γ)−M(Xγ)

2

=
(ln γ)2

6
− (ln γ)2

9

=
(ln γ)2

18
.

Similarly we obtain,

var(Yγ) =
(ln γ)2

18
.

Furthermore,

M(XγYγ) =
(ln γ)2

12
,

cov(Xγ , Yγ) = M(XγYγ)−M(Xγ)M(Yγ) = − (ln γ)2

36
,

we can calculate the probabilistic correlation by

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
= −1

2
.

That is, ρ(Xγ , Yγ) = −1/2 for any γ > 0. Consequently,
their possibilistic correlation coefficient is,

ρf (A,B) = −1/2

for any weighting function f .
On the other hand, in a probabilistic context, µC(x, y) =

µA(x) × µB(y) = e−(x+y) can be also considered as the
joint density function of independent exponential marginal
probability distributions with parameter one. That is, in a
probabilistic context, their (probabilistic) correlation coeffi-
cient is equal to zero.

Note 5. The probabilistic correlation coefficient between two
standard exponential marginal probability distributions can
not go below (1−π2/6). Really, the lower limit, denoted by
τ , can be computed from,

∫ ∞

0

∫ ∞

0

(
1− e−x − e−y)+ − (1− e−x)(1− e−y)

)
dxdy

= −
∫ ∞

0

∫ ∞

0

e−xe−ydxdy

+

∫∫
0<x, 0<y, 1<e−x+e−y

(1− e−x − e−y)+dxdy

= −1 +

∫∫
0<x, 0<y, 1<e−x+e−y

(2e−x − 1)dxdy = τ
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using the substitutions u = e−x, v = e−y we get,

τ = −1 +

∫∫
u<1, v<1, u+v>1

(
2

u
−

1

uv

)
dudv

= −1 +

∫ 1

0

1

u

∫ 1

0

(
2−

1

v

)
dvdu

= 1 +

∫ 1

0

2u+ log(1− u)

u
du

= −1 +

∫ 1

0

log(1− u)

u
du

=

∫ 1

0

∞∑
k=1

uk−1

k
du

= 1−
∞∑
k=1

1

k2

= 1−
π2

6
.

In the case of possibility distributions there is no known
lower limit [12].

If the joint possibility distribution C is given by the
minimum operator (Mamdani t-norm [14]),

µC(x, y) = min{µA(x), µB(y)} = min{e−x, e−y},

x ≥ 0, y ≥ 0, then A and B are non-interactive marginal
possibility distributions and, therefore, their possibilistic
correlation coefficient equal to zero.

IV. SUMMARY

We have generalized the principles of possibilistic mean
value, variance, covariance and correlation of fuzzy numbers
to a more general class of fuzzy quantities: to quasi fuzzy
numbers. We have shown some necessary and sufficient
conditions for the existence of possibilistic mean value and
variance for quasi fuzzy numbers.
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Real option analysis offers interesting insights on the value of assets and on the profitability of
investments, which has made real options a growing field of academic research and practical
application. Real option valuation is, however, often found to be difficult to understand and
to implement due to the quite complex mathematics involved. Recent advances in modeling
and analysis methods have made real option valuation easier to understand and to implement.
This paper presents a new method (fuzzy pay-off method) for real option valuation using fuzzy
numbers that is based on findings from earlier real option valuation methods and from fuzzy real
option valuation. The method is intuitive to understand and far less complicated than any previous
real option valuation model to date. The paper also presents the use of number of different types
of fuzzy numbers with the method and an application of the new method in an industry setting.

Copyright q 2009 Mikael Collan et al. This is an open access article distributed under the Creative
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1. Introduction

Real option valuation is based on the observation that the possibilities financial options
give their holder resemble the possibilities to invest in real investments and possibilities
found within real investments, that is, managerial flexibility: “an irreversible investment
opportunity is much like a financial call option” [1]. In other words, real option valuation is
treating investment opportunities and the different types of managerial flexibility as options
and valuing them with option valuation models. Real options are useful both, as a mental
model for strategic and operational decision-making, and as a valuation and numerical
analysis tool. This paper concentrates on the use of real options in numerical analysis, and
particularly on the derivation of the real option value for a given investment opportunity, or
identified managerial flexibility.

Real options are commonly valued with the same methods that have been used to
value financial options, that is, with Black-Scholes option pricing formula [2], with the
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binomial option valuation method [3], with Monte-Carlo-based methods [4], and with a
number of later methods based on these. Most of the methods are complex and demand a
good understanding of the underlying mathematics, issues that make their use difficult in
practice. In addition these models are based on the assumption that they can quite accurately
mimic the underlying markets as a process, an assumption that may hold for some quite
efficiently traded financial securities, but may not hold for real investments that do not have
existing markets or have markets that can by no means be said to exhibit even weak market
efficiency.

Recently, a novel approach to real option valuation, called the Datar-Mathews method
(DMM) was presented in [5–7], where the real option value is calculated from a pay-off
distribution, derived from a probability distribution of the net present value (NPV) for a
project that is generated with a (Monte-Carlo) simulation. The authors show that the results
from the method converge to the results from the analytical Black-Scholes method. The
method presented greatly simplifies the calculation of the real option value, making it more
transparent and brings real option valuation as a method a big leap closer to practitioners.
The most positive issue in the DMM is that it does not suffer from the problems associated
with the assumptions connected to the market processes connected to the Black-Scholes and
the binomial option valuation methods. The DMM utilizes cash-flow scenarios as an input to
a Monte Carlo simulation to derive a distribution for the future investment outcomes. This
distribution is then used to create a pay-off distribution for the investment. The DMM is
highly compatible with the way cash-flow-based profitability analysis is commonly done in
companies, because it can use the same type of inputs as NPV analysis.

All of the afore-mentioned models and methods use probability theory in their
treatment of uncertainty, there are, however, other ways than probability to treat uncertainty,
or imprecision in future estimates, namely, fuzzy logic and fuzzy sets. In classical set theory
an element either (fully) belongs to a set or does not belong to a set at all. This type of bivalue,
or true/false, logic is commonly used in financial applications (and is a basic assumption of
probability theory). Bivalue logic, however, presents a problem, because financial decisions
are generally made under uncertainty. Uncertainty in the financial investment context means
that it is in practice impossible, exante to give absolutely correct precise estimates of, for
example, future cash-flows. There may be a number of reasons for this, see, for example, [8],
however, the bottom line is that our estimations about the future are imprecise.

Fuzzy sets are sets that allow (have) gradation of belonging, such as “a future
cash flow at year ten is about x euro”. This means that fuzzy sets can be used to
formalize inaccuracy that exists in human decision making and as a representation of vague,
uncertain, or imprecise knowledge, for example, future cash-flow estimation, which human
reasoning is especially adaptive to. “Fuzzy set-based methodologies blur the traditional
line between qualitative and quantitative analysis, since the modeling may reflect more the
type of information that is available rather than researchers’ preferences” [9], and indeed
in economics “the use of fuzzy subsets theory leads to results that could not be obtained
by classical methods” [10]. The origins of fuzzy sets date back to an article by Lotfi Zadeh
[11] where he developed an algebra for what he called fuzzy sets. This algebra was created to
handle imprecise elements in our decision-making processes, and is the formal body of theory
that allows the treatment of practically all decisions in an uncertain environment. “Informally,
a fuzzy set is a class of objects in which there is no sharp boundary between those objects that
belong to the class and those that do not” [12].

In the following subsection we will shortly present fuzzy sets and fuzzy numbers
and continue shortly on using fuzzy numbers in option valuation. We will then present a
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new method for valuation of real options from fuzzy numbers that is based on the previous
literature on real option valuation, especially the findings presented in [5] and on fuzzy real
option valuation methods, we continue by illustrating the use of the method with a selection
of different types of fuzzy numbers and with a case application of the new method in an
industry setting, and close with a discussion and conclusions.

1.1. Fuzzy Sets and Fuzzy Numbers

A fuzzy subset A of a nonempty X set can be defined as a set of ordered pairs, each with the
first element fromX, and the second element from the interval [0, 1], with exactly one-ordered
pair presents for each element of X. This defines a mapping,

μA : A → [0, 1], (1.1)

between elements of the set X and values in the interval [0, 1]. The value zero is
used to represent complete nonmembership, the value one is used to represent complete
membership, and values in between are used to represent intermediate degrees of
membership. The set X is referred to as the universe of discourse for the fuzzy subset A.
Frequently, the mapping μA is described as a function, the membership function of A. The
degree to which the statement x is in A is true is determined by finding the ordered
pair (x, μA(x)). The degree of truth of the statement is the second element of the ordered pair.
It is clear that A is completely determined by the set of tuples

A =
{(
x, μA(x)

)
| x ∈ X

}
. (1.2)

It should be noted that the terms membership function and fuzzy subset get used interchange-
ably and frequently we will write simply A(x) instead of μA(x). A γ-level set (or γ-cut) of a
fuzzy set A of X is a nonfuzzy set denoted by [A]γ and defined by

[A]γ =
{

t ∈ X | A(t) ≥ γ
}
, (1.3)

if γ > 0 and cl(supp A) if γ = 0, where cl(supp A) denotes the closure of the support of
A. A fuzzy set A of X is called convex if [A]γ is a convex subset of X for all γ ∈ [0, 1].
A fuzzy number A is a fuzzy set of the real line with a normal, (fuzzy) convex, and
continuous membership function of bounded support [13]. Fuzzy numbers can be considered
as possibility distributions.

Definition 1.1. Let A be a fuzzy number. Then [A]γ is a closed convex (compact) subset of R

for all γ ∈ [0, 1]. Let us introduce the notations

a1
(
γ
)
= min[A]γ , a2

(
γ
)
= max [A]γ (1.4)

In other words, a1(γ) denotes the left-hand side and a2(γ) denotes the right-hand side of the
γ-cut, γ ∈ [0, 1].



4 Journal of Applied Mathematics and Decision Sciences

Definition 1.2. A fuzzy set A is called triangular fuzzy number with peak (or center) a, left
width α > 0 and right width β > 0 if its membership function has the following form

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − a − t
α

if a − α ≤ t ≤ a,

1 − t − a
β

if a ≤ t ≤ a + β,

0 otherwise,

(1.5)

and we use the notation A = (a, α, β). It can easily be verified that

[A]γ =
[
a −
(
1 − γ

)
α, a +

(
1 − γ

)
β
]
, ∀γ ∈ [0, 1]. (1.6)

The support of A is (a − α, b + β). A triangular fuzzy number with center a may be seen as a
fuzzy quantity “x is approximately equal to a”.

Definition 1.3. The possibilistic (or fuzzy) mean value of fuzzy number A with [A]γ =
[a1(γ), a2(γ)] is defined in [13] by

E(A) =
∫1

0

a1
(
γ
)
+ a2
(
γ
)

2
2γ dγ

=
∫1

0

(
a1
(
γ
)
+ a2
(
γ
))
γ dγ.

(1.7)

Definition 1.4. A fuzzy set A is called trapezoidal fuzzy number with tolerance interval [a, b],
left width α, and right width β if its membership function has the following form:

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − a − t
α

if a − α ≤ t ≤ a,

1 if a ≤ t ≤ b,

1 − t − b
β

if a ≤ t ≤ b + β,

0 otherwise,

(1.8)

and we use the notation

A =
(
a, b, α, β

)
. (1.9)

It can easily be shown that [A]γ = [a − (1 − γ)α, b + (1 − γ)β] for all γ ∈ [0, 1]. The support of
A is (a − α, b + β).
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Figure 1: A triangular fuzzy number A, defined by three points {a, α, β} describing the NPV of a
prospective project; (percentages 20% and 80% are for illustration purposes only).

Fuzzy set theory uses fuzzy numbers to quantify subjective fuzzy observations or
estimates. Such subjective observations or estimates can be, for example, estimates of future
cash flows from an investment. To estimate future cash flows and discount rates “one usually
employs educated guesses, based on expected values or other statistical techniques” [14],
which is consistent with the use of fuzzy numbers. In practical applications the most used
fuzzy numbers are trapezoidal and triangular fuzzy numbers. They are used because they
make many operations possible and are intuitively understandable and interpretable.

When we replace nonfuzzy numbers (crisp, single) numbers that are commonly
used in financial models with fuzzy numbers, we can construct models that include the
inaccuracy of human perception, or ability to forecast, within the (fuzzy) numbers. This
makes these models more in line with reality, as they do not simplify uncertain distribution-
like observations to a single-point estimate that conveys the sensation of no-uncertainty.
Replacing nonfuzzy numbers with fuzzy numbers means that the models that are built must
also follow the rules of fuzzy arithmetic.

1.2. Fuzzy Numbers in Option Valuation

Fuzzy numbers (fuzzy logic) have been adopted to option valuation models in (binomial)
pricing an option with a fuzzy pay-off, for example, in [15], and in Black-Scholes valuation
of financial options in, for example, [16]. There are also some option valuation models that
present a combination of probability theory and fuzzy sets, for example, [17]. Fuzzy numbers
have also been applied to the valuation of real options in, for example, [18–20]. More recently
there are a number of papers that present the application of fuzzy real option models in the
industry setting, for example, [21, 22]. There are also specific fuzzy models for the analysis of
the value of optionality for very large industrial real investments, for example, [23].

2. New Fuzzy Pay-Off Method for Valuation of
Real Options from Fuzzy Numbers

Two recent papers [5, 6] present a practical probability theory-based Datar-Mathews method
for the calculation of real option value and show that the method and results from the method
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are mathematically equivalent to the Black-Sholes formula [2]. The method is based on
simulation-generated probability distributions for the NPV of future project outcomes. The
project outcome probability distributions are used to generate a pay-off distribution, where
the negative outcomes (subject to terminating the project) are truncated into one chunk that
will cause a zero pay-off, and where the probability-weighted average value of the resulting
pay-off distribution is the real option value. The DMM shows that the real-option value
can be understood as the probability-weighted average of the pay-off distribution. We use
fuzzy numbers in representing the expected future distribution of possible project costs and
revenues, and hence also the profitability (NPV) outcomes. The fuzzy NPV, a fuzzy number,
is the pay-off distribution from the project.

The method presented in [5] implies that the weighted average of the positive
outcomes of the pay-off distribution is the real option value; in the case with fuzzy numbers
the weighted average is the fuzzy mean value of the positive NPV outcomes. Derivation of
the fuzzy mean value is presented in [13]. This means that calculating the ROV from a fuzzy
NPV (distribution) is straightforward, it is the fuzzy mean of the possibility distribution with
values below zero counted as zero, that is, the area-weighted average of the fuzzy mean of
the positive values of the distribution and zero (for negative values)

Definition 2.1. We calculate the real option value from the fuzzy NPV as follows:

ROV =

∫∞
0 A(x)dx
∫∞
−∞A(x)dx

× E(A+), (2.1)

where A stands for the fuzzy NPV, E(A+) denotes the fuzzy mean value of the positive
side of the NPV, and

∫∞
−∞A(x)dx computes the area below the whole fuzzy number A while∫∞

0 A(x)dx computes the area below the positive part of A.

It is easy to see that when the whole fuzzy number is above zero, then ROV is the
fuzzy mean of the fuzzy number, and when the whole fuzzy number is below zero, the ROV
is zero.

The components of the new method are simply the observation that real option value
is the probability-weighted average of the positive values of a pay-off distribution of a project,
which is the fuzzy NPV of the project, and that for fuzzy numbers, the probability-weighted
average of the positive values of the pay-off distribution is the weighted fuzzy mean of the
positive values of the fuzzy NPV, when we use fuzzy numbers.

2.1. Calculating the ROV with the Fuzzy Pay-Off Method with a Selection of
Different Types of Fuzzy Numbers

As the form of a fuzzy number may vary, the most used forms are the triangular and
trapezoidal fuzzy numbers. These are very usable forms, as they are easy to understand and
can be simply defined by three (triangular) and four (trapezoidal) values.

We should calculate the positive area and the fuzzy mean of the positive area of a
triangular fuzzy pay-off A = (a, α, β) in the case of a − α < 0 < a. Variable z, where 0 ≤ z ≤ α,
represents the distance of a general cut point from a − α at which we separate the triangular
fuzzy number (distribution) into two parts—for our purposes the variable z gets the value
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α − a (we are interested in the positive part of A). Let us introduce the notation

(A | z)(t) =

⎧
⎨

⎩

0 if t ≤ a − α + z,

A(t) otherwise,
(2.2)

for the membership function of the right-hand side of a triangular fuzzy number truncated
at point a − α + z, where 0 ≤ z ≤ α.

Then we can compute the expected value of this truncated triangular fuzzy number:

E(A | z) = I1 + I2 =
∫z1

0
γ
(
a − α + z + a +

(
1 − γ

)
β
)
dγ +

∫1

z1

γ
(
a −
(
1 − γ

)
α + a +

(
1 − γ

)
β
)
dγ,

(2.3)

where

z1 = 1 − α − z
α

=
z

α
, (2.4)

and the integrals are computed by

I1 =
∫z1

0

[(
2a − α + z + β

)
γ − βγ2

]
dγ

=
(
2a − α + z + β

) z2

2α2
− β z3

3α3
,

I2 =
∫1

z1

[(
2a + β − α

)
γ − γ2(β − α

)]
dγ

=
(
2a + β − α

)
(

1
2
− z2

2α2

)

− g
(
β − α

)
(

1
3
− z3

3α3

)

,

(2.5)

that is,

I1 + I2 =
(
2a − α + z + β

)
× z2

2α2
− β × z3

3α3
+
(
2a + β − α

)
×
(

1
2
− z2

2α2

)

−
(
β − α

)
×
(

1
3
− z3

3α3

)

=
z3

2α2
+

2a − α + β
2

+
α − β

3
− α × z3

3α3
,

(2.6)

and we get,

E(A | z) = z3

6α2
+ a +

β − α
6

. (2.7)
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If z = α − a, then A | z becomes A+, the positive side of A, and therefore, we get

E(A+) =
(α − a)3

6α2
+ a +

β − α
6

. (2.8)

To compute the real option value with the afore-mentioned formulas we must calculate the
ratio between the positive area of the triangular fuzzy number and the total area of the same
number and multiply this by E(A+), the fuzzy mean value of the positive part of the fuzzy
number A, according to (2.1).

For computing the real option value from an NPV (pay-off) distribution of a
trapezoidal form we must consider a trapezoidal fuzzy pay-off distribution A defined by

A(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u

α
− a1 − α

α
if a1 − α ≤ u ≤ a1,

1 if a1 ≤ u ≤ a2,

u

−β +
a2 + β
β

if a2 ≤ u ≤ a2 + β,

0 otherwise,

(2.9)

where the γ-level of A is defined by [A]γ = [γα + a1 − α,−γβ + a2 + β] and its expected value
is caculated by

E(A) =
a1 + a2

2
+
β − α

6
. (2.10)

Then we have the following five cases.

Case 1. z < a1 − α. In this case we have E(A | z) = E(A).

Case 2. a1 − α < z < a1. Then introducing the notation

γz =
z

α
− a1 − α

α
, (2.11)

we find

[A]γ =

⎧
⎨

⎩

(
z,−γβ + a2 + β

)
if γ ≤ γz,

(
γα + a1 − α,−γβ + a2 + β

)
if γz ≤ γ ≤ 1,

(2.12)

E(A | z) =
∫ γz

0
γ
(
z − γβ + a2 + β

)
dγ +

∫1

γz

γ
(
γα + a1 − α − γβ + a2 + β

)
dγ

=
a1 + a2

2
+
β − α

6
+ (z − a1 + α)

γ2
z

2
− α

γ3
z

3
.

(2.13)
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Figure 2: Calculation of the fuzzy mean for the positive part of a fuzzy pay-off distribution of the form of
special case.

Case 3. a1 < z < a2. In this case γz = 1 and

[A]γ =
[
z,−γβ + a2 + β

]
, (2.14)

and we get

E(A | z) =
∫1

0
γ
(
z − γβ + a2 + β

)
dγ

=
z + a2

2
+
β

6
.

(2.15)

Case 4. a2 < z < a2 + β. In this case we have

γz =
z

−β + c
a2 + β
β

, (2.16)

[A]γ =
[
z,−γβ + a2 + β

]
, (2.17)

if γ < γz and we find,

E(A | z) =
∫ γz

0
γ
(
z − γβ + a2 + β

)
dγ

=
(
z + a2 + β

)γ2
z

2
− β

γ3
z

3
.

(2.18)

Case 5. a2 + β < z. Then it is easy to see that E(A | z) = 0.

In the following special case, we expect that the managers will have already performed
the construction of three cash-flow scenarios and have assigned estimated probabilities to
each scenario (adding up to 100%). We want to use all this information and hence will assign
the estimated “probabilities” to the scenarios resulting in a fuzzy number that has a graphical
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presentation of the type presented in Figure 2 (not in scale):

A(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
γ3 − γ1

)u
α
−
(
γ3 − γ1

)a − α
α

+ γ1 if a − α ≤ u ≤ a,

γ3 if u = a,

(
γ2 − γ3

)u
β
−
(
γ2 − γ3

)a
β
+ γ3 if a ≤ u ≤ a + β,

0 otherwise,

E(A) =
∫1

0
γ
(
a1
(
γ
)
+ a2
(
γ
))
dγ

=
∫1

0
γa1
(
γ
)
dγ +

∫1

0
γa2
(
γ
)
dγ,

∫1

0
γa1
(
γ
)
dγ =

∫ γ1

0
γ(a − α)dγ +

∫ γ3

γ1

γ

(
γ − γ1

γ3 − γ1
α + a − α

)
dγ

= (a − α)
γ2

1

2
+
(
a − α −

αγ1

γ3 − γ1

)(
γ2

3

2
−
γ2

1

2

)

+
α

γ3 − γ1

(
γ3

3

3
−
γ3

1

3

)

,

∫1

0
γa2
(
γ
)
dγ =

∫ γ2

0
γ
(
a + β

)
dγ +

∫ γ3

γ2

γ

(
γ − γ3

γ2 − γ3
β + a

)
dγ

=
(
a + β

)γ2
2

2
+
(
a −

βγ3

γ2 − γ3

)(
γ2

3

2
−
γ2

2

2

)

+
β

γ2 − γ3

(
γ3

3

3
−
γ3

2

3

)

,

E(A) =
γ2

1

2
αγ1

γ3 − γ1
+
γ2

2

2

(
β +

βγ3

γ2 − γ3

)
+
γ2

3

2

(
2a − α −

αγ1

γ3 − γ1
−

βγ3

γ2 − γ3

)

−
γ3

1

3
α

γ3 − γ1
−
γ3

2

3
β

γ2 − γ3
+
γ3

3

3

(
α

γ3 − γ1
+

β

γ2 − γ3

)
;

(2.19)

(1) z < a − α : E(A | z) = E(A),

(2) a − α < z < a: γz = (γ3 − γ1)
z

α
− (γ3 − γ1)

a − α
α

+ γ1,

E(A | z) =
γ2
z

2

(
z − a + α +

αγ1

γ3 − γ1

)
+
γ2

2

2

(
β +

βγ3

γ2 − γ3

)

+
γ2

3

2

(
2a − α −

αγ1

γ3 − γ1
−

βγ3

γ2 − γ3

)
−
γ3
z

3
α

γ3 − γ1

−
γ3

2

3
β

γ2 − γ3
+
γ3

3

3

(
α

γ3 − γ1
+

β

γ2 − γ3

)
,

(2.20)



Journal of Applied Mathematics and Decision Sciences 11

(3) a < z < a + β : γz = (γ2 − γ3)
z

β
− (γ2 − γ3)

a

β
+ γ3,

E(A | z) =
γ2
z

2

(
z + a −

β

γ2 − γ3

)
+
γ2

2

2

(
β +

βγ3

γ2 − γ3

)
+
γ3
z

3
βγ3

γ2 − γ3
−
γ3

2

3
β

γ2 − γ3
, (2.21)

(4) a + β < z : E(A | z) = 0.

In the same way as was discussed earlier in connection to the triangular NPV, to
compute the real option value with the afore-mentioned formulas we must calculate the ratio
between the positive area of the fuzzy number (NPV) and the total area of the same number
according to the formula (2.1).

3. A Simple Case: Using the New Method in Analyzing a Business Case

The problem at hand is to evaluate the value of uncertain cash-flows from a business
case. The input information available is in the form of three future cash-flow scenarios,
good (optimistic), most likely, and bad (pessimistic). The same business case with the
same numbers has been earlier presented in [7] and is presented here to allow superficial
comparison with the Datar-Mathews method—we are using the same numbers with the
fuzzy pay-off method.

The scenario values are given by managers as nonfuzzy numbers, they can, in general,
have used any type of analysis tools, or models to reach these scenarios. For more accurate
information on the generation of the numbers in this case, see [7] for reference. From the
cost and benefit scenarios three scenarios for the NPV are combined (PV benefits - PV
investment costs), where the cost cash-flows (CF) are discounted at the risk-free rate and
the benefit CF discount rate is selected according to the risk (risk adjusted discount rate).
The NPV is calculated for each of the three scenarios separately, see Figures 3 and 4. The
resulting fuzzy NPV is the fuzzy pay-off distribution for the investment. To reach a similar
probability distribution [7] use Monte Carlo simulation. They point out that a triangular
distribution can also be used. The real option value for the investment can be calculated from
the resulting fuzzy NPV, which is the pay-off distribution for the project, according to the
formula presented in (2.1). We use the formula described in Section 2.1. to calculate the real
option value for this business case. We reach the value ROV= 13.56. The work in [7] shows
that the value with the same inputs is 8. The difference is caused by the difference in the
distributions generated from the inputs.

It is usual that managers are asked to give cash-flow information in the form of
scenarios (usually three) and they often have a preselected set of methods for building the
scenarios. Usually the scenarios are constructed by trusting past experience and based on
looking at, for example, the variables that most contribute to cash-flows and the future market
outlook; similar approaches are also reported in [7].

With the fuzzy pay-off method, the scenario approach can be fully omitted and the
future cash-flow forecasting can be done fully with fuzzy numbers. The end result will be a
fuzzy NPV that is the pay-off distribution for the project. This is the same result that we get
if we use scenarios, however, it does not require us to simplify the future to three alternative
scenarios.

The detailed calculation used in the case includes present value calculation for the
three scenarios of investment cost and revenue cash-flows and then integrates these to form



12 Journal of Applied Mathematics and Decision Sciences

tnemtsevnI  /  tsoc  hsac - swolf  ksir"@VP(  "eerf  level ) Rf= 50,0
01987655,445,335,225,115,00

FC  0,52300,000,000,000,51dooG 0 00,000,000,000,000,000,000,000,000,000,000,0
FC  0,52300,000,000,000,51esaB 0 00,000,000,000,000,000,000,000,000,000,000,0
FC  0,52300,000,000,000,51daB 0 00,000,000,000,000,000,000,000,000,000,000,0
VP  7,49200,000,000,000,51dooG 8 00,000,000,000,000,000,000,000,000,000,000,0
VP  7,49200,000,000,000,51esaB 8 00,000,000,000,000,000,000,000,000,000,000,0
VP  7,49200,000,000,000,51dooG 8 00,000,000,000,000,000,000,000,000,000,000,0

0- 05,0 - 01 - 05,1 - 02 - 05,2 - 03 - 05,3 - 04 - 05,4 - 05 - 06 - 07 - 08 - 09 - 001 - 11
Σ VP  7,90300,5100,5100,5100,51dooG 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8
Σ VP  7,90300,5100,5100,5100,51esaB 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8
Σ VP  7,90300,5100,5100,5100,51daB 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8 7,903 8

euneveR  hsac - swolf  VP(  @  ksir"  "detsujda  level ) aR  51,0=
01987655,445,335,225,115,00

FC  0,61100,000,0800,000,000,000,000,000,0dooG 0 0,35100,0 0 0,771 0 0,322 0 0,862 0 0,413 0 00,0
FC  0,40100,9800,7700,4700,000,2600,000,2500,000,000,000,000,000,0esaB 0 0,221 0 00,0
FC  00,000,2200,0200,0200,8100,4200,000,3200,000,0200,000,000,000,000,000,0daB
VP  00,062,9816,7838,3825,6770,6700,023,6600,006,2500,000,000,000,000,000,0dooG
VP  00,086,4300,4364,3392,3397,6300,054,5300,091,4300,000,000,000,000,000,0esaB
VP  00,052,645,625,787,739,1100,051,3100,051,3100,000,000,000,000,000,0dooG

0- 05,0 - 01 - 05,1 - 02 - 05,2 - 03 - 05,3 - 04 - 05,4 - 05 - 06 - 07 - 08 - 09 - 001 - 11
Σ VP  9,24453,55315,17299,49129,81129,81106,2506,2500,000,000,000,000,000,0dooG 6 22,23522,235
Σ VP  6,9691,4391,4300,000,000,000,000,000,0esaB 4 6,96 4 1,37127,93134,601 8 1,702 8 8,142 6 8,142 6
Σ VP  33,6633,6670,0635,3510,6432,8303,6203,6251,3151,3100,000,000,000,000,000,0daB

0- 05,0 - 01 - 05,1 - 02 - 05,2 - 03 - 05,3 - 04 - 05,4 - 05 - 06 - 07 - 08 - 09 - 001 - 11
VPNF  dooG - 0,51 0 - 0,51 0 - 0,51 0 - 0,51 0 - 7,903 8 - 7,903 8 - 1,752 8 - 1,752 8 - 8,091 6 - 8,091 6 - 97,411 - 34,22234,22271,33165,5472,83
VPNF  esaB - 0,51 0 - 0,51 0 - 0,51 0 - 0,51 0 - 7,903 8 - 7,903 8 - 95,572 - 95,572 - 51,042 - 51,042 - 53,302 - 0,071 6 - 16,631 - 16,201 - 39,76 - 39,76
VPNF  daB - 0,51 0 - 0,51 0 - 0,51 0 - 0,51 0 - 7,903 8 - 7,903 8 - 36,692 - 36,692 - 4,382 8 - 4,382 8 - 55,172 - 77,362 - 52,652 - 17,942 - 4,342 6 - 4,342 6

yaP - ffo  65,3134,222dooG
yaP - ffo  esaB - 39,76
yaP - ffo  daB - 4,342 6 - 4,342 6 - laeR34,22239,76  noitpO  eulaV

yaP - ffo  aB d yaP - ffo  saB e yaP - ffo  yb(dooG  gnisu  eht  yzzuf  yap - ffo  )dohtem

yzzuF  VPN  si)VPNF(  eht  yap - noitubirtsid  morf  eht  .tcejorp  nI  siht  esac  ti  si  detaluclac  yb  gnitcuded  eht  dab  esac  tsoc  morf  eht  doog  esac  ,eunever  eht  
esab  esac  tsoc  morf  eht  esab  esac  ,eunever  dna  eht  doog  esac  tsoc  morf  eht  dab  esac  eunever - siht  yaw  eht  gnitluser  noitubirtsid  sedulcni  eht  

semertxe  siht(  si  ni  enil  htiw  eht  dradnats  snoitarepo  htiw  yzzuf  .)srebmun

Figure 3: Detailed calculations used in the case.

the fuzzy net present value (FNPV). The value of the R&D is directly included in the cost
cash-flow table and the resulting ROV is what the work in [7] calls total project value. This is
a minor issue, as the [7] project option value is the total project value + the R&D Cost.

4. Discussion and Conclusions

There is a reason to expect that the simplicity of the presented method is an advantage over
more complex methods. Using triangular and trapezoidal fuzzy numbers makes very easy
implementations possible with the most commonly used spreadsheet software; this opens
avenues for real option valuation to find its way to more practitioners. The method is flexible
as it can be used when the fuzzy NPV is generated from scenarios or as fuzzy numbers from
the beginning of the analysis. Fuzzy NPV is a distribution of the possible values that can take
place for NPV; this means that it is by definition perceived as impossible at the time of the
assessment that values outside of the number can happen. This is in line with the situation
that real option value is zero when all the values of the fuzzy NPV are lower than zero. If we
compare this to the presented case, we can see that in practice it is often that managers are
not interested to use the full distribution of possible outcomes, but rather want to limit their
assessment to the most possible alternatives (and leaving out the tails of the distribution).
We think that the tails should be included in the real option analysis, because even remote
possibilities should be taken into consideration.

The method brings forth an issue that has not gotten very much attention in academia,
the dynamic nature of the assessment of investment profitability, that is, the assessment
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Figure 4: Three NPV scenarios for the duration of the synergies that are used to generate (triangular) fuzzy
NPV.

changes when information changes. As cash flows taking place in the future come closer,
information changes, and uncertainty is reduced this should be reflected in the fuzzy NPV,
the more there is uncertainty the wider the distribution should be, and when uncertainty
is reduced, the width of the distribution should decrease. Only under full certainty should
the distribution be represented by a single number, as the method uses fuzzy NPV there is
a possibility to have the size of the distribution decrease with a lesser degree of uncertainty,
this is an advantage vis-à-vis probability-based methods.

The common decision rules for ROV analysis are applicable with the ROV derived
with the presented method. We suggest that the single number NPV needed for comparison
purposes is derived from the (same) fuzzy NPV by calculating the fuzzy mean value. This
means that in cases when all the values of the fuzzy NPV are greater than zero, the single
number NPV equals ROV, which indicates immediate investment.

We feel that the presented new method opens possibilities for making simpler generic
and modular real option valuation tools that will help construct real options analyses for
systems of real options that are present in many types of investments.
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Abstract. Real option analysis offers interesting insights on the value of assets and on the 

profitability of investments, which has made real options a growing field of academic re-

search and practical application. Real option valuation is, however, often found to be diffi-

cult to understand and to implement due to the quite complex mathematics involved. Re-

cent advances in modeling and analysis methods have made real option valuation easier to 

understand and to implement. This paper extends the results of our earlier paper on fuzzy 

pay-off method for real option valuation by using credibility measures. In: Gunalay Y (ed). Pro-

ceedings of the 3rd International Conference on Applied Operational Research – ICAOR (2011), pp xx–xx. Lec-
ture Notes in Management Science Vol. 3. ISSN 2008-0050. 
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1   Introduction 

Real option valuation (ROV) is treating investment opportunities and the different 

types of managerial flexibility as options and valuing them with option valuation 

models. Real options are useful both, as a mental model for strategic and opera-

tional decision-making, and as a valuation and numerical analysis tool. This paper 

concentrates on the use of real options in numerical analysis, and particularly on 

the derivation of the real option value for a given investment opportunity, or iden-

tified managerial flexibility.  
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Real options are commonly valued with the same methods that have been used 

to value financial options, i.e., with Black-Scholes option pricing formula (Black 

and Scholes, 1973), with the binomial option valuation method (Cox et al., 1979), 

with Monte-Carlo based methods (Boyle, 1977), and with a number of later me-

thods based on these. Most of the methods are complex and demand a good under-

standing of the underlying mathematics, issues that make their use difficult in 

practice. In addition these models are based on the assumption that they can quite 

accurately mimic the underlying markets as a process, an assumption that may 

hold for some quite efficiently traded financial securities, but may not hold for real 

investments that do not have existing markets or have markets that can by no 

means be said to exhibit even weak market efficiency.  

Recently, a novel approach to real option valuation was presented in Datar and 

Mathews, 2007, Mathews and Salmon, 2007, and in Datar and Mathews, 2004, 

where the real option value is calculated from a pay-off distribution, derived from 

a probability distribution of the NPV for a project that is generated with a (Monte-

Carlo) simulation. The authors show that the results from the method converge to 

the results from the analytical Black-Scholes method. The method presented great-

ly simplifies the calculation of the real option value, making it more transparent 

and brings real option valuation as a method a big leap closer to practitioners. The 

most positive issue in this method is that it does not suffer from the problems as-

sociated with the assumptions connected to the market processes connected to the 

Black-Scholes and the binomial option valuation methods. The method utilizes 

cash-flow scenario based estimation of the future outcomes to derive the future 

pay-off distribution. This is highly compatible with the way cash-flow based prof-

itability analysis is commonly done in companies. 

All of the above mentioned models and methods use probability theory in their 

treatment of uncertainty, there are however, other ways than probability to treat 

uncertainty, or imprecision in future estimates, namely fuzzy logic and fuzzy sets. 

Fuzzy sets are sets that allow (have) gradation of belonging, such as "a future cash 

flow at year ten is about 10,000 euro". This means that fuzzy sets can be used to 

formalize inaccuracy that exists in human decision making and as a representation 

of vague, uncertain or imprecise knowledge, e.g., future cash-flow estimation, 

which human reasoning is especially adaptive to. "Fuzzy set-based methodologies 

blur the traditional line between qualitative and quantitative analysis, since the 

modeling may reflect more the type of information that is available rather than re-

searchers' preferences" (Tarrazo,1997) and indeed in economics "The use of fuzzy 

subsets theory leads to results that could not be obtained by classical methods" ( 

Ponsard, 1988). 

2   Credibility Measure 

The concept of fuzzy set was introduced in 1965 by Zadeh (Zadeh, 1965), and lat-

er he proposed the concept of possibility measure (Zadeh1978) to measure a fuzzy 

event. Although possibility measure has been widely used, it has no self-duality 
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property. This was the main motivation behind the concept of credibility measure 

which was first defined by Liu and Liu, 2002, where the authors used this subclass 

of fuzzy measures to define the expected value of a fuzzy random variable . Lat-

er, credibility theory was founded by Liu (Liu, 2004), and later, Li and Liu, 2006, 

gave the following four axioms as a sufficient and necessary condition for a credi-

bility measure ( is a nonempty set and P() is the power set of ): 

1) Cr{}=1 

2) Cr is is a Choquet capacity: Cr{C} ≤ Cr{D}if CD 

3) Cr is self-dual: Cr{C}+ Cr{\C}=1 for any C  P() 

4) }{sup5.0}{ ii

i

i CCrCCr   for any iC  with 5.0}{ iCCr  

It is easy to see that the credibility of the empty set is 0, and 

1}{0 CCr for C  P(). The credibility measure is subadditive (see Liu, 

2004), }{}{}{ DCrCCrDCCr  for any C,D  P(). 

To establish the connection between a fuzzy variable and a credibility measure, 

both defined on the credibility space (,P(), Cr), we can see a fuzzy variable, A, 

as a function from this space to the set of real numbers, and its membership func-

tion can be derived from the credibility measure by 

 

},1},{2min{)( xACrx  

 

for any x. We call {AB} a fuzzy event, where B is a set of real numbers. How-

ever, in practice a fuzzy variable is specified by its membership function. In this 

case we can calculate the credibility of fuzzy events by the credibility inversion 

theorem (Liu, 2004): Let A be a fuzzy variable with membership function . Then 

for any set B of real numbers, we have 

.)(sup1)(sup
2

1
}{ xxBACr

BxBx

 

 

With this formula it is possible to interpret the credibility in terms of the possibili-

ty and necessity measure, since 

).(sup1)(),(sup)( xBNecxBPos
BxBx

 

 

Using this two measures, the theorem can be formulated as 

.
2

)()(
}{

BNecBPos
BCr  

(1) 

 

We should note here that if one defines the credibility measure using the equation 

(1), then Li and Liu proved that this is equivalent to the definition in terms of the 

four axioms given above (Li and Liu, 2006). 
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In this paper we will only consider a special type of fuzzy variables, namely 

fuzzy numbers. There exist several definitions for fuzzy numbers, we will use the 

one introduced in Dubois and Prade, 1978: a fuzzy number A is a convex fuzzy set 

on the real line  such that A is normal and it is piecewise continuous. Further-

more, we denote the family of all fuzzy numbers by F . A fuzzy set A of the real 

line  is called triangular fuzzy number with peak (or center) a, left width > 0 

and right width > 0 if its membership function has the following form, 

 

otherwise

axaif
ax

axaif
xa

xA

0

1

1

)(  

and we use the notation A = (a, , ). From the definition of credibility measure, 

the credibility of the event xA  can be computed as, 

 

xaif

axaif
ax

axaif
xa

axif

xACr

0
22

1
22

1

0

}{  

 

2.1   Expected value of normalized fuzzy variable 

 

In Liu and Liu, 2002, the authors proposed a novel concept of expected value for 

normalized fuzzy variables motivated by the theory of Choquet integrals. 

 

Definition 1.  [Liu and Liu, 2002] The expected value of a normalized fuzzy vari-

able, , is defined by 
0

0

}{}{)( drrCrdrrCrEC  

provided that at least one of the integrals is finite. 

Let A = (a, , ) be a triangular fuzzy number. Then we find, 

4
)( aAEC  

If A = (a1, a2, , ) is a trapezoidal fuzzy number defined by the membership func-

tion 
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otherwise

axaif
ax

axaif

axaif
xa

xA

0

1

1

1

)(

22
2

21

11
1

 

then its credibilistic expected value is, 

42
)( 21 aa

AEC  

Credibility theory and specifically the credibilistic expected value have been ap-

plied to problems from different areas: portfolio optimization (Zhang et al., 2010), 

facility location problem in B2C e-commerce (Lau et al., 2010), transportation 

problems (Yang and Liu, 2007), logistics network design (Qin and Ji, 2010). 

3   The fuzzy pay-off method 

The fuzzy pay-off method was introduced in Collan et al., 2009 as a practical tool 

for the valuation of real options. Two recent papers (Mathews and Salmon, 2007, 

Datar and Mathews, 2007) present a practical probability theory-based Datar-

Mathews method for the calculation of real option value and show that the method 

and results from the method are mathematically equivalent to the Black-Sholes 

formula (Black and Scholes, 1973). The DMM shows that the real option value 

can be understood as the probability-weighted average of the pay-off distribution. 

We use fuzzy numbers in representing the expected future distribution of possible 

project costs and revenues, and hence also the profitability (NPV) outcomes. The 

fuzzy NPV, a fuzzy number, is the pay-off distribution from the project (see Fig. 

1). 

 

Fig. 1 Fuzzy NPV 
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The method presented in Datar and Mathews, 2007, implies that the weighted av-

erage of the positive outcomes of the pay-off distribution is the real option value, 

in the case with fuzzy numbers the weighted average is the fuzzy mean value of 

the positive NPV outcomes. This means that calculating the ROV from a fuzzy 

NPV (distribution) is straightforward, it is the fuzzy mean of the possibility distri-

bution with values below zero counted as zero, i.e., the area weighted average of 

the fuzzy mean of the positive values of the distribution and zero (for negative 

values). 

 

Definition 2.  We calculate the real option value from the fuzzy NPV as follows 

)(

)(

)(
0 AE

dxxA

dxxA

ROV  

where A stands for the fuzzy NPV, E(A+) denotes the fuzzy mean value of the pos-

itive side of the NPV, the integral in the denominator computes the area below the 

whole fuzzy number A, and the integral in the numerator computes the area below 

the positive part of A. 

 

For fuzzy numbers, there are many ways to define an expected value operator, for 

example Dubois and Prade, 1987, Heilpern, 1992, Yager, 1981. In Collan et al., 

2009, we used the possibilistic mean value to calculate the expected value of the 

positive side of the NPV: 

 

Definition 3.  The  possibilistic (or fuzzy) mean value of the fuzzy number A with 

))(),(()( 21 aaA  is defined in Carlsson and Fullér, 2001 by 

.))()((
2

)()(
2)(

1

0

21

1

0

21 daad
aa

AEP  

 

To use the credibility measure and the credibilistic expected value in this real op-

tion environment seems to be a natural choice. To compare the results with the 

possibilistic mean value, we will use the same examples from Collan et al., 2009. 

In case of credibilistic expected value, the calculation of the mean of the positive 

part means that we need to use 

0

}{)( drrACrAEC  

When we calculate the positive area and the mean of the positive area of a triangu-

lar fuzzy pay-off, we have five possible cases: 

 

Case 1: a0 . In this case we have 
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4
)()( aAEAE CC  

We note here that the possibilistic mean value of a triangular fuzzy number is 

6
a . Comparing this value to the result above, we can observe that  

.)()( aAEaAE CP  

Also important to note, that )()( AEAE CP if and only if the left width,  is 

smaller than the right width, . 

Case 2: aa 0 . Then the credibilistic expected value has the following 

form: 

442

22

1

22

1
}{)(

2

00

aa

dr
ar

dr
ra

drrACrAE

a

a

a

C

 

Case 3: aa 0 . In this case 

44222

1
}{)(

2

00

aa
dr

ar
drrACrAE

a

C  

Case 4: 0a . Then it is easy to see that .0)(AEc  

For computing the real option value from an NPV (pay-off) distribution of a 

trapezoidal form we must consider a trapezoidal fuzzy pay-off distribution A de-

fined by 

otherwise

axaif
ax

axaif

axaif
ax

xA

0

1
)(

22
2

21

11
1

 

where the -level of A is defined by 

),()( 21 aaA  

In trapezoidal case the credibility has the following form: 
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xaif

axaif
ax

axaif

axaif
xa

axif

xACr

2

22
2

21

11
1

1

0
22

1
2

1
22

1

0

}{  

Then to calculate the credibilistic expected value for the positive part, we need to 

consider the following five cases: 

Case 1: 10 a . In this case we have 

42
)()( 21 aa

AEAE CC  

We note here that the possibilistic mean value of a triangular fuzzy number is 

62

21 aa
. Comparing this value to the result above, we can observe 

that  

.
2

)(
2

)( 2121 aa
AE

aa
AE CP  

Also important to note, that )()( AEAE CP if and only if the left width,  is 

smaller than the right width, . 

Case 2: 11 0 aa . Then the credibilistic expected value has the following 

form: 

442

22

1

2

1

22

1
)(

2

12

2

0

1
2

2

2

1

1

aa

dr
ar

drdr
ra

AE

a

a

a

a

a
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Case 3: 21 0 aa . In this case 

4222

1

2

1
)( 22

0

2

2

2 a
dr

ar
drAE

a

a

a

C
 

 

Case 4: 22 0 aa . In this case we have 
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44222

1
)(

2

22

0

2
2 aa

dr
ar

AE

a

C  

Case 5: 02a . Then it is easy to see that .0)(AEc  

4   Conclusions 

There is reason to expect that the simplicity of the fuzzy pay-off method (Collan et 

al., 2009) is an advantage over more complex methods. Using triangular and tra-

pezoidal fuzzy numbers make very easy implementations possible with the most 

commonly used spreadsheet software; this opens avenues for real option valuation 

to find its way to more practitioners. The method is flexible as it can be used when 

the fuzzy NPV is generated from scenarios or as fuzzy numbers from the begin-

ning of the analysis. Fuzzy NPV is a distribution of the possible values that can 

take place for NPV; this means that it is by definition perceived as impossible at 

the time of the assessment that values outside of the number can happen - this is in 

line with the situation that real option value is zero when all the values of the 

fuzzy NPV are lower than zero. The calculation of the real option value in this me-

thod is based on the mean value of a fuzzy number. In this paper we compared the 

orginally used possibilistic mean value with the the credibilistic expectation and 

showed the differences for two classes of fuzzy numbers: triangular and trape-

zoidal.  

Future work will be focused on two aspects. Firstly, we can use other different 

fuzzy mean value concepts and compare the results. Secondly, the application of 

this method with quasi fuzzy numbers (fuzzy numbers with infinite support) will 

be examined. 
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Abstract

In this paper we will introduce a new index of interactivity between marginal possibility distributions A and B of a joint possibility
distribution C. The starting point of our approach is to equip each �-level set of C with a uniform probability distribution, then the
probabilistic correlation coefficient between its marginal probability distributions is interpreted as an index of interactivity between
the �-level sets of A and B. Then we define the index of interactivity between A and B as the weighted average of these indexes over
the set of all membership grades. This new index of interactivity is meaningful for the whole family of joint possibility distributions.
© 2010 Elsevier B.V. All rights reserved.

Keywords: Possibility distribution; Interactive fuzzy numbers; Possibilistic correlation; Uniform probability distribution

1. Introduction

In probability theory the notion of expected value of functions of random variables plays a fundamental role in defining
the basic characteristic measures of probability distributions. For instance, the measure of covariance, variance and
correlation of random variables can all be computed as probabilistic means of their appropriately chosen real-valued
functions. For expected value, variance, covariance and correlation of fuzzy random variables the reader can consult,
e.g. Kwakernaak [13,14], Puri and Ralescu [18], Körner [15], Watanabe and Imaizumi [22], Feng et al. [8], Näther [17]
and Shapiro [19].

In possibility theory we can use the principle of average value of appropriately chosen real-valued functions to
define mean value, variance, covariance and correlation of possibility distributions. A function f : [0, 1] → R is
said to be a weighting function if f is non-negative, monotone increasing and satisfies the following normalization
condition

∫ 1
0 f (�) d� = 1. Different weighting functions can give different (case-dependent) importances to level-sets

of possibility distributions. We can define the mean value (variance) of a possibility distribution as the f-weighted
average of the probabilistic mean values (variances) of the respective uniform distributions defined on the �-level sets
of that possibility distribution. A measure of possibilistic covariance between marginal possibility distributions of a
joint possibility distribution can be defined as the f-weighted average of probabilistic covariances between marginal
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probability distributions whose joint probability distribution is defined to be uniform on the �-level sets of their joint
possibility distribution [10]. This is an absolute measure of interactivity. A measure of possibilistic correlation between
marginal possibility distributions of a joint possibility distribution can be defined as their possibilistic covariance divided
by the square root of the product of their possibilistic variances [2]. This is a relative measure of interactivity. We should
note here that the choice of uniform probability distribution on the level sets of possibility distributions is not without
reason. We suppose that each point of a given level set is equally possible and then we apply Laplace’s principle of
Insufficient Reason: if elementary events are equally possible, they should be equally probable (for more details and
generalization of principle of Insufficient Reason see [7, p. 59]). The idea of equipping the alpha-cuts with a uniform
probability is not new and refers to early ideas of simulation of fuzzy sets by Yager [23], and possibility/probability
transforms by Dubois et al. [5] as well as the pignistic transform of Smets [20].

The main drawback of the measure of possibilistic correlation introduced in [2] that it does not necessarily take its
values from [−1, 1] if some level-sets of the joint possibility distribution are not convex. A new normalization technique
is needed.

In this paper we will introduce a new index of interactivity between marginal distributions of a joint possibility
distribution, which is defined for the whole family of joint possibility distributions. Namely, we will equip each level
set of a joint possibility distribution with a uniform probability distribution, then compute the probabilistic correlation
coefficient between its marginal probability distributions, and then the new index of interactivity is computed as the
weighted average of these coefficients over the set of all membership grades. These weights (or importances) can be
given by weighting functions.

A fuzzy number A is a fuzzy set in R with a normal, fuzzy convex and continuous membership function of bounded
support. The family of fuzzy numbers is denoted by F . Fuzzy numbers can be considered as possibility distributions. A
�-level set of a fuzzy set A in Rm is defined by [A]� = {x ∈ Rm : A(x) ≥ �} if � > 0 and [A]0 = cl{x ∈ Rm : A(x) > �}.
A joint possibility distribution of fuzzy numbers is defined as a normal fuzzy set C in R2. Furthermore, A and B are
called the marginal possibility distributions of C if it satisfies the relationships

max{y ∈ R | C(x, y)} = A(x) and max{x ∈ R | C(x, y)} = B(y),

for all x, y ∈ R. In the following we will suppose that C is given in such a way that a uniform distribution can be defined
on [C]� for all � ∈ [0, 1]. Marginal possibility distributions are always uniquely defined from their joint possibility
distribution by the principle of falling shadows.

Let C be a joint possibility distribution with marginal possibility distributions A, B ∈ F , and let [A]� = [a1(�), a2(�)]
and [B]� = [b1(�), b2(�)], � ∈ [0, 1]. Then A and B are said to be non-interactive if their joint possibility distribution
is A × B,

C(x, y) = min{A(x), B(y)},
for all x, y ∈ R, which can be written in the form, [C]� = [A]� × [B]�, that is, [C]� is rectangular subset of R2, for
any � ∈ [0, 1). If A and B are non-interactive then for any x ∈ [A]� and any y ∈ [B]� we have that the ordered pair
(x, y) will be in [C]� for any � ∈ [0, 1]. In other words, if one takes a point, x, from the �-level set of A and then takes
an arbitrarily chosen point, y, from the �-level set of B then the pair (x, y) will belong to the �-level set of C.

Another extreme situation is when [C]� is a line segment in R2. For example, let [0,1]×[0,1] be the universe of
discourse for C and let, the diagonal beam,

C(x, y) = x�{x=y}(x, y),

for any x, y ∈ [0, 1], be the joint possibility distribution of marginal possibility distributions A(x) = x and B(y) = y.
Then [C]� is a line segment [(�, �), (1, 1)] in R2 for any � ∈ [0, 1]. Furthermore, if one takes a point, x, from the �-level
set of A then one can take only y = x from the �-level set of B for the pair (x, y) to belong to [C]�. This point-to-point
interactivity relation is the strongest one that we can envisage between �-level sets of marginal possibility distributions.

What can one say about the strength of interactivity between marginal distributions, A(x) = 1− x and B(y) = 1− y,
when their joint distribution, F, is defined, for example, by the Lukasiewicz t-norm? In this case

F(x, y) = max{A(x) + B(y) − 1, 0} = max{1 − x + 1 − y − 1, 0} = max{1 − x − y, 0},
and [F]� = {(x, y) | x + y ≤ 1 − �} is of symmetric triangular form for any 0 ≤ � < 1. If we take, for exam-
ple, � = 0.4 then the pair (0.3, 0.2) belongs to [F]0.4 since 0.3 + 0.2 ≤ 1 − 0.4, but the pair (0.4, 0.4) does not
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Fig. 1. Illustration of [F]0.4.

(see Fig. 1). In our approach we will define a uniform probability distribution on [F]0.4 with marginal probability
distributions denoted by X0.4 and Y0.4. The expected value of this uniform probability distribution, (0.2, 0.2), will be
nothing else but the center of mass (or gravity) of the set [F]0.4 of homogeneous density (for calculations see Section
4). Then the probabilistic correlation coefficient, denoted by �(X0.4, Y0.4), will be negative since the ‘strength’ of pairs
(x, y) ∈ [F]0.4 that are discordant (i.e. (x − 0.2)(y − 0.2) < 0) is bigger than the ‘strength’ of those ones that are
concordant (i.e. (x − 0.2)(y − 0.2) > 0). Then we define the index of interactivity as the weighted average of these
correlation coefficients over the set of all membership grades.

Let A ∈ F be fuzzy number with a �-level set denoted by [A]� = [a1(�), a2(�)], � ∈ [0, 1] and let U� denote a
uniform probability distribution on [A]�, � ∈ [0, 1]. Recall that the mean value of U� is M(U�) = (a1(�) + a2(�))/2
and its variance is computed by var(U�) = (a2(�) − a1(�))2/12.

2. Possibilistic mean value, variance, covariance and correlation

The f-weighted possibilistic mean value of a possibility distribution A ∈ F is the f-weighted average of probabilistic
mean values of the respective uniform distributions on the level sets of A. That is, the f-weighted possibilistic mean
value of A ∈ F , with [A]� = [a1(�), a2(�)], � ∈ [0, 1], is defined by [9]

E f (A) =
∫ 1

0
M(U�) f (�) d� =

∫ 1

0

a1(�) + a2(�)

2
f (�) d�, (1)

where U� is a uniform probability distribution on [A]� for all � ∈ [0, 1]. This definition is based on Goetschel–Voxman
ordering of fuzzy numbers [11], and it can be considered as a particular case of the average index proposed by Campos
and González in [1].

If f (�) ≡ 1 the f-weighted possibilistic mean value coincides with the (i) generative expectation of fuzzy numbers
introduced by Chanas and Nowakowski in [3, p. 47]; (ii) middle-point-of-the-mean-interval defuzzication method
proposed by Yager in [23, p. 161].

Note 1. There exist several other ways to define mean values of fuzzy numbers, e.g. Dubois and Prade [4] defined
an interval-valued expectation of fuzzy numbers, viewing them as consonant random sets. They also showed that this
expectation remains additive in the sense of addition of fuzzy numbers. Using evaluation measures, Yoshida et al.
[24] introduced a possibility mean, a necessity mean and a credibility mean of fuzzy numbers that are different from
(1). Surveying the results in quantitative possibility theory, Dubois [7] showed that some notions (e.g. cumulative
distributions, mean values) in statistics can naturally be interpreted in the language of possibility theory.

The f-weighted possibilistic covariance between marginal possibility distributions of a joint possibility distribution
is defined as the f-weighted average of probabilistic covariances between marginal probability distributions whose
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joint probability distribution is uniform on each level-set of the joint possibility distribution. That is, the f-weighted
possibilistic covariance between A, B ∈ F , (with respect to their joint distribution C), can be written as [10]

Cov f (A, B) =
∫ 1

0
cov(X�, Y�) f (�) d�,

where X� and Y� are random variables whose joint distribution is uniform on [C]� for all � ∈ [0, 1], and cov(X�, Y�)
denotes their probabilistic covariance. It should be noted that the possibilistic covariance is an absolute measure of
interactivity between marginal possibility distributions.

The measure of f-weighted possibilistic variance of A is the f-weighted average of the probabilistic variances of the
respective uniform distributions on the level sets of A. That is, the f-weighted possibilistic variance of A is defined
as [10]

Var f (A) =
∫ 1

0
var(U�) f (�) d� =

∫ 1

0

(a2(�) − a1(�))2

12
f (�) d�.

There exist other approaches to define variance of fuzzy numbers, e.g. Dubois et al. [6] defined the potential variance
of a symmetric fuzzy interval by viewing it as a family of its �-cut.

A measure of possibilistic correlation between marginal possibility distributions A and B of a joint possibility
distribution C has been defined in [2] as their possibilistic covariance divided by the square root of the product of their
possibilistic variances. That is, the f-weighted measure of possibilistic correlation of A, B ∈ F (with respect to their
joint distribution C) is,

�old
f (A, B) = Cov f (A, B)√

Var f (A)
√

Var f (B)

=
∫ 1

0 cov(X�, Y�) f (�) d�(∫ 1
0 var(U�) f (�) d�

)1/2 (∫ 1
0 var(V�) f (�) d�

)1/2 , (2)

where U� is a uniform probability distribution on [A]�, and V� is a uniform probability distribution on [B]�. Thus, the
possibilistic correlation represents an average degree to which X� and Y� are linearly associated as compared to the
dispersions of U� and V�. We have the following result [2]. If [C]� is convex for all � ∈ [0, 1] then −1 ≤ �old

f (A, B) ≤ 1
for any f.

The presence of weighting function is not crucial in our theory: we can simple remove it from consideration by
choosing f (�) ≡ 1.

Note 2. There exist several other ways to define correlation coefficient for fuzzy numbers, e.g. Liu and Kao [16] used
fuzzy measures to define a fuzzy correlation coefficient of fuzzy numbers and they formulated a pair of nonlinear
programs to find the �-cut of this fuzzy correlation coefficient, then, in a special case, Hong [12] showed an exact
calculation formula for this fuzzy correlation coefficient. Vaidyanathan [21] introduced a new measure for the correlation
coefficient between triangular fuzzy variables called credibilistic correlation coefficient.

3. An improved index of interactivity for fuzzy numbers

The main drawback of the definition of the former index of interactivity (2) is that it does not necessarily take its
values from [−1, 1] if some level-sets of the joint possibility distribution are not convex. For example, consider a joint
possibility distribution defined by

C(x, y) = 4x · �T (x, y) + 4/3(1 − x) · �S(x, y), (3)

where

T = {(x, y) ∈ R2 | 0 ≤ x ≤ 1/4, 0 ≤ y ≤ 1/4, x ≤ y},
and

S = {(x, y) ∈ R2 | 1/4 ≤ x ≤ 1, 1/4 ≤ y ≤ 1, y ≤ x}.
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Fig. 2. Not convex �-level set.

Fig. 3. Marginal distribution A.

Furthermore, we have

[C]� = {(x, y) ∈ R2 | �/4 ≤ x ≤ 1/4, x ≤ y ≤ 1/4}⋃
{(x, y) ∈ R2 | 1/4 ≤ x ≤ 1 − 3/4�, 1/4 ≤ y ≤ x}.

We can see that [C]� is not a convex set for any � ∈ [0, 1) (see Fig. 2).
Then the marginal possibility distributions of (3) are computed by (see Fig. 3)

A(x) = B(x) =

⎧⎪⎪⎨
⎪⎪⎩

4x if 0 ≤ x ≤ 1/4,

4

3
(1 − x) if 1/4 ≤ x ≤ 1,

0 otherwise.

After some computations we get �old
f (A, B) ≈ 1.562 for the weighting function f (�) = 2�. We get here a value bigger

than one since the variance of the first marginal distributions, X�, exceeds the variance of the uniform distribution on
the same support.

Let us now introduce a new index of interactivity between marginal distributions A and B of a joint possibility
distribution C as the f-weighted average of the probabilistic correlation coefficients between the marginal probability
distributions of a uniform probability distribution on [C]� for all � ∈ [0, 1]. That is,

Definition 1. The f-weighted index of interactivity of A, B ∈ F (with respect to their joint distribution C) is
defined by

� f (A, B) =
∫ 1

0
�(X�, Y�) f (�) d�, (4)
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Fig. 4. Illustration of joint possibility distribution F.

where

�(X�, Y�) = cov(X�, Y�)√
var(X�)

√
var(Y�)

and, where X� and Y� are random variables whose joint distribution is uniform on [C]� for all � ∈ [0, 1].

In other words, the (f-weighted) index of interactivity is nothing else, but the f-weighted average of the probabilistic
correlation coefficients �(X�, Y�) for all � ∈ [0, 1]. It is clear that for any joint possibility distribution this new correlation

coefficient always takes its value from interval [−1, 1], since �(X�, Y�) ∈ [−1, 1] for any � ∈ [0, 1] and
∫ 1

0 f (�) d� = 1.
As for the joint possibility distribution defined by (3) we get � f (A, B) ≈ 0.786 for any f. Since � f (A, B) measures an
average index of interactivity between the level sets of A and B, we sometimes will call this measure as the f-weighted
possibilistic correlation coefficient.

4. An example

Consider the case, when A(x) = B(x) = (1−x) ·�[0,1](x), for x ∈ R, that is [A]� = [B]� = [0, 1−�], for � ∈ [0, 1].
Suppose that their joint possibility distribution is given by F(x, y) = (1 − x − y) · �T (x, y), where

T = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1}.

A �-level set of F is computed by

[F]� = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1 − �}.

This situation is depicted in Fig. 4, where we have shifted the fuzzy sets to get a better view of the situation.
The density function of a uniform distribution on [F]� can be written as

f (x, y) =

⎧⎪⎨
⎪⎩

1∫
[F]� dx dy

if (x, y) ∈ [F]�

0 otherwise

=
⎧⎨
⎩

2

(1 − �)2 if (x, y) ∈ [F]�,

0 otherwise.
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The marginal functions are obtained as

f1(x) =
⎧⎨
⎩

2(1 − � − x)

(1 − �)2 if 0 ≤ x ≤ 1 − �,

0 otherwise,

f2(y) =
⎧⎨
⎩

2(1 − � − y)

(1 − �)2 if 0 ≤ y ≤ 1 − �,

0 otherwise.

We can calculate the probabilistic expected values of the random variables X� and Y�, whose joint distribution is
uniform on [F]� for all � ∈ [0, 1]:

M(X�) = 2

(1 − �)2

∫ 1−�

0
x(1 − � − x) dx = 1 − �

3

and,

M(Y�) = 2

(1 − �)2

∫ 1−�

0
y(1 − � − y) dy = 1 − �

3
.

We calculate the variations of X� and Y� with the formula var(X ) = M(X2) − M(X )2:

M(X2
� ) = 2

(1 − �)2

∫ 1−�

0
x2(1 − � − x) dx = (1 − �)2

6

and,

var(X�) = M(X2
� ) − M(X�)2 = (1 − �)2

6
− (1 − �)2

9
= (1 − �)2

18
.

And similarly we obtain

var(Y�) = (1 − �)2

18
.

Using that

M(X�Y�) = 2

(1 − �)2

∫ 1−�

0

∫ 1−�−x

0
xy dy dx = (1 − �)2

12
,

cov(X�, Y�) = M(X�Y�) − M(X�)M(Y�) = − (1 − �)2

36
,

we can calculate the probabilistic correlation of the random variables:

�(X�, Y�) = cov(X�, Y�)√
var(X�)

√
var(Y�)

= −1

2
.

And finally the f-weighted possibilistic correlation of A and B:

� f (A, B) =
∫ 1

0
−1

2
f (�) d� = −1

2
.

We note here that using the former definition (2) we would obtain �old
f (A, B) = −1/3 for the correlation coefficient

(see [2] for details).

5. Some important examples

In this section we will show three important examples for the possibilistic correlation coefficient.
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Fig. 5. Perfect negative correlation.

5.1. Non-interactive fuzzy numbers

If A and B are non-interactive then their joint possibility distribution is defined by C = A × B. Since all [C]� are
rectangular and the probability distribution on [C]� is defined to be uniform we get cov(X�, Y�) = 0, for all � ∈ [0, 1].
So Cov f (A, B) = 0 and � f (A, B) = 0 for any weighting function f.

5.2. Perfect correlation

Fuzzy numbers A and B are said to be in perfect correlation, if there exist q, r ∈ R, q � 0 such that their joint
possibility distribution is defined by [2]

C(x1, x2) = A(x1) · �{qx1+r=x2}(x1, x2) = B(x2) · �{qx1+r=x2}(x1, x2), (5)

where �{qx1+r=x2} stands for the characteristic function of the line

{(x1, x2) ∈ R2|qx1 + r = x2}.
In this case we have

[C]� = {(x, qx + r ) ∈ R2 | x = (1 − t)a1(�) + ta2(�), t ∈ [0, 1]},
where [A]� = [a1(�), a2(�)]; and [B]� = q[A]� + r , for any � ∈ [0, 1], and, finally,

B(x) = A

(
x − r

q

)
,

for all x ∈ R. Furthermore, A and B are in a perfect positive (see Fig. 6) (negative [see Fig. 5]) correlation if q is positive
(negative) in (5).

If A and B have a perfect positive (negative) correlation then from �(X�, Y�) = 1 (�(X�, Y�) = −1) (see [2] for
details), for all � ∈ [0, 1], we get � f (A, B) = 1 (� f (A, B) = −1) for any weighting function f.

5.3. Mere shadows

Suppose that the joint possibility distribution of A and B is defined by

C(x, y) =

⎧⎪⎨
⎪⎩

A(x) if y = 0,

B(y) if x = 0,

0 otherwise.
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Fig. 6. Perfect positive correlation.

Suppose further that,

A(x) = B(x) = (1 − x) · �[0,1](x),

for x ∈ R. Then a �-level set of C is computed by

[C]� = {(x, 0) ∈ R2 | 0 ≤ x ≤ 1 − �}
⋃

{(0, y) ∈ R2 | 0 ≤ y ≤ 1 − �}.
Since all �-level sets of C are degenerated, i.e. their integrals vanish, we calculate everything as a limit of integrals. We
calculate all the quantities with the �-level sets:

[C]�� = {(x, y) ∈ R2 | 0 ≤ x ≤ 1 − �, 0 ≤ y ≤ �}⋃
{(x, y) ∈ R2 | 0 ≤ y ≤ 1 − �, 0 ≤ x ≤ �}.

First we calculate the expected value and variance of X� and Y�:

M(X�) = lim
�→0

1∫
[C]�� dx dy

∫
[C]��

x dx = 1 − �

4
,

M(X2
� ) = lim

�→0

1∫
[C]�� dx dy

∫
[C]��

x2 dx = (1 − �)2

6
,

var(X�) = M(X2
� ) − M(X�)2 = (1 − �)2

6
− (1 − �)2

16
= 5(1 − �)2

48
.

Because of the symmetry, the results are the same for Y�. We need to calculate their covariance,

M(X�Y�) = lim
�→0

1∫
[C]�� dx dy

∫
[C]��

xy dy dx = 0.

Using this we obtain

cov(X�, Y�) = − (1 − �)2

16
,

and for the correlation,

�(X�, Y�) = cov(X�, Y�)√
var(X�)

√
var(Y�)

= −3

5
.
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Fig. 7. Illustration of [C]0.4.

Finally we obtain the f-weighted possibilistic correlation:

� f (A, B) =
∫ 1

0
−3

5
f (�) d� = −3

5
.

In this extremal case, the joint distribution is unequivocally constructed from the knowledge that C(x, y) = 0 for
positive x, y. Now we explain the reason for this negative correlation. Let us choose, for example, � = 0.4 (see Fig. 7).
The center of mass of [C]0.4 is (0.15, 0.15). The crucial point here is that if we choose any point, x, from [A]0.4 then
the only possible choice from [B]0.4 can be y = 0, which is always less than 0.15, independently of the choice of x.
In [C]0.4 the strength of discordant points is much bigger than the strength of concordant points, with respect to the
reference point (0.15, 0.15).

6. Question

It is our guess that for these non-symmetrical, but identical marginal distributions, A(x) = B(x) = (1 − x), for all
x ∈ [0, 1], one cannot define any joint possibility distribution and any f for which � f (A, B) could go below the value
of −3/5.

A possibility distribution A is said to be symmetric if there exists a point a ∈ R such that A(a − x) = A(a + x) for
all x ∈ R. If the membership functions of two symmetrical marginal possibility distributions are equal then we can
easily define a joint possibility distribution in such a way that their possibilistic correlation coefficient will be minus one
(see Section 5.2). And here comes our question: What is the lower limit for f-weighted possibilistic correlation coefficient
between non-symmetrical marginal possibility distributions with the same membership function?

7. Conclusions

We have introduced a novel measure of (relative) index of interactivity between marginal distributions A and B of
a joint possibility distribution C. The starting point of our approach is to equip the �-level set of the joint possibility
distribution with a uniform probability distribution. Then the correlation coefficient between its marginal probability
distributions is considered to be an index of interactivity between the �-level sets of A and B. If [C]� is rectangular for
0 ≤ � < 1 then A and B are non-interactive and their index of interactivity is equal to zero. In the general case we have
used the probabilistic correlation coefficient to measure the interactivity between the �-level sets of A and B, which,
loosely speaking, measures the ‘strength’ of concordant points as to the ‘strength’ of discordant points of [C]� with
respect to the center of mass of [C]�. This new index of interactivity is meaningful for any joint possibility distribution.
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Abstract. Generalizing the probabilistic correlation ratio we will in-
troduce a correlation ratio for marginal possibility distributions of joint
possibility distributions.

Keywords: Correlation ratio, possibility distribution, joint possibility
distribution.

1 Introduction

In statistics, the correlation ratio is a measure of the relationship between the
statistical dispersion within individual categories and the dispersion across the
whole population or sample. The correlation ratio was originally introduced by
Karl Pearson [5] as part of analysis of variance and it was extended to random
variables by Andrei Nikolaevich Kolmogorov [4] as,

η2(X |Y ) =
D2[E(X |Y )]

D2(X)
,

where X and Y are random variables. If X and Y have a joint probability density
function, denoted by f(x, y), then we can compute η2(X |Y ) using the following
formulas

E(X |Y = y) =
∫ ∞

−∞
xf(x|y)dx

and
D2[E(X |Y )] = E(E(X |y) − E(X))2,

and where,

f(x|y) =
f(x, y)
f(y)

.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 178–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Note 1. The correlation ratio measures the functional dependence between X
and Y . It takes on values between 0 (no functional dependence) and 1 (purely
deterministic dependence). It is worth noting that if E(X |Y = y) is linear func-
tion of y (i.e. there is a linear relationship between random variables E(X |Y )
and Y ) this will give the same result as the square of the correlation coefficient,
otherwise the correlation ratio will be larger in magnitude. It can therefore be
used for judging non-linear relationships. Also note that the correlation ratio is
asymmetrical by nature since the two random variables fundamentally do not
play the same role in the functional relationship; in general, η2(X |Y ) �= η2(Y |X).

A fuzzy number. A is a fuzzy set R with a normal, fuzzy convex and continu-
ous membership function of bounded support. The family of fuzzy numbers is
denoted by F . Fuzzy numbers can be considered as possibility distributions. A
fuzzy set C in R

2 is said to be a joint possibility distribution of fuzzy numbers
A, B ∈ F , if it satisfies the relationships

max{x | C(x, y)} = B(y) and max{y | C(x, y)} = A(x)

for all x, y ∈ R. Furthermore, A and B are called the marginal possibility dis-
tributions of C. A γ-level set (or γ-cut) of a fuzzy number A is a non-fuzzy set
denoted by [A]γ and defined by [A]γ = {t ∈ X |A(t) ≥ γ} if γ > 0 and cl(suppA)
if γ = 0, where cl(suppA) denotes the closure of the support of A.

Let A ∈ F be fuzzy number with a γ-level set denoted by [A]γ = [a1(γ), a2(γ)],
γ ∈ [0, 1] and let Uγ denote a uniform probability distribution on [A]γ , γ ∈ [0, 1].

In possibility theory we can use the principle of expected value of functions
on fuzzy sets to define variance, covariance and correlation of possibility distri-
butions. Namely, we can equip each level set of a possibility distribution (repre-
sented by a fuzzy number) with a uniform probability distribution, then apply
their standard probabilistic calculation, and then define measures on possibility
distributions by integrating these weighted probabilistic notions over the set of
all membership grades [1,2]. These weights (or importances) can be given by
weighting functions. A function g : [0, 1] → R is said to be a weighting function
if g is non-negative, monotone increasing and satisfies the following normaliza-
tion condition

∫ 1

0
g(γ)dγ = 1. Different weighting functions can give different

(case-dependent) importances to level-sets of possibility distributions. In this
paper we will introduce a correlation ratio for marginal possibility distributions
of joint possibility distributions.

2 A Correlation Ratio for Marginal Possibility
Distributions

Definition 1. Let us denote A and B the marginal possibility distributions of
a given joint possibility distribution C. Then the g-weighted possibilistic corre-
lation ratio of marginal possibility distribution A with respect to marginal possi-
bility distribution B is defined by

η2
f (A|B) =

∫ 1

0

η2(Xγ |Yγ)g(γ)dγ (1)
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where Xγ and Yγ are random variables whose joint distribution is uniform on
[C]γ for all γ ∈ [0, 1], and η2(Xγ |Yγ) denotes their probabilistic correlation ratio.

So the g-weighted possibilistic correlation ratio of the fuzzy number A on B is
nothing else, but the g-weighted average of the probabilistic correlation ratios
η2(Xγ |Yγ) for all γ ∈ [0, 1].

3 Computation of Correlation Ratio: Some Examples

In this section we will compute the g-weighted possibilistic correlation ratio for
joint possibility distributions (1−x− y), (1−x2− y), (1−√

x− y), (1−x2− y2)
and (1 −√

x −√
y) defined on proper subsets of the unit square.

3.1 A Linear Relationship

Consider the case, when

A(x) = B(x) = (1 − x) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0, 1− γ], for γ ∈ [0, 1]. Suppose that their joint
possibility distribution is given by C(x, y) = (1 − x − y) · χT (x, y), where

T =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x + y ≤ 1

}

.

Then we have [C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x + y ≤ 1 − γ

}

. The density
function of a uniform distribution on [C]γ is

f(x, y) =

⎧

⎨

⎩

2
(1 − γ)2

if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =

⎧

⎨

⎩

2(1 − γ − x)
(1 − γ)2

if 0 ≤ x ≤ 1 − γ

0 otherwise

f2(y) =

⎧

⎨

⎩

2(1 − γ − y)
(1 − γ)2

if 0 ≤ y ≤ 1 − γ

0 otherwise

For the correlation ration we need to calculate the conditional probalility
distribution:

E(X |Y = y) =
∫ 1−γ−y

0

xf(x|y)dx =
∫ 1−γ−y

0

x
f(x, y)
f2(y)

dx =
1 − γ − y

2
,
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where 0 ≤ x ≤ 1−γ. The next step is to calculate the variation of this distribution:

D2[E(X |Y )] = E(E(X |y) − E(X))2

=
∫ 1−γ

0

(
1 − γ − y

2
− 1 − γ

3
)2

2(1 − γ − y)
(1 − γ)2

=
(1 − γ)2

72
.

Using the relationship

D2(Xγ) =
(1 − γ)2

18
,

we obtain that the probabilistic correlation of Xγ on Yγ is

η2(Xγ |Yγ) =
1
4
.

From this the g-weighted possibilistic correlation ratio of A with respect to
B is,

η2
f (A|B) =

∫ 1

0

1
4
g(γ)dγ =

1
4
.

Note 2. The g-weighted normalized measure of interactivity between A ∈ F and
B ∈ F (with respect to their joint distribution C) is defined by [3]

ρf (A, B) =
∫ 1

0

ρ(Xγ , Yγ)g(γ)dγ

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
.

and where Xγ and Yγ are random variables whose joint distribution is uniform
on [C]γ for all γ ∈ [0, 1], and ρ(Xγ , Yγ) denotes their probabilistic correlation
coefficient. In this simple case

η2
f (A|B) = η2

f (B|A) = [ρf (A, B)]2,

since E(Xγ |Yγ = y) is a linear function of y. Really, in this case we have,

E(Xγ |Yγ = y) =
1 − γ − y

2
=

1 − γ

3
− y

2
+

1 − γ

6

=
1 − γ

3
− 1

2
y −

(

− 1
2

)

× 1 − γ

3

=
1 − γ

3
− 1

2

(

y − 1 − γ

3

)

= E(Xγ) − ρ(Xγ , Yγ)(y − E(Yγ)).
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3.2 A Nonlinear Relationship

Consider the case, when

A(x) = (1 − x2) · χ[0,1](x),

B(x) = (1 − y) · χ[0,1](y),

for x ∈ R, that is [A]γ = [0,
√

1 − γ], [B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose
that their joint possibility distribution is given by:

C(x, y) = (1 − x2 − y) · χT (x, y),

where
T =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =

⎧

⎨

⎩

1
∫

[C]γ
dxdy

if (x, y) ∈ [C]γ

0 otherwise
=

⎧

⎨

⎩

3
2(1 − γ)

3
2

if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =

⎧

⎨

⎩

3(1 − γ − x2)
2(1 − γ)

3
2

if 0 ≤ x ≤ √
1 − γ

0 otherwise

f2(y) =

⎧

⎨

⎩

3
√

1 − γ − y

2(1 − γ)
3
2

if 0 ≤ y ≤ 1 − γ

0 otherwise

For the correlation ration we need to calculate the conditional probability
distribution:

E(Y |X = x) =
∫ 1−γ−x2

0

yf(y|x)dy =
∫ 1−γ−x2

0

y
f(x, y)
f1(x)

dy =
1 − γ − x2

2
,

where 0 ≤ y ≤ 1−γ. The next step is to calculate the variation of this distribution:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=
∫

√
1−γ

0

(
1 − γ − x2

2
− 2(1 − γ)

5
)2

3(1 − γ − x2)
2(1 − γ)

3
2

dx

=
2(1 − γ)2

175
.
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Using the relationship

D2(Yγ) =
12(1 − γ)2

175
,

we obtain that the probabilistic correlation ratio of Yγ with respect to Xγ is

η2(Yγ |Xγ) =
1
6
.

From this the g-weighted possibilistic correlation ratio of B with respect to
A is,

η2
f (B|A) =

∫ 1

0

1
6
g(γ)dγ =

1
6
.

Similarly, from D2[E(X |Y )] =
3(1 − γ)

320
, and from

D2(Xγ) =
19(1 − γ)

320
,

we obtain,

η2
f (A|B) =

∫ 1

0

3
19

g(γ)dγ =
3
19

.

That is η2
f (B|A) �= η2

f (A|B).

3.3 Joint Distribution: (1 − √
x − y)

Consider the case, when

A(x) = (1 −√
x) · χ[0,1](x),

B(x) = (1 − y) · χ[0,1](y),

for x ∈ R, that is [A]γ = [0, (1 − γ)2], [B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose
that their joint possibility distribution is given by:

C(x, y) = (1 −√
x − y) · χT (x, y),

where
T =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x + y ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x + y ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =

⎧

⎨

⎩

1
∫

[C]γ
dxdy

if (x, y) ∈ [C]γ

0 otherwise
=

⎧

⎨

⎩

3
(1 − γ)3

if (x, y) ∈ [C]γ

0 otherwise
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The marginal functions are obtained as

f1(x) =

⎧

⎨

⎩

3(1 − γ −√
x)

(1 − γ)3
if 0 ≤ x ≤ (1 − γ)2

0 otherwise

f2(y) =

⎧

⎨

⎩

3(1 − γ − y)2

(1 − γ)3
if 0 ≤ y ≤ 1 − γ

0 otherwise

For the correlation ration we need to calculate the conditional probability
distribution:

E(Y |X = x) =
∫ 1−γ−√

x

0

yf(y|x)dy =
∫ 1−γ−√

x

0

y
f(x, y)
f1(x)

dy =
1 − γ −√

x

2
,

where 0 ≤ y ≤ 1− γ. The next step is to calculate the variation of this distribu-
tion:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=
∫ (1−γ)2

0

(
1 − γ −√

x

2
− 1 − γ

4
)2

3(1 − γ −√
x)

(1 − γ)3
dx

=
(1 − γ)2

80
.

Using the relationship

D2(Yγ) =
3(1 − γ)2

80
,

we obtain that the probabilistic correlation ratio of Yγ with respect to Xγ is

η2(Yγ |Xγ) =
1
3
.

From this the g-weighted possibilistic correlation ratio of B with respect to
A is,

η2
f (B|A) =

∫ 1

0

1
3
g(γ)dγ =

1
3
.

Similarly, from D2[E(X |Y )] =
3(1 − γ)4

175
, and from

D2(Xγ) =
37(1 − γ)4

700
,

we obtain:

η2
f (A|B) =

∫ 1

0

12
37

g(γ)dγ =
12
37

.
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3.4 A Ball-Shaped Joint Distribution

Consider the case, when

A(x) = B(x) = (1 − x2) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0,
√

1 − γ], for γ ∈ [0, 1]. Suppose that their
joint possibility distribution is ball-shaped, that is,

C(x, y) = (1 − x2 − y2) · χT (x, y),

where
T =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =

⎧

⎨

⎩

1
∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise
=

⎧

⎨

⎩

4
(1 − γ)π

if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =

⎧

⎨

⎩

4
√

1 − γ − x2

(1 − γ)π
if 0 ≤ x ≤ 1 − γ

0 otherwise

f2(y) =

⎧

⎨

⎩

4
√

1 − γ − y2

(1 − γ)π
if 0 ≤ y ≤ 1 − γ

0 otherwise

For the correlation ration we need to calculate the conditional probability
distribution:

E(Y |X = x) =
∫

√
1−γ−x2

0

yf(y|x)dy =
∫

√
1−γ−x2

0

y
f(x, y)
f1(x)

dy =

√

1 − γ − x2

2
,

where 0 ≤ y ≤ √
1 − γ. The next step is to calculate the variation of this

distribution:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=
∫

√
1−γ

0

(

√

1 − γ − x2

2
− 4

√
1 − γ

3π
)2

4
√

1 − γ − x2

π(1 − γ)
dx

=
(1 − γ)(27π2 − 256)

144π2
.
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Using the relationship

D2(Yγ) =
(1 − γ)(9π2 − 64)

36π2
,

we obtain that the probabilistic correlation ratio of Yγ with respect to Xγ is

η2(Yγ |Xγ) =
27π2 − 256
36π2 − 256

.

Finally, we get that the g-weighted possibilistic correlation ratio of B with re-
spect A is,

η2
f (B|A) =

∫ 1

0

27π2 − 256
36π2 − 256

g(γ)dγ =
27π2 − 256
36π2 − 256

.

3.5 Joint Distribution: (1 − √
x − √

y)

Consider the case, when A(x) = B(x) = (1 − √
x) · χ[0,1](x), for x ∈ R, that

is [A]γ = [B]γ = [0, (1 − γ)2], for γ ∈ [0, 1]. Suppose that their joint possibility
distribution is given by:

C(x, y) = (1 −√
x −√

y) · χT (x, y),

where
T =

{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x +

√
y ≤ 1

}

.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R
2 | x ≥ 0, y ≥ 0,

√
x +

√
y ≤ 1 − γ

}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =

⎧

⎨

⎩

1
∫

[C]γ
dxdy

if (x, y) ∈ [C]γ

0 otherwise
=

⎧

⎨

⎩

6
(1 − γ)4

if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =

⎧

⎨

⎩

6(1 − γ −√
x)2

(1 − γ)4
if 0 ≤ x ≤ (1 − γ)2

0 otherwise

f2(y) =

⎧

⎨

⎩

6(1 − γ −√
y)2

(1 − γ)4
if 0 ≤ y ≤ (1 − γ)2

0 otherwise

For the correlation ration we need to calculate the conditional probability
distribution:

E(Y |X =x)=
∫ (1−γ−√

x)2

0

yf(y|x)dy=
∫ (1−γ−√

x)2

0

y
f(x, y)
f1(x)

dy=
(1 − γ −√

x)2

2
,
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where 0 ≤ y ≤ (1 − γ)2. The next step is to calculate the variation of this
distribution:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=
∫ (1−γ)2

0

(
(1 − γ −√

x)2

2
− (1 − γ)2

5
)2

6(1 − γ −√
x)2

(1 − γ)4
dx

=
19(1 − γ)4

1400
.

Using the relationship

D2(Yγ) =
9(1 − γ)4

350
,

we obtain that the probabilistic correlation of Yγ with respect to Xγ is,

η2(Yγ |Xγ) =
19
36

.

That is, the g-weighted possibilistic correlation ratio of B with respect to A is,

η2
f (B|A) =

∫ 1

0

19
36

g(γ)dγ =
19
36

.

4 Summary

In this paper we have introduced a correlation ratio for marginal possibility dis-
tributions of joint possibility distributions. We have illustrated this new principle
by five examples.
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Theory and Statistics, Eötvös Loránd University, Budapest, for his long-term
help with probability distributions.

References

1. Carlsson, C., Fullér, R., Majlender, P.: On possibilistic correlation. Fuzzy Sets and
Systems 155, 425–445 (2005)

2. Fullér, R., Majlender, P.: On interactive fuzzy numbers. Fuzzy Sets and Systems 143,
355–369 (2004)
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Abstract.   In this paper we will show some examples for computing the possi-
bilistic correlation coefficient between marginal distributions of a joint possibility 
distribution. First we consider joint possibility distributions, (1-x-y), (1-x2-y2),   
(1- yx ) and (1-x2-y) on the set {(x,y) ²| x 0,y 0,x+y 1}, then we will 
show (i) how the possibilistic correlation coefficient of two linear marginal possi-
bility distributions changes from zero to -1/2, and from -1/2 to -3/5 by taking out 
bigger and bigger parts from the level sets of a their joint possibility distribution; 
(ii) how to compute the autocorrelation coefficient of fuzzy time series with linear 
fuzzy data. 

1 Introduction 

A fuzzy number A is a fuzzy set in  with a normal, fuzzy convex and continuous 
membership function of bounded support. The family of fuzzy numbers is denoted 
by . Fuzzy numbers can be considered as possibility distributions. A fuzzy set C 
in ² is said to be a joint possibility distribution of fuzzy numbers A,B , if it sa-
tisfies the relationships max{x | C(x; y)} = B(y) and max{y | C(x; y)} = A(y) for all 
x, y . Furthermore, A and B are called the marginal possibility distributions of 
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C. Let A  be fuzzy number with a -level set denoted by [A] = [a1( ),a2( )],  
[0,1] and let U  denote a uniform probability distribution on [A] ,  [0,1]. 
In possibility theory we can use the principle of expected value of functions on 

fuzzy sets to define variance, covariance and correlation of possibility distribu-
tions. Namely, we equip each level set of a possibility distribution (represented by 
a fuzzy number) with a uniform probability distribution, then apply their standard 
probabilistic calculation, and then define measures on possibility distributions by 
integrating these weighted probabilistic notions over the set of all membership 
grades. These weights (or importances) can be given by weighting functions. A 
function f: [0;1]  is said to be a weighting function if f is non-negative, mono-
tone increasing and satisfies the following normalization condition 0

1f( )d = 1. 
Different weighting functions can give different (case-dependent) importances to 
level-sets of possibility distributions. 

In 2004 Fullér and Majlender [2] introduced the notion of covariance between 
marginal distributions of a joint possibility distribution C as the expected value of 
their interactivity function on C. That is, the f -weighted measure of interactivity 
between A  and B  (with respect to their joint distribution C) is defined by 
their measure of possibilistic covariance [2], as 

 
 

where X  and Y  are random variables whose joint distribution is uniform on 
[C]  for all  [0,1], and cov(X  , Y  ) denotes their probabilistic covariance. They 
interpreted this covariance as a measure of interactivity between marginal distribu-
tions. They also showed that non-interactivity entails zero covariance, however, 
zero covariance does not always imply non-interactivity. The measure of interac-
tivity is positive (negative) if the expected value of the interactivity relation on C 
is positive (negative). It is easy to see that the possibilistic covariance is an abso-
lute measure in the sense that it can take any value from the real line. To have a 
relative measure of interactivity between marginal distributions we have intro-
duced the normalized covariance in 2010 (see [3]). 
 
Definition 1.1 ([3]) The f -weighted normalized measure of interactivity between 
A  and B  (with respect to their joint distribution C) is defined by 

,)()(),(
1

0 , dfYXBAf  (1) 

where 

)var()var(
)cov(

)( ,
, YX

YX
YX  
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Following the terminology of Carlsson, Fullér and Majlender [1] we will call 
this improved measure of interactivity as the f -weighted possibilistic correlation 
ratio. 

In other words, the f -weighted possibilistic correlation coefficient is nothing 
else, but the f -weighted average of the probabilistic correlation coefficients
(X  ,Y  ) for all  [0,1]. 

2 Some Illustrations of Possibilistic Correlation 

Consider the case, when A(x) = B(x) = (1-x)· [0,1] (x), for x , that is [A] =[B]  = 
[0, 1- ], for  [0, 1]. Suppose that their joint possibility distribution is given by 
F(x,y) = (1-x-y) · T (x,y), where T={(x,y) ²| x 0,y 0,x+y 1}. Then we have 
[F] ={(x,y) ²| x 0,y 0,x+y 1- }. 

This situation is depicted on Fig. 1, where we have shifted the fuzzy sets to get 
a better view of the situation. In this case the f -weighted possibilistic correlation 
of A and B is computed as (see [3] for details), 

.
2
1)(

2
1),(

1

0
dfBAf  

 

Fig. 1. Illustration of joint possibility distribution F 

Consider now the case when A(x) = B(x) = x· [0,1] (x), for x , that is 
[A] =[B]  = [ , 1], for  [0, 1]. Suppose that their joint possibility distribution is 
given by W(x,y) = max{x+y-1,0}. Then we get f(A,B)= 1/2. We note here that W 
is nothing else but the Lukasiewitz t-norm, or in the statistical literature, W is gen-
erally referred to as the lower Fréchet-Hoeffding bound for copulas. 

2.1   Joint Distribution: (1-x-y) 
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Consider the case, when A(x) = B(x) = (1-x²)· [0,1] (x), for x , that is [A] =[B]  = 
[0, 1 ], for  [0, 1]. Suppose that their joint possibility distribution is given 
by: C(x,y) = (1-x²-y²) · T (x,y), where T={(x,y) ²| x 0,y 0,x²+y² 1}. A -level 
set of C is computed by [C] ={(x,y) ²| x 0,y 0,x²+y² 1- }. 

The density function of a uniform distribution on [C]  can be written as 
 

 
 

The marginal functions are obtained as 
 

 
 

We can calculate the probabilistic expected values of the random variables X  
and Y  , whose joint distribution is uniform on [C]  for all  [0, 1]: 
 

 
 

We calculate the variations of X  and Y  with the formula var(X) = M(X²) - 
M(X)² : 
 

 
 

And similarly we obtain 
 

 

2.2   Joint Distribution: (1-x2-y2) 
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Using that 
 

 
we can calculate the probabilistic correlation of the random variables: 
 

 
 

And finally the f -weighted possibilistic correlation of A and B: 
 

 

Consider the case, when A(x) = B(x) = (1- x )· [0,1] (x), for x , that is[A] =[B]  
= [0, (1- )²], for  [0, 1]. Suppose that their joint possibility distribution is given 
by: C(x,y) = (1- yx ) · T (x,y), where 
 

T={(x,y) ²|x 0,y 0, yx 1}. 
 

A -level set of C is computed by [C] ={(x,y) ²|x 0,y 0, yx 1- }. 
The density function of a uniform distribution on [C]  can be written as 
 

 
 

The marginal functions are obtained as 
 

 

2.3   Joint Distribution: (1- yx − ) 
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We can calculate the probabilistic expected values of the random variables X  
and Y  , whose joint distribution is uniform on [C]  for all  [0, 1]: 

 
 

The variations of  X  and Y  with the formula var(X) = M(X²) - M(X)²: 

 
 

And similarly we obtain 

 
 

Using that 

 
 

we can calculate the probabilistic correlation of the random variables: 

 

And finally the f -weighted possibilistic correlation of A and B: 
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Consider the case, when A(x) = (1-x²)· [0,1] (x), B(x) = (1-x)· [0,1] (x), for x , 
that is[A] = [0, 1 ], [B]  = [0, 1- ], for  [0, 1]. Suppose that their joint pos-
sibility distribution is given by: C(x,y) = (1-x²-y) · T (x,y), where 

 
T={(x,y) ²|x 0,y 0,x²+y 1}. 

 
A -level set of C is computed by [C] ={(x,y) ²|x 0,y 0, x²+y 1- }. The 

density function of a uniform distribution on [C]  can be written as 
 

 
 

The marginal functions are obtained as 

 
We can calculate the probabilistic expected values of the random variables X  

and Y , whose joint distribution is uniform on [C]  for all  [0, 1]: 
 

 
We calculate the variations of X  and Y , with the formula var(X) = M(X²) - 

M(X)²: 

 

2.4   Joint Distribution: (1-x²-y) 
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The covariance of X  and Y : 

 
 

and we can calculate the probabilistic correlation of the random variables: 

 
 

And finally the f -weighted possibilistic correlation of A and B: 

 

3 A Transition from Zero to -1/2 

Suppose that a family of joint possibility distribution of A and B (where A(x) = 
B(x) = (1-x)· [0,1] (x), for x ) is defined by 
 

 
 

In the following, for simplicity, we well write C instead of Cn. A -level set of 
C is computed by 
 

 
 

The density function of a uniform distribution on [C]  can be written as 
 

 
 

We can calculate the marginal density functions: 
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and 

 
 

We can calculate the probabilistic expected values of the random variables X  
and Y , whose joint distribution is uniform on [C]  for all  [0, 1] as, 
 

 
 

and 
 

 
 

(We can easily see that for n = 1 we have M(X  ) =
2

1 , and for n  we 

find M(X  ) 
2

1 .) 

We calculate the variations of X  and Y  as, 
 

 

(We can easily see that for n = 1 we have M(X ² ) =
3

)1( 2

, and for n  we 

find M(X ² ) 
6

)1( 2

.) 
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Furthermore, 
 

 
 

And similarly we obtain 
 

 
 

(We can easily see that for n = 1 we have var(X  ) =
12

)1( 2

, and for n  we 

find var(X ² ) 
18

)1( 2

.) 

And, 

 
 

(We can easily see that for n = 1 we have cov(X ,Y ) =0, and for n  we find 

cov(X ,Y ) 
36

)1( 2

.) 

We can calculate the probabilistic correlation of the random variables, 
 

 
 

(We can easily see that for n = 1 we have (X ,Y ) =0, and for n  we find 

(X ,Y ) 
2
1 .) 

And finally the f -weighted possibilistic correlation of A and B is computed as, 
 

 

We obtain, that f(A,B) = 0 for n = 1 and if n  then f(A,B) 
2
1

. 
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4 A Transition from -1/2 to -3/5 

Suppose that a family of joint possibility distribution of A and B (where A(x) = 
B(x) = (1-x)· [0,1] (x), for x ) is defined by 
 

 
 

where 

 
 

In the following, for simplicity, we well write C instead of Cn. A -level set of 
C is computed by 

 
The density function of a uniform distribution on [C]  can be written as 

 

 
 

We can calculate the marginal density functions: 
 

 
and, 
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We can calculate the probabilistic expected values of the random variables X  

and Y , whose joint distribution is uniform on [C]  for all  [0, 1] as, 

 

That is, M(Y ) =
3

1
. We calculate the variations of X  and Y  as, 

 
 

and, 

 
And, similarly, we obtain 

.
36

)695()1()var( 2

22

n
nnY  
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From 

 
 

we can calculate the probabilistic correlation of the random variables: 
 

 
 

And finally the f -weighted possibilistic correlation of A and B: 
 

 
 

We obtain, that for n = 2 

2
1),( BAf  

and if if n  then 

5
3),( BAf  

We note that in this extreme case the joint possibility distribution is nothing 
else but the marginal distributions themselves, that is, 0),( yxC , for any interior 
point (x,y) of the unit square. 

5 Trapezoidal Marginal Distributions 

Consider now the case, 

 
 

for x  , that is [A] =[B]  = [ , 3- ], for  [0, 1]. Suppose that the joint pos-
sibility distribution of these two trapezoidal marginal distributions – a considera-
bly truncated pyramid – given by: 
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Then [C] ={(x,y) ²| x 3- , y 3-x }. The density function of a uniform 
distribution on [C]  can be written as 
 

 
The marginal functions are obtained as 

 

 
 

and 
 

 
 

We can calculate the probabilistic expected values of the random variables X  
and Y , whose joint distribution is uniform on [C]  for all  [0, 1]: 

 
and, 

 
We calculate the variations of X  and Y , with the formula var(X) = M(X²) - 

M(X)²: 

 
and, 

 
And similarly we obtain 

.
18

)23()var(
2

Y  

Using the relationship, 
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we can calculate the probabilistic correlation of the random variables: 
 

 
 

And finally the f-weighted possibilistic correlation of A and B is, 

 

6 Time Series with Fuzzy Data 

A time series with fuzzy data is referred to as fuzzy time series (see [4]). Consider 
a fuzzy time series indexed by t (0, 1]: 
 

 
 

and 
 

 
It is easy to see that in this case, [At]  = [0,t( 1- )], for  [0, 1]. If we have     

t1, t2 (0, 1], then the joint possibility distribution of the corresponding fuzzy num-
bers is given by: 

 
where 

 
Then 

 
 

The density function of a uniform distribution on [C]  can be written as 
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That is, 

 
The marginal functions are obtained as 

 

 
 

and, 

 
 

We can calculate the probabilistic expected values of the random variables X  
and Y , whose joint distribution is uniform on [C]  for all  [0, 1]: 
 

 
and 

 
 

We calculate now the variations of X  and Y  as, 
 

 
and, 
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.
18

)1()var(
22

2tY  

From, 

.
36

)1(),cov(
2

21ttYX  

we can calculate the probabilistic correlation of the random variables, 
 

 
The f -weighted possibilistic correlation of At1 and At2, 

 

 
 

So, the autocorrelation function of this fuzzy time series is constant. Namely, 

2
1),( 21 ttR  

for all t1 , t2 [0, 1]. 

And, in a similar way, we obtain, 
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