
Turku Centre for Computer Science

TUCS Dissertations
No 196, June 2015

Sergey Ostroumov

Agent-Based Management Systems
for Many-Core Platforms

Rigorous Design and Efficient Implementation

Agent-Based Management

Systems for Many-Core Platforms
Rigorous Design and

Efficient Implementation

Sergey Ostroumov

To be presented, with the permission of the Faculty of Science and Engineering of the

Åbo Akademi University, for public criticism in Auditorium Gamma on June 05, 2015,

at 12 noon.

Åbo Akademi University

Faculty of Science and Engineering

Joukahaisenkatu 3-5A, 20520, Turku, Finland

2015

Supervised by

Professor Kaisa Sere Faculty of Science and Engineering

Associate Professor Marina Waldén Åbo Akademi University

Turku, Finland

Associate Professor Juha Plosila Department of Information Technology

University of Turku

Turku, Finland

Reviewed by

Associate Professor Stefan Hallerstede

Department Department of Engineering – Software

Engineering

University Aarhus University

City, Country Aarhus, Denmark

Professor Hans Hansson

Department Embedded Systems

University Mälardalen University

City, Country Västerås, Sweden

Opponent

Associate Professor Stefan Hallerstede

Department Department of Engineering – Software

Engineering

University Aarhus University

City, Country Aarhus, Denmark

ISBN 978-952-12-3219-0

ISSN 1239-1883

To my family

Моей семье посвящается

“Do not go where the path may lead, go instead where there is no path

and leave a trail.”

– Ralph Waldo Emerson

i

Abstract

Due to various advantages such as flexibility, scalability and updatability,

software intensive systems are increasingly embedded in everyday life. The

constantly growing number of functions executed by these systems requires a

high level of performance from the underlying platform. The main approach to

incrementing performance has been the increase of operating frequency of a

chip. However, this has led to the problem of power dissipation, which has

shifted the focus of research to parallel and distributed computing.

Parallel many-core platforms can provide the required level of computational

power along with low power consumption. On the one hand, this enables parallel

execution of highly intensive applications. With their computational power,

these platforms are likely to be used in various application domains: from home

use electronics (e.g., video processing) to complex critical control systems. On

the other hand, the utilization of the resources has to be efficient in terms of

performance and power consumption. However, the high level of on-chip

integration results in the increase of the probability of various faults and creation

of hotspots leading to thermal problems. Additionally, radiation, which is

frequent in space but becomes an issue also at the ground level, can cause

transient faults. This can eventually induce a faulty execution of applications.

Therefore, it is crucial to develop methods that enable efficient as well as

resilient execution of applications.

The main objective of the thesis is to propose an approach to design agent-

based systems for many-core platforms in a rigorous manner. When designing

such a system, we explore and integrate various dynamic reconfiguration

mechanisms into agents functionality. The use of these mechanisms enhances

resilience of the underlying platform whilst maintaining performance at an

acceptable level. The design of the system proceeds according to a formal

refinement approach which allows us to ensure correct behaviour of the system

with respect to postulated properties.

To enable analysis of the proposed system in terms of area overhead as well

as performance, we explore an approach, where the developed rigorous models

are transformed into a high-level implementation language. Specifically, we

investigate methods for deriving fault-free implementations from these models

into, e.g., a hardware description language, namely VHDL.

ii

Sammanfattning

På grund av olika fördelar, så som flexibilitet, skalbarhet och uppdaterbarhet

integreras mjukvaruintensiva system i allt större utsträckning i våra vardagsliv.

Det stadigt ökande antalet funktioner som utförs av de här systemen ställer höga

prestandakrav på den underliggande plattformen. Den huvudsakliga metoden för

att öka prestandan har varit att höja klockfrekvensen för ett chipp. Det här har

emellertid lätt till problem relaterade till energiförbrukning, vilket har gjort att

forskningen har skiftat fokus till parallell och distribuerad beräkning.

Parallella flerkärniga plattformar kan tillhandahålla tillräcklig

beräkningskapacitet samtidigt som de har låg energiförbrukning. Det här

möjliggör parallell exekvering av mycket beräkningsintensiva tillämpningar.

Dessa plattformar kommer på grund av deras höga beräkningskapacitet troligen

att användas inom många olika tillämpningsområden, från hemelektronik (t.ex.

för videobearbetning) till komplexa säkerhetskritiska kontrollsystem.

Utnyttjandet av resurserna på sådana här plattformar måste ändå vara effektivt

med avseende på prestanda och energiförbrukning. Det höga antalet funktioner

som integreras på ett chipp ökar sannolikheten för diverse fel och uppkomsten

av så kallade heta punkter (hotspots), som leder till temperaturproblem.

Därutöver kan strålning, som är vanligt förekommande i rymden men också kan

vara ett problem på marknivå, orsaka transientfel. Det här kan orsaka att en

applikation exekveras på ett felaktigt sätt. Det är därför viktigt att utveckla

metoder som möjliggör applikationsexekvering med hög effektivitet och

resiliens.

Det huvudsakliga målet med den här avhandlingen är att skapa en metod som

möjliggör rigorös design av agentbaserade system för flerkärniga plattformar. I

designen av ett sådant här system undersöks och integreras diverse mekanismer

för dynamisk omkonfigurering i agenternas funktionalitet. Användningen av

dylika mekanismer förbättrar den underliggande plattformens resiliens samtidigt

som en acceptabel prestandanivå bibehålls. Designen av systemet följer en

metod baserad på formell precisering, som gör det möjligt att garantera att

systemet fungerar korrekt med avseende på givna egenskaper.

För att kunna analysera det föreslagna systemet med avseende på så kallat

areaöverskott (area overhead) och prestanda undersöks en metod för

transformation av rigorösa modeller till ett högnivåspråk för implementering.

Mer specifikt undersöks metoder för att härleda felfria implementationer i det

hårdvarubeskrivande språket VHDL från de här modellerna.

iii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisors,

Professor Kaisa Sere, Associate Professor Marina Waldén and Associate

Professor Juha Plosila for their guidance, support and expert advice, for a

numerous fruitful scientific discussions we have had as well as for the invaluable

comments on the papers and the thesis. It has been an honour and pleasure for

me to work with them. Furthermore, I would like to thank Professor Vyacheslav

Kharchenko for the guidance and support at the beginning of my PhD studies at

National Aerospace University “KhAI”.

Second of all, I would like to acknowledge Associate Professor Stefan

Hallerstede and Professor Hans Hansson for reviewing the thesis and providing

valuable comments that allowed me to improve its quality. I am also thankful to

Associate Professor Stefan Hallerstede who has kindly agreed to act as an

opponent at the public defence of this thesis.

Moreover, I am very thankful to my co-authors, Doctor Leonidas Tsiopoulos

and Doctor Pontus Boström who provided me with diverse viewpoints and made

their valuable contribution to my work. I would also like to thank Adjunct

Professor Linas Laibinis for the expert advice and fruitful discussions on various

topics.

I would like to thank all the members of the Distributed Systems Laboratory,

in particular, Associate Professor Luigia Petre, Doctor Mats Neovius, Doctor

Maryam Kamali and Petter Sandvik. Additionally, I would like to express my

gratitude to all the members of the Embedded System Laboratory, particularly,

Professor Johan Lilius, Adjunct Professor Elena Troubitsyna, Adjunct Professor

Sébastien Lafond, Doctor Johan Ersfolk, Doctor Anton Tarasyuk, Inna

Pereverzeva, Wictor Lund, Simon Holmbacka and Sudeep Kanur. Moreover, I

would specifically like to thank Robert Slotte and Fredrik Hällis for helping me

with the TilePro platform, which enabled quantitative evaluation of the solutions

proposed in the thesis.

I would also like to express my sincere appreciation to the members of the

Department of Information Technology at University of Turku, particularly,

Adjunct Professor Pasi Liljeberg, Doctor Tomi Westerlund, Doctor Masoud

Daneshtalab and Doctor Masoumeh Ebrahimi for their fruitful collaboration.

I am also grateful to Professor Ion Petre for his encouragement and Professor

Ivan Porres as well as Associate Professor Patrick Sibelius for the interesting

discussions we have had.

iv

Moreover, I am very thankful to the administrative personnel of TUCS –

Turku Centre for Computer Science, the Faculty of Science and Engineering and

the Academic Office at Åbo Akademi University for their support and help, in

particular, Tomi Suovuo, Outi Tuohi, Christel Engblom, Nina Hultholm, Tove

Österroos, Susanne Ramstedt, Solveig Vaherkylä and Pia-Maria Kallio.

Additionally, I would like to thank the technical personnel for their support:

Marat Vagapov, Karl Rönnholm, Joakim Storrank and Niklas Grönblom.

I would like to thank TUCS and the Department of Information Technologies

at Åbo Akademi University for the funding provided during my doctoral studies.

Specifically, I would like to thank the Doctoral Network in Information

Technologies and Mathematics program and the Digihybrid project in the

EFFIMA program coordinated by FIMECC. I am also honoured and grateful to

Nokia Foundation for supporting my work in the form of research scholarship.

Last but not least, I would like to express my deepest gratitude to my family

and friends. Particularly, I would like to thank my best friends Miki and Marta

Olszewski for uncountable joyful moments that made me feel like home. I am

also grateful to Magnus, Irum and Charmi for bringing many positive moments

into my life.

I would specifically like to thank Jonatan Wiik for being a friend and a room-

mate as well as for the invaluable help including the preparation of the Swedish

version of the abstract.

I am especially grateful to my parents, Lyudmila and Boris, as well as to my

sister Svetlana and my nephew Oleg, for their support, patience, understanding

and limitless love.

Finally, I would like to express my true thankfulness to my wife, Yuliya, for

her care, encouragement and love. Thank you very much for being there for me.

Sergey Ostroumov,

Åbo, May 2015

v

List of Original Publications

[1] Sergey Ostroumov, Leonidas Tsiopoulos, Marina Waldén, Juha

Plosila, Hierarchical agent-based monitoring systems for dynamic

reconfiguration in NoC platforms: A formal approach, Advancing

Embedded Systems and Real-Time Communications with

Emerging Technologies, Ch. 13, IGI Global, pp. 302-333, 2014.

[2] Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere,

Formal Approach to Agent-based Dynamic Reconfiguration in

Networks-On-Chip, Journal of Systems Architecture 59(9),

Elsevier, pp. 709-728, 2013.

[3] Sergey Ostroumov, Pontus Boström, Marina Waldén, Derivation

of Parallel and Resilient Programs from Simulink Models, In

Proceedings of International Conference on Parallel, Distributed

and Network-based Processing (PDP), IEEE Computer Society

Conference Publishing Services (CPS), pp. 416-420, 2015.

[4] Sergey Ostroumov, and Leonidas Tsiopoulos, VHDL Code

Generation from Formal Event-B Models, In Proceedings of

Digital System Design: Architectures, Methods and Tools, IEEE

Computer Society Conference Publishing Services (CPS), pp. 127-

134, 2011.

[5] Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere,

Generation of Structural VHDL Code with Library Components

From Formal Event-B Models, In Proceedings of Euromicro

Conference on Digital System Design, IEEE Conference

Publishing Services (CPS), pp. 111-118, 2013.

http://www.computer.org/cps
http://www.computer.org/cps
http://www.computer.org/cps
http://www.computer.org/cps

vi

List of Abbreviations

ASIC Application Specific Integrated Circuit

BA Before-after predicate

CTL Computation Tree Logic

CSP Communicating Sequential Processes

EPPN Error-Proof Process Network

ERRIC Embedded Reliable Reduced Instruction Processor

FIFO First-In-First-Out

FPGA Field-Programmable-Gate-Array

H2A Hierarchical Agent-based Adaptation

HDL Hardware Description Language

HW Hardware

NoC Network-on-Chip

OPS Operations per Second

PU Processing unit

RT Router

SW Software

VHDL Very-High-Speed Integrated Circuit Hardware Description Language

VLSI Very Large Scale Integration

vii

List of Figures

Figure 1: From requirements to many-core platforms 7

Figure 2: A many-core platform architecture with hierarchical agents 9

Figure 3: Event-B contexts and machines: contents and relationship 10

Figure 4: Simulink models ... 13

Figure 5: A VHDL description .. 15

Figure 6: Orthogonality of performance and resilience 18

Figure 7: Relation between research publications ... 21

List of Tables

Table 1: Summary of research questions and publications 25

viii

Contents

Part I Research Summary .. 1

1 Introduction ... 3

1.1 Motivation .. 3

1.2 Organization of thesis .. 5

2 Background ... 7

2.1 Many-core platforms.. 7

2.2 Agent-based management systems .. 8

2.3 Modelling languages .. 9

2.3.1 The Event-B formalism .. 10

2.3.2 Simulink dataflow diagrams ... 13

2.3.3 Hardware description language VHDL .. 14

3 Research objectives ... 17

3.1 Rigours design of agent-based management system 17

3.2 Integration of dynamic reconfiguration ... 17

3.3 Data loss avoidance ... 18

3.4 Performance evaluation ... 19

3.5 Research methods .. 19

4 Overview of Research Publications .. 21

5 Related work ... 27

5.1 Resilience and Many-Core Platforms .. 27

5.2 Formal and Informal Agent-based Systems Design 30

5.3 Code Generation .. 33

6 Discussion and Research Directions ... 37

6.1 Conclusion ... 37

6.2 Future work .. 38

Bibliography .. 40

Part II Research Publications ... 45

1

Part I

Research Summary

3

1 Introduction

The constantly growing demand for high performance along with low power

consumption has drawn attention of the research community to parallel

computing. However, this shift also increased complexity of systems very

dramatically, so that the systems became more prone to various faults. In this

chapter, we motivate the research conducted to approach these problems and

present the organization of the thesis.

1.1 Motivation

Over the past decades, the Very-Large-Scale-Integration (VLSI) technology

scaled down significantly. This allowed placement of more transistors onto a

single die and increase of operating frequency in order to provide more

performance for sequential programs. However, this has also led to the problem

of the power dissipation of a chip. Thus, the increase of chip performance is no

longer a matter of incrementing chip frequency, but a matter of finding new

ways to satisfy performance demand of modern applications [1]. Moreover,

since the number of processing elements constantly increases according to

Moore’s law, the new technology must be scalable. These challenges have

shifted the focus of research to the direction of distributed and parallel

computing.

To provide scalability along with parallel computation, a Network-on-Chip

(NoC) interconnect paradigm has been proposed [2]. An NoC-based many-core

platform can integrate tens or even hundreds of processing units (cores) that

communicate with each other. This enables high computational power whilst

fulfilling timing constraints and low power consumption. There are also

commercially available platforms that utilize NoC, e.g., TilePro by Tilera [3]

and Intel Single Cloud Chip [4]. However, due to the high level of on-chip

integration, the probability of various faults increases [5]. Moreover, high

computational load may cause the creation of hotspots leading to thermal

problems [6]. Additionally, transient or intermittent (soft) faults can be caused

by radiation [7], which is frequent in space, but becomes an issue also at the

ground level [8]. This requires the platforms to be highly resilient to these faults.

Various mechanisms have been explored to achieve resilience to faults. Some

of them propose a specific architecture (e.g., [9]). Others suggest replication of

the execution tasks (e.g., [8]). While the specific architecture approaches make

them difficult to apply to different application domains, the duplication of the

4

execution tasks may significantly reduce utilization and, hence, performance of

the underlying platform.

To overcome these disadvantages, agent-based management for many-core

platforms has been proposed [10]. Agents allow continuous monitoring of the

platform and its dynamic reconfiguration when required. This helps the platform

to avoid overloading with management activities while it performs routing of

packets, for example. Clearly, a greater number of resources in the platform

requires a larger number of agents. Thus, the agents need to be organized into a

multi-level hierarchy in order to provide efficient platform management [11].

An agent-based system is typically a composition of software (SW) and

hardware (HW) depending on the functionality, timing requirements and

complexity of algorithms [12]. Particularly, the higher in the hierarchy the agent

is, the more diverse its management activities are. In other words, these agents

have more functionality and are more complex than those lower in the hierarchy.

Hence, these types of agents are typically implemented as SW which provides a

high level of flexibility. On the other hand, the lower level agents have to

provide fast and efficient monitoring. Consequently, they are usually

implemented as HW [12]. Clearly, the complexity of the agent-based system is

high, which increases the risks of introducing design faults during the system

development. Inadequate behaviour of the agents may lead to, e.g., improper

resource allocation [13] which can cause inadmissible effects. Therefore,

rigorous design approaches need to be undertaken.

One of the approaches to tackle design faults is the formal development of a

system model. It aims at deriving correct systems by stepwise unfolding of the

system functionality through model transformations called refinements and

mathematically proving their correctness [14]. In this thesis, we adopt the Event-

B formal framework [15]. Event-B supports system level modelling

(specification) and allows us to reason about correctness of the model with

respect to postulated properties by theorem proving. Moreover, the specification

within Event-B follows the refinement approach, where each refinement step is

shown to be correct by theorem proving as well. In addition, Event-B has a

mature tool support, namely the Rodin platform [16]. The platform is extensible

in the form of plug-ins, which allows us to expand the platform functionality.

Since code generation is a natural step for formal design flow, there are, e.g.,

plug-ins for the Rodin platform that allow one to derive code in software

languages, e.g., C [17], Java [18], and others [19]. However, due to the fact that

hardware description languages (HDLs) differ in semantics and syntax from

software languages, the same methods and techniques cannot be directly and

5

completely applied to hardware design and code generation. Thus, this problem

also requires attention.

1.2 Organization of thesis

The thesis consists of two parts: Part I that summarizes the research and Part

II that presents the original research publications. The remainder of Part I is

structured as follows. Section 2 introduces the notions and definitions used

throughout the thesis. In Section 3, we identify the research challenges that arise

in the efficient and resilient systems design. Section 4 summarizes the original

research publications and illustrates how the papers address the postulated

research problems. In Section 5, we review the approaches related to the

questions posed in the thesis. Finally, Section 6 presents the conclusion and

outlines future research directions.

6

7

2 Background

This chapter outlines the main definitions and concepts used throughout the

thesis. It discusses the need for many-core platforms that provide parallel

computations. The chapter also describes the notion of agent-based systems and

presents the architecture of a many-core platform augmented with the agent-

based management. Finally, it illustrates the languages needed to approach the

problems addressed in the thesis.

2.1 Many-core platforms

Network-on-Chip (NoC) [2] has been proposed as a scalable interconnect

paradigm for many-core platforms which can provide high computational

performance fulfilling timing constraints and low power consumption (Fig. 1). A

typical NoC-based scheme consists of tiles. The tiles include processing units

(PUs) and routers (RT) [2]. The routers provide communication between the

tiles by routing packets utilizing various routing algorithms. Within the scope of

this thesis, we assume deterministic routing, which is dead-lock and live-lock

free [20] as well as provides low latency and fulfils timing constraints [21]. The

routers usually incorporate First-In-First-Out (FIFO) buffers [22][23], so that the

flow of data is preserved.

R
e

q
u

ie
re

m
e

n
ts

System

Power consum
ption

Perfo
rm

ance

Many-core platform

PU

RT

Tile

PU

RT

Tile

PU

RT

Tile

PU

RT

Tile

PU

RT

Tile

PU

RT

Tile

PU

RT

Tile

PU

RT

Tile

PU

RT

Tile

Figure 1: From requirements to many-core platforms

Many-core parallel platforms achieve a high level of performance. For

instance, an 80-Tile TeraFLOPS Processor provides more than 1.0E+12 floating

point operations per second (OPS) [24]. The TilePro64 processor can achieve up

to 443E+09 OPS [3].

8

The advantages of many-core platforms enable their use in various

applications, especially in complex critical systems from, for example,

biomedical [25] and aerospace domains [9]. However, the use of these platforms

in critical domains requires the platforms to be resilient.

2.2 Agent-based management systems

Resilience of a system is defined as the persistence of dependability when

facing changes [26]. Dependability, on the other hand, is the ability of a system

to avoid failures that are more frequent and severe than acceptable.

Dependability is an integral term that includes availability, reliability, safety,

integrity and maintainability [27][28]. A failure is usually a result of an error

which is caused by a fault. A fault is a flaw within a system. It can be, e.g., a

design fault (a bug) in software or a physical fault of a hardware component.

Faults can be classified as transient, intermittent or permanent [28].

In this thesis, we focus on the reliability attribute of dependability and

consider physical failures of PUs of a many-core platform. The examples that

lead to these failures include: high level of on-chip integration that results in the

increase of the probability of various faults [5], high computational load that

may cause creation of hotspots leading to thermal problems [6] and radiation

which becomes an issue at the ground level and increases probability of transient

faults [8].

To provide resilience and maintain performance at an acceptable level, we

employ an agent-based management system [9][11] (Fig. 3). The term agent

comes from the artificial intelligence field. One classic definition of an agent is:

“An agent is something that perceives and acts resiliently and autonomously”

[29]. In the context of many-core platforms, we define an agent more precisely

as: “An agent is a piece of software or hardware that acts resiliently and

autonomously and enables the platform to achieve some objectives”. An agent-

based management system is a system that comprises of a number of agents that

communicate with each other [9].

Since a many-core NoC-based platform can integrate tens or even hundreds

of tiles, it is reasonable to organize agents into a multi-level hierarchy for

efficient and effective platform management [11]. Typically, a three-level

hierarchy which we adopt in this thesis is considered efficient [12]. The

hierarchy consists of three layers, namely the platform agent, cluster and cell

agent layers (Fig. 2). The agents communicate via a dedicated communication

mechanism, e.g., a dedicated NoC-based scheme. This allows the platform not to

9

be overloaded with management activities while the platform performs, e.g.,

routing algorithms.

The platform agent is responsible for the whole platform. It performs the

initial mapping of applications, creates, adjusts and destroys cluster and

corresponding cluster agents as well as releases resources. The cluster agents

manage clusters, i.e., regions (sets of cores), where applications are mapped. The

cell agents are local monitors assigned to each tile.

Platform agent

Cluster agent

Cluster agent
communication between cluster

agents and the platform agent

communication between cell

agents and cluster agents

NoC-based communication

between routers

RT router

NoC-based communication

between RC and RT through NI

PU processing unit

Cell

agent
PU

RT

Tile

Cell

agent
PU

RT

Tile

Cell

agent
PU

RT

Tile

Cell

agent
PU

RT

Tile

Cell

agent
PU

RT

Tile

Cell

agent
PU

RT

Tile
application region

Figure 2: A many-core platform architecture with hierarchical agents

2.3 Modelling languages

To develop a system, designers commonly utilize various languages. In this

section, we describe languages that have been used to approach the problems

addressed in the thesis. We start with the description of the formal Event-B

framework. We then describe a semi-formal modelling technique widely used in

industry, namely Simulink. Finally, we outline a non-formal language likewise

10

widely used in industry, namely VHDL, that enables synthesis and analysis of

hardware implementations.

2.3.1 The Event-B formalism

The main formal framework we use in this thesis is the Event-B formalism

[15]. There are several advantages this formalism offers. Firstly, it allows us to

build system level models. Secondly, it supports the refinement approach such

that a model is built top-down in a correct-by-construction manner. Thirdly, the

development follows rigorous rules with mathematical proofs of correctness of

models. Last but not least, it has a mature tool support extensible in the form of

plug-ins, namely the Rodin platform [16]. Let us now describe the structure and

notation of Event-B.

A specification in Event-B consists of contexts and machines. The

relationship between them is shown in Fig. 3. A context can be extended by

another context whilst a machine can be refined by another machine. Moreover,

a machine can refer to the contents of the context (to “see”).

extends refines

sees

machine
variables

invariants

theorems

variant

events

context
sets

constants

axioms

theorems

sees

machine
variables

invariants

theorems

variant

events

context
sets

constants

axioms

theorems

Figure 3: Event-B contexts and machines: contents and relationship [15]

A context specifies static structures such as data types in terms of sets,

constants, properties given as a set of axioms. One can also postulate and prove

theorems that ease proving effort during the model development.

A machine models the behaviour of a system. The machine includes state

variables, theorems, invariants, a variant and guarded transitions (events). The

invariants represent constraining predicates that define types of the state

variables as well as essential properties of the system. The overall system

invariant is defined as the conjunction of these predicates.

11

A variant is a natural number or a finite set. It is required to show the

termination of certain events that can be executed several times in a row, e.g.,

modelling a loop.

An event describes a transition from a state to a state. The syntax of the event

is as follows:

E = ANY x WHERE g THEN a END

where x is a list of event local variables. The guard g stands for a conjunction of

predicates over the state variables and the local variables. The action a describes

a collection of assignments to the state variables.

We can observe that an event models a guarded transition. When the guard g

holds, the transition can take place. In case several guards hold simultaneously,

any of the enabled transitions can be chosen for execution non-deterministically.

If none of the guards holds, there is a deadlock.

When a transition takes place, the action a is performed. The action a is a

composition of the assignments to the state variables executed simultaneously

and denoted as ||. An assignment can be either deterministic or non-

deterministic. A deterministic assignment is defined as v := E(w), where v is a list

of state variables, E is a list of expressions over some set of state variables w. A

non-deterministic assignment is specified as v :| Q(w, v’), where Q(w, v’) is a

predicate over some state variables w and a new value v’ of variable v. The

variable v obtains such a value v’ that Q(w, v’) holds.

These denotations allow for describing semantics of Event-B in terms of

before-after predicates (BA) [30]. Essentially, a transition is a BA that

represents a relationship between the model state before (v) and after (v’) the

execution of an event. Hence, the correctness of the model is verified by

checking if the events preserve the invariants (INV) and are feasible to execute

(FIS) in case the event action is non-deterministic:

 Inv ∧ ge ⇒ [BAe]Inv (INV)

 Inv ∧ ge ⇒ ∃v’ . BAe (FIS)

where Inv is a model invariant, ge and BAe are the guard and the before-after

predicate of the event e, respectively. The expression [BAe]Inv stands for the

substitution in the invariant Inv according to BAe.

In addition, deadlock freedom of the specification may be corroborated. A

deadlock free specification stands for the case where there exists at least one

event that can be executed. To achieve this, one needs to postulate a machine

theorem that includes the guards of all the events connected with disjunction and

show that the proof obligation (DLF) [15] is preserved:

12

∀S, C, V . A ∧ I ⇒ Vn
i=1 gi (DLF)

where n is the number of events and gi is the guard of the i-th event. The

structures S, C and A represent sets, a collection of constants and axioms

introduced into a context, respectively. The structures V and I stand for a set of

state variables and a set of invariants of a machine, respectively.

Since the specification development in Event-B follows the refinement

approach, one has to prove that the more concrete (refined) events simulate their

abstract counterparts. To show this, the refined events must preserve the guard

strengthening (GRD) and action simulation (SIM) proof obligations [31] as well:

∀S, C, Sr, Cr, V, Vr, x, xr . A ∧ Ar ∧ I ∧ Ir ∧ gr ⇒ g (GRD)

∀S, C, Sr, Cr, V, Vr, x, xr . A ∧ Ar ∧ I ∧ Ir ∧ BAer ⇒ BAe (SIM)

where all letters with subscript “r” stand for the refined versions of the

aforementioned structures.

To prove that new events executed several times in a row terminate, one also

has to show that these events are consistent with a variant. In particular, these

events have to preserve either of the following proof obligations depending on

whether the variant is a natural number (VAR_N) or a finite set (VAR_S) [31]:

∀S, C, V . A ∧ I ⇒ Var ∈ ℕ ∧ [BAe]Var < Var (VAR_N)

∀S, C, V . A ∧ I ⇒ finite(Var) ∧ card([BAe]Var) < card(Var) (VAR_S)

where Var is a variant that denotes a numeric expression or a finite set of values.

The expressions finite(Var) and card(Var) specify finitness and cardinality of the

set variant, respectively.

In case the model needs to be deadlock free, one can show the relative

deadlock freedom, i.e., all concrete events should not deadlock more frequently

than the abstract ones. Therefore, the disjunction of the abstract guards should

imply the disjunction of the concrete guards (proof obligation (DLFR)) [15]:

∀S, C, V . A ∧ I ∧ Ir ∧ Vn
i=1 gi ⇒ Vm

j=1 grj (DLFR)

where m is the number of concrete events and gj is the guard of the j-th event.

The Rodin platform [16], a tool support for Event-B, automatically generates

and attempts to discharge (prove) the necessary proof obligations. The best

practices encompass the development of the specification in such a manner that

90-95% of the proof obligations are discharged automatically. However, the tool

sometimes requires the user assistance provided via the interactive prover.

Typically, the claims that are difficult for the automatic prover to discharge

require case distinction and/or data substitution.

13

2.3.2 Simulink dataflow diagrams

The control logic of a system can also be modelled by using semi-formal

techniques. One such a technique which is widely used in industry is Simulink

[32]. A Simulink model is a hierarchical dataflow diagram that describes the

essential functionality of a system by hiding implementation details. The model

consists of a collection of functional blocks that have in-ports (inputs) and out-

ports (outputs) allowing connections between blocks via typed signals. The

blocks may have parameters that are initialized at the beginning of the execution

and remain constant during the execution. Moreover, the blocks can contain

memory, in which case the output value depends not only on the inputs, but also

on the previously computed value.

The hierarchical diagrams are achieved by grouping blocks into sub-

systems. There are two types of sub-systems in Simulink: virtual and atomic

[33]. Virtual sub-systems are used for the structural purpose only and do not

affect the model execution. They can be seen as containers for functional blocks

that are expanded by the Simulink engine in place before execution. Atomic sub-

systems are treated as single atomic units.

Fig. 4 illustrates an example of a Simulink model. The model in Fig. 4, a)

contains two in-ports and one out-port. It includes a constant parameter as well

as memory. This model is grouped into a sub-system presented in Fig. 4, b).

2
x

+1

In1

In2

const

1

Out1

a) b) c)

x
1

In1

1

Out1

1 in-port

1 out-port

const
sub-system

parameter

memory

block

signal

In1

In2
Out1

Sub-system

Figure 4: Simulink models: a) sub-system content, b) sub-system block, c) algebraic loop

The models can be continuous or discrete. We consider discrete-time models

with atomic sub-systems that specify periodic real-time systems. Each block in a

discrete-time model is evaluated at regular intervals with a specified sampling

period. We further assume that the model is single-rate, i.e., all its sub-systems

fire at the same time intervals. Additionally, we assume causal models, where

the output of a block has no direct connection to the input of the same block. The

direct connection of an output to an input is also known as an algebraic loop [34]

(Fig. 4, c)).

14

2.3.3 Hardware description language VHDL

Once the model of a system is derived, one can carry out the performance

analysis by translating the model into an implementation in a high-level

programming language. For instance, one can generate C [16], Java [18] or other

programming language [19] code from an Event-B model. The Simulink design

environment supports the generation of C code as well [35]. However, a

complex system such as an agent-based management system is often a

composition of two parts: software and hardware [12], where hardware can be

specified using a hardware description language (HDL). Clearly, HDLs differ in

semantics and syntax from software programming languages, which makes it

difficult to apply the software code generation techniques to hardware design

and code generation. Thus, the hardware part requires attention.

We have chosen VHSIC Hardware Description Language (VHDL) as the

target language. This language is standardized [36] and widely used in industrial

hardware design. Moreover, there are a number of tools that support VHDL,

e.g., Quartus-II by Altera [37]. These tools can synthesize the description and

provide information about area consumption and performance. Let us now

describe the essential parts of a VHDL description.

There are two basic elements a VHDL description consists of: an entity and

an architecture (Fig. 5). The entity defines the interface of a hardware

component whilst the architecture specifies its behaviour.

Every entity must have a name and ports. The entity can have parameters

defined in the generic clause. The interface ports contain input and output

signals whose type and direction have to be specified explicitly. The example

entity in Fig. 5 has a parameter whose type is a natural number and initial value

equals 10. Moreover, it has two input ports and one output port differentiated by

the keywords in and out, respectively. The types of the ports are bit vectors.

The entity can be assigned with an architecture that implements the

behaviour of the hardware component. The architecture consists of 2 parts:

declaration and body. The declarative part includes definitions of internal signals

as well as interfaces of other hardware components. The body specifies the

function of the hardware component, where a designer can instantiate declared

components by using the keywords generic map and port map. Moreover, the

body can have a process that reacts on certain signals introduced into a

sensitivity list and allows for introducing sequential statements such as if

(condition) then action end if. The action in the if ... end if statement is an

assignment of a value to a signal in the form of s <= E, where s is a signal and E

is an expression. Every assignment in the process is not instant, i.e., the signals

15

are updated when the whole process completes its execution. Hence, all the

signals involved in the assignment are updated simultaneously.

entity Entity is

generic (parameter : natural := 10);

port (input1 : in std_logic_vector(parameter-1 downto 0);

 input2 : in std_logic_vector(parameter-1 downto 0);

 output1 : out std_logic_vector(parameter-1 downto 0));

end Entity;

architecture arch of Entity is

 signal internal_signal : std_logic := ‘0’;

 signal internal_signal_add : std_logic_vector(parameter-1 downto 0);

 component component_add

 generic (width : natural);

 port (dataa : in std_logic_vector(width-1 downto 0); datab : in std_logic_vector(width-1 downto 0);

 result : out std_logic_vector(width-1 downto 0));

 end component;

begin

 add_0 : component_add

 generic map(width => parameter)

 port map(dataa => input1, datab => input2, result => internal_signal_add);

 process_add :

 process (input1, input2, internal_signal, internal_signal_add) is begin

 if (internal_signal = ‘0’) then internal_signal <= ‘1’; end if;

 if (internal_signal = ‘1’) then internal_signal <= ‘0’; output1 <= internal_signal_add; end if;

 end process;

end arch;

Figure 5: A VHDL description

The declaration part of the example architecture in Fig. 5 contains two

internal signals and the hardware component component_add. The body

instantiates the declared component by specifying the width and mapping inputs

of the component to the input ports and the result to one of the internal signals.

The body also contains a process. The process reacts on changes of the input

ports as well as internal signals. Upon reaction, the process updates the output of

the entity with the result computed by the component component_add.

Essentially, the architecture implements a simple adder.

16

17

3 Research objectives

The main objective of the thesis is to determine methodological aspects of the

design and implementation of agent-based systems for many-core platforms. We

motivate the research and postulate research questions addressed in the thesis.

During the design, we simultaneously consider performance and resilience

aspects of the platform as well as of the agent-based system. Resilience of the

platform is attained by utilizing dynamic reconfiguration of the platform

performed by the agents. To achieve resilience of the agent-based system, we

employ the rigorous correct-by-construction development. Then, we translate
the derived rigorous specification into a programming language in order to

evaluate efficiency in terms of performance and area overhead. In addition, we

outline the problem of data loss when a many-core platform is dynamically

reconfigured.

3.1 Rigours design of agent-based

management system

In the previous section, we have shown that many-core platforms are

envisaged to be used in complex critical systems, which requires the platforms to

be resilient to faults. To achieve resilience of the platform, we employ a

hierarchical agent-based management system embedded in the platform.

However, the agents are dynamic autonomous entities that have be to resilient as

well. Their inadequate behaviour may lead to undesirable consequences. An

unpredictable behaviour of an agent may cause problems related to, e.g.,

resource allocation [12]. Furthermore, a large number of resources provided by

many-core platforms requires the hierarchical organization of agents, which is

also needs to be taken into account. Hence, formal methods are required to

ensure correctness of the agents and their reliable behaviour. This leads us to the

first research question:

RQ1: How to take into account hierarchical organization of agents?

Moreover, how to rigorously design a hierarchical agent-based management

system such that its behaviour can be trusted?

3.2 Integration of dynamic reconfiguration

Once the main steps are derived, resilience of the underlying platform can be

considered. A common approach to achieve resilience to faults is to use

18

redundancy such that replicas of an application are run in parallel with the main

execution (see e.g., [5][38]). Clearly, the use of replicas may reduce the

utilization of the platform, decrease its performance and increase power

consumption. Thus, these attributes are orthogonal (Fig. 6).

System

Perfo
rm

ancePower

consum
ption

R
e
s
ili

e
n
c
e

Figure 6: Orthogonality of performance and resilience

To overcome these limitations, dynamic reconfiguration needs to be

undertaken. Dynamic reconfiguration includes dynamic voltage and frequency

scaling [12], task migration (reallocation) [5][39] as well as partial

reconfiguration of FPGA-like regions [40][41] techniques. Generally, the aim of

these techniques lies in providing a better balance between, e.g., power

consumption and performance. However, they can also be used to achieve

resilience. For instance, the reallocation of tasks from failed PUs to some free

non-failed ones allows the tasks to continue execution without interruption

[5][39]. Hence, the second research question is:

RQ2: How to integrate dynamic reconfiguration of the platform into agents

hierarchy, so that an acceptable level of performance is maintained?

Additionally, how to show that the agents will behave resiliently under these

circumstances?

3.3 Data loss avoidance

Dynamic reconfiguration is a powerful mechanism to provide resilience and

maintain performance. However, the application tasks may lose data when the

platform is reconfigured (see, e.g., [42]).

When a control task runs, it executes the three main operations: reading input

data (either from the environment or from packets), processing the received data

(i.e., executing a function) and sending the processed data further (either to other

19

tasks or to the environment). The fault occurrence within these operations is

captured by the following fault scenarios:

(1) a fault occurs before a task reads any input data.
(2) a fault occurs while a task reads input data.
(3) a fault occurs before the task sends the processed data.
(4) a fault occurs while a task sends data.

In case (1), a task can still read the input data after reallocation as they

remain intact. In case (2), the task reads packets from some queues, but fails to

read from others. Thus, some pieces of data may be lost. In case (3), the task has

read all the input data, but has not finished processing them or has not been able

to send the processed data. Hence, the task loses data of one firing. Finally, in

case (4), some successor tasks may receive packets with the new data while

others may not. This can lead to the desynchronized data reception by the

successor tasks. Consequently, some data are lost.

We can observe that the fault occurrence may lead to the data loss depending

on the point when a fault occurs. The loss of data may affect the production of

the correct output result. This raises our third research question:

RQ3: How to avoid data loss when the many-core platform is reconfigured?

3.4 Performance evaluation

The formal specification of a system guarantees its correctness qualitatively,

i.e., proper functional behaviour with respect to the postulated properties.

However, non-functional attributes such as performance and overhead should be

evaluated quantitatively. To achieve this, the derived specification needs to be

translated into a high level programming language. This leads to our fourth

research question:

RQ4: How to evaluate performance of the derived agent-based system?

Specifically, how to translate a formal model into a synthesizable code?

3.5 Research methods

We approach the first and the second research questions by analysing the

functionality of the agent-based system and possible reconfiguration schemes

applicable to the platform (e.g., task reallocation, hardware reconfiguration). We

then utilize the Event-B formalism to develop the specification of the system in a

hierarchical and correct-by-construction manner. Event-B allows us to ensure

20

the correctness (i.e., trusted behaviour) of the agents with respect to postulated

properties using a proof-based development process.

To tackle the third research question, we analyse the outlined fault scenarios.

Using the features of a many-core platform, we then develop algorithms to

prevent tasks from data loss when they are reallocated.

Finally, we explore the fourth research question by using semi-formal and

informal techniques. We use the derived specification of the agent-based system

as the base to obtain the implementation of the system through the automated

code generation. The synthesis of the generated code allows for efficiency

evaluation in terms of area overhead and performance. In addition, we deploy

the proposed algorithms on a commercially available many-core platform,

namely TilePro by Tilera [3], and evaluate communication and computation

performance of the tasks.

21

4 Overview of Research Publications

The main research results are documented as the peer-reviewed papers given

in Part II of the thesis. Fig. 7 illustrates the relationship between the

publications, where the solid arrows depict a direct relation whilst the dashed

arrow represents an indirect relation between the papers.

Paper 1

· Hierarchical rigorous
specification of agent-based
monitoring system

· Basic reconfiguration schemes
· Specification decomposition

Paper 2

· Parallel development of
decomposed specification

· Initial mapping with spare cores
· Dynamic tasks reallocation within

cluster to provided spare cores

Paper 3

· Data loss prevention
· One-to-one mapping between

Simulink models and parallel
programs

· Performance evalutaion

Paper 4

· One-to-one mapping between

Event-B and VHDL

· Simulation and synthesis results

Paper 5

· Formal library of hardware
components

· Design flow of component-based
VHDL description generation

Direct relation

Indirect relation

Figure 7: Relation between research publications

This chapter overviews the contents of these research publications and

highlights the contribution of each paper. In addition, it indicates the

contribution of the author.

Paper 1

Sergey Ostroumov, Leonidas Tsiopoulos, Marina Waldén, Juha Plosila,

Hierarchical agent-based monitoring systems for dynamic reconfiguration in

NoC platforms: A formal approach, Advancing Embedded Systems and Real-

Time Communications with Emerging Technologies, Ch. 13, IGI Global,

pp. 302-333, 2014.

This paper addresses the first and partially the second research questions. It

describes the main steps of the development process of a three level agent-based

system for a many-core 2D mesh Network-On-Chip platform. Particularly, we

specify an arbitrary platform and show the process of introducing each level of

22

the agents hierarchy through correctness preserving model transformations –

refinements – using the Event-B formalism [15]. We consider platform, cluster

and cell level agents. We also present possible variations of the platform

reconfiguration and integrate them into the formal model. These reconfiguration

schemes include:

1) task reallocation and application remapping performed by the platform agent,

2) dynamic voltage and frequency scaling executed by the cluster agents and

3) local reconfiguration of the platform cores performed by the cell agents.

Author’s contribution: The idea originated from the co-authors of the paper.

The main responsibility of the author was the development of the formal

specification. Additionally, the author was responsible for the paper.

Paper 2

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere, Formal

Approach to Agent-based Dynamic Reconfiguration in Networks-On-Chip,

Journal of Systems Architecture 59(9), Elsevier, pp. 709-728, 2013.

This paper addresses partially the first and completely the second research

questions. In this paper, we continue the rigorous development of the agent-

based management system considering requirements on efficiency. Specifically,

we propose to allocate a number of spare cores within a region for each

application being mapped. The number of the spare cores is computed as a half

of the number of the required cores. These spare cores are initially allocated on

the right side of the application region. This initial configuration (mapping) is

performed by the platform agent. In case a fault occurs in cores within the

region, a corresponding cluster agent is delegated to utilize the allocated spare

cores. It reallocates a task from a faulty core to a spare one in accordance with

the algorithm proposed in the paper. Then, a cell agent can initiate the local

reconfiguration procedure. Therefore, the functionality of configuring and

reconfiguring the platform is evenly distributed among the agents. This allows

for efficient performance of the agents as well as the many-core platform.

Author’s contribution: The author was responsible for the formal

development, simulations and writing the core of the publication.

Paper 3

Sergey Ostroumov, Pontus Boström, Marina Waldén, Derivation of

Parallel and Resilient Programs from Simulink Models, In Proceedings of

23

International Conference on Parallel, Distributed and Network-based

Processing (PDP), IEEE Computer Society Conference Publishing

Services (CPS), pp. 416-420, 2015.

This paper addresses completely the third and partially the fourth research

questions. In this paper, we present an approach to generation of a parallel C

code from a discrete single-rate Simulink model that specifies periodic control

logic. Relying on this, we propose a mechanism, where the tasks can continue

execution without data loss. The paper includes performance evaluation without

and with the proposed mechanism using an industrial case study. The evaluation

results are obtained using a commercially available platform TilePro [3]. They

show that the proposed approach decreases performance of an application by

only about 1% while allowing it to produce the expected result, i.e., to satisfy

resilience requirements.

Author’s contribution: The work was initiated by the author. Moreover, the

author was responsible for the implementation and evaluation of the proposed

mechanism. Additionally, the author was responsible for the publication.

Paper 4

Sergey Ostroumov, and Leonidas Tsiopoulos, VHDL Code Generation from

Formal Event-B Models, In Euromicro Conference on Digital System Design:

Architectures, Methods and Tools, IEEE Computer Society Conference

Publishing Services (CPS), pp. 127-134, 2011.

This paper partially addresses the fourth research question. In this paper, we

study a one-to-one mapping between the Event-B formalism and VHSIC

hardware description language (VHDL) in order to analyze area overhead and

performance. The mapping is based on the similarities in the structures of a

formal model and a VHDL description. Additionally, we show algorithmic steps

required to derive a synthesizable VHDL implementation from a formal model.

These steps are implemented in the form of a plug-in to the Rodin platform that

supports the Event-B formalism. The correctness of the code generation is

shown through the stepwise comparison of simulation results for the model and

the code. To support the approach, we present the development of a simplified

version of an industrial case study developed in a stepwise refinement manner

and code generation for it. In addition, we illustrate synthesis results that

illustrate performance and area occupied by the generated VHDL description.

http://www.computer.org/cps
http://www.computer.org/cps
http://www.computer.org/cps
http://www.computer.org/cps

24

Author’s contribution: The author provided a case study and developed its

formal specification. The author was also responsible for writing the main parts

of the publication and for the development of the tool support.

Paper 5

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere,

Generation of Structural VHDL Code with Library Components From Formal

Event-B Models, In 16th Euromicro Conference on Digital System Design, IEEE

Conference Publishing Services (CPS), pp. 111-118, 2013.

This paper contributes to the fourth research question. Due to strict

requirements, a VHDL description generated as mentioned in the previously

described paper may not be sufficient. It may be crucial when the agents need to

react rapidly due to the highly dynamic nature of the applications and the many-

core platform. Hence, in this paper, we propose a method for deriving a

structural (i.e., component-based) description from a formal model. We develop

a formal library of hardware library components which allows designers to

generate a component-based description. We show that a structural description

obtained from a formal model following the proposed method requires less area

and performs better than a non-structural one. In addition, we present a design

flow that follows the usual refinement-based development and ends in an

automated code generation.

Author’s contribution: The author was responsible for the development of

the formal library and for the implementation of the tool support. Additionally,

the author was responsible for the publication.

Summary

These publications address the research challenges postulated in the previous

section. Tab. 1 summarises the research publications and the research questions

that have been addressed by each publication. The contributions of the thesis can

be summarized as follows:

1. Formal rigorous development of agent-based systems taking into account

their hierarchical organization

2. Various dynamic reconfiguration procedures integrated into the agents

functionality simultaneously considering efficiency (performance,

overhead etc.) and resilience attributes

3. A mechanism that prevents data loss when the underlying platform is

reconfigured at run-time

25

4. An approach to model translation into a synthesizable description in order

to facilitate easier derivation of the implementation and evaluation of

non-functional properties in a real-world environment

Table 1: Summary of research questions and publications

Research question Paper(s)

RQ1

a) How to take into account hierarchical organization of agents?

b) Moreover, how to rigorously design an agent-based

management system such that its behaviour can be trusted?

1

1,2

RQ2

How to integrate dynamic reconfiguration of the platform into

agents hierarchy, so that an acceptable level of performance is

maintained? Additionally, how to show that the agents will

behave resiliently under these circumstances?

1,2

RQ3
How to avoid data loss when the many-core platform is

reconfigured?
3

RQ4

a) How to evaluate performance of the derived agent-based

system?

b) Specifically, how to translate a formal model into a

synthesizable code?

3,4

4,5

26

27

5 Related work

In this chapter, we review the approaches related to the research questions

posed in this thesis. We first discuss the approaches focusing on the

development of efficient and resilient many-core platforms. We then analyze the

research conducted towards design of agent-based systems in an informal and a

formal manner. Finally, we conclude the related work with the approaches that

focus on the translation of the rigorous specifications into synthesizable

descriptions.

5.1 Resilience and Many-Core Platforms

Motamedi et al. [9] have proposed a fault-tolerant reconfigurable NoC

considering application specific architecture for avionic systems. Particularly,

they use a star network topology as the main active formation where the cockpit

switch is placed in the centre of the topology. The redundancy is achieved by

placing redundant links in the system. When a fault is detected, the topology is

switched (reconfigured) from the star formation to the ring one. Additionally, the

authors utilize the Embedded Reliable Reduced Instruction Processor (ERRIC)

as a computational unit. The instruction set of ERRIC has been specially

designed to tolerate malfunctions caused by permanent faults. Using the

prototyping results, the authors illustrate that the overhead of their approach is

marginal while the required level of fault-tolerance is achieved. Although

ERRIC is used as a computational unit, it has a reduced instruction set which

may not be applicable to application domains other than avionics. Moreover,

ERRIC is implemented on Field-Programmable-Gate-Array (FPGA) or

Application-Specific-Integrated-Circuit (ASIC), where a physical fault may also

occur and, hence, this processing unit may not be operable any more.

Instead of focusing on the topology reconfiguration, we focus on faults of the

processing units. When a fault is detected, the agents execute various

reconfiguration procedures considering performance of the applications. These

procedures allow for executing applications without interruption and enable

functional recovery of the platform. We consider a topologically fixed NoC-

based platform which is not application specific. Although we utilize a specific

topology, our approach is applicable to other topologies and other types of the

routing schemes as it does not depend on them. Nevertheless, redundant routers

(and/or links) can complement our approach.

28

An approach to remapping with spare cores has been proposed by Chou and

Marculescu [39]. The authors study three possible schemes of spare cores

allocation at the system level only, without considering assignments of spare

cores within application/cluster regions. The three possible assignments include:

1) side assignment, 2) random assignment and 3) uniform assignment. The

authors provide the metrics for evaluation of the task remapping to spare cores

and point out that the remapping to the randomly placed spare cores performs

better than to the spare cores placed to the side of the system. Clearly, a spare

core allocated at a great distance from an application drastically decreases

performance of the entire system.

In contrast, we propose to incorporate spare cores at the side of each cluster

(region) instead of spare cores assignment at the system level only. Depending

on the size of an application, a fixed number of spare cores is provided to a

corresponding cluster agent allowing it to tolerate faults while maintaining the

performance of the computations at an adequate level. We provide an algorithm

for spare cores utilization at the cluster level. In addition, we propose to initiate a

local reconfiguration procedure on a faulty cell in order to recover its

functionality. When this procedure is complete, the cluster agent reallocates the

task back restoring the original performance of computations.

There are several other works that propose dynamic (re)mapping of

applications. Some of them are single-objective, i.e., they focus on minimizing,

for instance, energy consumption [43]. Other works address simultaneous

optimization of mapping and software-hardware partitioning without considering

faults of the platform [44]. In our approach, we propose to integrate and

uniformly distribute the reallocation and reconfiguration functionality within the

agents hierarchy such that a high level of fault-tolerance is achieved while

performance remains at an adequate level. Furthermore, to the best of our

knowledge, all of these approaches have been developed informally, w.r.t.

correct-by-construction and proof-based development, while our approach is

supported by the Event-B formal framework which provides the development of

a system through refinements and correctness proofs.

One technique to provide resilience to physical faults is to use redundancy.

For example, Bolchini, Carminati and Miele [8] propose to replicate the whole

application or some of its threads in order to detect and tolerate failures of

processors. They assume data parallel programs as well as consider duplication

with comparison, triplication and duplication with comparison and re-execution

fault-tolerance (FT) techniques. The authors propose an adaptation engine that

acts according to the evolving environment. They consider several parameters,

29

called knobs, which the adaptation engine needs to take into account. The

adaptation engine incorporates observe-decide-act loop that allows for achieving

adaptability.

Another approach to replicating dataflow actors has been proposed by

Pinello, Carloni and Sangiovanni-Vincentelli [38]. The authors consider a fault

model, in which components are fail-silent, i.e., they either produce a correct

result or produce no result. To effectively detect failures, the authors rely on

failure patterns proposed in [45]. These patterns describe a set of vertices of a

process graph that may fail within the same iteration. The authors use software

replication for critical tasks statically at design time, where each replica is then

executed on a separate control unit. Using this technique, the authors describe a

fault-tolerant data flow.

An approach to tackle hardware failures in process networks has been

proposed by Ceponis, Kazanavicius and Mikuckas [42]. The authors present an

extension of Kahn process networks, namely Error-Proof Process Network

(EPPN). They give operational semantics of EPPN in the form of labelled

transition system, where concurrent nodes communicate via first-in-first-out

(FIFO) channels. The nodes can check whether the channels are full or empty

and can proceed to blocking write or read, respectively. Relying on this, the

authors show a dynamic reconfiguration mechanism where the nodes adapt to

faults by transferring actions of a faulty node to an adjacent non-faulty

functional node and by accordingly adjusting communication using checks on

the FIFO channels. While this mechanism enables further execution of the nodes

and helps them to synchronize data, the network may become non-deterministic.

When functionality of a failed node is delegated to a non-faulty operating node,

data loss occurs. Moreover, this can also lead to deadlocks due to blocking

reading and writing. To tackle these problems, the authors introduce the default

value. Although the mechanism seems to fulfil continuous and on-time result

delivery, the default value may not completely compensate data loss.

Similarly as in [8][38][42], we consider hardware failures of PUs in the

underlying many-core platform. However, in contrast to [8][38][42], we rely on

dynamic reconfiguration of the platform that can be performed by agents

integrated into the platform [9][12]. The dynamic reconfiguration includes tasks

reallocation, which enables uninterruptable execution of applications [5][39] and

avoids resource wasting caused by duplicating applications or threads (actors).

Nonetheless, as in [42], the tasks may lose data when reallocated. To avoid this,

we propose an FT mechanism, in which the reallocated tasks operate on the

current values instead of the default ones. Therefore, the determinism of the

30

application is preserved. Furthermore, our FT mechanism is not restricted to data

parallel applications, but can also be applied to functionally parallel ones.

From the related work above, we can observe that the proposed approaches

either are very specific, which makes it difficult to apply them to other

application domains, or they do not provide the mechanism for efficient

utilization of spare resources, or they focus on specific objectives, so that some

attributes are neglected, or they require duplication of the tasks execution, i.e.,

reduce utilization and performance of the underlying platform. To overcome

these drawbacks, agent-based management systems have been studied.

5.2 Formal and Informal Agent-based

Systems Design

An informal design of the three-level hierarchical agent-based management

system has been explored by Guang [12]. The author studies a design paradigm,

namely Hierarchical Agent-based Adaptation (H2A), that addresses the

monitoring, decision making and reconfiguration processes. The main objective

of the proposed approach is the dynamic performance optimization based on the

monitored status. The work presents the hierarchical partition of the

functionality among the agents such that monitoring and reconfiguration of a

system can be performed efficiently. The author formulates the

software/hardware (SW/HW) co-synthesis guidelines for each level of the

hierarchy and implements the proposed system in order to evaluate energy

consumption and overhead. The evaluation results show that H2A can provide

adaptation services to reduce energy consumption while the overhead of the

proposed system is marginal. Moreover, relying on the trade-off between energy

consumption, latency and area overhead, the author suggests that a separate

physical network of agents best fits the aforementioned criteria.

In addition to the energy management, the work in [12] presents an approach

to dynamic clusterization in order to address the dependability attribute of the

system. The dynamic clusterization allows a cluster agent to be assigned to any

cell whilst any cell can be allocated to any cluster. The author considers failures

of processing cores assuming that the cell agents can detect them by using

various mechanisms. If a core where a cluster agent has been allocated fails, a

new core can be configured as a cluster agent. If a core with an application task

fails, a spare core can be used as a substitution. Thus, a number of spare cores is

needed. However, the decision on the use of spare cores is undertaken by the

platform agent. In case there are many applications mapped to the platform,

31

there may not be cores available as spares. In this case, the platform agent may

restructure clusters such that a core from one cluster is used as a spare for

another cluster. Additionally, when reconfiguring the platform, the platform

agent updates the necessary data structures of all the agents such that a new

configuration can proceed normally. Hence, the overall performance of the

platform may decrease significantly. In the worst case scenario, an application

may stop execution and may not be able to produce the result due to various

delays and tasks/cores reallocation.

Similarly to [12], we adopt the three-level hierarchical formation of agents

that have a physically separated communication network. We also consider

performance and resilience requirements simultaneously. However, in contrast

to [12], we propose to evenly distribute decision making and reconfiguration

activities among the agent levels in the hierarchy in order to achieve the required

level of performance and resilience of the platform. In particular, the platform

agent maps an application in such a manner that a number of spare cores is

provided to the cluster agent during the mapping. Furthermore, the platform

agent dynamically creates and destroys a corresponding cluster agent when an

application is mapped to and released from the platform, respectively.

Additionally, the platform agent can remap the whole application or a particular

task in case all the spare cores within the cluster have been utilized and there is a

new fault. In this case, the platform agent dynamically adjusts the cluster and the

cluster agent according to the new configuration.

Since the platform may contain a large number of cores (thousand-core) and

many applications can be mapped on such a platform, the reallocation of a task

has to be performed efficiently while still allowing efficient execution of an

application. Hence, we integrate dynamic tasks reallocation procedure into the

functionality of a cluster agent. The cluster agent manages a set of cores on a

smaller scale than the platform agent which is more effective and efficient. We

propose an algorithm for efficient utilization of the provided spare cores and

evaluate its performance. In our opinion, the three-level architecture we propose

provides scalability and coherent structure for many-core NoC-based platforms.

The functionality of the agents in this architecture is more balanced enhancing

dependability of the platform and not overloading the platform agent.

Furthermore, our approach has been developed following the refinement-based

and correct-by-construction approach allowing formal verification by

discharging proof obligations.

A formal approach to specifying agent-based systems is presented by Andres,

Molinero and Nuez [46]. This approach allows designers to describe an agent-

32

based system in terms of communication cellules that are organised into a

hierarchy. The authors focus on a mathematical framework for describing such a

generic hierarchical agent-based system. However, as the authors state, this

approach is difficult to apply for complex systems. Furthermore, this approach

does not support reconfiguration procedures nor provides verification means for

proving the correctness of the system being modelled. Instead, the approach

supports simulation of a system.

The integration of Z notation and X-machines proposed by Ali and Zafar [47]

enables modelling of agent-based system behaviour and supports data modelling

as well as property analysis. The authors focus on the development of

specifications using X-machines and proving their properties using the Z

notation. However, the authors do not consider a hierarchical scheme of an

agent-based system within their framework, which may lead to increased

complexity in its application to large-scale many-core platforms.

In another Event-B approach presented by Lanoix [48], the author refers to a

platoon problem, where several vehicles are moving one after another

simultaneously. The author considers the vehicles as a situated multi-agent

system where agents exchange the information at one level, i.e., a system with a

flat architecture. Hence, this approach may not be applicable to hierarchical

agent-based systems nor provide scalability for such complex systems.

Moreover, the author does not consider faults that may occur in the system and,

consequently, reconfiguration procedures to be integrated.

There are also other approaches to the design of agents. For instance, Araragi

et al. [49] analyze the three formal methods for modelling agents computations,

namely Erdös [50], Nepi
2
 [12] and I/O automata [51]. The authors study models

of client-request components and present both advantages and drawbacks of

these formalisms. In particular, Erdös is an agent programming language

suitable for knowledge-based programming and reasoning. The semantics of the

programs written in this language can be easily understood due to the

knowledge-based style. The programs can also be verified in an automated

manner. However, the verification is performed using computational tree logic

(CTL) model checking, i.e., it can be only executed for finite state systems.

Nepi
2
 is a network programming system. It is based on π-calculus, thus, a system

can be specified concisely using the π-calculus primitives. However, the Nepi
2

system does not support property specification and verification. Finally, I/O

automata allow for modelling components that interact. These automata support

compositional, invariant and simulation proofs. However, there is little work in

application of these automata to modelling of dynamic systems such as agent-

33

based systems. That is, it may be difficult to apply them to modelling such

systems, especially when considering hierarchical organization of agents.

The related work described above shows that the informal development (i.e.,

implementation in a programming language) of complex agent-based

management systems enables designers to quantitatively evaluate non-functional

properties, e.g., performance, area overhead and power consumption. On the

other hand, rigorous specification of such systems is needed to guarantee their

predictable and correct behaviour with respect to functional requirements. To

enable reasoning about both functional and non-functional properties, the

derived rigorous specification is needed to be translated into a programming

language in an automated manner. Since we focus on the HW part of the agent-

based management system, there are several works related to HW code

generation from formal models.

5.3 Code Generation

Seceleanu [52] proposed an approach to deriving synchronous hardware

systems. The approach relies on the Action Systems formalism and enables

modeling of a synchronous system as read/write operations. The main idea of the

approach is that a combinational (asynchronous) circuit that consists of logic

gates is followed by a synchronous component, namely a D-flip-flop, which

operates on the clock signal. In addition, the author points out the mapping of

such modeling to a behavioral VHDL description, where all operations are at

one level of code, i.e., the description without components. Despite the fact that

the Action Systems framework is similar to the Event-B formalism, it has a

different underlying structure, which makes it infeasible to completely apply this

approach to Event-B models. Furthermore, in contrast to this approach, we also

propose to derive component-based models and generate structural VHDL

descriptions with library components.

Hallerstede and Zimmermann [53] proposed an approach to VHDL code

generation from formal B models. The authors describe the mapping between B

models and VHDL code through a middleware language B0, which allows one

to generate code without components. This approach is adopted by AtelierB tool

and supported by industrial partners [54]. Since Event-B is a descendant of the B

method that allows us to model reactive systems and has a different underlying

structure, the application of this approach to Event-B models is not

straightforward. Moreover, we also consider a component-based design flow,

where components are injected into a formal model in the form of functions.

34

This design flow allows for generating a structural VHDL description from an

Event-B model.

There also exist several formalisms specifically developed for specification

and verification of hardware systems, e.g., Signal [55], Esterel [56] and ForSyDe

[57]. Signal is dedicated to data-flow applications domain while Esterel is for

control-flow ones. ForSyDe represents the design methodology targeting at

covering both domains. The commonality of these languages is that they are all

based on the perfect synchrony hypothesis. This hypothesis assumes a zero delay

between consuming inputs and producing outputs. In addition, only Signal and

ForSyDe support the notion of refinement. Refinement in Signal relies on

checking if simulation of inputs and outputs preserves flow-equivalence (model

checking) [58]. Refinement in ForSyDe stands for the mapping one process

network onto another one restricting these networks to have the same inputs and

outputs [57]. Moreover, these transformations have to be performed according to

the predefined library.

BlueSpec [59] has been proposed as another solution to formal hardware

verification and code generation. The language represents an extension of

SystemVerilog and has a sound semantics allowing one to verify certain

properties. It also supports design by refinement offering a possibility of

integrating automated reasoning into the design flow [60]. However, automated

verification of system correctness is provided by external theorem provers or

model checkers such as PVS [60] and SPIN [61].

In contrast to these approaches, we propose to use the Event-B formalism,

which provides data and superposition refinement [62]. These types of

refinement allow for stepwise unfolding of system functionality without

restricting the model to have the same number of variables in refinements.

Furthermore, one can postulate vital properties in terms of invariants for every

refinement step. Following this approach, the discharging (proving) of proof

obligations serves as the guarantee that each refinement step preserves invariants

and that concrete refinement step sustains their abstract counterparts. After the

required model is derived and proved correct, a behavioral or structural VHDL

description can be generated directly from the model.

Evans [63] describes the mapping of VHDL to B and Communicating

Sequential Processes (CSP) methods. The author proposes to derive a B model

from VHDL and formalize requirements with CSP. This approach uses a model-

checking technique that requires modification and re-checking of the

implementation until the desired integrity level is achieved.

35

A BHDL tool has been proposed for digital circuit design [64]. The tool

converts a VHDL description into a B specification with two machines: an

abstract that represents a VHDL entity and an implementation that corresponds

to the architecture. Then, these two machines are verified using the B engine and

the VHDL comments are interpreted as invariant properties. In contrast to this

approach, we derive an implementable deterministic Event-B model following

the usual refinement-based development. Then, components are injected into the

model, so that a structural VHDL description can be generated.

Instead of concentrating on the derivation of formal models from

implementations, we focus on the code generation from the formal models. We

employ the Event-B design methodology, where the model development follows

the refinement approach and eventually ends in code generation in an automated

manner. In addition to behavioural VHDL description generation, we propose to

translate a model into a description with components (i.e., a structural

description) in order to derive a more efficient implementation.

36

37

6 Discussion and Research Directions

In this chapter, we conclude the work described in the thesis. Additionally,

we discuss the limits of the proposed approaches and outline future research

directions.

6.1 Conclusion

As parallel and distributed computing becomes central in modern

computations, many-core platforms are envisaged to be used in various

application domains including critical ones. To provide resilience of the platform

and maintain its performance at an acceptable level, we have designed an agent-

based management system that monitors the state of the platform and applies

various dynamic reconfiguration mechanisms when necessary. Considering

hierarchical formation of the agents, the (re)configuration procedures have been

evenly distributed such that effective and efficient monitoring and recovery are

possible. We have developed algorithms for initial configuration (mapping) and

dynamic reconfiguration (tasks reallocation). The initial mapping algorithm

provides each application with a number of spare resources whilst the tasks

reallocation algorithm utilizes these spare resources in an intelligent manner.

The proposed agent-based management system with (re)configuration

mechanisms has been developed following the formal refinement approach, so

that its behaviour can justifiably be trusted. In other words, the use of formal

specification and verification methods help us to mathematically ensure that the

developed system behaves correctly with respect to the specified properties.

Moreover, we have presented the guidelines that help designers to build such

complex systems in a rigorous manner.

When tasks are dynamically reallocated, they may lose data which may lead

to the production of incorrect result. To tackle this problem, we have proposed a

scalable mechanism in which the communication between tasks uses duplicate

packets. We have presented algorithms for the intelligent packet handling

considering different types of tasks.

A natural logical step after the specification of a system is derived lies in an

automated code generation. This lowers the probability of introducing design

faults and facilitates easier evaluation of non-functional requirements in a real-

world environment. To address this problem, we have proposed mechanisms that

allow designers to generate a behavioural (without components) or a structural

(with components) hardware description directly from a formal model.

38

Since efficiency is one of our objectives, we have also evaluated performance

of the proposed mechanisms on a commercially available platform TilePro by

Tilera [3]. The evaluation results have illustrated that the proposed algorithms

produce a marginal overhead and perform efficiently while allowing applications

to produce the expected result.

Therefore, the main goal of the thesis has been accomplished by proposing a

design flow for the development of complex systems such as agent-based

management systems. This design flow starts with a formal rigorous modelling

of a system and ends in an automated code generation.

6.2 Future work

Although the evaluation results show efficiency of the proposed system in

terms of performance and area overhead, the number and the placement of spare

cores affects the utilization and the performance of the underlying platform.

Thus, one research direction includes exploration of possible placements of

spare resources within an application region in order to find an optimal solution.

For instance, spare resources can be placed randomly following the approach

presented in [39]. In addition, we will investigate reallocation of tasks to

unallocated spare cores within other clusters.

The proposed dynamic reconfiguration procedures constitute one part of

resilience to failures. The other part requires techniques to detect these failures.

Hence, another direction of our research is to explore failure detection

mechanisms. In particular, various techniques such as model-based diagnosis

[65] or runtime verification [66] can be integrated into the agents in order to

provide comprehensive and fast failure detection. This will allow for rapid

invocation of the proposed dynamic reconfiguration procedures.

As mentioned above, the rigorous formal development provides means to

insure correct behavior of a system with respect to postulated properties by

utilizing mathematical proofs. Moreover, the automated code generation

prevents a designer from the introduction of design faults into the system while

implementing/coding the derived specification. However, the derived

implementation is run on processing units as well. Despite the fact that the

agents are simpler than the application tasks, physical failures of PUs can occur

as well. Hence, resilience of the agent-based management system can also be

improved by considering these failures and dynamic reconfiguration of the

agents.

Finally, the system composition of software and hardware poses the question

of SW/HW co-design, where implementations of both parts can be obtained in

39

an automated manner. Hence, formal rigorous SW/HW co-design has also a

particular research interest. This affects the system design flow in the following

directions. The first one is the decomposition of Event-B models which gives us

an opportunity to construct a hierarchical structure of a model, so that this

structure is reflected in the implementation. The second direction is the

introduction of combinatorial components that depend on the clock signal and

allow a designer to derive a time-aware model as well as to generate

synchronous code from this model.

40

Bibliography

[1] K. Asanovic, R. Bodik J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,

N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, K. Yelick, A

View of the Parallel Computing Landscape, Communications of the ACM,

Vol. 52, No. 10, pp. 56-67, 2009.

[2] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm,

Computer, IEEE, Vol. 35, Issue 1, pp. 70 – 78, 2002.

[3] Tilera, Tile Processor Architecture Overview, 2011. Available:

http://www.tilera.com/scm/docs/UG120-Architecture-Overview-TILEPro.pdf

[4] Intel, Single-Chip Cloud Computer: Project, 2013. Available:

http://www.intel.com/content/dam/www/public/us/en/documents/technology-

briefs/intel-labs-single-chip-cloud-program-guide.pdf

[5] F. Khalili, H. R. Zarandi, A Fault-Tolerant Low-Energy Multi-Application

Mapping onto NoC-based Multiprocessors, International Conference on

Computational Science and Engineering, Nicosia, IEEE, pp. 421-428, 2012.

[6] G. Link, N. Vijaykrishnan, Hotspot Prevention Through Runtime

Reconfiguration in Networks-on-Chip, DATE, IEEE, pp. 648-649, 2005.

[7] S. Mukherjee, J. Emer, S. Reinhardt, The Soft Error Problem: An

Architectural Perspective, International Symposium on High-Performance

Computer Architecture, IEEE, pp. 243-247, 2005.

[8] C. Bolchini, M. Carminati, A. Miele, Self-Adaptive Fault-Tolerance in Multi-

/Many-Core Systems, Journal of Electronic Testing: Theory and Applications,

Vol. 29, Issue 2, Springer US, pp. 159-175, 2013.

[9] K. Motamedi, N. Ionnides, M. Rümmeli, I. Schagaev, Reconfigurable

Network on Chip Architecture for Aerospace Applications, Preprints of the

30th IFAC Workshop on Real-Time Programming and 4th International

Workshop on Real-Time Software, pp. 131-136, 2009.

[10] P. Rantala, J. Isoaho, H. Tenhunen, Novel Agent-Based Management for

Fault-Tolerance in Network-on-Chip. Euromicro Conference on Digital

System Design Architectures, Methods and Tools, Lubeck: IEEE pp. 551-555,

2007.

[11] A. Yin, L. Guang, P. Liljeberg, E. Nigussie, J. Isoaho, H. Tenhunen,

Hierarchical Agent Based NoC with Dynamic Online Services, Industrial

Electronics and Applications, Taichung: IEEE, pp. 434-439, 2009.

[12] L. Guang, Hierarchical Agent-based Adaptation for Self-Aware Embedded

Computing Systems, PhD Thesis, University of Turku, 2012.

[13] Y. Kawabe, K. Mano, K. Kogure, The Nepi
2
 Programming System: A π-

Calculus-based Approach to Agent-based programming, International

Workshop on Formal Approaches to Agent-based systems, pp. 90-102, 2001.

[14] R. J. Back and J. Wright, Refinement Calculus: A Systematic Introduction,

41

Springer-Verlag, 1998.

[15] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.

Cambridge: Cambridge University Press, 2010.

[16] RODIN, 2014. Available: http://sourceforge.net/projects/rodin-b-sharp/

[17] S. Wright, Automatic Generation of C from Event-B, Workshop on

Integration of Model-based Formal Methods and Tools, p. 14, 2009.

[18] A. Edmunds, M Butler, Linking Event-B and Concurrent Object-Oriented

Programs, Electronic Notes in Theoretical Computer Science 214, pp. 159-

182, 2008.

[19] D. Méry, N. K. Singh, Automatic Code Generation from Event-B models,

Symposium on Information and Communication Technology, ACM, pp. 179-

188, 2011.

[20] M. Dehyadgari, M. Nickray, A. Afzali-Kusha, Z. Navabi, Evaluation of

pseudo adaptive XY routing using an object oriented model for NoC,

International Conference on Microelectronics, IEEE, pp. 204-208, 2005.

[21] V. Rantala, T. Lehtonen, J. Plosila, Network on Chip Routing Algorithms,

TUCS Technical Report 779, pp. 10-16, 2006.

[22] M. Ebrahimi, D. Masoud, P. Liljeberg, J. Plosila, H. Tenhunen, Efficient

Congestion-Aware Selection Method for On-Chip Networks, International

Symposium on Reconfigurable Communication-centric Systems-on-Chip

(ReCoSoC), IEEE, pp. 1-4, 2011.

[23] Tilera, Tile Processor User Architecture Manual, 2011. Available:

http://www.tilera.com/scm/docs/UG101-User-Architecture-Reference.pdf

[24] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H.Wilson, J. Tschanz, D. Finan,

A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,

S. Borkar, An 80-tile sub-100-w teraflops processor in 65-nm cmos, IEEE

JSSC, 43(1), pp. 29–41, 2008.

[25] I. Khatib, D. Bertozzi, F. Poletti, L. Benini, A. Jantsch, M. Bechara, H.

Khalifeh, M. Hajjar, R. Nabiev, S. Jonsson, MPSoC ECG biochip: a

multiprocessor system-on-chip for real-time human heart monitoring and

analysis, Conference on Computing Frontiers, New York: ACM, pp. 21-28,

2006.

[26] J.-C. Laprie, From Dependability to Resilience, International Conference on

Dependable Systems and Networks, IEEE/IFIP, pp. G8-G9, 2008.

[27] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic Concepts and

Taxonomy of Dependable and Secure Computing, IEEE Transactions on

Dependable and Secure Computing, Vol. 1, No. 1, pp. 11-33, 2004.

[28] A. Avizienis, J.-C. Laprie, B. Randell, Fundamental Concepts of

Dependability, 2001. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6074

[29] S. Russel, P. Norvig, Artificial Intelligence: A Modern Approach (2
nd

 edition),

Prentice Hall, Englewood, p. 946, 2003.

42

[30] C. Métayer, J.-R. Abrial, L. Voisin, Deliverables, Rigorous Open

Development Environment for Complex Systems, 2005. Available:

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

[31] K. Robinson, System Modelling & Designing using Event-B, 2010.

Available: http://wiki.event-b.org/images/SM%26D-KAR.pdf

[32] Simulink, Simulation and Model-Based Design, 2014. Available:

http://www.mathworks.se/help/simulink/index.html

[33] MathWorks, Modeling Dynamic Systems, 2014. Available:

http://www.mathworks.se/help/simulink/ug/modeling-dynamic-systems.html

[34] MathWorks, Simulating Dynamic Systems, 2014. Available:

http://www.mathworks.se/help/simulink/ug/simulating-dynamic-systems.html

[35] MathWorks, Simulink coder, 2013. Available:

http://www.mathworks.se/products/simulink-coder/

[36] IEEE Standard VHDL Language Reference Manual, IEEE 1076, 2008.

[37] Altera, Quartus-II software, 2014. Available:

http://www.altera.com/products/software/sfw-index.jsp

[38] C. Pinello, L. Carloni, A. Sangiovanni-Vincentelli, Fault-Tolerant

Deployment of Embedded Software for Cost-Sensitive Real-Time Feedback-

Control Applications, International Conference on Design Automation and

Test in Europe, IEEE, pp. 1164-1169, 2004.

[39] C.-L. Chou, R. Marculescu, FARM: Fault-Aware Resource Management in

NoC-based Multiprocessor Platforms, DATE Conference & Exhibition,

Grenoble, IEEE, pp. 1-6, 2011.

[40] Xilinx, Remote FPGA Reconfiguration Using MicroBlaze or PowerPC

Processors, 2006. Available:

http://www.xilinx.com/support/documentation/application_notes/xapp441.pdf

[41] Altera, Increasing Design Functionality with Partial and Dynamic

Reconfiguration in 28-nm FPGAs, 2010. Available:

http://www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-

reconfig.pdf

[42] J. Ceponis, E. Kazanavicius, A. Mikuckas, Fault Tolerant Process Networks,

Information Technology and Control, Vol. 35, No. 2, pp. 124-130, 2006.

[43] P. Hölzenspies, T. Braak, J. Kuper, G. Smit, J. Hurink, Run-time Spatial

Mapping of Streaming Applications to Heterogenous Multi-Processor

Systems, International Journal on Parallel Programming, pp. 68-83, 2009.

[44] S. Le Beux, G. Bois, G. Nicolescu, Y. Bouchebaba, M. Langevin, P. Paulin,

Combining mapping and partitioning exploration for NoC-based embedded

systems, Journal of Systems Architecture, New York: Elsevier, pp. 223-232,

2010.

[45] C. Dima, A. Girault, C. Lavarenne, Y. Sorel, Off-line real-time Fault-Tolerant

Scheduling, Euromicro, IEEE, pp. 410-417, 2001.

[46] C. Andres, C. Molinero, M. Nuez, A formal methodology to specify

http://www.mathworks.se/help/simulink/ug/modeling-dynamic-systems.html
http://www.mathworks.se/help/simulink/ug/simulating-dynamic-systems.html
http://www.mathworks.se/products/simulink-coder/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4772740&contentType=Standards&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_Publication_Number%3A4772738%29
http://www.xilinx.com/support/documentation/application_notes/xapp441.pdf
http://www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf
http://www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf

43

hierarchical agent-based systems, Signal Image Technology and Internet

Based Systems, Bali: IEEE, pp. 169-176, 2008.

[47] G. Ali, N. Zafar, Modelling Agent-Based Systems Using X-Machine and Z

Notation, International Communication Software and Networks, Singapore:

IEEE, pp. 249-253, 2010.

[48] A. Lanoix, Event-B Specification of a Situated Multi-Agent System: Study of

a Platoon of Vehicles, International Symposium on Theoretical Aspects of

Software Engineering, Nanjing: IEEE, pp. 297-304, 2008.

[49] T. Araragi, P. Attie, I. Keidar, K. Kogure, V. Luchangco, N. Lynch, K. Mano,

On Formal Modeling of Agent Computations, Lecture Notes in Computer

Science, Berlin: Springer-Verlag, pp. 48-62, 2001.

[50] T. Araragi, Agent programming and its formal specification, Technical Report

ai99-47, pp. 47-54, 1999.

[51] N. Lynch, M. Tuttle, An introduction to I/O automata, CWI-Quarterly 2(3),

pp. 219-246, 1989.

[52] T. Seceleanu, Systematic Design of Synchronous Digital Circuits, Turku:

TUCS Dissertations, Turku Centre for Computer Science, 2001.

[53] S. Hallerstede, Y. Zimmermann, “Circuit Design by Refinement in Event-B”,

FDL, pp. 624-637, 2004.

[54] M. Benveniste, A «Correct by Construction» Realistic Digital Circuit, RIAB

Workshop, FMWeek, 2009.

[55] I A. Benveniste, P. Le Guernic, Hybrid Dynamical Systems Theory and the

Signal Language, IEEE Transactions on Automatic Control 35(5), pp. 535-

546, 1990.

[56] D. Potop-Butucaru, R. de Simone, Optimizations for Faster Execution of

Esterel Programs, Proc. of MEMOCODE conference, pp. 227-236, 2003.

[57] I. Sander, A. Jantsch, System Modelling and Transformational Design

Refinement in ForSyDe, Transactions on Computer Aided Design of

Integrated Circuits and Systems, IEEE, Vol. 23, 2004, pp. 17-32.

[58] J. Talpin, P. Guernic, S. Shukla, R. Gupta, F. Doucet, Polychrony for Formal

Refinement Checking in a System-Level Design Methodology, Application of

Concurrency to System Design (ACSD), IEEE, pp. 9-19, 2003.

[59] University of California, BlueSpec Documentation, 2008. Available:

http://www.ece.ucsb.edu/its/bluespec/index.html.

[60] D. Richards, D. Lester, A monadic approach to automated reasoning for

BlueSpec SystemVerilog, Innovations System Software Engineering,

Springer-Verlag, pp. 85-95, 2011.

[61] G. Singh, E. Shukla, Verifying Compiler-based Refinement of Bluespec

Specifications using the SPIN model Checker, 15th International SPIN

Workshop, Springer, pp. 250-269, 2008.

[62] R. J. Back, K. Sere, Superposition Refinement of Reactive Systems, Formal

Aspects of Computing, Springer, Vol. 8, 1995, pp. 324-346.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zimmermann:Y=.html

44

[63] N. Evans, Integrating Formal Methods with Informal Digital Hardware

Development, Proc. of AVoCS, p. 1-16, 2010.

[64] A. Aljer, P. Devienne, S. Tison, BHDL: Circuit design in B, Conference on

Application of Concurrency to System Design, IEEE, pp. 1-2, 2003.

[65] R. Isermann, Model-based fault-detection and diagnosis – status and

applications, Annual Reviews in Control 29(1), Elsevier, Vol. 29, Issue 1,

pp. 71-85, 2005.

[66] L. Pike, S. Niller, N. Wegmann, Runtime Verification for Ultra-Critical

Systems, In Proceedings of International Conference on Runtime Verification,

Springer, pp. 310-324, 2012.

45

Part II

Research Publications

Paper 1

Hierarchical agent-based monitoring systems for dynamic

reconfiguration in NoC platforms: A formal approach

Sergey Ostroumov, Leonidas Tsiopoulos, Marina Waldén,

Juha Plosila

Originally published in:

Advancing Embedded Systems and Real-Time Communications with

Emerging Technologies, Chapter 13, IGI Global, pp. 302-333, 2014.

Based on the publication:

Sergey Ostroumov, Leonidas Tsiopoulos, Formal Development of

Hierarchical Agent-Based Monitoring Systems for Dynamically

Reconfigurable NoC Platforms, International Journal of Embedded and

Real-Time Communication Systems (IJERTCS), Volume 3, Issue 2,

pp. 40–72, 2012.

© The chapter appears in Advancing Embedded Systems and Real-Time

Communications with Emerging Technologies edited by Seppo Virtanen. Copyright

2014, IGI Global, www.igi-global.com. Posted by permission of the publisher.

Paper 2

Formal Approach to Agent-based Dynamic

Reconfiguration in Networks-on-Chip

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila,

Kaisa Sere

Originally published in:

Journal of Systems Architecture, Volume 59, Issue 9, Elsevier,

pp. 709-728, 2013.

© Reprinted from Embedded Software Design Journal of Systems Architecture, 59(9),

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere, Formal Approach to

Agent-based Dynamic Reconfiguration in Networks-on-Chip, p. 20, 2013, with

permission from Elsevier.

Journal of Systems Architecture 59 (2013) 709–728
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Formal approach to agent-based dynamic reconfiguration
in Networks-On-Chip
1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.06.001

⇑ Corresponding author at: Åbo Akademi University, Department of IT, Joukaha-
isenkatu 3-5a, Turku 20520, Finland. Tel.: +358 215 3339.

E-mail address: Sergey.Ostroumov@abo.fi (S. Ostroumov).
Sergey Ostroumov a,b,⇑, Leonidas Tsiopoulos b, Juha Plosila c, Kaisa Sere b

a TUCS – Turku Centre for Computer Science, Turku, Finland
b Åbo Akademi University, Department of IT, Joukahaisenkatu 3-5a, Turku 20520, Finland
c University of Turku, Department of IT, Joukahaisenkatu 3-5b, Turku 20014, Finland

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 17 June 2013

Keywords:
Agent-based system
Dynamic reconfiguration
Event-B
Formal methods
Fault-tolerance
Network-On-Chip
A Network-On-Chip (NoC) platform is an emerging topology for large-scale applications. It provides a
required number of resources for critical and excessive computations. However, the computations may
be interrupted by faults occurring at run-time. Hence, reliability of computations as well as efficient
resource management at run-time are crucial for such many-core NoC systems. To achieve this, we utilize
an agent-based management system where agents are organized in a three-level hierarchy. We propose
to incorporate reallocation and reconfiguration procedures into agents hierarchy such that fault-toler-
ance mechanisms can be executed at run-time. Task reallocation enables local reconfiguration of a core
allowing it to be eventually reused in order to restore the original performance of communication and
computations. The contributions of this paper are: (i) an algorithm for initial application mapping with
spare cores, (ii) a multi-objective algorithm for efficient utilization of spare cores at run-time in order
to enhance fault-tolerance while maintaining efficiency of communication and computations at an ade-
quate level, (iii) an algorithm integrating the local reconfiguration procedure and (iv) formal modeling
and verification of the dynamic agent-based NoC management architecture incorporating these algo-
rithms within the Event-B framework.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Excessive many-core computations require a large number of
resources to be available at their disposal. Critical applications, in
their turn, require fault-tolerance mechanisms that can be exe-
cuted at run-time so that the computations can continue without
interruption. In addition, the computations have to be performed
in an efficient manner. Hence, it is necessary to provide a platform
and means that would satisfy these requirements.

A Network-On-Chip (NoC) platform is an emerging topology for
large-scale applications [1]. It provides a desired number of re-
sources for critical and excessive computations from, for example,
biomedical [2] or aerospace domain [3]. However, special means
are required to monitor the state of the platform and to apply dy-
namic procedures for tolerating faults. These means are usually
implemented in the form of agents [4]. The agents help to avoid
overloading the NoC platform with monitoring and recovering
activities while the platform performs routing algorithms, etc.
The bigger the platform, the more agents it requires. In order for
the system to manage a large number of agents, these agents are
organized in a hierarchy, typically of a multi-level structure [5].
This hierarchy usually consists of the platform (system) agent
managing the whole platform, cluster agents operating on certain
regions (i.e., sets of cores where applications are mapped) and cell
agents processing local (cell) information. The hierarchy permits
the agents to exchange the data about the current state of the plat-
form as well as to tolerate faults by applying run-time reconfigura-
tion procedures at different levels.

The use of NoC platforms with their run-time management sys-
tems in critical applications requires these platforms to be reliable.
One of the appropriate approaches for specifying and verifying reli-
able NoC systems is provided by formal methods. Formal develop-
ment enables stepwise and correct-by-construction design of the
specification of a system allowing mathematical reasoning of its
correctness. Moreover, formal methods are recommended by
safety standards [6] for the development of safety critical systems
which we envisage to be one of the application domains for the
system we develop in this paper. We adopt the Event-B formalism
[7] as the primary framework for the formal development. Event-B
supports system level modeling as well as supplies a proving
mechanism to reason about the correctness of the specification
w.r.t. the functional properties (requirements) postulated as
invariants. The specification within Event-B is created following

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.06.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.06.001
mailto:Sergey.Ostroumov@abo.fi
http://dx.doi.org/10.1016/j.sysarc.2013.06.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

710 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
the refinement-based approach, i.e., incremental unfolding of sys-
tem properties supported by mathematical proofs. Furthermore, it
has adequate tool support through the Rodin platform [8].

In our approach, we propose to incorporate dynamic realloca-
tion and reconfiguration procedures at different levels of the
agents hierarchy. In particular, we show a specific initial applica-
tion mapping to a region with spare cores at the platform agent le-
vel. The platform agent also assigns a cluster agent to each
application. Additionally, the platform agent can remap the entire
application or reallocate a task of a particular cell outside the appli-
cation region if all the spare cores within the cluster have been uti-
lized and there is a new fault. However, the platform may contain a
large number (thousand) of cores with many applications mapped
on such a platform. Hence, the reallocation of a task has to be per-
formed efficiently while still allowing efficient execution of an
application. To achieve this, a corresponding cluster agent utilizes
the available spare cores when moving a task from a faulty core to
a spare one within the application region. This allows a more effi-
cient task migration in terms of reallocation speed and power con-
sumption than task migration to free cores allocated at a great
distance from the region. After the task migration is complete, a lo-
cal cell agent initiates the local reconfiguration procedure that en-
ables the faulty core to recover its functionality and to be
reinvolved in the computations. This permits the region and,
hence, the application to restore the original performance of the
computations. The specification of this system is developed within
Event-B and supported by mathematical proofs of its correctness.

The contributions of this paper are (i) an algorithm for the ini-
tial application mapping and tasks allocation with free spare cores,
(ii) a multi-objective algorithm that facilitates fault-tolerance of
the platform while maintaining performance of communication
and computations at an adequate level, (iii) an algorithm integrat-
ing the local reconfiguration procedure and (iv) the Event-B formal
modeling and verification of a hierarchical agent-based dynamic
management architecture for NoCs incorporating these algorithms.
In this architecture, the platform agent dynamically creates and
destroys the cluster agents. The cluster agents, in their turn, are
fully distributed, i.e., they independently of each other execute
monitoring and reconfiguration procedures utilizing the spare
cores without overloading the platform agent. We follow the
refinement approach where the base system model has been de-
rived from a previously developed model [9].

The remainder of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we overview the Event-B
formal framework, briefly describe agent-based management sys-
tems for NoC platforms and present an approach to formal devel-
opment of such systems. In Section 4, we give the algorithms for
the reallocation and reconfiguration procedures performed at dif-
ferent levels of the hierarchy. In Sections 5, 6 and 7 we formally de-
velop the specifications of the platform, cluster and cell agents
through refinement, respectively. Finally, we conclude the paper
and highlight the directions of the future work in Section 8.
2. Related work

A fault-tolerant reconfigurable NoC has been proposed by Mota-
medi et al. [3]. The authors consider application specific architec-
ture for avionic systems. In particular, they use a star network
topology as the main active formation where the so called cockpit
switch is placed in the center of the topology. The redundancy is
achieved by placing redundant links in the system. When a fault
is detected, the topology is switched (reconfigured) from the star
formation to the ring one. In addition, the authors utilize an
Embedded Reliable Reduced Instruction Processor (ERRIC) as a
computational unit. ERRIC has been specially designed for perma-
nent faults. Additionally, the authors show the prototyping results
where the overhead of using their approach is marginal while the
required level of fault-tolerance is achieved. Although ERRIC is
used as a computational unit, it has a reduced instruction set
which may not be applicable to application domains other than
avionics. Moreover, ERRIC is implemented on Field-Programma-
ble-Gate-Array (FPGA) or Application-Specific-Integrated-Circuit
(ASIC), where a fault may also occur and, hence, this processing
unit is not available any more.

In comparison, instead of reconfiguring the NoC topology, we
consider a topologically fixed NoC platform that is not application
specific. We note however that the approach we propose in this pa-
per can be applied to any topology and any type of routing schemes
since it does not depend on the underlying platform. Our approach
allows for executing applications without interruption and recov-
ering the functionality of the platform by applying dynamic task
reallocation and local cell reconfiguration procedures, respectively.
The local reconfiguration, which is executed on the processing unit
instead of the topology, recovers the operational mode of the for-
mer. Nevertheless, redundant routers (and/or links) can comple-
ment our approach.

A three-level architecture for agent-based monitoring of the
NoC platform has been proposed by Guang et al. [10]. The approach
allows for effective monitoring of the state of the NoC platform.
The authors present a structured framework for designing such a
system. However, the framework only describes the main defini-
tions of the hierarchical agent-based system and do not consider
faults of the NoC elements. Moreover, the framework is not for-
mally verified.

Guang et al. [11] have also proposed to incorporate reconfigura-
tion procedures at coarse-grained (system) and fine-grained (local)
levels for tolerating permanent and transient faults in many-core
(thousand-core) Systems-On-Chip. They have suggested a two-le-
vel architecture where the system agent manages the whole plat-
form and the local agent monitors the local component such as a
router. The system also uses a portion of spare cores that are uti-
lized if some processor fails. However, the authors do not show
where these spare cores are located and do not describe the algo-
rithm of utilization of these spare cores. This may lead to a problem
of drastically decreased performance, if these spares are at a great
distance from applications running computations. Moreover, the
authors only consider the faults of the routers in which case the lo-
cal agent executes reconfiguration by replacing a broken wire with
a spare one. In addition, the functionality of the system agent in-
cludes many activities that may lead to a failure state of the agent
itself, although the system agent is designed with higher reliability.

In contrast to [10,11], we adopt a three-level architecture where
reconfiguration procedures are incorporated into different levels of
the hierarchy such that the platform can be dynamically adapted
and healed, if necessary. In particular, the platform agent can re-
map the entire application or reallocate a task of a particular cell
within the platform. This only occurs if all the spare cores within
the cluster have been utilized and there is a new fault. Since the
platform may contain a large number of cores (thousand-core)
and many applications can be mapped on such a platform, the real-
location of a task has to be performed efficiently while still allow-
ing efficient execution of an application. Hence, we propose to
introduce the reallocation procedure within the region into the
functionality of a cluster agent, which is responsible for its cluster
(region). These agents are dynamically created and destroyed
when an application is mapped to and released from the platform,
respectively. Finally, the local cell agent executes the local recon-
figuration procedure allowing the cell to recover. In our opinion,
the three-level architecture we propose provides better scalability
and structure for complex NoC platforms. Moreover, the function-
ality of the agents in this architecture is more balanced enhancing

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 711
dependability of the platform and not overloading the platform
(system) agent. Furthermore, our approach has been developed fol-
lowing the refinement-based and correct-by-construction ap-
proach allowing formal verification by discharging proof
obligations.

A similar approach to remapping with spare cores has been pro-
posed by Chou and Marculescu [12]. The authors study three pos-
sible schemes of spare cores allocation at the system level only,
without considering assignments of spare cores within applica-
tion/cluster regions. The three possible assignments include: (1)
side assignment, (2) random assignment and (3) uniform assign-
ment. The authors provide the metrics for evaluation of the task
remapping to spare cores and point out that the remapping to
the randomly placed spare cores performs better than to the spare
cores placed to the side of the system. Clearly, a spare core allo-
cated at a great distance from an application drastically decreases
the entire system performance.

In contrast, we propose to incorporate spare cores at the side of
each cluster (region) instead of spare cores assignment at the sys-
tem level only. We note however that random (or other types of)
assignment of spare cores within the region is out of the scope of
this paper. Depending on the size of an application, a fixed number
of spare cores is provided to a corresponding cluster agent allowing
it to tolerate faults while maintaining the performance of the com-
putations at an adequate level. We provide an algorithm for spare
cores utilization at the cluster level. In addition, we propose to ini-
tiate a local reconfiguration procedure on a faulty cell in order to
recover its functionality. When this procedure is complete, the
cluster agent reallocates the task back restoring the original perfor-
mance of computations.

There are several other works proposing dynamic (re)mapping
of applications. Some of them are single-objective, i.e., they focus
on minimizing, for instance, energy consumption [13]. Other works
address simultaneous optimization of mapping and software-hard-
ware partitioning without considering faults of the platform [14].
In our approach, we propose to integrate and uniformly distribute
the reallocation and reconfiguration functionality within the
agents hierarchy such that a higher level of fault-tolerance is
achieved while performance remains at an adequate level. Further-
more, to the best of our knowledge, all of these approaches have
been developed informally, w.r.t. correct-by-construction and
proof-based development, while our approach is supported by
applying the Event-B formal framework through refinements and
correctness proofs.
3. Preliminaries and proposed approach

3.1. The Event-B formalism

Event-B is a formalism for stepwise and correct-by-construction
development of a system [7]. A specification in Event-B consists of
two parts: a context and a machine. The context can be extended
by another context while the machine can be refined by another
machine. In addition, the machine can refer to the context data,
if this machine sees this context.

The context defines the static part of the model – data types
(sets), constants, and their properties given as a collection of axi-
oms. The machine describes the dynamic behavior of the system
in terms of its state (model or state variables) and state transitions,
called events. The essential and guaranteed system properties are
formulated as invariants.

The machine is uniquely identified by its name <machine iden-
tifier>. The state variables of the machine are declared in the vari-
ables clause and initialized in the initialisation event. The
variables are strongly typed by constraining predicates given in
the invariants clause. The overall system invariant is defined as
a conjunction of constraining predicates and the other predicates
stating the functional system properties that should be preserved
during system execution. The machine may contain so-called con-
vergent events that are executed several times in a row. These
events must eventually terminate in order for other (non-conver-
gent) events to take place. This fact is assured by a variant intro-
duced into the variant clause. The variant represents a natural
number (or a finite set) whose value (or cardinality) is decreasing
each time a convergent event is executed. The behavior of the sys-
tem is then defined by a collection of atomic events specified in the
events clause. The syntax of an event is as follows:

E ¼ ANY x WHERE g THEN a END

where x is a list of event local variables, the guard g is a conjunction
of predicates over the state variables and the local variables and the
action a is a collection of assignments to the state variables.

The guard is a predicate that determines the conditions under
which the action can be executed, i.e., when the event is enabled.
If several events are enabled simultaneously, then any of them
can be chosen for execution non-deterministically. If none of the
events is enabled, then the system deadlocks.

The action of an event is a composition of assignments executed
simultaneously and denoted as ||. An assignment to a variable can
be either deterministic or non-deterministic. A deterministic
assignment is defined as y := E(v), where y is a list of the state vari-
ables and E(v) is a list of expressions over the state variables v. A
non-deterministic assignment is specified as y :| Q(v, y0), where
Q(v, y0) is a predicate and the primed variable y0 represents a
new value the variable y gets after the event execution. As the re-
sult of a non-deterministic assignment, the variable y gets such a
value y0 that Q(v, y0) holds.

The semantics of Event-B events is defined using before-after
(BA) predicates [15]. An action of an event is seen as a BA that de-
scribes a relationship between the system state before (v) and after
(v0) the execution of the event. The formal semantics provides us
with a foundation for establishing system correctness. To verify
correctness (consistency) of a specification, we should discharge
a number of proof obligations. In particular, each event of the mod-
el should be consistent with the invariant preservation proof obli-
gation (INV) whereas every event that contains a non-
deterministic assignment should also satisfy event feasibility (FIS):

Inv ^ ge) ½BAe�Inv ðINVÞ

Inv ^ ge) 9v0 � BAe ðFISÞ

where Inv is a model invariant, ge and BAe are the guard and the be-
fore-after predicate of the event e, respectively, and [BAe]Inv stands
for the substitution in the invariant Inv according to the before-after
predicate BAe of the event e.

When modeling a continuous procedure (e.g., a loop), some
events may be executed several times in a row (convergent
events). To guarantee that the number of times when such conver-
gent events are executed is finite, one has to provide a variant and
show the consistentency of these events with the following proof
obligation [16]:

8S;C;V � A ^ I) finiteðVarÞ ^ cardð½BAe�VarÞ < cardðVarÞ ðVARÞ

where S and C represent sets and constants introduced into con-
texts, respectively. V stands for a set of state variables. A is a collec-
tion of axioms. I depicts a set of invariants. Var is an expression (a
variant) that denotes a finite set of values.

The specification within Event-B is developed in a stepwise
manner through refinements. Invariance properties are preserved

712 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
by refinement, hence, do not require to be re-proved. However,
concrete (refined) events must be able to simulate their abstract
counterparts according to some gluing invariant. This is formally
ensured by discharging the guard strengthening (GRD) and action
simulation (SIM) proof obligations [16]:

8S;C;Sr;Cr;V;Vr;x;xr � A ^ Ar ^ I ^ Ir ^ gr) g ðGRDÞ

8S;C;Sr;Cr;V;Vr; x; xr � A ^ Ar ^ I ^ Ir ^ BAer) BAe ðSIMÞ

where all letters with the subscript ‘‘r’’ stand for the refined ver-
sions of the structures described above.

The Rodin platform [8], a tool supporting Event-B, automatically
generates the required proof obligations and attempts to automat-
ically discharge (prove) them. Sometimes it requires user assis-
tance that is provided via the interactive prover. However, in
general the tool achieves high level of automation (usually over
80%) in proving.

3.2. Agent-based monitoring systems for NoCs

NoC is generally considered as an efficient and scalable inter-
connect paradigm [17]. It allows sophisticated applications to be
deployed on many-core platforms and execute their intensive
computations effectively. The cores in an NoC platform are inter-
connected with one structured net that permits the cores to
achieve a high level of communication performance. Hence, these
systems are likely to be used in many applications, especially crit-
ical ones.

Critical applications [2,3] require their computations to con-
tinue without interruption even when a fault occurs. Depending
on the size and the purpose of an application, it may take a large
amount of time for its computations [18], which increases the
probability of faults. Moreover, fault occurrence is rising on
many-core systems because of increasing resource integration
[19]. Due to the criticality of such applications, an NoC platform
has to provide necessary resources as well as redundancy. Hence,
the platform has to implement special means facilitating efficiency,
Platform agent

Cluster agent

Cluster agent

RT

RT

RT

RC

Cell agent

NIRC

Cell agent

NI

RC

Cell agent

NI RC

Cell agent

NI

RC

Cell agent

NIRC

Cell agent

NI

Fig. 1. NoC architect
redundancy and dynamic reconfiguration. These means are repre-
sented by agents that monitor the state of the platform and apply
necessary mechanisms statically and dynamically.

The number of these agents grows with the size of the platform.
To manage a large number of agents, they are organized in a hier-
archy that typically has a three-level structure generally applied to
a 2D mesh topology [4,5,10]. An example of the architecture we
propose for the system is shown in Fig. 1. In this architecture, a cell
has a heterogeneous structure that contains a control device, i.e., a
local cell agent, and a reconfigurable core: fine-grained (see for
example [20]) or coarse-grained reconfigurable regions (see for
example [21]). It may also contain other dedicated hardware
blocks for faster execution. This structure facilitates dynamic
reconfiguration and recovery of a cell. However, all the cells in
the platform have the same heterogeneous structure. This allows
for efficient mapping and task migration. A local cell agent moni-
tors the state of a corresponding cell and can change the cell
behavior, if necessary. Cluster agents are dynamically created
when an application is mapped onto the platform. They manage re-
gions where applications are mapped by monitoring and, e.g.,
adjusting regional parameters such as frequency and/or voltage.
The platform agent, which is persistent in the system, manages
the whole platform. It creates and destroys cluster agents while
mapping and releasing applications to and from the platform,
respectively.
3.3. Base formal model of agent-based management system

Let us now briefly describe what we have done in our previous
work relating to such agent-based management architectures. In
[9], we have developed a three-level hierarchy of the agents
through refinements. Fig. 2 illustrates the hierarchy of the agents
and their communication with shared variables. This system serves
as the base of the system we develop in this paper.

The developed model proposed in [9] is considered generic such
that it can be instantiated and further developed in accordance to
specific requirements. More specifically, applications have been
communication between cluster
agents and the platform agent

communication between cell
agents and cluster agents

NoC-based communication
between routers

RT

RT

RT

RT

Router

NoC-based communication
between RC and RT through NI

NI Network interface

RC Reconfigurable core

ure with agents.

The platform agent

A cluster agent

… …

… A cluster agent

mapping, app_fault, Reallocated, Cluster_fault,
Cluster_Frequency, Cluster_Voltage, Cell_Temp,

Cell_Fault, Cell_Start_Reconfig, Cell_Reconfigured

mapping, app_fault, Reallocated, Cluster_fault,
Cluster_Frequency, Cluster_Voltage, Cell_Temp,

Cell_Fault, Cell_Read, Cell_Start_Reconfig,
Cell_Reconfigured

Cell_Temp, Cell_Fault,
Cell_Start_Reconfig, Cell_Reconfigured A cell

agentA cell A cell
agent A cellA cell

agent A cellA cell
agentA cell

The
platform

level

The
cluster
level

The cell
level

Fig. 2. The three-level hierarchy of the agents.

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 713
modeled as a deferred set, i.e., they were given to the platform as
an abstract data type without considering application task graphs
[18,22] for efficient mapping. Furthermore, the mapping itself is
modeled as a simplistic function that mapped applications onto
rectangular shaped regions without spare cores whose area is com-
puted as area = x�2, such that x = dn/2e, where x is a number of col-
umns and n is the number of requested resources. This function is
mainly to show the implementation of the simple procedures for
resource searching. In addition, the platform agent can remap the
whole application to another region, if the whole region where
an application is mapped is faulty and there is another region
where the application can be remapped. If there exists no such a
free region, the platform agent can perform a task migration proce-
dure from a faulty cell to another cell within the platform non-
deterministically. This procedure may not be efficient for large-
scale platforms due to the fact that the reallocation procedure
(i.e., task migration) takes a certain amount of time and consumes
power as the platform agent has to find a free core and has to mi-
grate a task to that core. Moreover, the reallocation of a task to a
cell which is allocated at a great distance from other cells of the
application leads to drastically decreased performance since the
communication cost increases.

Cluster agents functionality includes only dynamic voltage/fre-
quency scaling down such that these parameters can only be de-
creased. These procedures could enhance reliability of the
platform. For instance, if the temperature of a cluster exceeds some
threshold, lowering frequency and/or voltage can reduce the dissi-
pated power such that the temperature is decreased. However,
applying only these procedures at the cluster level may not be effi-
cient since the whole cluster runs at a lower frequency, which de-
creases the overall computational performance. Furthermore, the
task reallocation procedure can only be performed by the platform
agent, which may overload it.

Each cell is managed by a local cell agent. Hence, the cell agents
are specified using total functions in order to represent all the cell
agents in the platform. The functionality of the cell agents is mod-
eled using non-deterministic events that had local variables. The
cell agent of a faulty core initiates a local reconfiguration proce-
dure after a task of this faulty core has been reallocated. This pro-
cedure aims at recovering the functionality of the cell, so that it is
reused in the computations. Consequently, the original perfor-
mance of the computations can be restored.

Overall, the specification described in [9] is developed as a
monolithic formal model that includes the generic functionality
of all three levels. Then, it is decomposed using the shared-variable
style [23], where shared variables shown in Fig. 2 represent the
interfaces between the levels, so that we can continue with further
individual refinements. However, the decomposition of the model
turned out to be too restrictive from the refinement point of view.
More specifically, the shared structures (i.e., shared variables and
external events) of a decomposed model could not be refined.
Refinement of the shared structures is an ongoing research topic
within the Event-B community [24]. Currently, the initial results
are not yet implemented in the Rodin platform. Hence, we gener-
ated three models out of the previously developed model only
keeping the details of each level (sets, axioms, variables, invariants
and events) as if the model was decomposed.

3.4. Proposed approach

In this paper, we continue individual parallel refinements of all
three agent levels. Firstly, we adopt an existing mapping algorithm
[13] and extend it with spare cores allocation within a region for the
platform agent. We provide a specific mapping function that substi-
tutes the simplistic function defined previously. The spare cores are
not running computations, i.e., they are in the idle mode, and, hence,
they consume the least power. We consider task graphs that provide
information about the application tasks and transitions (communica-
tion) between these tasks. When the platform agent maps an appli-
cation onto a region, it provides information about tasks allocation
as well as the task graph to a corresponding cluster agent.

Secondly, we propose a new algorithm for efficient utilization of
these spare cores by the cluster level agents. The corresponding
cluster agent, which is created initially when an application is
mapped, reassigns a task of a faulty cell to a spare one considering
an application task graph when a fault occurs. This allows a more
efficient task reallocation in terms of speed (e.g., time consumed
when searching for a free cell and actual reallocation of a task)
and energy consumption than that at the platform level. Further-
more, the cluster agent restores frequency and voltage such that
the computations can proceed as efficient as possible. Conse-
quently, the architecture of the cluster agents is fully distributed,
i.e., each cluster agent independently manages its region by utiliz-
ing the spare cores without overloading the platform agent.

Finally, the cell agent is typically a simplistic control device that
reads the inputs and updates the outputs depending on the values
of the inputs just read. It is usually implemented as a hardware
unit [25] using, for example, VHDL. However, the base specification
that contains total functions and non-deterministic events cannot
be directly used for code generation. Therefore, we continue the
development following the refinement approach such that an
implementable model of the cell agent is derived and VHDL code
is generated [26] from this specification.

When the desired hierarchical structure of the platform, cluster
and cell agents has been derived following a stepwise and correct-
by-construction formal process, the specification of the system is
split into three layers for further individual development. To con-
tinue with further parallel refinements of the agents incorporating
the described functionality, we propose the following design flow:

For the platform agent:

NoC Platform

R

R

U

U R

R

U

U

R U

R

R

U

U

R U

R

R

R

R

R

R

U

U

R UR

R

U

core running computations

spare (unallocated) core

region where application is mapped

Fig. 4. Application mapping.

714 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
1. Adjust the mapping function in accordance with the algorithm
proposed in Section 4.1.

2. Refine the model by extending it for processing task graphs that
should be supplied to the platform following the description in
Section 4.2.

For the cluster agents:

1. Extend the functionality such that frequency and voltage can be
restored.

2. Refine the model considering task graphs and the algorithm in
Section 4.3.

For the cell agent towards hardware implementation
(Section 4.4):

1. Refine the specification of the cell agents by specifying coordi-
nates of the agent and eliminating the non-determinism of
events.

2. Refine the model by introducing simply typed variables and
gluing invariants such that the functions are eliminated.

3. If there are variables that are involved in guards and in assign-
ments of a specification simultaneously, these variables repre-
sent a loopback in hardware. To model a loopback, refine
these variables by two simply typed variables, where one of
them is an input and the other one is an output.

In the next sections, we elaborate on the proposed approach in
details. We present algorithms for all three levels and show the for-
mal development of the allocation, reallocation and reconfigura-
tion procedures at different levels of the agents hierarchy.

4. Application mapping and reconfiguration

4.1. Application mapping with spare cores

The application domain we aim at is critical systems [2,3]. On
the one hand, such systems require some redundancy in order to
achieve the necessary level of reliability [6]. On the other hand,
they are envisaged to be deployed on many-core platforms due
to requirements on efficiency in terms of, for instance, power con-
sumption and/or performance (e.g., [31,32]). Therefore, the design
of such systems has to provide a balanced tradeoff between fault-
tolerance and efficiency. This can be achieved by using spare cores
available for utilization when required. Based on [19], the number
of spare cores depends on different factors such as chip yield, man-
ufacturing, service cost, etc. Nevertheless, having spare cores im-
proves dependability.

Considering these requirements, we adopt the generic algo-
rithm to tasks allocation presented by Chou and Marculescu [18]
and extend it with spare cores allocation within a region as shown
in Fig. 3, where n represents the number of requested resources
and n �m returns a quotient.
1: Find for an application a region that contains n requested
if (n is 1 to 3) then

the number of spare cores = n
region = n rows * two columns

else {if (n > 3)}
the number of spare cores = (n + 1) ÷ 2
region = (n + 1) ÷ 2 rows * three columns

end if
2: if (the region is found) then map the application tasks the

a) their communication is as efficient as possible [
b) the rightmost column retains free spare cores

end if

Fig. 3. The algorithm of initial applic
The platform agent performs the initial application mapping in
the following manner. The application is mapped onto a rectangu-
lar shaped region that contains the rightmost column of spare
cores. Depending on the number of resources requested by an
application, the region with spare cores varies. If an application re-
quests from one to three cores, the region contains the duplicated
number of cores such that the number of spare cores in the right-
most column conforms to the number of requested resources.
Since we target this system towards critical (safety–critical) appli-
cations and the corresponding standards [6] require redundancy
for applications with high safety integrity level, we propose to allo-
cate spare cores within a region so that their total number equals
to the half of the requested number of cores for an application
requiring more than three cores. Hence, the region has at most
three columns, where the rightmost column contains unallocated
spare cores. This allows a balanced tradeoff between fault-toler-
ance and efficiency for such an application (Fig. 4). In Fig. 4 and la-
ter on, the circles with ‘‘R’’ represent cores running computations
while the circles with ‘‘U’’ are the spare (unallocated) cores.

When an application is mapped onto a corresponding region,
the platform agent allocates application tasks inside this region
considering the application task graph.
4.2. Tasks allocation within a region

A task graph (or an application characteristic graph) [18,22] is a
directed graph that contains the information about vertices and
transitions. The vertices specify the tasks (or groups of tasks) while
the transitions show the communication between the tasks. In par-
ticular, the transitions denote the communication bandwidth be-
tween different tasks. Therefore, while processing the task graph
of an application, the agents can utilize the NoC platform in an effi-
cient manner.

The tasks allocation procedure runs in a similar manner for all
cores within the region as in [18], except for the cores allocated
at the rightmost column. These cores remain unallocated for future
utilization by a corresponding cluster agent. The platform agent
starts tasks allocation by assigning the task that communicates
the most with other tasks (i.e., the task that has the most number
resources and the calculated number of spare cores:

re such that :
18]

ation mapping with spare cores.

NoC Platform

A

C

U

U

UB A

A

B
C the core running the task that

communicates the most with other tasks

A cores running the tasks communicating the
most with the central task

B cores running the remaining tasks

U spare (unallocated) core

Fig. 5. Task allocation inside a rectangular region.

Table 1
Simulation of communication with the core at position 1.

Source Destination Average delay,
cycles

Energy,
Joule

Received
packets

0 1 4 2.469e�09 4
2 1 5.75 2.469e�09 4
3 1 6.25 4.938e�09 4
6 1 7.75 4.938e�09 4
8 1 9.25 7.407e�09 4
15 1 12 1.234e�08 4

Table 2
Simulation of communication with the core at position 0.

Source Destination Average delay,
cycles

Energy,
Joule

Received
packets

1 0 5 2.469e�09 7
2 0 9.85714 4.938e�09 7
3 0 9.42857 7.407e�09 7
6 0 10.2857 7.407e�09 7
9 0 8.71429 7.407e�09 7
15 0 21.7143 1.481e�08 7

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 715
of links in the task graph) to a core in the center of the region. Then,
it proceeds with allocating tasks that communicate with this cen-
tral task with the highest bandwidth to the cores around the cen-
tral one. Finally, it assigns the remaining tasks to the free cores that
are left after the central task and the most communicating tasks
are allocated. An example of application mapping is shown in
Fig. 5, where the circle with ‘‘C’’ illustrates the core running the
task that communicates the most with other tasks (i.e., the central
task/core), the circles with ‘‘A’’ show the tasks around the central
one while the circles with ‘‘B’’ are the remaining tasks assigned
to the corresponding cores of the region.

After the platform agent completes an application mapping and
tasks allocation, it creates a cluster agent for the region and pro-
vides it with information about tasks allocation as well as the
application task graph. This scheme retains the simplicity of a clus-
ter agent as well as provides an efficient fault-tolerance mecha-
nism, namely a task migration within the region as the
corresponding cluster agent is aware of having spare cores and
the application task graph. The task migration inside the region
is deterministic.

4.3. Task reallocation inside a region

A corresponding cluster agent performs task reallocation inside
a region to one of the closest spare cores. This procedure consumes
less energy and time than reassigning a task to a free core outside
the region in the platform. Moreover, the efficiency of the result of
this procedure is directly affected by the communication perfor-
mance of the underlying platform. Hence, the communication per-
formance between the tasks within the region remains at an
adequate level.

To justify the above arguments, let us consider an example of
the application mapping that is shown in Fig. 6 and elaborate on
simulation results provided by the Noxsim simulator [27]. The sim-
ulation results have been chosen in such a manner that the number
of packets going from source to destination of interest is the same
and with minimum delay. This is important for the results to be
comparable. In Fig. 6, the circles with ‘‘F’’ illustrate the faulty cores
and the circles with ‘‘S’’ show their substitutions.

Suppose the core at position 0 sends four packets to the core at
position 1. Whenever the core fails, the cluster agent can reallocate
a task within the region either to the core at position 2 or to the
core at position 6 depending on the availability of these cores.
NoC Platfor

R

R

F S

R S

0

4

8

12

S

NoC Platform

F

R

R S

R S

0 3

4 7

8 11

12 15

S

S

S

(a) (b)

Fig. 6. Examples of task reallocation withi
The platform agent, in its turn, can reallocate a task from this core
to any core in the platform which is free, i.e., no application is
mapped to that core. For this example, we consider the cores at
positions 3, 8 as the closest ones and at position 15 in the worst
case (Fig. 6a). The simulation results for these cases (Table 1) show
that the communication cost after task migration within the region
is lower than that of within the platform.

Similarly, consider another example where the core at position
1 sends seven packets to the core at position 0. The substituting
cores are at positions 2 or 6 (within the region) and 3, 9 or 15 (out-
side the region) as shown in Fig. 6b. The simulation results for this
case are shown in Table 2.

Please note that the example considers a single application
mapped onto the platform, i.e., the cores outside the region where
the application is mapped can be used for the task migration. How-
ever, this might not be possible due to many applications running
in the system. Moreover, the routers of the platform perform inter-
region communications between other cores affecting the delays
and energy consumption shown in the tables. For the work in this
paper, we do not restrict the usual routing of the NoC platform.

Considering the results presented in the tables, their compari-
son shows that the farther a task is migrated the more cycles (high-
er delay) and energy are required for a packet to reach the
destination. Hence, having spare cores within the region enhances
efficient utilization of the platform while allowing it to reach the
required level of reliability.

The task reallocation procedure allows an application to con-
tinue its execution without interruption. For efficient task realloca-
tion within a region, we propose a new algorithm shown in Fig. 7.
m

3

7

11

15

S

S

task reallocation from
faulty core to spare one

0...15 core position from left to
right and top to bottom

F

R

S

core running computations

substituting core

faulty core

n the cluster and within the platform.

1: if (a fault occurs in a topmost cell) then
if (the spare cell allocated on a row below is free) then reallocate task there
else if (the spare cell allocated on the same row is free) then reallocate task there
else reallocate task to any available free spare core, if any end if

2: if (a fault occurs in a bottommost cell) then
if (the spare cell allocated on a row above is free) then reallocate task there
else if (the spare cell allocated on the same row is free) then reallocate task there
else reallocate data to any available free spare core, if any end if

3: if (a fault occurs in a cell which is not topmost nor bottommost) then
if (the spare cell allocated on the same row is free) then reallocate task there
else if (there are free spare cores on a row below and on a row above) and

(there are transitions with the tasks allocated on a row above or below) then
if (the number of transitions with the task on a row below > the number of transitions with the task on a row above) then

reallocate task to the spare core allocated on a row below
else if (the number of transitions with the task on a row above > the number of transitions with the task on a row below) then

reallocate task to the spare core allocated on a row above
else
{the number of transitions with these tasks is the same}

if (the bandwidth with the upper task ≥ the bandwidth with the lower task) then
reallocate task to a spare core on a row above

else reallocate task to a spare core on a row below end if
end if

else
{the spare cores allocated on a row below, the same row and a row above are taken) Or}
{there are tasks on a row below and above, but there are no transitions to them}

reallocate data to any available free spare core, if any
end if

Fig. 7. The algorithm of task migration performed by a cluster agent.

(a) (b) (c)

NoC Platform

R R

S

F

R

R

R

U

U

NoC Platform

R

R R

R

U

F

S

SF

NoC Platform

R R

R

F

S

SF

F

S

(d) (e)

NoC Platform

R

R

R

R

R

U

U

F S

NoC Platform

R R U

F S

R R

F
10

5

S

R

F

S

U

core running computations

faulty core

subtituting core

spare (unallocated) core

task migration

communication bandwidth

Fig. 8. Task migration within a region.

716 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
The algorithm does not depend on the size of the platform since it
is performed within a cluster. Hence, it is applicable to large-scale
platforms.

The algorithm reallocates a task within the region such that the
communication cost is minimum. In general, there are three cases
for a task migration inside a region. The first one considers faults
that occur in a top-most cell. According to the algorithm of the ini-
tial task allocation which assigns tasks in a stepwise and incremen-
tal manner starting from the central task, a top-most core most
probably runs a task that has high communication bandwidth with
a task assigned to a core on a row below. Hence, the cluster agent
first tries to move the task from this cell to a spare one which is on
the row below so that these tasks are still allocated as close as pos-
sible. For instance, in Fig. 8a) a fault occurs in a top-most cell and a
task is reallocated to the spare core in the middle so that the com-
munication distance between the reallocated task and the task
running on the core in the middle of the region remains the same.
If this core has been already allocated, the cluster agent attempts
to ‘‘mirror’’ the task, i.e., it reassigns the task from a faulty core
to a spare one which is on the same row as the faulty core
(Fig. 8b). Finally, if none of these cores are free, the cluster agent
migrates the task to any core that is available in the set of spare
cores (Fig. 8c). In a similar manner, the cluster agent performs task
reallocation for faults occurring in a bottom-most core.

Finally, a fault can occur in a core which is neither top-most nor
bottom-most, i.e., the core is in the middle of a region. In this case,
the cluster agent reassigns the task from this cell to a spare cell on
the same row, if this cell is free (Fig. 8d). If this cell is allocated,
then the cluster agent is required to process the application task
graph [18], i.e., the transitions of the task allocated on the faulty
core. In particular, it inspects the number of links as well as the
bandwidth between this task and the tasks one row up and one
row down. Depending on the analysis results, the cluster agent
reallocates the task to a spare core with the higher communication
bandwidth (Fig. 8e). Lastly, if none of these cores are free, the clus-
ter agent moves a task to any available free spare core.

Whenever a cluster agent reallocates a task from a faulty core to a
spare one, it keeps track between them. This allows the cluster agent to
move the task back when the local reconfiguration procedure is
complete. The local reconfiguration procedure starts when the task has
been reallocated. A corresponding cell agent applies the reconfig-
uration command to the faulty cell. This procedure aims at recovering
the functionality of the cell such that this cell is reused in the compu-
tations. Therefore, the original performance is restored.

4.4. Local reconfiguration

For the local reconfiguration of a cell, we adopt the functionality
of the cell agents we proposed in [9]. The algorithm performed by
the cell agents is shown in Fig. 9. The reconfiguration of a cell at the
hardware level stands for modifying the internal structure of it as if
it was, for instance, a single FPGA chip [28,29]. The modification is
performed via uploading a new configuration file to a core.
5. Formal modeling of the platform agent

Before we present the formal development within the Event-B
formalism, we show the summary of used symbols in Table 3.

while (true) do
1: monitor the state of a cell
2: promote data about the current state of the cell to the cluster agent
3: if (cell is not faulty) then continue

else while (task is not reallocated) do wait end while
initiate cell reconfiguration
while (the cell is not reconfigured) do wait end while

end if
end while

Fig. 9. The algorithm of the cell agent.

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 717
For the complete detailed formal definitions of the Event-B nota-
tions, the reader is referred to [30].

5.1. The platform agent: application mapping with spare cores

To proceed with the development of the platform agent taking
into account the proposed algorithm (Section 4.1) for the initial
application mapping, we introduce the function that returns a rect-
angular shaped region with spare cores, namely mapfun. The func-
tion takes three arguments (the number of requested resources
and the current position of indices in the matrix) and returns a re-
gion. Since a region where an application is mapped has at most
three columns (see Fig. 3), one of them is reserved for spare cores:

axiom mapfun 2 1::2 � IPnum�NoC P1ðNoCÞ

axiom partitionðdomðmapfunÞ; fðn#ðx#yÞÞjn 2 1::3 ^ x

2 1::IPnum� ðn� 1Þ ^ y 2 1::IPnum� 1g; fðn#ðx#yÞÞjn
2 4::2 � IPnum ^ x 2 1::IPnum� ððnþ 1Þ � 2� 1Þ ^ y

2 1::IPnum� 2gÞ

where NoC = 1. . .IPnum � 1. . .IPnum stands for a matrix of cores
(i.e., a NoC platform) assumed to be a 2D mesh of square shape,
IPnum P 2 is the constant defining the size of this matrix, n repre-
sents the number of requested resources and a pair x´y reflects the
coordinates in the matrix. Note however that the same approach
can be applied to other topologies and dimensions since the ap-
proach is independent of the routing scheme.
Table 3
Summary of used formal symbols.

Symbol Descr

£ The e
P(S) The p
P1(S) P(S)
card(S) Cardi
partition(S,A,B) Enum
finite(S) Speci
n..m An in
min(S) A mi
max(S) A ma
x´y An or
X � Y Carte

entry
id An id
dom(f) # S The d
ran(f) # T The r
f 2 S T A par
f 2 S ? T A tot
f 2 S T A par
f 2 S T A par
f 2 S � T A tot
f . R Rang
f R Dom
f - O Relat
f;g Forw
The definition of this function consists of two axioms stating the
result the function returns depending on its arguments. The first
axiom postulates that if an application requests from 1 to 3 cores,
the result is a rectangular region that contains two columns and
the number of rows that conforms to the number of requested
resources:

axiom 8n; x;y: n 2 1::3 ^ x 2 1::IPnum� ðn� 1Þ ^ y

2 1::IPnum� 1)mapfunðn#ðx#yÞÞ
¼ x::xþ ðn� 1Þ � y::yþ 1

The second axiom is for the case where an application requests
4 or more cores. Due to the fact that the division operation (de-
noted by �) within Event-B is the integer division ("k. k 2 N)
(k + 1) � 2 = dk/2e), the mapping function always returns a rectan-
gular shaped region that contains the rightmost column of spare
cores (see Fig. 3):

axiom 8n; x;y: n 2 4::2 � IPnum ^ x

2 1::IPnum� ððnþ 1Þ � 2� 1Þ ^ y

2 1::IPnum� 2)mapfunðn#ðx#yÞÞ
¼ x::xþ ððnþ 1Þ � 2� 1Þ � y::yþ 2

The mapping of an application onto an NoC platform proceeds
similarly to the mapping described in [9]. From now on, we only
show the variables and the parts of the events that have been af-
fected by the specified mapping with spare cores. Complete events
can be found in Appendix A.

Application requests are stored as a partial function that maps
an application to the number of requested resources. An applica-
tion can request a number of resources that ranges between 1

and 2�IPnum:

The request of resources is modeled with the event Request_re-

sources that has been derived from the base model. This event has
also been updated according to this requirement:
iption

mpty set
ower set of set S

n f£g
nality (i.e., the number of elements) of set S

erated set comprehension such that S = A [B and A \ B = £

fies that the set S is finite
terval, i.e., the set of numbers starting from n and ending in m

nimum element of the set S, where S � Z and must have a lower bound
ximum element of the set S, where S � Z and must have an upper bound
dered pair
sian product of X and Y, i.e., the set of all possible ordered pairs where the first
belongs to X and the second entry belongs to Y

entity, i.e., the set of ordered pairs whose both entries are the same
omain of a relation f

ange of a relation f

tial function from set S to set T

al function (dom(f) = S) from set S to set T

tial injective (one-to-one) function from set S to set T

tial surjective (ran(f) = T) function from set S to set T

al surjective (dom(f) = S and ran(f) = T) function from set S to set T

e restriction of the relation f by the set R

ain subtraction from the relation f the set R

ional override of the relation f with the set O

ard composition of the relations f and g

Fig. 10. The region search algorithm.

718 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
event Request_resources e any app res_num
where

// There is an application that wants to run computations

app 2 APPLICATIONS ^ app R dom(pending_apps) ^
app R ran(mapping) ^
// The number of requested resources is in-between 1 and

2⁄IPnum

res_num 2 1..2⁄IPnum

then
pending_apps :¼ pending_apps [{app´res_num}

end

The platform agent seeks for resources in the platform in a lin-
ear manner. It attempts to find a region for an application starting
with the top-most and leftmost cell whose coordinates are 1, 1.
Then, it proceeds throughout columns and rows incrementally
according to the algorithm shown in Fig. 10, where n is the number
of requested resources while r and c are the row and the column
indices in the matrix, respectively. In case the searching procedure
is unsuccessful, the platform agent resets the indices (r = 1 ^ c = 1)
such that a new searching procedure can be initiated.

The searching procedure is modeled using convergent events.
The convergence of the events along with the corresponding vari-
ant (PO (VAR) in Section 3.1) guarantees that the platform agent
can always find a region for an application, if such a region exists.
The shape of the region remains consistent (i.e., of the rectangular
shape) according to the algorithm presented in Fig. 3 (Section 4.1),
if no task reallocation occurs at the platform agent level. This is en-
sured by the following invariance property:

invariant 8a:a 2 ranðmappingÞ
) ððdomðmapping . fagÞ \ ranðCell traceÞ ¼£Þ
) domðmapping . fagÞ
¼ minðdomðdomðmapping

. fagÞÞÞ::maxðdomðdomðmapping . fagÞÞÞ
�minðranðdomðmapping

. fagÞÞÞ::maxðranðdomðmapping . fagÞÞÞÞ

where mapping 2 NoC running_apps is the model variable that
stores the mapping between cores (their coordinates) and running
applications (running_apps # APPLICATIONS), Cell_trace 2 NoC

n dom(mapping) dom(mapping) stores the track of task realloca-
tion performed by the platform agent and the antecedent
dom(mapping . {a}) \ ran(Cell_trace) = £ specifies that no task
reallocation has been performed at the platform agent level.

After the resources have been found, i.e., there is a rectangular
shaped region that satisfies the application request, the platform
agent assigns the application to the found region. In other words,
the platform agent stores the connection between the found region
and the application:
event Resources_found e any app

where . . . ^
(pending_apps(app) 2 1..3)
r < IPnum�(pending_apps(app)�1) ^ c = IPnum�1) ^
(pending_apps(app) 2 4..2⁄IPnum) r <

IPnum�((pending_apps(app)+1)�2�1) ^ c = IPnum�2)

then . . . || mapping :¼ mapping [
(mapfun(pending_apps(app)´(r´c))�{app})

end
where r 2 1..IPnum and c 2 1..IPnum are the model variables spec-
ifying the row and the column indices in the NoC matrix,
respectively.

In the next refinement, we introduce the actual task allocation
procedure with spare cores for the platform agent. We consider
application task graphs that allow the platform agent efficiently as-
sign tasks to cores.

5.2. The platform agent: tasks allocation considering task graphs

In general, applications are characterized by task graphs
[18,22]. We assume that these task graphs are provided to the plat-
form. Formally, a task graph is a directed graph and is denoted as a
tuple G = (V, T), where V is a set of vertices that determine tasks (or
groups of tasks) and T is a set of transitions with specified band-
width between the tasks. Every application is defined by a finite
graph. Hence, the sets of vertices and transitions are finite.

To represent task graphs in Event-B, we first introduce the sets
of vertices and transitions into a new context. The complete con-
text can be found in Appendix A. The generic deferred set of all ver-
tices that applications consist of is shown below:

sets VERTICES

axiom finiteðVERTICESÞ

Transitions represent a partial function that maps a pair of ver-
tices to some positive number. This number shows the bandwidth
between tasks in a task graph:

constant TRANSITIONS

axiom TRANSITIONS 2 VERTICES� VERTICES N1

Since the vertices determine the tasks of the application, they
cannot communicate with themselves. In other words, self-transi-
tions are implemented internally and the tasks communicate
through the NoC only with other tasks. Hence, the self-transitions
are not allowed:

axiom id \ domðTRANSITIONSÞ ¼£

To specify the relation between the deferred set of applications
defined previously [9] and task graphs, we introduce two func-
tions: one that stores a set of vertices and the other one that re-
turns a set of transitions for a particular application, namely
app_verts and app_trans, respectively:

axiom app verts 2 VERTICES� APPLICATIONS

axiom app trans 2 APPLICATIONS! PðTRANSITIONSÞ

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 719
Notice that the function app_trans maps applications that con-
sist of a single vertex to the empty set since such an application
does not have transitions in its task graph. Otherwise, the function
returns a set of transitions for a particular application.

The properties of these functions are postulated as a number of
axioms. The first axiom states that if an application task graph con-
tains at least two vertices, there must be a transition between them:

axiom 8a;v: a 2 APPLICATIONS ^ ðcardðapp verts . fagÞP 2Þ ^ v

2 domðapp verts . fagÞ) ð9v0: v0

2 domðapp verts . fagÞ ^ qðv ¼ v0Þ ^ ððv#v0Þ
2 domðapp transðaÞÞ _ ðv0#vÞ 2 domðapp transðaÞÞÞÞ

On the other hand, transitions of a particular task graph must
only have those vertices that belong to this task graph. Therefore,
if a vertex does not belong to the application task graph, there is
no transition to this vertex. This property is specified by the axiom
shown below:

axiom 8a; v: a 2 APPLICATIONS ^ v 2 VERTICES ^ qðv
2 domðapp verts . fagÞÞ) qðv
2 domðdomðapp transðaÞÞÞÞ ^ qðv
2 ranðdomðapp transðaÞÞÞÞ

Finally, distinct applications have disjoint sets of transitions.
This property is postulated as follows:

axiom 8a1; a2: a1 2 APPLICATIONS ^ a2 2 APPLICATIONS ^ qða1

¼ a2Þ) ðapp transða1Þ \ app transða2Þ ¼£Þ:

After defining necessary constants and functions, we proceed
with the task allocation functionality at the platform level. For this
purpose, we refine the previous model of the platform agent. We
start by introducing several variables modeling a continuous proce-
dure of tasks allocation within a region. Firstly, when the platform
agent finds an appropriate region for an application, it has to store
the application task graph for further processing. As the application
task graph represents a pair, two variables are required. The first one
stores the unallocated vertices the application task graph has:

invariant app vertices 2 ranðmappingÞ ! PðVERTICESÞ:

Note that this variable maps an application to a power set of
vertices including the empty set. When assigning a task (a vertex)
to a core, the platform agent removes the task from this variable.
Consequently, the platform agent identifies that all the tasks of
the application have been allocated when this application is
mapped to the empty set.

The second variable stores the transitions of the application task
graph, if any, so that the platform agent can process them as well:

invariant app transitions 2 ranðmappingÞ ! PðTRANSITIONSÞ

Secondly, the platform agent has to store the actual location of
application tasks. It uses another two variables. The first one specifies
the central core to which the most communicating task of the appli-
cation is assigned. If there are several tasks that have the same max-
imum number of communication links, the platform agent non-
deterministically chooses one of them. This task is the starting point
for allocating other tasks of the application. Furthermore, this task
mustbeallocatedwithintheregionwheretheapplicationismapped:
The second variable stores the mapping between the loca-
tions (i.e., the cores) and the tasks. This variable is an injective
function meaning that only one vertex (one task or one group
of tasks) can be allocated to one cell (core). In addition,
whenever the application task is allocated to a core, it must
be assigned to a core within the region that belongs to this
application:

invariant 8a: a 2 ranðmappingÞ) ð8x: x
2 domðapp tasks allocation; ðapp verts . fagÞÞ
) x 2 domðmapping . fagÞÞ

After introducing necessary variables to model task allocation,
we postulate several invariant properties that must hold for the
whole model. Here, we only show the essential properties that
are crucial for the task allocation procedure.

The task allocation procedure has an iterative behavior. The
platform agent analyses the transitions and assigns tasks to cores
in a stepwise manner. This process ends when the least communi-
cating task is allocated. However, whenever the platform agent
allocates tasks, it has to keep the rightmost column of spare cores
unallocated according to the algorithm presented in Fig. 3
(Section 4.1). This main functional property is stated as the follow-
ing invariant:

invariant 8a: a 2 ranðmappingÞ) ðdomðmapping . fagÞ
\ ranðCell traceÞ ¼£

^ ððdomðmapping . fagÞ
\ ranðCluster Cell TraceÞ ¼£Þ
) ðdomðdomðmapping . fagÞÞ
� fmaxðranðdomðmapping . fagÞÞÞgÞ
\ domðapp tasks allocationÞ ¼£Þ

where Cluster_Cell_Trace 2 dom(mapping) dom(mapping) is the
track of task reallocation executed by a cluster agent (Section 6).
The premise ((dom(mapping . {a}) \ ran(Cluster_Cell_Trace) = £)

reflects that no task has been reallocated within the region, i.e.,
the region remains consistent being of the rectangular shape deter-
mined by the mapping function. The value max(ran(dom(map-

ping . {a}))) represents the rightmost column in the region.
To be able to verify the main property shown above, we intro-

duce invariants that determine the relationship between variables
storing task graphs and application (tasks) mapping. Firstly, since
every application is defined by a unique task graph, the sets of
vertices of different applications must be disjoint. For the same
reason, the sets of transitions of different applications must be
disjoint as well:

invariant 8app1; app2: app1 2 domðapp verticesÞ ^ app2
2 domðapp verticesÞ ^ qðapp1 ¼ app2Þ
) app verticesðapp1Þ
\ app verticesðapp2Þ ¼£

invariant 8app1; app2: app1 2 domðapp transitionsÞ ^ app2
2 domðapp transitionsÞ ^ qðapp1 ¼ app2Þ
) app transitionsðapp1Þ
\ app transitionsðapp2Þ ¼£

convergent event Task_allocation_Transition_to_allocated_task e any app v vl

rt ct sur

where . . . ^ // After the central task allocation is complete,

// Choose a task that has a transition from a task being allocated to an already

allocated task

(v´vl)2dom(app_transitions(app)) ^
// Furthermore, choose one with the highest bandwidth

("v0.v02app_vertices(app)^:(v0=v)^(v0´vl)2dom(app_transitions(app)))
app_transitions(app)(v´vl)Papp_transitions(app)(v0´vl))

// Choose proper coordinates for this task within the region

// This core must not be allocated

// Choose coordinates near the allocated core, if any

then
// Store the task allocation and Remove a processed transition and a

processed task

end

720 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
Secondly, when the platform agent has found a region, it has to
store the exact task graph of an application. In particular, if the
platform agent has not assigned the central task to a core within
the region, the variables app_vertices and app_transitions applied
to a particular application conform to the variables app_verts and
app_trans restricted to the same application, respectively. Further-
more, if the central task has not been assigned to a core, none of the
tasks have been allocated either:

invariant 8a: a 2 domðapp verticesÞ ^ qða
2 domðapp ctallocatedÞÞ) app verticesðaÞ
¼ domðapp verts . fagÞ ^ app transitionsðaÞ
¼ app transðaÞ

invariant 8a: a 2 ranðmappingÞ ^ qða 2 domðapp ctallocatedÞÞ
) ð8v: v 2 domðapp verts . fagÞ) qðv
2 ranðapp tasks allocationÞÞÞ:

When allocating a task to a core, the platform agent removes
this task from the previously stored set of vertices. Therefore, if
there is a vertex in the set of vertices, this vertex (this task) has
not been allocated to a core in the platform:

invariant 8a;x: a 2 domðapp verticesÞ ^ x 2 app verticesðaÞ
) qx 2 ranðapp tasks allocationÞ

Finally, the task allocation procedure is completed when an
application is mapped to the empty set in the variable app_verti-

ces, i.e., all the application tasks are allocated. Hence, the function
app_tasks_allocation applied to the region where the application is
mapped returns the exact set of vertices that belong to this
application:

invariant 8a: a 2 ranðmappingÞ) ðapp verticesðaÞ
¼£() app tasks allocation½domðmapping . fagÞ�
¼ domðapp verts . fagÞÞ:

Next, we show the refined parts of the abstract events and pro-
vide new events that model the task allocation procedure. The
events implement the procedure described in Section 4. The com-
plete formal representation of the events can be found in Appendix
A.

In order for the model to be consistent with the stated invari-
ants, we refine the event Resources_found. We specify that when
the platform agent has found the region for an application, it stores
the application task graph such that the task allocation procedure
within the region can be initiated:

event Resources_found e any app

where . . . ^
// If there is a free region where an application can be

mapped, i.e., the region is found

// Choose the application that has not been processed yet

:// dom(app_verts . {app})2ran(app_vertices) ^
// And its tasks are not allocated yet ^
dom(app_verts . {app}) \ ran(app_tasks_allocation) = £

then . . . ||
// Create the cluster agent for the region

// Store the task graph, namely the vertices and the

transitions

app_vertices :¼ app_vertices [{app´dom(app_verts . {app})} ||

app_transitions :¼ app_transitions [{app´app_trans(app)}

end

The platform agent starts processing the task graph starting by

calculating the central task. To find the central task, the platform
agent examines the transitions and chooses the task that has the
highest number of them. This task is assigned to a core located in
the middle of the region. Since the region is of a rectangular shape,
the middle of it is an arithmetic mean for both coordinates.

After the central task is allocated, the platform agent allocates
all other tasks, if any. Due to the fact that the application task
graph is directed, there are at most two transitions between two
different tasks: one in one direction and the other one in the other
direction. Therefore, the platform agent should consider both pos-
sibilities of tasks communication.

The following event models the task allocation of a vertex v that
has a transition from v to some task vl already assigned to a core.
Furthermore, the platform agent chooses such a vertex v that has
the highest bandwidth with the vertex vl and allocates it to the
coordinates rt, ct:
where sur is a set of all free cores around an allocated task. It
contains coordinates of the cores whose place in the same column
one row above and one row below as well as the cores whose
place is in the same row, but one column to the left, excluding
the rows and columns outside the application region. The
platform agent uses this set when there are no available cores
around an allocated task, whereas there are free cores in the
region and there are tasks to be allocated. In this case, the
platform agent assigns such a task to a free core in the region
non-deterministically.

Similarly, the platform agent checks the other possibility of
tasks communication from vertex vl (an already allocated task)
to v (a task being allocated). When the platform agent assigns
a task to a core, it removes this task from the set of unallo-
cated tasks. These two events are applied repeatedly until all
the tasks in the task graph are allocated, i.e., until the
variable app_vertices applied to the application app returns
an empty set.

Due to the fact that these events as well as the event modeling
allocation of the central task remove an element from a set, they
must eventually terminate, so that the platform agent is able to
execute other functions. Therefore, these events are convergent
and the provided variant guarantees their termination (PO (VAR)
Section 3.1).

The platform agent can reallocate the whole application, after
all application tasks have been allocated and there is a fault in
the region. This occurs when there are no free spare cores left in
the cluster and there is a new fault. In this case, the platform re-
leases the application from the platform and initiates a new search
for resources. This case is modeled by event Reallocate_app whose
refined parts contain the guards and the actions similar to event
Computations_over. Additionally, this event has a guard specify-

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 721
ing that all of the spare cores within the region are allocated:
card(dom(mapping . {app}) \ ran(Cluster_Cell_Trace)) =

(resources+1)�2.
Due to the fact that a cluster agent can reallocate a task from a

cell to another cell, this also affects the global reallocation proce-
dures at the platform level. Firstly, the task being reallocated must
not be the central one since the reallocation of the central task
drastically reduces performance of computations as the communi-
cation cost significantly increases. Secondly, whenever the plat-
form agent reallocates the task from a faulty cell inside a region
to a free cell outside the region in the platform, the shape of the
cluster changes and a corresponding cluster agent is adjusted to
the new topology. Finally, the platform agent can initiate realloca-
tion of a task outside the application region only if all the spare
cores within the cluster are utilized. Therefore, the events that
model task migration within the platform are refined as well. For
instance, the refined part of the event Reallocate_a_cell is shown
below:
event Reallocate_a_cell refines Reallocate_a_cell e any x y k l

where . . . ^
//Application tasks are allocated and the task being reallocated does not belong to the central task as it will

//drastically decrease communication performance of the application

app_vertices(app) = £ ^ app 2 dom(app_ctallocated) ^ qapp_ctallocated(app) = (k´l) ^
//There is a free spare core in the platform where the task can be reallocated

qx´y 2 dom(app_tasks_allocation) ^ k ´l 2 dom(app_tasks_allocation) ^
//A cell whose task is being reallocated does not belong to the rightmost column

ran(Cluster_Cell_Trace)\{k ´ l}=£ ^
//The ‘‘global’’ reallocation can take place if no spare cores are left within the cluster

card(dom(mapping .{app}) \ ran(Cluster_Cell_Trace)) =

(card(min(dom(dom(mapping . {app}))). . .max(dom(dom(mapping . {app})))�
min(ran(dom(mapping . {app}))). . .max(ran(dom(mapping . {app})))�1)+1)�2 ^
//The global reallocation procedure modifies the shape of the region such that it is no more rectangular

qdom({k´l} mapping . {app}) [{x´y} = dom(dom({k´l} mapping . {app}) [{x´y})�
ran(dom({k´l} mapping . {app}) [{x´y})

//Move task to that spare core

then . . .|| app_tasks_allocation :¼ {k´l} (app_tasks_allocation [{x´y´app_tasks_allocation(k´l)})

end
Upon deriving the specification of the platform agent, we have
generated and discharged proof obligations using the Rodin plat-
form [8]. The proof statistics for this model including contexts,
the abstract machine and the refinement is summarized in Table 4.
From the table, we observe that the Rodin platform generates 509
proof obligations and automatically discharges 356 of them (more
than 65%).

While discharging proof obligations invariant preservation and
feasibility ((INV) and (FIS) in Section 3.1) interactively, we observe
that these proof obligations required either case distinction
Table 4
The proof statistics for the platform agent.

Model Number of
proof
obligations

Automatically
discharged

Interactively
discharged

Contexts 9 8 1
The base

machine
240 184 56

The refinement 260 164 96
Total 509 356 153
technique or instantiation of quantified (bound) variables, which
are relatively complex to be proved automatically. The other proof
obligations ((VAR), (GRD) and (SIM) Section 3.1) for this specifica-
tion were proven automatically.

Since we consider reallocation procedures inside the region, we
have also refined the specification of the cluster agents. Let us now
examine the essential parts of this model.

6. Formal modeling of the cluster agents

6.1. The cluster agents: frequency and voltage restore

In the previous work [9], we have developed such a model of
the cluster agents that decreased frequency and voltage within
the region without eventually increasing them. However, when the
task of a faulty cell is reallocated, cluster agent can restore the value
of these parameters to their maximums so that the computations
can proceed as efficiently as possible. Therefore, we extend the
functionality of the cluster agents with a possibility of restoring
the values of frequency and voltage, when required:

event Restore_cluster e any app

where app 2 ran(mapping)

then
Cluster_Frequency :¼ Cluster_Frequency – {dom(mapping .

{app})´Max_Freq} ||

Cluster_Voltage :¼ Cluster_Voltage – {dom(mapping .

{app})´Max_Volt}

end

where Cluster_Frequency 2 {x j $a. a 2 ran(mapping) ^
x=dom(mapping . {a})} ? 0..Max_Freq is the frequency that the
set of cores (the cluster) runs at and Cluster_Voltage 2 dom(Clus-

ter_ Frequency) ? Min_Volt. . .Max_Volt is the voltage supply for
the region. The set {x j $a. a 2 ran(mapping) ^ x=dom(mapping .

{a})} represents the regions where applications are mapped. In fact,
the set {x j $a. a 2 ran(mapping) ^ x=dom(mapping . {a})} is of type
P1(NoC), which allows us to specify regions (clusters) instead of indi-
vidual cells and to model the cluster agents in a simpler manner. For
the complete events and invariants, the reader is referred to
Appendix B.

722 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
6.2. The cluster agents: generic task reallocation within a cluster

The reallocation procedure performed by a cluster agent inside
a region proceeds similarly to the reallocation procedure executed
by the platform agent. That is, the cluster agent stores the trace be-
tween a faulty cell and its substitution and marks a faulty cell
when its task has been reallocated. To specify this functionality,
we introduce two variables. The first one keeps track of the faulty
cells and their substitutions (one cell can have one substitution):

The second variable indicates that the task of a cell has been
reallocated. The cluster agent adds to this variable the coordinates
of a cell whose task has been migrated:

invariant Cluster Cell Reallocated # domðmappingÞ

There is a clear relationship between these variables. Whenever
the cell has a trace, this cell is marked and vice versa. This property
is postulated as the invariant below:

invariant 8c: c 2 domðmappingÞ) ðc
2 domðCluster Cell TraceÞ () c

2 Cluster Cell ReallocatedÞ

The task reallocation must be performed inside the region
where the application is mapped. The cluster agent only utilizes
the unallocated cores that belong to its region as it does not know
anything about other applications and their mapping, i.e., the
cross-cluster communication is not allowed:

invariant 8a; cell: a 2 ranðmappingÞ ^ cell

2 domðmapping . fagÞ) ðcell

2 domðCluster Cell TraceÞ
) Cluster Cell TraceðcellÞ
2 domðmapping . fagÞÞ

Clearly, any task migration procedure affects the allocation of
tasks. Firstly, the cell that has a trace is not running computations,
i.e., no task is assigned to it:

invariant 8c: c 2 domðCluster Cell TraceÞ) qc
2 domðapp tasks allocationÞ

Secondly, the substituting cell must run computations. This is
the primary function of a spare cell while the faulty cell is being
reconfigured:

invariant 8c: c 2 ranðCluster Cell TraceÞ ^ qc
2 Cluster Cell Reallocated) c

2 domðapp tasks allocationÞ

Finally, the local reconfiguration procedure initiated by a corre-
sponding cell agent commences when the task of a faulty core has
been reallocated:

invariant 8c: c 2 domðmappingÞ) ðCell Start ReconfigðcÞ
¼ TRUE) c 2 Cluster Cell ReallocatedÞ

At this refinement step, we introduce two events that model
generic task reallocation within the cluster. Note that at this point,
the cluster agent can reallocate a task to any unallocated core,
which may not be at the rightmost column. The actual reallocation
algorithm and its properties described in Section 4.3 are modeled
in the next refinement.

The cluster agent reallocates a task in a non-deterministic
manner upon the detection of a fault. The event Cluster_cell_real-

location specifies task reallocation from a faulty cell to a spare
one:

event Cluster_cell_reallocation refines Restore_cluster e any
app x y k l

where
// A faulty cell and its substitution are within the cluster

app 2 dom(app_ctallocated) ^ k´l2dom(mapping . {app}) ^
x´y2dom(mapping . {app}) ^
// A faulty cell is running a task while a substitution does not

run any

k´l2dom(app_tasks_allocation) ^
:(x´y2dom(app_tasks_allocation)) ^
// A substituting cell is free

(x´y 2 dom(Cluster_Cell_Trace)) ^ :(x´y 2
ran(Cluster_Cell_Trace)) ^
// The application of DVFS did not help

Cluster_Frequency(dom(mapping . {app})) = 0 ^
Cluster_Voltage(dom(mapping . {app})) = Min_Volt ^
// Hence, the cell running a task is faulty

(Cell_Temp)(k´l) P Temp_Threshold _ Cell_Fault(k´l) =

(TRUE) ^
// while the substituting cell is not

Cell_Temp(x´y) < Temp_Threshold ^ Cell_Fault(x´y) =

FALSE

then . . . ||
// Rellocate a task

app_tasks_allocation :¼ {k´l} (app_tasks_allocation [
{x´y´app_tasks_allocation(k´l)}) ||

// Store a track from where to where the task has been

reallocated

Cluster_Cell_Trace :¼ Cluster_Cell_Trace [{(k´l)´(x´y)} ||

// Mark the faulty cell

Cluster_Cell_Reallocated :¼ Cluster_Cell_Reallocated [{k´l} ||

// If the faulty cell happens to be the central one, update the

corresponding mapping as well

app_ctallocated:j app_ctallocated02ran(mapping)

dom(mapping) ^
(qapp_ctallocated(app) = k´l) app_ctallocated0 =

app_ctallocated) ^
(app_ctallocated(app) = k´l) app_ctallocated0 =

app_ctallocated - {app´(x´y)})

end
We can observe from the event above that task migration oc-

curs if the frequency and the voltage the cluster operates at are
at their minimum values and a fault remains. Furthermore, the
cluster agent reallocates a task from a faulty core to a spare
one even if a fault occurs in the central core. This is because
the reallocation takes place within the cluster so that the com-
munication efficiency of the application remains at an adequate
level.

The other event, namely Cluster_cell_return, models
reallocation of a task back to the reconfigured cell according to the
stored trace:

event Cluster_cell_return refines Restore_cluster e any app x y k l

where . . . ^ // A reconfigured cell and its substitution are within the cluster

// There is a track between a reconfigured cell and its substitution

:(k´l2Cluster_Cell_Reallocated) ^ ((x´y)´(k´l))2Cluster_Cell_Trace ^
// The cluster runs normally

Cluster_Frequency(dom(mapping . {app})) > 0 ^ Cluster_Voltage(dom(mapping . {app})) > Min_Volt ^
// A cell whose task was reallocated has been reconfigured and it is not faulty anymore

Cell_Start_Reconfig(x´y) = FALSE ^ Cell_Temp(x´y) < Temp_Threshold ^ Cell_Fault(x´y) = FALSE ^
// If there is only one substitution left, the reallocation back proceeds such that the rightmost column is released

{(dom(mapping . {app}) \ ran(Cluster_Cell_Trace {k´l}) = £)
x´y2dom(dom(mapping.{app}))�min(ran(dom(mapping.{app})))..max(ran(dom(mapping.{app})))�1)

then . . . || // The variables app_tasks_allocation and app_ctallocated are modified exactly as in the event above

// Remove the trace and unmark the reconfigured cell

Cluster_Cell_Trace:¼{x´y} Cluster_Cell_Trace || Cluster_Cell_Reallocated:¼Cluster_Cell_Reallocated\{x´y}

end

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 723
6.3. The cluster agents: task reallocation within clusters based on task
graphs

In the previous sub-section, we have introduced a generic real-
location functionality of the cluster agents. Now, we refine it so
that the reallocation within the cluster proceeds in a more specific
manner following the algorithm presented in Section 4.3. In partic-
ular, the cluster agent utilizes the spare cores available at the right-
most column of the region when migrating a task from a faulty cell.
This crucial property is postulated as the invariant shown below:

invariant 8a: a 2 ranðmappingÞ ^ ðdomðmapping . fagÞ
¼ domðdomðmapping . fagÞÞ
� ranðdomðmapping . faÞÞÞ

) ð8c: c 2 domðmapping . fagÞ ^ c

2 ranðCluster Cell TraceÞ) ranðfcgÞ
¼ fmaxðranðdomðmapping . fagÞÞÞgÞ

where (dom(mapping . {a}) = dom(dom(mapping .

{a}))�ran(dom(mapping . {a}))) shows that the shape of the cluster
is consistent, ran({c}) stands for the column coordinate of the core c

and {max(ran(dom(mapping . {a})))} is the rightmost column of the
region.

Following the algorithm described in Section 4.3, we refine the
abstract event Cluster_cell_reallocation into several events that
model different cases of task migration within the region. These
events are similar and only differ in several guards that determine
the manner the task is reassigned. Here, we show the textual
description of guards and actions of some events. The complete
subset of events modeling the reallocation algorithm within the
cluster can be found in Appendix B.

The cluster agent initiates the task migration procedure when
the decrease of frequency and/or voltage is not sufficient. The fol-
lowing event models all possible cases for the task reallocation of a
top-most cell, i.e., the reallocation to a core allocated on a row be-
low, to the core on the same row as the faulty one or to any avail-
able free spare core (see Fig. 8, a–c)):

event Cluster_top_cell_reallocation refines
Cluster_cell_reallocation e any app x l spares

where . . . ^
// The top-most core is faulty

// The core to be used as a substitution must not have a

trace nor be a substition already

// The regional parameters have reached their minimums

// The cell from where the cluster agent reallocates the task

is faulty

// The cell where the task is reassigned is not faulty
// The cluster agent utilizes spare cores from the rightmost

column

// If there is a cell below the current and this cell is free,

reallocate the task there

((min(dom(dom(mapping .

{app})))+1)2dom(dom(mapping . {app})) ^
(q(min(dom(dom(mapping . {app}))) +

1)2dom(ran(Cluster_Cell_Trace)))) x =

min(dom(dom(mapping . {app})))+1) ^
// If there is no such a cell or this cell is allocated move the

task to the cell on the same row

((q(min(dom(dom(mapping .

{app})))+1)2dom(dom(mapping . {app})) _
((min(dom(dom(mapping .

{app})))+1)2dom(ran(Cluster_Cell_Trace)))) ^
q(min(dom(dom(mapping .

{app})))2dom(ran(Cluster_Cell_Trace)))) x =

min(dom(dom(mapping . {app})))) ^
// Finally, if none of these conditions are true, but there is a

free spare, reallocate the task there

((q(min(dom(dom(mapping .

{app})))+1)2dom(dom(mapping . {app})) _
((min(dom(dom(mapping .

{app})))+1)2dom(ran(Cluster_Cell_Trace)))) ^
(min(dom(dom(mapping .

{app})))2dom(ran(Cluster_Cell_Trace))) ^q(spares = £))
x2spares)

then// Store the trace and Mark the faulty cell

// Move the task to a spare core modifying the position of

the central task, if needed

end

Similarly, the cluster agent reassigns a task from a faulty core
allocated at the bottom of the region to a spare one in the right-
most column. The three options to reallocate a task are: to a core
on a row above, to a core on the same row or to a core any available
spare core. This case is modeled with a separate event, namely
Cluster_bottom_cell_reallocation.

Finally, if a fault occurs in a cell that is neither top-most nor bot-
tom-most, the cluster agent considers several cases of an efficient
task migration. These cases are specified using several events. For
the sake of brevity, we show only the essential ones. The others
have the same structure and differ only in several guards.

As the first attempt, the cluster agent moves a task of a faulty
core to a spare core, which is on the same row, but in the rightmost
column. This core is equidistant from cores running computations
(see Fig. 8d)):

// Acquire the transitions of the application task graph

// Verify if the number of links with the task allocated below is greater than

the number of links with

// task allocated above the task being reallocated

// If so, move the task to the spare core on the row below

then // Store the trace and Mark the faulty cell

// Move the task to a spare core modifying the position of the central task,

if needed

end

724 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
event Cluster_middle_cell_reallocation_row refines
Cluster_cell_reallocation e any app k l

where . . . ^
// The faulty core is in the middle of the region

min(dom(dom(mapping . {app}))) < k ^
k < max(dom(dom(mapping . {app}))) ^
// There is a free spare cell on the same row

:(k 2 dom(dom(Cluster_Cell_Trace))) ^
// Move the task to this core

then // Store the track and mark the faulty cell

// Move the task to a spare core modifying the position of the

central task, if needed

end
However, if the spare cell on the same row is already utilized,
the cluster agent considers several possibilities of task reallocation
(see Fig. 8e)). In particular, the task can be reallocated to a spare
cell on a row above or below depending on the number of links
and/or communication bandwidth between a task allocated on a
faulty core and adjacent cells.

Every task in a task graph has at most two transitions with an-
other task. That is, it may have no transitions, one incoming or out-
coming transition or both an incoming and an outcoming
transition. Hence, it is reasonable to first consider if there are any
transitions between a faulty core and the cores above and below
it. If the number of transitions between a faulty core and the core
below is greater than the number of transitions between a faulty
core and the core above it, the cluster agent reallocates the task
to the spare core on a row below. Consequently, there are only
two hops between the spare core and the core with which there
are two communication links:
event Cluster_cell_reallocation_spare refines Cluster_cell_reallocation e any app x k l

where . . . ^
// If the spares on the current row, the row above and the row below are already allocated

("e. e2k�1..k+1) e2dom(dom(Cluster_Cell_Trace))) _
// or there is a task assigned to a core above, but current task does not have transitions to it

(((k�1)´l2dom(app_tasks_allocation))
:(app_tasks_allocation(k�1´l)´app_tasks_allocation(k´l) 2 dom(app_trans(app))) ^

(app_tasks_allocation(k´l)´app_tasks_allocation(k�1´l) 2 dom(app_trans(app)))) ^
// nor with the core on the row below

((k+1)´l2dom(app_tasks_allocation))
:(app_tasks_allocation(k+1´l)´app_tasks_allocation(k´l) 2 dom(app_trans(app))) ^
:(app_tasks_allocation(k´l)´app_tasks_allocation(k+1´l) 2 dom(app_trans(app)))))

// Reallocate the task to any free spare core

x 2 {sjs2min(dom(dom(mapping.{app})))..max(dom(dom(mapping.{app})))^(s2dom(ran(Cluster_Cell_Trace)))}

then // Store the trace and Mark the faulty cell

// Move the task to a spare core modifying the position of the central task, if needed

end

A cell

A cell

A cell

A cell

A cell

A cell

A cell

A cell
Analogously, we have considered the other cases when there is
only one transition with the upper and lower tasks. In total, there
are four cases for a task: (i) two incoming transitions, (ii) two out-
coming transitions, (iii) one incoming and one outcoming transi-
tion and (iv) one outcoming and one incoming transition (Fig. 11).

Finally, if none of these cases holds, the cluster agent simply
reassigns the task from a faulty core to any available spare core:
event Cluster_middle_cell_reallocation_down1 refines
Cluster_cell_reallocation Restore_cluster e any app k l

where . . . ^
// The spare cell on the same row is already assigned, but the spare cell on

a row below is free

// There are tasks assigned to cores above and below the faulty one, i.e.

// the cluster agent can try to verify if there are any links with those tasks
After a task has been reallocated, a corresponding cell agent ini-
tiates the local reconfiguration procedure. When this procedure is
complete and the cell is reconfigured, the cluster agent returns the
task in accordance with the stored trace. Hence, the original com-
munication performance within the region is restored:

event Cluster_cell_return refines Cluster_cell_return e any app

x y k

where . . . ^
// The substituting cell has a task

:(k´max(ran(dom(mapping .

{app})))2Cluster_Cell_Reallocated)

// Return a task according to the stored track

((x´y)´(k´max(ran(dom(mapping .

{app})))))2Cluster_Cell_Trace ^
then // Move the task back according to the stored track,

remove the track and unmark the reconfigured cell

end
While modeling the cluster agents within Event-B, the Rodin plat-
form [7] has generated 708 proof obligations of which 537 were
A cell A cell A cell A cell

(i) (ii) (iii) (iv)

Fig. 11. Variations of transitions between two communicating tasks.

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 725
proven automatically (more than 75%). Table 5 summarizes the
proof statistics. Similarly to the platform agent, the proof obliga-
tions (INV) and (FIS) (Section 3.1) for invariant preservation and fea-
sibility required user assistance in showing correctness of the
cluster agents specification.

Let us now examine the implementation of the cell agent that
performs the local reconfiguration procedure.
7. Formal development of the cell agents

7.1. The cell agents: the base model

For the work in this paper, we adopt and adjust the specifica-
tion of the cell agents proposed in [9] such that hardware code
can eventually be generated as motivated in Section 4.4. This
code can then be synthesized using, for instance, Quartus-II soft-
ware [33]. Previously, we have used total functions to represent
all the cell agents of the NoC platform. Because of that, the func-
tionality of the cell agents was modeled using non-determinism
on events (events with local parameters). Since the cell agents
are the same independently of their location in the platform,
we can proceed with further refinements towards a determinis-
tic and implementable specification of a particular cell agent in
order to generate a VHDL description [26] for a cell agent. To ac-
hive this, we first provide specific coordinates of the agent. Then,
we eliminate functions so that code generation is feasible. Here,
we only show the essential parts for deriving an implementable
model from which a VHDL description can be generated. For the
more detailed formal description, the reader is referred to
Appendix C.

7.2. The cell agents: specifying coordinates of a cell agent

To specify coordinates of a cell agent, we introduce two con-
stants in a context. Note that we do not specify the actual location
due to the fact that the cell agents are the same. Hence, the location
is not important:

constants n m

axioms n 2 1..IPnum ^ m 2 1..IPnum

Then, we eliminate non-determinism of the any clause of
every event modeling the functionality of a cell agent. For
instance, consider the event modeling the beginning of the local
reconfiguration. It operates only on the cell whose coordinates
are the specified constants n and m. In other words, the event
is deterministic and executes at the same coordinates in the
platform:
Table 5
The cluster agents: proof statistics.

Model Number of proof
obligations

Automatically
discharged

Interactively
discharged

Contexts 9 7 2
The base

machine
144 99 45

The first
refinement

143 91 52

The second
refinement

412 340 72

Total 708 537 171
event Reconfigure_cell refines Reconfigure_cell e
where

Cell_Read(n´m) = TRUE ^ (Cell_Fault(n´m) = TRUE _
Cell_Temp(n´m) P Temp_Threshold) ^
Reallocated(n´m) = TRUE ^ Reconfigured(n´m) = FALSE

then Start_Reconfig :¼ Start_Reconfig - {(n´m)´TRUE}

end
Now, we can refine this specification further by substituting func-
tions with simply typed variables. These variables reflect the inputs
and the outputs of the cell agent while their types are feasible for
code generation.

7.3. The cell agent: substituting functions with simply typed variables
and code generation

The cell agent can be represented as a block diagram as shown
in Fig. 12. Since the inputs cannot be updated and the outputs can-
not be read directly in the hardware code, we propose to use exter-
nal loopback connections on the variables (signals) Start_Reconfig

and Cell_Read (see Fig. 12).
From Fig. 12 we observe the inputs and the outputs the cell

agents have. The variables with the suffix ‘‘_I’’ are the input
signals while the variables with suffix ‘‘_O’’ indicate the output
signals. The inputs and the outputs are represented as simply
typed variables, where most variables are of Boolean type. The
only variable that has the numeric type is ‘‘Temp_I’’ as it models
the changes on the temperature of the cell: Cell_Temp_I 2
0..Temp_max. The variables Cell_Fault_I 2 BOOL, Reallocated_I

2 BOOL stand for the faults that occur in the cell and the
reallocation of the task performed by the higher level agents,
respectively. To model a loopback, we introduce the following
variables:

invariant Cell_Read_I2BOOL ^ Cell_Read_O2BOOL ^
Start_Reconfig_I2BOOL ^ Start_Reconfig_O2BOOL
Since the decomposed model also includes external events that
simulate the environment for the cell agents, we have to refine
these events accordingly. To proceed correctly, we introduce func-
tions that are marked as external so that the code generation tool
skips these variables when deriving VHDL. For instance, the vari-
able Cell_Temp modeling the temperature of a cell is refined (re-
placed) by the variable Cells_Temp.

To prove the correctness of the refinement and derive the
implementable model used to generate VHDL code, we introduce
several gluing invariants. These invariants state that the value of
every simply typed variable conforms to the value of a function ap-
plied to the cell for which we have defined the constants. On the
Cell agent

Cell_Temp_I

Reallocated_I

Cell_Fault_I

Start_Reconfig_I

Cell_Read_I

Start_Reconfig_O

Cell_Read_O

Reconfigured_I

Fig. 12. The hardware representation of a cell agent.

Fig. 13. The event Reconfigure_cell.

Table 6
The cell agent: proof statistics.

Model Number of proof
obligations

Automatically
discharged

Interactively
discharged

The contexts 4 3 1
The base

machine
89 87 2

The first
refinement

83 82 1

The second
refinement

115 106 9

Total 291 278 12

726 S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728
other hand, the abstract functions of the previous model remain
consistent:

The gluing invariant states that the value of the abstract func-
tion Cell_Temp is the same as the union of the values of the con-
crete function Cells_Temp without the coordinates n, m and the
variable Temp_I that complements the former. This approach al-
lows us to isolate a particular cell from the set of all the cells in
the platform.

Analogously, we refine the other variables except for the vari-
ables that model a loopback. For the variable Start_Reconfig, we
provide a similar invariant to the one shown above as well as
we postulate that the value of the output is the same as the
input:

invariant Start_Reconfig = ({n´m} Cells_Start_Reconfig) [
{n´m´Start_Reconfig_I} ^

Start_Reconfig_O=Start_Reconfig(n´m)

Since the variable Cell_Read modeling asynchronous communi-
cation between the agents in the hierarchy is not affected by the
event simulating the environment at the coordinates different
from the ones specified by the constants, the gluing invariants
for it are simpler:

invariant Cell_Read_I = Cell_Read(n´m) ^ Cell_Read_O =

Cell_Read(n´m)

Consequently, in every event we have replaced a function call with
the precise variable. For instance, consider the event Reconfig-

ure_cell (Fig. 13).
According to the gluing invariants, this event behaves ex-

actly the same as its ancestor. Notice, however, that this event
has a simultaneous assignment to both output and input vari-
ables Start_Reconfig_I and Start_Reconfig_O. This action mod-
els the loopback over the reconfiguration command (see
Fig. 13).

Although such an action allows us to model a loopback connec-
tion, the actual implementation in VHDL cannot have assignments
to the input signals. Hence, when generating the code, the tool [26]
skips the assignments to the input variables and keeps the updates
on the output variables. Additionally, the tool omits external vari-
ables and events as they are not relevant to the cell agent function-
ality. The example of the generated code for the event
Reconfigure_cell is shown below:
IF (Cell_Read_I = ‘1’) and
(Cell_Fault_I = ‘1’ or Cell_Temp_I > = Temp_Threshold)

and
(Reallocated_I = ‘1’) and
(Reconfigured_I = ‘0’)

THEN
Start_Reconfig_O <= ‘1’;

END IF;

In these events and the generated code, the cell agent has one
input displaying that a task has been reallocated. However, one
can proceed with an additional refinement step where this single
input is split into two: one coming from the platform agent and
the other one coming from a corresponding cell agent. Since this
refinement is easily performed through data refinement, we omit
it.

The proof statistics for this model is summarized in Table 6.
From the table, we observe that the Rodin platform [8] has gener-
ated 291 and has discharged 275 of them automatically. The proof
statistics illustrate that the tool could achieve a high level of auto-
mated proving (more than 95%). The interactive proofs include dis-
charging proof obligations feasibility, guard strengthening and
simulation (Section 3.1, POs (FIS), (GRD) and (SIM), respectively)
due to substituting data structures.

8. Conclusions

In this paper, we have presented the formal modeling and ver-
ification of a hierarchical agent-based dynamic management sys-
tem for NoCs incorporating application mapping and a novel task
reallocation procedure utilizing free spare cores available to each
running application. Specifically, the hierarchical agent-based

S. Ostroumov et al. / Journal of Systems Architecture 59 (2013) 709–728 727
management system consists of the platform agent, a number of
dynamically created and destroyed cluster agents and local cell
agents. We proposed (i) for the platform agent level, an algorithm
for the initial application mapping and tasks allocation with free
spare cores, (ii) for the cluster agent level, a multi-objective algo-
rithm that facilitates fault-tolerance of the platform while main-
taining performance of communication and computations at an
adequate level, (iii) for the cell agent level, an algorithm integrating
the local reconfiguration procedure for a cell. The distributed archi-
tecture of the cell and cluster agents allows independent execution
of monitoring and reconfiguration procedures utilizing the spare
cores without overloading the platform agent.

The development of each agent level proceeded through refine-
ments considering the overall requirements for the system. To the
best of our knowledge, this is the first approach for developing reli-
able agent-based management systems for dynamically reconfigu-
rable NoC platforms that incorporates a formal and proof-based
framework. The important functional properties (requirements)
of the system have been stated as invariants and the corresponding
proof obligations have been discharged. Therefore, we have veri-
fied the correctness of the proposed system w.r.t. these stated
properties.

We considered mapping of an application in such a manner that
a rightmost column of spare cores is at the disposal of a corre-
sponding cluster agent. One of our future directions is to investi-
gate other possibilities of placing spare cores within the region.
For instance, spare cores can be placed randomly following the ap-
proach presented in [12]. In addition, we will exploit reallocation
of tasks to unallocated spare cores within other clusters.

We have derived a VHDL description for the cell agents follow-
ing a correct-by-construction development. Similarly, we can
eventually derive implementations for the other agents. Hence, an-
other future direction is to evaluate efficiency of the proposed sys-
tem considering specific metrics.

Last but not least, a fault can also occur in the agents, although
the agents are much simpler than the processing cores. Therefore,
another future direction is to consider faults of agents and their dy-
namic reconfiguration.
Acknowledgments

The authors would like to thank Linas Laibinis for valuable feed-
back on the formal development. The authors would also like to
thank the reviewers for constructive comments. The work is par-
tially supported by Academy of Finland and Research Institute of
Åbo Akademi University.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.sysarc.2013.
06.001.
References

[1] L. Zhang, Y. Han, Q. Xu, X. wei Li, H. Li, On topology reconfiguration for defect-
tolerant NoC-based homogeneous manycore systems, IEEE Transactions on
Very Large Scale Intergrations (VLSI) Systems 17 (9) (2009) 1173–1186.

[2] I. Khatib, D. Bertozzi, F. Poletti, L. Benini, A. Jantsch, M. Bechara, H. Khalifeh, M.
Hajjar, R. Nabiev, S. Jonsson, MPSoC ECG biochip: a multiprocessor system-on-
chip for real-time human heart monitoring and analysis, Conference on
Computing Frontiers, ACM, New York, 2006, pp. 21–28.

[3] K. Motamedi, N. Ionnides, M. Rümmeli, I. Schagaev, Reconfigurable network on
chip architecture for aerospace applications, in: Preprints of the 30th IFAC
Workshop on Real-Time Programming and 4th International Workshop on
Real-Time Software, 2009, pp. 131–136.
[4] P. Rantala, J. Isoaho, H. Tenhunen, Novel agent-based management for fault-
tolerance in network-on-chip, Euromicro Conference on Digital System Design
Architectures, Methods and Tools, IEEE, Lubeck, 2007, pp. 551–555.

[5] A. Yin, L. Guang, P. Liljeberg, E. Nigussie, J. Isoaho, H. Tenhunen, Hierarchical
agent based NoC with dynamic online services, Industrial Electronics and
Applications ICIEA, IEEE, Xi’an, 2009, pp. 434–439.

[6] Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems, IEC61508, 2010.

[7] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge
University Press, Cambridge, 2010.

[8] RODIN, July 18, 2012. Available: <http://sourceforge.net/projects/rodin-b-
sharp/>.

[9] S. Ostroumov, L. Tsiopoulos, Formal development of hierarchical agent-based
monitoring systems for dynamically reconfigurable NoC platforms,
International Journal of Embedded and Real-Time Communication Systems
(IJERTCS) 1 (2) (2012) 40–72 (IGI).

[10] L. Guang, J. Plosila, J. Isoaho, H. Tenhunen, Hierarchical agent monitored
parallel on-chip system: a novel design paradigm and its formal specification,
International Journal of Embedded and Real-Time Communication Systems
(IJERTCS) 1 (2) (2010) 86–105 (IGI).

[11] L. Guang, S. Jafri, B. Yang, J. Plosila, H. Tenhunen, Embedding fault-tolerance
with dual-level agents in many-core systems, in: MEDIAN Workshop, EU COST
Action IC1103 Median, 2012, pp. 41–44.

[12] C.-L. Chou, R. Marculescu, FARM: fault-aware resource management in NoC-
based multiprocessor platforms, Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, Grenoble, 2011, pp. 1–6.

[13] P. Hölzenspies, T. Braak, J. Kuper, G. Smit, J. Hurink, Run-time spatial mapping
of streaming applications to heterogenous multi-processor systems,
International Journal on Parallel Programming (2009) 68–83.

[14] S. Le Beux, G. Bois, G. Nicolescu, Y. Bouchebaba, M. Langevin, P. Paulin,
Combining mapping and partitioning exploration for NoC-based embedded
systems, in: Journal of Systems Architecture (JSA), Elsevier, New York, 2010,
pp. 223–232.

[15] C. Métayer, J.-R. Abrial, L. Voisin, Deliverables. Rigorous Open Development
Environment for Complex Systems, May 31, 2005. Available: <http://
rodin.cs.ncl.ac.uk/deliverables/D7.pdf>.

[16] K. Robinson, System Modelling & Designing using Event-B, June 28, 2011.
Available: <http://www.cse.unsw.edu.au/~cs9116/PDF/SMD.pdf>.

[17] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm, Computer:
IEEE 35 (1) (2002) 70–78.

[18] C.-L. Chou, R. Marculescu, User-aware dynamic task allocation in networks-on-
chip, Design, Automation and Test in Europe DATE, IEEE, Munich, 2008, pp.
1232–1237.

[19] S. Shamshiri, P. Lisherness, S.-J. Pan, K.-T. Cheng, A cost analysis framework for
multi-core systems with Spares, Test Conference ITC, IEEE, Santa Clara, 2008,
pp. 1–8.

[20] Altera. FPGA Architecture, July 2006. Available: <www.altera.com/literature/
wp/wp-01003.pdf>.

[21] R. Hartenstein, Coarse grain reconfigurable architectures, Asia and
South Pacific Design Automation Conference, ACM, New York, 2001, pp.
564–570.

[22] B. Yang, T. Xu, T. Säntti, J. Plosila, Tree-model based mapping for energy-
efficient and low-latency network-on-chip, Design and Diagnostics of
Electronic Circuits and Systems (DDECS), IEEE, Vienna, 2010, pp. 189–192.

[23] C. Pascal, R. Silva, Event-B Model Decomposition, November 30, 2009.
Available: <http://eprints.soton.ac.uk/69664/>.

[24] S. Hallerstede, T.S Hoang, Refinement by interface instantiation, International
Conference on Abstract State Machines, ALLOY, B, VDM and Z (ABZ), LNCS, vol.
7316, Springer-Verlag, 2012, pp. 223–237.

[25] L. Guang, E. Nigussie, P. Rantala, J. Isoaho, H. Tenhunen, Hierarchical agent
monitoring design approach towards self-aware parallel systems-on-chip,
ACM Transactions on Embedded Computing Systems (TECS), vol. 9 (Issue 3),
ACM, New York, 2010, p. 24.

[26] S. Ostroumov, L. Tsiopoulos, VHDL code generation from formal Event-B
models, in: International Conference on Digital System Design (DSD), 14th
Euromicro Conference, IEEE, Oulu, 2011, pp. 127–134.

[27] M. Palesi, D. Patti, F. Fazzino, Noxim, April 24, 2012. Available: <http://
noxim.sourceforge.net/>.

[28] Xilinx, Remote FPGA Reconfiguration Using MicroBlaze or PowerPC Processors,
September 9, 2006. Available: <http://www.xilinx.com/support/
documentation/application_notes/xapp441.pdf>.

[29] Altera, Increasing Design Functionality with Partial and Dynamic
Reconfiguration in 28-nm FPGAs, July 2010. Available: <http://www.
altera.com/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf>.

[30] K. Robinson, A concise summary of the Event-B mathematical toolkit, October
7, 2010. Available: <http://wiki.event-b.org/images/EventB-Summary.pdf>.

[31] R. Hilbrich, J. Reinier van Kampenhout, Dynamic reconfiguration in NoC-based
MPSoCs in the avionics domain, in: Proceedings of the 3rd International
Workshop on Multicore Software Engineering, ACM, New York, 2010, pp. 56–
57.

[32] R. Hilbrich, J. Reinier van Kampenhout, Partitioning and task transfer on noc-
based many-core processors in the avionics domain, in: Entwicklung
zuverlässiger Software-Systeme Workshop, Stuttgart, Germany, 2011.

[33] Quartus-II software. Available: <http://www.altera.com/products/software/
sfw-index.jsp>.

http://dx.doi.org/10.1016/j.sysarc.2013.06.001
http://dx.doi.org/10.1016/j.sysarc.2013.06.001
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0005
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0005
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0005
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0010
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0010
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0010
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0010
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0010
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0015
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0015
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0015
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0015
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0020
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0020
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0020
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0020
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0025
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0025
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0025
http://www.sourceforge.net/projects/rodin-b-sharp/
http://www.sourceforge.net/projects/rodin-b-sharp/
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0030
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0030
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0030
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0030
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0035
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0035
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0035
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0035
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0040
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0040
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0040
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0040
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0045
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0045
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0045
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0050
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0050
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0050
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0050
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0050
http://www.rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://www.rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://www.cse.unsw.edu.au/~cs9116/PDF/SMD.pdf
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0055
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0055
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0060
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0060
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0060
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0060
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0065
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0065
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0065
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0065
http://www.altera.com/literature/wp/wp-01003.pdf
http://www.altera.com/literature/wp/wp-01003.pdf
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0070
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0070
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0070
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0070
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0075
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0075
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0075
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0075
http://www.eprints.soton.ac.uk/69664/
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0080
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0080
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0080
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0080
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0085
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0085
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0085
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0085
http://refhub.elsevier.com/S1383-7621(13)00107-0/h0085
http://www.noxim.sourceforge.net
http://www.noxim.sourceforge.net
http://www.xilinx.com/support/documentation/application_notes/xapp441.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp441.pdf
http://www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf
http://www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf
http://www.wiki.event-b.org/images/EventB-Summary.pdf
http://www.altera.com/products/software/sfw-index.jsp
http://www.altera.com/products/software/sfw-index.jsp

Paper 3

Derivation of Parallel and Resilient Programs from

Simulink Models

Sergey Ostroumov, Pontus Boström, Marina Waldén

Originally published in:

Proceedings of International Conference on Parallel, Distributed and

Network-based Processing (PDP), IEEE Computer Society Conference

Publishing Services (CPS), pp. 416-420, 2015.

Extended version published in:

Sergey Ostroumov, Pontus Boström, Marina Waldén, Mikko Huova,

Deriving Efficient and Dependable Parallel Programs from Simulink

Models. TUCS Technical Reports 1111, TUCS, 2014.

© 2015 IEEE. Reprinted, with permission, from IEEE.

http://www.computer.org/cps
http://www.computer.org/cps

Derivation of Parallel and
Resilient Programs from Simulink Models

Sergey Ostroumov1,2, Pontus Boström1, Marina Waldén1
1Department of Information Technologies

Åbo Akademi University
Turku, Finland

{Sergey.Ostroumov, Pontus.Bostrom, Marina.Walden}@abo.fi
2TUCS – Turku Centre for Computer Science

Abstract—Modern embedded applications often require high
computational power and, on the other hand, fulfilment of real-
time constraints and high level of resilience. Simulink is one
widely used tool for model-based development of embedded
software. In this paper, we focus on the derivation of parallel
programs from Simulink models and real-time resilient execution
of derived implementations on a many-core platform. The main
contribution is a fault-tolerance (FT) mechanism that prevents
data loss when the platform is dynamically reconfigured to mask
failures of individual cores. Finally, we evaluate the proposed
solutions on an industrial case study using a commercially
available NoC-based platform. The evaluation shows that the
proposed FT mechanism has a marginal overhead.

Keywords—Data Loss Prevention; Dynamic Reconfiguration;
Many-Core Platforms; Parallel Programs; Resilience; Simulink

I. INTRODUCTION
The highly dynamic nature of modern embedded

applications requires high computational power while they
also need to fulfil real-time constraints and a high level of
resilience. To develop such systems, designers typically
employ various modelling techniques. The Simulink model-
based design environment [1] is one such widely used
technique that supports a complete design chain starting from
modelling and simulation and ending in generation of, e.g., C
code. However, the programs generated by the built-in code
generator cannot fully utilize computational power offered by
energy-efficient many-core platforms.

A Network-On-Chip (NoC) which represents a
communication network of cores has been proposed as a
scalable paradigm that can provide high computational power
and low power consumption [2]. For instance, a commercially
available platform TilePro by Tilera [3] employs NoC.
However, the high level of on-chip integration increases the
probability of various faults [4] and high computational load
may cause creation of hotspots leading to thermal problems
[5]. Additionally, radiation which is frequent in space but
becomes an issue at the ground level as well can cause
transient faults [6]. This can eventually induce a faulty
execution of applications. One of the powerful techniques to
tolerate these faults is dynamic reconfiguration, namely tasks
reallocation [4][7][8]. This technique can be executed by the
agents that are integrated into the platform and perform
efficient management without overloading the platform with
monitoring and recovering activities [8][9]. However, when

tasks are reallocated to non-faulty cores, they may lose data in
the process, which can lead to the production of an erroneous
output. Consequently, to achieve resilience, application tasks
need to adopt a mechanism that provides means to continue
execution without losing data when they are reallocated.

Our contributions in this paper are: 1) an approach to the
derivation of parallel implementations from Simulink models,
2) based on 1), a fault-tolerance (FT) mechanism that prevents
data loss when application tasks are dynamically reallocated.
In addition, we illustrate performance evaluation results for
the proposed approaches by using the TilePro platform [3].

II. RELATED WORK

A Simulink model is a hierarchical dataflow diagram from
which the Simulink design environment can generate
sequential or fixed-priority multi-task C code scheduled
according to the rate monotonic principle [1]. However, the
generated code is not aimed at the parallel execution on a
many-core platform.

In contrast to [1], we propose to generate a parallel
implementation from a Simulink model by using application
characteristic graphs (ACG) [7] as an intermediate step. The
use of ACG allows designers to employ mapping algorithms
for many-core platforms considering various optimization
objectives, e.g., performance (real-time constraints) and/or
power consumption [10], resilience [4][8] etc. The generated
concurrent code preserves the semantics of Simulink models.
Moreover, the division of the system into parallel tasks
enables the application of resilience mechanisms to tasks and,
hence, improves the utilization of the platform.

To achieve resilience to faults, redundancy is needed. For
example, Bolchini, Carminati and Miele [6] propose to
replicate the whole application or some of its threads in order
to detect and tolerate failures of processors. They assume data
parallel programs and consider duplication with comparison,
triplication, as well as duplication with both comparison and
re-execution FT techniques. The authors propose the
adaptation engine that monitors several parameters and adapts
the execution according to the evolving environment.

Pinello, Carloni and Sangiovanni-Vincentelli proposed
another approach to replicating dataflow actors [11]. The
authors consider a fault model, in which components are fail-
silent, i.e., they either produce a correct result or produce no
result. The authors use software replication for critical tasks
statically at design time, where each replica is then executed
on a separate control unit.

2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/15 $31.00 © 2015 IEEE

DOI 10.1109/PDP.2015.102

416

An approach to tackle hardware failures in process
networks has been proposed by Ceponis, Kazanavicius and
Mikuckas [12]. The authors present an extension of Kahn
process networks, namely Error-Proof Process Network
(EPPN). Using EPPN, the authors show a dynamic
reconfiguration mechanism, where the actions of a faulty node
are transferred to an adjacent non-faulty functional node and
communication is adjusted accordingly using checks on the
FIFO channels. However, according to the authors, this
mechanism may lead to non-determinism in the network.
Moreover, when functionality of a failed node is delegated to a
non-faulty operating node, data loss occurs. To tackle this
problem, the authors introduce the default value. Although the
mechanism fulfils on-time result delivery, the default value
may not preserve semantics of the original application.

Similarly as in [6][11][12], we consider hardware failures
of processing units in the underlying many-core NoC-based
platform. However, in contrast to [6][11][12], we rely on
dynamic tasks reallocation [4][8] that can be performed by
agents integrated into the platform [8][9]. The tasks
reallocation enables uninterruptable execution of applications
[4][7][8] and avoids resource wasting caused by duplicating
applications or threads (actors). To avoid data loss when tasks
are reallocated, we propose an FT mechanism, in which the
reallocated tasks operate on the current values instead of the
default ones in contrast to [12]. Therefore, the determinism of
the application is preserved.

III. PRELIMINARIES

A. Simulink Models
We consider Simulink models that represent hierarchical

dataflow diagrams [1]. A Simulink model consists of a
collection of functional blocks that have in-ports (inputs) and
out-ports (outputs) allowing connections between blocks via
typed signals. The blocks may have parameters that are
initialized at the beginning of the execution and remain
constant during the execution. Moreover, the blocks can
contain memory. In this case, the output value depends not
only on the inputs but also on the previously computed value.

The blocks can be grouped into sub-systems. There are
two types of sub-systems in Simulink: virtual and atomic [1].
Virtual sub-systems are used for the structural purpose only
and do not affect the model execution. They can be seen as
containers for functional blocks that are expanded by the
Simulink engine in place before execution. Atomic sub-
systems are treated as single atomic units.

The models can be continuous or discrete. We consider
discrete-time models with atomic sub-systems that specify
periodic real-time systems. Each block in a discrete-time
model is evaluated at regular intervals with a specified
sampling period. We further assume that the model is single-
rate, i.e., all its sub-systems fire at the same time intervals. In
addition, we assume causal models, where outputs of a block
have no direct connection to inputs of the same block. The
models usually used for code generation are causal.

Fig. 1 illustrates an example of a Simulink model. The
model in Fig. 1, a) contains two in-ports and one out-port. It
includes a constant parameter as well as a memory block. This
model is grouped into a sub-system presented in Fig. 1, b).

B. Communication platform
The generation of a parallel code requires designers to take

into account characteristics of the underlying platform. We
assume a 2D mesh NoC-based many-core platform. It consists
of tiles that include processing units (PUs) and routers (RTs)
[2] (Fig. 2). We assume the platform to be homogenous at the
global level, i.e., all tiles are identical, while their internal
structure might be heterogeneous.

RTs allow communication between tiles by routing
packets. We assume deterministic routing, which is dead-lock
and live-lock free, provides low latency and suits real-time
control systems [13]. The communication mechanism
typically employs FIFO buffers, which preserves the flow
order of data. Moreover, the platform typically supports
checks if the buffers are full or empty. Thus, the tasks can read
packets as soon as they arrive in the input buffers and send
processed data when there is an available space.

IV. DERIVATION OF PARALLEL PROGRAMS FROM
SIMULINK MODELS

We translate a Simulink model into a set of concurrent
tasks that are given by the sub-systems and communicate
according to the signals in between. This process can be
summarized as the following algorithmic steps:

1. Flatten the model following so that the top-level atomic
sub-systems reflect tasks according to the designer
choice.

2. Construct an ACG from the model as explained in the
next sub-section.

3. Generate implementations (i.e., threads) for the tasks
according to ACG.

4. Apply mapping algorithms using the ACG [4][8][10].
Here, we focus on steps 2 and 3.

A. Construction of ACG from Simulink
To apply mapping algorithms that enable optimization in

terms of, e.g., performance and power consumption [10] or
resilience [4][8], we need to construct an Application
Characteristic Graph (ACG) from a flattened Simulink model.
An ACG consists of tasks and edges. The edges show
communication rates r between tasks via FIFOs. For brevity,
we only provide an intuitive description of the ACG derivation
from a Simulink model. Please refer to the technical report
[18] for more details on the construction.

The construction of an ACG from an arbitrary model is
illustrated in Fig. 2. Similarly as in the approach proposed by
Boström [14], we interpret each node of the model as a vertex
of ACG with synchronous dataflow semantics, i.e., each
atomic sub-system as a separate execution task that can be run
on a single core. However, in contrast to [14], we group the
links of the Simulink model into edges of ACG. An edge
between an arbitrary pair of nodes in ACG reflects a group of

2
x

+1
In1

In2

const

1
Out1

a) b)

1 in-port

1 out-port

const sub-system
parameter

memory
block

signal

In1
In2

Out1

Sub-system

Fig. 1. Simulink models: a) sub-system content, b) sub-system block

417

4
u_BT

3
u_PB

2
u_AT

1
u_PA

v err_PA

v err_AT

v err_PB

v err_BT

MODE

uPA

uAT

uPB

uBT

Switch and Select Control

QPA v alv es

QAT valv es

QPB v alv es

QBT valv es

v_ref

v err_PA

verr_AT

v err_PB

verr_BT

Square of
veloci ty error

pP

Mode

F

pA

pB

pA_ref

pB_ref

MODE_v ector

Pressure references

x_ref

x

v _ref

v _rC

Motion control ler

F_max_e

F_min_e

F_max_r

F_min_r

v_ref

F_est

MODE

Mode selection

pA

pB

Fest

Load force estimator

pP_in

pA

pB

pP_out

pA_hat

pB_hat

Fi l tering of pressures

pA_ref

pB_ref

pP

Q_PA v alves

Q_AT v alves

Q_PB v alves

Q_BT v alves

Calculate Flow rates
of the valves

pP

F_max_e

F_min_e

F_max_r

F_min_r

Avai lable force range

5
pP

4
x

3
v_ref

2
x_ref

1
pA & pB

5,8

4,5

r 1,3

Fig. 2. Application characteristic graph and mapping example

links between the same nodes in the model. In essence, the
links constitute communication between the nodes. The rates
of packets are computed according to the execution periods of
the corresponding sub-systems. The input and the output
signals of the blocks that interact with the environment do not
participate in the construction of ACG. This is because these
signals do not affect the application internal structure.

B. Task pattern
Each task of the ACG executes a function and is mapped

to a separate PU in the platform. However, despite different
functionality, each task instantiates the pattern shown in
Fig. 3. A task runs the loop for Receiving, Processing and
Sending (RPS) data:
• a task starts processing data as soon as it has at least one

token (i.e., one piece of data) in every input FIFO buffer,
• when a task runs, it consumes one token from every input

buffer and produces one token for every output buffer, i.e.,
the task processes the received data according to the
function derived from the model and sends processed data
further according to the edge of ACG,

• a task without inputs fires every � sampling time.
To preserve timing semantics between a Simulink diagram

and ACG, we assume that the computation and
communication time in ACG equals to 0 as it does in the
Simulink blocks and links.

V. RESILIENCE OF THE PLATFORM AND APPLICATIONS
To achieve resilience to faults and maintain performance,

various dynamic reconfiguration techniques are utilized. One
such powerful technique is tasks reallocation [4][7][8], where
a task is migrated to a non-faulty PU when some PU fails.
However, when tasks are reallocated, they may lose data.

Let us now focus on a resilience mechanism that prevents
the data loss in the type of ACG considered in this paper. We
start by describing faults and fault scenarios that can occur.

Fig. 3. Task pattern

A. Fault model
We consider the fault model that captures physical failures

of processing units of the platform. A failure can be caused by
transient, intermittent or permanent faults due to high
temperature [5], radiation [6], etc. We assume that only one
failure of PU can occur at a time independently of the number
of faults causing it. In other words, a sufficient amount of time
must elapse between two consecutive failures.

For the sake of simplicity, we assume that PUs are fail
silent that either produce the correct result or no result at all
[11][15]. Fail-silence assumption however can be softened if
erroneous results are detected and isolated by using various
mechanisms such as model-based diagnosis [16], runtime
verification [17] or by integrating CRC-like sums into packets
and their checks into tasks [15].

After a task is reallocated from a failed tile, the task starts
over from the initialization phase (see Fig. 3); hence, all local
variables receive initial values. However, the packets are
stored in the buffers of RT which is a separate unit of a tile
(see, e.g., [3]) or in the main memory. Therefore, these data
remain intact and can also be reallocated along with the task.

We can assume that reading from and writing to a FIFO
buffer (queue) are atomic operations, i.e., either the buffer is
read or updated, respectively, or not. However, if a task has
several input and/or several output buffers, the reading and
sending proceed in a buffer-by-buffer manner. In addition, we
distinguish between source and regular tasks. The source tasks
receive input data from the environment. The regular tasks
consume data produced by other tasks and send processed data
further or provide an output to the environment. Independently
of whether a task is source or regular, it can be stateless
(without memory) or stateful (with memory). Consequently,
we have 4 cases in total: stateless regular tasks, stateless
source tasks, stateful regular tasks and stateful source tasks.

B. Fault scenarios
According to the described fault model, there are several

possible fault scenarios (FS) for the fault occurrence within
the RPS loop (see Fig. 3):
(FS1) A fault occurs before a task reads any input data. In

this case, a task can still read the input data after
reallocation as the input data remain intact.

(FS2) A fault occurs while a task reads input data. A task
reads packets from some queues but fails to read from
others. Thus, some pieces of data may be lost.

418

(FS3) A fault occurs before the task sends the processed data.
The task has read all the input data but has not finished
processing them or has not been able to send the
processed data. Hence, the task loses data of one firing.

(FS4) A fault occurs while a task sends data. In this case,
some successor tasks may receive packets with new
data while others may not. This can lead to
desynchronized data reception by the successor tasks.

C. Packet sending
To address data loss according to the described above FSs,

we propose the following mechanism. Firstly, the packets used
for communication between tasks incorporate a sequence
number (packet id). The source tasks provide a value for this
number starting from 0 and increase it every time when a new
input is read. The regular tasks do not change this number
which allows tasks to synchronize packets received from
different buffers as explained later.

Secondly, every task except for the ones that produce the
output to the environment sends the same packet twice: the
main packet and its duplicate (Fig. 4). Please notice however
that the same approach can also be applied if tasks send more
duplicate packets to tolerate a larger number of faults of PUs.

As a result, the tasks now send and receive two packets
instead of one each time they fire. The packets integrate a
sequence number (id), where the main packet and its duplicate
have the same id. However, the tasks need an intelligent
procedure that filters duplicates if the tasks operate normally
and use them upon failure according to the described FSs.

For brevity, we provide a detailed description of intelligent
packet handling for the stateless regular tasks in the following
sub-section. Please refer to the technical report [18] for the
details on the other types of tasks.

D. Intelligent packet handling for stateless regular tasks
Stateless regular tasks operate according to the algorithm

presented in Fig. 5. In order for a task to detect a duplicate
packet, it stores a local copy (���) of packets id after receiving
all input packets. The initial value of the local copy equals to -
1 so that it is less than the starting value of the packets id (i.e.,
0). When reading packets, the task compares the id of the
packet just read with the local copy. If no fault has occurred,
the value of the local copy of the sequence number is less or
equal to the sequence number of the packets read. Since the id
of the main packet and its duplicate is the same, the task will
simply reread the buffer for a packet with a greater id (Fig. 5,
condition ����	
���������). This packet will contain new input
data to process, i.e., be a new main packet. Thus, the task will
filter duplicates when operating normally (see Fig. 6).

In case a fault occurs, the local copy of the sequence
number is initialized with -1. Depending on the FS, there are
several possible outcomes. In (FS1), the task proceeds
normally after reallocation as the main packets remain intact
in the input buffers (see Fig. 4). The effect of the other FSs is
shown in Fig. 6 which captures states of the input buffers of
task ni considering (FS2)-(FS4).

Fig. 4. State of buffers with and without FT

If (FS2) takes place, there are two possible cases. In the
first one, a fault occurs while the task reads main packets from
buffers (Fig. 6, FS2, Case 1). In this case, the task can proceed
normally after reallocation since there are duplicates in the
buffers. In the second case, a fault occurs when the task has
read duplicate packets from some queues but failed to read
duplicates from other queues (Fig. 6, FS2, Case 2). This may
lead to desynchronized packet receiving as the task reads data
in a buffer-by-buffer manner. To avoid this, the task compares
packet id received from the first queue with ids of the packets
read from other queues. If the id of a packet from another
queue is less than the id of a packet from the first queue, the
task needs to reread this queue (Fig. 5, condition ����	
��� ��

����	���). This enables synchronization of packets read from
different queues as only source tasks provide sequence
numbers for packets and regular tasks do not modify them.

In (FS3), where a fault occurs before the task starts
sending the processed data, the task will use duplicates
residing in the buffers after reallocation (Fig. 6, FS3).

Finally, the algorithm also covers (FS4) if, e.g., task nl is
reallocated due to a failure of PU (Fig. 6, FS4), as at least one
copy of a packet always resides in the buffers. Please notice
that a task can send more than two duplicates in case of (FS4).
However, they will be filtered by the proposed algorithm.

VI. EVALUATION RESULTS
The proposed approach has been evaluated on a case study

[18] implemented on the TilePro platform [3] without running
other applications than OS (Linux Santiago 6.0, Kernel 2.6.36-
4). The platform integrates 64 tiles forming an 8x8 square
mesh with a network-based communication between the tiles.
The network connections are 32-bit full-duplex, there is single
cycle latency between adjacent tiles and packet length is up to
128 32-bit words. Bisection bandwidth equals 2660 Gbps. Due
to the platform architecture, the size of FIFO buffers is limited
to the power of 2. To tolerate faults, the proposed approach
requires buffers of size 3. Hence, we provide communication
buffers of size 4 for storing 3 packets in total: one current
duplicate packet, one new main packet and one new duplicate.
The platform runs at the frequency of 862.5 MHz so that one
execution cycle approximately takes 1.1594 ns. The platform
employs deterministic XY routing with the dead-lock and live-
lock free algorithm suitable for real-time systems [13].

We have first evaluated performance of non-FT and FT
parallel implementations derived from the case study Simulink
model without tasks reallocation. The evaluation results have
shown that the proposed FT mechanism reduces performance
of the parallel code by only about 1% due to the fact that the
on-chip network provides high communication bandwidth.

Moreover, we have evaluated tasks performance in the
circumstances of dynamic reconfiguration. The results have

Fig. 5. Algorithm for intelligent packet receiving in stateless regular tasks

419

Fig. 6. Intelligent reading in regular tasks: buffer states

illustrated that the deviation of task performance is at most
0.6% when comparing original and spare locations. In some
cases, performance of the task reallocated to a spare PU has
been better than the performance of the same task at the
original location. This can be explained by the fact that there
is lighter traffic to spare cores when routing packets.

We have also analyzed performance of the reallocation
procedure. Please refer to the technical report on details [18].

VII. CONCLUSION AND FUTURE WORK

We have shown an approach to deriving parallel programs
from arbitrary discrete single-rate Simulink models. Relying
on the behaviour of the resulting ACG, we have introduced a
scalable FT mechanism that prevents data loss when
application tasks are relocated due to failures of PUs. We have
evaluated performance of the derived programs as well as of
the proposed FT mechanism. The results show only about 1%
performance decrease when comparing non-FT and FT
versions. Thus, the proposed approach maintains efficiency
and provides resilience to faults allowing applications to
produce the expected result. The proposed FT can also be used
separately from Simulink but requires the aforementioned
assumptions. Moreover, it is not restricted to data parallel
applications and can be applied to functionally parallel ones.

The future directions of our work include the development
of a tool support for the proposed approach and its extension
to multi-rate models. Moreover, one can integrate the
proposed approach into FT dataflow proposed in [12].

ACKNOWLEDGMENT
The authors would like to thank Adj. Prof. Juha Plosila for

fruitful discussions. The work is supported by the Digihybrid
project in the EFFIMA program coordinated by FIMECC.

REFERENCES
[1] Simulink, Simulation and Model-Based Design, 2014. Available:

http://www.mathworks.se/help/simulink/index.html
[2] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm,

Computer, IEEE, Vol. 35, Issue 1, pp. 70-78, 2002.
[3] Tilera, Tile Processor User Architecture Manual, 2011. Available:

http://www.tilera.com/scm/docs/UG101-user-architecture-reference.pdf

[4] F. Khalili, H. R. Zarandi, A Fault-Tolerant Low-Energy Multi-
Application Mapping onto NoC-based Multiprocessors, Computational
Science and Engineering, Nicosia, IEEE, pp. 421-428, 2012.

[5] G. Link, N. Vijaykrishnan, Hotspot Prevention Through Runtime
Reconfiguration in Networks-on-Chip, DATE, IEEE, pp. 648-649, 2005.

[6] C. Bolchini, M. Carminati, A. Miele, Self-Adaptive Falt-Tolerance in
Multi-/Many-Core Systems, Journal of Electronic Testing: Theory and
Applications, Vol. 29, Issue 2, Springer US, pp. 159-175, 2013.

[7] C.-L. Chou, R. Marculescu, FARM: Fault-Aware Resource Management
in NoC-based Multiprocessor Platforms, DATE Conference &
Exhibition, Grenoble, IEEE, pp. 1-6, 2011.

[8] S. Ostroumov, L. Tsiopoulos, J. Plosila, K. Sere, Formal Approach to
Agent-Based Dynamic Reconfiguration in Networks-On-Chip, Journal
of Systems Architecture, 59(9), Elsevier, pp. 709-728, 2013.

[9] L. Guang, J. Plosila, J. Isoaho, H. Tenhunen, Hierarchical Agent
Monitored Parallel On-Chip System: A Novel Design Paradigm and its
Formal Specification, IJERTCS, Vol. 1, Issue 2, IGI, pp. 86-105, 2010.

[10] M. Noraziz Sham Mohd Sayuti, L. Soares Indrusiak, Real-Time Low-
Power Task Mapping in Networks-on-Chip, Computer Society Annual
Symposium on VLSI, IEEE, pp. 14-19, 2013.

[11] C. Pinello, L. Carloni, A. Sangiovanni-Vincentelli, Fault-Tolerant
Deployment of Embedded Software for Cost-Sensitive Real-Time
Feedback-Control Applications, International Conference on Design
Automation and Test in Europe, IEEE, pp. 1164-1169, 2004.

[12] J. Ceponis, E. Kazanavicius, A. Mikuckas, Fault Tolerant Process
Networks, Information Technology and Control, Vol. 35, No. 2, pp. 124-
130, 2006.

[13] V. Rantala, T. Lehtonen, J. Plosila, Network on Chip Routing
Algorithms, TUCS Technical Report 779, pp. 10-16, 2006.

[14] P. Boström, Contract-based verification of Simulink models, ICFEM,
Durham, Springer-Verlag Berlin Heidelberg, pp. 291-306, 2011.

[15] F. Brasileiro, P. Ezhilchelvan, S. Shrivastava, N. Speirs and S. Tao,
Implementing fail-silent nodes for distributed systems, IEEE
Transactions on Computers, Vol. 45(11), pp. 1226–1238, 1996.

[16] R. Isermann, Model-based fault-detection and diagnosis – status and
applications, Annual Reviews in Control 29(1), Elsevier, Vol. 29,
Issue 1, pp. 71-85, 2005.

[17] L. Pike, S. Niller, N. Wegmann, Runtime Verification for Ultra-Critical
Systems, In Proceedings of International Conference on Runtime
Verification, Springer, pp. 310-324, 2012.

[18] S. Ostroumov, P. Boström, M. Waldén, M. Huova, Deriving Efficient
and Dependable Parallel Programs from Simulink models, TUCS
technical report 1111, 2014.

420

Paper 4

VHDL Code Generation from Formal Event-B Models

Sergey Ostroumov, Leonidas Tsiopoulos

Originally published in:

Proceedings of International Conference on Digital Systems Design

(DSD), IEEE Computer Society Conference Publishing Services (CPS),

pp. 127-134, 2011.

© 2011 IEEE. Reprinted, with permission, from IEEE.

VHDL Code Generation from Formal Event-B Models

Sergey Ostroumov, Leonidas Tsiopoulos
Department of Information Technologies

Åbo Akademi University
Turku, Finland

e-mail: {Sergey.Ostroumov, Leonidas.Tsiopoulos}@abo.fi

Abstract—In this paper, we present an approach that allows to
generate VHDL code from formal models developed with the
Event-B formalism. The approach is based on the relationship
between the structure of the formal model and hardware
description language statements. We are aiming at getting
VHDL code whose behaviour is the same as the behaviour of
the Event-B model. Our contribution lies in the fact that we
show the main similarity between the formal model and VHDL
code that allows us to derive the method and, hence, the
algorithm for automatic translation. This algorithm can be
implemented as a plug-in for the Rodin tool which supports the
Event-B formalism. The approach is presented through a
simplified version of an industrial case study developed in a
stepwise refinement manner. We also present several ways of
possible translation depending on the way the model has been
developed through refinement. In addition, we present
synthesis results that show space occupied by the VHDL code
generated.

Keywords-formal modelling; Event-B; VHDL; code
generation

I. INTRODUCTION
Advances in technology allow us to design embedded

systems as single chip systems, so-called Systems-On-Chip.
On one hand, it allows us to reduce the space and power
consumption and diminish time delays in a system. On the
other hand, the complexity of such type of systems leads to
impossibility of performing exhaustive testing in order to
ensure the correctness of the system.

The first solution to this problem may be found by
applying the model-checking approach to implementations
[1]. The main idea of this approach is to derive a model of a
system from the system implementation (code) and then
check system properties on that model. However, this
approach is time consuming because if errors are found, then
it is necessary to return to the implementation, correct the
errors and apply model-checking repeatedly until the correct
system is derived.

Another way to solve the problem is offered with a
formal model development of a system [2]. A model can be
developed in a stepwise manner which is known as the
refinement approach. At every step of the refinement-based
approach we introduce functional properties of the system
that have to always be established while the model is being
developed. These properties are called invariants. Each
refinement step has to preserve the invariants mentioned at a
particular step and all steps before. Therefore, the formal
model of the system is correct by construction. In other

words, we can guarantee that the behaviour of the system
matches the requirements.

There exist several formal methods for hardware
specification and verification such as Action Systems [3],
Lustre [4], Signal [5] and Esterel [6]. The synchronous
formalisms Lustre, Signal and Esterel cannot model both
synchronous and asynchronous systems in a straightforward
manner because of the perfect synchrony hypothesis, in
which outputs are produced synchronously with the inputs.
Specifically, Signal has been applied to modelling globally
asynchronous designs in synchronous networks [7] while
Esterel has been extended to model multiple clock domains
[8]. Moreover, Halbwachs and Baghdadi [9] introduced
several extensions in order to avoid the limitations of the
perfect synchrony hypothesis. These extensions add
significant overhead to the specifications. Furthermore, only
Signal supports the refinement approach.

For the work in this paper we focus on the Event-B
formalism [2], related to Action Systems and its extension
B Action Systems [10], because it has adequate tool support
enabling system-level modelling and analysis of both
synchronous and asynchronous systems. It allows us to
model a discrete transition system and prove the consistency
of the model following the refinement approach. In addition,
we can model concurrency by atomic events that can be
executed in parallel if they operate on disjoint variables. This
approach is supported by the Rodin platform [11], which is
open source software and allows us to extend its
functionality by adding new modules in the form of plug-ins.

The target language we are aiming at is VHSIC
Hardware Description Language (VHDL) [12]. This
language is standardized [13] and is widely used in hardware
design to describe systems based on field-programmable-
gate-arrays. There are a number of tools that support VHDL
designs and allow us to synthesize the code and simulate its
behaviour. In order to do that, we have used Quartus-II
software for synthesizing the code and ModelSim software
for simulating this code [14].

Since a formal model is correct by construction, it is very
important to start with the formal modelling of the system
and then transform the model into a programming language.
We are aiming at the creation of a plug-in that makes the
translation process automatic and the development of the
method for generation of the VHDL code from the given
Event-B model that the plug in implements. The method is
based on the correspondence between a formal model and
VHDL that enables the automatic translation to be performed
correctly.

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.20

127

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.20

127

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.20

127

The rest of the paper is organised as follows. Section II
describes related work and compares our approach to other
approaches. In section III, we describe the structure of an
Event-B model and present formal proof obligations that a
model has to be consistent with. The structure and statements
of VHDL code are depicted in section IV. The approach we
use to derive VHDL code from a model is represented in
section V. In section VI we show an application of this
approach with a simplified version of an industrial case
study. Section VII discusses possible extensions of the
approach if a model is decomposed through refinement. We
discuss future work and directions of the research in
section VIII.

II. RELATED WORK
The work presented by Cansell, Méry and Proch [15]

introduces the approach to transformation of the formal
model into SystemC language. The authors aim at the
formalization of the SystemC scheduler which handles
timing requirements of a program in this language. However,
this approach cannot be applied to transformation into more
low level language, namely hardware description language
(HDL), because HDL does not have any schedulers as such.

An approach presented by Plosila and Sere [16] has been
developed for modelling and verification of asynchronous
hardware systems. In this work the authors describe the
formal design process for an asynchronous pipelined
processor that contains concurrent elements. This approach
relies on the use of the Action Systems formalism. The
application of the Action Systems formalism to synchronous
systems has been extended by Seceleanu [17]. This approach
relies on the two-phase operation (read and write) of a
synchronous system modelled with the Action Systems
formalism while our approach focuses on facilitating the
translation of implementable hardware models developed
within Event-B into a targeted hardware description
language.

An approach for transformation of formal models to
VHDL has been developed by Hallerstede and Zimmermann
[18]. This approach lies in the field of transforming a linear
system into HDL. In fact, this approach is used by the
AtelierB tool [19] which is based on the B Method
formalism and supported by industrial partners [20]. This
approach uses a middleware language called B0 and then
allows us to get pure VHDL. Since Event-B is an extension
of B Method [21] which allows us to model reactive systems,
it is not straightforward how to apply this approach to the
Event-B formalism. Besides, our approach considers Event-
B models as such and allows us to generate VHDL code
directly from a formal model.

III. EVENT-B
Event-B is a formal method based on correct-by-

construction development of systems through stepwise
refinement. To start with, we have to describe some
important structures of an Event-B model [2]. The model
consists of two parts: a context and a machine. The context
contains static elements of the model such as sets, constants
and axioms that can be seen by the machine. The machine

consists of model properties (invariants) and dynamic
constituents (variables and events).

We do not give the structure of the context because from
the relation between machines and contexts we can get all
the required values. We focus on the detailed description of
the dynamic part of a model (machine) to show the
correspondence between a formal model and VHDL code.

The overall structure of the machine is given in Fig. 1. machine Machinesees Contextvariables //Global variables of a model invariants //Variables type and properties of a model events //Actions that model performs end
Figure 1. The structure of an Event-B machine.

There are five main sections in a machine. As any
component, the machine has a label (its name), which we
represent by using the machine keyword. If we have defined
static properties in a context, then they are seen through the sees clause. Since the machine is the dynamic part, it
changes its state by modifying variables introduced in the variables clause. In the invariants clause we give the types of
the variables and the guaranteed state properties of the
machine. The behaviour of the machine can be modelled by events specified in the corresponding clause.

The events have the following structure which we are
using for proper translation of the model to the code. The
syntax of an event is as follows: Evt = WHEN g THEN S END
where Evt is an event, g represents the conjunction of guards
(conditions on which the event is enabled to be executed)
and S is a statement defined as an assignment to the
variables.

In the model we can use two types of assignments:
deterministic and non-deterministic. Since a hardware
system must have a deterministic behaviour, the final model
must have only deterministic assignments of the following
form: x := Exp, where x reflects the vector of the variables
and Exp is an expression.

Formally, each event is viewed as a before-after predicate BA(x,x’) that links the values of the variables just before (x)
and just after (x’) of the event execution. This scheme makes
it possible to prove the correctness of the model by
preserving the invariants. A model is consistent if the
following proof obligations hold: 1. WD(Inv) 2. BA(x:=x0) ⇒ Inv’ 3. Gi ∧ Inv ∧ BAi(S) ⇒ Inv’
where 1. shows well-definedness [22] of an invariant, 2.
depicts the establishment of this invariant at initialisation and
3. states that every event preserves the invariant. Inv’ stands
for a modified invariant containing the updated state
variables after an event execution.

Since a model is developed in a stepwise manner, the
following proof obligations have to be consistent with
respect to the refinement approach:

128128128

1. AbsInv ∧ ConcInv ∧ ConcG ⇒ AbsG 2. AbsInv ∧ ConcInv ∧ ConcG ∧ ConcBA ⇒ AbsBA 3. ConcG ∧ ConcBA ⇒ AbsBA
where 1. corresponds to guard strengthening, 2. shows
simulation of an action and 3. represents the equality of the
preserved (“old”) variable. AbsInv, AbsG and AbsBA stand for
an invariant, guard and before-after predicate of an event that
appear in a previous refinement step while ConcInv, ConcG
and ConcBA reflect an invariant, guard and before-after
predicate of an event that are stated at the current refinement
step.

The whole Event-B model is developed in a stepwise
manner following a refinement-based approach. At every
refinement step, we add details of a system. In addition, we
prove the consistency between a more abstract specification
and a more concrete model by preserving the invariants from
the previous steps.

Thus, every model which is developed in this manner has
logical proofs of its consistency with the respect to the
properties derived from the system requirements. In other
words, Event-B offers a proof-based verification.
Nevertheless, a model checker and animator (ProB [23]) is
also available.

IV. VHDL
Similarly to the Event-B models, we have to present

some VHDL constructions that are useful for the translation
process. We begin with describing the structure that a VHDL
project has [12, 13].

The starting point in VHDL code is a clause named entity
(Fig. 2). Every entity must have a name and some ports.
Additionally, we can define necessary parameters for the
entity by using generic statement. Every input and output of
the entity is introduced in the port clause. All the signals in
the entity represent the interface of this entity and have a
direction and a type. Thus, we introduce the in direction for
the input signals and the out direction for the output signals.
The usual type for every signal is std_logic independent of
signal direction. entity Entity is generic (--Parameters); port (--Inputs : in std_logic, --Outputs : out std_logic); end Entity; architecture arch of Entity is --Internal signals begin //Statements end

Figure 2. The structure of an entity in VHDL.

Using the interface described in the entity, we implement
the hardware behaviour in the architecture clause. Internal signals of the architecture depict the internal data of the
entity. Since an action modifies the value of the variables,
the assignment to signals in terms of VHDL has the
following form: x <= E, where x is a signal and E is an
expression. Every such an assignment is not instant. In other

words, every signal has a buffer which contains the value
after the assignment. Hence, it is not possible to perform
several assignments to one signal unless this signal is in the
process clause. Thus, we focus on the process clause where
we use the “if condition then action end if” statement whose
behaviour is the same as the behaviour of an event in the
model. The syntax defining the process is as follows: process (<sensitivity list>) is begin operators end;
where <sensitivity list> is the list of signals on which the
process is activated and for operators we use the conditional
statement described above.

Therefore, we have derived the main similarity between
the Event-B model and VHDL code.

V. EVENT-B DEFINITIONS IN TERMS OF VHDL
STATEMENTS

The correspondence between a machine and an entity is
depicted in Fig. 3 and Fig. 4.

Since a machine may have different variables that
represent the inputs and outputs as well as internal data, there
is a necessity to distinguish them. In order to do that, all the
variables that have “_I” suffix are considered to be the inputs,
the variables with “_O” suffix represent the outputs, while the
others reflect the internal data. All the variables have to be of
the numeric or Boolean type. The correspondence of the
types is given in Tab. I

An Event-B model can be developed in different ways
with respect to the refinement approach. Usually, we start
with a very abstract model that has non-deterministic
behaviour and we come to completely deterministic actions
while refining the model. The final deterministic model can
be translated into asynchronous VHDL code. Event-B structures VHDL statements machine Machinevariables//Inputs Outputs Internal invariants //Variables type events event INITIALISATION begin //Default values //on the variablesend

entity Machine is port (--Inputs and outputs, their type --and the default value, e.g. Inputs : in std_logic := def_val, Outputs : out std_logic := def_val); end Machine;
Figure 3. Correspondence between a machine and an entity.

In order to derive the VHDL code, we use the following
correlation between the structure of Event-B events and
VHDL statements (Fig. 4).

TABLE I. TYPES CORRESPONDENCE Event-B types VHDL types BOOL = {TRUE,FALSE} Std_logic = {1,0}n..m, where n, m – numbers Integer range n to m
As it can be seen, every event of the model is reflected by

the corresponding “if then end if” statement with the same
name. The guards of the event are translated to be the
conditions of the statement and the event actions are the
assignments in terms of VHDL. There is one event which

129129129

needs to be translated in a different way. This event models
the non-deterministic assignment on the inputs which
distinguishes it from other events, i.e. this event models the
environment. The variables that appear in a guard of this
event and have a deterministic assignment on them are
translated in accordance to the structure described above. If
there are some variables that depend on new values of the
inputs, then this assignment is translated as an additional “if”
statement. Event-B structures VHDL statements events event evt1 when @grd1 G then @act1 A end end

architecture a of Entity is begin//Internal variables process (variables) is begin evt1: if G then A end if; end process; end a
Figure 4. Correlation between events and architecture.

To enable a smooth translation of the model into VHDL,
the model has to be deterministic. In other words, the last
refinement step has to contain only deterministic
assignments on the variables that have presented types.

Therefore, having the final Event-B model (the final
refinement) we transform this model to VHDL code by
following these rules.

The translation algorithm contains the following steps:
1. Every variable is transformed into signals that have

the type defined in Tab. 1.
2. All variables with suffixes “_I” and “_O” are put into

port clause of the entity and are provided with
corresponding keyword that reflects the direction of
each signal (in or out).

3. The other variables are represented as internal
signals and are put into architecture clause.

4. Since all the variables are initialized, so are the
signals, independently of the clause they are put in.

5. The process clause is added to the architecture with
the sensitivity list containing all the signals.

6. Every event of the model is transformed into “if then”
statement that hat the corresponding label.

7. The event that models an assignment to inputs is
translated as a special “if” statement that changes the
value of the signals appeared in the condition.

The case study in the next section presents the
application results of this approach.

VI. CASE STUDY
The case study is a simplified version of one of the

avionics systems which was developed in collaboration with
the SSPE “Corporation Kommunar” ST SCB “Polisvit” [24].
This industrial partner specialises on the development of
control systems for avionics and space. One of those systems
was taken as a basis for the case study.

The main goal of the system is to prevent the moving
parts of a plane from being covered with ice. In order to
perform this function, the system turns heaters on under the

following conditions: either a pilot switches on the system or
the sensor detects ice on the moving parts of an airplane.

There are two types of heaters in the system: one that is
switched on constantly and another one that has a cyclic
behaviour. The system consists of one heater of the first type
and three heaters of the second type. Every heater of the
second type is turned on one-by-one because it is forbidden
for the controller to turn on several heaters of the second
type simultaneously.

We can now concentrate on the formal model of the
system and its translation into VHDL code. We first present
the initial formal specification and then we present the new
features introduced in each refinement. The final refinement
is the starting point for code generation.

A. Initial Specification of the Case Study
We start modelling the system as a “black box”. In other

words, we introduce all the inputs and outputs of the system,
but we do not specify all the algorithmic details. The initial
specification of the case study is given in Fig. 5. All
variables introduced in this step are of the BOOL type and the
initial value that is assigned to all variables is FALSE.

The safety invariants for this specification describe the
dependencies between inputs and outputs. For instance, it is
impossible for the system to have two input signals being TRUE at the same time. In this system, there are two main
inputs that influence the mode of the system. They are
reflected by the variables Manual_I and Auto_I. Manual_I
equals to TRUE when a pilot switches the system on
manually and Auto_I enables the automatic mode when the
system detects ice. Hence, it is impossible to turn these two
modes on simultaneously. These conditions are depicted by inv0_9 together with the thm2 and thm3. Furthermore, inv0_10 and inv0_11 state that the heaters are on under the
above conditions on the inputs. Otherwise, they are off.

Abstractly, the system reads the inputs, and produces the
outputs (which are “On”/TRUE or “Off”/FALSE in this system)
depending on the inputs read. These activities are modelled
by the corresponding events, namely the Read_inputs event
assigns some values to the inputs, the Heaters_OFF event
reflects the turning off of the heaters and the Heaters_ON
event modifies the outputs such that the heaters are on.

B. The First Refinement of the Case Sudy
In the first refinement step, we focus on the heaters – the

outputs of the system. The system has heaters that cannot be
switched on simultaneously. To specify this requirement, we
introduce a new variable, named Iteration, as well as safety
invariants stating impossibility of switching the heaters on
concurrently. The variable is initialised to 0 and incremented
each time when one of the heaters is turned on. The new
variable and invariants are depicted in Fig. 6.

Since these heaters are on one-by-one, the invariants inv1_1 and inv1_2 connect the iterations with switching on
the heaters. In addition, while one of the heaters is on, the
others must be off. This dependency is reflected by inv1_4, inv1_5 and inv1_6. These invariants guarantee the
deterministic behaviour of the heaters.

130130130

machine M0_IPS variables AbsMode, Auto_I, Manual_I, Ice_I, Heater1_O, Heater2_O, Heater3_O, Heater_Knife_O invariants // All the variables have BOOL type in the abstract specificationinv0_9 : Auto_I=FALSE ∨ Manual_I=FALSEinv0_10 : AbsMode = FALSE ⇒ ((Manual_I = TRUE ∨(Auto_I = TRUE ∧ Ice_I=TRUE)) ⇔ ((Heater1_O=TRUE ∨ Heater2_O=TRUE ∨ Heater3_O=TRUE)))inv0_11 : AbsMode = FALSE ⇒ (¬(Manual_I = TRUE ∨(Auto_I = TRUE ∧ Ice_I=TRUE)) ⇔ ((Heater1_O=FALSE ∧ Heater2_O=FALSE ∧ Heater3_O=FALSE)))thm1 : (Manual_I = TRUE ∨ (Auto_I = TRUE ∧Ice_I = TRUE)) ∨ (Manual_I = FALSE ∧Auto_I = FALSE) ∨ (Auto_I = TRUE ∧ Ice_I = FALSE)thm2 : Manual_I = TRUE ⇒ Auto_I = FALSEthm3 : Auto_I = TRUE ⇒ Manual_I = FALSE
 events INITIALISATION ≙ BEGIN // All the variables are initialised to FALSE END Read_inputs ≙ // The system reads the inputsWHEN grd1 : AbsMode = FALSE THEN act1 : AbsMode ≔ TRUE

act2 : Auto_I,Manual_I, Ice_I :∣ Auto_I' ∈ BOOL ∧Manual_I' ∈ BOOL ∧ Ice_I'∈BOOL ∧ (Auto_I'=FALSE ∨ Manual_I'=FALSE) END Heaters_OFF ≙WHEN grd1 : AbsMode = TRUE grd2 : ¬(Manual_I = TRUE ∨ (Auto_I=TRUE ∧ Ice_I = TRUE))THEN act1 : AbsMode ≔ FALSE act2 : Heater1_O,Heater2_O,Heater3_O, Heater_Knife_O ≔ FALSE,FALSE,FALSE,FALSEEND Heaters_ON ≙WHEN grd1 : AbsMode = TRUE grd2 : (Manual_I = TRUE ∨ (Auto_I=TRUE ∧ Ice_I = TRUE))THEN act1 : AbsMode :∈ BOOL
act2 : Heater1_O,Heater2_O,Heater3_O :∣ Heater1_O'∈BOOL ∧ Heater2_O'∈BOOL ∧Heater3_O'∈BOOL ∧ (Heater1_O'=TRUE ∨Heater2_O'=TRUE ∨ Heater3_O'=TRUE)act3 : Heater_Knife_O ≔ TRUE ENDEND

Figure 5. The initial specification of the case study. variables ..., Iterationinvariants inv1_1 : Iteration ∈ 0‥Max_iter inv1_2 : (AbsMode = TRUE ∧ Iteration=2) ⇒ (Heater1_O = TRUE ∧ Heater2_O = FALSE ∧ Heater3_O = FALSE)inv1_3 : (AbsMode = TRUE ∧ Iteration=3) ⇒ (Heater1_O = FALSE ∧ Heater2_O = TRUE ∧ Heater3_O = FALSE)inv1_4 : Heater1_O = TRUE ⇒ Heater2_O = FALSE ∧ Heater3_O = FALSEinv1_5 : Heater2_O = TRUE ⇒ Heater1_O = FALSE ∧ Heater3_O = FALSEinv1_6 : Heater3_O = TRUE ⇒ Heater1_O = FALSE ∧ Heater2_O = FALSE

Figure 6. The first refinement. New variables and invariants.

C. The Second Refinement of the Case Sudy
In the second refinement step, we introduce new

variables and invariants that reflect different properties of the
system (Fig. 7).

The TimeCnt variable models the counter that counts how
long a heater is on. This counter is activated when the TimeCnt_Ena variable has the value TRUE. While the counter
is enabled (i.e. TimeCnt_Ena = TRUE), one of the cyclic
heaters is turned on (inv2_3). In addition, when the counter
stops, it resets its value (inv2_4). variables ..., TimeCnt, TimeCnt_Ena, TimeReached, Cmp invariants inv2_1 : TimeCnt ∈ 0‥WordSize inv2_2 : TimeCnt_Ena ∈ BOOL

inv2_3 : TimeCnt_Ena=TRUE ⇒ ((Heater1_O=TRUE ∧ Heater2_O=FALSE ∧ Heater3_O=FALSE)∨(Heater1_O=FALSE ∧ Heater2_O=TRUE ∧ Heater3_O=FALSE)∨ (Heater1_O=FALSE ∧ Heater2_O=FALSE ∧ Heater3_O=TRUE))
 inv2_4 : TimeCnt_Ena = FALSE ⇒ TimeCnt = 0

Figure 7. The next refinements: new variables and invariants.

D. The Last Refinement of the Case Sudy
The counter cannot count infinitely long. Therefore, there

exists an upper bound for counting. This bound is introduced
in the last refinement step (Fig. 8). When this bound is
reached the value of TimeReached variable becomes TRUE. In

order to modify this value, every increment on TimeCnt is
compared to the upper bound. If the Cmp variable has TRUE
value, the comparator compares the current value of the
counter with the upper limit. If these values are equal, then
the counter has reached the limit (inv3_3). machine M3_Comprefines M2_TimeCntsees C3_Comp variables AbsMode, Auto_I, Manual_I, Ice_I, Heater1_O, Heater2_O, Heater3_O, Heater_Knife_O, Iteration, TimeCnt, TimeCnt_Ena, TimeReached, Cmp invariants ...inv3_1 : TimeReached ∈ BOOL inv3_2 : Cmp ∈ BOOL inv3_3 : (TimeCnt = TimeLimit ∧ Cmp = FALSE) ⇒TimeReached = TRUE events INITIALISATION ≙extendedBEGIN // All variables of the BOOL type are initialised with FALSE act1_1 : Iteration ≔ 0 act2_1 : TimeCnt ≔ 0 END

Figure 8. The model variables, their types and initialization.

Before we present the translation of the formal model to
corresponding VHDL code, we depict the statistics of proof
obligations for the case study in Fig. 9.

Figure 9. Number of proof obligations.

131131131

E. Translation of the Last Refinement to VHDL Code
The last refinement of the system contains all the

variables with their types and initial values which can be
translated into VHDL (Fig. 8). As it can be seen, all the
variables have either BOOL type or Integer type with the
range from 0 to some constant. These constants reflect the
parameters of the model. The constant Max_iter represents
the maximum number of iterations and the WordSize defines
the maximum value of a counter. These constants are
introduced in the contexts of the model and have type ℕ. The Max_iter equals to 4 and the WordSize takes a value of 2 to
the power 2 (2^2).

All the constants of the model appear as the parameters
of the entity in the generic clause (Fig. 10). All variables
with the “_I” suffix depict the inputs of the system while the
variables with “_O” suffix are the outputs. The others
correspond to internal signals in the architecture.

Since all the variables in the model are initialised, so are
the signals in the VHDL code. Besides, the input and internal
signals are in the “sensitivity list” of the process that defines
the behaviour of the entity.

To be able to use types and operations on them, the
translation process starts with adding library “ieee” with all
necessary branches. This library is commonly used in
hardware design.

Compared to the initial specification, the last refinement
contains eight events, namely Read_inputs, Heaters_OFF, Heaters_ON1, Heaters_ON2, Heaters_ON3, TimeCount, Comparator, TimeStop. We show several examples of the
events translation to the corresponding “if” statements.

The event depicted in Fig. 11 models the switching the
heaters off. LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; ENTITY M3_Comp IS GENERIC (Max_iter : INTEGER := 4; WordSize : INTEGER := 2**4; TimeLimit : INTEGER := 2**2); PORT (--Input ports Auto_I : IN STD_LOGIC := '0'; Manual_I : IN STD_LOGIC := '0'; Ice_I : IN STD_LOGIC := '0'; --Output ports Heater1_O : OUT STD_LOGIC := '0'; Heater2_O : OUT STD_LOGIC := '0'; Heater3_O : OUT STD_LOGIC := '0'; Heater_Knife_O : OUT STD_LOGIC := '0'); END M3_Comp; ARCHITECTURE a OF M3_Comp IS SIGNAL AbsMode : STD_LOGIC := '0'; SIGNAL Iteration : INTEGER RANGE 0 TO Max_iter := 0; SIGNAL TimeCnt : INTEGER RANGE 0 TO WordSize := 0; SIGNAL TimeCnt_Ena : STD_LOGIC := '0'; SIGNAL TimeReached : STD_LOGIC := '0'; SIGNAL Cmp : STD_LOGIC := '0'; BEGIN M3_Comp:PROCESS (Auto_I,Manual_I,Ice_I,AbsMode,Iteration,TimeCnt,TimeCnt_Ena,TimeReached,Cmp) IS BEGIN

Figure 10. VHDL interpretation of the signals, their types and default
values.

Heaters_OFF ≙extendedREFINES Heaters_OFFWHEN grd1 : AbsMode = TRUE grd2 : ¬(Manual_I = TRUE ∨ (Auto_I=TRUE ∧ Ice_I = TRUE))THEN act1 : AbsMode ≔ FALSE act2 : Heater1_O,Heater2_O,Heater3_O,Heater_Knife_O ≔FALSE,FALSE,FALSE,FALSE act : TimeCnt ≔ 0act4 : TimeCnt_Ena ≔ FALSE act5 : TimeReached ≔ FALSE END
Figure 11. Switch off the heaters event.

Since the multiple assignments are not supported by
VHDL, the second action of the event is split up into four
separate assignments (Fig. 12). Heaters_OFF:IF (AbsMode = '1') and (not(Manual_I = '1' or (Auto_I='1' and Ice_I = '1'))) THEN AbsMode <= '0'; TimeCnt <= 0;TimeCnt_Ena <= '0'; TimeReached <= '0'; Heater1_O <= '0'; Heater2_O <= '0';Heater3_O <= '0';Heater_Knife_O <= '0'; END IF;

Figure 12. VHDL interpretation of the switch off the heaters event.

The Read_inputs event represents the specific event that
belongs to the environment. This event has variables that
behave deterministically, namely AbsMode, TimeCnt, TimeCnt_Ena and TimeReached. The variable Iteration also
has a deterministic behaviour, although it is modified
depending on the new values on the inputs (Fig. 13). Read_inputs ≙ // The system reads the inputs extendedREFINES Read_inputsWHEN grd1 : Ab Mode = FALSEgrd2 : TimeCnt = 0grd3 : TimeCnt_Ena = FALSE THEN act1 : AbsMode ≔ TRUEAuto_I,Manual_I, Ice_I, Iteration :∣ Auto_I' ∈ BOOL ∧ Manual_I' ∈ BOOL ∧ Ice_I' ∈ BOOL ∧act2 : Iteration'∈0..Max_iter ∧ (Auto_I'=FALSE ∨ Manual_I'=FA LSE)∧((Manual_I'=TRUE ∨ (Auto_I'=TRUE ∧ Ice_I'=TRUE)) ⇒ Iteration'=1)∧(¬(Manual_I'=TRUE ∨ (Auto_I'=TRUE ∧Ice_I'=TRUE) ⇒ Iteration'=0)) act3 : TimeReached ≔ FALSE END

Figure 13. The read inputs event.

These variables are translated into corresponding VHDL
code (Fig. 14) in the same manner as other events. Since the
values of the inputs come from the environment, there are no
assignments on them in the VHDL code. The dependency of Iteration on the inputs generates an additional “if” statement.

132132132

Read_inputs: IF (AbsMode = '0') and (TimeCnt = 0) and (TimeCnt_Ena = '0') THEN AbsMode <= '1'; IF (Manual_I='1' or (Auto_I='1' and Ice_I='1')) THEN Iteration<=1; ELSIF not(Manual_I='1' or (Auto_I='1' and Ice_I='1')) THEN Iteration<=0; END IF; TimeReached <= '0'; END IF;
Figure 14. VHDL interpretation of the reading event.

The code achieved from the model has been synthesized
and simulated.

F. Synthesis results and behaviour comparison
To synthesise the code, we have used the Quartus-II web-

edition software which is free of charge. This software shows
the statistical information about the use of the different
elements of the chip chosen (Fig. 15). It also produces the
firmware file that can be uploaded into a chip. We opt for
Cyclone II family chips because a development board sold
by Altera company is based on this chip.

In order to compare the behaviour of the formal model
and the code, we used ProB tool [21] which allows us to
animate (“run”) the model and ModelSim tool [11] that
simulates the code. A result of the animation at an execution
point is shown in Fig. 16. The corresponding simulation
result is depicted in Fig. 17. Similarly one can observe and
compare animations and simulations for each execution step.
As it can be seen from the animation and simulation results
the behaviours of the model and the code are the same.

Figure 15. Synthesis results for the generated code.

VII. DECOMPOSITION OF EVENT-B MODELS
During refinements the model can become complex and

difficult to read. To cope with this problem, the model can be
decomposed using the shared-variable [25] or the shared-
event [26] approach. The main goal of these approaches is to
use a shared structure (a variable or an event) that allows us
to introduce an interface between machines and, hence, the
models. Our interest lies in the decomposition using shared-
variables approach. In this case, the shared variables are
represented as the signals between modules in VHDL and

every machine is interpreted as a separate vhdl file. In
accordance to this scheme, we can get a hierarchy of the
models which is reflected in the VHDL code
correspondingly. Certainly, while translating the models into
the code, we have to introduce a top-level entity in VHDL
that joins all the modules into one project.

Figure 16. Animation result.

For instance, a model can be decomposed in such a way
that there are three machines: one that models one module,
another one that reflects another module and the one that
connects these two with each other. Then, the translation
process may proceed as depicted in Fig. 18. The “joining”
machine corresponds to the top-level entity in VHDL that
maps signals of the modules defined by the other entities.

Figure 17. Simulation result.

133133133

Nevertheless, the translation method remains the same: a
machine represents an entity with an architecture and all
corresponding variables, events and statements.

Figure 18. Decomposition of the models and its reflection in VHDL.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented an approach that enables the
translation from formal models developed in terms of the
Event-B formalism into VHDL code. This approach is based
on the similarities found between a formal model and the
hardware design. Furthermore, the translation process that
relies on this approach can be automated by using the
scalability of the Rodin tool that allows us to extend its
functionality with plug-ins. Currently, we have implemented
a prototype version of the VHDL code generation plug-in in
our department. In the near future we intend to make it
available through the Rodin platform.

One direction for future research is the decomposition of
Event-B models which gives us an opportunity to construct a
hierarchical structure of a model so that this structure will be
reflected in the hardware code. Considering this structure we
will investigate the optimisation of the VHDL code, for
example the use of different hardware library components in
order to increase performance of the target product.

Another part of the future research is the introduction of
the clock signal into a formal Event-B model. A variable that
models clock present in the last refinement will not change
the result of the translation process because the algorithm of
the VHDL process statement does not change; the process
will execute, for example, on every rising edge of the clock.
Furthermore, the introduction of clock may depend on the
way the model is decomposed and refined.

These future directions require the deployment of our
approach on more case studies which will also enable the
investigation of various metrics such as performance and
used hardware resources.

In addition, we will investigate approaches to fully
automate the comparison between the behaviour of a formal
model and the behaviour of VHDL code.

ACKNOWLEDGMENT
The authors would like to thank Professor Kaisa Sere for

fruitful discussions and Linas Laibinis for valuable feedback
on the models.

REFERENCES
[1] E. Clarke, Model Checking, Cambridge: The MIT Press, 2002.
[2] J.-R. Abrial, Modeling in Event-B. System and Software Engineering,

Cambridge: Cambridge University Press, 2010.
[3] R.-J. Back, R. Kurki-Suonio, Decentralization of Process Nets with

Centralized Control. In proceedings of the 2nd ACM SIGAST-
SIGOPS Symposium on Principles of Distributed Computing, p. 131-
142, 1983.

[4] P. Caspi, N. Halbwachs, D. Pilaud, J. Plaice, Lustre: A declarative
language for programming synchronous systems, Proc. 14th POPL
Symposium, 1987, p. 178-188.

[5] A. Benveniste, P. Le Guernic, Hybrid Dynamical Systems Theory
and the Signal Language, IEEE Transactions on Automatic Control
35(5), 1990, p. 535-546.

[6] G. Berry, L. Cosserat, The Esterel Synchronous Programming
Language and its Mathematical Semantics, In Seminar of
Concurency, Lecture Notes in Computer Science vol. 197, 1985,
p. 389-448.

[7] M. R. Mousavi, P. Le Guernic, J.-P. Talpin, S. Shukla, T. Basten,
Modelling and Validating Globally Asynchronous Frameworks, Proc.
Design Automation and Test in Europe, 2004, IEEE Computer
Society Press, p. 384-389.

[8] G. Berry, E. Sentovich, Multiclock Esterel, Lecture notes in
Computer Science, Correct Hardware Design and Verification
Methods v. 2144, 2001, p. 110-125.

[9] N. Halbwachs, S. Baghdadi, Synchronous Modelling of
Asynchronous Systems, Lecture Notes in Computer Science v. 2491,
2002, p. 240-251.

[10] M. Waldén, K. Sere, Reasoning about Action Systems Using the B
method, Formal Methods in System Design, vol.13, 1998, p. 5-35.

[11] http://sourceforge.net/projects/rodin-b-sharp/
[12] C. H. Roth, Digital Systems Design Using VHDL, Belmont, CA

USA: CL Engineering, 2007.
[13] IEEE 1076-2008
[14] http://www.altera.com/products/software/sfw-index.jsp
[15] D. Cansell, D. Méry, C. Proch, “System-on-chip design by proof-

based refinement”, Springer-Verlag pp. 217-238, March 2009.
[16] J. Plosila, K. Sere, “Action Systems in Pipelined Processor Design”,

Proc. 3rd ASYNC Symposium, 1997, pp. 156-166.
[17] T. Seceleanu, Systematic Design of Synchronous Digital Circuits,

Turku: TUCS Dissertations, Turku Centre for Computer Science,
2001.

[18] S. Hallerstede, Y. Zimmermann, “Circuit Design by Refinement in
EventB”, FDL, pp. 624-637, 2004.

[19] http://www.atelierb.eu/index-en.php
[20] M. Benveniste - A «Correct by Construction» Realistic Digital

Circuit – RIAB Workshop – FMWeek 2009 – Eindhoven
(http://www.bmethod.com/pdf/riab/st-marc-benvenisteproved-
realistic-circuit-handout.pdf), 2009

[21] J.-R. Abrial, The B-Book: Assigning Programs to Meanings,
Cambridge: Cambridge University Press, 1996.

[22] C. Métayer, L. Voisin, The Event-B Mathematical Language, Deploy
Eprints, 2007.

[23] M. Leuschel, M. Butler, ProB: A Model Checker for B, Proc. FME,
Springer, vol. 2805, 2003, p. 855-874.

[24] http://www.tvset.com.ua/eng/index.php
[25] J.-R. Abrial, Event Model Decomposition, Version 1.3, April 2009.
[26] M. Butler, “Decomposition Structures for Event-B”, in Integrated

Formal Methods iFM2009, Springer, 2009, LNCS 5423.

134134134

Paper 5

Generation of Structural VHDL Code with Library

Components from Formal Event-B Models

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila,

Kaisa Sere

Originally published in:

Proceedings of International Conference on Digital Systems Design

(DSD), IEEE Computer Society Conference Publishing Services (CPS),

pp. 111-118, 2013.

Extended version published in:

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere,

Generation of Structural VHDL Code with Library Components from

Formal Event-B Models. TUCS Technical Reports 1073, TUCS, 2013.

Extended abstract published in:

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere,

Derivation of Structural VHDL from Component-Based Event-B Models.

In: Michael Butler, Stefan Hallerstede, Marina Walden (Eds.),

Proceedings of the 4th Rodin User and Developer Workshop, TUCS

Lecture Notes 18, 31–32, TUCS, 2013.

© 2013 IEEE. Reprinted, with permission, from IEEE.

Generation of Structural VHDL Code with Library Components
from Formal Event-B Models

Sergey Ostroumov1,2, Leonidas Tsiopoulos2,
Kaisa Sere2

1TUCS – Turku Centre for Computer Science
2Department of IT, Åbo Akademi University

Turku, Finland
{Sergey.Ostroumov, Leonidas.Tsiopoulos,

Kaisa.Sere}@abo.fi

Juha Plosila
Department of Information Technology

University of Turku
Turku, Finland

Juha.Plosila@utu.fi

Abstract—We propose a design approach to integrating
correct-by-construction formal modeling with hardware
implementations in VHDL. Formal modeling is performed
within the Event-B framework that supports the refinement
approach, i.e., stepwise unfolding of system properties in a
correct-by-construction manner. After an implementable
model of a hardware system is derived, we apply an additional
refinement step in order to introduce hardware library
components in the form of functions. We show the mapping
between these functions and corresponding library components
such that structural, i.e., component-based, VHDL
implementation is derived. The application of functions binds
unrestricted data types and substitutes regular operations with
function calls. The approach is presented through examples
that illustrate the additional refinement step and the code
generation. We show the advantages in terms of occupied area
(2,5% and 12,5%) and performance (13,7% and 15,4%) of the
descriptions that incorporate hardware library components.

Keywords—automated refinement; code generation; design
flow; Event-B; formal methods; library components; structural
VHDL

I. INTRODUCTION

Due to advances in Very-Large-Scale-Integration
technology, designers can create increasingly complex
systems on a single chip enabling energy-efficient execution
of applications. These systems usually consist of a number of
components working in unison. However, as complexity of a
system grows, it is rather infeasible to perform exhaustive
testing in order to guarantee correct behavior of the system.

One of the appropriate approaches for developing correct
systems is provided by formal methods. The application of
formal methods can be categorized into two techniques. The
model-checking [1] technique focuses on extracting a formal
model from an implementation and checking some properties
on this model. These techniques have been successfully
employed (e.g., [2]) to identify errors that were undetected
during normal design process. Modification and re-checking
of the implementation should then be applied until the
required integrity level is achieved.

Another technique to guarantee the correct behavior of a
system is offered by a stepwise formal development. The
formal modeling is performed following the refinement

approach, i.e., unfolding system properties in a correct-by-
construction manner. Thus, the formal model of the system is
proved correct with respect to its functional requirements
introduced as invariants. The utility of this approach can be
further enhanced by automated code generation.

For the work in this paper, we utilize the latter approach
and use the Event-B formalism [3] as the main framework
for formal development. This formalism supports the
refinement approach and has adequate tool support – the
Rodin platform [4]. This platform is open source software
offering the opportunity for an extension of its functionality
in the form of plug-ins. Since code generation is a natural
step for formal design flow, there are plug-ins that allow one
to derive code in software languages such as C, Java, etc. [5].
However, due to the fact that hardware description languages
(HDLs) differ in semantics and syntax from software
languages, the same methods and techniques cannot be
directly and completely applied to hardware design and code
generation. Hence, we aim at facilitating the process of HDL
descriptions generation from formal models.

The target HDL is the VHSIC Hardware Description
Language (VHDL). This language is standardized [6] and
widely used in hardware design for systems based on field-
programmable-gate-array or application-specific integrated-
circuit technologies. VHDL supports the notion of library
components allowing the designers to develop a system in a
structural, i.e., component-based, manner and to derive
possibly optimized code in terms of area and performance.

In this paper, we present a design flow that integrates
correct-by-construction formal modeling with hardware
implementations in VHDL. The contribution of this paper is
a generic approach to deriving component-based formal
designs and generating structural VHDL descriptions for
them through an additional refinement step. We propose to
apply this refinement step to a deterministic implementable
model where VHDL library components are introduced into
a formal model in the form of functions. We give a subset of
components and show the mapping between their formal and
informal definitions. The formal library can be further
extended with the components used during the design.

To support our approach, we have developed a prototype
of a plug-in for the Rodin platform. The plug-in automates
the additional refinement step and generates structural
VHDL code using components shown in this paper.

2013 16th Euromicro Conference on Digital System Design

`/13 $26.00 © 2013 IEEE

DOI 10.1109/DSD.2013.20

111

II. RELATED WORK

There exist several formalisms that provide specification
and verification of hardware systems such as Signal [7],
Esterel [8], ForSyDe [9] and others. Signal is dedicated to
data-flow applications domain while Esterel is for control-
flow ones. ForSyDe represents the design methodology
targeting at covering both domains. The commonality of
these languages is that they are all based on the perfect
synchrony hypothesis. This hypothesis assumes a zero delay
between consuming inputs and producing outputs. In
addition, only Signal and ForSyDe support the notion of
refinement. Refinement in Signal relies on checking if
simulation of inputs and outputs preserves flow-equivalence
(model checking) [10]. Refinement in ForSyDe stands for
the mapping one process network onto another one
restricting these networks to have the same inputs and
outputs [9]. Moreover, these transformations have to be
performed according to the predefined library.

BlueSpec [11] has been proposed as another solution to
formal hardware verification and code generation. The
language represents an extension of SystemVerilog and has a
sound semantics allowing one to verify certain properties. It
also supports design by refinement offering a possibility of
integrating automated reasoning into the design flow [12].
However, automated verification of system correctness is
provided by external theorem provers and/or model checkers
such as PVS [12] and SPIN [22].

Evans [13] describes the mapping of VHDL to B and
Communicating Sequential Processes (CSP) methods. The
author proposes to derive a B model from VHDL and
formalize requirements with CSP. This approach uses a
model-checking technique that requires modification and re-
checking of the implementation until the desired integrity
level is achieved.

In contrast to these approaches, we propose to use the
Event-B formalism, which provides data and superposition
refinement [14]. These types of refinement allow for
stepwise unfolding of system functionality without
restricting the model to have the same number of variables in
refinements. Furthermore, one can postulate vital properties
in terms of invariants for every refinement step. Following
this approach, the discharging (proving) proof obligations
serves as the guarantee that each refinement step preserves
invariants and that concrete refinement step sustains their
abstract counterparts. After the required model is derived and
proved correct, a structural VHDL description is generated.

Another approach to deriving synchronous hardware
systems proposed by Seceleanu [15] relies on Action
Systems. The author describes the approach to modeling a
synchronous system as read/write operations, where a
combinational (asynchronous) circuit that consists of logic
gates is followed by a synchronous component, namely a D-
flip-flop, which operates on the clock signal. In addition, the
author points out the mapping of such modeling to a
behavioral VHDL description, where all operations are at
one level of code, i.e., the description without components.
Despite the fact that the Action Systems framework is
similar to the Event-B formalism, it has a different

underlying structure, which makes it infeasible to completely
apply this approach to Event-B models. Furthermore, in
contrast to this approach, we propose to derive component-
based models and generate structural VHDL descriptions
with library components.

Hallerstede and Zimmermann [16] proposed an approach
to VHDL code generation from formal B models. The
authors describe the mapping between B models and VHDL
code through a middleware language B0, which allows one
to generate code without components. This approach is
adopted by AtelierB tool and supported by industrial
practitioners [17]. Since Event-B is a descendant of B
method that allows us to model reactive systems and has a
different underlying structure, it is not straightforward how
to apply this approach to Event-B models. Furthermore, we
consider a component-based design flow, where components
are injected into a formal model in the form of functions.
This design flow allows for generating a structural VHDL
description from such a model.

A similar approach to VHDL code generation has been
proposed by Ostroumov and Tsiopoulos [18]. The authors
suggest utilizing the conditional statement ��������� ����	�
�����
��
��
��
���
��
���� �	� ���	� ���	� ���	� �� in the process clause. This guarantees
conformance of sequential VHDL behavior to the behavior
of its formal counterpart enabling generation of a behavioral
(i.e., without components) VHDL description from an
implementable model following the usual proof-based
design. We adopt and vastly extend the approach of [18].
However, in contrast to this approach, we propose to apply
an additional refinement step in order to derive a component-
based model and, consequently, a structural VHDL
description. The correctness of the additional refinement step
is established through the proof obligations of Event-B.

A BHDL tool has been proposed for digital circuit design
[23]. The tool converts a VHDL description into B
specification with two machines: an abstract that represents a
VHDL entity and an implementation that corresponds to
architecture. Then, these two machines are verified using the
B engine and the VHDL comments are interpreted as
invariant properties. In contrast to this approach, we derive
an implementable deterministic Event-B model following the
usual refinement-based development. Then, components are
injected into the model so that a structural VHDL description
can be generated.

III. VHDL DESCRIPTION

A. VHSIC Hardware Description Language
VHDL, a standardized hardware description language

[6], is widely used in hardware design and is supported by
many Computer Aided Design tools (e.g., [20]). A VHDL
description consists of two basic elements: an entity and an
architecture. Every entity must have a name and ports. The
entity contains two clauses: generic that determines
parameters for this entity and port that specifies inputs and
outputs of this entity (an interface). The inputs and the
outputs are distinguished by the keywords in and out,
respectively.

112

The architecture attached to some entity has a name and a
body that describes the behavior (the function) of a hardware
component. Inside the architecture, a designer can introduce
internal signals and other (e.g., library) components using the
keyword component (Fig. 1). A component is simply a
predefined entity supplied with an architecture. The
component entity has generic parameters that have to be
instantiated using the keywords generic map. The connection
between components is specified by the keywords port map.
The keywords generic map and port map constitute the
architecture body along with the process clause. The
execution of the process is determined by a so-called
sensitivity list.

The VHDL action in the process is an assignment to a
signal of the form �� ��� �, where � is an internal or output
signal and � is either a constant or an expression over the
input and/or internal signals. Every signal whose value is
updated has a buffer so that the actual assignment takes place
when the whole process completes its execution. Hence, all
the signals involved in the process are updated
simultaneously.

B. Hardware Library Components
Library components allow the designers to tackle

complexity of a system facilitating faster design. Let us
review a subset of library components available in Quartus-II
software by Altera [20]. A small subset of them is presented
in Tab. I, where the components ������������������� and
������������������ differ in the output they produce and the
abbreviations ���, ��� etc. of the ����������� component
stand for � less than �, � equals to � etc., respectively.
However, the library is not limited to the components
presented in Tab. I and can be further extended since every
library component has a unique definition.

The inputs and the outputs of the library components
described here are signals or collections of signals
represented by VHDL types !����"�� and
 !����"������!��, respectively. The number of signals of
type !����"������!�� is determined by a constant (a

Figure 1. VHDL entity and architecture

parameter in the generic clause). For the sake of brevity, we
exemplify the mapping between a formal model and a
structural code by the library component that performs the
addition operation (Tab. I, �������� ���������). The other
components are interpreted in a similar manner.

The component has three parameters: ����#��!$,
���������!��% and ��������� �%!�!��%. ����#��!$
specifies the number of signals (the width) of the inputs and
the output. ���������!��% determines the type of this
component. If it equals to ���, the component represents an
adder. The parameter���������� �%!�!��% specifies the type
of addition performed (signed or unsigned).

The adder operates on two inputs: the input port ��!��
and the input port ��!��. It returns the result of addition of
the two inputs to the output port �� ��! as well as the carry
flag to the output ���!. The input ports and the output port
�� ��! are of type� !����"������!�������#��!$&'� ��#%!��
(� while the carry flag is of type !����"��.

In the next section, we formalize library components as
functions within Event-B to achieve correct-by-construction

TABLE I. A SUBSET OF LIBRARY COMPONENTS

Components Generic Inputs Outputs Operation
�������� ���

��������
����#��!$)����������!��%���*���+)�
��������� �%!�!��%���*�% �"%��+�

��!��)�
��!���

�� ��!)�
���!�

�� ��!����!��,��!��������#��!$&'--(�)�
���!����!��,��!��������#��!$��

�������� ���
� ��!���!����

����#��!$)����������!��%���* ��+)�
��������� �%!�!��%���*�% �"%��+�

��!��)�
��!��� �� ��!� �� ��!������!���&���!��������#��!$&'--(��

�������!� ����#��!$�)�����#��!$�)�����#��!$�)�
��������� �%!�!��%���*�% �"%��+�

��!��)�
��!��� �� ��!� �� ��!������!���.���!����

�����������
����������

����#��!$%)�����#��!$�)�
����%����� �%!�!��%���*�% �"%��+)�
���������� �%!�!��%���*�% �"%��+�

%����)�
��%��� /��!��%!� /��!��%!�����!���0���!���

�����������
���������

����#��!$%)�����#��!$�)�
����%����� �%!�!��%���*�% �"%��+)�
���������� �%!�!��%���*�% �"%��+�

%����)�
��%��� �����%� �����%�����!���1���!���

������������ ����#��!$)�
��������� �%!�!��%���*�% �"%��+�

��!��)�
��!���

�"�)�
�"��)�
���)�
�%��)�
���)�
�����

�"����2��3���!���4���!���)�
�"�����2��3���!���5���!���)�
������2��3���!�������!���)�
�%�����2��3���!���6���!���)�
������2��3���!�������!���)��
�������2��3���!���7���!���)��

113

design flow. In addition, we show the correspondence
between formal and informal definitions of library
components presented in Tab. I.

IV. EVENT-B FORMALIZATION

A. The Event-B Formalism
The Event-B formalism [3] allows designers to develop

models in a stepwise and correct-by-construction manner. A
specification within Event-B consists of two main elements:
a context and a machine. The context contains static data
such as sets, constants, generic theorems and axioms. The
machine models the dynamic part, which includes state
variables, theorems, invariants specifying system properties
that must always hold and events that modify the state
variables. The context can be extended by another context
and the machine can be refined by another machine.
Moreover, the machine can refer to the data defined in a
context, if this machine sees this context.

An event within the Event-B framework has the
following structure:

�8���9��9��9��9�:�;�<;�<;�<;�<�=�
��
��
��
������	�	�	�	,�
where : is a list of local variables, = stands for the guard and
� represents an action of the event , respectively. The guard
is a conjunction of predicates that determine the execution of
the action. If the guard holds, the action is fired.

The action represents a composition of parallel
assignments (denoted as >>) that modify state variables. There
are three types of assignments in Event-B: deterministic
(denoted as ?�), non-deterministic from a set (denoted as ?@)
and non-deterministic specified by a predicate (denoted as ?>).

Each event in Event-B is viewed as a before-after
predicate (��� �� ���A)� AB�) [3] that links the values of the
variables before (A) and after (AB) the execution of the event .
This scheme allows us to prove the correctness (consistency)
of the model with respect to postulated invariants by
discharging proof obligations (POs). In particular, every
predicate (i.e., an invariant, a theorem, a guard or an action)
has to be well-defined [19], i.e., sound. Each event, in its
turn, has to preserve postulated invariants [3, 19]:
� ��A�C�=�D�E��F��A,� (INV)
where ��A is a model invariant whilst = and �� are the guard
and the before-after predicate of the event , respectively.
The expression E��F��A stands for a substitution in the
invariant ��A with the before-after predicate ��.

An Event-B model of a system is created in a stepwise
manner following the refinement approach. At every
refinement step, one adds details towards an implementable
model. While refining the model, new variables, invariants,
theorems and events can be added. However, the overall
behavior of a more concrete model must conform to the
overall behavior of its abstraction. This fact is guaranteed
through discharging POs guard strengthening (GRD) and
action simulation (SIM) [3, 19]:
� ��A�C���A<�C�=<�D�=,� (GRD)�
� ��A�C���A<�C���<�D���,� (SIM)�

where structures with the sub-script < represent their refined
versions.

To ease proving effort when discharging the above POs,
one can postulate and prove theorems. Depending on the
Event-B element (a context and/or a machine) where a
theorem is stated, corresponding POs (THMc for a context
and THMm for a machine) have to be discharged:
� ��D�!��,� (THMc)
� ��C���D�!��,� (THMm)
where � is a set of axioms defined in a context, � is a set of
model invariants, !�� is a theorem postulated in a context
whilst !�� is a theorem introduced to a machine.

The Rodin platform [4] supporting the Event-B
formalism automatically generates and attempts to discharge
the POs stated above. The tool usually achieves high-level of
automation (usually over 80%).

B. Event-B Formalization of Library Components
To be able to prove that Event-B formalization conforms

to the definitions of hardware library components shown
above, we define a function that converts a non-negative
decimal number into its binary image. This function binds
infinite data types (e.g., naturals) to be suitable for hardware
implementation since hardware bit images cannot be infinite.
Definition 1: A bijective function ���A��)� 	�� �� G2 converts a
non-negative decimal number into its binary image. The
parameter ��@�H' determines the upper bound (i.e., the width)
on which the function operates. The parameter 	�@� (--IJ�&'
represents a non-negative decimal number within the range
(--IJ�&', where IJ� stands for I to the power of �. The
function returns a binary image of the number 	, namely G2�@�
K:�>�:�@�K()'L.�C�#�:�����L, where #�:� stands for the number of
bits (the width) of the binary number G2. The function is
defined recursively as follows:

where :---92 is a binary number (e.g., 010b) whose length (i.e.,
the number of bits) is determined by the constant � and ��,2�
M is a binary sum defined as (2�,2�(2���(2, (2�,2�'2���'2, '2�,2�
(2���'2, '2�,2�'2���'(2.
Example 1. Suppose � equals to N. Then, any non-negative
decimal number from the set (--IJN&' (i.e., (--O) can be
represented as a binary number from (((to ''':

���A�N)(����(((2;
���A�N)P�� �� ���A�N)Q�� ,2� (('2� �� ���A�N)N�� ,2� (('2� ,2� (('2� ��

���A�N)I��,2�(('2�,2�(('2�,2�(('2������A�N)'��,2�(('2�,2�(('2�,2�(('2�
,2�(('2������A�N)(��,2�(('2�,2�(('2�,2�(('2�,2�(('2�,2�(('2���'('2.
End of example.

The formalization of library components is performed by
using functions applied to an Event-B context. A function �
in a context is a constant that has at least two axioms. The
first axiom defines the type of the function, i.e., the type of
its arguments (!) and returning result (!B):

!'�R�---�R�!��S�!B'�R�---�R�!BM,
where !'�R� ---�R�!� is the Cartesian product, i.e., the set of all
the pairs formed from the types !' to !�.

114

The second axiom specifies the result returned by the
function �:

T:��-�:��@�!��D���:'U---U:����:V�:')---):��,
where �� @� '--� and � is the number of arguments that the
function � takes (determined by its type). The symbol U
represents an ordered pair and allows one to specify a
number of arguments for a function. The function � produces
the result defined by the expression �:V over :�.

Following the approach of introducing functions into an
Event-B context, we define a formal library of presented
hardware components as shown in Tab. II. For instance, let
us consider the function �		�W���=�	 in Tab. II that
formalizes the VHDL adder component (Tab. I,
�������� ��� �������) within Event-B. The type of this
function is determined by the first axiom, where
�		�W���=�	�;�	
��@�H' is the width. The returning result is
specified by the second axiom that models the addition
operation of two non-negative numbers.

Theorem (ADD): �		�W���=�	 conforms to �������� ��,
where �		�W���=�	�;�	
�� �� ����#��!$ and the parameters
���������!��% and ��������� �%!�!��% of �������� ��
equal to ��� and �% �"%��, respectively (ensured by the
code generation algorithm described in the next section).

Proof:
'- The function �		�W���=�	 operates on the same input

values in decimal as the library component
�������� �� in binary:�
T��V�-���V�@�(--�IJ�		�W���=�	�;�	
��&'�D�

�X��V2�-���V2������A��		�W���=�	�;�	
�)���V�,

where ��V represents a decimal input to the function
while ��V2 is a binary image of ��V supplied as an
input to the component.

2. The result of the function �		�W���=�	 ranges from (
to IJ��		�W���=�	�;�	
�,'�&', i.e., one bit more than
the width of the inputs. Hence, the function returns
the result as well as the carry flag which corresponds
to the value on the outputs �� ��! and ���! of the
component:
T<��-�<��@�(--IJ��		�W���=�	�;�	
�,'�&'�D��

�X���!)��� ��!�-����!�,��� ��!���
���A��		�W���=�	�;�	
�,')�<���,

where <� represents the result of the function
whereas ���!� ,� �� ��! is concatenation of the
outputs ���! and �� ��! of the component. Clearly,
the overflow will never occur.
Example 2. Suppose �		�W���=�	�;�	
��������#��!$�
�� N, the input ranges of the function and the
component are (--O and (((--''', respectively, while
the result ranges are (--'P and ((((--'''', respectively.
The leftmost (the most significant) bit of
�������� �� represents the carry flag.
End of example.

3. Finally, the definition of the function �		�W���=�	
models addition of two inputs, namely 	�
�� and
	�
�2, i.e., the function of the adder component.

Similarly, we can reason about other functions (Tab. II)
that specify other library components in Tab. I. �.

TABLE II. COMPONENTS AS EVENT-B FUNCTIONS

Function Constant(s) Axioms

�		��
W���=�	�

�		�W���=�	��
;�	
��

�		�W���=�	�@�(--IJ�		�W���=�	�;�	
�&'�R�(--IJ�		�W���=�	�;�	
�&'�S�(--IJ��		�W���=�	�;�	
�,'�&'�
T	�
��)�	�
�2�-�	�
���@�(--IJ�		�W���=�	�;�	
�Y'�C�	�
�2�@�(--IJ�		�W���=�	�;�	
�Y'�D��

�		�W���=�	�	�
��U	�
�2����	�
���,�	�
�2�

�W2��
W���=�	�

�W2�W���=�	��
;�	
��

�W2�W���=�	�@�(--IJ�W2�W���=�	�;�	
�Y'�R�(--IJ�W2�W���=�	�;�	
�Y'�S�(--IJ�W2�W���=�	�;�	
�Y'�
T	�
��)�	�
�2�-�	�
���@�(--IJ�W2�W���=�	�;�	
�Y'�C�	�
�2�@�(--IJ�W2�W���=�	�;�	
�Y'�D�

�	�
���5�	�
�2�D��W2�W���=�	�	�
��U	�
�2����	�
���Y�	�
�2��C��
�	�
�����	�
�2�D��W2�W���=�	�	�
��U	�
�2����(��

MW3
��
W���=�	�

MW3
�W���=�	��
;�	
����

MW3
�W���=�	��
;�	
��2�

MW3
�W���=�	�@�(--IJMW3
�W���=�	�;�	
���Y'�R�(--IJMW3
�W���=�	�;�	
��2Y'�S�
(--IJ�MW3
�W���=�	�;�	
���,MW3
�W���=�	�;�	
��2�Y'�

T	�
��)�	�
�2�-�	�
���@�(--IJMW3
�W���=�	�;�	
���Y'�C�	�
�2�@�(--IJMW3
�W���=�	�;�	
��2Y'�D��
MW3
�W���=�	�	�
��U	�
�2����	�
��Z	�
�2�

	�A��
W���=�	�

	�A�W���=�	��
;�	
����

	�A�W���=�	��
;�	
��	�

	�A�W���=�	�@�(--IJ	�A�W���=�	�;�	
���Y'�R�'--IJ	�A�W���=�	�;�	
��	Y'�S�(--IJ	�A�W���=�	�;�	
���Y'�
T	�
��)�	�
�2�-�	�
���@�(--IJ	�A�W���=�	�;�	
���Y'�C�	�
�2�@�'--IJ	�A�W���=�	�;�	
��	Y'�D��

	�A�W���=�	�	�
��U	�
�2�����	�
���0�	�
�2��

M�	��
W���=�	�

M�	�W���=�	��
;�	
����

M�	�W���=�	��
;�	
��	�

M�	�W���=�	�@�(--IJM�	�W���=�	�;�	
���Y'�R�'--IJM�	�W���=�	�;�	
��	Y'�S��
(--IJM�	�W���=�	�;�	
��	Y'�

T	�
��)�	�
�2�-�	�
���@�(--IJM�	�W���=�	�;�	
���Y'�C��
	�
�2�@�'--IJM�	�W���=�	�;�	
��	Y'�D��

M�	�W���=�	�	�
��U	�
�2�����	�
���M�	�	�
�2��

��MV��
W���=�	�

��MV��
W���=�	�;�	
��

��MV�W���=�	�@�(--IJ��MV�W���=�	�;�	
�Y'�R�(--IJ��MV�W���=�	�;�	
�Y'�S��
�����R������R������R������R������R������

T	�
��)	�
�2�-�	�
��@(--�IJ��MV�W���=�	�;�	
�Y'��C�	�
�2@(--�IJ��MV�W���=�	�;�	
�Y'��D��
��MV�W���=�	�	�
��U	�
�2���

2��3�	�
���4�	�
�2�U2��3�	�
���5�	�
�2�U2��3�	�
�����	�
�2�U�
2��3�	�
���6�	�
�2�U2��3�	�
�����	�
�2�U2��3�	�
���7�	�
�2��

115

While modeling a system in Event-B, one has to
discharge POs (INV), (GRD) and (SIM) to show correctness
of the system specification (Section IV). To ease discharging
of these POs, we postulated and proved the following
theorems (PO (THMc)). These theorems are available along
with the definitions of functions in the library context:
� T��-��@H�D�(���IJ�,� (ThC1)
� T:)9�-�:@H�C�9@H�C�:���9�D�IJ:���IJ9,� (ThC2)
� T��-��@H�D�IZIJ����IJ��,'�. (ThC3)

Theorem (ThC1) states that 2 to the power of some
natural number is a positive number. In other words, the set
of values starting from 0 and ending in 2 to the power of
some constant is not empty. Hence, the functions formalizing
VHDL library components are well-defined on these values.
Theorem (ThC2) shows the order relation between numbers
whose powers are in the order relation as well. Theorem
(ThC3) postulates inductiveness of 2 to the power of �.

V. THE DESIGN FLOW AND CODE GENERATION
ALGORITHM

The use of Event-B as a starting point in the design flow
of hardware systems facilitates correct-by-construction
development with respect to postulated properties and
requirements. An automated code generation enhances the
utility of the approach reducing testing effort at later design
phases. Hence, we propose the design flow shown in Fig. 2,
where test cases can be used, e.g., for deploying online
testing. The reader is referred to [24] for more details on
generation of test cases.

An implementable deterministic model is derived
following usual refinement-based development. Then, we
apply an additional refinement step that serves as the
middleware between a component-based formal model and
structural VHDL description. The correctness of this
refinement step is established by proving POs (INV), (GRD)
and (SIM) using theorems of types (THMc) and (THMm)
(Section IV). The Rodin platform [4] generates these POs
and attempts to prove them automatically. The algorithmic
representation of the code generation utilizing the additional
refinement step is as follows:

Figure 2. The design flow

1. Refine an implementable model by extending the
most definite context (if any) and refining the most
concrete machine of the model.

2. Instantiate necessary functions to the newly created
context by specifying the set of values they operate
with (their width). This set is bounded by the
corresponding constants. The necessity of functions is
determined by the machine actions.

3. Restrict the types of the state variables according to
the specified constants and instantiated functions.

4. Replace regular operations in actions with calls to the
corresponding functions.

5. To generate code, interpret each function in the
context as a corresponding library component in
VHDL according to the defined mapping.

6. Interpret the type of a variable which has been
restricted by some constant as !����"������!�� in
terms of VHDL types. The length (the width) number
is determined by the corresponding constant.

7. For every component instantiation, introduce an
internal VHDL signal connected to the component
output(s) in order to allow for chaining of diverse
components.

�����A�<���
��A�<���
��A�<���
��A�<���
�����
����3
�=���@�H�C��W<<�
���@�H'�C��
������
����@�H�C���VW
����	�@������C�
���!MV���	���!����D�����
��������3
�=���0��W<<�
����C�
��[[�"3W��=���A�<���
�;�
����M�<��2�
<��
�M�	3�
�����VW
����	���!����C�!MV���	���!����D�!MV���������
�����
A�
�A�
�A�
�A�
�����
---�
A�
A�
A�
A�
��������
���MV�<����<����<����<�����!MV���	�8888�
;�<;�<;�<;�<��!MV���	���\�� ��C���VW
����	���!����C��W<<�
���6�(�
;�
�;�
�;�
�;�
���!MV�����3
�=���0��W<<�
����

��������������
����]���3
�=���0��W<<�
���>>�!MV���	�]�!����
�	�	�	�	�
A�
A�
A�
A�
������MV�<�<����<����<����<�������MV�<�8888�
;�<;�<;�<;�<��!MV���	���!����C���VW
����	���!����

��
��
��
���!MV���	�]�\�� ��>>���VW
����	�]�\�� ��>>�
����W3
���]�2��3�����
����5�!MV�!�<���3	��
�	�	�	�	�

�����A�<���
��A�<���
��A�<���
��A�<���
�����
����3
�=���@�(^IJ	�A�(�W���=�	�;�	
���Y'�C�
���W<<�
���@�'^IJ	�A�(�W���=�	�;�	
��	Y'�C�
������
����@�(^IJ	�A�(�W���=�	�;�	
���Y'�C�
��
��<M
��<M
��<M
��<M�	�A�(�W���=�	���3
�=��U�W<<�
������3
�=��0�W<<�
���
_�
A�
�A�
�A�
�A�
�����
---�
A�
A�
A�
A�
��������
���MV�<����<����<����<�����!MV���	�8888�
;�<;�<;�<;�<��!MV���	���\�� ��C���VW
����	���!����C��W<<�
���6�(�

��
��
��
��������
����]�	�A�(�W���=�	���3
�=��U�W<<�
����>>�!MV���	�]�!����
�	�	�	�	�
A�
A�
A�
A�
������MV�<����<����<����<����<�������MV�<�8888����
;�<;�<;�<;�<��!MV���	���!����C���VW
����	���!�����

��
��
��
����!MV���	�]�\�� ��>>���VW
����	�]�\�� ��>>�
����W3
���?`�X�=2)�2)��2)�32)�32�-���MV�(�W���=�	�����
���U!MV�!�<���3	���
�����=2U��W3
��aU�2U��2U�32U�32�
�	�	�	�	�

Figure 3. Component chaining in separate events

116

TABLE III. SYNTHESIS RESULTS FOR STATE HOLDING IMPLEMENTATIONS

LE, qt. LE, % Tsu, ns Tsu, % Th, ns Th, %
w/ lib w/o lib w/ lib w/o lib w/ lib w/o lib

36 37 2,7 9.975 11.562 13,7 2.262 2.215 -2

To support the proposed design flow, we have developed
a prototype of the plug-in that automates the additional
refinement step and generates structural VHDL description.
The plug-in implements the algorithm described above and
operates as follows. Firstly, it extends the most definite
context of an Event-B project, if any, by copying theorems
(ThC1)-(ThC3) (Section IV) to it. Secondly, the plug-in
traverses the most concrete machine of the project. Each time
it sees a regular operation that can be substituted with a
function call, the plug-in instantiates a corresponding
function available in the library context. A designer specifies
the width of the function being instantiated. Thirdly, it
refines the most concrete machine and replaces each regular
operation with a function call. Fourthly, for every variable
involved in such an action, the plug-in generates a type
invariant (PO (INV) in Section IV) in order for the types to
be feasible for translation. Finally, it applies theorems (ThM)
of the form ��:U9�� �� :� �V� 9 to the machine (PO (THMm) in
Section IV), where : and 9 are the operands and � and �V are
the function and operation, respectively. For instance, if the
function call �		�W���=�	�:U9� replaces the expression :,9,
then the theorem for this substitution is �		�W���=�	�:U9����
:,9. These theorems help in proving the correctness of the
additional refinement step.

A specification may contain several identical operations,
e.g., two or more addition operations etc. To distinguish
them, the plug-in uses an id number that starts from 0 and is
increased whenever another function definition is
instantiated. For instance,��		�(�W���=�	, �		�'�W���=�	, etc.
Therefore, each function determines one library component
such that the mapping between a formal model and VHDL
code is feasible.

VI. EXPERIMENTAL RESULTS

Let us examine a couple of examples showing the
application of our method to modeling within the Event-B
framework and generating structural VHDL code. The
examples show a sequential composition of components
using different modeling styles in Event-B.

A. Component Chaining in Separate Events
This example illustrates the use of library components

such that the result computed in one event is used as an input
for the computations in another event (Fig. 3). Here, we
model the calculation of temperature using Ohm’s law (event
����
���MV), where temperature is proportional to
resistance (variable ����
���). Then, the obtained value is
compared to some threshold and the comparison result is
promoted further (event ��MV�<). An instance of this
example is aerospace designs domain (e.g., [18, 21]) where
the temperature sensor represents a high-quality resistor.

For this model, the Rodin platform generated 57 POs of
which 51 were proven automatically. Three POs of type
(THMc) with the proofs were automatically derived for the
context theorems (ThC1)-(ThC3) (Section IV) by the plug-in.
One PO of type (INV) as well as one PO of type (WD) for an
automatically generated by the plug-in theorem of type
(THMm) have been proved interactively in a straightforward
manner by utilizing theorem (ThC3). The remaining PO of
type (SIM) has then been proved using theorems (THMm).

We generated VHDL descriptions with and without
library components from this model. We then synthesized
each description using Quartus-II [20]. The tool analyzed
them and provided the information about occupied area and
performance. The number of logic elements (LE) measures
the area. The worst-case setup time (Tsu) and the worst-case
hold time (Th) illustrate the performance of this example.
The synthesis results are summarized in Tab. III. They show
the advantages in terms of area (2,7%) and performance
(13,7%) of the implementation with library components.

B. Replacing Infix Operators with Prefix Function Calls
This example illustrates the model, where a single event

produces the result using different operators (Fig. 4). The
computation of the result proceeds as follows. The variables
��VW
'�� and ��VW
I�� are multiplied, their result is summed up
with the variable ��VW
N�� and, then, this sum is divided by
��VW
'��. The order in which the operations take place specify
the chain of the corresponding hardware library components.

��A�<���
���A�<���
���A�<���
���A�<���
�����
����VW
'���@�H'�C���VW
I���@�H�C���VW
N���@�H�C�
����W3
���@�H�C���	�#<�
�@������C�
����	�#<�
���\�� ��D��
������W3
��������VW
'��Z��VW
I���,���VW
N���0��VW
'���
A�
�A�
�A�
�A�
��
---�
A�
A�
A�
A�
������W3
���8����
;��;��;��;�����	�#<�
���!����

��
��
��
�����	�#<�
�]�\�� ��>>��
������W3
��]���VW
'��Z��VW
I��,��VW
N���0��VW
'����
�	�	�	�	

��A�<���
���A�<���
���A�<���
���A�<���
��
����VW
'���@�(^IJMW3
�(�W���=�	�;�	
���Y'�C���VW
I���@�(^IJMW3
�(�W���=�	�;�	
��2Y'�C�
����VW
N���@�(^IJ�		�(�W���=�	�;�	
�Y'�C���W3
���@�(^IJ	�A�(�W���=�	�;�	
���Y'�C�
��
��<M
��<M
��<M
��<M�MW3
�(�W���=�	���VW
'��U��VW
I������VW
'��Z��VW
I���
_�
A�
�A�
�A�
�A�
��
---�
A�
A�
A�
A�
������W3
�<����<����<����<�������W3
�8�
;��;��;��;�����	�#<�
���!����

��
��
��
�����	�#<�
�]�\�� ��>>����
����W3
��]	�A�(�W���=�	��		�(�W���=�	�MW3
�(�W���=�	���VW
'��U��VW
I���U��VW
N���U��VW
'����
�	�	�	�	

Figure 4. Replacing infix operators with prefix function calls

117

TABLE IV. SYNTHESIS RESULTS FOR PREFIX FUNCTION CALLS

LE, qt. LE, % W-C Tpd, ns W-C Tpd, %
w/ lib w/o lib w/ lib w/o lib

28 32 12,5 14,71 17,38 15,4

For this model, the Rodin platform generated 53 POs of
which 49 were proven automatically. Three POs (THMc)
with the proofs were automatically copied for the context
theorems (ThC1)-(ThC3) (Section IV) by the plug-in. The
only proof obligation (INV) was proved in an interactive and
straightforward manner using theorem (ThC2).

Analogously to the previous example, we generated
VHDL descriptions with and without library components
from this model. Then, we used Quartus-II to synthesize
each description and acquire information about area and
performance. The worst-case time required to propagate the
value on the input pin to the output pin (W-C Tpd) reflects
the performance metric for this example. Tab. IV
summarizes the synthesis results, which show the advantages
in terms of area (12,5%) and performance (15,4%) of the
description with library components.

VII. CONCLUSION

We have presented a design flow integrating component-
based formal modeling within Event-B with structural
VHDL implementation. The proposed approach is rather
generic allowing one to derive component-based designs in
an automated manner. To support the proposed approach, we
have developed a prototype of a plug-in that automates the
additional refinement step and generation of structural
VHDL description. We believe that the application of formal
methods at early stages of the design flow with automated
code generation can reduce testing effort at later design
phases. In addition, we have shown experimental results that
illustrate optimization provided by the code with library
components (2,5% and 12,5% in area as well as 13,7% and
15,4% in performance). Although the presented experiments
are relatively small, the optimization in area and performance
of the descriptions with library components is noticeable.

The formal library of hardware components is not limited
to the presented components and can clearly be extended.
Hence, one future direction is to extend the formal library to
facilitate the design of diverse hardware systems as well as to
deploy the proposed approach on more complex systems.
This may require formalizing complex components using
Event-B machines instead of lightweight context functions.

The described components are considered combinational,
i.e., clockless. However, there are combinatorial components
that depend on the clock signal. Therefore, another direction
of our future work is to extend the approach with modeling a
system that contains clocked components. This will allow a
designer to derive a time-aware model and generate
synchronous code from this model.

ACKNOWLEDGMENT

The work is supported by Academy of Finland.
Additionally, the authors would like to thank Adjunct Prof.

Marina Waldén for the fruitful discussions and valuable
feedback.

REFERENCES

[1] E. Clarke, Model Checking, Cambridge: The MIT Press, 2002.
[2] A. Roychoudhury, T. Mitra, S.R. Karri, Using Formal Techniques to

Debug the AMBA System-on-Chip Bus Protocol, Design,
Automation and Test in Europe conference (DATE), IEEE, pp. 828-
833, 2003.

[3] J.-R. Abrial, Modeling in Event-B. System and Software Engineering,
Cambridge: Cambridge University Press, 2010.

[4] The Rodin platform. Available: http://www.event-b.org/install.html
[5] S. Wright, Automatic Generation of C from Event-B, Workshop on

Integration of Model-based Formal Methods and Tools, p. 14, 2009.
[6] IEEE Standard VHDL Language Reference Manual, IEEE 1076,

2008.
[7] A. Benveniste, P. Le Guernic, Hybrid Dynamical Systems Theory and

the Signal Language, IEEE Transactions on Automatic Control 35(5),
pp. 535-546, 1990.

[8] D. Potop-Butucaru, R. de Simone, Optimizations For Faster
Execution Of Esterel programs, Proc. of MEMOCODE conference,
2003, pp. 227-236.

[9] I. Sander, A. Jantsch, System Modelling and Transformational Design
Refinement in ForSyDe, Transactions on Computer Aided Design of
Integrated Circuits and Systems, IEEE, Vol. 23, 2004, pp. 17-32.

[10] J. Talpin, P. Guernic, S. Shukla, R. Gupta, F. Doucet, Polychrony for
Formal Refinement Checking in a System-Level Design
Methodology, Application of Concurrency to System Design
(ACSD), IEEE, pp. 9-19, 2003.

[11] BlueSpec Documentation. Available:
http://www.ece.ucsb.edu/its/bluespec/index.html.

[12] D. Richards, D. Lester, A monadic approach to automated reasoning
for BlueSpec SystemVerilog, Innovations System Software
Engineering, Springer-Verlag, pp. 85-95, 2011.

[13] N. Evans, Integrating Formal Methods with Informal Digital
Hardware Development, Proc. of AVoCS, 2010, p. 16.

[14] R. J. R. Back, K. Sere, “Superposition Refinement of Reactive
Systems”, Formal Aspects of Computing, Springer, Vol. 8, 1995,
pp. 324-346.

[15] T. Seceleanu, Systematic Design of Synchronous Digital Circuits,
Turku: TUCS Dissertations, Turku Centre for Computer Science,
2001.

[16] S. Hallerstede, Y. Zimmermann, “Circuit Design by Refinement in
Event-B”, FDL, pp. 624-637, 2004.

[17] M. Benveniste, A «Correct by Construction» Realistic Digital Circuit,
RIAB Workshop, FMWeek, 2009.

[18] S. Ostroumov, L. Tsiopoulos, VHDL Code Generation from Formal
Event-B Models. IEEE Digital System Design, 14th Euromicro
Conference, Oulu, 2011, pp. 127-134.

[19] K. Robinson. (2011, June, 28). System Modelling & Designing using
Event-B. Available:
http://www.cse.unsw.edu.au/~cs9116/PDF/SMD.pdf

[20] Quartus-II software. Avaliable:
http://www.altera.com/products/software/sfw-index.jsp

[21] B. Nuckolls, Practical Low Resistance Measurements, 2004.
Available: www.aeroelectric.com/articles/LowOhmsAdapter_3.pdf

[22] G. Singh, E. Shukla, Verifying Compiler bsed Refinement of
Bluespec Specifications using the SPIN model Checker, 15th
International SPIN Workshop, Springer, pp. 250-269, 2008.

[23] A. Aljer, P. Devienne, S. Tison, BHDL: Circuit design in B,
Conference on Application of Concurrency to System Design, IEEE,
pp. 1-2, 2003.

[24] S. Ostroumov, L. Tsiopoulos, J. Plosila, K. Sere, Generation of
Structural VHDL Code from Formal Event-B Models, TUCS Report
1073, 2013.

118

Turku Centre for Computer Science
TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences

• Department of Information Technology
• Department of Mathematics and Statistics

Turku School of Economics
• Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology

• Department of Information Technologies

ISBN 978-952-12-3219-0
ISSN 1239-1883

Sergey O
stroum

ov

Sergey O
stroum

ov
A
gent-B

ased M
anagem

ent System
s for M

any-C
ore Platform

s

A
gent-B

ased M
anagem

ent System
s for M

any-C
ore Platform

s

	Paper_2.pdf
	Formal approach to agent-based dynamic reconfiguration in Networks-On-Chip
	1 Introduction
	2 Related work
	3 Preliminaries and proposed approach
	3.1 The Event-B formalism
	3.2 Agent-based monitoring systems for NoCs
	3.3 Base formal model of agent-based management system
	3.4 Proposed approach

	4 Application mapping and reconfiguration
	4.1 Application mapping with spare cores
	4.2 Tasks allocation within a region
	4.3 Task reallocation inside a region
	4.4 Local reconfiguration

	5 Formal modeling of the platform agent
	5.1 The platform agent: application mapping with spare cores
	5.2 The platform agent: tasks allocation considering task graphs

	6 Formal modeling of the cluster agents
	6.1 The cluster agents: frequency and voltage restore
	6.2 The cluster agents: generic task reallocation within a cluster
	6.3 The cluster agents: task reallocation within clusters based on task graphs

	7 Formal development of the cell agents
	7.1 The cell agents: the base model
	7.2 The cell agents: specifying coordinates of a cell agent
	7.3 The cell agent: substituting functions with simply typed variables and code generation

	8 Conclusions
	Acknowledgments
	Appendix A Supplementary data
	References

