

TUCS Dissertations

No 161, August 2013

Mikołaj Olszewski

Scaling Up Stepwise
Feature Introduction to
Construction of Large
Software Systems

Scaling Up Stepwise Feature Introduction

to Construction of Large Software Systems

Mikołaj Olszewski

To be presented, with the permission of the Department of Information

Technologies of Åbo Akademi University, for public criticism in Auditorium Gamma

in the ICT Building in Turku, on the 22nd of August, 2013, at 12:00.

Åbo Akademi University

Department of Information Technologies

Joukahaisenkatu 3-5A, 20540 Turku, Finland

2013

Supervised by

Professor Ralph-Johan Back

Department of Information Technologies

Åbo Akademi University

Turku, Finland

Reviewed by

Professor Kai Koskimies

Department of Software Systems

Tampere University of Technology

Finland

Professor Tomi Männistö

Department of Computer Science and Engineering

School of Science, Aalto University

Helsinki, Finland

Opponent

Professor Kai Koskimies

Department of Software Systems

Tampere University of Technology

Finland

ISBN 978-952-12-2919-0

ISSN 1239-1883

Painosalama Oy – Turku 2013

A designer knows he has achieved perfection

not when there is nothing left to add,

but when there is nothing left to take away.

Antoine de Saint-Exupery

i

Abstract

Developing software is a difficult and error-prone activity.

Furthermore, the complexity of modern computer applications is

significant. Hence,an organised approach to software construction is crucial.

Stepwise Feature Introduction – created by R.-J. Back –

is a development paradigm, in which software is constructed by adding

functionality in small increments. The resulting code has an organised,

layered structure and can be easily reused. Moreover, the interaction

with the users of the software and the correctness concerns are essential

elements of the development process, contributing to high quality

and functionality of the final product.

The paradigm of Stepwise Feature Introduction has been

successfully applied in an academic environment, to a number of small-scale

developments. The thesis examines the paradigm and its suitability

to construction of large and complex software systems by focusing

on the development of two software systems of significant complexity.

Throughout the thesis we propose a number of improvements

and modifications that should be applied to the paradigm when developing

or reengineering large and complex software systems. The discussion

in the thesis covers various aspects of software development that relate

to Stepwise Feature Introduction. More specifically, we evaluate

the paradigm based on the common practices of object-oriented

programming and design and agile development methodologies.

We also outline the strategy to testing systems built with the paradigm

of Stepwise Feature Introduction.

iii

Sammandrag

Utveckling av programvara är en besvärlig process som innebär betydande

risk för produktfel. Därutöver är moderna datortillämpningar mycket

komplexa. Av dessa orsaker är en välorganiserad process för

programvaruutveckling av kritisk betydelse.

Inom Stepwise Feature Introduction - ett utvecklingsparadigm

skapat av R.-J. Back - konstrueras programvara genom att funktionaliteten

utökas i små successiva steg. Den slutliga koden får en organiserad

lagerstruktur och kan enkelt återanvändas. Därutöver är interaktionen med

programvarans användare och programvarans korrekthetsaspekter

centrala element inom utvecklingsprocessen, vilket kontribuerar till hög

kvalitet och funktionalitet hos den färdiga produkten.

Stepwise Feature Introduction-paradigmet har framgångsrikt

tillämpats i universitetsmiljö i ett antal småskaliga projekt. Denna

avhandling undersöker paradigmet och dess lämplighet i samband med

konstruktion av stora och komplexa programvarusystem genom att

fokusera på utvecklingen av två programvarusystem av betydande

komplexitet.

Avhandlingen föreslår ett antal förbättringar och modifikationer

som bör införas i paradigmet under utveckling och omstrukturering av

stora och komplexa programvarusystem. Diskussionen i avhandlingen

täcker olika aspekter av programvaruutveckling relaterade till Stepwise

Feature Introduction. Mer specifikt evalueras paradigmet med avseende på

praktisk objektorienterad design och programmering, samt på

agile-utvecklingsmetodologi. I avhandlingen skisseras också en strategi för

att för att testa system konstruerade med Stepwise Feature Introduction.

v

Acknowledgements

Even though a Ph.D. thesis has one author, it is a result of hard work

of many people. I would like to take the opportunity to express my gratitude

towards those who contributed to my work.

First and foremost, I am grateful to my supervisor, professor

Ralph-Johan Back. I feel privileged to have been his Ph.D. student. I wish

to thank him for his guidance and valuable feedback, as well as for trusting

me to pursue my research independently. Moreover, as he is the author

of the theory that I worked with during my research, my thesis would

not at all be possible without him.

I would like to sincerely thank my opponent at the public defence,

professor Kai Koiskimies, and professor Tomi Männistö, for taking the time

and effort to review my thesis. Their valuable comments greatly contributed

to the quality of the thesis and also allowed me to successfully overcome

some of the problems by looking at them from a different perspective.

Professor Iván Porres was co-supervising my research at its early

stage. He also coordinated the projects organised within Gaudí Software

Factory, two of which I had a pleasure and an honour to supervise.

I am thankful for your guidance and teaching me the importance of asking

the right questions when starting any software development project.

I wish to express my gratitude and respect to professor Barbro Back

for everything she did to help me start, advance and finish my research.

This thesis is, in large part, based on the results of a software

development project that was a part of research project BioTarget.

Participating in this cross-disciplinary collaboration was a remarkable

experience, as it showed that software development techniques can help

in solving problems that are very distant from computer science. Therefore,

I would like to thank the leaders of research groups involved in the project,

professors Jyrki Heino, Sirpa Jalkanen, and Mika Lindén.

My collaborator in the abovementioned project was Pasi Kankanpää,

to whom I owe my most sincere gratitude. For the most part,

the discussions we held concerned the project we both worked on.

However, occasionally the topics were not that related, thus providing

a much-needed refreshing break from everyday research.

Natalia Díaz Rodríguez, a talented programmer with an outstanding

personality, currently pursuing a Ph.D. degree, is another person

vi

I collaborated with on a daily basis. Next to my thankfulness for your

contribution to my thesis are my wishes of good luck in your future career.

I have been privileged to be a part of Software Construction

Laboratory, which consists not only of gifted researchers, but most

importantly – great people to work with. I wish to thank Viorel Preoteasa,

Johannes Eriksson and Linda Mannila for many hours of discussions

on research, programming and related matters – I can only hope that

I influenced your work in at least a small fraction of how you

influenced mine.

My work benefitted greatly from meetings and discussions

with other researchers at the Department of Information Technologies.

For that, among other things, I am grateful to Chang Li, Torbjörn Lundkvist,

Qaisar Malik, Dorina Marghescu, Luka Milovanov, Mats Neovius,

Ion and Luigia Petre, Vladimir Rogojin, Elena Troubitsyna,

Leonidas Tsiopoulos and Marina Waldén.

The organisational side of my work has been arranged

by the Graduate School of Turku Centre for Computer Science (TUCS).

I would like to thank the members of the TUCS Board for providing me

with financial support that allowed me to focus solely on my research.

I would also like to appreciate the work of TUCS secretary, Irmeli Laine,

for making even the most complex administrative tasks look easy.

I have received invaluable support from the administrative

personnel of the Department of Information Technologies, in particular

Britt-Marie Villstrand and Christel Donner, who were always there to help

in my fights with bureaucracy. I would also like to sincerely thank

the Department secretary, Christel Engblom, for being the one-person

solution to any and all organisational problems a Ph.D. student could have

during his work.

The software described in this thesis was created by two teams

of great programmers. I wish to thank Johan Björkman, Rafael Gallart,

Lassi Paavolainen, Kalle Pahajoki and Joacim Päivärinne for their

contribution and lessons I learnt from working with them.

The final months of my work on the thesis I spent working

in the industry. I would like to thank Joonas Lehtinen for founding

and leading Vaadin, an outstanding company to work in, and Henri

Muurimaa for giving me the chance to become a part of a fantastic team.

My life and work in Finland would not be as enjoyable as it is now,

if not without a little help from my friends. A number of them I met during

vii

my research work – they contributed both to my career

and invaluable memories.

What ultimately resulted in a thesis about practical application

of a theoretical software development paradigm, started as an attempt

to apply the same paradigm to the development of correct-by-construction

database applications. I would like to sincerely thank Damián Soriano

for the cooperation and company, as well as his family for making me feel

at home during my short, but unforgettable, visit to Argentina.

I would like to thank Linas Laibinis and Anton Tarasyuk

for countless hours spent on discussing research, life in Finland

and computer games, often while playing basketball. Maryam Kamali, aside

from being a great and valuable person, turned out to be a really proficient

curler in times my team desperately needed one. The sharp sense

of humour of Bogdan Iancu allowed me to stay sane after endless hours

of debugging code and writing the thesis. I learnt many valuable lessons

from Charmi Panchal, whom I shared my office with during the last months

of my stay at the University. I also wish to thank Kati and Pontus Boström,

who keep surprising and inspiring me at almost every occasion.

I am honoured to call Yuliya Prokhorova and Sergey Ostroumov

my friends. You bring to my life more, than you can imagine – I hope

you know how grateful I am for that.

My stay in Finland would be significantly more difficult,

if Mariola, Grzegorz and Weronika Mazerscy were not around

together with Andrzej Mizera and Ilona Kruk. I would like to thank you

for your support and friendship I received throughout the years.

I wish I somehow could express my endless gratitude to my family.

My dear mother, Grażyna, never doubted in me and kept supporting me

in every decision I made. Your never ending supply of good advice keeps me

going – thank you. My sister, Ola, and her husband, Grzesiek, were always

there for me and I am confident it will be this way for years to come.

I also wish to thank my father, Maciej, for the support I received during

the past years.

My wonderful daughter, Mysia, receives my utmost thanks

for reminding me that the most important things in life are to discover joy

in everything and to continuously become amazed by simple things.

Last but not least, I wish to thank my beloved wife, Marta,

per l’amor che move il sole e l’altre stelle.

viii

Table of Contents

Introduction ...1

Background..1

Problem statement ...2

Contribution ..3

Structure of research ...4

Part I: Stepwise Feature Introduction ...7

1. Fundamental concepts ...9

1.1. Layered structure .. 10

1.2. Working with features ... 11

1.3. Elements of system built with SFI .. 12

1.4. SFI Correctness Conditions ... 14

1.5. Diagrammatic reasoning .. 14

1.6. Correctness conditions and tests .. 15

2. SFI and object-oriented programming languages ... 16

2.1. Subtype polymorphism ... 17

2.2. Inheritance ... 19

3. SFI and Extreme Programming ... 20

3.1. Activities .. 21

3.2. Values ... 22

3.3. Practices .. 23

Part II: Scaling up SFI .. 25

4. Design challenges .. 27

4.1. Potential problems with scaling up ... 27

4.2. Defining case studies .. 28

4.3. Altering the paradigm of SFI ... 30

5. System execution ... 32

5.1. Executable method ... 32

5.2. Inheritable executable method .. 33

5.3. Dedicated service user .. 33

5.4. Hierarchy of dedicated service users .. 34

5.5. Dedicated system executable ... 35

5.6. Combined approach.. 35

6. Testing software built with SFI ... 36

6.1. Test-Driven Development .. 37

6.2. Unit tests and service providers .. 38

6.3. Regression tests and service providers .. 39

ix

6.4. Integration tests and service users .. 41

6.5. Acceptance tests ... 42

6.6. System testing ... 44

7. Agile Development Process for SFI .. 45

7.1. Scrum .. 45

7.2. Adapting Scrum .. 49

7.3. Introducing functionality ... 50

7.4. Evaluating the implementation ... 52

7.5. Process summary .. 55

Part III: Case study – ReThink.. 57

8. Design ... 59

8.1. Rules and history ... 59

8.2. Requirements .. 61

8.3. Components ... 63

8.4. Classes .. 65

8.5. Programming language ... 66

9. Layers ... 67

9.1. Introducing functionality ... 68

9.2. Component layering ... 69

10. Correctness Conditions .. 71

10.1. Internal Consistency .. 71

10.2. Respect .. 72

10.3. Preserving Old Features ... 73

10.4. Satisfying Requirements .. 74

10.5. Correctness conditions for interfaces .. 75

10.6. Inferring correctness conditions .. 76

Part IV: Case study – BioImageXD2 ... 79

11. Overview .. 81

11.1. First release ... 82

11.2. Requirements for refactoring .. 83

12. System architecture ... 85

12.1. Representing datasets: BioData .. 86

12.2. Acquiring datasets: File Readers .. 87

12.3. Modification and Analysis: Processes .. 88

12.4. Displaying: Visualisations ... 88

12.5. Saving changes: File Writers .. 90

12.6. Executable .. 90

12.7. Architectural styles .. 91

x

13. Layered design... 91

13.1. File Readers ... 92

13.2. Processes .. 95

13.3. Visualisations ... 97

13.4. File writers .. 97

13.5. Modularisation ... 98

13.6. Testing .. 101

14. Development process .. 102

14.1. Prototype development .. 102

14.2. Evaluation of the prototype ... 103

Part V: Evaluation .. 107

15. Evaluation criteria... 109

15.1. Indicators of quality .. 109

15.2. Quality attributes ... 110

15.3. Software metrics .. 111

16. Empirical validation ... 114

16.1. Measurements ... 115

16.2. Relation to generally accepted standards 119

16.3. Code pollution ... 120

16.4. Perception of the developers .. 121

16.5. Evaluation of the measurements ... 122

17. SFI and object-oriented design .. 123

17.1. Class design .. 125

17.2. Package design .. 127

17.3. Package coupling.. 128

Part VI: Discussion ... 131

18. Related approaches to software construction ... 133

18.1. Aspect-Oriented Development ... 133

18.2. Data, Context and Interaction ... 136

18.3. White- and black-box frameworks ... 139

18.4. Feature-Driven Development ... 141

19. Conclusions .. 143

19.1. Overview of research projects .. 144

19.2. Extensions of SFI .. 145

19.3. Threats to validity ... 146

19.4. Future work ... 147

xi

Appendices ... 149

1. Survey: Evaluation of BioImageXD2 development process 151

1.1. About you ... 151

1.2. Project setting and complexity ... 151

1.3. About the development process ... 152

1.4. Design and implementation ... 153

1.5. Comparison with previous development ... 154

1.6. Concluding remarks .. 155

2. Survey analysis .. 155

2.1. Personal information .. 155

2.2. Project complexity ... 157

2.3. The development process ... 157

2.4. Design and implementation ... 159

2.5. Comparison with previous development ... 162

3. Listings .. 163

4. Quality report for BioImageXD2 ... 168

4.1. Metrics Summary .. 168

4.2. Top Violations (20 of 128) .. 168

4.3. Pollution Chart ... 169

4.4. Violations by Metric ... 170

4.5. Design Tangles ... 174

4.6. Package Distance Chart .. 175

4.7. Metric Ratings .. 175

Bibliography ... 177

Introduction

Computer software is among the most complex products ever constructed

by humans. Furthermore, it has always been time and resource consuming.

Nowadays, as the role of software is constantly increasing and more

and more areas of everyday life are controlled, supported and organised

by computers, the issue of quality of software and ease of development

is of extreme importance.

Background

There are various approaches to software construction, one of the most

important of them today being object-oriented programming, which models

software system as a collection of interacting objects. Object-orientation

is currently supported by the majority of commonly used

programming languages.

There are many software systems that are of insufficient quality.

Object-oriented programming languages alone do not provide enough

guidelines for how to structure the software. In order to construct software

of reasonable quality, the programmer needs to combine proficiency in the

programming language with knowledge of basic rules and principles of

software design. This engineering knowledge, based on years of experience

in the domain of software construction, is known as object-oriented design.

Stepwise Feature Introduction (SFI) is a software construction

paradigm, in which the functionality of software is extended gradually, one

feature after another [8]. The construction of a large system is thus divided

into a number of smaller, more manageable steps. The resulting software

has a layered architecture.

The paradigm focuses not only on the incremental construction of

the system, but also strongly advocates its correctness. Stepwise Feature

Introduction has been proposed on partly theoretical grounds and has not

earlier been applied to the production of large and complex real-life

software systems.

The requirements of a software system change frequently during

development and also after the release of the software to the customer.

Stepwise Feature Introduction takes this into account and includes

customer interaction an integral part of the paradigm, providing valuable

2

feedback for the developers and determining which features are to be

implemented and in what order. The paradigm does not specify exact

means of achieving and supporting the communication, nonetheless it

recommends using some kind of agile software development process.

Agile methods in general rely on extensive and frequent

communication between the developers and the customers or end users.

They also provide guidelines for how to organize the work and how to

divide the responsibilities between developers, customers and other

stakeholders [16], which is not précised by the paradigm itself.

Problem statement

Stepwise Feature Introduction is a high-level theoretical paradigm for the

systematic construction of software systems. As it is common for this kind

of concepts, time is needed to evolve from fully theoretical grounds into

a commonly used tool. Typically, this time is from 15 to 20 years, and can be

divided into six phases [141]:

1. Basic research. The basic ideas and concepts are investigated and

the initial structure of the problem is formulated.

2. Concept formation. A research community is formed around the

approach; solutions to specific problems are found and published.

3. Development and extension. The idea behind the technology is

clarified and an attempt to generalise it is made. The last of the

research phases.

4. Internal enhancement and exploration. The technology is extended

to other domains and used to solve real-life problems; it is also

stable so that training material can be developed.

5. External enhancement and exploration. A broad community uses the

technology, and there is substantial evidence of value and

applicability.

6. Popularisation. Production-quality versions of the technology are

developed.

Currently, SFI can be seen as situated between the second and the third

phase. While the basic concepts of the paradigm are stated, solutions to a

number of specific problems are still needed.

One such problem, addressed in this thesis, is the application of the

paradigm to the development of large-scale software systems. More

specifically, we are interested in finding out not only whether the paradigm

3

is suitable for this task, but also what changes to Stepwise Feature

Introduction are needed in order for it to be useful in such settings.

Contribution

The thesis tries to advance methods for software development by

combining well-established methodologies for software design and

construction with Stepwise Feature Introduction. We have applied the

paradigm to the development of two software projects: ReThink and

BioImageXD2. The former is a multiplayer game targeted for a number of

distinct hardware platforms, whereas the latter is a highly specialised

image-processing software system. These projects differ in size, complexity

and serve different purposes. Thus, we can validate our approach, to some

degree, against diverse requirements and different environments.

A number of issues related to the application of SFI to software

construction in practice was raised during our research. Addressing these

problems resulted in combining the paradigm, agile development

philosophy and the best practices of object-oriented design and

programming. We merged these concepts in order to create a development

framework that preserves their best characteristics and is suitable for

development of software systems that vary in size and complexity. In

particular, Stepwise Feature Introduction provides an organised, layered

architecture for the resulting system. Object-orientation brings the ease of

development of modern programming languages, as well as the engineering

knowledge encapsulated in design patterns and design principles. Finally,

agile methods enable quick response to changes in requirements and

facilitate an organised development process.

 Our work clearly indicates that the paradigm, together with the

modifications presented in this thesis, forms a development framework that

is scalable and well suited for the construction of large and complex

software systems. The main extensions and adaptations of the SFI paradigm

that we have worked out concern the layered execution of the software, the

specific agile development process chosen, the methods for ensuring quality

by testing, and the validation of the quality of the software system using

software metrics.

4

Structure of research

The principles of empirical research [79] have had the strongest influence

on the way our research was structured, as presented in Figure 1. Empirical

research recommends that the research results are presented in the context

and the design of the research experiment, together with its conduct and

data collection. Moreover, the gathered data should be analysed

and interpreted.

Figure 1. Research overview.

In Part I we present the theoretical background and introduction to the

thesis, the paradigm of Stepwise Feature Introduction. The fundamental

concepts of the paradigm are presented first. Next we discuss SFI with

respect to the characteristics of object-oriented programming languages

and agile development, in particular Extreme Programming.

The experiment in our research consisted of performing two case

studies [151]. These projects were connected one to another due to the

principles of action research, the purpose of which is to influence or change

some aspect of whatever is the focus of the research [151][147]. Part II

describes the context of our research, the scaling up of the paradigm. More

I

II

III IV

V

5

precisely, we present the extensions that are necessary to the paradigm, so

that it fits the needs of large-scale development. We also summarise the

objectives and the research questions both case studies are expected

to answer [151][136].

Our first non-trivial case study, an interactive board game ReThink,

is presented in Part III. This software is used as an illustration to the basic

concepts of the paradigm. We also identify key elements of architecture of a

system built with SFI and outline a diagram-based strategy to ensuring

correctness of the produced system.

In part IV, we look at Stepwise Feature Introduction in the large. We

describe a complex software system for image processing and analysis

called BioImageXD2. This software was built with SFI, essentially

re-engineering a previous implementation, and required a substantial

amount of person years and a large code base to complete. The system and

its architecture are described first, after which we present the

characteristics of its development process.

Part V of the thesis concerns the evaluation of the paradigm.

We confront the paradigm with generally accepted criteria and indicators

of good design and high quality. We then compare the results of a

measurement plan carried out for BioImageXD2 to those criteria and

generally accepted industry standards.

The final part of the thesis is dedicated to discussion of our research

results. We present a number of approaches to software construction and

their relation to the paradigm of Stepwise Feature Introduction. The thesis

concludes with an overview of our research, threats to validity of our

findings and the directions for future work.

Part I:

Stepwise Feature Introduction

9

1. Fundamental concepts

Stepwise Feature Introduction (SFI) is a paradigm developed by

Ralph-Johan Back that allows building the software incrementally, in a

layered manner [8]. It is an approach to software construction based on

incremental extensions of the system with new features, one at a time.

Introducing new features may possibly alter previously existing

functionality, so the paradigm requires the designer to explicitly check that

old features are preserved. After adding each feature the system is

executable and can be presented to its users and stakeholders, thus

gathering important feedback for the next increment. Moreover, each layer,

together with the underlying ones, is executable. Thus, in fact a collection of

systems is built at the same time.

A software system is seen as a collection of components that

interact with each other. We differentiate the components based on the role

they play in the system.

Service providers, as the name implies, offer a specific functionality

to other components of the system. These providers implement all their

functions independently, without relying on or using the remaining parts

of the software.

The functionality delivered by the providers is utilised by service

users. The responsibility of those components is to enable the service to be

effectively used during the operation of the system. They are the opposite of

the providers in terms of dependencies, as no other components depend

on them.

The most common case, however, is that a component in the system

provides some functionality by relying on other component or components.

Thus, it is both a service provider and a service user – the role depends on

the perspective the component is examined from. An illustration of the roles

is shown in Figure 2. The service users depend on service providers;

however the changes propagate in the reverse order, from the providers

to the users.

Figure 2. Component roles in SFI.

Service Provider Service User and Provider Service User

10

1.1. Layered structure

When a new feature is added to a service provider, it may require making

changes to its users, to be able to use the new functionality. This gives rise

to a layered structure, where each layers encapsulates one new feature.

Figure 3 shows an example how an existing feature (shown at the top) is

extended to provide more advanced functionality (beneath). When

introduced, SFI proposed to draw newly added layers on top of the existing

ones [8], a practice common in hardware design. However, in

object-oriented design there is an opposite preference. This thesis focuses

more on the principles of software design; therefore the diagrams present

the newly added layers at the bottom of a figure.

Figure 3. Layered structure of a system built with SFI.

New layer may utilise not only a layer that directly precedes it, but may

depend any of the layers introduced earlier, as shown in Figure 4. The

structure of layers is not fixed and may be altered through refactoring. This

enables not only adding new layers between existing ones, but also

replacing existing features with new, possibly more efficient,

implementations. Moreover, the internal design of the layers may be

changed, provided that the layers directly affected by such modification are

updated accordingly.

The changes to the system, in particular the refactoring of existing

layers, must result in a new system that is still layered, in the sense that

each extended layer, together with basic layers added earlier, forms a fully

executable version of the whole system. Such approach gives rise to the

collection of systems, rather than a single system, being developed.

Service Provider Service User and Provider Service User

Advanced Provider Advanced User and Provider Advanced User

11

Figure 4. Adding new service user and provider to SFI.

A layer, together with its preceding layers, forms a subsystem, which

realises a subset of the overall functionality. This structure is shown in

Figure 5, in which the final system contains three layers. Each of the two

subsystems and the final system can be reused in a different setting and be

extended with functionality different from the original one.

Figure 5. Subsystems in SFI.

1.2. Working with features

The iterative nature of SFI means that the system constantly evolves during

its construction. Features may be added, modified or removed as the

development continues. Due to a layered structure of the constructed

system these changes rarely affect a single component – more often the

whole layer containing it, together with the ones depending on it,

must be modified.

Service Provider Service User and Provider Service User

Advanced Provider Advanced User and Provider Advanced User

Another User and Provider Another User

Service Provider Service User and Provider Service User

Advanced Provider Advanced User and Provider Advanced User

Another User and Provider Another User

12

Service providers can introduce functionality to the system in one of

three ways, as shown in Figure 6:

 A new service provider may extend the service of an existing

provider, by adding more behaviour.

 A new service provider is added if it encapsulates required

functionality without relying on other providers.

 Lastly, the new service provider may combine features of two or

more existing providers in order to introduce new functionality.

It is important to notice that the service users do not necessary have to

follow this pattern. In fact, subsequent service users are almost solely

extending or combining the existing ones in order to support execution of

all the features of the system.

Figure 6. Different methods of introducing features.

We have previously said that the organisation of the layers can be altered to

allow more efficient implementation or better design. The layers may be

rearranged, meaning that the order in which they appear in the system is

changed. By replacing a layer we substitute it with a collection of service

users and providers that preserves the original functionality. Merging

causes two or more layers to be combined into or replaced by a single one.

Finally, layers may be removed from the system if the functionality they

provide is no longer used or needed.

1.3. Elements of system built with SFI

During our work we found the notion of a feature to have different

meanings for different groups of people involved in a software project.

A customer, a software architect, a project manager and a programmer all

Basic Provider Basic User

Extended Provider Extended User

Added Provider Extended User 2

Combined Provider Extended User 3

13

have a different understanding of that term. To avoid the confusion, the

paradigm of SFI distinguishes requirements, components, layers

and classes.

According to the Cambridge Dictionary, feature is a typical quality or

an important part of something [35]. The perception of customers follows

this common understanding, as they see requirements as distinctive

characteristics of a software system: something that the system does.

System architects also apply the same definition, but from a different

perspective. A component is a part of the system – something that the

system is built of. The programmers have the most detailed point of view on

what a class is – a part of code that delivers well-defined functionality.

Lastly, the perception of the designers falls between the ones of

programmers and architects. For them a layer is a collection of code-level

entities that work together in order to provide certain functionality.

The requirements of a system affect and are realised by its

components. The constraints placed on the architecture of the system have

an effect on the detailed design of system parts and the way the features

should be introduced to the code. These relations are presented in Figure 7.

Figure 7. Elements of a system built with SFI.

On the most detailed level we have classes, which contain code that delivers

the functionality. The layers and the components are collection of classes.

The latter group classes by functionality (shown in the diagram as vertical

boxes around the related classes), the former – by dependencies and usage

(indicated by the colour of the class boxes). The layers are the basic

SFI entity.

Service Provider Service User and Provider Service User

Advanced Provider Advanced User and Provider Advanced User

Another User and Provider Another User

14

1.4. SFI Correctness Conditions

A software system built according to the paradigm of Stepwise Feature

Introduction consists of a number of layers. Each of those layers

encapsulates a feature, a well-defined increment in functionality. When the

initial layer is correct and the introduction of each new functionality

preserves the correctness, then, by induction, we can state that the system

as a whole is correct.

SFI derives from stepwise refinement [10], which was originally

developed for imperative programs [7]. In this sense, SFI can be seen as an

extension of refinement that covers object-oriented programming.

The layered approach to software construction makes the correctness

conditions easy to identify.

By definition software built with SFI is open-ended, meaning that

the constructed system can be extended or modified at any time. In order

for a feature to provide a solid foundation, on which such future extensions

can be built, it is essential to define what it means for a feature to be correct.

There are four correctness conditions, all of which must be satisfied [8]:

i. Internal Consistency – class invariant of the class that

implements the feature must be preserved.

ii. Respect – the feature must adhere to the constraints of other

features it uses; in other words calls to methods of other

classes must respect preconditions of these methods.

iii. Preserving Old Features – a feature must not break nor alter

the behaviour of already existing ones; in particular

a subclass must preserve the essential behaviour

of its superclass.

iv. Satisfying Requirements – all the functional and behavioural

requirements set for the feature must be fulfilled.

1.5. Diagrammatic reasoning

The paradigm of Stepwise Feature Introduction proposed reasoning about

correctness based on diagrams [8]. The Unified Modelling Language (UML)

is created and maintained by the Object Management Group. It provides a

language for modelling not only application structure, behaviour and

architecture, but also business processes and data structures [123]. UML is

a notation intended to be used in an object-oriented design process. There

is not much benefit in applying it to other paradigms [73], as it has been

15

specifically designed to be compatible with the object-oriented software

development methods.

Class diagrams are the most commonly used UML diagrams [60].

They present the attributes and operations of classes together with the

relations between the classes [123]. Class diagrams are a common form of

representing the static structure of the system [52].

In order to accommodate correctness concerns SFI allows several

constructs of a UML diagram to be optionally annotated with a question or

an exclamation mark. The lack of such symbol indicates that correctness has

not yet been considered for a given entity. A question mark signifies that the

correctness conditions are not known to hold, whereas an exclamation

mark means that the associated conditions have been established. The

meaning behind the exclamation mark depends on a construct it annotates,

as summarised in Table 1. We describe diagrammatic reasoning based on an

example from one of our case studies in the later part of the thesis.

UML construct Correctness condition

Class box Internal Consistency, Satisfying Requirements
Association arrow Respect
Inheritance arrow Preserving Old Features.
Subsystem box, diagram Correctness of the subsystem or system
Table 1. Meaning of correctness annotations depending on UML construct.

1.6. Correctness conditions and tests

Constructing software is a difficult and error-prone activity [11].

The complexity of computer programs is greater than any other man-made

entity [27]. Furthermore, software is present in nearly all areas of life and

frequently controls safety-critical systems. Therefore, there is a need for

software not only to deliver the required functionality, but also perform its

tasks without errors and faults. In other words we need to prove that the

software conforms to the requirements.

The correctness conditions, imposed by SFI, may be satisfied in

different ways, depending on the type of the developed system. In most of

the cases the correctness is ensured through testing, although other

approaches are also possible and sometimes more suitable. Whether or not

the system satisfies the initial requirements and delivers the needed

functionality depends on the quality and the coverage of the tests. Each of

the correctness conditions we presented previously can be ensured by a

test of a specific type, as shown in Table 2. The strategy to testing SFI

16

software is one of the contributions of the thesis and therefore is presented

in more details later.

Correctness Condition Test type

Internal Consistency Unit
Respect Integration

Preserving Old Features Regression
Satisfying Requirements Unit, Acceptance, System

Table 2. Feature correctness conditions and test types.

2. SFI and object-oriented

programming languages

A programming paradigm is a set of concepts and abstractions used to

represent the elements of a computer program and how the program

determines a computation. Object-oriented programming is a paradigm in

which a system is constructed and executed with objects. All of the actions

in such programs are caused by objects sending messages to each other, in

the form of indirect procedure calls [166].

The set of key characteristics of object-orientation has not been

precisely defined. The term itself is attributed to A. Kay [139], for whom it

represents “only messaging, local retention and protection and hiding of

state-process and extreme late-binding of all things”. However, discussions

on this topic do more to reveal the prejudices of the participants than to

uncover any objective truth about the core matter [137]. Despite this lack of

agreement in the community, Simula-67 [122] is generally accepted as the

first programming language that utilises the concepts of object-orientation.

We agree with the features of object-orientation proposed by a

comprehensive literature survey [6]. The fundamental characteristics are

identified based on their occurrence in a variety of sources, including

journals, books and conference proceedings. To emphasise the importance

of the features the survey names them as quarks, as an analogy with the

fundamental constituents of matter [53]. Moreover, these concepts are

divided into two groups [6], as shown in Figure 8.

17

Figure 8. Eight quarks of object-orientation.

The paradigm of Stepwise Feature Introduction does not place any

constraints on the programming language, although it indirectly requires an

object-oriented one. We distinguished three basic operations that can be

performed on features: adding, extending and combining. Two possible

roles of each software component in a system built according to the SFI

paradigm were also identified: service providers contain the functionality

and service users utilise it or make it available to the users of the system.

Each of the operations results in a new layer with service provider and

service user being added to the system.

The programming language used with SFI must support at least

inheritance and subtype polymorphism – or similar mechanisms – to realise

extending of the features. In fact, a typing system and inheritance both have

an effect on how each of the operations is realised.

2.1. Subtype polymorphism

The concept of polymorphism – understood as the ability to hide different

implementations behind a common interface [196] – was used in software

also prior to the introduction of object-oriented programming. In the

context of object-orientation, polymorphism can be shortly defined as the

ability of different classes to respond to the same message, each

implementing the method appropriately [6].

Object-oriented programming languages provide polymorphism in

different ways. In statically typed languages the type of an object is specified

in the source code and type checking occurs usually at compilation time for

the whole code. Thus, it is possible to check whether an object can be used

in a given context before the code is executed, typically by examining the

type hierarchy. This approach is mostly used in compiled languages.

Dynamic typing is when the type of an object is examined at run

time. As opposed to static typing, the execution flow must reach a part of

Structure

•Abstraction

•Class

•Encapsulation

•Inheritance

•Object

Behaviour

•Message Passing

•Method

•Polymorphism

18

code for it to be type-checked. This approach significantly increases the

importance of unit tests, as they can help in detecting and fixing run-time

type errors at development time. Languages with dynamic typing are

usually not fully compiled but either interpreted or compiled to byte code.

A variant of the dynamic typing, called duck typing, has emerged

recently and is applied in modern scripting, object-oriented languages. The

name is derived from J. W. Riley’s duck test, usually phrased as “When I see a

bird that walks like a duck and swims like a duck and quacks like a duck, I call

that bird a duck” [47]. Duck typing is concerned with the behavioural

aspects of an object rather than its type. More specifically, the possibility of

an object to deliver required functionality is checked, not its place in a

particular type hierarchy.

The paradigm of SFI utilises subtype polymorphism when new

features are introduced to the system. Polymorphism ensures that these

new features can be used in the context of the old ones, although it does not

guarantee that the new code preserves the functionality of the old one.

Polymorphism also enables one or more features to be replaced,

e.g. by their more efficient implementation.

Languages with static and dynamic typing place similar

requirements on service providers that extend existing functionality. More

precisely, it is required that the extending provider is a subtype of the

extended provider. This condition is needed to ensure that the new

functionality can be used in the same contexts as the existing one.

Introducing new features to the system, whether by addition or by

combination, is, however, handled regardless of the programming language

typing system. In both cases a new type should be created; in the latter case

type composition is used to combine features.

In statically or dynamically typed programming languages the users

of added, combined and extended features must belong to the same type

hierarchy as the users in the previous layer. This allows the new classes to

be used in place of the old ones.

Languages with duck typing do not require service users or

providers to belong to any type hierarchy. Instead, the class must be able to

respond to the calls proper for the class from a previous layer and deliver

the same results. In particular, this is required from the service providers

that extend existing functionality and from the users of added, extended

or combined features.

19

2.2. Inheritance

First introduced in Simula-67, inheritance has been suggested as the only

unique contribution of the object-oriented approach to system

development [69]. It is a mechanism that allows the data and the behaviour

of one class to be included in or used as the basis for another class [6].

Inheritance is also known as subclassing – it allows new classes to

be derived from old ones by adding implementations for new methods and,

when necessary, selectively overriding implementations of

the old methods [137].

There are a number of types of inheritance supported by different

programming languages. We distinguish four major implementations of this

characteristic: single, single with multiple interfaces, single with multiple

mixins and multiple.

The use of inheritance in Stepwise Feature Introduction is rather

straightforward. Extending the existing features and adding new ones to the

system, if not impossible, would be tedious and difficult without

inheritance. Moreover, inheritance ensures that the parts of the features not

modified or extended in a new layer maintain their original behaviour.

Combining existing features is an operation that is affected the most

by the type of inheritance supported by a programming language. Multiple

inheritance allows to replace combination with extension; in such case a

new feature extends a number of existing features at the same time. Single

inheritance with multiple mixins, on the other hand, provides a simple

mechanism for combining features by including their code in a single class.

In most of the cases, however, composition should be favoured over

inheritance [61]. Object composition is also the only possibility to combine

features using single inheritance or single inheritance with

multiple interfaces.

The paradigm of SFI requires a form of inheritance from

a programming language. The type of it, however, is irrelevant, as the

operations on features can be performed regardless of it Therefore, the

choice of type of inheritance can be done indirectly, as part of selecting

a programming language to be used throughout the development.

20

3. SFI and Extreme Programming

Applying Stepwise Feature Introduction to software development provides

a systematic approach to the construction process and enables project to be

evaluated after each development step. The latter implies that the

management of the project resources becomes more effective.

Stepwise Feature Introduction does not enforce using a particular

software process; however processes bearing similar characteristics are

rather obvious choice due to their iterative and repeatable nature. Thus, by

definition, Stepwise Feature Introduction is suitable for all iterative,

adaptive and continuous development processes known under the general

name of agile development processes.

Extreme Programming (XP) is an agile software development

methodology [14] focused on frequent releases of the product code in short

development cycles. XP also emphasises the incremental construction of

software and participation of the customer in the planning and

development process. The method derives its name from taking the

beneficial practices of traditional development to the extreme. XP can be

also seen as a discipline for organising people rather than as a pure

development methodology, as it puts heavy requirements on how and in

what order certain activities should be performed. Moreover, the goal of the

Extreme Programming is to manage the development team to effectively

produce software of high quality [14].

XP, as other agile development methods, relies on releasing

functional versions of the final product in small, repeatable cycles. During

each cycle the method distinguishes four basic activities to be performed:

coding, testing, listening and designing. Apart from these activities XP

identifies a number of values [177] and a set of practices [178]. The

stakeholders in the development process are the development team, jointly

responsible for implementing a working product, and the customer, who is

in charge of setting the requirements of the software being built.

The structure of the software built according to the Extreme

Programming method is not clear, as the methodology itself de-emphasises

documentation or careful design, and suggests postponing architectural

changes until they cannot be avoided. The lack of overall structure of

software built with Extreme Programming has been a subject

of criticism [163] of this method.

21

SFI does fit quite well with Extreme Programming [14].

The paradigm of SFI can be seen as a complement to the process, as it

provides means to structure the software and build its components in an

incremental manner [8]. This approach has been successfully applied

to a number of projects carried out at Åbo Akademi University [9].

3.1. Activities

Coding is considered to be the most important part of the entire

development: without the code it produces there is no working product.

Extreme Programming advocates pair programming, a technique in which

two programmers – named driver and navigator [194] – share one

workstation to deliver the code. The driver has the control over the

keyboard and other input devices and is responsible for typing the code.

The navigator, on the other hand, reviews and suggests improvements to

the code as it is being typed, as well as is responsible for strategic thinking

about the direction of the work. Whenever needed, the two programmers

can brainstorm any obstacles they identify during the process. The roles of

driver and navigator are switched frequently to ensure equal productivity

of both programmers.

Test-Driven Development [15] is often applied together with

Extreme Programming. Unit tests are required for every piece of code that

has been implemented. The testing conditions are written not only by the

programmers responsible for the code being tested, but also by other

members of the development team. Acceptance tests [14] are also carried

out in order to verify that the implementation provided by the development

team matches the expectations of the customer (or the final users).

Listening is the only basic activity of XP that does not refer directly

to implementation. The purpose of this action is for the developers to

understand what are the customer requirements, what is the business logic

of the software and what design decisions must be made. Moreover, this

activity enforces a communication with the customer, who must be

available on-site for the development team while the product is being built.

Designing is the activity that complements the remaining three.

Without an overhead design the development team would likely reach the

point in which extending the software is more expensive than building its

new version completely from scratch. Therefore, the programmers – more

precisely, those holding the role of navigator in pair programming – are

responsible for designing and implementing a proper structure for the code.

22

3.2. Values

The key value of XP is the simplicity. It is understood as doing

precisely what is currently required and nothing more. Moreover, simplicity

enforces that the work is done in small, simple and easily manageable steps

that bring the developers closer to the final product. XP encourages the

programmers to implement the simplest working solutions to the

requirements set at any given moment and to avoid designing for possible

future changes and extensions.

Communication, as a value, deals with the inter-human relations of

the development team and the customer. Face-to-face daily interaction is

essential to understand the requirements and implement them. Moreover,

communication helps establishing a team spirit. The development team

works together to achieve a goal common to all its members.

Feedback is an essential part of all agile development methods.

Short iterations, during which a working version of a product is delivered,

allow the customer and other stakeholders to provide comments and

directions frequently. Extreme Programming establishes a number of

planning and feedback loops that repeat during the development, as

seen in Figure 9 [179].

Figure 9. Planning and feedback loops in Extreme Programming.

http://upload.wikimedia.org/wikipedia/commons/4/44/XP-feedback.gif

23

Respect is a crucial value for enabling good communication and feedback.

Each of the team members contributes value to the project, therefore must

receive and feel the respect they deserve. Furthermore, the developers are

required to respect the expertise of the customers and vice versa. This value

also directly imposes the responsibility of the team for the delivered

implementation and of the customer for the requirements set.

Finally, the team and the customers should have courage. It is

required to tell the truth about the progress and estimates regarding the

development. Moreover, the customer is obliged to provide honest feedback

to the team and should not be afraid to modify the requirements, even if

some of them are already implemented. The team, on the other hand, should

have the courage to work together and to adapt to the

changing requirements.

3.3. Practices

The practices – also referred to as rules – of Extreme Programming are

divided into five groups, each concerning one area of the development

process: planning, managing, designing, coding and testing. We summarise

these practices in Table 3 [178].

Area Rule

Planning

User stories are written.

Release planning creates the release schedule.

Make frequent small releases.

The project is divided into iterations.

Iteration planning starts each iteration.

Managing

Give the team a dedicated open work space.

Set a sustainable pace.

A stand-up meeting starts each day.

The Project Velocity is measured.

Move people around.

Fix XP when it breaks.

Designing

Simplicity.

Choose a system metaphor.

Use CRC cards for design sessions.

Create spike solutions to reduce risk.

No functionality is added early.

Refactor whenever and wherever possible.

24

Coding

The customer is always available.

Code must be written to agreed standards.

Code the unit test first.

All production code is pair programmed.

Only one pair integrates code at a time.

Integrate often.

Set up a dedicated integration computer.

Use collective ownership.

Testing

All code must have unit tests.

All code must pass all unit tests before it can be released.

When a bug is found, tests are created.

Acceptance tests are run often and the score is published.

Table 3. The rules of Extreme Programming.

Part II:

Scaling up SFI

27

4. Design challenges

Constructing software is a complex and demanding task. When building

a large-scale software system, the task becomes even harder. In addition

to a high number of requirements, there are additional considerations to be

taken into account.

Whether or not the paradigm of Stepwise Feature Introduction can

be applied to construction of large-scale software systems had not been

previously examined. The suitability of SFI in the context of developing such

systems is thus the primary scope of our research.

However, our work is not solely focused on evaluating whether or

not the paradigm can be of help when constructing large-scale software.

Rather, we aim at identifying potential problems such integration could

raise and modifying the paradigm to address them.

4.1. Potential problems with scaling up

Based on our experience we can anticipate major issues caused by the scale

of the developed software. Software that is complex and large usually

requires an architecture, in order for it to be maintainable. Furthermore,

a development process must be organised to provide developers

a possibility to construct the system in a reasonable way, according to

the specification. Finally, the quality of the software must be high –

or at least it needs to reliably perform its tasks without failures.

 In the context of our work the most important consideration with

large software system is the fact that the larger the software system is, the

more likely it is to have a defined architecture. By that we understand

a clear high-level design in the form of a collection of interconnected

abstract entities, with defined roles and responsibilities. This kind of system

design is usually created upfront, as soon as initial specification or

requirements are known, and later modified to accommodate changes.

The development of large and complex software systems requires

significant resources. To effectively write code and deliver a final version of

the system a development process is needed. It divides the work among

involved people and defines means of interaction between them.

An inefficient process may lead not only to delays in delivering the system,

but also in constructing a software that does not fulfil its requirements or

meet the set standards.

28

Finally, the quality of complex systems is essential, as the costs

of malfunctioning large system are usually in proportion to its complexity

and development cost. The key quality attributes should be decided as soon

as possible, and the system should be monitored constantly during

the development to ensure that it possesses all needed characteristics.

The issues affect one another. The architecture depends, among

other things, on what are the desired quality attributes of the system,

e.g. its maintainability or reusability. In turn, the development process has

to follow the design of the system and allow the development team

to construct the software. Lastly, the quality assurance is built into the

development process, so that it is possible to measure the quality attributes

during the development and react in time.

4.2. Defining case studies

To confirm our anticipations about problematic areas of the paradigm and

modify it to support development of large-scale software, we decided to

conduct two case studies. Both of them are software development projects,

although with different goals and complexity. Additionally, they were

performed in sequence, so that the findings of the case study performed

first can be applied to the other.

Pilot case study

Careful planning is required in order for a project to be a meaningful case

study. We expect from our pilot case study to identify those aspects of SFI

that may be problematic when the paradigm is applied to a construction of

large-scale software system. Consequently, we aim for mediocre complexity

of our first project. There are several issues that need to be addressed

before the project starts [151][147]. Their resolution for our pilot case

study is summarised in Table 4.

ReThink, which we present in Part III, was a straightforward choice

for the first project. The project had many properties of a typical industrial

system: stakeholders, deadlines, requirements, and the like. At the same

time it was developed in a controlled, academic setting that allowed

conducting research and having control over e.g. the development process.

29

Issue Question Solution

Objective
What to
achieve?

Identify areas of SFI that need to be
modified when applied to a construction
of a larger system.

The case
What is
studied?

The development process and the design
of ReThink.

Theory
What is the
frame of
reference?

The paradigm of SFI and the principles of
object-oriented design.

Research
questions

What to
know?

What areas of SFI are likely to be an issue
when scaling the paradigm?
Which areas of SFI can be modified
without affecting the core principles of the
paradigm?
How elements of SFI can be mapped to
parts of a typical development setting?
How to ensure correctness of the
constructed system?

Methods
How to collect
data?

Analyse the development process and
strategies applied to testing and design.

Selection
strategy

Where to seek
data?

Inspecting system design and source code.

Table 4. Case study plan for pilot case study, ReThink.

Large-scale case study

The main purpose of the large-scale case study is to answer those research

questions set in the thesis that were not answered by the pilot case study.

We have developed BioImageXD2 during the course of this case study. The

project is described in details in Part IV. It was conducted with the use of

the modified version of the paradigm, which we present later in this

chapter. The plan of the case study is shown in Table 5.

30

Issue Question Solution

Objective
What to
achieve?

Evaluate whether or not the modified
version of SFI allows constructing high-
quality, large-scale software systems.

The case
What is
studied?

The development process, the design and
(to a lesser extent) the implementation of
BioImageXD2.

Theory
What is the
frame of
reference?

The paradigm of SFI, the principles of
object-oriented design and the perception
of the stakeholders.

Research
questions

What to
know?

Can SFI be used to ensure that the
produced software has high quality?
Which areas of SFI do not scale and do not
fit development of large software
systems?

Methods
How to collect
data?

Analyse the development process and
strategies applied to testing and design.
Conduct interviews with the stakeholders.

Selection
strategy

Where to seek
data?

Interviewing project stakeholders;
inspecting source code and design of
BioImageXD2.

Table 5. Case study planning for BioImageXD2.

4.3. Altering the paradigm of SFI

Stepwise Feature Introduction is an organised approach to incremental

software construction. It relies on the two essential principles provided by

object-orientation, namely inheritance and subtype polymorphism. The

paradigm is also based on small increments in functionality and frequent

interaction between the development team and the customer. In this aspect

it shares its characteristics with agile development methods; however, such

development process is not explicitly required.

The paradigm of SFI addresses – in theory – all of the major issues

caused by large development scale. It organises the constructed software in

layers, thus providing an architecture upfront. Due to the nature of the

paradigm the functionality of the software is divided into small, manageable

steps, which are then realised with an iterative development process.

Finally, the correctness is preserved from one iteration to another, leading

to higher quality of the constructed system.

The lack of other significant requirements allows the paradigm to be

customised, depending on the development setting. In other words, it is

31

possible to use the principles of SFI to organise a custom development

process, thus turning SFI into a general, high-level development framework.

Our attempts to scale the paradigm and apply it to development of

software of significant size and complexity indicated a number of areas that

need to be specified in more details. These areas correspond to the issues

addressed by the paradigm and raised as concerns during its scaling up.

In other words, we need to provide concrete methods of solving problems

in ways that do not contradict the paradigm.

Layered execution

Software constructed with the Stepwise Feature Introduction is built as a

collection of layers. Each layer in the system (together with layers below it)

is intended to be executable. This executability of each layer must be

preserved also when the software in modified and layers are rearranged.

We have established a number of methods that ensure layer

executability. These methods are based on the principles of object-oriented

design and the properties of Stepwise Feature Introduction. Moreover, they

are applicable to any system constructed according to the paradigm,

regardless of its size and complexity.

Testing

The issue of software correctness had a significant impact on the way the

software systems we present in the thesis were developed. This thesis

focuses on application of Stepwise Feature Introduction to large-scale

software systems that were developed in an academic environment, with

limited resources and schedule. Therefore, correctness was approximated

with testing, code reviews and other commonly applied techniques for

ensuring quality of software and checking that it conforms to the

requirements. The principles of correctness stated by SFI were used to

organise and guide the testing processes.

Agile development process

Stepwise Feature Introduction was designed to be used with an agile

development process. However, the details of such process were left

unspecified. During the development of our case studies we decided to

design a process that is dedicated to Stepwise Feature Introduction.

We based our work on Scrum [153], an iterative agile development

framework. The representative of the end users is strongly involved in this

process, indicating at the end of each iteration (sprint) the direction for

32

further development. The development team, on the other hand, controls

how much functionality will be implemented during each iteration. The

contents of a sprint cannot be modified during its duration; thus the

development process precisely defines the moments at which changes of

the functionality can occur. Scrum shares many of its characteristics with

Stepwise Feature Introduction, thus it can be integrated seamlessly.

5. System execution

The system constructed according to the paradigm of SFI must be

executable after each added layer. Object-oriented programming languages

provide a variety of methods to ensure that this vital requirement is met.

The source code may contain a number of entry-points, i.e. points that may

start its execution. In order to execute the system, however, a single entry-

point must be selected manually.

5.1. Executable method

A method that executes the software from the layer it is implemented in is

the most straightforward approach. The simplicity of this solution is its

main advantage. Furthermore, it enables a layer to be executed in more

than one way by providing more methods, as seen in Figure 10.

Figure 10. Executable method.

The drawback of this solution is that either the method or the class must be

manually specified and called when executing the system. Moreover, the

platform-specific implementation details related to execution must also be

Service Provider Service User and Provider Service User

+executeService()

Advanced Provider Advanced User and Provider Advanced User

+executeAdvanced()

Another User and Provider
Another User

+executeAnother()
+executeDifferently()

33

included in the method, limiting the reuse and negatively affecting

the design principles.

5.2. Inheritable executable method

Object-orientation provides inheritance, which enables a subclass to retain

some of the functionality of its parent. The executable method may thus be

made an essential characteristic of the type hierarchy. This allows the

execution to be fine-tuned in the subsequent layers in case the new

behaviour requires such action. The inheritable executable method is

presented in Figure 11.

Figure 11. Inheritable executable method.

The main disadvantage of this approach is that inheritance may work with

instance methods only, depending on a programming language. In other

words, an instance of an object must be created before the method may be

called. This introduces additional complexity when executing the software.

5.3. Dedicated service user

The code related to the execution of a layer can be encapsulated in a single

class. Such class belongs to the layer, shares its dependencies and provides

a well-defined functionality; hence it follows the principles and

requirements of both the design and SFI. Furthermore, such class provides a

single entry-point to the layer to be executed, regardless of the system the

layer is used in. The dedicated service users are shown in Figure 12.

Service Provider Service User and Provider Service User

+execute()

Advanced Provider Advanced User and Provider Advanced User

+execute()

Another User and Provider
Another User

+execute()

34

Figure 12. Dedicated service users.

This solution introduces additional classes to the system; hence it increases

the overall complexity and the number of dependencies. Furthermore, unit

tests are required for these classes. Writing such tests may be a challenge,

since these classes are focused on running the software and presenting it

to the end-user.

5.4. Hierarchy of dedicated service

users

The classes that execute the subsequent layers may inherit one from

another. This hierarchy allows its classes to override parts of the execution

process whenever needed to include layer-specific behaviour, as presented

in Figure 13.

Figure 13. Hierarchy of dedicated service users.

Benefits of this method are similar to those of a stand-alone dedicated

service user. Another advantage is that, due to inheritance, parts of

functionality related to layer execution can be shared within the hierarchy.

The major drawback, however, is the increased complexity of rearranging

the layers.

Service Provider Service User and Provider Service User

Advanced Provider Advanced User and Provider Advanced User

Another User and Provider Another User

Service Dedicated

+executeService()

Advanced Dedicated

+executeAdvanced()

Another Dedicated

+executeAnother()
+executeAnotherWay()

Service Provider Service User and Provider Service User

Advanced Provider Advanced User and Provider Advanced User

Another User and Provider Another User

Service Dedicated

+execute()

Advanced Dedicated

+execute()

Another Dedicated

+execute()
+executeDifferently()

35

This approach to ensure executability was an optimal solution in

one of our projects, ReThink. Due to its requirements being fixed already at

the beginning of the development, the layers were guaranteed not to be

rearranged. Therefore, the hierarchy of dedicated service users could have

been established to share code related to execution among

different platforms.

5.5. Dedicated system executable

All the methods mentioned above require that a layer to be executed is

manually specified by the end user. This reveals the internal details of the

system and in most cases should be avoided. However, the layer to execute

can be indicated directly in the source code of an external class. This

solution may be especially useful when the system is released after

each layer.

The stand-alone system executable must be updated every time a

new layer has been added to the system. This may be omitted provided that

it is possible to perform the execution based on a configuration file, as

shown in Figure 14, or other external resource, if the programming

language offers such features.

Figure 14. Dedicated system executable.

5.6. Combined approach

In most cases one of the presented methods of layer execution is sufficient

and suitable for the system in construction. Large-scale software systems,

however, may require a combination of these approaches. The complexity

of the system may cause its parts to require a dedicated way of execution.

Moreover, different components may be developed independently and thus

the layering scheme may not be common for the system as a whole.

An example of such approach can be observed in our large-scale

case study, BioImageXD2, that deals with image processing. Our solution

was based mostly on a dedicated system executable that enabled the

Service Provider Service User and Provider Service User

Advanced Provider Advanced User and Provider Advanced User

Another User and Provider Another User

System Executable

+execute()

Configuration File

36

software to be executed at a specified layer. However, due to complexity of

BioImageXD2, several other enhancements were made. In particular,

the executable was modified to allow not only a certain layer to be specified,

but also a component or even an individual class to be loaded. Furthermore,

the dedicated executable was responsible for handling interaction with the

end-user and creating the image-processing pipeline.

The abovementioned solution was combined with a modification of

executable methods. The declaration of each module type present in the

software contains a method responsible for performing task specific to

module type (file loading, file writing, data displaying, data processing).

This method was called in the context of the dedicated executable, causing

module to perform its task. Due to the construction of image-processing

pipeline, however, such method cannot usually be called outside of the

dedicated executable.

The main benefit of this combined approach was the ability of the

system to be extended with plug-ins without altering the executable.

By specifying a single entry point to each module we also limited the

dependencies and provided a clear, straightforward mechanism for future

extensions. An obvious disadvantage of the solution is its limited reuse,

as it had been designed and implemented to fit BioImageXD2 specifically.

6. Testing software built with SFI

The paradigm of Stepwise Feature Introduction adds the notion of

correctness to the development, albeit the developers can decide how this

issue is handled. For some cases it may suffice to perform rigorous testing

or code reviews. On the other hand, in case of formal developments the

correctness ought to be mathematically proven.

Contrary to most other paradigms, SFI makes correctness an

integral part of the development process. In other words, the software built

in accordance with SFI is constructed correct, although with respect to the

definition of correctness used in the development. Various techniques can

be applied to ensure the correctness of the system, depending on the

criticality of the system and the allocated resources.

In typical software development, the goal of correctness is

approached with carefully designed test suites. As opposed to formal

verification, testing will never prove the absence of errors – nonetheless it

37

greatly increases the confidence that a program works as expected [127].

The correctness of a software system is thus not proven, it is

only approximated.

With SFI the software is built incrementally. Each feature added to

the system is encapsulated within a layer that contains a number of classes.

Each of these classes falls into the role of service provider or service user, or

both. Approximating correctness with testing depends on the role of each

class. The way a feature is introduced into the system – whether by adding,

combining or extending – also affects the approach to testing, namely by

imposing correctness conditions to consider. The general approach to

testing, however, does not differ significantly from the one used in testing

object-oriented software and can be modified according to the needs of the

particular project it is applied to.

6.1. Test-Driven Development

Unit tests verify the functionality of an individual software unit [169],

usually at the function level [19][181]. We can benefit from Test-Driven

Development [15] in the design, implementation, and testing of the software

units. A typical development cycle for test-driven development is

shown in Figure 15.

Figure 15. A typical test-driven development cycle.

Add a test

Run all tests
(1)

Write code

Run all tests
(2)

Refactor code

Run all tests
(3)

38

The cycle starts by writing a test for a new, yet unimplemented, piece of

code, either as a separate unit test or as a modification of an already existing

one. This approach enables the programmers to focus on the interface of the

class and how it can be used. Moreover, the requirements for the class are

explicitly stated in the unit test. This constitutes a major difference when

compared to the regular development processes that start with

implementing the code and testing it afterwards. Test-Driven Development

means that the order of these operations is reversed.

Once the unit test is written, the tests for the whole system are

executed. Such collection is known as test suite and includes all unit tests

for all the classes in the system, as well as other tests of different kinds. The

tests written earlier must pass, while the newly added must fail, in order to

prevent adding (by mistake) a test that always succeeds. Typically a stub of

the implementation, which returns null references or meaningless values, is

also written to fulfil this request.

Code that passes the new test is written next. The programmers

should not try to deliver a highly optimised solution to the problem; they

should focus on providing simple code that passes the test. This ensures

that no untested functionality is added to the system.

After the implemented class passes its specific unit test, the test

suite must be executed again. All the tests (both old and new) must succeed

to guarantee that the new code does not break the existing functionality

while achieving the new functionality.

The next step in the cycle focuses on improving the newly added

code. The code should be refactored to the point where it meets the quality

standards for the project e.g. by removing code duplicates, optimising loops,

etc. The development cycle ends with running the test suite and ensuring

that all the tests pass after the refactoring.

6.2. Unit tests and service providers

We benefit from unit tests mostly when working with service providers.

The correctness condition that has the most influence on such component,

regardless of the way it was introduced to the system, is its internal

consistency. We utilise unit tests to verify that the code of the service

provider is internally consistent and does not violate the constraints.

The unit tests are also used to ensure that the newly added code satisfies

the customer requirements. Thus, the unit tests are used not only to check

39

that the code implements the service properly, but also implements

the proper feature.

An example of unit test from our case example ReThink is given

in Listing 2 (Appendix 3). The test checks whether class RectangleBoard

delivers the desired functionality. An object of the tested class represents

a rectangular board that has a specified number of columns and rows. The

tests ensure that the functional requirements hold, i.e. the board is initially

empty, its dimensions are as requested and that a counter placed on the

board can be received. Methods to obtain instances of tested objects and

their properties are also defined, so that the tests can be reused by another

unit test later.

6.3. Regression tests and service

providers

Regression tests focus on finding defects after a major code change has

occurred. They prevent unintended consequences of program changes,

when the newly developed part of the software interferes with previously

existing code [169][181]. The purpose is to ensure that the old functionality

is preserved while adding new code.

Performing and organising regression testing is known to be

expensive process [149][66], mainly due to fundamental issues it has to

address. To minimise the costs, the testing should be executed only on those

parts of the system that might have been affected by changes. Such parts

should be ideally identified automatically to avoid the tedious process of

analysing the dependencies between system components. Regression

testing by itself does not specify the method or the strategy with which the

affected components should be tested. Additionally, reusing tests between

subsequent releases of the software system is also an important issue in the

design of regression tests.

These issues have been addressed by various researchers in the past

years. A number of techniques to extract the affected parts of the system are

available [66][3][149]. Moreover, a comprehensive regression testing

process specific for object-oriented software has been established [82].

A strategy for using regression testing with agile software development has

also been proposed [113].

The check for preserving the old functionality must be done

whenever a service provider extends an already existing one. This is

40

achieved by applying regression testing to the new code. With

object-oriented programming languages it is possible to realise regression

testing with carefully designed unit tests. Due to inheritance and subtype

polymorphism an extending class can be used in context of the base class, in

particular when executing the unit tests. Therefore, the aim of regression

testing – ensuring that the old functionality is unchanged – is preserved.

A class RethinkBoard from our case study ReThink is an example of

a service provider that extends a previously existing one, in this case

RectangleBoard. The code of the unit test for class RethinkBoard is

shown in Listing 3 (Appendix 3).

 The unit test class inherits from the test for its superclass.

The methods for accessing instances of tested object are overridden

(lines 22-32). This means that the tests for RectangleBoard will be

executed on an instance of RethinkBoard, thus performing regression

tests. Two additional tests check whether newly added behaviour works as

expected (lines 34-60, 62-88).

The inheritance tree of the production code is reflected in the tests,

as shown in Figure 16. The class RethinkBoardTest is a subclass of class

RectangleBoardTest and inherits its methods, in particular the tests.

Reflecting the class hierarchy in the structure of the unit tests allows us to

perform regression testing at the same time.

Figure 16. Hierarchy of test cases in ReThink.

Board
<<interface>>

+getCounter(index): Counter

RectangleBoard

+rows
+columns

+getCounter(column, row): Counter

RethinkBoard

+pushColumnUp(column, counter)
+pushRowLeft(row, counter)

RectangleBoardTest

+testGetDimensions()
+testBoardEmpty()
+testSetting()

RethinkBoardTest

+testPushUp()
+testPushLeft()

41

6.4. Integration tests and service users

Software units are combined and tested in integration tests to evaluate the

interaction between them [169]. We use such testing to verify the interfaces

between components against a software design, as it exposes defects in the

interfaces and interaction between modules [17][181].

There are several approaches to integration testing, differing mainly

in the order of adding modules to the system. In bottom-up integration

testing the concrete modules are developed and tested first. The more

abstract modules are added and tested gradually next, until the complete

system is assembled and tested.

Top-down integration testing is the opposite. The testing starts with

the abstract modules; the concrete modules are progressively added one by

one. The functionality of the abstract modules is replaced with test stubs

during early testing, to mimic the desired behaviour. The stubs are changed

to the original modules as the tests progress.

In the Big Bang approach to integration testing the modules are not

integrated before the system (or a significant part of it) is complete.

Checking connections between software modules is thus postponed

to a later stage. This method is considered useful only for small software

systems and should be avoided in more complex development [17][84].

Variants and combinations of the above methods have also been

proposed by the community [117][88][84]. However, the actual strategy of

integration testing should depend on the specific project it is applied to.

The crucial part of each service user is not to violate the constraints

of the service it utilises. Hence, this is the most important correctness

condition that needs to be tackled. Integration testing provides a way of

ensuring that different components of the system are able to communicate

with each other and that the system (or its currently tested part) works

properly as a whole. Therefore, they are a suitable way for testing whether

service users respect the constraints of service providers.

Stepwise Feature Introduction is an approach to bottom-up system

development. The system starts as a single layer with concrete, simple

functionality that is later extended in subsequent layers. The bottom-up

approach is thus recommended for integration tests in the perspective of

the system as a whole. With respect to the layer, however, any integration

testing method is suitable as long as it is beneficial to the development.

42

Whenever a service user added to the system derives from the

component already present in the system, regression tests ensure that the

old functionality is preserved. Such testing, however, may be more difficult

to perform than in case of service providers. This is due to the fact that

service users often provide a graphical interface for the end user, which is

rather complex and labour-intensive to test automatically [111] [180].

6.5. Acceptance tests

Unit tests for a service provider ensure that a proper service is

implemented according to the requirements. Acceptance tests serve the

same purpose with respect to the service users. Furthermore, these tests

can be used to verify that certain non-functional requirements are

implemented properly.

In order to support the development of both projects we presented,

Trac [51], a free, open-source issue tracking system was used. The system

provides a graphical front-end to the source code repository and allows

collaborative cooperation on text documents.

The main focus of Trac, however, is on the representation of

development issues as tickets. Each ticket is characterised by a number and

a name, followed by a description of functionality and custom type.

Additional properties allow assigning a ticket to a particular component or

a release version. Furthermore, the issues can be characterised and

organised by keywords. An example of such document, taken from the

development of our large case study, BioImageXD2, is given in Figure 17.

The issue tracking system integrates with SFI development process

seamlessly. In particular, tickets of different types corresponded to features,

components, layers and customer requirements.

The requirements of BioImageXD2 and each of the components of

the system were discussed with the stakeholders during frequent meetings.

The results of such discussions were used to form a detailed description of a

ticket that corresponds to a requirement. We aimed at including answers to

all the questions and doubts raised by the development team during

discussions. Furthermore, we utilised comment system built in Trac to

support communication during the development cycle. The description of

the ticket, together with the comments, was used as a basis for acceptance

tests, held at the end of each development cycle.

43

#64 - Gallery visualisation module

Reported by: miki

Owned by: johan

Priority: normal

Milestone: gallery visualisation

Component: visualisations

Version: 0.1

Keywords: module visualisation gallery slices

Estimated Number of Hours: 48h

Billable?: yes

Total Hours: 18h

Description

Implement a gallery visualisation module. This visualisation combines both Slices and Gallery modes

from the previous version. More details in #65 #66 #67 #68 #69.

The user interface of this module should more-less resemble what is shown on the picture below. The
drawing space of the visualisation contains two parts: preview and thumbs.
The preview shows currently selected thumb. The thumbs are miniatures of all images that belong to

current view. When the user clicks on the thumb, the image it represents is shown in the preview.

Currently viewed thumbnail is clearly marked. The user has the option to group images by:

 timepoint (with channel and stack specified by the user)
 channel (with timepoint and stack specified by the user)
 stack position (with timepoint and channel specified by the user)

The size of the thumbnails and the availability of preview and thumbs can be specified by the user. See

#68 #69. The thumbs are loaded from cache directory; see #65 and #66.

Updating the thumbs is done in threads, see #67.

Notes to the numbers:

1. Changing the option causes the thumbnails and the preview to be updated.
2. Selecting an option from this group disables the corresponding controlling component below.
3. Advanced options, visible to the user only when expert or advanced mode is on.
4. Scrollbar used to control which of the thumbnails is currently shown. The labels indicate

minimum, maximum and current position. For timepoints they should be timestamps, for
channels – channel names, for stack – numbers. Moving the scrollbar changes the currently
selected thumbnail. There can be only one selected thumbnail.

5. Thumbnails are SwitchGlyphButtons. Images are updated in threads, in the background.
6. Currently selected thumbnail that is shown in the preview part.
7. The progress bar that shows how many of the thumbnails have already been displayed.
8. The size of a thumbnail. Changing it causes the buttons to be reloaded. Different thumbnail

sizes should use different cached images.

Figure 17. An excerpt from the issue tracking system.

http://trac.unforgiven.pl/bioimage2/attachment/ticket/64/gallery_ui.png

44

6.6. System testing

System testing, as the name implies, tests a completely integrated system to

verify that it meets its requirements [169][181]. It falls into the category of

black-box testing [169] and should not require any knowledge about the

design, implementation or inner logic of the system. System testing is

performed as the final step of the development process, when the individual

components and connections between them have been tested.

The system test typically requires a plan that organises test cases

and groups them according to the component of the system they refer to.

Each and every functional requirement of the system should have at least

one component that realises it and a number of test cases ensuring that this

realisation is correct. The system test plan should not be a redo of the unit

tests, but instead it should be written with a less code-oriented approach.

Moreover, the plan should not focus on specific pieces of code logic; instead

the functionality of a system as a whole should be reflected

in the plan [165].

The aim of system testing is thus not to test the design or the

implementation, which are tackled in earlier stages of the development.

Rather, the goal is to check the behaviour of the system and its compliance

with the requirements. System testing should also be used to verify the

expectations of end users, the graphical user interface and security

vulnerabilities among others [21].

In case of large and complex software systems not all the

functionality of the system can be covered with tests. The difficulty can be

additionally increased if the required functionality of the system deals with

image processing or displaying, as it was the case with BioImageXD2.

Certain characteristics of an image could have been checked without

showing it, like the number of distinct colours or the dimensions. However,

in most cases in order to evaluate whether the software works as required,

the processed image needed to be displayed on screen and compared with

the expected output.

For the abovementioned reasons BioImageXD2 was frequently

executed during the development, in particular after a significant

modification of the image processing code of any module. Due to the

principles of SFI, the software stayed executable after each development

cycle. The separation between modules and the dedicated system

executable further contributed to allowing an incomplete code to be run.

45

Frequent execution was made an integral part of the coding process, as

shown in Figure 18. This approach allowed us not only to ensure that

different parts of the system interact properly, but also to improve the

graphical user interface.

Figure 18. Software execution as part of coding process.

7. Agile Development Process for SFI

Due to its iterative nature, SFI fits well agile development processes,

in particular Extreme Programming described previously. In our work we

used another agile development philosophy, Scrum [154], instead of XP.

Scrum is not a process or a technique for building products; rather, it is

a framework within which various processes and techniques can be

employed. The role of Scrum is to increase the relative effectiveness of one’s

development practices so that one can improve upon them, while providing

a framework within which complex products can be developed [155].

7.1. Scrum

Certain practices of Scrum follow other agile development methods,

like Extreme Programming. Both methods rely on frequent releases and

short development cycles; moreover, process improvement is an integral

part of both Scrum and XP. In addition Scrum introduces several concepts

on its own [159]. The most distinguishing ideas of Scrum are the roles

of the stakeholders, the organisation of sprints and a defined set of meetings

to be held as the development continues.

Write and run
unit test

Write code

Run unit test
Execute
software

Correct code

46

Roles

Scrum is a process skeleton that contains sets of practices and predefined

roles which fall into one of the two distinct groups – pigs and chickens [153].

The latter includes all interested in the project, but indifferent to whether

the project succeeds or fails, e,g, final users, vendors, etc. Pigs are those

committed to deliver the software and taking the blame in case of failure:

 The Scrum Master, who maintains the processes (typically

a project manager);

 The Product Owner, who represents the stakeholders

and the business;

 The Team, a cross-functional group of people who do the actual

analysis, design and implementation.

The sole responsibility of the Scrum Master is to ensure that there are

no obstacles for the Team to deliver the product. In other words, Scrum

Master is responsible for managing and maintaining the development

process and for providing necessary resources for the Team. This role is

typically given to the project manager.

The role of the Product Owner is given to the representative of the

stakeholders and the customers. It usually is the customer, its designated

representative, or an executive of the company that produces the software,

i.e. a person that finances the development. As such, a person in this role

has a final word in discussions regarding the functionality of the product.

Contrary to practices of Extreme Programming, the presence of the Product

Owner is not required during the development process. Other means of

contact must be assured if the Product Owner is not constantly available.

The Team is responsible for implementing the software according to

the requirements of the Product Owner. It should ideally be formed to

achieve cross-functionality in the area of software development.

Programmers, designers, architects, product-line managers, and testers

typically form one or more Teams that are responsible for delivering the

product. Moreover, the Teams are self-managing and collectively

responsible for the work done. The decision about the number of members

in each Team is left for the Teams themselves; however, any team

over 7 in size should be split [37] [168].

47

Sprints

As other agile development methods, Scrum advocates frequent, iterative

releases of the code. During each sprint the Team creates a potentially

shippable product. The overview of the process is given in Figure 19 [182].

Figure 19. The overview of Scrum sprint.

The set of features to be realised in a sprint is taken from the product

backlog, which is a prioritised set of high-level requirements.

At the beginning of each sprint the Product Owner informs the Team which

items need to be completed. The Team then decides how much they can

commit to realise during the cycle. After the goals for the sprint are decided,

they are moved to the sprint backlog. The contents of this backlog remain

unchanged for the duration of the sprint.

The sprint has a fixed duration (usually two to four weeks)

and must end on time. Any items that are left unimplemented in the sprint

backlog are returned to the product backlog at the end of the sprint.

After the sprint is completed, the Team is responsible for presenting

the developed software [183][153].

During each day of the sprint the Team is responsible

for implementing the items from the sprint backlog. Furthermore, the Team

decides the details of such implementation and has full control

over the source code.

Meetings

Scrum relies on frequent communication, similarly to other agile

development methods. A number of meetings is organised throughout

the cycle, as shown in Figure 20.

48

Figure 20. Meetings during a sprint in Scrum.

A Sprint Planning Meeting is held at the beginning of each sprint to decide

what items from the product backlog should be included in the sprint

backlog and how the work should be organised. The Product Owner assigns

priorities to the items in the product backlog. Based on that information and

the experience the Team decides which items are to be implemented during

the sprint. Both the priorities and the selection of items can be changed

during the meeting as a result of discussion between the Product Owner

and the Team.

A daily scrum – a stand-up meeting limited to 15 minutes – takes

place every day at the same time and place during the sprint. Only the Team

and the Scrum Master are allowed to speak. Each Team member must

answer three questions:

1. What have you done since yesterday?

2. What are you planning to do today?

3. Do you have any problems preventing you from accomplishing

your goal?

At the end of each sprint two meetings are organised. Sprint Review Meeting

focuses on the work that has been carried out during the sprint and

discusses sprint backlog items that have been completed (done) or not.

The Team is expected to present an executable version of the system to the

stakeholders during this meeting. Following is the Sprint Retrospective

which is intended to improve the process. Two main questions are asked

during this meeting: What went well in this sprint? What could be improved

in the next sprint? All the above mentioned meetings are time-boxed

(eight hours for Sprint Planning, four and three hours for Sprint Review

and Sprint Retrospective) [153].

Sprint
Planning

Daily Scrum
(every day)

Sprint Review

Sprint
Retrospective

49

7.2. Adapting Scrum

The analogies between Scrum and Stepwise Feature Introduction presented

in Table 6 are straightforward. The sprints are equivalent to iterations and

the items included in the backlogs directly correspond to different types of

features. The product backlog contains usually requirements, as it is

decided in cooperation with the Product Owner.

 During each Sprint Planning Meeting a number of requirements is

decided to be implemented in the iteration and therefore moved from

product backlog to sprint backlog. The Team then decides on how to realise

them and proposes a number of components and layers, which are also

added to the sprint backlog.

 Each day of the sprint the higher-level features are realised by

implementing classes. These classes, together with the layers they belong

to, form common vocabulary used during the daily scrum for

communication between Team members. Thus, the purpose of the sprint is

to deliver a number of decided requirements, components or, in rare cases,

layers, by implementing a number of classes. We will cover these processes

in more details in the following sections.

Scrum Stepwise Feature Introduction

Product backlog items Requirements, sometimes components

Sprint backlog items
Requirements, components, layers,
sometimes classes

Sprint Iteration
Product Owner Customer, stakeholders
The Team Development team
Chickens Users, vendors
 Table 6. The analogies between Scrum and Stepwise Feature Introduction.

Scrum per se does not provide any techniques, being only a framework in

which different processes and techniques can be utilised. Integrating SFI

with this framework is almost effortless, as it matches common concepts of

Scrum directly. As a result one can benefit from agile development

philosophy and, at the same time, provide a well-organised and carefully

designed architecture for the software under construction. In the following

sections we focus more on how SFI can be merged with a Scrum-based

development processes.

50

7.3. Introducing functionality

Scrum is made of repeatable iterations called sprints. The Sprint Planning

Meeting is held at the beginning of iteration and allows the Product Owner

to prioritise the customer-level features. The meeting is time-boxed to eight

hours (or one working day). We propose to divide the meeting into two

parts, named after the features that are decided in each of them:

customer-centric and architecture-centric. Both parts of the meeting should

be time-boxed to four hours (or half of the working day); however the limits

may be adjusted according to the experience level of the Team and the

Product Owner. It is also possible to organise a number of customer-

and architecture-centric parts one after another, provided that the total

time does not exceed one working day, both types of parts are organised

equal number of times and for equal amount of total time and

the customer-centric part always precedes the architecture-centric one.

The customer-centric part of the Sprint Planning Meeting starts with

the Product Owner prioritising the requirements that are left in the product

backlog. The priorities are assigned before each sprint, therefore it is

possible for one item to be of high importance in one iteration and not

important in the other. Moreover, new items can be added by the Product

Owner to the backlog at any time; also the existing requirements may be

modified between the meetings. However, once a backlog item is decided to

be delivered during the sprint, it cannot be modified anymore and its

priority remains fixed for the duration of the cycle. The customer-centric

part of the Sprint Planning Meeting provides a possibility to make changes

to the high-level requirements. It is also an occasion for the Product Owner

to introduce new functionality to the product.

The requirements decided during the first part of the meeting are

discussed by the Team during the architecture-centric part. The customer is

not directly involved in the process – the role is limited to providing

feedback during the analysis of the requirements. As said previously,

components of the system are affected by the requirements; therefore it is

software architect and product-line manager (both being Team members)

who are in charge of the component creation process. The components are

also assigned priorities, although this depends heavily on what

prioritisation has been done by the Product Owner. No component may be

of higher priority than the requirement it derives from.

51

The purpose of this part of the meeting is to decide a number of

components to be delivered during the sprint. In other words, the Team

must decide how the requirements are going to be implemented and what

design is the most beneficial for the product at the current stage of the

development. The Team may also decide on refactoring already existing

components, if the analysis of the requirements shows that it is more

beneficial to the project than delivering new code. Thus,

the architecture-centric part of the meeting serves as an opportunity for the

Team to add or modify the architecture. The components may additionally

be modified during the sprint, as long as they do not affect the functionality

required by the customer. The main advantage of deciding the architecture

during the Sprint Planning Meeting is that the Product Owner is available

and may provide additional feedback instantly, which is not always the case

during the sprint.

At the end of the Sprint Planning Meeting the sprint backlog is

created. The requirements decided during the first part of the meeting are

removed from the product backlog and moved to the sprint backlog. Both

backlogs are also updated with the components created during the second

part of the meeting. During the sprint only the components may be altered

or added, depending on the decision of the Team. The requirements remain

fixed, unless both the Product Owner and the Team decide otherwise.

The characteristics of the design (i.e. the layers) ideally should be

created at the Sprint Planning Meeting, as soon as the components are

decided and the ideas about realising them emerge. However, it is also

possible that layers are introduced as the sprint continues in order to

simplify the design or to improve its quality. During the sprint there is no

specific moment at which a layer should be created or modified. Regardless

of such moment the Team must be notified about it, i.e. the knowledge

on the design is explicit to the Team. The designers, the programmers and

the testers are involved in this process, but the Product Owner is excluded.

The layers must be placed in the sprint backlog as soon as they are created

and they can be modified or removed as the sprint continues.

The classes implement the requirements and are created according

to the current needs (on the fly) during the sprint, as soon as one or more

Team members accept a requirement or a component to work on. They are

introduced solely by the programming members of the Team, with the help

of the testers.

52

The classes should be used for communication during the daily

scrum meeting, together with the layer they are part of. It is not required for

a class to be placed in the sprint backlog; however it is recommended to

keep track of them and their respective layers for future reference,

e.g. in case of software failures or code quality issues.

The introduction of functionality with Scrum framework and

Stepwise Feature Introduction is summarised in Table 7.

Element
(Level)

Introduced by Introduced at
Item in
backlog

Requirement
(Customer)

Product Owner
Sprint Planning

Meeting (customer-
centric part)

Product,
sprint

Component
(Architecture)

The Team
(architect, product

line manager)

Sprint Planning
Meeting

(architecture-
centric part)

Product,
sprint

Layer
(Design)

The Team
(architect, designer,

programmer)

Sprint Planning
Meeting

(architecture-
centric part),

during the sprint

Sprint

Class
(Code)

The Team
(programmer)

During the sprint
Sprint

(optional)
Table 7. Introducing functionality with Scrum.

7.4. Evaluating the implementation

The requirements of a software system usually change during the

development. The main benefit of Stepwise Feature Introduction is the

constant improvement of the system based on the evaluation of every step.

Such evaluation does not anticipate change; instead it helps to react to it in

shortest possible time, thus minimising its negative effect and costs. An

adaptive software process, such as Scrum, provides mechanisms for

performing the evaluation of requirements, components, layers and classes.

Scrum requires a precise definition of the term done that is applied

to completed backlog items. Such definition should list all the conditions

that the item must satisfy before it is considered finished. Only those items

that are done may be presented to the customer at the Sprint Review

Meeting. Stepwise Feature Introduction, on the other hand, requires that

the classes must be correct. The relation between these two terms is

straightforward – for a class being correct is a necessary condition to be

53

done, but not a sufficient one (e.g. the code may lack the documentation,

despite being fully implemented and tested).

In this section we propose when to evaluate requirements,

components, layers and classes in Scrum-based development process. The

main goal of the evaluation is to ensure that the code is not only properly

implemented, but also done according to the requirements and quality

standards. Each evaluation phase should also include some additional

project-specific activities set by the project manager, software architect

or the quality assurance.

The review of a class (code that implements some desired

functionality) is performed as soon as its implementation is finished,

i.e. during the sprint. The evaluation includes executing unit and

regressions tests for the feature; additionally a careful code review may be

done. In case the tests fail or the code is of poor quality, the class must be

re-implemented or restructured before the evaluation is performed again.

The results of the evaluation should be communicated back to the

responsible programmers or to the Team. When the class is done, it should

be used during the daily scrum meeting to answer the question “What have

you done since yesterday?”.

Each layer of the design is evaluated by the Team at two different

occasions. The first review must be performed when all its classes are done,

which happens during the sprint. A number of integration and regression

tests must be performed in order to ensure that the classes function

properly together and form a layer. Moreover, an analysis of the

dependencies between different classes must be done to secure high quality

of the design.

The second evaluation of a layer takes part during the Sprint Review

Meeting, which we propose to divide into three parts: design-, architecture-

and customer-centric. The parts should be time-boxed to about 10%, 20%

and 70% of time allocated for the whole meeting (typically

25, 45 and 170 minutes). The participation of the Product Owner in the

design-centric part of the meeting is not necessary; it is however

recommended in the second part and required in the last.

The design-centric part of the meeting focuses on the layers that

have been delivered during the sprint. Each of them is reviewed in the

context of how it interacts with other layers of the same component. The

design mistakes corrected during the sprint should be also briefly discussed

to avoid repeating them in the future sprints. The evaluation is performed

54

solely by the Team and includes executing or reviewing the integration and

regression tests together with an analysis of code quality metrics,

particularly those regarding the layer dependencies.

The second part of the Sprint Review Meeting is architecture-centric.

All components scheduled for the sprint are evaluated, whether they have

been completed or not. The review of the delivered components is done by

the architect and the product-line manager with the help of higher-level

integration tests and system tests. The components that were not

completed during the sprint must also be analysed. The reasons for not

delivering them must be clearly identified by the Team, so that in the

following sprints the errors are not repeated. This evaluation process is

internal to the Team; however the Product Owner should be informed

about the results, especially when evaluating the components connected

with high-priority requirements.

The longest part of the Sprint Review Meeting, customer-centric, is

carried out as last. The Team is responsible for presenting a working

version of the system to the Product Owner. Moreover, the requirements

planned for the sprint are evaluated, regardless of their completion. The

evaluation is performed only by the Product Owner. The role of the Team is

limited to reporting their work and providing motivation for why certain

requirements have not been implemented and what difficulties arose

during the implementation of the completed ones.

The results of such evaluation not only affect the priorities of other

requirements, but also may cause them to be modified or even removed

from the final functionality of the system. It is also possible that the

evaluation will change the direction in which the system is evolving by

causing new requirements to be added to the product backlog. Due to the

layered structure of the constructed software it is possible to remove one or

more recently added layers in order to continue development in another

direction. Moreover, it does not require any additional work to restore the

software to an executable state, as each layer (together with its lower

layers) forms an independently executable system.

The iterative nature of both Stepwise Feature Introduction and

Scrum allows evaluating requirements, components, layers and classes as

soon as they are added or modified. Based on the results of such

assessments the decisions regarding the implementation and the design of

particular requirements are made. It is possible for a class or layer to

55

extend, combine, or even replace one or more previously existing ones,

depending on which solution is the best alternative at given moment.

It should also be noted that the components and layers must

encapsulate the best possible solution for the requirements selected for the

particular sprint. Moreover, the design should allow possible future

changes, as anticipated by the Team, but without relying on the

requirements that were not picked for the current sprint.

The constant evaluation of the system, which we summarise

in Table 8, may help in achieving the compromise between agile-specific

design to suit current needs only and the big design up front of the traditional

development processes [163] [183].

Element
(Level)

Evaluated by Evaluated at Remarks

Class
(Code)

The Team
(programmers,

testers)
During the sprint

Part of daily
scrum

communication

Layer
(Design)

The Team
(architect,

designer, testers)

During the sprint
and at Sprint

Review Meeting
(design-centric

part)

Part of daily
scrum

communication

Component
(Architecture)

The Team
(architect,

product line
manager)

Sprint Review
Meeting

(architecture-
centric part)

Product Owner
should be

informed about
results

Requirement
(Customer)

Product Owner

Sprint Review
Meeting

(customer-centric
part)

Not done
features are

also evaluated

Table 8. Evaluating functionality with Scrum.

7.5. Process summary

The V-Model, shown in Figure 21, is a system development model designed

to simplify the understanding of the complexity associated with developing

systems [59]. It is a graphical representation of the development lifecycle

and summarises the main steps to be taken. The left side of the diagram

defines the project, while the corresponding actions that verify it are shown

on the right.

56

Figure 21. The V-Model of a typical system development.

The SFI-Scrum-based development process – more precisely, each sprint –

can also be presented as such structure, shown in Figure 22. The left side of

the diagram shows the introduction of functionality, while the evaluation

steps are presented on the right. The level of details changes from more

general (requirements) to more detailed (code) as the functionality is

introduced and implemented and follows the reverse direction during

their evaluation.

Figure 22. The V-Model of a sprint in Scrum-and-SFI-based development process.

http://upload.wikimedia.org/wikipedia/commons/e/e8/Systems_Engineering_Process_II.svg

Part III:

Case study – ReThink

59

8. Design

In order to illustrate the basic concepts of SFI, we will now present

a non-trivial case study, an interactive board game. The software was

developed as part of a project course held at Åbo Akademi University.

The development team was formed from students of computer science

and software engineering.

8.1. Rules and history

Think! Is a turn-based board game for two players. It is played on a square,

6-by-6 board, shown in Figure 23. The board is initially empty. Players

make their moves in turns by sliding their counters onto the board from

bottom or right, whichever side they choose. The contents (i.e. the counters

and the empty fields) of a row or column affected by the move are shifted

accordingly, with the top-most or left-most counters falling of the board and

being removed from play. Each player must make a move during his turn.

The goal of the game is to construct a line of four own counters,

horizontally, vertically or diagonally. Such line may also be created

as a side-effect by the opponent [172].

Figure 23. An empty board in the PC version of ReThink.

60

Figure 24 (left-to-right and top-to-bottom) shows an example of a game

between two players using black and orange counters, respectively. A

colour-matching indicator is used to show a move a player is about to make.

0)

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

Figure 24. A complete game play of ReThink, as seen in version for mobile phones.

61

With a total of 13 moves Figure 24 depicts what is a typical game. The first

player (playing black counters) attempts to win by constructing a diagonal

line F3-E4-D5-C6, a strategy discovered by the opponent after move

number 7. A series of moves that foresee and void the strategy of the

counterpart leads to a situation (move 12), which the player using orange

counters did not anticipate. This left the opponent with an easy win.

8.2. Requirements

The game of Think! has been originally published in 1985 by Ariolasoft and

released for ZX Spectrum microcomputers. Designed by Chris Bishop,

Chris Palmer and Beth Wooding, the game met with positive reception by

the critics, being described as “demanding, intriguing game” [25] and “easy

to learn, [but] a devil to master” [71]. It was also mentioned in the Official

All-Time Top 100 Spectrum Games at place 29, the top for board

and puzzle games [36].

We decided to develop a modern remake of this cult classic while

keeping the basic rules unchanged, hence the name ReThink. It has also

been agreed that the game will be published by an independent software

company and distributed by a manufacturer of tablet computers. Together

with the representatives of the companies we decided that

the software should:

a) allow its users to play the game according to the classic rules,

but provide mechanisms for extending them;

b) be deployed on a number of platforms (dedicated board-game

hardware, mobile phones, desktop computers and web

browsers) and support touch-screen devices wherever

appropriate – implying code reuse and modularisation;

c) offer an offline multiplayer mode to enable games between

players sharing the same device;

d) allow cross-platform online games over the internet to provide

players with a unique experience and the possibility of playing

the game at any moment – indicating existence of a game server;

e) have an online ranking system, similar to the ones used in chess

or go, and updated after every game to help in building web

community of players.

From the customer point of view these characteristics of the system are its

features – well-defined parts of the desired functionality. Therefore,

a feature as understood by a customer is a real, identifiable requirement of

62

the system. A stepwise introduction of requirements requires a detailed

evaluation and elaboration on the interaction between them, combined with

a careful planning and design of the software architecture.

The requirements mentioned above are tightly connected and

dependent on each other. For example, an online ranking system can be

introduced to the system after the online games are made possible, part of

which can be developed in parallel with the offline multiplayer mode.

In order to minimise the development effort and reduce the number

of potential defects the code should be shared between different

deployment platforms – ideally, only the graphical user interface should be

platform-specific. Such constraint implies that all the other features are

introduced to the system earlier, before the different deployment platforms

are implemented. Moreover, the basic mechanics of the game should be

added to the system at the very beginning of the development. The ranking

system, on the other hand, requires that the game server is working and

that at least one deployment platform has a playable version of the game.

The above considerations affect the final order of introducing the

requirements, as shown in Figure 25.

Figure 25. Introducing requirements to ReThink.

In addition to the above requirements, we decided to develop a simple

text-based GUI to use for demonstration purposes. Its code was expected to

serve as a basis for development of GUIs on other platforms. Furthermore,

its early availability helped to identify certain flaws in the mechanics of the

game and lead to removing a number of requirements initially thought of

as useful.

Game
rules

Game
play

•Offline
games

•Online
games

•Game server

Platform-
specific

•GUI

•Network
connectivity

Ranking
system

63

8.3. Components

The requirements specified in the previous section are well-defined, but

abstract and do not contain information on how they should be designed

and implemented. This is decided at the architectural level, where

requirements are refined and analysed by a system architect and become

part of the design.

The requirements show what to achieve with the software system,

the architecture describes how to do it. It determines the basic blocks with

which the complete system is built; therefore we refer to them

as components.

An analysis of the requirements allows us to identify the following

main concepts of the system:

 Room: a container for games. Different players can submit or cancel

their games in the room.

 Game: a game session between players. Each game has clearly

defined rules and a state.

 Rules: define set of rules for a game. The rules are responsible for

creating the game's initial state, as well as deciding a winner or next

player, based on any of the game's states. Moreover, the rules are

providing a number of states that are possible to reach from any

given state.

 State: a snapshot of a game situation at any moment. Before the

game starts, there is no state. Players can change state of the game

in turns, according to the rules of the game.

 Player: someone participating in a game. A player can join the game

or leave it. A player can also host a game, which means it is possible

for that player to control the rules of the game and decide which of

the other players will play the game.

 Board: a game board, with players’ counters on it. It is an integral

part of a game’s state.

All the above concepts can be represented in the software as interfaces.

The relation between them is shown in Figure 26 (declarations of methods

and attributes are omitted for clarity).

It can be noticed that the interface Game is the central concept that

affects or is affected by the others. We can also notice that the interface

Game is the service provider for the interface Room and at the same time is

using services of Rules, State and Player. This relation implies the order

64

in which these concepts can be implemented and introduced to the system.

Further analysis reveals that the classes related through composition (Game,

Rules and State with Board) are tightly connected with each other and

should be introduced to the system in parallel.

Figure 26. Relations between main concepts of ReThink.

The above concepts thus form four distinct architecture components,

as shown in Figure 27:

a) Players (Player);

b) Game Playing (Game)

c) Game Mechanics (Rules, State and Board);

d) Game Rooms (Room).

Players

Game Playing

Game Mechanics

Game Rooms

Figure 27. Relation between components in ReThink.

Room Game

Player

BoardState Board

State

Rulescontains > is defined by >

contains >

< produce

v contains

< requires

65

The introduction of these components – in case of ReThink – has been done

by gradually adding the interfaces and specifying their methods. Together

they form an overall architecture on which the software is built. Each of the

components helps in realising one or more requirements. The distinction

between Game Playing and Game Mechanics is a design decision:

to maximise the possible future value of the project we decided to allow

playing games based on mechanics different than the ones of ReThink.

The component Players holds one interface that defines the

properties of a game player, which allows storing and exchanging player

information in multiplayer modes regardless of the deployment platform.

Moreover, it is required to actually play the game. Both Game Mechanics

and Game Playing contain interfaces that allow playing the game according

to the rules, encapsulated in a separate interface. Finally, Game Rooms

provide an abstraction common to both online and offline

multiplayer games.

As it can be noticed the availability of software on different

deployment platforms is missing from the design considerations.

The software built with SFI must be executable at each stage of the

development. For ReThink we decided to use dedicated executables for each

deployment platform. Such executable is responsible for constructing and

managing the graphical user interface proper for the platform.

Furthermore, we decided to design and develop network connectivity

separately from the game itself. This approach allowed us to isolate the

concerns not directly related to the game from the design and development

of the system.

8.4. Classes

The components described previously are defined by interfaces; therefore

they are independent of the deployment platform – the precise behaviour is

left for the subclasses to implement. Let us focus now on the

implementation of ReThink. The excerpt from the class hierarchy related to

Game Mechanics is presented in Figure 28.

66

Figure 28. Class hierarchy for RectangleBoard and RethinkBoard.

The class RectangleBoard descends directly from the interface Board

described previously. This class represents a rectangular board with given

number of rows and columns. Each field may or may not contain a counter.

The class provides a method for checking what counter is located at given

board coordinates (row and column). We do not allow the class to change

the arrangement of counters on the board – the initial setup must be

decided at construction time.

The subclass RethinkBoard introduces new behaviour to the

board. With this object it is possible to change the arrangement of the

counters by sliding a counter onto the board from one of the board’s sides.

This class extends all the features of RectangleBoard and can be used in

the cases where the original functionality is expected. A unit test proper for

the RectangleBoard would yield identical results when used for

the class RethinkBoard.

The ability to slide counters onto the board has been encapsulated

in a class added to the existing hierarchy. By a feature we understand a class

that provides such increment in functionality. In Figure 28 we have shown

two such features – the class RethinkBoard is a feature added to its

superclass, which in turn is an initial feature in this class hierarchy. A class

does not have to inherit from a previously existing one in order to be

considered a feature.

8.5. Programming language

ReThink is written in Java [167], as this programming language offers the

much-needed ability to deploy software to a number of platforms using the

RethinkBoard

+pushColumnUp(column, counter)
+pushRowLeft(row, counter)

RectangleBoard

+rows
+columns

+getCounter(column, row): Counter

67

same source code. Furthermore, the development team was familiar with

Java and felt comfortable programming in it.

The static typing system used in Java requires that the type of an

object is explicitly stated in the source code. As the methods are declared in

the interfaces, the precise subclasses are not known. Therefore, the service

users that implement these interfaces must refer directly to the type of the

provider they utilise. Figure 29 shows an example of extending existing

features in ReThink. We use inheritance, which is one of the means of

achieving subtype polymorphism, to create a hierarchy of service providers

(Games) and users (Rooms). The static typing results in an explicit check to

ensure that the service user receives the expected service from the

provider. An example can be found in the class ServerRoom, as presented

in Listing 1 in Appendix 3.

Figure 29. The hierarchy of Rooms and Games in ReThink.

9. Layers

Gradual introduction of functionality to the system in construction naturally

leads to a layered design. This is an essential characteristic of the paradigm

and can be clearly seen in the design of ReThink. It must be underlined at

this point, that all the requirements of the final system were known in

advance. Thus, the development of ReThink differed in this manner from the

construction of other software systems.

Room
<<interface>>

SingleGameRoom

ServerRoom

Game
<<interface>>

SimpleGame

ServerGame

68

9.1. Introducing functionality

The development started by defining the components of the whole system,

followed by division of the overall functionality into small, manageable

steps. The first increment delivered a rectangular board, which was later

extended with functionality specific to ReThink. However, it is only one step

in the process of enabling users to play the game with the software. The

classes that represent other concepts (e.g. Rules, State) must also be

extended to become aware of the new functionality, as shown in Figure 30.

Such extension forms a layer [8] in the class hierarchy. The figure lists four

layers, two of which are abstract (red and yellow) and two are concrete

(orange and blue). All the classes belong to the same component, i.e. Game

Mechanics, with an exception of the interface Game, which belongs

to component Game Playing.

Figure 30. Introducing the rules of ReThink to the design.

It can be noticed that on an abstract level interface Board is a service

provider for BoardState and State is a service provider for Rules. The

interface BoardState, which extends State, is both service provider and

user: it utilises the functionality of Board and – because of its superclass –

provides a service for Rules.

Rules
<<interface>>

State
<<interface>>

BoardState
<<interface>>

Board
<<interface>>

RectangleBoard

RethinkBoardRethinkStateRethinkRules

Game
<<interface>>

69

In order to effectively use a code feature encapsulated by the class

RethinkBoard we need to extend the functionality of State and Rules,

hence classes RethinkState and RethinkRules are created. Each of them

is a feature in itself, because it provides new functionality to the system by

extending already existing classes. A collection of classes created to utilise

a single feature forms a layer in the class hierarchy.

Alternatively, we can say that a layer consists of those classes that

directly or indirectly benefit from the same service provider, but are not

extensions of it. This definition is not affected by the order in which the

classes are introduced to the system. We could implement the classes

RethinkState and RethinkRules before adding RethinkBoard to the

system, but the resulting layer would be the same due to the latter class

being the service provider for the former two.

9.2. Component layering

The requirements of a system are realised by a number of architectural

components. These components are built of classes that contain the code,

arranged in a layered manner. As a result, the system has an organised and

clearly recognisable structure. The overview of the structure of ReThink

code is shown in Figure 31.

Figure 31. The design of ReThink.

70

The background colour of the classes indicates a layer which they belong to.

The coloured vertical bars are used to identify components of the system;

from left to right: Game Rooms, Game Playing, Players and Game Mechanics.

The white vertical bar is used to identify the executable classes, which may

be seen as a separate component of the system.

The two top-most layers (horizontal, red and yellow) are abstract,

as they contain only interfaces and declare the functionality of the system.

The subsequent layer (orange) introduces only one feature to the Game

Mechanics component – a rectangle board. A stand-alone executable class is

provided in this layer as well in order to be able to execute the system here.

The third layer (light blue) adds game mechanics specific to

ReThink. The executable from the previous layer has been extended to

support new functionality. The development of the components Game

Mechanics and Players, for the purpose of ReThink, has finished

at this point.

In the fourth layer (light purple) the components Game Playing and

Game Rooms receive their initial functionality. More precisely, we use the

functionality provided in the previous layer to enable offline games.

Two final layers (green and blue) were developed in parallel and, in

fact, form two separate systems. However, both layers together realise one

requirement – online games – by relying on external network connectivity

package. The green layer provides this functionality from the client

perspective, while the blue implements the server. Four more parallel

layers that extend the customer (green) layer were added to the system,

thus forming four separate subsystems. Each of them was focused on a

separate deployment platform (i.e. mobile phone, touch-screen tablet,

personal computer and web browser) and extended only the executable to

include the specific details, like the graphical user interface and the network

connectivity. Since no other classes important to the design were added,

these layers are not shown in Figure 31.

An important characteristic of the design is that the layering varies

from one component to another. The system, as shown in Figure 31, has

seven layers, five of which are executable. The component Game Mechanics

contains two concrete layers; Players have only one layer, which is shared

with Game Mechanics. Both Game Rooms and Game Playing contain three

shared layers, separated from the other components. However, these layers

rely on the ones added to the system previously. Moreover, the top-most

71

abstract layer is common to all components of the system, as it declares

their functionality, responsibilities and dependencies.

The system shares properties of various architectural styles. The

client-server approach [115] is clearly seen on a higher level – each

deployment platform has its own client application. The information with

other clients is exchanged through the central server. The implementation

of the clients and the server benefits from implicit method invocation,

caused by event broadcasting [62]. In turn, we could use asynchronous

message processing and allowed a high number of clients to be connected to

the server at the same time.

10. Correctness Conditions

The paradigm of SFI incorporates correctness as an essential concern in the

development. As presented earlier, there are four conditions that must be

satisfied before a feature is considered correct: Internal Consistency,

Respect, Preserving Old Features and Satisfying Requirements.

Furthermore, the paradigm supports and encourages diagrammatic

reasoning, which we describe in more details in this section.

10.1. Internal Consistency

Internal Consistency is ensured by identifying and proving class invariants,

defined as properties that must be satisfied before and after executing any

of the operations the feature provides. Additionally, for each operation

additional conditions must be checked. Pre-conditions define under which

circumstances an operation can be executed, whereas post-conditions state

the properties of the system after the execution has taken place. Proving

that the implementation of an operation satisfies all the invariants and the

post-conditions when the invariants and the pre-conditions are true initially

is required for a feature to be internally consistent.

An example of diagrammatic reasoning for a part of ReThink class

structure is shown in Figure 32. We start our reasoning from the service

provider in the first layer that contains implementation, i.e. the class

SimpleGame. The conditions for its internal consistency are a result of the

system requirements, the component the class belongs to and the role it

plays. The class SimpleGame belongs to the component Game Playing, thus

its primary purpose is to hold a game session between players. Before the

72

playing starts, however, the player that hosts the game is free to modify the

rules and invite other players. Once the game is under way no more changes

are allowed and the object is expected to hold the current state of the game.

Figure 32. Excerpt from the class hierarchy in ReThink.

Similar considerations must be taken into account when reasoning about

correctness of the class SingleGameRoom. The name of this class implies its

most important characteristic: only one game can be stored. In other words,

once a game has been submitted to it, no other submissions can be made

before that game is finished or removed.

We can ensure that the conditions hold for those classes by testing

them, as indicated in Figure 33. However, stating that both SimpleGame and

SingleGameRoom are internally consistent does not automatically mean

that the relationship between these classes is correct.

Figure 33. Internal consistency in ReThink.

10.2. Respect

The pre- and post-conditions mentioned earlier are also of use when

proving that one feature respects the constraints of another feature.

Whenever a service user invokes an operation of a service provider, the

pre-conditions of this operation must be satisfied. Furthermore, the service

provider must establish post-conditions of the called method.

The class SingleGameRoom belongs to the component Room.

It is a service user and relies on the services provided by the class

SimpleGame SingleGameRoom

ServerGame ServerRoom

SimpleGameTest
<<test>>

SimpleGame SingleGameRoom
SingleGameRoomTest

<<test>>

ServerGame ServerRoom

! !?

73

SimpleGame. Therefore, it is essential to ensure that the constraints of the

provider are not violated. Among other implementation-specific details this

can be easily covered with tests. Once the tests pass we are allowed to mark

the relationship between the classes as correct, as shown in Figure 34.

Figure 34. Correctness concerns for aggregation between two classes in ReThink.

10.3. Preserving Old Features

The preservation of old features is achieved in a manner similar to ensuring

that the Respect condition holds. It must be proven that the added or

extended features do not violate the constraints set by the features already

existing in the system. Most importantly, the post-conditions of existing

feature operations must be preserved and its pre-conditions may not

be strengthened.

Two new classes form the next layer of the system, ServerGame and

ServerRoom. The previously described correctness conditions – Internal

Consistency and Respect – are straightforwardly handled with tests.

The resulting situation is shown in Figure 35.

Figure 35. Internal Consistency and Respect for a new layer in ReThink.

At this point nothing can be said about the correctness of the inheritance

relations between the classes in the previous layer and the newly added

ones. To state so we need to ensure that the properties of the superclasses

are preserved. We can achieve this with regression testing, as explained

SimpleGameTest
<<test>>

SimpleGame SingleGameRoom
SingleGameRoomTest

<<test>>

ServerGame ServerRoom

! !!

SimpleGameTest
<<test>>

SimpleGame SingleGameRoom
SingleGameRoomTest

<<test>>

ServerGameTest
<<test>>

ServerGame ServerRoom
ServerRoomTest

<<test>>

!

! ! !

? ?

74

in the earlier part of the thesis. Passing the tests allows us to mark the

inheritance as correct, as indicated in Figure 36.

Figure 36. Preserving Old Features in ReThink.

10.4. Satisfying Requirements

Software development with Stepwise Feature Introduction is an iterative

process. Each of the iterations delivers a well-defined functionality that is

presented to the customer to gather feedback. The customer evaluates and

accepts each addition to the functionality of the system under construction.

This process is intended to guarantee that the customer requirements

are satisfied.

The required functionality can also be ensured through testing,

provided that the requirements are precise enough. The tests ensure not

only that the requirements are satisfied, but also ensure that the constraints

of the tested class are respected, as mentioned earlier. Once the tests

represent the requirements, are successfully executed and contain no

errors, we can annotate them with an exclamation mark, as shown in Figure

37. This indicates that the requirements of the tested classes are satisfied.

Figure 37. Satisfying Requirements in ReThink.

SimpleGameTest
<<test>>

SimpleGame SingleGameRoom
SingleGameRoomTest

<<test>>

ServerGameTest
<<test>>

ServerGame ServerRoom
ServerRoomTest

<<test>>

! !!

! ! !

! !

SimpleGameTest
<<test>>

SimpleGame SingleGameRoom
SingleGameRoomTest

<<test>>

ServerGameTest
<<test>>

ServerGame ServerRoom
ServerRoomTest

<<test>>

! !!

! ! !

! !

!

! !

!

75

10.5. Correctness conditions for

interfaces

Our example started with concrete classes. However, they do not form

the top-most layer of ReThink – the interfaces specifying the behaviour

of the components do. The corresponding diagram is shown in Figure 38.

Figure 38. Component interfaces in ReThink.

The reasoning about the correctness of the interfaces differs from the

reasoning for classes described earlier. Since the interfaces do not contain

any implementation, we consider their class invariant to be true at all times.

The set of local variables of an interface is empty. This allows

interfaces to be easily extended, as new variables can always be added in

the subsequent layers without compromising correctness.

Each method declared in an interface does not carry any

implementation (or, in some cases, carries an empty statement that does

nothing). The precondition of each declared method is always false. These

two properties allow stating that the interface is internally consistent,

as the precondition and the invariant establish the invariant once the

method is executed.

Since the method precondition is false, it is impossible for any other

entity to establish it. Any call to a method contained in the interface is thus

not allowed. Instead, it is required for other classes to execute a method

of a class that implements the interface. The constraints of the interface are

thus respected by other entities that depend on it.

Finally, additional non-formal constraints can be set for any

interface. Such requirements naturally affect the classes that implement

SimpleGameTest
<<test>>

SimpleGame SingleGameRoom
SingleGameRoomTest

<<test>>

ServerGameTest
<<test>>

ServerGame ServerRoom
ServerRoomTest

<<test>>

Game
<<interface>>

Room
<<interface>>

! !!

! ! !

! !

!

! !

!

76

such interface. In ReThink the correctness conditions were strengthened for

those interfaces that aggregated others. More precisely, we required the

container interface to declare meaningful methods to manipulate and access

the contained objects. In our example these methods are declared by the

interface Room. Since all other correctness conditions are also satisfied,

we are allowed to mark the interfaces and all associated relations with

other entities as correct. The final situation is presented in Figure 39.

Figure 39. Correctness conditions for interfaces in ReThink.

10.6. Inferring correctness conditions

Data refinement and superposition refinement, which are the underlying

theory for correctness concerns in SFI, are transitive and monotonic.

Therefore, it is possible to infer a number of correct associations without

the need to explicitly show them in a diagram. In Figure 40 such

associations are marked with a dash line. These inferred correct

associations can be of significant use when the system is later extended and

new layers are added.

SimpleGameTest
<<test>>

SimpleGame SingleGameRoom
SingleGameRoomTest

<<test>>

ServerGameTest
<<test>>

ServerGame ServerRoom
ServerRoomTest

<<test>>

Game
<<interface>>

Room
<<interface>>

! !!

! ! !

! !

!

! !

!

! !
!

! !

77

Figure 40. Inferred correctness conditions in ReThink.

Part IV:

Case study – BioImageXD2

81

11. Overview

BioImageXD is free and open-source software for analysis and visualisation

of multidimensional biomedical images [20]. The software is written mostly

in Python, a free, object-oriented programming language [138], with some

code in C++. BioImageXD is the result of collaboration between

microscopists, cell biologists and programmers from the Universities of

Jyväskylä and Turku in Finland, Max Planck Institute CBG in Dresden,

Germany and other partners worldwide [20].

The software development project is a part of the national,

interdisciplinary science project BioTarget funded by the Academy of

Finland in years 2007-2010. The goal of the project is to find ways to guide

nanoparticles carrying specific toxins to specific cells in human body.

Four working groups were formed in this project, roughly corresponding

to the scientific disciplines involved.

The material science group (lead by Mika Lindén) focused their

research on building nanoparticles that are suitable for both carrying the

toxin and for targeting the right cells. The medical science group

(under supervision of Sirpa Jalkanen) has focused on developing the toxins

and targeting substances for the nanoparticles. The microscope research

group (with Jyrki Heino as a leader) supported the material science

and the medical science groups by providing microscopic techniques for

observing in vivo the nanoparticles as they move into the cell and find their

target inside the cell. Analysing the results of such experiments provides

important feedback to and experimental data for the first two research

groups. Finally, the software development group (lead and supervised

by Ralph-Johan Back) has been responsible for providing what can be seen

as a missing link in this research – the software for analysing the images

produced by the microscopes used in the experiments –

the BioImageXD software.

The researchers use confocal microscopes, in which point

illumination and a spatial pinhole are used to eliminate out-of focus light in

specimens that are thicker than the focal plane. This imagining technique is

used to increase optical resolution and contrast of an image obtained by the

microscope, as shown in Figure 41 [185]. Furthermore, it enables

reconstruction of three-dimensional structures from obtained images [135].

82

Figure 41. Principle of confocal microscopy.

11.1. First release

BioImageXD has been under the development since approximately 2002 as

a side-project to a microscopy-oriented research theme. At the time the

development begun, there was no open-source software designed

specifically for analysing multi-dimensional images obtained from confocal

microscopes. In the later years the software was extended to accommodate

functionality needed also by other research projects. These extensions,

however, were made ad hoc, resulting in gradually degrading system

architecture; the software was becoming less reliable over time and difficult

to maintain and extend.

The effort needed to modify the system was increasing, so it was

decided that restructuring the software was the highest priority

for the BioTarget project. The software was handed over to the Software

Construction Laboratory at Åbo Akademi University in 2007

for improvements and testing. A team of four programmers was formed

as part of the internal Gaudí Software Factory and assigned to the project.

The goal was to identify key dependencies and structures of the software

and to improve them by redesigning the architecture and fixing bugs found

during testing. The resources allocated from the project to Software Factory

allowed to carry the work during three summer months of 2007.

However, mostly due to underestimating the size of the software

and not formulating the goals clearly, none of the above objectives were

reached. The inexperience of the development team, combined with the

short time allocated, added to the failure of this first attempt at software

83

restructuring. The software was found to be too complex to handle

in a short time: it consisted of more than 75 000 lines of code in Python,

without proper documentation. The majority of the time – about two

months – was spent on analysing the code and dependencies between

different modules, not on fixing bugs as initially expected.

Nonetheless, as the outcome of the three-month project, new

long-term goals were set. The new objectives included the lessons learnt

during the summer months and the comments of the users of the previous

version. We came to the conclusion that the original software had passed

the point where it can be easily modified and needs to be refactored

or rebuilt. A new architecture must be designed and the existing code base

must be adjusted accordingly. Bugs and failures should be captured

and eliminated during this process.

11.2. Requirements for refactoring

The goal of the refactoring of BioImageXD to its new version, BioImageXD2,

was to preserve a set of essential features of the original version. These

features were selected based on the frequency of use among the users of the

first release. Figure 42 lists the customer requirements for the software and

divides them into three groups corresponding to the key purposes of the

software: accessing, displaying, and processing microscope images.

Figure 42. Requirements of BioImageXD2.

As previously said, the images are multidimensional. A traditional image has

two dimensions – width and height (Figure 43, a)). Third dimension – depth

– allows representing real-life objects. Digital microscopes perform

a number of two-dimensional scans of the object at certain interval depths,

Reading image files

•Bitmaps (PNG, JPEG,
GIF, BMP...)

•Generic microscope
files (LSM, LEI)

Processing images

•Colouring

•Noise removal

•Resizing

•Merging and
splitting

•Meta-data and
image analysis

Displaying images

•Gallery of two-
dimensional images

•Orthogonal cross-
cut

•Three-dimensional
visualisation

84

limited by the resolution. A stack of such images forms a three-dimensional

model of the object being viewed with the microscope (Figure 43, b)).

Additionally, the object may be repeatedly scanned with different

filters or with light of different wavelengths, similarly to colour components

found in e.g. photography (red, green and blue) or publishing

(cyan, magenta, yellow and black). Such representations are referred to

as channels and form another dimension in the structure

of the image (Figure 43, c)).

Performing a number of scans of the complete object in a given time

adds the final dimension – time – to the image (Figure 43, d)). The resulting

file is thus a collection of two-dimensional images, called slices, arranged

according to their position in the stack, the channel and the time of their

acquisition. We refer to such image as dataset to avoid confusion

with the common understanding of the term image.

a) b) c)

d)

Figure 43. Elements of a dataset.

Once a dataset is acquired from a file, it can be processed or analysed

according to certain parameters. Finally, the processed data are displayed

to the user. Several visualisation methods are available to give the user

better understanding of the multidimensional data.

A typical use case of the software is presented in Figure 44.

The process starts with a user opening a file with dataset to be processed.

85

This dataset would typically have been produced by the confocal

microscope as part of some specific experiment. The results of the

processing are shown on screen, so that they can be used as feedback.

When the processing and analysis are done, the user can save a modified file

and the results of the analysis to disk. This use case has a significant

influence on the architecture of the software, described in the next section.

Figure 44. Basic workflow of BioImageXD2.

12. System architecture

The analysis of the use case reveals several key parts of the architecture,

each corresponding to a step in the scenario. The use case also implies that

at runtime the objects derived from these components are chained one to

another to enable data flow. In other words, the software must provide

means for the user to construct a pipeline of objects created from the

components, as shown in Figure 45.

Acquire

•Open file from
disk

Process

•Modify and
analyse the
image

Display

•Show the result

•Change
processing
parameter

Save

•Store results to
disk

86

File Reader Process

Visualisation

File Writer

Figure 45. The image processing pipeline.

Pipelining in general refers to a segmentation of a computational process

into several sub-processes which are executed by dedicated autonomous

units (facilities, pipelining segments). It can also be defined as the technique

of decomposing a repeated sequential process into sub-processes, each of

which can be executed efficiently on a special dedicated autonomous

module [140]. Such definition indirectly requires the segments to be able to

take output of other segments as input.

In the context of BioImageXD2 the segments of the computational

process are the individual processing units. They share the type of input

and output, as shown in Table 9. The remaining components are used to

feed the data to the pipeline or to handle its output. We will now introduce

and describe the components of the system before we discuss them in more

details in the next sections.

Component Input Output

File Reader (file) Dataset
Process Dataset Dataset

Visualisation Dataset (on-screen display)
File Writer Dataset (file)

 Table 9. Pipeline of the key components in BioImageXD2.

12.1. Representing datasets: BioData

As mentioned previously, the input data may be available in one of many file

formats. While the software must be aware of that, its functionality may not

depend on the particular format the dataset was acquired from, hence the

need for a separate entity for representing the data internally.

 The datasets are multidimensional structures composed from

two-dimensional images. Each image is identified by its position in the stack

of cross-cuts, the channel and the point in time at which it was acquired.

87

Moreover, each part of the dataset should be considered a dataset as well to

enable efficient processing only of a certain part of the set.

The UML diagram of the structure is shown in Figure 46.

«interface»

BioData

«interface»

BioChannelData

«interface»

BioTimepointData

-c
h

a
n

n
e

ls

1

-p
a

re
n

t

*

-timepoints1

-p
a

re
n

t

*

«interface»

BioStackData

-stack

1

-p
a

re
n

t

*

Figure 46. The structure BioData.

BioData represents a dataset. It consists of channel-, time-point-

and stack-specific data, named BioChannelData, BioTimepointData

and BioStackData, respectively. These entities inherit from the interface

BioData, creating a recursive structure. This design decision allows each

dimension-specific data to be also treated as a dataset itself and contain its

own channels, time-points and stack of images. Such approach provides an

opportunity to later improve the techniques for dataset manipulation,

e.g. by adding support for parallel image processing without changing

the existing code base.

12.2. Acquiring datasets: File Readers

The File Reader component is responsible for inputting data into the

pipeline. Figure 47 lists the relation between three entities used in this

process. We decided to make a distinction between a dataset, a file that

contains it and a file reader. As a result, each of the classes FileReader,

BioFile and BioData has a clearly defined responsibility, in accordance

with the principles of object-oriented design.

+load(in name : string) : BioFile

+getFile() : BioFile

«interface»

FileReader
«interface»

BioData

«interface»

BioFile

«provides»«provides»

Figure 47. Relation between FileReader, BioFile and BioData.

88

The sole responsibility of FileReader is to load a file from disk. The file is

represented by an instance of BioFile, which in turn has to create the

BioData based on the internal format of the file. This approach allows us to

use one FileReader for a number of different file formats,

each represented with a separate subclass of BioFile.

12.3. Modification and Analysis:

Processes

From the perspective of the customer and the end-users, Processes are the

most important component of the system, as they allow modification and

analysis of the datasets. The design of the component is shown in Figure 48.

+execute() : BioData

+getSourceData() : BioData

+setSourceData(in data : BioData)

«interface»

BioTask «interface»

BioData

+getTaskInstance() : T extends BioTask

+getGUIForTask() : Component

+getSupportedTaskClass() : T extends BioTask

«interface»

Process

T extends BioTask

Figure 48. The design of the image-processing component.

We decided to divide the functionality into two separate entities, Process

and BioTask. The former represents the graphical user interface of the

latter, which is responsible for the actual analysis and modification of the

data. Such an approach not only adheres to the principles of object-oriented

design, but also separates the concerns of the graphical user interface

design from image processing.

12.4. Displaying: Visualisations

Visualisations (or views) are located at the end of the image processing

pipeline to show the end-user the effects of the processing made to the

dataset. As the data is multidimensional, different visualisation modes must

be enabled to provide full overview of the dataset. The customer

requirements for the software included three visualisation modes:

gallery, orthogonal and three-dimensional.

The gallery visualisation represents the dataset as a series of

two-dimensional images and allows navigating between different

dimensions. Each image is shown individually and in a context of its

time-point, channel or position in stack, as presented in Figure 49.

89

Figure 49. Gallery visualisation in BioImageXD2.

The orthogonal view focuses on providing a cross-cut of the stack of images

in a given time-point and channel. More precisely, a two-dimensional image

is shown together with side views of the entire stack at the positions

of the cuts. This visualisation enables careful pixel-by-pixel examination of

the dataset. The orthogonal visualisation is shown in Figure 50.

Figure 50. Orthogonal view in BioImageXD2.

90

Finally, the tree-dimensional view renders an entire stack of one or more

channels in a given time-point of the dataset. The user is thus given a

comprehensive view of the object the dataset represents in a given time

point, as presented in Figure 51. The features of the visualisation allow the

object to be rotated, zoomed and textured differently, depending on

the configuration.

Figure 51. Three-dimensional visualisation in BioImageXD2.

12.5. Saving changes: File Writers

File Writers are the components that handle the output of the processing

pipeline. The responsibility of a writer is to save the structure and images of

the processed dataset to disk. Contrary to the File Readers, File Writers

were designed to handle one file format per writer.

12.6. Executable

The components do not contain code or logic related to the execution of the

system. The construction of the image-processing pipeline must be done

based on the actions of the end-user, thus including the code responsible for

that in the components would violate the principles of object-oriented

design. To follow the best practices the layers of the components must be

executed by a separate entity.

We decided to construct a dedicated system executable that would

be extended and modified whenever a need arises. Such executable relies

91

on the logic of the system (i.e. the image-processing pipeline) and is able to

invoke the code in the components at any given layer. Furthermore,

the executable is responsible for constructing the graphical user interface

and responding to the events triggered by the end user.

12.7. Architectural styles

The architecture of a large and complex software system shares elements of

various styles. The most notable characteristic is the layered structure of

the system and its components. It is a direct consequence of applying SFI to

the development, although other architectural styles can also be observed.

The image-processing pipeline, as the name implies, derives from

the pipeline architecture that connects different filters [62]. The filters are

in this case the image-processing modules. However, contrary to the

pipeline style, the datasets are not processed incrementally and

continuously. Not only the processing must be explicitly invoked, but the

processes modify the dataset one after another. In other words, entire

dataset is passed between different modules once it is processed.

On the other hand, the structure of the interface BioData enables

processing only a selected part of the whole dataset.

Event-based approach [62] is used in the structures related

to handling modules (i.e. process, visualisation, file reader or file writer),

as well as in connecting the image-processing pipeline to the graphical user

interface. This allows decentralisation of the software – its parts operate

independently and are invoked implicitly, as a response to certain events in

the system. For example, loading a module broadcasts an event.

As a response to such event a code responsible for updating the graphical

user interface is executed, together with the code that initialises

the loaded module.

13. Layered design

The paradigm of Stepwise Feature Introduction supports bottom-up

software development. Its application results in software having a layered

design. In case of complex systems a reverse approach is often more

suitable, as the software must fit the architecture and its bounds.

The layered structure, however, is also present.

92

13.1. File Readers

The sole purpose of a File Reader, as the name implies, is to read a dataset

file and represent it as a BioData structure to enable processing and

visualising. As mentioned previously, we have separated that functionality

into three basic concepts. Objects implementing the interface BioData

represent datasets; descendants of BioFile correspond to individual files,

whereas FileReaders are used to construct BioFile from a file physically

located on disk. The crucial functionality is thus contained in the

descendants of BioFile, as these classes deal with the internal structure

of dataset files.

During the first iteration two layers are added to the system.

One contains mostly interfaces and abstract classes that declare

the functionality; the other is a direct implementation of the former,

as shown in Figure 52. The essential property of SFI is therefore preserved,

since a system that can be executed is produced.

«interface»

BioData

«interface»

BioChannelData

«interface»

BioTimepointData

«interface»

BioFile

-c
h

a
n

n
e

ls

1
-parent

*

-timepoints

1

-parent

*

«provides»

GIFFile

«interface»

BioStackData

-s
ta

c
k 1

-parent

*

Figure 52. Initial step of introducing features to BioImageXD2.

In most cases during the development the new feature is added to the

system as another direct implementation of the interfaces (Figure 53, a).

The optimisation of the structure follows, in order to remove redundant

code and improve performance. As a consequence a previously added layer

is updated to contain common code, from which subsequent related

features may extend (Figure 53, b). The classes with the common code do

not necessarily have to be executable by themselves – they are treated as an

integral part of the layer they were abstracted from. The essential ability of

the system to be executed is thus still preserved.

93

a)

«interface»

BioData

«interface»

BioChannelData

«interface»

BioTimepointData

«interface»

BioFile

-c
h

a
n

n
e

ls

1
-parent

*

-timepoints

1

-parent

*

«provides»

GIFFile

«interface»

BioStackData

-s
ta

c
k 1

-parent

*

JPEGFile

b)

«interface»

BioData

«interface»

BioChannelData

«interface»

BioTimepointData

«interface»

BioFile

-c
h

a
n

n
e

ls

1
-parent

*

-timepoints

1

-parent

*

«provides»

GIFFile

«interface»

BioStackData

-s
ta

c
k 1

-parent

*

ChannelDataWrapper

TimepointDataWrapperAbstract2DImageFile

JPEGFile

StackDataWrapper

-c
h

a
n

n
e

ls

1

-parent

*

-timepoints

1

-parent

*

-s
ta

c
k

1

-parent

*

PNGFile

Figure 53. Overview of introducing features to BioImageXD2.

94

The abovementioned layering pattern directly follows from both SFI and the

principles of object-oriented design. The pattern is repeated with each new

feature added, as seen in the final structure of classes related to BioFile

and BioData shown in Figure 54.

«interface»

BioData

«interface»

BioChannelData

«interface»

BioTimepointData

«interface»

BioFile

-c
h

a
n

n
e

ls

1
-parent

*

-timepoints

1

-parent

*

«provides»

GIFFile

«interface»

BioStackData

-s
ta

c
k 1

-parent

*

ChannelDataWrapper

TimepointDataWrapper

Abstract2DImageFile

JPEGFile

StackDataWrapper

-c
h

a
n

n
e

ls

1

-parent

*

-timepoints

1

-parent

*

-s
ta

c
k

1

-parent

*

PNGFile

AbstractBioFile

AbstractImageFile

Abstract3DImageFile

LSMFile

LEIFile

Figure 54. Structures related to file reading.

We can indicate three types of classes that are present in the design.

The abstract interfaces (marked with a thin, solid border in Figure 54 and

subsequent figures in this part) declare functionality and constitute bounds

95

for the development. The customer requirements are realised and

implemented by the concrete classes (thick, solid border), whereas the code

shared among a number of layers is contained in the common classes

(dashed border). Thus, based on the component roles in SFI we can state

that the common classes are service providers, whereas the concrete

classes are users of these services. Since the interfaces set bounds for how

each service is implemented, we propose to use the term service border.

The service borders can also be identified in previously described

case study, ReThink.

The interaction between the different parts of the system is declared

in the interface layer. This can be seen as a potential drawback to the

approach, as whenever a new component is introduced to the system, all

layers of the system must be updated to accommodate new behaviour.

Therefore, it is essential to design an architecture that is easy to extend and

stable at the same time to limit the propagation of changes.

An approach similar to the one just presented has been applied to

the development of other components of the system. While the number of

layers differs from one component to another, the overall organisation of

the code is preserved.

A system developed with SFI must be executable after every

development iteration. We have sustained this property with the use of a

dedicated system executable, which may be configured to ensure that the

execution happens at a defined layer. Furthermore, during the development

the interfaces were always introduced to the system accompanied by at

least one direct implementation, in order for the system to be executable.

13.2. Processes

The functionality related to processing images is delegated to two types:

Processes responsible for the graphical user interface and BioTasks

that perform the computations. This separates the graphical user interface

from the processing and allows easier use of third-party libraries.

A number of external software libraries for efficient image

processing are available. In the field of bio-imaging two such products are

commonly used. The Visualisation Toolkit (VTK) is an open-source, freely

available software system for 3D computer graphics, image processing and

visualisation [81]. The Insight Segmentation and Registration Toolkit (ITK)

is a cross-platform system that provides developers with a suite of software

tools for image analysis [80]. To enable more efficient processing of the

96

images the support for at least these third-party libraries must be added

to the system.

As with other components, the direct implementations were added

first. Subsequent layers were inserted as a result of code optimisation in the

next cycles. The support for third-party image-processing libraries is

encapsulated in a separate layer that provides an entry-point for future

enhancements. The extended structure is shown in Figure 55.

+execute() : BioData

+getSourceData() : BioData

+setSourceData(in data : BioData)

+isIgnored() : bool

+setIgnored(in state : bool)

«interface»

BioTask
«interface»

BioData

+getTaskInstance() : T extends BioTask

+getGUIForTask() : Component

+getSupportedTaskClass() : T extends BioTask

«interface»

Process

T extends BioTask

ChannelMergeProcess

AbstractTask

ChannelMergeTask

AbstractProcess

T extends BioTask

T = ChannelMergeTask

ColouringProcess ColouringTask

T
 =

 C
o

lo
rin

g
T

a
s
k

MIPProcess

T
 =

 M
IP

T
a

s
k

AbstractVTKTask

vtk.*

MIPTask

GaussianNoiseFilterProcess

T
 =

 G
a

u
s
s
ia

n
N

o
is

e
F

ilte
rT

a
s
k

GaussianNoiseFilterTask

Figure 55. Structures related to image processing with external library support.

An important observation should be made at this point. The software

project focused on re-engineering an existing version of BioImageXD.

Therefore, the major concepts and the final functionality of the overall

system (i.e. the interfaces and the concrete classes) were fixed and could

not be modified. SFI was used to optimise the structure of the code and,

through careful introduction of functionality, increase the quality

of the system.

97

13.3. Visualisations

Visualisations are the final components in the image-processing pipeline.

They are used solely for displaying the image, so that the user can instantly

see the outcome of processing and adjust its parameters as needed.

The classes related to visualisation are shown in Figure 56. The presented

structure is straightforward and follows the layering pattern described

earlier in this chapter. The low number of classes that contain common code

is caused by significant differences between the visualisations.

+activate()

+deactivate()

«interface»

Visualisation

#makeDrawingContents()

#makeSettingsContents()

#showData()

#getActiveData()

#getConfig()

AbstractVisualisation

Gallery

Orthogonal

Visualisation3D

Figure 56. Structures related to image visualisation.

13.4. File writers

File writers, in terms of functionality, are similar to file readers, as they

operate on files and different image formats. However, with respect to their

role in the system, the writers bear more resemblance to visualisations, as

they function at the end of the image processing pipeline. Contrary to image

visualisations, the writers do not serve as the feedback to the end users.

Instead, they allow the results of the current processing to be saved and

reopened later.

The structure and layering of the file writers is shown in Figure 57.

Due to differences between various file formats the optimisation of the

98

structure – and hence the insertion of the intermediate layers –

was not necessary.

+write(in name : string, in data : BioData)

«interface»

FileWriter

LSMWriter

SeriesWriter

BX2Writer

Figure 57. Classes related to file writers.

13.5. Modularisation

The original version of BioImageXD offered its users a possibility to extend

the core functionality with custom scripts written in Python. One of the

most important goals set for the re-engineering process was to preserve

and improve this functionality. In particular, it should be possible for the

users to provide additional file readers, file writers, visualisation modes

and, most importantly, processes, through plug-ins (modules).

To ensure that the architecture supports future extensions we

decided to design the software so that all the core functionality itself is

contained in different plug-ins. Introducing modules, however, was

postponed until all kinds of potential modules had at least one direct

implementation. Such approach allowed us to identify the commonalities

between different kinds of components and define the mechanism form

handling them, as shown in Figure 58.

99

+initialise()

+finalise()

+isInitialised() : bool

+isFinalised() : bool

+getProperty(in property) : object

+addPropertyListener()

+removePropertyListener()

+getModuleInfo() : ModuleInfo

«interface»

Module

+allowPropertyChange() : bool

+propertyChanged(in property, in module)

«interface»

ModulePropertyListener

MT extends Module

+loadModule(in name : string, in initialise : bool = true) : MT extends Module

+unloadModule(in module, in finalise : bool = true) : <unspecified>

+isModuleLoaded(in module) : bool

+addStateListener()

+removeStateListener()

+addPropertyListener()

+removePropertyListener()

Handler

MT extends Module

+moduleStateChanged(in module, in loaded : bool)

«interface»

ModuleStateListener

MT extends Module

-modules

1 *

-s
ta

te
L

is
te

n
e

rs 1

*

-p
ro

p
e

rty
L

is
te

n
e

rs 1

*

+getModuleName() : string

+getModuleAuthor() : string

+getModuleVersion() : <unspecified>

«interface»

ModuleInfo

-m
o

d
u

le
In

fo 1

1

Figure 58. Components responsible for modularisation.

The functionality common to all kinds of plug-ins is encapsulated in the

interface Module. This interface defines a way for a module to initialise and

finalise its resources. Furthermore, it provides a method for other objects to

obtain module properties. A class for storing essential module information

(its name, author and version number) is also defined.

Each subclass of module constitutes a separate type that contains

additional behaviour. This additional functionality does not rely on the

architecture of the software. However, to enable new functions each module

must be properly loaded when the software starts. Class Handler provides

methods for loading and unloading modules, regardless of their type.

The Observer pattern [61] is applied to both Module and Handler

to notify interested entities about changes to the properties. The former

broadcasts events whenever an internal property is about to be changed

and when such change occurs, whereas the latter informs upon successful

loading or unloading of a module.

The interfaces Module and Handler were inserted to the system as

its first, abstract layer. As a consequence, the subsequent layers had to be

updated to include the changes, as shown in Figure 59. The basic

components of the system (file readers, file writers, visualisations and

processes) were modified to extend the interface Module. Moreover,

subclasses of Handler specific for each type of module were created.

100

+initialise()

+finalise()

+isInitialised() : bool

+isFinalised() : bool

+getProperty(in property) : object

+addPropertyListener()

+removePropertyListener()

+getModuleInfo() : ModuleInfo

«interface»

Module

+allowPropertyChange() : bool

+propertyChanged(in property, in module)

«interface»

ModulePropertyListener

MT extends Module

+loadModule(in name : string, in initialise : bool = true) : MT extends Module

+unloadModule(in module, in finalise : bool = true) : <unspecified>

+isModuleLoaded(in module) : bool

+addStateListener()

+removeStateListener()

+addPropertyListener()

+removePropertyListener()

Handler

MT extends Module

+moduleStateChanged(in module, in loaded : bool)

«interface»

ModuleStateListener

MT extends Module

-modules

1 *

-s
ta

te
L

is
te

n
e

rs 1

*

-p
ro

p
e

rty
L

is
te

n
e

rs 1

*

+getModuleName() : string

+getModuleAuthor() : string

+getModuleVersion() : <unspecified>

«interface»

ModuleInfo

-m
o

d
u

le
In

fo 1

1

+load(in name : string) : BioFile

+getFile() : BioFile

+getExtensions() : <unspecified>

«interface»

FileReader

+getFileReaderForFilename(in filename : string) : FileReader

FileReaderHandler

MT = FileReader

+activate(in data : BioData)

+deactivate()

+isActive() : bool

«interface»

Visualisation

+getActiveVisualisation() : Visualisation

+setActiveVisualisation(in className : string)

VisualisationHandler

MT = Visualisation

+getProcessForTask(in task : BioTask) : Process

ProcessHandler

+getTaskInstance() : T extends BioTask

+getGUIForTask() : Component

+getSupportedTaskClass() : T extends BioTask

«interface»

Process

T extends BioTask

+write(in name : string, in data : BioData)

«interface»

FileWriter

+getFileWriterForFilename(in filename : string) : FileWriter

FileWriterHandler

M
T

 =
 F

ile
W

rite
r

M
T

 =
 P

ro
c
e

s
s

Figure 59. The connection between the module defining layer and the basic
components.

The abovementioned structures for handling modules of different type were

included in the system executable. This allowed each layer of any

component of the system to be executed independently. The changes

reduced the role of the system executable to loading available modules of

different kinds and providing a graphical front-end for the user.

Each plug-in is expected to be released and packaged separately

from others, to further underline the independence between modules.

Furthermore, the separation between different kinds of modules allows the

101

classes that implement the requirements to be executed in separation from

the rest of the system.

The layered structure presented in Figure 59 shows also the order

in which the components were introduced to the system. This order

corresponds to the image processing pipeline. The file readers were

constructed first, in order to be able to read images. Subsequently, the

visualisations were designed and introduced to examine whether the file

has been read correctly. These two components received their initial

implementations in parallel. Finally, the processes and file writers were

added. This approach to the development gave more control over the

graphical user interface and the overall functionality of the system.

13.6. Testing

The system was constantly tested during its development in order to

increase its quality. Different kinds of testing strategies were utilised,

depending on the suitability to the development problem. In addition to

regular tests, the source code was frequently reviewed and refactored. The

corrections and revisions were communicated back to the development

team in order to prevent repeating coding errors and mistakes in the future.

Unit testing was applied to ensure that the code functions properly.

During the implementation of the system we followed the guidelines of

Test-Drive Development [15] to verify that the most complex and

demanding situations are handled as expected. Furthermore, the unit tests

were used to cover regression tests in order to satisfy the correctness

conditions of SFI, as described earlier in the thesis.

The strategy to unit testing differed between the components. The

file readers were tested whether they are able to correctly represent the

structure of those files, for which the properties were known by the

development team in advance. The test data included two- and multi-

dimensional datasets to cover most of the real-life situations.

The file readers were also utilised in the testing of file writers. Each

test consists of three operations performed on the same dataset. At first the

dataset is read by an already tested file reader in order to obtain a BioData

structure. This structure is then saved by a file writer and a subsequent

reading of the written file is performed in order to compare its contents

with the original one.

A different approach was applied to the testing of the processes.

A number of properties shared across different processes were identified.

102

Subsequently, a parameterised test case for each property was constructed.

As a consequence, every process was tested by a number of such test cases.

The unit testing of visualisations was limited to ensuring that their

internal configuration works as expected. This restriction was caused by the

fact that visualisations are modules oriented towards graphical user

interface and, as such, their unit testing is more difficult [112], than in case

of other parts of the system.

14. Development process

The development process of BioImageXD2 can be seen from two

perspectives. In the large scale – the reengineering of a complete system to

fit its new architecture – prototyping was used. The organisation of the

work on a daily basis, however, was heavily influenced by agile

development methods.

14.1. Prototype development

Software prototyping is an activity of creating incomplete versions

(prototypes) of the system before it is fully developed. A prototype typically

simulates only a few aspects of the features of the final system and may be

completely different from its implementation [186].

The process of prototyping is divided into four stages [118]. At first,

the basic requirements of the system must be identified. The emphasis is to

recognise the essential features of the system and the relations between

them, as well as the basic elements of the development process. It is

important to notice that by no means should the list of identified

requirements be complete, as only the most important ones

must be defined.

Development of a working prototype is a second step in the process.

The prototype should ideally be implemented in a short time, as to increase

benefits of both the users and the developers. The former receive a tangible

system to experience and criticise, the latter a basis of the development

process to improve further.

The prototyping follows with hands-on use of the system and its

evaluation. The feedback from the end users enables the developers to

enhance the final version of the system. At the same time the development

103

process should be reviewed to ensure that the final step in the prototyping

is carried out efficiently.

Enhancing of the prototype – correcting the flaws identified during

the previous step and adding missing features – ends the process. The

revised prototype may form a complete system, or may be given to its users

for additional evaluation.

Two distinct approaches of prototyping are commonly used:

throwaway and evolutionary prototyping, both reflecting their names.

The latter depends on gradual improvements to the prototype according to

the suggestions and requirements of the users. This iterative process finally

leads to the construction of the complete system.

Throwaway prototyping, on the other hand, discards the prototype

once it is evaluated. This means that the first model of the system does not

serve as a basis of the final system. This decision is usually supported by the

rapid development of the prototype and the fact that it only simulates parts

of the final functionality. Constructing a complete system without the code

of the prototype ensures that the developers focus on a good design.

Between September 2007 and May 2008 the architecture of the

software has been defined, as described in the previous sections. For the

summer of 2008 a Gaudí Software Factory team was formed to construct a

prototype of the project. The team included four programmers and was

given three months to complete a prototype based on a given architecture

and a limited number of features from the original version of the software.

14.2. Evaluation of the prototype

We decided to follow the throwaway prototype development model.

A limited version of the software was produced first to test and evaluate the

key assumptions of the architecture. The lessons learnt were used to

improve the process, adjust the goals and enhance the design during the

second phase, when a working version of the software was produced.

As a result, the architecture was refined to better suit the software.

Moreover, three major concerns over the development were identified.

First, the programming language seemed to be an obstacle in the

development, mainly because of the size of the software. Second, the team

found the used development methodology inappropriate. And third, the

motivation of the programming team was a problem during the fixed

three-month period.

104

The issue of motivation of the team members was solved by

reducing the number of programmers in favour of extending the time

allocated for the project. Thus, the implementation of the final system was

performed by three programmers in the period of six months, later

extended to a year. The two remaining issues required more

sophisticated solutions.

Programming language

The first version of the software was written using Python, an interpreted,

dynamically-typed, object-oriented programming language [138]. The

original release contained about 75000 lines of code. The lack of adequate

documentation and ad hoc architecture negatively influenced the possibility

of analysing the code. Further obstacles were caused by the dynamic typing

and, in consequence, the lack of type information in the code.

 On the other hand, Python is known to have a low learning

curve [49]. It is also easy to understand, especially for people without prior

experience in programming. As the programmers involved in the project

were students, these advantages seemed more important than the

drawbacks, as compared in Figure 60.

Figure 60. Advantages and disadvantages of Python in the original version of
BioImageXD.

During the development of the prototype it became evident that Python –

a dynamic, interpreted language – is not suitable for a construction of such a

complex software system. Several discussions with the stakeholders lead to

the unanimous decision to switch to Java [132]. This decision was made

despite some well-known and widely discussed issues [187], including

performance and memory management. The former, however, in the most

recent Java versions is not a significant drawback, as the virtual machine

executes the code with speed comparable to compiled languages [129].

Effective memory management can be addressed by enforcing a

programming discipline that limits the number of objects present in

memory at any given time.

Disadvantages

•Lack of type declaration, needed for
the software of this size

•Difficult to debug

•Complex to understand code without
proper documentation

Advantages

•Low learning curve

•Helpful user community

•Suitable for agile development

•Existing code base

105

This change was further supported with strong arguments. Java is a

multi-platform language, which means that the software created with it can

operate under different operating systems. As opposed to Python, Java is a

compiled language with static typing, which greatly increases the

understanding of the source code. Moreover, it is a commonly known and

well-established language, with a large number of libraries that provide

additional functionality. Finally, the programmers were familiar with Java

and programming techniques in general, so that the programming could

continue in a different language.

A major difference that needed to be tackled during redesigning was

the difference in inheritance mechanisms between the languages. Python

supports multiple inheritance, whereas Java allows single inheritance with

multiple interfaces. Therefore, the design of BioImageXD2 relies more on

composition than inheritance between concrete classes.

Development methodology

The development process used during prototyping was also investigated.

We used Extreme Programming [14] mainly due to successful application of

this paradigm to the past projects [9][116]. Unexpectedly, the team

members did not feel content with the process. They reportedly felt

unnecessary pressure from pair programming, which is considered an

essential feature of XP. Frequent discussions with the team lead to

abandoning pair programming, unless needed for the most complex tasks.

As a result, we decided to use a different process for the

development of the final version of the system. We created a Scrum-based

process integrated with Stepwise Feature Introduction, which we presented

earlier. To further improve the quality of the software we decided to

organise two additional meetings held at the beginning of each working day,

after the daily meeting. These meetings were neither obligatory nor

time-boxed, although the maximum recommended time was one hour for

both of them. They were organised according to current needs. The first

meeting focused on the code produced by the programmers and the results

of code inspections. The other meeting was intended to be an open

discussion among Team members and concerned the design of the system.

The process gave the team the freedom to organise their work and

to decide whether or not use pair programming. Moreover, the daily

meetings enforced an organised way to ensure that the development

follows the plan and both the design and the code are of good quality.

Part V:

Evaluation

109

15. Evaluation criteria

We expect that the application of Stepwise Feature Introduction to the

development of software systems brings significant benefits to the

constructed system. The paradigm should also help in establishing a

maintainable and reusable structure of the produced software.

In consequence, the overall quality of the developed system should be high.

Due to its underlying principles, SFI ought to bring a high level of rigour,

which is particularly beneficial when using agile development processes.

Finally, as SFI relies on object-orientation, the common principles of

object-oriented design must be preserved. All of the above properties

should be true not only for the paradigm in its originally proposed form [8],

but also for its improved version, presented in this thesis.

The original version of SFI had been successfully applied to the

construction of software system of moderate complexity and size [9].

However, in order to evaluate the scaled version of the paradigm and claim

whether or not it suits and supports construction of high quality software

systems, we need to establish evaluation mechanisms. To validate our

claims we rely on a measurement plan used throughout the development of

a large-scale software system. Furthermore, we check the software for

compliance with the core principles of object-oriented design, which are

said to increase the overall quality of the design and the software [109].

Lastly, to gain more data and increase the value of our findings we also

interview the developers that worked on one of our case examples.

15.1. Indicators of quality

There is no precise description of what good software is, as the quality of

software depends on a variety of aspects [55]. Despite this lack of definition,

certain characteristics of software systems are considered desirable.

Good software system must perform its functions reliably, without

faults and errors. In object-oriented systems this property can be ensured in

various ways, depending on allocated resources, development practices and

accurateness. On one end of the spectrum there are Formal Methods,

mathematically rigorous techniques and tools for the specification, design

and verification of software and hardware systems [29]. Formal verification

is expensive when applied extensively or for the first time. However, for

high integrity systems such an investment can be warranted and the

110

returns are usually sufficient to justify the cost [26]. Several formal

verification techniques exist for object-oriented systems, e.g. a technique

based on object invariants [11][87], which accommodates subclassing and

object composition and allows full specification of object-oriented systems.

Tests, and in particular Test-Driven Development [15], can be seen as the

opposite of formal approaches, as testing does not mathematically

guarantee the conformance of the code to the specification. However,

a carefully designed test suite consumes fewer resources than formal

verification and can be performed by the development team without

mathematical background. Finally, code reviews and demonstrations can

further contribute to the quality and reliability of the produced software

system, but are less accurate than tests.

The second important characteristic of good software is for its

architecture to be both adaptable and resilient to change [61]. In other

words, the system must be prepared to handle changing requirements and

additional functionality without compromising efficiency in performing its

current tasks. In addition, good architecture needs to promote reusing parts

of the software in other systems operating in related domains.

Maintainability is another important characteristic and indicator of

good software. We expect not only the constructed product to be easy to

use, but also its source code to be modifiable, readable and well

documented. The community of researchers and practitioners have

established a number of principles and solutions, adhering to which

contributes to reusable, adaptable, maintainable and stable design [61].

Above all, however, the software system must perform what it was

designed to. There is little use for a system that operates reliably, can be

adapted to different settings and is easily maintainable, if it does not

conform to the requirements of its users. In other words, it is not sufficient

for the system to do things right – it also needs to do the right things.

15.2. Quality attributes

ISO/IEC 9126-1 Software engineering – Product quality [75] is an

international standard for evaluation of software quality. The quality model

established in the standard classifies software quality in a structured set of

characteristics (functionality, reliability, usability, efficiency, maintainability

and portability) and related sub-characteristics [184][75]. Of these main

characteristics, in our opinion two are especially important in the context of

large and complex software systems: maintainability and usability.

111

Maintainability is a characteristic that allows drawing conclusions

about how well the software can be maintained. Its sub-characteristics,

according to the standard, are: analysability, changeability, stability,

and testability [75].

Usability is a general term that refers to how well the software can

be understood, learned, used and “liked” by the developers. It can be used

for assessing, controlling and predicting the extent to which the software

product (or parts of it) satisfy usability requirements. The

sub-characteristics related to usability follow straightforwardly from the

definition. They are: understandability, learnability, operability,

and attractiveness [75].

Reusability of software (system, component) is a special case of

usability and shares its sub-characteristics. It can be understood as an

ability of software for integration in other systems. While we want to

ensure maintainability and usability of a software system as a whole, we

want its parts (e.g. modules or components) to be reusable.

Furthermore, we are interested in adaptability, a sub-characteristic

of portability. Adaptability allows drawing conclusions about how well

software can be adapted to environmental change [75].

This sub-characteristic is important given the open-endedness of SFI.

15.3. Software metrics

Objective and quantitative methods are needed to state that a system shows

certain characteristics. Performing tasks according to the specification and

requirements (i.e. doing things right) can be achieved through mathematical

proofs or successfully completed test suites. Matching the expectations of

the end users (i.e. doing the right things) can be ensured with a dedicated

development process that enables frequent communication between the

stakeholders and the developers and allows the latter group to present

executable, working versions of the system. Finally, maintainability and

reusability, among various other characteristics, can be measured and

controlled based on metrics and measurements [55][40] throughout the

development, even in its early stages and in rigorous settings [128].

Quality of the design

Several metrics for object-oriented design have been established. Three of

them – Abstractness, Instability and Distance – serve as an indicator of

design quality and provide information to the designers regarding the

112

ability of their design to be changed or reused [97]. These metrics do not

depend on the source code; therefore the quality of implementation is not

taken into account.

Instability metric depends on package coupling. It is defined as a

ratio between the outgoing dependencies and the total number of

dependencies of a package. The result thus ranges from zero (no outgoing

dependencies, stable package) to one (only outgoing dependencies,

instable package).

Abstractness of a package is the proportion between the number of

contained abstract units (i.e. interfaces or classes declared abstract) and the

total number of contained entities. As with Instability, the result is between

zero (concrete package) and one (fully abstract package).

The principles of object-oriented design state that the abstraction of

a package should be in proportion to its stability. The Distance metric,

defined as an absolute value of the sum of Abstractness and Instability

minus one, defines the relationship between the stability and abstractness

of a package. Packages with Distance close to zero are equally stable and

abstract. The metric is also commonly used to identify packages that are

either both stable and concrete or instable and abstract, i.e. not changeable

or reusable.

Quality and complexity of the implementation

The metrics introduced by Chidamber and Kemerer [40] are the first

empirically validated set of metrics designed solely for object-oriented

systems. They are commonly used and provide an insight on the complexity,

maintainability and understandability of the system without the need to

investigate the implementation. Most importantly, measures based on those

metrics can be obtained automatically.

The Weighted Method Count (WMC) metric sums methods defined

in a class based on a weighting factor. Typically McCabe Complexity [110]

metric is used as such factor, resulting in WMC indicating the overall

complexity of a class. The high value of WMC negatively affects the

maintainability of the class, as it signifies greater complexity and thus more

effort to modify the code. Moreover, WMC has an inverse dependency

correlation with reusability. High WMC indicates that a class is concrete

and, probably, application specific, therefore the possibilities for reuse

are limited [40][5][76].

113

The Depth of Inheritance Tree (DIT) measures the number of

ancestors of a class. High value of DIT negatively affects most of the quality

attributes related to maintainability and reusability. A class located deep in

the hierarchy contains a high number of inherited methods,

i.e. the functionality that is not explicitly declared or defined in the class. As

a consequence more effort is needed to predict the behaviour of the class,

understand or modify it; therefore understandability, learnability, and

maintainability decrease with the increase of DIT [5][40].

The Number of Children (NOC) metric is a count of direct subclasses

derived from a given class. Since inheritance is a form of reuse, high NOC

positively affects reusability. However, changeability – a sub-characteristic

of maintainability – decreases with higher NOC, as the changes to the class

propagate to all its descendants and it is harder to predict the

effects [40][5][76]. Furthermore, if a class has a large number of children it

may indicate misuse of sub-classing [40].

Coupling Between Objects (CBO) is a count of the number of other

classes to which a given class is coupled. Two classes are coupled if methods

of one class use methods or instance variables defined in another class.

Excessive coupling prevents reusing classes in different contexts.

Furthermore, maintainability is also decreased by high coupling,

as analysability and changeability are negatively affected by a higher

number of dependencies [40][5].

The Response for a Class (RFC) measures the count of methods that

can potentially be executed in response to a message received by that class.

The response set for the class are thus the public methods and methods

directly called by them. High response decreases maintainability, as it

negatively influences all its sub-characteristics. The time and effort needed

to understand, analyse or modify the class is increased with high RFC,

as there are many method calls involved in a single response. Furthermore,

testability is also more difficult, as the number of methods to be tested

is greater [40][5].

The Lack of Cohesion in Methods (LCOM) relies on a concept of

method similarity. Two methods of the same class are similar if they access

a common field. LCOM for a class is calculated as the number of method

pairs which are not related minus the number of related pairs; or 0 if such

result is negative [126]. Cohesiveness of methods within a class is desirable,

as it promotes encapsulation; lack of cohesion implies that a class should

probably be divided into two or more subclasses [40]. High LCOM

114

negatively influences maintainability, portability and reusability, as it is a

sign of increased, unnecessary complexity and poor design [5][40].

The effects of the abovementioned six metrics on adaptability and

the attributes of maintainability and reusability are given in Table 10 [5].

A minus sign (‘-’) is used whenever an increase in metric value decreases

the attribute; by analogy plus symbol (‘+’) indicates a positive correlation

and zero (‘0’) shows no effect. For example, the attractiveness increases

with the depth of inheritance tree (DIT), but decreases when there is high

coupling between objects (CBO). The latter metric, on the other hand,

has no effect on learnability and operability.

 Attribute WMC DIT NOC CBO RFC LCOM

M
a

in
ta

in
-

a
b

il
it

y
 Analysability - - 0 - - -

Changeability - - - - - -
Stability 0 - 0 - 0 -
Testability - 0 0 - - -

(R
e

-)

U
sa

b
il

it
y

 Understandability - - + - - -
Learnability - - + 0 0 0
Operability - - + 0 0 0
Attractiveness + + + - + -

 Adaptability - - 0 - - -
Table 10. Effect of Chidamber and Kemerer metrics on quality attributes.

We expect system constructed with SFI to be highly maintainable and

adaptable. Moreover, we want the layers located high in the hierarchy or

introduced early to the system to be reusable. Based on the effect of metrics

on the quality attributes the NOC metric should have high values, whereas

other values should be kept low.

16. Empirical validation

BioImageXD2 was the first project built with Stepwise Feature Introduction

that any measurement plan was applied to. Thus, with respect to quality

assessment, we cannot perform any comparison with other software built

with SFI. Moreover, it is also impossible to prove that the paradigm

improves the quality of the constructed software compared to systems

developed without it. Instead, we may relate our results to generally

accepted standards and measure only the overall quality of

the constructed software.

115

16.1. Measurements

The construction of any large and complex software system is tedious and

laborious. A discipline to follow the principles of the paradigm is required

from the development team and the customer. In order to objectively assess

the quality of the constructed system a measurement plan can be prepared

and implemented throughout the development.

The measurement plan was created and carried out during and after

the development of BioImageXD2, using Structure Analysis for Java

(STAN) [125] toolset and plug-in Metrics [152] for Eclipse development

environment [50]. During the construction of the plan we used the Software

Quality Metrics compendium [5] for metrics definitions and quality

attributes. The aim of metrics plan is to ensure that the software has met its

primary goals, i.e. it is easy to extend and manage.

To enable comprehensive measurements the source code of

BioImageXD2 has been divided into a number of packages, as shown in

Figure 61. The division has been made to promote encapsulation of related

functionality and to minimise unnecessary coupling. It also reflects the roles

of different classes in the system and identifies its parts.

Figure 61. Organisation of the source code of BioImageXD2.

116

Package metrics

Due to the way BioImageXD2 was constructed, we expect from the

architecture that the packages containing the definitions of module types

(the abstract layer) are highly abstract and stable. In case of the module

implementations we want the opposite to be true: the packages should be

very concrete, but instable due to depending on high number of classes.

The relation of stability and abstractness should be preserved for the

packages that contain the functionality of the intermediate layers.

The results of measurements are given in Table 11. The results

follow our predictions. Abstractness decreases while going to the concrete

layers, while Instability increases accordingly. Furthermore, all the

packages have a reasonable Distance value, meaning that their abstractness

and stability are balanced.

Layer Package Instability Abstractness Distance

Abstract bio.base.modules 0.2 0.9 0.1
Module handler bio.base.handlers 0.83 0 0.17
Common
implementation
(system)

bio.base.util 0.24 0.57 0.19

Common
implementation
(module)

bio.util.modules 0.45 0.53 0.02

Module
implementation

bio.modules.
filereaders

1 0 0

bio.modules.
.filewriters

1 0 0

bio.modules.
.processes

1 0 0

bio.modules.
.visualisations

1 0 0

Table 11. Package metrics for modules.

Based on these results we can conclude that the organisation of the source

code and its higher-level design are reusable and maintainable. In addition,

modular architecture and high abstractness of the component layers

increase adaptability, as introducing new functionality is possible without

additional effort.

117

Design complexity

The data for six metrics defined by Chidamber and Kemerer [40] have been

collected for the whole system. We present the results based on two

examples: processes in Table 12 and file data in Table 13. The former

represents modules, while the latter – module-specific implementation of

data representation.

Class (layer) WMC DIT NOC CBO RFC LCOM

Module (abstract) 0 0 4 8 8 0
AbstractModule

(common implementation –
system)

19 1 5 1 18 51

AbstractProcess
(common implementation –

module)
8 2 10 2 16 15

AbstractVTKProcess
(common implementation –

third-party specific)
8 3 13 0 7 1

GaussianNoiseFilterProcess
(module implementation)

5 4 0 7 17 4

ColouringProcess
(module implementation)

55 4 0 27 105 33

Table 12. Results of Chidamber and Kemerer metrics for processes.

Class (layer) WMC DIT NOC CBO RFC LCOM

BioData (abstract) 0 0 3 15 21 0
AbstractBioData

(common implementation –
system)

9 1 4 0 6 0

BioFile (abstract) 0 1 1 1 2 0
AbstractBioFile

(common implementation –
module)

24 2 2 2 21 42

AbstractVTKImageFile
(common implementation –

third-party specific)
12 3 5 2 17 25

Abstract2DImageFile
(common implementation – file

type specific)
6 4 4 1 10 15

PNGFile (module impl.) 1 5 0 0 2 0
Abstract3DImageFile
(common implementation – file

type specific)
4 4 2 0 5 0

LSMFile (module impl.) 13 5 0 0 10 1
Table 13. Results of Chidamber and Kemerer metrics for file data.

118

With the exception of one class – the colouring process –the results of the

measurements are satisfactory. There is an increase in WMC, RFC and LCOM

metrics in the common implementation layers caused by the raising

complexity, as new functionality and common behaviour is introduced. This

increase, however, does not cause the numbers to reach alarming levels.

The value of CBO is high in the abstract layer, where the interactions

between components are defined. Furthermore, the coupling for the

concrete processes layer is high because of the functionality provided by

third-party library.

The layers were created as described in previous sections –

by abstracting functionality common to features introduced one after

another. This fact is reflected in the DIT and NOC metrics. The former

naturally increases as the classes belong to more concrete layers.

The classes contained in the concrete layers are not inherited, thus NOC is

zero. This metric increases for the intermediate common implementation

layers and keeps moderate values for the fully abstract ones.

The class ColouringProcess stands out of the abovementioned

analysis. The values of RFC, CBO and WMC for this class are unexpectedly

high, especially when compared with other classes. The class is large

(720 lines of code) and expanded (total of 36 fields), which negatively

affects both RFC and WMC. Since processes – in general – are more oriented

towards graphical user interface, high CBO can be explained by the

complexity of such interface and a high number of graphical components

displayed on screen.

The other two metrics, however, indicate that the programmers

responsible for implementation of the class produced non-optimised,

lengthy code. Similar results were noticed for other classes that deliver

complex functionality. Previously we mentioned that the programmers

involved in the project were students, who did not have prior occasion to

work with construction of large-scale software. This fact justifies poor

metric results for classes that implement complex problems.

Regular code reviews were held in order to reduce the number of

defects and improve coding style. The classes, for which such supervision

was not possible, were of noticeably lower quality. Furthermore, the quality

of the code was addressed during daily meetings, in which the conclusions

from code reviews were presented to the programmers. We have found that

such reviews also motivate the programmers and improve their learning.

119

16.2. Relation to generally accepted

standards

The representative excerpts from the results of the measurement program

carried out during the development of BioImageXD2, due to the lack of data,

cannot be compared to neither previous version of the software nor other

systems constructed with SFI. However, we can relate the results to typical

values found in other software projects.

During and after the development of BioImageXD2 we used STAN

toolkit [125] for automated metrics collection. For each metric it defines a

(configurable) range, which the measured value should satisfy. The default

ratings for the metrics introduced by Chidamber and Kemerer are listed in

Table 14. For two of the metrics, NOC and LCOM, the defaults are

not available, as they vary from one project to another.

Bound WMC DIT NOC CBO RFC LCOM

Lower 0 0 n/a 0 0 n/a
Upper 100 6 n/a 25 100 n/a
Table 14. Default thresholds for Chidamber and Kemerer metrics.

The toolkit enables also gathering the average values for each metric on a

system level, i.e. taking into account its every class. The results are

presented in Table 15. The full report is available in Appendix 4.

Metric Value Number of
violations

Number of Top Level Classes 333
Number of Packages 34

Average Number of Methods per Class 6.21
Estimated Lines of Code 27601

Average Cyclomatic Complexity
1.40

(max 22)
8

Average Distance
-0.19

(min -1)
8

Average WMC
8.70

(max 113)
2

Average CBO
3.84

(max 46)
6

Average RFC
11.01

(max 151)
3

Average LCOM 30.94
Table 15. System-wide metrics for BioImageXD2.

120

Given the size of the system, the number of metric violations is surprisingly

low. Their analysis revealed that the violations are caused only by a few

classes that tackle complex problems – which is a result of inexperience of

the programmers, as we mentioned previously. The problematic code,

however, does not affect the overall quality of the design indicated by the

metrics. Most notably, the effects of the violations are not propagated to

other elements of the system.

16.3. Code pollution

In order to provide more meaning to the analysis of the results of the

measurement plan, we utilise the concept of pollution provided by the STAN

toolkit [126]. The Pollution of an artefact (package, class, etc.)

is a non-negative number that serves as a quick indicator for the amount of

metric violations caused by the artefact and its descendants. The pollution

gives an impression of a structural quality; however, it depends on the

metrics and their preferences. Since we use the pollution as an indicator,

we rely on its default settings (standards), as provided in the tool and

described in the previous section.

The pollution diagram is drawn as a chart diagram with sections

representing metrics that violate the standards. The size of each section

corresponds to the pollution given metric causes to the artefact.

The pollution diagram for BioImageXD2 source code is shown in Figure 62.

Figure 62. Pollution diagram for BioImageXD2.

121

As it can be noticed, the metric Estimated Lines of Code is violated the most

and contributes the most to the pollution (39%). This metric is applied to

classes and methods. It approximates the number of source code lines of an

artefact, excluding comments, empty lines and import statements. A method

violates this metric if it contains over 120 estimated lines of code;

for classes the limit is raised to 400.

Other violations are less significant in terms of pollution: Fat metric

contributes to 20% and Number of Fields to 14%. The latter is applicable

only to classes, whereas the former also to packages. The Fat metric of a

package is the edge count of its unit dependency graph, which contains all

the top-level classes of the package. For a class this metric is the edge count

of its member graph, which contains all fields, methods and member

classes. The Number of Fields metric is simply the number of attributes

declared in a class.

The results of all three metrics straightforwardly indicate that the

code is too expanded, i.e. it contains too many lines of code. The fact that the

programmers responsible for the code were not professionals, but rather

non-experienced students, must be taken into account. The complexity of

the code produced by the programmers was excessively high, especially

whenever the solution to the problem was difficult or required analysis of a

number of different scenarios. These issues, however, resolved with time,

as the Team gained experience and were instructed to focus more on

optimising their solutions.

16.4. Perception of the developers

Subjective perception of the developers was gathered in addition to the

measurements of the source code for the project BioImageXD2. An online

survey, presented in Appendix 1, was carried out after the development

finished.

The three members of the development team and the Product

Owner were asked to fill a questionnaire of 27 questions divided

into 6 groups. The questions were detailed; therefore the survey can be

seen as a replacement of face-to-face interviews, especially given such a low

number of participants. We focus on major findings from the survey in this

chapter; more detailed analysis is presented in Appendix 2.

122

The Team

A significant part of the survey focused on the suitability and the evaluation

of the development process used with BioImageXD2. The process was in

general well perceived by the Team. The developers underlined the

possibility of adjusting the process to their liking, as well as pointed high

potential for reuse in future projects of similar complexity.

Minor problems were reported in understanding the process by one

of the Team members not familiar with agile development philosophy.

However, once the developer was given more information about the

process and the paradigm of SFI, no further concerns were reported.

The organisation of work on the project and communication

between the programming team and the customer was well supported by

the development process. Its agile nature further helped in overcoming the

difficulties of the development and adjusting it to the changes in

requirements and setting.

Product Owner

The survey indicated certain problems related to the role of the Product

Owner. The reported troubles concerned mostly the adaptation to the

development process and were further supported by the Product Owner

rating the process and its suitability low. Based on the results of the survey

and our experience, we can indicate a possible origin of the situation.

We assume that the problems may have been caused by the lack of

detailed information about the progress of the development, despite the fact

that such data was available online through the issue tracking system. A

solution to this problem might be to provide more explicit interaction and

information exchange between the Team and the Product Owner. This can

be achieved e.g. by shortening sprints. However, in applications as complex

as BioImageXD2 short development cycles may not be possible. An

introduction of short mid-sprint progress meeting with active participation

of the Product Owner might be seen as an alternative. This would give the

Owner more control over the development and also allow the Team to

deliver more usable software.

16.5. Evaluation of the measurements

The measurements we performed and presented previously clearly show

that the architecture of BioImageXD2 supports code reuse. The layered

design and low complexity of code introduced in each layer enables the

123

code to be learned and understood without additional effort, which in turn

leads to increased maintainability. The components with clearly defined

responsibilities and a limited number of dependencies enable the system to

be easily extended, thus contributing to the overall adaptability of the

constructed software.

BioImageXD2 is a system that is based on its predecessor with

respect to commonly used features, but with redesigned and refactored

architecture. No quality assessment was performed during the development

of the previous version of the software, hence we may not assess the impact

of SFI on the quality of the software. Our most valuable data is the

subjective perception of the developers involved in the construction of both

systems, which we presented earlier.

Based on the collected evidence we presented, it is clear that the

goals set for the reengineering of BioImageXD were reached. The

application of Stepwise Feature Introduction resulted in constructing a

system that is of good quality. The software we built according to the

paradigm is maintainable, reusable and adaptable. Moreover, according to

the measurements, the architecture conforms to the best practices of

object-oriented design and is up to the object-oriented standards.

The strongest statement we can make in these conditions is that

applying SFI to the development allows creating a system that adheres to

the principles of object-oriented design and is reusable and maintainable.

Moreover, it does not seem to disrupt the rules of design and negatively

affect complexity of produced software. As the paradigm was not evaluated

previously at all, we consider these results to be a significant achievement.

17. SFI and object-oriented design

Object-oriented design is the process of planning a system of interacting

objects for the purpose of solving a software problem [188]. It is a natural

choice when object-oriented programming languages are to be used for the

implementation. The paradigm of SFI was designed to use such

languages [8], hence it is essential to ensure that the application of the

paradigm does not violate the basic principles of design. The analysis

presented in this section concerns the extended paradigm; the results,

however, are also applicable to the unmodified version of SFI.

124

The basic constructs of object-oriented programs, objects, are

utilised by SFI to introduce features to the system in construction. Each

object (or its class) encapsulates one, and only one, feature. Inheritance is

an essential characteristic of object-orientation. It corresponds to feature

extension and, for languages that support multiple inheritance, also feature

combination. This mechanism provides a natural and straightforward

opportunity for working with different features of the system.

Stepwise Feature Introduction is a paradigm that provides an

organised way of constructing software. Object-oriented programming,

on the other hand, is a method of representing a software system as a

collection of interacting objects. Therefore, SFI is an addition,

not a replacement, to object-orientation.

In object-orientation packages provide a way to organise software

in terms of general functionality. The principles of object-oriented design

are of use when grouping related classes together to promote code reuse

and reduce the complexity of a system. The packages play no other role in

object-oriented programming. The purpose of layers of SFI is similar,

but a different method is used to achieve it. Moreover, layers are an

essential structure of the paradigm.

Stepwise Feature Introduction groups classes together based on

their relation to a service provided in each layer. This grouping is not

caused nor affected by the design guidelines. Adhering to SFI ensures that

each layer delivers well-defined and self-contained functionality that can be

further extended. Our objective here is to show that layers created in such

manner adhere to the principles of object-oriented design, which are vital

for the construction of high quality software systems.

The principles of object-oriented design are intended to make the

resulting software reusable, manageable and robust. These design

principles formed as a result of work of many researchers and engineers,

including B. Meyer, B. Liskov and R. C. Martin. They can be seen as

indicators of good style in design of object-oriented software systems.

While adhering to these principles is not a necessity, it often provides

significant benefits to the system, increasing its reusability or robustness.

The design of both systems presented in the thesis follows these rules.

There are five main principles concerning the design of classes,

three regarding the design of packages and three about coupling between

packages [109], as shown in Figure 63. Other design guidelines have also

125

been proposed [114][83][89], but we consider them to be the consequences

or variants of the eleven design principles we focus on in this section.

Figure 63. The principles of object-oriented design.

17.1. Class design

The requirements of a system often change during its development and also

after it is released and used. The Single Responsibility Principle states that

because each functionality is an axis of change, it should be a separate class.

A class should have one, and only one, reason to change, so that when a

modification to software requirements causes this class to change, the

remaining parts of the system are not affected. Furthermore, a modification

to database schema, graphical user interface, report format, or any other

segment of the system should not force that class to change [98].

In other words, each class should have a clear and consistent functionality it

is responsible for.

Adhering to the Single Responsibility Principle when designing

classes ensures that each class has one, precise functionality. SFI follows

this principle naturally, as each feature introduced to the system

encapsulates a small, well-defined piece of functionality in a class. Therefore

each class has a single responsibility and only one reason to change.

The Open-Closed Principle requires that software entities are open

for extension, but closed for modification [114][99]. This means that all new

functionality can be achieved by adding new subclasses or methods, or by

reusing existing code through delegation [91]. This principle, in fact, should

be satisfied by all the software systems, not only the object-oriented ones,

by replacing inheritance with similarly behaving mechanisms.

The paradigm of Stepwise Feature Introduction can be seen as a

more general version of the Open-Closed Principle. New features are added

Class design

•Single Responsibility

•Open-Closed

•Liskov Substitution

•Interface
Segregation

•Dependency
Inversion

Package design

•Reuse-Release

•Common Closure

•Common Reuse

Package coupling

•Acyclic
Dependencies

•Stable
Dependencies

•Stable Abstractions

126

to the existing system by extending existing services (in object-oriented

terminology: inheritance), adding new service users or combining existing

features (multiple inheritance or delegation). SFI does not prevent the

developers from changing the source code – and neither does the principle

– instead the paradigm provides an organised way of extending the existing

code.

The Liskov Substitution Principle defines substitution of subtypes by

stating that an instance of derived class should be able to replace any

instance of its superclass, without the user of the class noticing

any difference [90][92]. This principle allows subclasses to be used in the

context of their superclasses. Moreover, the tests of the superclass can be

executed for its subclasses as well [100]. This principle can be seen as the

fundamental principle of object-orientation.

The Liskov Substitution Principle defines the substitution of types

within one hierarchy. The paradigm of SFI requires that the old

functionality is preserved whenever new features are added or existing

ones are combined. This in turn guarantees that the classes containing new

functions can be safely used whenever their parent classes are needed,

with the same result. It is important to emphasise that the paradigm itself

does not enforce any method to do the actual check. It is up to the designers

and developers to provide such tools, be it regression testing

or formal verification.

The Interface Segregation Principle states that the dependency of

one class on another should be restricted to the smallest possible

interface [101]. A common understanding of this principle is that entities

should depend on as little, as possible. The reduction of information that

one class needs to know about another is a consequence of the Single

Responsibility Principle, adhering to which causes a class to be specialised

and have a well-defined functionality. The Interface Segregation Principle

concerns only the dependencies between classes – instead of relying on the

whole exposed interface a class should depend only on what it needs to

perform its functions.

As we said previously, in Stepwise Feature Introduction a class is a

service provider or a user or both. The interface to the class is determined

by the service it provides. As the features are introduced one by one,

in small yet fully executable increments, the interface is thus as small

as possible in the current circumstances. Such construction of the system

127

allows service users to depend on a small, well-defined interface of the

provider, and therefore conforms to the Interface Segregation Principle.

The Dependency Inversion Principle forces the implementation

details to depend on abstractions [93]. The entities that implement a

high-level policy should not depend on the modules that implement the

low-level ones, but rather they both should depend on some well-defined

interfaces [97]. This principle is most commonly applied when designing

interfaces to classes. Such interface is defined based on the desired

functionality of a class, rather than on the implementation details. In other

words, the interface of an entity is what other entities should rely

and depend upon.

SFI naturally provides a mechanism to adhere to the Dependency

Inversion Principle. Each layer encapsulates a feature, which is made

available by one (or more) service providers. The users of such service can

only depend on its interface, not on the implementation. Moreover,

with respect to the overall system functionality, layers introduced earlier

are more general and contain less functionality than the later ones.

This helps to retain the correct direction of dependencies even more.

17.2. Package design

The Reuse-Release Equivalence Principle deals with the design of packages,

which group related classes together. It states that the granule of reuse is

the granule of release [94]. In order to effectively reuse code in a different

software project, this code must arrive in a complete black box package

which is to be used, but not changed [102]. The rule also claims that the

granule of reuse-release is the software package.

The software built according to SFI organises the software in layers,

which can be used by other layers or classes, only based on the available

interfaces. The layer itself cannot be changed. We can thus equate the terms

package (with respect to the design principles) and layer. In other words, in

terms of SFI, the granule of reuse and release is the layer;

hence the Reuse-Release Equivalency Principle is fulfilled.

The Common Closure Principle says that classes within a released

component should share dependencies and be related to each other.

That is, if one of them needs to be changed, they all are likely to need

to be changed [94][103]. This principle prevents tightly coupled classes to

be released in different packages. Moreover, adhering to the Common

128

Closure Principle minimises the propagation of a change internal to a

package to different parts of the software.

The tightest dependency between classes developed with SFI is

between a feature and its direct users. As mentioned earlier, such classes

together belong to a single layer and are released together.

Therefore, the Common Closure Principle is preserved.

The Common Reuse Principle is a consequence of the reuse-release

equivalence [104]. The classes in a package are reused together;

if one of the classes in a package is reused, all of them are [94].

More generally, the dependencies of the classes of the reused package are

inherited by the software part reusing it.

Although in SFI it is possible to directly reuse a service provider, due

to not knowing the dependencies between such provider and other classes

in its layer, a whole layer must be depended upon. In other words, relying

on a feature contained in a layer results in the propagation of such

dependency to all the classes contained in the layer. Therefore, a class using

a service provider in fact depends on the whole layer – which follows

the Common Reuse Principle.

17.3. Package coupling

The Acyclic Dependencies Principle is onq of the three principles that

concern package coupling. It states that there must not be any cycle in the

dependency structure of the packages [94] [105]. More precisely,

the directed graph with nodes corresponding to packages and edges to the

dependencies must be acyclic.

The layers of software built according to the paradigm of SFI may

only depend on the functionality available at the moment of introducing

them to the system. As features are introduced one after another,

rather than in parallel, there is no risk of creating a cycle in the

dependencies between layers, thus satisfying the Acyclic Dependencies

Principle.

The Stable Dependencies Principle enforces the dependencies

between packages to be in the direction of the stability. A package should

only depend upon packages more stable than it is [95]. Stable means here

hard to change [106].

When developing software system incrementally with SFI the

simplest and the most crucial features are usually implemented first.

Customer feedback after every iteration of the development process

129

ensures that these core features rarely change once they have been

extended. On the other hand the features that have been added recently are

more likely to be revised after obtaining the customer feedback. The layers

with such features are easy to change as such modifications do not affect

other parts of the system. We consider layers containing such features as

instable, as opposed to the stable ones containing the core functions.

Therefore, the direction of the dependencies follows the Stable

Dependencies Principle.

The Stable Abstractions Principle states that the abstractness of a

package should be in proportion to its stability [95]. For a package

abstractness is calculated as a ratio of the count of the abstract classes it

contains to the number of all the classes. Therefore, a package that contains

only abstract entities should have maximum stability i.e. should be nearly

impossible to modify. Adhering to this principle yields similar results as the

Dependency Inversion Principle for class design – the more concrete

packages depend on the abstract and stable ones. As a result the changes to

the instable packages do not propagate to the abstract packages.

The Stable Abstractions Principle is a consequence of the Stable

Dependencies Principle and is related to the Open-Closed Principle [107]

and, as such, it is also preserved by SFI. We have previously stated that the

earlier layers contain less functionality, while the recent layers are the

opposite – they extend previous features and provide more detailed

behaviour. As we look through the hierarchy of layers, the later the layer

was added, the more functionality it contains or utilises. The stability of the

layers behaves in the opposite way; hence we can state that the structure

adheres to the principle of stable abstractions.

Part VI:

Discussion

133

18. Related approaches to

software construction

The goal of designing a system is, in its most general sense, to identify parts

of software and define communication between them. Object-oriented

design helps in decomposing system into objects, which later interact by

message passing. However, the principles of design recognise that certain

issues are related to a number of different objects and do not clearly fit

such an approach.

 The design patterns [61] can be used to solve or simplify common

design problems, related in particular to structuring and modelling the

system behaviour. Interestingly, these problems often arise due to the

features of object-orientation itself [65]. The majority of them is not found

when using a different programming language [120] or an alternative

design approach. Furthermore, certain object-oriented design patterns, like

Model-View-Controller [143], are in fact architectural styles and predate the

concept of pattern by several years. Therefore, they can be applied

regardless of the used design approach.

Stepwise Feature Introduction can be seen as a development

philosophy that accommodates the evolution of a software system. It not

only states the principles on how software should be structured, but also

defines methods of extending its functionality. We have shown that the

object-oriented programming languages are a natural choice for the

paradigm. In this chapter we present other approaches to system

development that can be seen as alternatives to SFI. Moreover,

the methodologies we describe can usually be represented in terms of

objects and implemented in object-oriented programming languages and

thus incorporated within the paradigm.

18.1. Aspect-Oriented Development

The objects in object-oriented design represent the primary functionality of

a system. However, certain requirements cannot be clearly separated in this

manner and span over a number of objects or packages. Aspect-Oriented

Development [78] is an emerging software development paradigm, which

seeks to establish new modularisation schemes. The primary focus is on

aspects, which represent distinct concerns précised in the requirements,

and join points in the code that combine the behaviour provided by aspects.

134

Aspect-orientation focuses on the identification, specification and

representation of cross-cutting concerns, i.e. those requirements that span

across multiple parts of the domain model.

Components and aspects

The major modularisation principle of Aspect-Oriented Development is

based on whether or not a given property of a system can be cleanly

implemented. Clean implementation means that the code is well-localised

and easily accessed. Components are typically units of functional

decomposition of the system [78] and – by definition – can be cleanly

implemented. Moreover, the implementation may be done in any

programming language, in particular an object-oriented one.

Not all of the properties of the system can be represented this way.

This is caused by the fact that most programming languages and

development methodologies offer only one mechanism for decomposition

of a system into subsystems. Those parts of the functionality that cannot be

cleanly implemented are called aspects of the system [78].

Aspects are thus perceived as properties of the system that

influence – or cross-cut – a number of components. Such perspective can be

used to explain e.g. the existence of different extensions to pure

object-oriented languages, like dynamic scoping or exception catching

mechanisms [78]. These extensions help programmers implement certain

aspects of the final system. Aspects cross-cut components; hence their

implementation may require a dedicated programming language.

Join points and aspect weaving

Aspects and components of a system can be implemented using different

programming languages. The resulting executable program must combine

the behaviour of aspects with the one of components. Therefore, the

languages used for components must have syntax that allows aspects to

coordinate with them. Such elements are known as join points. These points

do not have to be explicit constructs; rather they are clear, perhaps implicit,

elements of component semantics [78].

The process of generating a join point representation of components

and execution (or compilation) of aspects with respect to it, is known as

aspect weaving. The aspect-oriented programming languages can be

designed to allow weaving either during compilation or at run-time.

135

Aspects and objects

Aspect-oriented development can be seen as a domain-specific language

built on top of the programming language [58][170]. Furthermore, it is

a technique complementary to object-orientation [175] and can be

represented in object-oriented terms. The components of a system can be

implemented using objects and mechanisms common to object-oriented

programming, like inheritance and composition. The aspects, on the other

hand, should be seen as collections of methods that extend the functionality

of a component. Such approach to design promotes concept separation,

code reuse and increases the overall maintainability and understandability

of the final system.

Aspect-Oriented Development versus SFI

Aspect-oriented development proposes a modularisation of concepts that is

different from the one used in object-oriented design and thus in SFI.

Certain cross-cutting concerns – logging, security auditing, transactions,

multithreading or graphical user interface – are present in the majority of

computer applications [157]. By targeting specifically the representation of

such concerns aspect-oriented development is beneficial to the construction

of software systems.

 The focus of aspect-oriented development is on the decomposition

of requirements and their interactions. It promotes code reuse, enables

better encapsulation and increases maintainability of the system.

The evolution of the software system, once it is built, is not covered.

However, aspect-oriented development aims to isolate the non-changing

domain knowledge from frequently modified requirements, which

facilitates adding and changing functionality after the system is constructed.

Aspect-oriented development imposes an additional restriction on

the language, i.e. the ability to describe and weave aspects. The support for

aspect-oriented development has been added to the majority of the modern

programming languages. In some cases, however, there are significant

changes over the syntax of the original language. This may impact the

development process negatively, as the developers need to learn and adapt

to the new setting. Stepwise Feature Introduction, on the other hand, places

no additional constraints on any object-oriented programming language

and thus does not require the additional effort to construct, adapt or modify

an existing language.

136

Aspect-Oriented Development and SFI

The paradigm of Stepwise Feature Introduction does not enforce

a particular development methodology, yet it suits best object-oriented

design and programming. Therefore, it is suitable for designing and

implementing components in aspect-oriented development,

where traditional development methods can be used.

The aspects and the process of weaving, on the other hand, require a

different approach. The elements of a system built with SFI may be service

providers, service users or both. However, with aspect-oriented

development the components do not use the service provided by the

aspects. In fact, functionality of an aspect is merged with the one of a

component. Therefore, at run-time there is no distinction between the

service provider and service user.

In order to be efficiently used with aspect-oriented development,

the paradigm of SFI should be modified. More precisely, the relation

between service providers and service users must be reworked. However,

on a general level aspect-oriented development is possible with the

paradigm as it is described in this thesis. Each layer of the system can

contain components and aspects, which are then combined by the weaver.

18.2. Data, Context and Interaction

A runtime structure of an object-oriented program often bears little

resemblance to its code structure [61]. Furthermore, it is difficult to reason

about the behaviour of an object-oriented system based on its code [61].

This dissonance between the static code structure and its dynamic

representation at run-time negatively affects the quality and usability of the

software. Data, Context and Interaction is a paradigm for development of

object-oriented systems [142], aimed at reducing this gap. The central

concepts of the paradigm are, as implied by the name, data, context,

and interaction.

The original intention of Data, Context and Interaction was to allow

more efficient modelling of the model part in Model-View-Controller [143]

architecture. However, it is more general, as its principal idea is to separate

the static code that describes state of the system from the dynamic code

that is responsible for its behaviour. This goal is achieved by organising

code into different perspectives, each focused on certain properties

of the final system [142].

137

Data

The Data perspective represents the static part of the system, i.e. its domain

model. It is implemented with classes that should contain only the primitive

operations on the data. In other words, the classes should not have any

functionality that corresponds to any particular use case.

Context

A property of the final system is, at run-time, executed by a network of

interacting objects. Contexts are responsible for constructing such network,

in terms of roles different objects play in it [142]. Each Context encapsulates

a use case, or a part of it.

The Context is the class (or its instance) that includes in its code the

roles for a use case it implements. Moreover, it must also contain the code

that maps these roles into objects at run-time to be able to execute the use

case [144][189]. In other words, Context must be able to locate or construct

objects that will be put to their roles in a scenario it represents [144],

as shown in Figure 64.

Figure 64. Combining roles and objects in Data, Context and Interaction.

138

Interaction

The Interaction perspective focuses solely on the behaviour of the system.

It describes end-user algorithms in terms of roles different objects play, not

in terms of the objects themselves [144]. The code specifies how roles

collaborate with each other to realise a property of a system [142].

This is achieved by specifying stateless roles [189], or through role

methods, that are injected into every object that realises a given role [142].

In other words, the dynamic code of a role is added to the static code of

data, based on a current context. Within a given Context each role is always

bound to a single object; however, it is possible that one object plays many

roles at the same time [189].

Data, Context and Interaction versus SFI

The paradigm of Data, Context and Interaction, in many respects, unifies a

number of approaches that appeared around object-oriented development

and programming [144]. Moreover, it seamlessly fits agile

development [16], as it separates the stable domain knowledge (Data)

from the rapidly changing use cases (Context and Interaction) [144].

Such combination also supports future extensions and modifications of a

system once it is built.

Due to the fact that Data, Context and Interaction injects the

behaviour to run-time objects, it is suitable for modern dynamic,

object-oriented programming languages, like Ruby [57]. More static

languages, including Java [132], often do not support or support partially

run-time modification of existing objects. Hence, the application of Data,

Context and Interaction to the development using such language may not be

possible. Stepwise Feature Introduction, on the other hand, relies solely on

subtype polymorphism and inheritance and may be thus applied to a vast

majority, if not all, of object-oriented programming languages.

Data, Context and Interaction focuses on a construction and

evolution of a single software system. The paradigm of SFI produces a

collection of reusable and executable software systems. Therefore, it

appears more appropriate to use SFI whenever product lines are of concern.

Data, Context and Interaction and SFI

We have said previously that in SFI a class is a service provider, service

user, or both. The domain-knowledge part (Data) is static and rarely

changes. The Data classes do not benefit from any particular service;

139

hence they are not service users. They do not carry any functionality either,

beside the simplest and the most primitive. Therefore, the only service they

may provide is the access to the information and the ability to modify it.

The Interactions specify the behaviour of the system and different

roles objects may play. In SFI terms they are service providers.

The Contexts, on the other hand, are service users only, as they benefit from

both Data and Interactions.

A system built with SFI has a layered architecture, with each layer

providing a well-defined increment in functionality. We can map such

increment to a Context, which represents a particular use case.

With increasing level of abstraction Contexts can be used as domain objects

(Data) [144], thus giving rise to a layered hierarchy of Contexts,

each providing more functionality. Contrary to SFI, however, such hierarchy

would be based on usage, rather than inheritance.

Finally, Contexts are capable of binding roles to different objects

and triggering the interaction between them. Therefore, they ensure that

the system is executable after each increment and thus establish

the essential property of a system built with SFI.

18.3. White- and black-box frameworks

Software frameworks are of key importance when developing large-scale

object-oriented systems. They offer higher productivity and promote

reusing both the design and the code [145].

The use of frameworks with software of significant scale is often

beneficial, as they abstract certain processes and patterns that are common

to a wide range of systems [174]. This often means that the framework

controls the execution of the software. Using the framework results in not

implementing parts (or all) of the intended behaviour of the software,

instead relying on the framework to provide it.

Based on a way a software system utilises framework-provided

functionality, we can identify black-box and white-box frameworks. As it can

be expected, very seldom a framework can be categorised solely as

black-box or white-box. Typically, real-life frameworks combine these

approaches; thus, a framework often shares properties of both [145].

Black-box frameworks

In black-box frameworks the classes provided by the framework can be

readily instantiated, meaning that they contain concrete code. As a result,

140

the framework as a whole can be used as-is. The use of a black-box

framework is thus mainly done through composition of objects provided by

it [77][145]. While presenting BioImageXD2 we mentioned VTK [81] and

ITK [80] image-processing libraries. They have all the properties of

black-box frameworks and can be perceived as such.

Frameworks of this kind do not require any knowledge about their

internal structure, apart from precise description of classes that are to be

instantiated in the custom code. Typically, this is achieved by extensive

documentation of use cases for each such class. Moreover, black-box

frameworks usually do not affect the design of software that uses them.

White-box frameworks

White-box frameworks, on the other hand, represent general model of a

certain domain. The custom code is required to inherit parts of that model

in order for the framework functionality to be utilised [77][145].

In languages that do not support multiple inheritance this significantly

influences the design of the system. The software that uses the framework

is often designed to be an extension, or a part, of the framework it uses.

Such approach requires the users to know not only the domain

model, but also the internal structure of the framework. As opposed to

black-box frameworks, white-box frameworks are often shipped together

with the source code in addition to documentation.

BioImageXD2 is an example of a white-box framework. It models

image processing and analysis and allows introducing new behaviour by

creating subclasses of existing components.

Frameworks versus SFI

The major advantage of using frameworks is their abstraction of certain

repeatable patterns that occur in many large-scale software systems.

A typical examples include logging the execution trace, communicating with

external databases, presenting the user interface, and so on.

The frameworks aim at simplifying the software that is being

constructed. This is evident especially in the case of black-box frameworks,

which provide ready-made solutions and usually do not affect the design of

software that uses them.

SFI, in principle, operates on a higher level of abstraction. It deals

with software development in general. The paradigm is supposed to

simplify the process of constructing the software, not directly the software

141

itself. By this we mean that while we expect the system constructed with SFI

to be simpler, maintainable and reusable, it will still need to implement all

the required functionality. For that reason whenever implementation of a

system should be simplified by removing some of its parts or delegating

some of its functions, frameworks are a better solution than SFI. They are

also more suitable in settings with fixed set of requirements and an

established development process, as the paradigm, to some degree, affects

those aspects of system development as well.

Frameworks and SFI

Due to high level of abstraction of SFI, frameworks can be utilised within

the paradigm. More importantly though, the software produced with SFI

can be seen as a framework in itself. Any (sub)system created with the

paradigm represents a simplified domain model (compared to subsequent

development iterations). Its functionality can be customised and extended

by extending existing classes (white-box framework) or by combining them

(black-box framework).

Defining framework as an external entity that abstracts certain

repeating patterns and represents a (customisable) domain model means

that it is possible to apply the definition to other areas as well. For example,

Scrum [154] is a process framework, within which different techniques can

be applied to construct software.

In this sense, SFI is also a framework for agile software development

that covers all aspects of the development. The principles of the paradigm

outline the resulting architecture of the system (based on layers), propose a

process framework (Scrum) and means to ensure the quality of the

constructed software (correctness and testing). SFI has properties of both

white- and black-box frameworks. While certain aspects of the paradigm,

like development process or quality assurance, can be modified by

providing alternatives, SFI can be also used as-is, without any changes.

18.4. Feature-Driven Development

Feature-Driven Development is an iterative and incremental agile software

development process. It incorporates a number of industry-recognised best

practices to deliver tangible, working software repeatedly

in a timely manner [193][42].

142

Best practices

The practices that Feature-Driven Development builds on are all driven

from a client-valued feature perspective. There are eight practices present

in the core of this development method [42].

Domain Object Modelling provides a framework which is later

extended by adding features. It is constructed by exploring and explaining

the domain the software will be applied to.

Developing by Feature means that any requirement that is complex

and is estimated to take more than two weeks to implement should be

divided into smaller parts, each called a feature. Focusing on relatively small

and manageable pieces of functionality allows the software to be

constructed in short iterations.

Individual Code Ownership distributes the code among the

developers and makes each developer responsible for owned parts of code.

This does not prevent other people involved in the development from

modifying code. Rather, it makes a selected developer responsible for

performance, consistency and integrity of the code he or she owns.

Feature Teams are dynamically formed to develop a small increment

in functionality. The teams are formed and disbanded as the need arrives,

however, as a rule, each feature should be implemented by a group.

This practice ensures that design decisions and implementation are made

collectively and that alternatives are considered.

The primary role of Inspections is to ensure high quality of the code.

The developers that perform code and design reviews focus on detecting

defects and identifying those parts that do not meet quality standards set

for the project.

Configuration Management, as the name implies, focuses on

managing the implemented features. Moreover, its goal is to identify which

parts of code are responsible for a given feature. Finally, the purpose of

Configuration Management is to keep track of changes done to each class

and to the project as a whole.

Maintaining Regular Builds ensures that there is an executable

version of the system that is up to date and can be presented to the

stakeholders. Regular Builds also help in detecting integration errors and

provide constant feedback about the direction of development.

The final practice – Visibility of Progress and Results – is common to

most agile development processes. Not only it motivates the developers,

but also helps managers in steering the project in the right direction.

143

Feature-Driven Development versus SFI

SFI is a more detailed paradigm than Feature-Driven Development, in terms

of the areas of the development it covers. For example, the latter does not

place any constraints on the architecture of the developed system or its

development process, neither it ensures that the correctness is preserved

from one iteration to another. For the above reasons Feature-Driven

Development is a more suitable technology for developing non-layered

or non-object-oriented systems.

Feature-Driven Development and SFI

As an agile process, Feature-Driven Development shares certain

characteristics with SFI. Most notable ones are the division of functionality

into small, manageable steps and the requirement of having an up-to-date,

executable version of the systems.

Due to the nature of SFI another part of Feature-Driven

Development – Configuration Management – is straightforwardly provided.

SFI has a precise definition of a feature. Furthermore, the classes in the

system play roles of service providers and service users. This enables

features to be tracked and thus binds functionality with code that

implements it. In addition, the layering of the system allows the changes

and modifications to be easily identified.

A closer look at the development of BioImageXD2 reveals that,

in fact, all of the practices of Feature-Driven Development can be

incorporated into SFI. This not only proves the versatility of SFI, but also is

a strong argument for applying it in practice.

19. Conclusions

In the thesis we focused on presenting and evaluating the paradigm of

Stepwise Feature Introduction and its suitability to the development of

large-scale software systems. We have illustrated the basic concepts of the

paradigm and explain the key characteristics of software built according to

SFI with our pilot case study, ReThink. Then we have described

BioImageXD2 and its layered, modular architecture and its components to

provide the context for the analysis of the quality of the product. We also

confronted our findings with the subjective perception of the developers

and generally accepted standards in object-oriented software development.

144

SFI fits well iterative development processes, in particular Scrum.

We have shown that different concepts of the paradigm match the ones of

the process. Furthermore, we proposed an extension of Scrum in order to

have better control over development and integrate it with the paradigm.

Based on the above considerations and the evaluation presented in

the thesis we can state that the paradigm of Stepwise Feature Introduction

provides the rigour needed for the development of object-oriented systems.

The paradigm can be applied to the development on different levels of

abstraction. Requirements, components, layers and features enable better

and clearer communication with the customer or within the development

team. Moreover, the layered structure of the system – or rather, a collection

of systems – allows the code to be more easily extended and modified.

Finally, the application of agile development methods to the construction

gives all the stakeholders more control over the development. Therefore,

we can solve our primary research problem and state that Stepwise Feature

Introduction is suitable to the development of large-scale software systems.

19.1. Overview of research projects

Our work is practical and strongly related to software construction and

engineering techniques, therefore a project-driven approach was chosen as

the most beneficial. The SFI framework we presented in this thesis has been

successfully applied to the development of two software systems that

varied in purpose, scale and environment.

The application of Stepwise Feature Introduction organises the

software in layers. Each layer provides a well-defined increment in

functionality of the whole system and constitutes a point, from which future

modifications may derive. Furthermore, the application of the paradigm

results in a collection of different systems, as the software must be

executable after each added layer.

The collection of systems is evident in case of ReThink, as the game

is available for various platforms (mobile phones, web browsers, desktop

computers and text terminals). The core functionality is organised into

layers shared among the deployment platforms and the server needed for

online gaming. The platform-specific code extends this hierarchy at

different levels, depending on what functionality is required

for each platform.

The architecture of BioImageXD2, on the other hand, is more

modular. The system contains a number of interacting components

145

(modules) and enables its users to construct a pipeline for processing

digital images. The layering scheme is not as apparent as in the case of

ReThink, due to significantly greater complexity and distinct architecture,

yet it is still an important part of the design. The dedicated system

executable is responsible for constructing the graphical user interface and

setting up the environment, in which the modules operate. Furthermore,

it can be configured to allow the execution of the system at a certain layer

or to include a limited set of modules.

19.2. Extensions of SFI

Prior to the research presented in the thesis the paradigm of Stepwise

Feature Introduction had been applied in practice to the development

of medium-sized software systems, in a controlled environment [116].

The construction of large-scale software requires the paradigm to be

adjusted according to the project requirements, e.g. in the area of daily

routine or overall system design. The general development approach

proposed by the paradigm, however, does not change, regardless of

the project domain and complexity.

The requirements of ReThink forced minor modifications to the SFI

framework, in addition to what we presented in the thesis.

High specialisation of team members was caused by the variety of

platforms, for which the game was to be deployed. Furthermore, the

overlapping requirements of ReThink required careful iteration planning.

The order, in which the features were introduced to the system, was thus

decided before the first iteration.

The complexity of BioImageXD2 resulted in a number of significant

modifications of the paradigm. The high-level architecture of the system –

its components and relations between them – was designed upfront

through prototyping, which may be seen as a contradiction of agile

development philosophy. However, the architecture was designed to be

modular, changeable and extendable and thus suitable for SFI.

The existence of the architecture and the interface layer resulted in

an extension of the paradigm of SFI. In traditional SFI development a class is

a service provider, service user or both. However, the interfaces used to

declare components of the system neither provide, nor utilise, any real

service. Instead, they precise the ways in which the service ought to be used

and implemented. Furthermore, the interfaces define the structure of code,

which must be followed in the implementation; hence the name service

146

borders. An important observation should be made at this point.

While the interfaces themselves are not executable, on the abstract level it

is still possible to refer to them as providers or users of services their

implementations provide.

Software execution as part of testing was another modification to

the development paradigm, as it was impossible to effectively and

efficiently test certain features of the developed systems. The inclusion of

this additional step in the development cycle proven to be successful and

straightforward, thus confirming the flexibility of the paradigm.

19.3. Threats to validity

We are aware of several limitations and shortcomings our research had.

The most important consideration is that we have presented only two case

studies. Although they were sufficiently different to allow generalisation,

at least to a certain degree, it is not possible to thoroughly evaluate SFI

without developing more software with it.

Despite being developed for external stakeholders, both systems

were constructed in a controlled academic setting, with students doing the

majority of programming. Therefore, the conditions in which the software

was developed differed from the industry standards.

There is not enough data on other projects with similar scale

developed with SFI to compare our results with. The systems, to which the

paradigm was applied previously, were relatively small and served more as

a proof of concept rather than a real-life software systems [9].

After the development of one of the projects we present in this

thesis finished, we conveyed a survey among the involved people. We used

its results to indicate areas of the paradigm that require a closer look.

However, due to the limited number of participants the survey bears no

statistical significance and general conclusions cannot be drawn.

Finally, the observations and conclusions we make in the thesis

concern the modified version of the paradigm, not the original one.

As a consequence, it is impossible to assess our improvements compared to

the original version of SFI. Instead, we aimed at showing that SFI in its

modified state suits the development of large and complex software

systems and enables construction of reusable, maintainable systems.

Due to our work based on only two projects, we anticipate that the

paradigm may require even more changes to fit other specific settings and

147

requirements. Nonetheless we consider our improvements to be a solid step

forward in applying SFI to construction of complex software systems.

19.4. Future work

The results of our research open new possibilities for further work.

These are determined by the type of the projects our technique was

applied to. At this point we can indicate two main areas, which should be

investigated, namely architectures and development processes.

Since Stepwise Feature Introduction was successfully applied to the

projects presented in the thesis, we would like to evaluate the suitability of

the paradigm to development of other kinds of systems. In particular, we

are interested in construction of modern, web-based database applications.

This type of software gains increasing popularity due to the phenomenon

of Web 2.0 [156][64].

The requirements set for Web 2.0 systems often change during the

development or shortly after the deployment; moreover, such software

needs to be reliable, scalable and extendible. Based on our experience we

believe that the paradigm would offer stability and contribute to the

reusable architecture; however, we would like to collect evidence to

support such claim and examine the degree of improvements. Furthermore,

a number of Web 2.0 applications experience a rapid grow in the number of

users, development personnel and required resources. Thus, it would be

possible to evaluate the paradigm when the development and run-time

environments are rapidly scaled up.

Web 2.0 applications are often implemented with dynamically typed

languages. The paradigm has been successfully applied to a development

with such language [9]; therefore we can conclude that the choice of

programming language is irrelevant, as long as object-orientation

is supported.

The databases of Web 2.0 applications are often modelled purely in

object-oriented terms, with the help of object-relational mappings.

However, on the enterprise level there is often a need to model a database

with a dedicated language. The applicability and suitability of Stepwise

Feature Introduction to legacy database systems needs to be examined.

We expect the results to provide an insight on amendments necessary for

the paradigm to support development of non-object-oriented systems.

One of the contributions of the thesis is the agile process that

matches the paradigm of Stepwise Feature Introduction. However,

148

we anticipate that in certain cases this approach may not be suitable.

For instance, development of BioImageXD2 required prototyping in addition

to regular agile development. Therefore, we would like to investigate other

types of processes with respect to their applicability to SFI.

Our future research would greatly benefit from carrying out

numerous software projects from diverse domains. These developments,

regardless of their size and complexity, are needed to provide more

scientific significance to our current findings.

Once our research results are validated, we would like to investigate

how the paradigm and its accompanying development process suit an

industry setting. The projects described in this thesis produced usable

software of good quality, but were carried out in an academic environment.

These developments were oriented towards achieving research results

instead of creating business value, the most important factor in the

industry. Furthermore, the academic setting did not introduce practices,

techniques and tools commonly found in organisations. We are confident

that the paradigm can be adapted to suit these settings. However, we need

to determine what elements of SFI need to be changed and specify the

details of such modifications.

Stepwise Feature Introduction should not be considered as

a generic remedy to all problems in all kinds of developments. Its use during

software construction or reengineering should be preceded with a careful

analysis of the drawbacks and the benefits. Furthermore, in each case the

paradigm should be adjusted to match the requirements and the constraints

of the system being developed, its stakeholders and the development team.

Provided that these conditions are satisfied, we are confident that the

paradigm of Stepwise Feature Introduction positively affects the quality of

the produced software and can be successfully applied to development of

large-scale, complex systems.

Appendices

151

1. Survey: Evaluation of BioImageXD2

development process

The survey was carried after the development of the software has finished.

The development team were asked 27 questions divided into 6 groups.

1.1. About you

1. What was your role (roles) in the development process?

a. Programmer

b. Designer

c. Customer

d. End user

2. What was your experience at the beginning of the BXD2 project,

with respect to your role in the project?

a. Poor

b. Below average

c. Average

d. Good

e. Excellent

3. For how many months have you worked on the project?

1.2. Project setting and complexity

4. How would you rate the complexity of the project, based on your

experience and knowledge of similar software projects?

a. Very simple

b. Simple

c. Not too simple, not too complex

d. Complex

e. Very complex

5. How often did you use the following development tools? (constantly,

very often, seldom, very rare, not at all)

a. Issue tracking system

b. Project wiki

c. Version control

6. Please rate the usefulness of the tools used during the development.

(very useful, somewhat useful, not useful, have not used the tool)

a. Issue tracking system

152

b. Project wiki

c. Version control

7. On scale from 1 (lowest) to 10 (highest) how would you rate the

competence of the development team?

1.3. About the development process

8. How would you rate the development process and its suitability to

the project?

a. Very suitable

b. Somewhat suitable

c. Barely suitable

d. Not suitable

9. How would you rate the development process, with respect to…?

(no problems at all; minor problems, quickly resolved; major

problems, took time to resolve; major problems, never resolved)

a. Your understanding of the process

b. You following the process

c. Adapting the process to your needs

10. How often did you participate in the following meetings? (always,

from time to time, rarely participated, never participated, not

applicable)

a. Daily scrum

b. Sprint planning

c. Sprint review

11. How would you rate the usefulness of each type of meeting? (very

useful, somewhat useful, not useful)

a. Daily scrum

b. Sprint planning

c. Sprint review

12. Do you think that the development process used with BXD2 can be

used successfully when applied to a different project?

a. Yes

b. No

c. Maybe

153

1.4. Design and implementation

13. At the beginning of the BXD2 project, how familiar you were with

the following concepts? (no knowledge, poor, below average,

average, good, excellent)

a. Object-oriented programming

b. Object-oriented design

c. Agile development

d. Java programming language

e. Image processing methods and techniques

f. Stepwise Feature Introduction

g. Digital microscopy

14. How would you rate your knowledge about the architecture of the

system?

a. No knowledge

b. Some knowledge

c. Quite good knowledge

d. Very good knowledge

15. To what extent did the design of the system take the following into

account? (largest possible, important consideration, sometimes,

seldom, never, do not know)

a. Design for extensibility

b. Design for performance

c. Design for usability

d. Design for maintainability

e. Design for modularity

f. Design for code reusability

16. To what extend did the implementation of the system take the

following into account? (largest possible, important consideration,

sometimes, seldom, never, do not know)

a. Code for extensibility

b. Code for performance

c. Code for usability

d. Code for maintainability

e. Code for modularity

f. Code for code reuse

154

17. Do you think that the layered architecture, followed by the stepwise

introduction of features, can be of any use in other software

projects? (yes, no, maybe)

a. In smaller, less complex projects

b. In projects of similar size and complexity

c. In larger, more complex projects

18. On a scale from 1 (lowest) to 10 (highest) how would you rate the

suitability of the architecture and the design to the project?

19. On a scale from 1 (lowest) to 10 (highest) how would you rate the

suitability of the architecture and the design to the development

process?

1.5. Comparison with previous

development

20. Have you participated in the development of the Python version of

BioImageXD at Åbo Akademi? If your answer to this question is No,

please proceed to the next section.

a. Yes

b. No

21. Compared with the previous development, how would you rate the

following? (much worse, worse, no change, better, much better, not

applicable)

a. Coding

b. Designing

c. Testing

d. The software you built

e. Your understanding of the project

22. Compared with the previous development, how would you rate the

following? (much worse, worse, no change, better, much better, not

applicable)

a. Communication between the customer and the development

team

b. Organisation of the work

c. Adaptation of the development process to the situation

d. The overall satisfaction from the project

155

1.6. Concluding remarks

23. What, in your opinion, went good during the development?

24. What, in your opinion, went bad?

25. What surprised you during the development, with respect to the

development process and the software?

26. What should be improved in the development process for future

projects?

27. If there are things related to the project and the development that

have not been covered by this survey, please, write them here.

2. Survey analysis

In this Appendix we present the most important findings of the survey that

was carried after the development of BioImageXD2 finished. The questions

were detailed enough for the survey to act as a replacement for face-to-face

interviews with the developers. The conclusions from the survey should

contribute to improving the development process and increasing the

possibility of its future reuse.

2.1. Personal information

The survey started with questions about personal information and prior

experience. In the first question the respondents were asked to identify

their role in the project. The distribution of answers is shown in Figure 65.

The development process was an adaptation of Scrum, which relies

on cross-functional development team. The survey results confirm that this

was also the case with BioImageXD2.

156

Figure 65. Roles of team members in the development process.

Figure 66 lists the experience of respondents prior to the project, with

respect to their roles. The Product Owner is a specialist in the area of digital

microscopy. The Team, on the other hand, consisted of computer science

and computer engineering students that participated in similar, but smaller

projects in the past; hence the overall experience of the programmers can

be rated as good.

Figure 66. Experience of team members prior to the project.

The respondents were also asked about their knowledge of certain

technologies used or needed during the development. The results are

shown in Figure 67. The results provide a broader context for the analysis

of the remaining questions.

0

1

2

3

Programmer Designer Customer End user Application
specialist

0

1

2

3

Poor Below
average

Average Good Excellent

157

Figure 67. Knowledge of development technologies.

2.2. Project complexity

The complexity of the project was the focus of the second part of the survey.

The respondents rated the project as rather complex, as shown in Figure 68.

As mentioned previously, the survey was carried out once the project

finished. Therefore, the Team and the Product Owner were aware of the

difficulties that arose during the development.

Figure 68. Project complexity.

Once the survey was completed, the developers were asked an additional

question to identify the most complex features. The three-dimensional

visualisation and image segmentation were unanimously chosen. This

selection is further supported with the code metrics presented in the thesis.

2.3. The development process

The questions in the third part of the survey were related to the

development process. The suitability of the process to the development was

0 1 2 3 4

Object-oriented programming

Object-oriented design

Agile development

Java

Image processing

Stepwise Feature Introduction

Digital microscopy

No knowledge

Poor

Below Average

Average

Good

Excellent

0

1

2

3

Very simple Simple Average Complex Very
complex

158

rated positively, as presented in Figure 69. The one outstanding answer was

given by the Product Owner, which implies that certain improvements

related to this role must be made in future.

Figure 69. The suitability of the development process.

The subsequent question focused on the perception of the process by the

developers. More specifically, we were interested in how easy it is for a

developer to understand, follow and adapt the process. The results are

given in Figure 70. Again, the answers are generally in favour of the process.

The major problems were raised by the Product Owner and one

Team member. The Product Owner had major problems in adapting the

process, which further indicates improvements to this role. The problem in

understanding the process, reported by one of the Team members, was also

resolved by providing the programmer with more information about

Stepwise Feature Introduction and agile development methods.

Figure 70. Understanding, following and adapting the development process.

The usefulness of different kinds of meetings was also evaluated, as shown

in Figure 71. The feature review meetings were positively assessed by all

0

1

2

3

Not suitable Barely suitable Somewhat
suitable

Very suitable

0

1

2

3

No problems Minor problems Major problems Problems never
resolved

Understanding Following Adapting

159

respondents. The usefulness of the other two kinds of meetings was graded

similarly high. The results allow us to conclude that all of the meetings have

been organised properly and were needed in the process.

Figure 71. Usefulness of meetings in the development process.

The overall opinion about the development process is positive. From the

developers perception it was straightforward to understand and follow, and

suitable for the developed software. The possible improvements regard the

role of the Product Owner, which should be adjusted to allow more

flexibility, control and information exchange. Our conclusions were further

reflected in the final question of this section, in which the Product Owner

and the Team unanimously agreed that the development process can be

successfully applied to a different project.

2.4. Design and implementation

The fourth section of the survey focused on the design and the

implementation of the system. We asked the Team and the Product Owner

to which extent the essential quality attributes of the system were taken

into consideration during the development. The results are listed in Figure

72; the upper row for each characteristic concerns the design, whereas the

lower is about the implementation.

0

1

2

3

4

Very useful Somewhat useful Not useful / Not
applicable

Daily scrum Planning meetings Review meetings

160

 Figure 72. Characteristics of the design and the implementation.

The goal of the development was to produce a software system that is

modular, maintainable, reusable and extendable. Based on the survey we

can state that the Team and the Product Owner consider the design and the

implementation of BioImageXD2 to have all the required quality attributes.

This subjective perception of the developers supports the results we

obtained with code measurements.

The suitability of the architecture, with respect to the goals of the

project and its development process has also been investigated, as shown in

Figure 73. The respondents were to grade the suitability on the scale from 1

(least suitable) to 10 (best suitable). The responses given by the Product

Owner are noticeably lower than the ones provided by the development

team. This result confirms our initial findings and indicates that the role of

the Product Owner must be reorganised.

0 1 2 3 4

Extensibility

Performance

Usability

Maintainability

Modularity

Code reusability

Largest extent Important consideration

Sometimes Seldom

Never Do not know

161

Figure 73. The suitability of the architecture to the project and to the process.

The overall suitability of the architecture was rated positively. Furthermore,

the respondents consider Stepwise Feature Introduction an approach that

can be reused in other projects, as shown in Figure 74. The paradigm is seen

as an optimal choice for projects of similar or less complexity than

BioImageXD2. The respondents were not convinced whether such approach

is suitable for larger projects.

Figure 74. Possibility of reusing Stepwise Feature Introduction in other projects.

8

7

9

9

10

9

10

10

Average 9,25

Average 8,75

0 2 4 6 8 10

To the project

To the process

Product Owner Team Member 1 Team Member 2 Team Member 3

0

1

2

3

4

Less complex Similar More complex

Yes

Maybe

No

162

2.5. Comparison with previous

development

The final part of the survey was aimed at comparing the development of

BioImageXD2 with its predecessor. Three of the respondents (the Product

Owner and two Team members) answered the questions in this section, as

they were directly involved in the development of the previous version of

the software.

The results are gathered in Figure 75. It can be clearly seen that the

newly developed version is perceived better in any aspect. However, the

overall satisfaction of the development process has not changed for the

Product Owner. Interestingly, all other aspects of the new version are seen

by the Product Owner as better or much better than in the previous

development, which matches the perception of the programming team.

Such answer follows our other observations from the survey and indicates

that the role of the Product Owner should be improved. The positive

answers in the other areas lead to the conclusion that the development

process was successful and produced software that is better, than its

previous version.

Figure 75. Comparison with the development of the previous version.

0 1 2 3

Overall satisfaction

Process adaptation

Work organisation

Communication

Code

Design

Testing

Overall software

Understanding of the project

Worse No change Better Much better

163

3. Listings

Listing 1. Explicit type checking caused by static typing in Java.

01. public class ServerRoom extends SingleGameRoom {
02. /**
03. * Submits the game. Queries before submission.
04. * @param game Game to submit.
05. */
06. public void submitGame(Game game) {
07. if(this.acceptGame(game)) super.submitGame(game);
08. else this.doNotifyGameRejected(game);
09. }
10.
11. /**
12. * Checks if the game can be submitted or not.
13. * @param game Game.
14. * @return If true, game should be submitted,
15. * otherwise rejected.
16. */
17. protected boolean acceptGame(Game game) {
18. return game instanceof ServerGame;
19. }
20. }

164

Listing 2. Unit test for class RectangleBoard from ReThink.

01. package test.pl.unforgiven.bge2.boards;
02.
03. import pl.unforgiven.bge2.boards.RectangleBoard;
04. import pl.unforgiven.bge2.board.Counter;
05. import pl.unforgiven.bge2.board.BoardPlayer;
06. import java.util.Random;
07. import java.lang.reflect.Method;
08. import org.junit.*;
09. import org.junit.runner.*;
10. import org.junit.runner.notification.Failure;
11. import static org.junit.Assert.*;
12.
13. /**
14. * Test class for rectangle board.
15. */
16. public class RectangleBoardTest {
17.
18. protected static final Random RANDOM = new Random();
19. private RectangleBoard board;
20. private int rows, cols;
21.
22. protected RectangleBoard getBoard() {
23. return this.board;
24. }
25.
26. protected int getExpected(boolean rows) {
27. return rows ? this.rows : this.cols;
28. }
29.
30. protected Counter getCounter(int playerNumber) {
31. return new TestCounter((playerNumber%2)==0 ? "foo" : "bar");
32. }
33.
34. @Before public void setUp() {
35. this.rows = RANDOM.nextInt(20)+1;
36. this.cols = RANDOM.nextInt(20)+1;
37. this.board = new RectangleBoard(this.cols, this.rows);
38. }
39.
40. @Test public void testGetDimensions() {
41. assertEquals(this.getExpected(false),
42. this.getBoard().getColumnCount());
43. assertEquals(this.getExpected(true),
44. this.getBoard().getRowCount());
45. assertEquals(this.getExpected(false)*this.getExpected(true),
46. this.getBoard().getSize());
47. }
48.
49. @Test public void testBoardEmpty() {
50. for(int zmp1=0; zmp1<this.getBoard().getSize(); zmp1++)
51. assertNull(this.getBoard().getCounter(zmp1));
52. for(int zmp1=0; zmp1<this.getBoard().getColumnCount(); zmp1++)

165

53. for(int zmp2=0; zmp2<this.getBoard().getRowCount(); zmp2++)
54. assertNull(this.getBoard().getCounter(zmp1, zmp2));
55. }
56.
57. @Test public void testSetting()
58. throws NoSuchMethodException, IllegalAccessException,
59. java.lang.reflect.InvocationTargetException {
60. int col = RANDOM.nextInt(this.getBoard().getColumnCount());
61. int row = RANDOM.nextInt(this.getBoard().getRowCount());
62. Counter ctr = this.getCounter(1);
63. // reflection executes protected method outside of class
64. Method m = this.getBoard().getClass().
65. getDeclaredMethod("setCounter",
66. new Class[]{int.class, int.class, Counter.class});
67. m.setAccessible(true);
68. m.invoke(this.getBoard(), new Object[] {col, row, ctr});
69. assertEquals(ctr, this.getBoard().getCounter(col, row));
70. Counter ctr2 = this.getCounter(2);
71. m.invoke(this.getBoard(), new Object[] {col, row, ctr2});
72. assertEquals(ctr2, this.getBoard().getCounter(col, row));
73. }
74. }
75. // Test runner output: 3 tests passed.

166

Listing 3. Unit test for RethinkBoard from ReThink.

01. package test.pl.rethink.base;
02.
03. import test.pl.unforgiven.bge2.boards.RectangleBoardTest;
04. import pl.unforgiven.bge2.boards.RectangleBoard;
05. import pl.unforgiven.bge2.board.Counter;
06. import pl.rethink.base.*;
07. import java.lang.reflect.Method;
08. import org.junit.Test;
09. import org.junit.runner.*;
10. import org.junit.runner.notification.Failure;
11. import static org.junit.Assert.*;
12.
13. /**
14. * Tests for RethinkBoard.
15. */
16. public class RethinkBoardTest extends RectangleBoardTest {
17.
18. private RethinkPlayer p1 = RethinkPlayer.getPlayer("foo", 100);
19. private RethinkPlayer p2 = RethinkPlayer.getPlayer("bar", 100);
20. private RethinkBoard board = new RethinkBoard(6, 6);
21.
22. protected RectangleBoard getBoard() {
23. return this.board;
24. }
25.
26. protected int getExpected(boolean rows) {
27. return 6;
28. }
29.
30. protected Counter getCounter(int playerNumber) {
31. return (playerNumber%2)==0 ? this.p1 : this.p2;
32. }
33.
34. @Test public void testPushUp()
35. throws NoSuchMethodException, IllegalAccessException,
36. java.lang.reflect.InvocationTargetException {
37. int col = RANDOM.nextInt(6)+1;
38. Method m = this.getBoard().getClass().
39. getDeclaredMethod("pushColumnUp",
40. new Class[]{int.class, RethinkPlayer.class});
41. m.setAccessible(true);
42. m.invoke(this.getBoard(),
43. new Object[] {col, this.getCounter(1)});
44. assertEquals(this.getCounter(1),
45. this.getBoard().getCounter(col, 5));
46. m.invoke(this.getBoard(),
47. new Object[] {col, this.getCounter(2)});
48. assertEquals(this.getCounter(2),
49. this.getBoard().getCounter(col, 5));
50. assertEquals(this.getCounter(1),
51. this.getBoard().getCounter(col, 4));
52. for(int zmp1=0; zmp1<6; zmp1++)

167

53. m.invoke(this.getBoard(),
54. new Object[] {col, this.getCounter(1)});
55. for(int zmp1=0; zmp1<6; zmp1++)
56. for(int zmp2=0; zmp2<6; zmp2++)
57. if(zmp1==col) assertEquals(this.getCounter(1),
58. this.getBoard().getCounter(zmp1, zmp2));
59. else assertNull(this.getBoard().getCounter(zmp1, zmp2));
60. }
61.
62. @Test public void testPushLeft()
63. throws NoSuchMethodException, IllegalAccessException,
64. java.lang.reflect.InvocationTargetException {
65. int row = RANDOM.nextInt(6)+1;
66. Method m = this.getBoard().getClass().
67. getDeclaredMethod("pushRowLeft",
68. new Class[]{int.class, RethinkPlayer.class});
69. m.setAccessible(true);
70. m.invoke(this.getBoard(),
71. new Object[] {row, this.getCounter(1)});
72. assertEquals(this.getCounter(1),
73. this.getBoard().getCounter(5, row));
74. m.invoke(this.getBoard(),
75. new Object[] {row, this.getCounter(2)});
76. assertEquals(this.getCounter(2),
77. this.getBoard().getCounter(5, row));
78. assertEquals(this.getCounter(1),
79. this.getBoard().getCounter(4, row));
80. for(int zmp1=0; zmp1<6; zmp1++)
81. m.invoke(this.getBoard(),
82. new Object[] {row, this.getCounter(1)});
83. for(int zmp1=0; zmp1<6; zmp1++)
84. for(int zmp2=0; zmp2<6; zmp2++)
85. if(zmp2==row) assertEquals(this.getCounter(1),
86. this.getBoard().getCounter(zmp1, zmp2));
87. else assertNull(this.getBoard().getCounter(zmp1, zmp2));
88. }
89. }
90. // Test runner output: 5 tests passed.

168

4. Quality report for BioImageXD2

4.1. Metrics Summary

Metric Value

Number of Libraries 39

Number of Packages 34

Number of Top Level Classes 333

Average Number of Top Level Classes per Package 9.79

Average Number of Member Classes per Class 0.08

Average Number of Methods per Class 6.21

Average Number of Fields per Class 2.08

Estimated Lines of Code 27601

Estimated Lines of Code per Top Level Class 82.89

Average Cyclomatic Complexity 1.40

Fat for Library Dependencies 125

Fat for Flat Package Dependencies 137

Fat for Top Level Class Dependencies 1890

Tangled for Library Dependencies 0%

Average Component Dependency between Libraries 13.23%

Average Component Dependency between Packages 19.96%

Average Component Dependency between Units 9.72%

Average Distance -0.19

Average Absolute Distance 0.27

Average Weighted Methods per Class 8.70

Average Depth of Inheritance Tree 1.35

Average Number of Children 0.60

Average Coupling between Objects 3.84

Average Response for a Class 11.01

Average Lack of Cohesion in Methods 30.94

4.2. Top Violations (20 of 128)

Artifact Metric Value

bio.modules.processes Units 42

bio.modules.visualisations.Visualization3D ELOC 1891

bio.modules.visualisations.Visualization3D Fat 356

bio.modules.visualisations.Visualization3D Fields 111

169

bio.main.BioWindow ELOC 874

bio.modules.processes.HSBColouringProcess ELOC 723

bio.modules.processes.ColouringProcess ELOC 720

bio.modules.visualisations.Visualization3D RFC 151

bio.modules.visualisations.Visualization3D.makeSettingsContents(...)
ELOC 1042

bio.modules.visualisations.Visualization3D CBO 31

bio.modules.visualisations.Gallery ELOC 657

bio.modules.processes.HSBColouringProcess Fat 140

bio.modules.processes.ColouringProcess Fat 156

bio.gui.adapters.swing.SwingXYCanvas ELOC 656

bio.gui.adapters.swing.SwingXYCanvas Fat 198

bio.modules.processes.HSBColouringTask ELOC 490

bio.modules.processes.ColouringProcess Fields 36

bio.main.BioWindow Fat 96

bio.modules.visualisations.animator.SplineEditor ELOC 469

bio.modules.processes.HSBColouringProcess Fields 32

4.3. Pollution Chart

Pollution 1.21

170

4.4. Violations by Metric

Number of Top Level Classes

Artifact Value

bio.modules.processes 42

Number of Methods

Artifact Value

bio.gui.adapters.swing.SwingXYCanvas 84

bio.gui.adapters.swing.SwingListSpinner 52

bio.gui.adapters.swing.SwingListBox 51

bio.util.modules.Config3D 52

bio.gui.components.XYCanvas 57

Number of Fields

Artifact Value

bio.modules.visualisations.Visualization3D 111

bio.modules.processes.ColouringProcess 36

bio.modules.processes.HSBColouringProcess 32

bio.main.BioWindow 28

bio.modules.processes.HSBColouringTask 36

bio.modules.visualisations.Gallery 26

bio.gui.adapters.swing.SwingXYCanvas 21

bio.modules.visualisations.animator.SplineEditor 21

bio.modules.processes.OtsuSegmentationProcess 22

bio.util.modules.Config3D 26

Estimated Lines of Code

Artifact Value

bio.modules.visualisations.Visualization3D 1891

bio.main.BioWindow 874

bio.modules.processes.HSBColouringProcess 723

bio.modules.processes.ColouringProcess 720

171

bio.modules.visualisations.Visualization3D.makeSettingsContents(...) 1042

bio.modules.visualisations.Gallery 657

bio.gui.adapters.swing.SwingXYCanvas 656

bio.modules.processes.HSBColouringTask 490

bio.modules.visualisations.animator.SplineEditor 469

bio.modules.processes.HSBColouringProcess.makeSettingsContents(...) 423

bio.modules.visualisations.Orthogonal 413

bio.modules.processes.ColouringProcess.makeSettingsContents(...) 395

bio.modules.processes.OtsuSegmentationProcess 376

bio.modules.processes.HistogramTask 377

bio.gui.adapters.swing.SwingTable 383

bio.main.BioWindow.getWindow() 457

bio.modules.processes.InterpolationProcess 345

bio.gui.adapters.swing.SwingSplitPanel 351

bio.modules.processes.HistogramTask.calculate(...) 154

bio.modules.processes.OtsuSegmentationProcess.makeSettingsContents(...) 259

bio.modules.processes.InterpolationProcess.makeSettingsContents(...) 304

bio.modules.visualisations.Visualization3D.updateView() 144

bio.modules.visualisations.animator.AnimatorVisualizer 310

bio.modules.visualisations.Visualization3D.volumeRender3D(...) 115

bio.modules.processes.HistogramProcess.makeSettingsContents(...) 171

bio.modules.visualisations.Orthogonal.updateView() 113

bio.gui.adapters.swing.SwingListBox 303

bio.gui.adapters.swing.SwingListSpinner 303

bio.main.SettingsDialog.getSettingsDialog(...) 126

bio.modules.processes.AnisotropicNoiseFilterProcess.makeSettingsContents(...)
180

bio.modules.visualisations.Gallery.makeDisplaySettingsPage(...) 125

bio.modules.processes.CropProcess.makeSettingsContents(...) 174

bio.modules.processes.HistogramTask.calculate(...) 102

bio.modules.visualisations.Gallery.makeViewSettingsPage(...) 104

172

bio.java.util.PackageClassLoader.getClassesForPackage(...) 93

bio.modules.processes.ObjectSeparationProcess.makeSettingsContents(...) 132

bio.vtk.gui.adapters.swing.SwingVTKPanel.VTKPanel.mouseDragged(...) 83

bio.modules.processes.SimpleAdjustProcess.makeSettingsContents(...) 136

bio.modules.processes.AdjustProcess.makeSettingsContents(...) 115

bio.modules.visualisations.Gallery.updateView() 82

bio.modules.processes.MorphologicalWatershedProcess.makeSettingsContents(...) 128

bio.modules.processes.SimpleColouringProcess.makeSettingsContents(...) 124

bio.modules.visualisations.animator.VideoEncoder.getCommandLine(...) 75

bio.modules.visualisations.animator.VideoEncoder.() 73

bio.modules.processes.ResizeProcess.makeSettingsContents(...) 140

bio.modules.visualisations.Orthogonal.makeSettingsContents(...) 88

bio.modules.visualisations.Visualization3D.surfaceRender3D(...) 75

bio.modules.visualisations.Gallery.arrangeDrawingSpace(...) 67

bio.modules.visualisations.animator.AnimatorVisualizer.setView(...) 66

bio.modules.processes.ColocalizationProcess.updateThresholdGUI() 87

bio.math.algorithms.LineClip.clip(...) 64

bio.modules.processes.OtsuSegmentationTask.calculateHistogram(...) 64

bio.modules.processes.HSBColouringTask.createHSBColorLookupTable(...) 66

bio.modules.filereaders.VTKReader.doLoad(...) 64

bio.modules.processes.ThresholdNoiseFilterTask.calculateHistogram(...) 63

bio.xml.XMLNodeMapper.setAttribute(...) 63

bio.modules.processes.AdjustTask.applyNativeTransformation(...) 65

bio.modules.processes.InterpolationTask.applyNativeTransformation(...) 64

bio.modules.visualisations.animator.SplineEditor.getCameraPosition(...) 64

bio.modules.processes.LabellingProcess.makeSettingsContents(...) 83

bio.main.BioWindow.getFileReaderHandler(...) 73

bio.gui.adapters.swing.SwingXYCanvas.(...) 83

bio.modules.processes.ColocalizationProcess.makeSettingsContents(...) 60

bio.main.BioWindow.getVisualisationHandler(...) 60

bio.modules.visualisations.Orthogonal.makeDrawingContents(...) 84

173

Cyclomatic Complexity

Artifact Value

bio.modules.visualisations.Visualization3D.updateView() 19

bio.modules.processes.HistogramTask.calculate(...) 17

bio.java.util.PackageClassLoader.getClassesForPackage(...) 22

bio.modules.processes.HistogramTask.calculate(...) 18

bio.modules.processes.AdjustTask.applyNativeTransformation(...) 17

bio.modules.visualisations.animator.SplineEditor.getCameraPosition(...) 17

bio.modules.processes.InterpolationTask.applyNativeTransformation(...) 16

bio.modules.processes.HSBColouringTask.createHSBColorLookupTable(...) 15

Fat

Artifact Value

bio.modules.visualisations.Visualization3D 356

bio.modules.processes.HSBColouringProcess 140

bio.modules.processes.ColouringProcess 156

bio.gui.adapters.swing.SwingXYCanvas 198

bio.main.BioWindow 96

bio.modules.visualisations.Gallery 109

bio.modules.visualisations.animator.SplineEditor 76

bio.modules.processes.OtsuSegmentationProcess 75

bio.modules.visualisations.Orthogonal 63

bio.gui.adapters.swing.SwingTable 78

bio.vtk.gui.adapters.swing.SwingVTKPanel 73

bio.util.modules.Config3D 100

bio.modules.visualisations.animator.VideoEncoder 69

bio.modules.processes.CropTask 77

bio.gui.adapters.swing.SwingListBox 66

bio.gui.adapters.swing.SwingRadioList 63

bio.gui.adapters.swing.SwingDialog 65

bio.gui.components 66

bio.modules.processes.ResizeTask 67

174

Distance

Artifact Value

bio.gui.adapters.swing.helpers -0.56

bio.gui.helpers -0.58

bio.config.xml -0.75

bio.math -0.83

bio.java.util -1

bio.base.colormodels -0.60

bio.gui.events -0.52

bio.util.image -1

Weighted Methods per Class

Artifact Value

bio.gui.adapters.swing.SwingXYCanvas 113

bio.gui.adapters.swing.SwingSplitPanel 106

Coupling between Objects

Artifact Value

bio.modules.visualisations.Visualization3D 31

bio.main.BioWindow 46

bio.modules.processes.ColouringProcess 26

bio.modules.visualisations.Gallery 34

bio.gui.components.Factory 28

bio.gui.components.ComponentContainer 27

Response for a Class

Artifact Value

bio.modules.visualisations.Visualization3D 151

bio.modules.visualisations.Gallery 110

bio.gui.adapters.swing.SwingXYCanvas 109

4.5. Design Tangles

There are no design tangles.

175

4.6. Package Distance Chart

4.7. Metric Ratings

Count Metrics

Metric Rating Linear

Number of Top Level Classes

Number of Methods

Number of Fields

Estimated Lines of Code

Estimated Lines of Code

176

Complexity Metrics

Metric Rating Linear

Cyclomatic Complexity

Fat

Fat

Fat

Tangled

Tangled for Library

Dependencies

Average Component

Dependency between Libraries

Average Component

Dependency between Packages

Robert C. Martin Metrics

Metric Rating Linear

Distance

Average Absolute Distance

Chidamber & Kemerer Metrics

Metric Rating Linear

Weighted Methods per Class

Depth of Inheritance Tree

Average Depth of

Inheritance Tree

Coupling between Objects

Response for a Class

177

Bibliography

[1] J.-R. Abrial, The B-book: assigning programs to meanings. Cambridge:

Cambridge University Press, 1996.

[2] J.-R. Abrial, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H.

Sørensen, "The B-method", Lecture Notes in Computer Science, vol.

552, pp. 398-405, 1991.

[3] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London, "Incremental

Regression Testing", in Proceedings of Conference on Software

Maintenance, Montreal, Canada, 1993, pp. 384-357.

[4] W. Ahrendt et al., "The KeY System: Integrating Object-Oriented

Design and Formal Methods", in Fundamental Approaches to Software

Engineering. Berlin: Springer Berlin / Heidelberg, 2002.

[5] ARiSA AB. Compendium of Software Quality. [Online].

http://www.arisa.se/compendium/node88.html

[6] Deborah J. Armstrong, "The Quarks of Object-Oriented Development",

Communications of the ACM, vol. 49, no. 2, pp. 123-128, 2006.

[7] R.-J. Back, On the Correctness of Refinement Steps in Program

Development. Helsinki: University of Helsinki, 1978.

[8] Ralph Johan Back, "Software Construction by Stepwise Feature

Introduction", in ZB 02: Proceedings of the 2nd International

Conference of B and Z Users of Formal Specification and Development

in Z and B. Springer-Verlag, 2002.

[9] R.-J. Back, J. Eriksson, and L. Milovanov, "Using stepwise feature

introduction in practice: an experience report", in Proceedings of the

2nd International Workshop on Rapid Integration of Software

Engineering Techniques (RISE 2005), 2005, pp. 2-17.

[10] R.-J. Back and J. von Wright, Refinement Calculus: A Systematic

Introduction. Springer-Verlag, 1998.

[11] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte,

"Verification of object-oriented programs with invariants", vol. 3, no. 6, 2004.

[12] V. R. Basili, "The experimental paradigm in software engineering", in

Experimental software engineering issues: critical assessment and future

directives. New York: Springer Lecture Notes in Computer Science 706, 1993.

http://www.arisa.se/compendium/node88.html

178

[13] V. R. Basili, W. Selby, and D. H. Hutchents, "Experimentation in

Software Engineering", IEEE Transactions on Software Engineering,

vol. SE-12, no. 7, pp. 733-743, July 1986.

[14] Kent Beck, Extreme Programming Explained. Addison-Wesley, 1999.

[15] Kent Beck, Test-Driven Development by Example. Addison-Wesley, 2003.

[16] Kent Beck et al. Agile Manifesto. [Online]. http://agilemanifesto.org

[17] Boris Beizer, Software Testing Techniques, 2nd ed. New York: Van

Nostrand Reinhold, 1990.

[18] Herbert D. Benington, "Production of Large Computer Programs", IEEE

Annals of the History of Computing, vol. 5, no. 4, pp. 350-361, 1983.

[19] Robert V. Binder, Testing Object-Oriented Systems: Objects, Patterns,

and Tools. Addison-Wesley Professional, 1999.

[20] BioImageXD development team. BioImageXD. [Online].

http://www.bioimagexd.net

[21] Rex Black, Managing the Testing Process. Microsoft Press, 1999.

[22] Barry Boehm, "A Spiral Model of Software Development and

Enhancement", ACM SIGSOFT Software Engineering Notes, vol. 11, no.

4, pp. 14-24, 1986.

[23] Barry Boehm and Richard Turner, Balancing Agility and Discipline: A

Guide for the Perplexed, 7th ed. Boston, MA: Addison-Wesley, 2004.

[24] Grady Booch, Object-Oriented Design with Applications, 3rd ed.

Addison-Wesley, 2007.

[25] Chris Bourne, "Think!", Sinclair User, p. 62, 1986.

[26] Jonathan P. Bowen and Michael G. Hinchey, "Ten Commandments of

Formal Methods", Computer, vol. 28, no. 4, pp. 56-63, 1995.

[27] F. P. Brooks Jr., "No Silver Bullet: Essence and Accidents of Software

Engineering", Computer Magazine, 1987.

[28] Frederick Brooks, The Mythical Man-Month, 2nd ed. Addison-Wesley, 1975.

[29] R. W. Butler. NASA LaRC Formal Methods Program. [Online].

http://shemesh.larc.nasa.gov/fm/fm-what.html

[30] M. Butler. Refinement Calculus. [Online].

http://users.ecs.soton.ac.uk/mjb/refcalc-tut/home.html

[31] M. Butler. Refinement Calculus Tutorial. [Online].

http://users.ecs.soton.ac.uk/mjb/refcalc-tut/prognot.html

http://agilemanifesto.org/
http://www.bioimagexd.net/
http://shemesh.larc.nasa.gov/fm/fm-what.html
http://users.ecs.soton.ac.uk/mjb/refcalc-tut/home.html
http://users.ecs.soton.ac.uk/mjb/refcalc-tut/prognot.html

179

[32] M. Butler. Refinement Calculus Tutorial. [Online].

http://users.ecs.soton.ac.uk/mjb/refcalc-tut/laws.html

[33] M. Butler and C. Snook. UML-B. [Online].

http://users.ecs.soton.ac.uk/cfs/umlb.html

[34] Jon Byous, "Java technology: The early years", Sun Developer Network, 1998.

[35] Cambridge University Press. Cambridge Dictionary Online. [Online].

http://dictionary.cambridge.org/dictionary/british/feature_1

[36] Stuart Campbell, "The Your Sinclair Official All-Time Top 100

Spectrum Games", Your Sinclair, 1991.

[37] Jones Capers, Applied Software Measurement, Second Edition ed.

McGraw Hill, 1996.

[38] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, "Beyond Assertions:

Advanced Specification and Verification with JML and ESC/Java2", in

Formal Methods for Components and Objects - Lecture Notes in

Computer Science 4111/2006, 2006, pp. 342-363.

[39] Y. Cheon and G. T. Leavens, "A runtime assertion checker for the Java

Modelling Language (JML)", in Proceedings of the International Conference

on Software Engineering Research and Practice, 2002, pp. 322-328.

[40] S. R. Chidamber and Ch. F. Kemerer, "A Metrics Suite for Object

Oriented Design", IEEE Transactions on Software Engineering, vol. 20,

no. 6, pp. 476-493, 1994.

[41] Paul Clements, David Garlan, Reed Little, Robert Nord, and Judith

Stafford, "Documenting software architectures: views and beyond", in

Proceedings of the 25th International Conference on Software

Engineering, Washington, USA, 2003, pp. 740-741.

[42] P. Coad, E. Lefebvre, and J. De Luca, Java Modeling in Color with UML:

Enterprise Components and Process. Prentice Hall International, 1999.

[43] Computer Science Laboratory, SRI International. PVS Specification

and Verification System. [Online]. http://pvs.csl.sri.com

[44] Computerworld staff. Computerworld Online. [Online].

http://www.computerworld.com/s/article/100542/Computerworld

_Development_Survey_gives_nod_to_C_?taxonomyId=011

[45] J. Crinnion, Evolutionary Systems Development. A practical guide to the

use of prototyping wihin a structured systems methodology. New York:

Plenum Press, 1991.

http://users.ecs.soton.ac.uk/mjb/refcalc-tut/laws.html
http://users.ecs.soton.ac.uk/cfs/umlb.html
http://dictionary.cambridge.org/dictionary/british/feature_1
http://pvs.csl.sri.com/
http://www.computerworld.com/s/article/100542/Computerworld_Development_Survey_gives_nod_to_C_?taxonomyId=011
http://www.computerworld.com/s/article/100542/Computerworld_Development_Survey_gives_nod_to_C_?taxonomyId=011

180

[46] Alan M. Davis, "Operational Prototyping: A New Development

Approach", IEEE Software, no. 7, p. 71, 1992.

[47] Robin S. Davis, Who's Sitting on Your Nest Egg? Austin: Bridgeway

Books, 2007.

[48] E. W. Dijkstra, Notes on structured programming. Academin Press, 1972.

[49] B. Eckel and B. Venners. Artima Developer. [Online].

http://www.artima.com/intv/prodperfP.html

[50] Eclipse Foundation. Open source community website. [Online].

http://www.eclipse.org

[51] Edgewall Software. The Trac Project. [Online].

http://trac.edgewall.org

[52] Holger Eichelberger, "Aesthetics of Class Diagrams", in Proceedings of

the First International Workshop on Visualizing Software for

Understanding and Analysis, 2002, pp. 23-31.

[53] Encyclopædia Britannica. Encyclopædia Britannica Online. [Online].

http://www.britannica.com/EBchecked/topic/486323/quark

[54] J. W. E. Eriksson, Tool-Supported Invariant-Based Programming.

Turku: Turku Centre for Computer Science (TUCS), 2010.

[55] Norman E. Fenton, Software Metrics: A Rigorous Approach, 2nd ed.

London, UK: Chapman & Hall, Ltd., 1991.

[56] C. Flanagan et al., "Extended Static Checking for Java", in Proceedings

of the ACM SIGPLAN 2002 Conference on Programming Language

Design and Implementation, New York, 2002.

[57] D. Flanagan and Y. Matsumoto, Ruby Programming Language, 1st ed.

O'Reilly Media, 2008.

[58] Matthew Ford. (2011, Nov.) Aspect-Oriented Programming in Ruby.

[Online]. http://www.slideshare.net/deimos/aspect-orientated-

programming-in-ruby

[59] K. Forsberg, H. Mooz, and H. Cotterman, Visualizing Project

Management, 3rd ed. New York: John Wiley and Sons, 2005.

[60] Martin Fowler, UML Distilled: A Brief Guide to the Standard Object

Modelling Language. Pearson Education, 2004.

[61] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1994.

http://www.artima.com/intv/prodperfP.html
http://www.eclipse.org/
http://trac.edgewall.org/
http://www.britannica.com/EBchecked/topic/486323/quark
http://www.slideshare.net/deimos/aspect-orientated-programming-in-ruby
http://www.slideshare.net/deimos/aspect-orientated-programming-in-ruby

181

[62] D. Garlan and M. Shaw, "An Introduction to Software Architecture", in

Advances in Software Engineering. New Jersey: World Scientific

Publishing Company, 1993, vol. I.

[63] J. Gorman. WikiWikiWeb. [Online].

http://c2.com/cgi/wiki?FormalSpecification

[64] Paul Graham. Paul Graham Home Page. [Online].

http://www.paulgraham.com/web20.html

[65] Paul Graham. (2002, May) Paul Graham's Home Page. [Online].

http://www.paulgraham.com/icad.html

[66] T. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Pothermel, "An

Empirical Study of Regression Test Selection Techniques", ACM

Transactions of Software Engineering and Methodology, vol. 10, no. 2,

pp. 184-208, 2001.

[67] J. V. Guttag et al., Larch: Languages and Tools for Formal Specification.

Springer-Verlag, 1993.

[68] A. Hall, "Seven Myths of Formal Methods", IEEE Software, vol. 1990,

no. 9, pp. 11-19, 1990.

[69] B. Henderson-Sellers, A Book of Object-Oriented Knowledge.

Englewood Cliffs, NJ: Prentice-Hall, 1992.

[70] S. Henry and M. Humphrey, Comparison of an Object-Oriented

Programming Language to a Procedural Programming Language for

Effectiveness in Program Maintenance. Balcksburg, Virginia: Virginia

Polytechnic Institute, 1988.

[71] Alison Hjul, "Think", Your Sinclair, 1986.

[72] C. A. R. Hoare, "Proof of Correctness of Data Representations", Acta

Informatica, vol. 1, pp. 271-281, 1972.

[73] Allen I. Holub. Holum Associates. [Online].

http://www.holub.com/goodies/uml

[74] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic.

New York: IEEE-SA Standards Board, 2008.

[75] ISO, ISO/IEC 9126-1:2001. ISO, 2001.

[76] S. M. Jamali, "Object Oriented Metrics (A Survey Approach)", Sharif

University of Technology, Teheran, Iran, Course Paper 2006.

[77] Ralph. E Johnson and Brian Foote, "Designing Reusable Classes",

Journal of Object-Oriented Programming, pp. 22-35, 1988.

http://c2.com/cgi/wiki?FormalSpecification
http://www.paulgraham.com/web20.html
http://www.paulgraham.com/icad.html
http://www.holub.com/goodies/uml

182

[78] Gregor Kiczales et al., Aspect-Oriented Programming. Jyväskylä,

Finland: Springer Lecture Notes in Computer Science 1241, Springer-

Verlag, 1997.

[79] B. A. Kitchenham et al., "Preliminary Guidelines for Empirical

Research in Software Engineering", 2001.

[80] Kitware, Inc. ITK Home Page. [Online]. http://www.itk.org

[81] Kitware, Inc. VTK Home Page. [Online]. http://www.vtk.org

[82] D. C. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen, "On Regression

Testing of Object-Oriented Programs", Journal of Systems Software,

vol. 32, pp. 21-40, 1996.

[83] John Lakos, Large-Scale C++ Software Design. Addison-Wesley

Professional, 1996.

[84] V. Le Hahn, K. Akif, Y. Le Traon, and J.-M. Jézéquel, "Selecting an

Efficient OO Integration Testing Strategy: An Experimental

Comparison of Actual Strategies", in Lecture Notes in Computer

Science. Springer-Verlag, 2001, vol. 2072.

[85] G. Leavens. The Java Modelling Language (JML). [Online].

http://www.eecs.ucf.edu/~leavens/JML/

[86] G. T. Leavens and Y. Cheon, "Design by Contract with JML", Iowa State

University, Ames, 2006.

[87] K. Rustan M. Leino and P. Müller, "Object Invariants in Dynamic

Contexts", in ECOOP 2004 - Object-Oriented Programming. Berlin:

Springer Berlin / Heidelberg, 2004.

[88] H. K. N. Leung and L. White, "A Study of Integration Testing and Software

Regression at the Integration Level", in Proceedings of Conference on

Software Maintenance, San Diego, USA, 1990, pp. 290-301.

[89] K. Lieberher, I. Holland, and A. Riel, "Object-Oriented Programming:

An Objective Sense of Style", in Proceedings of Object-Oriented

Programming, Systems, Languages and Applications, San Diego, the

United States, 1988, pp. 323-334.

[90] Barbara Liskov, "Data abstraction and hierarchy", in Addenum to the

Proceedings on Object-Oriented Programming Systems, Languages and

Applications, Orlando, Florida, the United States, 1987, pp. 17-14.

[91] Robert C. Martin. Object Mentor. [Online].

http://www.objectmentor.com/resources/articles/ocp.pdf

http://www.itk.org/
http://www.vtk.org/
http://www.eecs.ucf.edu/~leavens/JML/
http://www.objectmentor.com/resources/articles/ocp.pdf

183

[92] Robert C. Martin. Object Mentor. [Online].

http://www.objectmentor.com/resources/articles/lsp.pdf

[93] Robert C. Martin. Object Mentor. [Online].

http://www.objectmentor.com/resources/articles/dip.pdf

[94] Robert C. Martin. Object Mentor. [Online].

http://www.objectmentor.com/publications/granularity.pdf

[95] Robert C. Martin. Object Mentor. [Online].

http://www.objectmentor.com/resources/articles/stability.pdf

[96] Robert C. Martin. Object Mentor. [Online].

http://www.objectmentor.com/publications/isp.pdf

[97] Robert C. Martin, "Object Oriented Design Quality Metrics: An

Analysis of Dependencies", ROAD, vol. 2, 1995.

[98] Robert C. Martin. Principles Of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?SingleResponsibilityPrinciple

[99] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?OpenClosedPrinciple

[100] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?LiskovSubstitutionPrinciple

[101] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?InterfaceSegregationPrinciple

[102] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?ReuseReleaseEquivalencePrinciple

[103] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?CommonClosurePrinciple

[104] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?CommonReusePrinciple

[105] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?CommonReusePrinciple

[106] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?StableDependenciesPrinciple

[107] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?StableAbstractionsPrinciple

[108] Robert C. Martin. Principles of Object Oriented Design. [Online].

http://c2.com/cgi/wiki?DependencyInversionPrinciple

http://www.objectmentor.com/resources/articles/lsp.pdf
http://www.objectmentor.com/resources/articles/dip.pdf
http://www.objectmentor.com/publications/granularity.pdf
http://www.objectmentor.com/resources/articles/stability.pdf
http://www.objectmentor.com/publications/isp.pdf
http://c2.com/cgi/wiki?SingleResponsibilityPrinciple
http://c2.com/cgi/wiki?OpenClosedPrinciple
http://c2.com/cgi/wiki?LiskovSubstitutionPrinciple
http://c2.com/cgi/wiki?InterfaceSegregationPrinciple
http://c2.com/cgi/wiki?ReuseReleaseEquivalencePrinciple
http://c2.com/cgi/wiki?CommonClosurePrinciple
http://c2.com/cgi/wiki?CommonReusePrinciple
http://c2.com/cgi/wiki?CommonReusePrinciple
http://c2.com/cgi/wiki?StableDependenciesPrinciple
http://c2.com/cgi/wiki?StableAbstractionsPrinciple
http://c2.com/cgi/wiki?DependencyInversionPrinciple

184

[109] Robert C. Martin. WikiWikiWeb (Cunningham & Cunningham).

[Online]. http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

[110] T. J. McCabe, "A Complexity Measure", IEEE Transactions on Software

Engineering, vol. SE-2, no. 4, pp. 308-320, 1976.

[111] Atif M. Memon, "GUI Testing: Pitfalls and Process", IEEE Computer, no.

8, pp. 87-88, 2002.

[112] Atif M. Memon, "GUI Testing: Pitfalls and Process", IEEE Computer,

vol. 8, pp. 87-88, 2002.

[113] G. Meszaros, "Agile Regression Testing Using Record & Playback", in

Proceedings of Conference on Object Oriented Programming System

Languages and Applications, Anaheim, USA, 2003, pp. 353-360.

[114] Bertrand Meyer, Object-Oriented Software Construction. Prentice Hall, 2000.

[115] Microsoft Patterns and Practices Team, Microsoft Application

Architecture Guide, 2nd ed. Microsoft Press, 2009.

[116] Luka Milovanov, Agile Software Development in an Academic

Environment. Turku: TUCS Dissertations, 2006.

[117] G. Myers, Software reliability: Principles and practices. New York:

Wiley, 1976.

[118] J. D. Naumann and A. M. Jenkins, "Prototyping: The New Paradigm for

Systems Development", MIS Quarterly, vol. 6, no. 3, pp. 29-44, 1982.

[119] J. Nielsen, Usability Engineering. Morgan Kaufmann Publishers, 1994.

[120] Peter Norvig. (1998, Mar.) Peter@Norvig.com.

[121] Conrad Nutschan. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/wiki/File:Spiral_model_(Boehm,_1988).png

[122] Kristen Nygaard and Ole-Johan Dahl, "The Development of the SIMULA

Languages", ACM SIGPLAN Notices, vol. 13, no. 8, pp. 245-272, 1978.

[123] Object Management Group. UML. [Online]. http://www.uml.org

[124] Object Management Group, UML 2.3 Specification. Object Management

Group, 2010.

[125] Odysseus Software GmbH. stan4j.com. [Online]. http://stan4j.com

[126] Odysseus Software, GmbH, "STAN Metric Definitions", in STAN

Reference. Odysseus Software, GmbH, 2011.

[127] Michael Olan, "Unit testing: test early, test often", Journal of

Computing Sciences in Colleges, vol. 19, no. 2, pp. 319-328, 2003.

http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign
http://en.wikipedia.org/wiki/File:Spiral_model_(Boehm,_1988).png
http://www.uml.org/
http://stan4j.com/

185

[128] Marta Olszewska (Pląska), On the Impact of Rigorous Approaches on

the Quality of Development. Turku, Finland: TUCS (Turku Centre for

Computer Science), 2011.

[129] Open Source Community. Computer Language Benchmarks Game.

[Online]. http://shootout.alioth.debian.org/u64q/benchmark.php?

test=all&lang=java&lang2=gpp

[130] Oracle, Inc. Oracle Technology Network: Java. [Online].

http://www.oracle.com/technetwork/java/codeconventions-

135099.html

[131] Oracle, Inc. The Java Tutorials. [Online]. http://download.oracle.com/

javase/tutorial/java/nutsandbolts/datatypes.html

[132] Oracle, Sun Microsystems. Java. [Online]. http://www.java.com

[133] S. P. Overmyer, Revolutionary vs. Evolutionary Rapid Prototyping:

Balancing Software Productivity and HCI Design Concerns. Fairfax,

Virginia, USA: George Mason University.

[134] David L. Parnas, "On the Design and Development of Program

Families", IEEE Transactions on Software Engineering, vol. SE-2, no. 1,

pp. 1-9, 1976.

[135] J. B. Pawley, Handbook of Biological Confocal Microscopy. Springer, 2006.

[136] D. E. Perry, S. E. Sim, and S. Easterbrook, "Case studies for software

engineers", in 29th Annual IEEE/NASA Software Engineering

Workshop - Tutorial Notes, 2005, pp. 96-159.

[137] Benjamin Pierce, Types and Programming Languages. The MIT Press, 2002.

[138] Python developers. Python Programming Language. [Online].

http://www.python.org

[139] Stefan Ram. Meaning of "Object-Oriented Programming". [Online].

http://www.purl.org/stefan_ram/pub/doc_kay_oop_en

[140] C. V. Ramamoorthy and H. F. Li, "Pipeline Architecture", Computing

Surveys, vol. 9, no. 1, pp. 62-102, 1977.

[141] S. Redwine and T. Riddle, "Software technology maturation", in

Proceedings of the 8th International Conference on Software

Engineering, 1985, pp. 189-200.

[142] Trygve Reenskaug, "The Common Sense of Object-Oriented

Programming", Department of Informatics, University of Oslo, Oslo,

Norway, 2009.

http://www.oracle.com/technetwork/java/codeconventions-135099.html
http://www.oracle.com/technetwork/java/codeconventions-135099.html
http://www.java.com/
http://www.python.org/
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en

186

[143] Trygve M. H. Reenskaug, "The original MVC reports", University of

Oslo, Oslo, 1979.

[144] Trygve Reenskaug and James O. Coplien, "The DCI Architecture: A New

Vision of Object-Oriented Programming", Artima Developer, Mar. 2009.

[145] Dirk Riehle, "Framework Design: A Role Modeling Approach", Zürich,

Ph.D. Thesis 2000.

[146] D. Robson, "Object-oriented software systems", Byte, vol. 6, no. 8, pp.

74-86, 1981.

[147] C. Robson, Real World Research, 2nd ed. Blackwell, 2002.

[148] M. Rosson and S. R. Alpert, "The cognitive consequences of object-oriented

design", Human Computer Interaction, vol. 5, no. 4, pp. 345-379, 1990.

[149] G. Rothermel and M. J. Harrold, "Analyzing Regression Test Selection

Techniques", IEEE Transactions on Software Engineering, vol. 22, no.

8, pp. 529-551, 1996.

[150] Winston Royce, "Managing the Development of Large Software

Systems", in Proceedings of IEEE WESCON, 1970, pp. 1-9.

[151] Per Runeson and Martin Höst, "Guidelines for conducting and

reporting case study research in software engineering", Empirical

Software Engineering, vol. 14, pp. 131-164, 2009.

[152] Frank Sauer. Metrics 1.3.6. [Online]. http://metrics.sourceforge.net/

[153] Ken Schwaber, Agile Project Management with Scrum. Microsoft Press, 2004.

[154] Ken Schwaber, "SCRUM Development Process", in Proceedings of the

10th Annual ACM Conference on Object Oriented Programming

Systems, Languages, and Applications (OOPSLA), 1995, pp. 117-134.

[155] Ken Schwaber and Jeff Sutherland, Scrum. The Official Guide.

Scrum.org, 2010.

[156] Prashant Sharma. TechPluto. [Online].

http://www.techpluto.com/web-20-services/

[157] SharpCrafters, "Producing High-Quality Software with Aspect-

Oriented Programming", SharpCrafters, Technical White Paper 2011.

[158] Mary Shaw, "What makes good research in software engineering?",

International Journal on Software Tools for Technology Transfer, vol.

2002, no. 4, June 2002.

[159] James Shore and Shane Warden, The Art of Agile Development.

Sebastopol, CA: O'Reilly Media, 2008.

http://metrics.sourceforge.net/
http://www.techpluto.com/web-20-services/

187

[160] Sinan Si Alhir, Guide to applying the UML. Springer, 2002.

[161] Paul Smith. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/wiki/File:Waterfall_model.svg

[162] C. Snook and M. Butler, "UML-B: Formal modelling and design aided

by UML", ACM Transactions on Software Engineering and

Methodology, vol. 15, no. 1, pp. 92-122, 2006.

[163] Joel Spolsky. Joel on Software. [Online].

http://www.joelonsoftware.com/articles/AardvarkSpec.html

[164] StartUML development team. StarUML - The Open Source UML/MDA

Platform. [Online]. http://staruml.sourceforge.net/en/about.php

[165] D. Steffen, "The Purpose of System Testing", Information Management

Magazine, no. July/August, 2010.

[166] Mark Stefik and Daniel G. Bobrow, "Object-Oriented Programming:

Themes and Variations", AI Magazine, vol. 6, no. 4, pp. 40-62, 1985.

[167] Sun Microsystems. Java. [Online].

http://java.sun.com/docs/white/langenv/Intro.doc2.html

[168] Jeff Sutherland. Scrum Log Jeff Sutherland. [Online].

http://scrum.jeffsutherland.com/2003/02/scrum-keep-team-size-

under-7.html

[169] The Institute of Electrical and Electronics Engineers, IEEE Standard

Computer Dictionary. IEEE, 1991.

[170] Dave Thomas. (2011, Nov.) C2 Wiki. [Online].

http://c2.com/cgi/wiki?AspectsAndDynamicLanguages

[171] TIOBE. TOPBE Software: Tiobe Index. [Online].

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[172] Unforgiven.pl. ReThink - Challenge Yourself. [Online].

http://www.rethink.pl

[173] Unforgiven.pl. (2010, Mar.) ReThink - Trac. [Online].

http://trac.unforgiven.pl/rethink

[174] William Wake. (1998) Growing Frameworks in Java. [Online].

http://xp123.com/wwake/fw/

[175] Dean Wampler. (2011, Nov.) Object Mentor. [Online].

http://www.objectmentor.com/resources/articles/AOP_in_Ruby.pdf

[176] Peter Wegner, "Concepts and paradigms of object-oriented

programming", ACM SIGPLAN OOPS Messenger, vol. 1, no. 1, pp. 7-87, 1990.

http://en.wikipedia.org/wiki/File:Waterfall_model.svg
http://www.joelonsoftware.com/articles/AardvarkSpec.html
http://staruml.sourceforge.net/en/about.php
http://java.sun.com/docs/white/langenv/Intro.doc2.html
http://scrum.jeffsutherland.com/2003/02/scrum-keep-team-size-under-7.html
http://scrum.jeffsutherland.com/2003/02/scrum-keep-team-size-under-7.html
http://c2.com/cgi/wiki?AspectsAndDynamicLanguages
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.rethink.pl/
http://trac.unforgiven.pl/rethink
http://xp123.com/wwake/fw/
http://www.objectmentor.com/resources/articles/AOP_in_Ruby.pdf

188

[177] Don Wells. Extreme Programming: A gentle introduction. [Online].

http://www.extremeprogramming.org/values.html

[178] Don Wells. Extreme Programming: A gentle introduction. [Online].

http://www.extremeprogramming.org/rules.html

[179] Don Wells. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/wiki/File:XP-feedback.gif

[180] L. White and H. Almezen, "Generating test cases for GUI

responsibilities using complete interaction sequences", in

Proceedings of 11th International Symposium on Software Reliability

Engineering, San Jose, 2000, pp. 110-121.

[181] Wikipedia contributors. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Software_testing&oldid=

384823849

[182] Wikipedia contributors. Wikipedia, the Free Encyclopedia. [Online].

http://en.wikipedia.org/wiki/File:Scrum_process.svg

[183] Wikipedia contributors. Wikipedia, the free encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Scrum_(development)&

oldid=383854649

[184] Wikipedia Contributors. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=ISO/IEC_9126&

oldid=408552093

[185] Wikipedia Contributors. Wikipedia, the Free Encyclopedia. [Online].

http://en.wikipedia.org/wiki/File:Confocalprinciple_in_English.svg

[186] Wikipedia contributors. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Software_prototyping&

oldid=394516037

[187] Wikipedia contributors. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Criticism_of_Java&oldid=

428806901

[188] Wikipedia contributors. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Object-oriented_design

&oldid=389294192

[189] Wikipedia contributors. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Data,_

context_and_interaction&id=461011833

http://www.extremeprogramming.org/values.html
http://www.extremeprogramming.org/rules.html
http://en.wikipedia.org/wiki/File:XP-feedback.gif
http://en.wikipedia.org/w/index.php?title=Software_testing&oldid=384823849
http://en.wikipedia.org/w/index.php?title=Software_testing&oldid=384823849
http://en.wikipedia.org/wiki/File:Scrum_process.svg
http://en.wikipedia.org/wiki/File:Confocalprinciple_in_English.svg
http://en.wikipedia.org/w/index.php?title=Criticism_of_Java&oldid=428806901
http://en.wikipedia.org/w/index.php?title=Criticism_of_Java&oldid=428806901
http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Data,_context_and_interaction&id=461011833
http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Data,_context_and_interaction&id=461011833

189

[190] Wikipedia contributors. Wikipedia, the free encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Extreme_Programming&

oldid=382700417

[191] Wikipedia contributors. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Inheritance_(object-

oriented_programming)&oldid=391610265

[192] Wikipedia Contributors. Wikipedia, the Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Langu

age&oldid=394517510

[193] Wikipedia contributors. (2013, Feb.) Wikipedia, the free

encyclopedia. [Online]. http://en.wikipedia.org/w/index.php?

title=Feature-driven_development&oldid=540470545

[194] L. Williams, "Integrating pair programming into a software development

process", in Proceedings of the 14th Conference on Software Engineering

Education and Training, Charlotte, 2001, pp. 27-36.

[195] N. Wirth, "Program development by stepwise refinement",

Communications of the ACM, vol. 14, no. 4, 1971.

[196] E. Yourdon, K. Whitehead, J. Thomman, K. Oppel, and P. Nevermann,

Mainstream Objects: An Analysis and Design Approach for Business.

Upper Saddle River, NJ: Yourdon Press, 1995.

http://en.wikipedia.org/w/index.php?title=Extreme_Programming&oldid=382700417
http://en.wikipedia.org/w/index.php?title=Extreme_Programming&oldid=382700417
http://en.wikipedia.org/w/index.php?title=Inheritance_(object-oriented_programming)&oldid=391610265
http://en.wikipedia.org/w/index.php?title=Inheritance_(object-oriented_programming)&oldid=391610265
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=394517510
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=394517510

190

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Information Technologies

Turku School of Economics

• Institute of Information Systems Sciences

ISBN 978-952-12-2919-0

ISSN 1239-1883

