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Abstract 

Due to various advantages such as flexibility, scalability and updatability, 

software intensive systems are increasingly embedded in everyday life. The 

constantly growing number of functions executed by these systems requires a 

high level of performance from the underlying platform. The main approach to 

incrementing performance has been the increase of operating frequency of a 

chip. However, this has led to the problem of power dissipation, which has 

shifted the focus of research to parallel and distributed computing. 

Parallel many-core platforms can provide the required level of computational 

power along with low power consumption. On the one hand, this enables parallel 

execution of highly intensive applications. With their computational power, 

these platforms are likely to be used in various application domains: from home 

use electronics (e.g., video processing) to complex critical control systems. On 

the other hand, the utilization of the resources has to be efficient in terms of 

performance and power consumption. However, the high level of on-chip 

integration results in the increase of the probability of various faults and creation 

of hotspots leading to thermal problems. Additionally, radiation, which is 

frequent in space but becomes an issue also at the ground level, can cause 

transient faults. This can eventually induce a faulty execution of applications. 

Therefore, it is crucial to develop methods that enable efficient as well as 

resilient execution of applications. 

The main objective of the thesis is to propose an approach to design agent-

based systems for many-core platforms in a rigorous manner. When designing 

such a system, we explore and integrate various dynamic reconfiguration 

mechanisms into agents functionality. The use of these mechanisms enhances 

resilience of the underlying platform whilst maintaining performance at an 

acceptable level. The design of the system proceeds according to a formal 

refinement approach which allows us to ensure correct behaviour of the system 

with respect to postulated properties.  

To enable analysis of the proposed system in terms of area overhead as well 

as performance, we explore an approach, where the developed rigorous models 

are transformed into a high-level implementation language. Specifically, we 

investigate methods for deriving fault-free implementations from these models 

into, e.g., a hardware description language, namely VHDL. 
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Sammanfattning 

På grund av olika fördelar, så som flexibilitet, skalbarhet och uppdaterbarhet 

integreras mjukvaruintensiva system i allt större utsträckning i våra vardagsliv. 

Det stadigt ökande antalet funktioner som utförs av de här systemen ställer höga 

prestandakrav på den underliggande plattformen. Den huvudsakliga metoden för 

att öka prestandan har varit att höja klockfrekvensen för ett chipp. Det här har 

emellertid lätt till problem relaterade till energiförbrukning, vilket har gjort att 

forskningen har skiftat fokus till parallell och distribuerad beräkning. 

Parallella flerkärniga plattformar kan tillhandahålla tillräcklig 

beräkningskapacitet samtidigt som de har låg energiförbrukning. Det här 

möjliggör parallell exekvering av mycket beräkningsintensiva tillämpningar. 

Dessa plattformar kommer på grund av deras höga beräkningskapacitet troligen 

att användas inom många olika tillämpningsområden, från hemelektronik (t.ex. 

för videobearbetning) till komplexa säkerhetskritiska kontrollsystem. 

Utnyttjandet av resurserna på sådana här plattformar måste ändå vara effektivt 

med avseende på prestanda och energiförbrukning. Det höga antalet funktioner 

som integreras på ett chipp ökar sannolikheten för diverse fel och uppkomsten 

av så kallade heta punkter (hotspots), som leder till temperaturproblem. 

Därutöver kan strålning, som är vanligt förekommande i rymden men också kan 

vara ett problem på marknivå, orsaka transientfel. Det här kan orsaka att en 

applikation exekveras på ett felaktigt sätt. Det är därför viktigt att utveckla 

metoder som möjliggör applikationsexekvering med hög effektivitet och 

resiliens. 

Det huvudsakliga målet med den här avhandlingen är att skapa en metod som 

möjliggör rigorös design av agentbaserade system för flerkärniga plattformar. I 

designen av ett sådant här system undersöks och integreras diverse mekanismer 

för dynamisk omkonfigurering i agenternas funktionalitet. Användningen av 

dylika mekanismer förbättrar den underliggande plattformens resiliens samtidigt 

som en acceptabel prestandanivå bibehålls. Designen av systemet följer en 

metod baserad på formell precisering, som gör det möjligt att garantera att 

systemet fungerar korrekt med avseende på givna egenskaper. 

För att kunna analysera det föreslagna systemet med avseende på så kallat 

areaöverskott (area overhead) och prestanda undersöks en metod för 

transformation av rigorösa modeller till ett högnivåspråk för implementering. 

Mer specifikt undersöks metoder för att härleda felfria implementationer i det 

hårdvarubeskrivande språket VHDL från de här modellerna. 
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1  Introduction 

The constantly growing demand for high performance along with low power 

consumption has drawn attention of the research community to parallel 

computing. However, this shift also increased complexity of systems very 

dramatically, so that the systems became more prone to various faults. In this 

chapter, we motivate the research conducted to approach these problems and 

present the organization of the thesis. 

1.1 Motivation 

Over the past decades, the Very-Large-Scale-Integration (VLSI) technology 

scaled down significantly. This allowed placement of more transistors onto a 

single die and increase of operating frequency in order to provide more 

performance for sequential programs. However, this has also led to the problem 

of the power dissipation of a chip. Thus, the increase of chip performance is no 

longer a matter of incrementing chip frequency, but a matter of finding new 

ways to satisfy performance demand of modern applications [1]. Moreover, 

since the number of processing elements constantly increases according to 

Moore’s law, the new technology must be scalable. These challenges have 

shifted the focus of research to the direction of distributed and parallel 

computing. 

To provide scalability along with parallel computation, a Network-on-Chip 

(NoC) interconnect paradigm has been proposed [2]. An NoC-based many-core 

platform can integrate tens or even hundreds of processing units (cores) that 

communicate with each other. This enables high computational power whilst 

fulfilling timing constraints and low power consumption. There are also 

commercially available platforms that utilize NoC, e.g., TilePro by Tilera [3] 

and Intel Single Cloud Chip [4]. However, due to the high level of on-chip 

integration, the probability of various faults increases [5]. Moreover, high 

computational load may cause the creation of hotspots leading to thermal 

problems [6]. Additionally, transient or intermittent (soft) faults can be caused 

by radiation [7], which is frequent in space, but becomes an issue also at the 

ground level [8]. This requires the platforms to be highly resilient to these faults. 

Various mechanisms have been explored to achieve resilience to faults. Some 

of them propose a specific architecture (e.g., [9]). Others suggest replication of 

the execution tasks (e.g., [8]). While the specific architecture approaches make 

them difficult to apply to different application domains, the duplication of the 
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execution tasks may significantly reduce utilization and, hence, performance of 

the underlying platform.  

To overcome these disadvantages, agent-based management for many-core 

platforms has been proposed [10]. Agents allow continuous monitoring of the 

platform and its dynamic reconfiguration when required. This helps the platform 

to avoid overloading with management activities while it performs routing of 

packets, for example. Clearly, a greater number of resources in the platform 

requires a larger number of agents. Thus, the agents need to be organized into a 

multi-level hierarchy in order to provide efficient platform management [11].  

An agent-based system is typically a composition of software (SW) and 

hardware (HW) depending on the functionality, timing requirements and 

complexity of algorithms [12]. Particularly, the higher in the hierarchy the agent 

is, the more diverse its management activities are. In other words, these agents 

have more functionality and are more complex than those lower in the hierarchy. 

Hence, these types of agents are typically implemented as SW which provides a 

high level of flexibility. On the other hand, the lower level agents have to 

provide fast and efficient monitoring. Consequently, they are usually 

implemented as HW [12]. Clearly, the complexity of the agent-based system is 

high, which increases the risks of introducing design faults during the system 

development. Inadequate behaviour of the agents may lead to, e.g., improper 

resource allocation [13] which can cause inadmissible effects. Therefore, 

rigorous design approaches need to be undertaken. 

One of the approaches to tackle design faults is the formal development of a 

system model. It aims at deriving correct systems by stepwise unfolding of the 

system functionality through model transformations called refinements and 

mathematically proving their correctness [14]. In this thesis, we adopt the Event-

B formal framework [15]. Event-B supports system level modelling 

(specification) and allows us to reason about correctness of the model with 

respect to postulated properties by theorem proving. Moreover, the specification 

within Event-B follows the refinement approach, where each refinement step is 

shown to be correct by theorem proving as well. In addition, Event-B has a 

mature tool support, namely the Rodin platform [16]. The platform is extensible 

in the form of plug-ins, which allows us to expand the platform functionality. 

Since code generation is a natural step for formal design flow, there are, e.g., 

plug-ins for the Rodin platform that allow one to derive code in software 

languages, e.g., C [17], Java [18], and others [19]. However, due to the fact that 

hardware description languages (HDLs) differ in semantics and syntax from 

software languages, the same methods and techniques cannot be directly and 
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completely applied to hardware design and code generation. Thus, this problem 

also requires attention. 

1.2 Organization of thesis 

The thesis consists of two parts: Part I that summarizes the research and Part 

II that presents the original research publications. The remainder of Part I is 

structured as follows. Section 2 introduces the notions and definitions used 

throughout the thesis. In Section 3, we identify the research challenges that arise 

in the efficient and resilient systems design. Section 4 summarizes the original 

research publications and illustrates how the papers address the postulated 

research problems. In Section 5, we review the approaches related to the 

questions posed in the thesis. Finally, Section 6 presents the conclusion and 

outlines future research directions. 
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2  Background 

This chapter outlines the main definitions and concepts used throughout the 

thesis. It discusses the need for many-core platforms that provide parallel 

computations. The chapter also describes the notion of agent-based systems and 

presents the architecture of a many-core platform augmented with the agent-

based management. Finally, it illustrates the languages needed to approach the 

problems addressed in the thesis. 

2.1 Many-core platforms 

Network-on-Chip (NoC) [2] has been proposed as a scalable interconnect 

paradigm for many-core platforms which can provide high computational 

performance fulfilling timing constraints and low power consumption (Fig. 1). A 

typical NoC-based scheme consists of tiles. The tiles include processing units 

(PUs) and routers (RT) [2]. The routers provide communication between the 

tiles by routing packets utilizing various routing algorithms. Within the scope of 

this thesis, we assume deterministic routing, which is dead-lock and live-lock 

free [20] as well as provides low latency and fulfils timing constraints [21]. The 

routers usually incorporate First-In-First-Out (FIFO) buffers [22][23], so that the 

flow of data is preserved. 
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Figure 1: From requirements to many-core platforms 

Many-core parallel platforms achieve a high level of performance. For 

instance, an 80-Tile TeraFLOPS Processor provides more than 1.0E+12 floating 

point operations per second (OPS) [24]. The TilePro64 processor can achieve up 

to 443E+09 OPS [3]. 
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The advantages of many-core platforms enable their use in various 

applications, especially in complex critical systems from, for example, 

biomedical [25] and aerospace domains [9]. However, the use of these platforms 

in critical domains requires the platforms to be resilient. 

2.2 Agent-based management systems 

Resilience of a system is defined as the persistence of dependability when 

facing changes [26]. Dependability, on the other hand, is the ability of a system 

to avoid failures that are more frequent and severe than acceptable. 

Dependability is an integral term that includes availability, reliability, safety, 

integrity and maintainability [27][28]. A failure is usually a result of an error 

which is caused by a fault. A fault is a flaw within a system. It can be, e.g., a 

design fault (a bug) in software or a physical fault of a hardware component. 

Faults can be classified as transient, intermittent or permanent [28].  

In this thesis, we focus on the reliability attribute of dependability and 

consider physical failures of PUs of a many-core platform. The examples that 

lead to these failures include: high level of on-chip integration that results in the 

increase of the probability of various faults [5], high computational load that 

may cause creation of hotspots leading to thermal problems [6] and radiation 

which becomes an issue at the ground level and increases probability of transient 

faults [8]. 

To provide resilience and maintain performance at an acceptable level, we 

employ an agent-based management system [9][11] (Fig. 3). The term agent 

comes from the artificial intelligence field. One classic definition of an agent is: 

“An agent is something that perceives and acts resiliently and autonomously” 

[29]. In the context of many-core platforms, we define an agent more precisely 

as: “An agent is a piece of software or hardware that acts resiliently and 

autonomously and enables the platform to achieve some objectives”. An agent-

based management system is a system that comprises of a number of agents that 

communicate with each other [9].  

Since a many-core NoC-based platform can integrate tens or even hundreds 

of tiles, it is reasonable to organize agents into a multi-level hierarchy for 

efficient and effective platform management [11]. Typically, a three-level 

hierarchy which we adopt in this thesis is considered efficient [12]. The 

hierarchy consists of three layers, namely the platform agent, cluster and cell 

agent layers (Fig. 2). The agents communicate via a dedicated communication 

mechanism, e.g., a dedicated NoC-based scheme. This allows the platform not to 
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be overloaded with management activities while the platform performs, e.g., 

routing algorithms. 

The platform agent is responsible for the whole platform. It performs the 

initial mapping of applications, creates, adjusts and destroys cluster and 

corresponding cluster agents as well as releases resources. The cluster agents 

manage clusters, i.e., regions (sets of cores), where applications are mapped. The 

cell agents are local monitors assigned to each tile. 

Platform agent

Cluster agent

Cluster agent
communication between cluster 

agents and the platform agent

communication between cell 

agents and cluster agents

NoC-based communication 

between routers

RT router

NoC-based communication 

between RC and RT through NI

PU processing unit

Cell 

agent
PU

RT

Tile

Cell 

agent
PU

RT

Tile

Cell 

agent
PU

RT

Tile

Cell 

agent
PU

RT

Tile

Cell 

agent
PU

RT

Tile

Cell 

agent
PU

RT

Tile
application region

Figure 2: A many-core platform architecture with hierarchical agents 

2.3 Modelling languages 

To develop a system, designers commonly utilize various languages. In this 

section, we describe languages that have been used to approach the problems 

addressed in the thesis. We start with the description of the formal Event-B 

framework. We then describe a semi-formal modelling technique widely used in 

industry, namely Simulink. Finally, we outline a non-formal language likewise 
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widely used in industry, namely VHDL, that enables synthesis and analysis of 

hardware implementations. 

2.3.1 The Event-B formalism 

The main formal framework we use in this thesis is the Event-B formalism 

[15]. There are several advantages this formalism offers. Firstly, it allows us to 

build system level models. Secondly, it supports the refinement approach such 

that a model is built top-down in a correct-by-construction manner. Thirdly, the 

development follows rigorous rules with mathematical proofs of correctness of 

models. Last but not least, it has a mature tool support extensible in the form of 

plug-ins, namely the Rodin platform [16]. Let us now describe the structure and 

notation of Event-B. 

A specification in Event-B consists of contexts and machines. The 

relationship between them is shown in Fig. 3. A context can be extended by 

another context whilst a machine can be refined by another machine. Moreover, 

a machine can refer to the contents of the context (to “see”). 

extends refines

sees

machine
variables

invariants

theorems

variant

events

context
sets

constants

axioms

theorems

sees

machine
variables

invariants

theorems

variant

events

context
sets

constants

axioms

theorems

Figure 3: Event-B contexts and machines: contents and relationship [15] 

A context specifies static structures such as data types in terms of sets, 

constants, properties given as a set of axioms. One can also postulate and prove 

theorems that ease proving effort during the model development. 

A machine models the behaviour of a system. The machine includes state 

variables, theorems, invariants, a variant and guarded transitions (events). The 

invariants represent constraining predicates that define types of the state 

variables as well as essential properties of the system. The overall system 

invariant is defined as the conjunction of these predicates. 
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A variant is a natural number or a finite set. It is required to show the 

termination of certain events that can be executed several times in a row, e.g., 

modelling a loop.  

An event describes a transition from a state to a state. The syntax of the event 

is as follows: 

E = ANY x WHERE g THEN a END 

where x is a list of event local variables. The guard g stands for a conjunction of 

predicates over the state variables and the local variables. The action a describes 

a collection of assignments to the state variables. 

We can observe that an event models a guarded transition. When the guard g 

holds, the transition can take place. In case several guards hold simultaneously, 

any of the enabled transitions can be chosen for execution non-deterministically. 

If none of the guards holds, there is a deadlock. 

When a transition takes place, the action a is performed. The action a is a 

composition of the assignments to the state variables executed simultaneously 

and denoted as ||. An assignment can be either deterministic or non-

deterministic. A deterministic assignment is defined as v := E(w), where v is a list 

of state variables, E is a list of expressions over some set of state variables w. A 

non-deterministic assignment is specified as v :| Q(w, v’), where Q(w, v’) is a 

predicate over some state variables w and a new value v’ of variable v. The 

variable v obtains such a value v’ that Q(w, v’) holds. 

These denotations allow for describing semantics of Event-B in terms of 

before-after predicates (BA) [30]. Essentially, a transition is a BA that 

represents a relationship between the model state before (v) and after (v’) the 

execution of an event. Hence, the correctness of the model is verified by 

checking if the events preserve the invariants (INV) and are feasible to execute 

(FIS) in case the event action is non-deterministic: 

 Inv ∧ ge ⇒ [BAe]Inv (INV) 

 Inv ∧ ge ⇒ ∃v’ . BAe (FIS) 

where Inv is a model invariant, ge and BAe are the guard and the before-after 

predicate of the event e, respectively. The expression [BAe]Inv stands for the 

substitution in the invariant Inv according to BAe. 

In addition, deadlock freedom of the specification may be corroborated. A 

deadlock free specification stands for the case where there exists at least one 

event that can be executed. To achieve this, one needs to postulate a machine 

theorem that includes the guards of all the events connected with disjunction and 

show that the proof obligation (DLF) [15] is preserved: 
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∀S, C, V . A ∧ I ⇒ Vn
i=1 gi (DLF) 

where n is the number of events and gi is the guard of the i-th event. The 

structures S, C and A represent sets, a collection of constants and axioms 

introduced into a context, respectively. The structures V and I stand for a set of 

state variables and a set of invariants of a machine, respectively. 

Since the specification development in Event-B follows the refinement 

approach, one has to prove that the more concrete (refined) events simulate their 

abstract counterparts. To show this, the refined events must preserve the guard 

strengthening (GRD) and action simulation (SIM) proof obligations [31] as well: 

∀S, C, Sr, Cr, V, Vr, x, xr . A ∧ Ar ∧ I ∧ Ir ∧ gr ⇒ g (GRD) 

∀S, C, Sr, Cr, V, Vr, x, xr . A ∧ Ar ∧ I ∧ Ir ∧ BAer ⇒ BAe (SIM) 

where all letters with subscript “r” stand for the refined versions of the 

aforementioned structures. 

To prove that new events executed several times in a row terminate, one also 

has to show that these events are consistent with a variant. In particular, these 

events have to preserve either of the following proof obligations depending on 

whether the variant is a natural number (VAR_N) or a finite set (VAR_S) [31]: 

∀S, C, V . A ∧ I ⇒ Var ∈ ℕ ∧ [BAe]Var < Var (VAR_N) 

∀S, C, V . A ∧ I ⇒ finite(Var) ∧ card([BAe]Var) < card(Var) (VAR_S) 

where Var is a variant that denotes a numeric expression or a finite set of values. 

The expressions finite(Var) and card(Var) specify finitness and cardinality of the 

set variant, respectively. 

In case the model needs to be deadlock free, one can show the relative 

deadlock freedom, i.e., all concrete events should not deadlock more frequently 

than the abstract ones. Therefore, the disjunction of the abstract guards should 

imply the disjunction of the concrete guards (proof obligation (DLFR)) [15]: 

∀S, C, V . A ∧ I ∧ Ir ∧ Vn
i=1 gi ⇒ Vm

j=1 grj (DLFR) 

where m is the number of concrete events and gj is the guard of the j-th event. 

The Rodin platform [16], a tool support for Event-B, automatically generates 

and attempts to discharge (prove) the necessary proof obligations. The best 

practices encompass the development of the specification in such a manner that 

90-95% of the proof obligations are discharged automatically. However, the tool 

sometimes requires the user assistance provided via the interactive prover. 

Typically, the claims that are difficult for the automatic prover to discharge 

require case distinction and/or data substitution. 
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2.3.2 Simulink dataflow diagrams 

The control logic of a system can also be modelled by using semi-formal 

techniques. One such a technique which is widely used in industry is Simulink 

[32]. A Simulink model is a hierarchical dataflow diagram that describes the 

essential functionality of a system by hiding implementation details. The model 

consists of a collection of functional blocks that have in-ports (inputs) and out-

ports (outputs) allowing connections between blocks via typed signals. The 

blocks may have parameters that are initialized at the beginning of the execution 

and remain constant during the execution. Moreover, the blocks can contain 

memory, in which case the output value depends not only on the inputs, but also 

on the previously computed value.  

The hierarchical diagrams are achieved by grouping blocks into sub-

systems. There are two types of sub-systems in Simulink: virtual and atomic 

[33]. Virtual sub-systems are used for the structural purpose only and do not 

affect the model execution. They can be seen as containers for functional blocks 

that are expanded by the Simulink engine in place before execution. Atomic sub-

systems are treated as single atomic units. 

Fig. 4 illustrates an example of a Simulink model. The model in Fig. 4, a) 

contains two in-ports and one out-port. It includes a constant parameter as well 

as memory. This model is grouped into a sub-system presented in Fig. 4, b).  

2
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1
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sub-system 
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block

signal

In1

In2
Out1

Sub-system

 

Figure 4: Simulink models: a) sub-system content, b) sub-system block, c) algebraic loop 

The models can be continuous or discrete. We consider discrete-time models 

with atomic sub-systems that specify periodic real-time systems. Each block in a 

discrete-time model is evaluated at regular intervals with a specified sampling 

period. We further assume that the model is single-rate, i.e., all its sub-systems 

fire at the same time intervals. Additionally, we assume causal models, where 

the output of a block has no direct connection to the input of the same block. The 

direct connection of an output to an input is also known as an algebraic loop [34] 

(Fig. 4, c)). 
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2.3.3 Hardware description language VHDL 

Once the model of a system is derived, one can carry out the performance 

analysis by translating the model into an implementation in a high-level 

programming language. For instance, one can generate C [16], Java [18] or other 

programming language [19] code from an Event-B model. The Simulink design 

environment supports the generation of C code as well [35]. However, a 

complex system such as an agent-based management system is often a 

composition of two parts: software and hardware [12], where hardware can be 

specified using a hardware description language (HDL). Clearly, HDLs differ in 

semantics and syntax from software programming languages, which makes it 

difficult to apply the software code generation techniques to hardware design 

and code generation. Thus, the hardware part requires attention. 

We have chosen VHSIC Hardware Description Language (VHDL) as the 

target language. This language is standardized [36] and widely used in industrial 

hardware design. Moreover, there are a number of tools that support VHDL, 

e.g., Quartus-II by Altera [37]. These tools can synthesize the description and 

provide information about area consumption and performance. Let us now 

describe the essential parts of a VHDL description.  

There are two basic elements a VHDL description consists of: an entity and 

an architecture (Fig. 5). The entity defines the interface of a hardware 

component whilst the architecture specifies its behaviour. 

Every entity must have a name and ports. The entity can have parameters 

defined in the generic clause. The interface ports contain input and output 

signals whose type and direction have to be specified explicitly. The example 

entity in Fig. 5 has a parameter whose type is a natural number and initial value 

equals 10. Moreover, it has two input ports and one output port differentiated by 

the keywords in and out, respectively. The types of the ports are bit vectors. 

The entity can be assigned with an architecture that implements the 

behaviour of the hardware component. The architecture consists of 2 parts: 

declaration and body. The declarative part includes definitions of internal signals 

as well as interfaces of other hardware components. The body specifies the 

function of the hardware component, where a designer can instantiate declared 

components by using the keywords generic map and port map. Moreover, the 

body can have a process that reacts on certain signals introduced into a 

sensitivity list and allows for introducing sequential statements such as if 

(condition) then action end if. The action in the if ... end if statement is an 

assignment of a value to a signal in the form of s <= E, where s is a signal and E 

is an expression. Every assignment in the process is not instant, i.e., the signals 
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are updated when the whole process completes its execution. Hence, all the 

signals involved in the assignment are updated simultaneously. 

entity Entity is

generic ( parameter : natural := 10 );

port ( input1 : in std_logic_vector(parameter-1 downto 0);

  input2 : in std_logic_vector(parameter-1 downto 0);

     output1 : out std_logic_vector(parameter-1 downto 0) );

end Entity;

architecture arch of Entity is

  signal internal_signal : std_logic := ‘0’;

  signal internal_signal_add : std_logic_vector(parameter-1 downto 0);

  component component_add

  generic ( width : natural );  

  port ( dataa : in std_logic_vector(width-1 downto 0); datab : in std_logic_vector(width-1 downto 0);

     result : out std_logic_vector(width-1 downto 0) );

  end component;

begin

  add_0 : component_add

  generic map( width => parameter )

  port map( dataa => input1, datab => input2, result => internal_signal_add );

  process_add :

  process ( input1, input2, internal_signal, internal_signal_add ) is begin

  if (internal_signal = ‘0’) then internal_signal <= ‘1’; end if;

    if (internal_signal = ‘1’) then internal_signal <= ‘0’; output1 <= internal_signal_add; end if;

  end process;

end arch;

Figure 5: A VHDL description 

The declaration part of the example architecture in Fig. 5 contains two 

internal signals and the hardware component component_add. The body 

instantiates the declared component by specifying the width and mapping inputs 

of the component to the input ports and the result to one of the internal signals. 

The body also contains a process. The process reacts on changes of the input 

ports as well as internal signals. Upon reaction, the process updates the output of 

the entity with the result computed by the component component_add. 

Essentially, the architecture implements a simple adder. 
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3  Research objectives 

The main objective of the thesis is to determine methodological aspects of the 

design and implementation of agent-based systems for many-core platforms. We 

motivate the research and postulate research questions addressed in the thesis. 

During the design, we simultaneously consider performance and resilience 

aspects of the platform as well as of the agent-based system. Resilience of the 

platform is attained by utilizing dynamic reconfiguration of the platform 

performed by the agents. To achieve resilience of the agent-based system, we 

employ the rigorous correct-by-construction development. Then, we translate 
the derived rigorous specification into a programming language in order to 

evaluate efficiency in terms of performance and area overhead. In addition, we 

outline the problem of data loss when a many-core platform is dynamically 

reconfigured. 

3.1 Rigours design of agent-based 

management system 

In the previous section, we have shown that many-core platforms are 

envisaged to be used in complex critical systems, which requires the platforms to 

be resilient to faults. To achieve resilience of the platform, we employ a 

hierarchical agent-based management system embedded in the platform. 

However, the agents are dynamic autonomous entities that have be to resilient as 

well. Their inadequate behaviour may lead to undesirable consequences. An 

unpredictable behaviour of an agent may cause problems related to, e.g., 

resource allocation [12]. Furthermore, a large number of resources provided by 

many-core platforms requires the hierarchical organization of agents, which is 

also needs to be taken into account. Hence, formal methods are required to 

ensure correctness of the agents and their reliable behaviour. This leads us to the 

first research question: 

RQ1: How to take into account hierarchical organization of agents? 

Moreover, how to rigorously design a hierarchical agent-based management 

system such that its behaviour can be trusted? 

3.2 Integration of dynamic reconfiguration 

Once the main steps are derived, resilience of the underlying platform can be 

considered. A common approach to achieve resilience to faults is to use 
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redundancy such that replicas of an application are run in parallel with the main 

execution (see e.g., [5][38]). Clearly, the use of replicas may reduce the 

utilization of the platform, decrease its performance and increase power 

consumption. Thus, these attributes are orthogonal (Fig. 6).  
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Figure 6: Orthogonality of performance and resilience 

To overcome these limitations, dynamic reconfiguration needs to be 

undertaken. Dynamic reconfiguration includes dynamic voltage and frequency 

scaling [12], task migration (reallocation) [5][39] as well as partial 

reconfiguration of FPGA-like regions [40][41] techniques. Generally, the aim of 

these techniques lies in providing a better balance between, e.g., power 

consumption and performance. However, they can also be used to achieve 

resilience. For instance, the reallocation of tasks from failed PUs to some free 

non-failed ones allows the tasks to continue execution without interruption 

[5][39]. Hence, the second research question is: 

RQ2: How to integrate dynamic reconfiguration of the platform into agents 

hierarchy, so that an acceptable level of performance is maintained? 

Additionally, how to show that the agents will behave resiliently under these 

circumstances? 

3.3 Data loss avoidance 

Dynamic reconfiguration is a powerful mechanism to provide resilience and 

maintain performance. However, the application tasks may lose data when the 

platform is reconfigured (see, e.g., [42]). 

When a control task runs, it executes the three main operations: reading input 

data (either from the environment or from packets), processing the received data 

(i.e., executing a function) and sending the processed data further (either to other 
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tasks or to the environment). The fault occurrence within these operations is 

captured by the following fault scenarios: 

(1) a fault occurs before a task reads any input data.  
(2) a fault occurs while a task reads input data.  
(3) a fault occurs before the task sends the processed data.  
(4) a fault occurs while a task sends data.  

In case (1), a task can still read the input data after reallocation as they 

remain intact. In case (2), the task reads packets from some queues, but fails to 

read from others. Thus, some pieces of data may be lost. In case (3), the task has 

read all the input data, but has not finished processing them or has not been able 

to send the processed data. Hence, the task loses data of one firing. Finally, in 

case (4), some successor tasks may receive packets with the new data while 

others may not. This can lead to the desynchronized data reception by the 

successor tasks. Consequently, some data are lost. 

We can observe that the fault occurrence may lead to the data loss depending 

on the point when a fault occurs. The loss of data may affect the production of 

the correct output result. This raises our third research question: 

 

RQ3: How to avoid data loss when the many-core platform is reconfigured? 

3.4 Performance evaluation 

The formal specification of a system guarantees its correctness qualitatively, 

i.e., proper functional behaviour with respect to the postulated properties. 

However, non-functional attributes such as performance and overhead should be 

evaluated quantitatively. To achieve this, the derived specification needs to be 

translated into a high level programming language. This leads to our fourth 

research question: 

 

RQ4: How to evaluate performance of the derived agent-based system? 

Specifically, how to translate a formal model into a synthesizable code? 

3.5 Research methods 

We approach the first and the second research questions by analysing the 

functionality of the agent-based system and possible reconfiguration schemes 

applicable to the platform (e.g., task reallocation, hardware reconfiguration). We 

then utilize the Event-B formalism to develop the specification of the system in a 

hierarchical and correct-by-construction manner. Event-B allows us to ensure 
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the correctness (i.e., trusted behaviour) of the agents with respect to postulated 

properties using a proof-based development process. 

To tackle the third research question, we analyse the outlined fault scenarios. 

Using the features of a many-core platform, we then develop algorithms to 

prevent tasks from data loss when they are reallocated. 

Finally, we explore the fourth research question by using semi-formal and 

informal techniques. We use the derived specification of the agent-based system 

as the base to obtain the implementation of the system through the automated 

code generation. The synthesis of the generated code allows for efficiency 

evaluation in terms of area overhead and performance. In addition, we deploy 

the proposed algorithms on a commercially available many-core platform, 

namely TilePro by Tilera [3], and evaluate communication and computation 

performance of the tasks.  
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4  Overview of Research Publications 

The main research results are documented as the peer-reviewed papers given 

in Part II of the thesis. Fig. 7 illustrates the relationship between the 

publications, where the solid arrows depict a direct relation whilst the dashed 

arrow represents an indirect relation between the papers. 

Paper 1

· Hierarchical rigorous 
specification of agent-based 
monitoring system 

· Basic reconfiguration schemes 
· Specification decomposition

Paper 2

· Parallel development of 
decomposed specification

· Initial mapping with spare cores
· Dynamic tasks reallocation within 

cluster to provided spare cores

Paper 3

· Data loss prevention
· One-to-one mapping between 

Simulink models and parallel 
programs

· Performance evalutaion

Paper 4

· One-to-one mapping between 

Event-B and VHDL 

· Simulation and synthesis results

Paper 5

· Formal library of hardware 
components

· Design flow of component-based 
VHDL description generation

Direct relation

Indirect relation

 

Figure 7: Relation between research publications 

This chapter overviews the contents of these research publications and 

highlights the contribution of each paper. In addition, it indicates the 

contribution of the author.  

Paper 1 

Sergey Ostroumov, Leonidas Tsiopoulos, Marina Waldén, Juha Plosila, 

Hierarchical agent-based monitoring systems for dynamic reconfiguration in 

NoC platforms: A formal approach, Advancing Embedded Systems and Real-

Time Communications with Emerging Technologies, Ch. 13, IGI Global, 

pp. 302-333, 2014. 

This paper addresses the first and partially the second research questions. It 

describes the main steps of the development process of a three level agent-based 

system for a many-core 2D mesh Network-On-Chip platform. Particularly, we 

specify an arbitrary platform and show the process of introducing each level of 
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the agents hierarchy through correctness preserving model transformations – 

refinements – using the Event-B formalism [15]. We consider platform, cluster 

and cell level agents. We also present possible variations of the platform 

reconfiguration and integrate them into the formal model. These reconfiguration 

schemes include: 

1) task reallocation and application remapping performed by the platform agent,  

2) dynamic voltage and frequency scaling executed by the cluster agents and  

3) local reconfiguration of the platform cores performed by the cell agents.  

Author’s contribution: The idea originated from the co-authors of the paper. 

The main responsibility of the author was the development of the formal 

specification. Additionally, the author was responsible for the paper. 

Paper 2 

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere, Formal 

Approach to Agent-based Dynamic Reconfiguration in Networks-On-Chip, 

Journal of Systems Architecture 59(9), Elsevier, pp. 709-728, 2013. 

This paper addresses partially the first and completely the second research 

questions. In this paper, we continue the rigorous development of the agent-

based management system considering requirements on efficiency. Specifically, 

we propose to allocate a number of spare cores within a region for each 

application being mapped. The number of the spare cores is computed as a half 

of the number of the required cores. These spare cores are initially allocated on 

the right side of the application region. This initial configuration (mapping) is 

performed by the platform agent. In case a fault occurs in cores within the 

region, a corresponding cluster agent is delegated to utilize the allocated spare 

cores. It reallocates a task from a faulty core to a spare one in accordance with 

the algorithm proposed in the paper. Then, a cell agent can initiate the local 

reconfiguration procedure. Therefore, the functionality of configuring and 

reconfiguring the platform is evenly distributed among the agents. This allows 

for efficient performance of the agents as well as the many-core platform. 

Author’s contribution: The author was responsible for the formal 

development, simulations and writing the core of the publication. 

Paper 3 

Sergey Ostroumov, Pontus Boström, Marina Waldén, Derivation of 

Parallel and Resilient Programs from Simulink Models, In Proceedings of 
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International Conference on Parallel, Distributed and Network-based 

Processing (PDP), IEEE Computer Society Conference Publishing 

Services (CPS), pp. 416-420, 2015. 

 
This paper addresses completely the third and partially the fourth research 

questions. In this paper, we present an approach to generation of a parallel C 

code from a discrete single-rate Simulink model that specifies periodic control 

logic. Relying on this, we propose a mechanism, where the tasks can continue 

execution without data loss. The paper includes performance evaluation without 

and with the proposed mechanism using an industrial case study. The evaluation 

results are obtained using a commercially available platform TilePro [3]. They 

show that the proposed approach decreases performance of an application by 

only about 1% while allowing it to produce the expected result, i.e., to satisfy 

resilience requirements. 

Author’s contribution: The work was initiated by the author. Moreover, the 

author was responsible for the implementation and evaluation of the proposed 

mechanism. Additionally, the author was responsible for the publication. 

Paper 4 

Sergey Ostroumov, and Leonidas Tsiopoulos, VHDL Code Generation from 

Formal Event-B Models, In Euromicro Conference on Digital System Design: 

Architectures, Methods and Tools, IEEE Computer Society Conference 

Publishing Services (CPS), pp. 127-134, 2011. 

This paper partially addresses the fourth research question. In this paper, we 

study a one-to-one mapping between the Event-B formalism and VHSIC 

hardware description language (VHDL) in order to analyze area overhead and 

performance. The mapping is based on the similarities in the structures of a 

formal model and a VHDL description. Additionally, we show algorithmic steps 

required to derive a synthesizable VHDL implementation from a formal model. 

These steps are implemented in the form of a plug-in to the Rodin platform that 

supports the Event-B formalism. The correctness of the code generation is 

shown through the stepwise comparison of simulation results for the model and 

the code. To support the approach, we present the development of a simplified 

version of an industrial case study developed in a stepwise refinement manner 

and code generation for it. In addition, we illustrate synthesis results that 

illustrate performance and area occupied by the generated VHDL description. 

http://www.computer.org/cps
http://www.computer.org/cps
http://www.computer.org/cps
http://www.computer.org/cps
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Author’s contribution: The author provided a case study and developed its 

formal specification. The author was also responsible for writing the main parts 

of the publication and for the development of the tool support. 

Paper 5 

Sergey Ostroumov, Leonidas Tsiopoulos, Juha Plosila, Kaisa Sere, 

Generation of Structural VHDL Code with Library Components From Formal 

Event-B Models, In 16th Euromicro Conference on Digital System Design, IEEE 

Conference Publishing Services (CPS), pp. 111-118, 2013. 

This paper contributes to the fourth research question. Due to strict 

requirements, a VHDL description generated as mentioned in the previously 

described paper may not be sufficient. It may be crucial when the agents need to 

react rapidly due to the highly dynamic nature of the applications and the many-

core platform. Hence, in this paper, we propose a method for deriving a 

structural (i.e., component-based) description from a formal model. We develop 

a formal library of hardware library components which allows designers to 

generate a component-based description. We show that a structural description 

obtained from a formal model following the proposed method requires less area 

and performs better than a non-structural one. In addition, we present a design 

flow that follows the usual refinement-based development and ends in an 

automated code generation. 

Author’s contribution: The author was responsible for the development of 

the formal library and for the implementation of the tool support. Additionally, 

the author was responsible for the publication. 

Summary 

These publications address the research challenges postulated in the previous 

section. Tab. 1 summarises the research publications and the research questions 

that have been addressed by each publication. The contributions of the thesis can 

be summarized as follows: 

1. Formal rigorous development of agent-based systems taking into account

their hierarchical organization

2. Various dynamic reconfiguration procedures integrated into the agents

functionality simultaneously considering efficiency (performance,

overhead etc.) and resilience attributes

3. A mechanism that prevents data loss when the underlying platform is

reconfigured at run-time
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4. An approach to model translation into a synthesizable description in order 

to facilitate easier derivation of the implementation and evaluation of 

non-functional properties in a real-world environment

Table 1: Summary of research questions and publications 

Research question Paper(s) 

RQ1 

a) How to take into account hierarchical organization of agents?

b) Moreover, how to rigorously design an agent-based

management system such that its behaviour can be trusted? 

1 

1,2 

RQ2 

How to integrate dynamic reconfiguration of the platform into 

agents hierarchy, so that an acceptable level of performance is 

maintained? Additionally, how to show that the agents will 

behave resiliently under these circumstances? 

1,2 

RQ3 
How to avoid data loss when the many-core platform is 

reconfigured? 
3 

RQ4 

a) How to evaluate performance of the derived agent-based

system? 

b) Specifically, how to translate a formal model into a

synthesizable code? 

3,4 

4,5 
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5  Related work 

In this chapter, we review the approaches related to the research questions 

posed in this thesis. We first discuss the approaches focusing on the 

development of efficient and resilient many-core platforms. We then analyze the 

research conducted towards design of agent-based systems in an informal and a 

formal manner. Finally, we conclude the related work with the approaches that 

focus on the translation of the rigorous specifications into synthesizable

descriptions. 

5.1 Resilience and Many-Core Platforms 

Motamedi et al. [9] have proposed a fault-tolerant reconfigurable NoC 

considering application specific architecture for avionic systems. Particularly, 

they use a star network topology as the main active formation where the cockpit 

switch is placed in the centre of the topology. The redundancy is achieved by 

placing redundant links in the system. When a fault is detected, the topology is 

switched (reconfigured) from the star formation to the ring one. Additionally, the 

authors utilize the Embedded Reliable Reduced Instruction Processor (ERRIC) 

as a computational unit. The instruction set of ERRIC has been specially 

designed to tolerate malfunctions caused by permanent faults. Using the 

prototyping results, the authors illustrate that the overhead of their approach is 

marginal while the required level of fault-tolerance is achieved. Although 

ERRIC is used as a computational unit, it has a reduced instruction set which 

may not be applicable to application domains other than avionics. Moreover, 

ERRIC is implemented on Field-Programmable-Gate-Array (FPGA) or 

Application-Specific-Integrated-Circuit (ASIC), where a physical fault may also 

occur and, hence, this processing unit may not be operable any more. 

Instead of focusing on the topology reconfiguration, we focus on faults of the 

processing units. When a fault is detected, the agents execute various 

reconfiguration procedures considering performance of the applications. These 

procedures allow for executing applications without interruption and enable 

functional recovery of the platform. We consider a topologically fixed NoC-

based platform which is not application specific. Although we utilize a specific 

topology, our approach is applicable to other topologies and other types of the 

routing schemes as it does not depend on them. Nevertheless, redundant routers 

(and/or links) can complement our approach. 
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An approach to remapping with spare cores has been proposed by Chou and 

Marculescu [39]. The authors study three possible schemes of spare cores 

allocation at the system level only, without considering assignments of spare 

cores within application/cluster regions. The three possible assignments include: 

1) side assignment, 2) random assignment and 3) uniform assignment. The

authors provide the metrics for evaluation of the task remapping to spare cores 

and point out that the remapping to the randomly placed spare cores performs 

better than to the spare cores placed to the side of the system. Clearly, a spare 

core allocated at a great distance from an application drastically decreases 

performance of the entire system. 

In contrast, we propose to incorporate spare cores at the side of each cluster 

(region) instead of spare cores assignment at the system level only. Depending 

on the size of an application, a fixed number of spare cores is provided to a 

corresponding cluster agent allowing it to tolerate faults while maintaining the 

performance of the computations at an adequate level. We provide an algorithm 

for spare cores utilization at the cluster level. In addition, we propose to initiate a 

local reconfiguration procedure on a faulty cell in order to recover its 

functionality. When this procedure is complete, the cluster agent reallocates the 

task back restoring the original performance of computations. 

There are several other works that propose dynamic (re)mapping of 

applications. Some of them are single-objective, i.e., they focus on minimizing, 

for instance, energy consumption [43]. Other works address simultaneous 

optimization of mapping and software-hardware partitioning without considering 

faults of the platform [44]. In our approach, we propose to integrate and 

uniformly distribute the reallocation and reconfiguration functionality within the 

agents hierarchy such that a high level of fault-tolerance is achieved while 

performance remains at an adequate level. Furthermore, to the best of our 

knowledge, all of these approaches have been developed informally, w.r.t. 

correct-by-construction and proof-based development, while our approach is 

supported by the Event-B formal framework which provides the development of 

a system through refinements and correctness proofs. 

One technique to provide resilience to physical faults is to use redundancy. 

For example, Bolchini, Carminati and Miele [8] propose to replicate the whole 

application or some of its threads in order to detect and tolerate failures of 

processors. They assume data parallel programs as well as consider duplication 

with comparison, triplication and duplication with comparison and re-execution 

fault-tolerance (FT) techniques. The authors propose an adaptation engine that 

acts according to the evolving environment. They consider several parameters, 
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called knobs, which the adaptation engine needs to take into account. The 

adaptation engine incorporates observe-decide-act loop that allows for achieving 

adaptability. 

Another approach to replicating dataflow actors has been proposed by 

Pinello, Carloni and Sangiovanni-Vincentelli [38]. The authors consider a fault 

model, in which components are fail-silent, i.e., they either produce a correct 

result or produce no result. To effectively detect failures, the authors rely on 

failure patterns proposed in [45]. These patterns describe a set of vertices of a 

process graph that may fail within the same iteration. The authors use software 

replication for critical tasks statically at design time, where each replica is then 

executed on a separate control unit. Using this technique, the authors describe a 

fault-tolerant data flow. 

An approach to tackle hardware failures in process networks has been 

proposed by Ceponis, Kazanavicius and Mikuckas [42]. The authors present an 

extension of Kahn process networks, namely Error-Proof Process Network 

(EPPN). They give operational semantics of EPPN in the form of labelled 

transition system, where concurrent nodes communicate via first-in-first-out 

(FIFO) channels. The nodes can check whether the channels are full or empty 

and can proceed to blocking write or read, respectively. Relying on this, the 

authors show a dynamic reconfiguration mechanism where the nodes adapt to 

faults by transferring actions of a faulty node to an adjacent non-faulty 

functional node and by accordingly adjusting communication using checks on 

the FIFO channels. While this mechanism enables further execution of the nodes 

and helps them to synchronize data, the network may become non-deterministic. 

When functionality of a failed node is delegated to a non-faulty operating node, 

data loss occurs. Moreover, this can also lead to deadlocks due to blocking 

reading and writing. To tackle these problems, the authors introduce the default 

value. Although the mechanism seems to fulfil continuous and on-time result 

delivery, the default value may not completely compensate data loss. 

Similarly as in [8][38][42], we consider hardware failures of PUs in the 

underlying many-core platform. However, in contrast to [8][38][42], we rely on 

dynamic reconfiguration of the platform that can be performed by agents 

integrated into the platform [9][12]. The dynamic reconfiguration includes tasks 

reallocation, which enables uninterruptable execution of applications [5][39] and 

avoids resource wasting caused by duplicating applications or threads (actors). 

Nonetheless, as in [42], the tasks may lose data when reallocated. To avoid this, 

we propose an FT mechanism, in which the reallocated tasks operate on the 

current values instead of the default ones. Therefore, the determinism of the 
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application is preserved. Furthermore, our FT mechanism is not restricted to data 

parallel applications, but can also be applied to functionally parallel ones.  

From the related work above, we can observe that the proposed approaches 

either are very specific, which makes it difficult to apply them to other 

application domains, or they do not provide the mechanism for efficient 

utilization of spare resources, or they focus on specific objectives, so that some 

attributes are neglected, or they require duplication of the tasks execution, i.e., 

reduce utilization and performance of the underlying platform. To overcome 

these drawbacks, agent-based management systems have been studied. 

5.2 Formal and Informal Agent-based 

Systems Design 

An informal design of the three-level hierarchical agent-based management 

system has been explored by Guang [12]. The author studies a design paradigm, 

namely Hierarchical Agent-based Adaptation (H2A), that addresses the 

monitoring, decision making and reconfiguration processes. The main objective 

of the proposed approach is the dynamic performance optimization based on the 

monitored status. The work presents the hierarchical partition of the 

functionality among the agents such that monitoring and reconfiguration of a 

system can be performed efficiently. The author formulates the 

software/hardware (SW/HW) co-synthesis guidelines for each level of the 

hierarchy and implements the proposed system in order to evaluate energy 

consumption and overhead. The evaluation results show that H2A can provide 

adaptation services to reduce energy consumption while the overhead of the 

proposed system is marginal. Moreover, relying on the trade-off between energy 

consumption, latency and area overhead, the author suggests that a separate 

physical network of agents best fits the aforementioned criteria. 

In addition to the energy management, the work in [12] presents an approach 

to dynamic clusterization in order to address the dependability attribute of the 

system. The dynamic clusterization allows a cluster agent to be assigned to any 

cell whilst any cell can be allocated to any cluster. The author considers failures 

of processing cores assuming that the cell agents can detect them by using 

various mechanisms. If a core where a cluster agent has been allocated fails, a 

new core can be configured as a cluster agent. If a core with an application task 

fails, a spare core can be used as a substitution. Thus, a number of spare cores is 

needed. However, the decision on the use of spare cores is undertaken by the 

platform agent. In case there are many applications mapped to the platform, 
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there may not be cores available as spares. In this case, the platform agent may 

restructure clusters such that a core from one cluster is used as a spare for 

another cluster. Additionally, when reconfiguring the platform, the platform 

agent updates the necessary data structures of all the agents such that a new 

configuration can proceed normally. Hence, the overall performance of the 

platform may decrease significantly. In the worst case scenario, an application 

may stop execution and may not be able to produce the result due to various 

delays and tasks/cores reallocation. 

Similarly to [12], we adopt the three-level hierarchical formation of agents 

that have a physically separated communication network. We also consider 

performance and resilience requirements simultaneously. However, in contrast 

to [12], we propose to evenly distribute decision making and reconfiguration 

activities among the agent levels in the hierarchy in order to achieve the required 

level of performance and resilience of the platform. In particular, the platform 

agent maps an application in such a manner that a number of spare cores is 

provided to the cluster agent during the mapping. Furthermore, the platform 

agent dynamically creates and destroys a corresponding cluster agent when an 

application is mapped to and released from the platform, respectively. 

Additionally, the platform agent can remap the whole application or a particular 

task in case all the spare cores within the cluster have been utilized and there is a 

new fault. In this case, the platform agent dynamically adjusts the cluster and the 

cluster agent according to the new configuration.  

Since the platform may contain a large number of cores (thousand-core) and 

many applications can be mapped on such a platform, the reallocation of a task 

has to be performed efficiently while still allowing efficient execution of an 

application. Hence, we integrate dynamic tasks reallocation procedure into the 

functionality of a cluster agent. The cluster agent manages a set of cores on a 

smaller scale than the platform agent which is more effective and efficient. We 

propose an algorithm for efficient utilization of the provided spare cores and 

evaluate its performance. In our opinion, the three-level architecture we propose 

provides scalability and coherent structure for many-core NoC-based platforms. 

The functionality of the agents in this architecture is more balanced enhancing 

dependability of the platform and not overloading the platform agent. 

Furthermore, our approach has been developed following the refinement-based 

and correct-by-construction approach allowing formal verification by 

discharging proof obligations. 

A formal approach to specifying agent-based systems is presented by Andres, 

Molinero and Nuez [46]. This approach allows designers to describe an agent-
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based system in terms of communication cellules that are organised into a 

hierarchy. The authors focus on a mathematical framework for describing such a 

generic hierarchical agent-based system. However, as the authors state, this 

approach is difficult to apply for complex systems. Furthermore, this approach 

does not support reconfiguration procedures nor provides verification means for 

proving the correctness of the system being modelled. Instead, the approach 

supports simulation of a system. 

The integration of Z notation and X-machines proposed by Ali and Zafar [47] 

enables modelling of agent-based system behaviour and supports data modelling 

as well as property analysis. The authors focus on the development of 

specifications using X-machines and proving their properties using the Z 

notation. However, the authors do not consider a hierarchical scheme of an 

agent-based system within their framework, which may lead to increased 

complexity in its application to large-scale many-core platforms. 

In another Event-B approach presented by Lanoix [48], the author refers to a 

platoon problem, where several vehicles are moving one after another 

simultaneously. The author considers the vehicles as a situated multi-agent 

system where agents exchange the information at one level, i.e., a system with a 

flat architecture. Hence, this approach may not be applicable to hierarchical 

agent-based systems nor provide scalability for such complex systems. 

Moreover, the author does not consider faults that may occur in the system and, 

consequently, reconfiguration procedures to be integrated. 

There are also other approaches to the design of agents. For instance, Araragi 

et al. [49] analyze the three formal methods for modelling agents computations, 

namely Erdös [50], Nepi
2
 [12] and I/O automata [51]. The authors study models 

of client-request components and present both advantages and drawbacks of 

these formalisms. In particular, Erdös is an agent programming language 

suitable for knowledge-based programming and reasoning. The semantics of the 

programs written in this language can be easily understood due to the 

knowledge-based style. The programs can also be verified in an automated 

manner. However, the verification is performed using computational tree logic 

(CTL) model checking, i.e., it can be only executed for finite state systems. 

Nepi
2
 is a network programming system. It is based on π-calculus, thus, a system 

can be specified concisely using the π-calculus primitives. However, the Nepi
2
 

system does not support property specification and verification. Finally, I/O 

automata allow for modelling components that interact. These automata support 

compositional, invariant and simulation proofs. However, there is little work in 

application of these automata to modelling of dynamic systems such as agent-
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based systems. That is, it may be difficult to apply them to modelling such 

systems, especially when considering hierarchical organization of agents.  

The related work described above shows that the informal development (i.e., 

implementation in a programming language) of complex agent-based 

management systems enables designers to quantitatively evaluate non-functional 

properties, e.g., performance, area overhead and power consumption. On the 

other hand, rigorous specification of such systems is needed to guarantee their 

predictable and correct behaviour with respect to functional requirements. To 

enable reasoning about both functional and non-functional properties, the 

derived rigorous specification is needed to be translated into a programming 

language in an automated manner. Since we focus on the HW part of the agent-

based management system, there are several works related to HW code 

generation from formal models. 

5.3 Code Generation 

Seceleanu [52] proposed an approach to deriving synchronous hardware 

systems. The approach relies on the Action Systems formalism and enables 

modeling of a synchronous system as read/write operations. The main idea of the 

approach is that a combinational (asynchronous) circuit that consists of logic 

gates is followed by a synchronous component, namely a D-flip-flop, which 

operates on the clock signal. In addition, the author points out the mapping of 

such modeling to a behavioral VHDL description, where all operations are at 

one level of code, i.e., the description without components. Despite the fact that 

the Action Systems framework is similar to the Event-B formalism, it has a 

different underlying structure, which makes it infeasible to completely apply this 

approach to Event-B models. Furthermore, in contrast to this approach, we also 

propose to derive component-based models and generate structural VHDL 

descriptions with library components. 

Hallerstede and Zimmermann [53] proposed an approach to VHDL code 

generation from formal B models. The authors describe the mapping between B 

models and VHDL code through a middleware language B0, which allows one 

to generate code without components. This approach is adopted by AtelierB tool 

and supported by industrial partners [54]. Since Event-B is a descendant of the B 

method that allows us to model reactive systems and has a different underlying 

structure, the application of this approach to Event-B models is not 

straightforward. Moreover, we also consider a component-based design flow, 

where components are injected into a formal model in the form of functions. 
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This design flow allows for generating a structural VHDL description from an 

Event-B model. 

There also exist several formalisms specifically developed for specification 

and verification of hardware systems, e.g., Signal [55], Esterel [56] and ForSyDe 

[57]. Signal is dedicated to data-flow applications domain while Esterel is for 

control-flow ones. ForSyDe represents the design methodology targeting at 

covering both domains. The commonality of these languages is that they are all 

based on the perfect synchrony hypothesis. This hypothesis assumes a zero delay 

between consuming inputs and producing outputs. In addition, only Signal and 

ForSyDe support the notion of refinement. Refinement in Signal relies on 

checking if simulation of inputs and outputs preserves flow-equivalence (model 

checking) [58]. Refinement in ForSyDe stands for the mapping one process 

network onto another one restricting these networks to have the same inputs and 

outputs [57]. Moreover, these transformations have to be performed according to 

the predefined library. 

BlueSpec [59] has been proposed as another solution to formal hardware 

verification and code generation. The language represents an extension of 

SystemVerilog and has a sound semantics allowing one to verify certain 

properties. It also supports design by refinement offering a possibility of 

integrating automated reasoning into the design flow [60]. However, automated 

verification of system correctness is provided by external theorem provers or 

model checkers such as PVS [60] and SPIN [61]. 

In contrast to these approaches, we propose to use the Event-B formalism, 

which provides data and superposition refinement [62]. These types of 

refinement allow for stepwise unfolding of system functionality without 

restricting the model to have the same number of variables in refinements. 

Furthermore, one can postulate vital properties in terms of invariants for every 

refinement step. Following this approach, the discharging (proving) of proof 

obligations serves as the guarantee that each refinement step preserves invariants 

and that concrete refinement step sustains their abstract counterparts. After the 

required model is derived and proved correct, a behavioral or structural VHDL 

description can be generated directly from the model. 

Evans [63] describes the mapping of VHDL to B and Communicating 

Sequential Processes (CSP) methods. The author proposes to derive a B model 

from VHDL and formalize requirements with CSP. This approach uses a model-

checking technique that requires modification and re-checking of the 

implementation until the desired integrity level is achieved. 
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A BHDL tool has been proposed for digital circuit design [64]. The tool 

converts a VHDL description into a B specification with two machines: an 

abstract that represents a VHDL entity and an implementation that corresponds 

to the architecture. Then, these two machines are verified using the B engine and 

the VHDL comments are interpreted as invariant properties. In contrast to this 

approach, we derive an implementable deterministic Event-B model following 

the usual refinement-based development. Then, components are injected into the 

model, so that a structural VHDL description can be generated. 

Instead of concentrating on the derivation of formal models from 

implementations, we focus on the code generation from the formal models. We 

employ the Event-B design methodology, where the model development follows 

the refinement approach and eventually ends in code generation in an automated 

manner. In addition to behavioural VHDL description generation, we propose to 

translate a model into a description with components (i.e., a structural 

description) in order to derive a more efficient implementation. 
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6  Discussion and Research Directions 

In this chapter, we conclude the work described in the thesis. Additionally, 

we discuss the limits of the proposed approaches and outline future research 

directions. 

6.1 Conclusion 

As parallel and distributed computing becomes central in modern 

computations, many-core platforms are envisaged to be used in various 

application domains including critical ones. To provide resilience of the platform 

and maintain its performance at an acceptable level, we have designed an agent-

based management system that monitors the state of the platform and applies 

various dynamic reconfiguration mechanisms when necessary. Considering 

hierarchical formation of the agents, the (re)configuration procedures have been 

evenly distributed such that effective and efficient monitoring and recovery are 

possible. We have developed algorithms for initial configuration (mapping) and 

dynamic reconfiguration (tasks reallocation). The initial mapping algorithm 

provides each application with a number of spare resources whilst the tasks 

reallocation algorithm utilizes these spare resources in an intelligent manner. 

The proposed agent-based management system with (re)configuration 

mechanisms has been developed following the formal refinement approach, so 

that its behaviour can justifiably be trusted. In other words, the use of formal 

specification and verification methods help us to mathematically ensure that the 

developed system behaves correctly with respect to the specified properties. 

Moreover, we have presented the guidelines that help designers to build such 

complex systems in a rigorous manner. 

When tasks are dynamically reallocated, they may lose data which may lead 

to the production of incorrect result. To tackle this problem, we have proposed a 

scalable mechanism in which the communication between tasks uses duplicate 

packets. We have presented algorithms for the intelligent packet handling 

considering different types of tasks. 

A natural logical step after the specification of a system is derived lies in an 

automated code generation. This lowers the probability of introducing design 

faults and facilitates easier evaluation of non-functional requirements in a real-

world environment. To address this problem, we have proposed mechanisms that 

allow designers to generate a behavioural (without components) or a structural 

(with components) hardware description directly from a formal model. 
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Since efficiency is one of our objectives, we have also evaluated performance 

of the proposed mechanisms on a commercially available platform TilePro by 

Tilera [3]. The evaluation results have illustrated that the proposed algorithms 

produce a marginal overhead and perform efficiently while allowing applications 

to produce the expected result. 

Therefore, the main goal of the thesis has been accomplished by proposing a 

design flow for the development of complex systems such as agent-based 

management systems. This design flow starts with a formal rigorous modelling 

of a system and ends in an automated code generation. 

6.2 Future work 

Although the evaluation results show efficiency of the proposed system in 

terms of performance and area overhead, the number and the placement of spare 

cores affects the utilization and the performance of the underlying platform. 

Thus, one research direction includes exploration of possible placements of 

spare resources within an application region in order to find an optimal solution. 

For instance, spare resources can be placed randomly following the approach 

presented in [39]. In addition, we will investigate reallocation of tasks to 

unallocated spare cores within other clusters. 

The proposed dynamic reconfiguration procedures constitute one part of 

resilience to failures. The other part requires techniques to detect these failures. 

Hence, another direction of our research is to explore failure detection 

mechanisms. In particular, various techniques such as model-based diagnosis 

[65] or runtime verification [66] can be integrated into the agents in order to 

provide comprehensive and fast failure detection. This will allow for rapid 

invocation of the proposed dynamic reconfiguration procedures. 

As mentioned above, the rigorous formal development provides means to 

insure correct behavior of a system with respect to postulated properties by 

utilizing mathematical proofs. Moreover, the automated code generation 

prevents a designer from the introduction of design faults into the system while 

implementing/coding the derived specification. However, the derived 

implementation is run on processing units as well. Despite the fact that the 

agents are simpler than the application tasks, physical failures of PUs can occur 

as well. Hence, resilience of the agent-based management system can also be 

improved by considering these failures and dynamic reconfiguration of the 

agents. 

Finally, the system composition of software and hardware poses the question 

of SW/HW co-design, where implementations of both parts can be obtained in 
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an automated manner. Hence, formal rigorous SW/HW co-design has also a 

particular research interest. This affects the system design flow in the following 

directions. The first one is the decomposition of Event-B models which gives us 

an opportunity to construct a hierarchical structure of a model, so that this 

structure is reflected in the implementation. The second direction is the 

introduction of combinatorial components that depend on the clock signal and 

allow a designer to derive a time-aware model as well as to generate 

synchronous code from this model. 
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A Network-On-Chip (NoC) platform is an emerging topology for large-scale applications. It provides a
required number of resources for critical and excessive computations. However, the computations may
be interrupted by faults occurring at run-time. Hence, reliability of computations as well as efficient
resource management at run-time are crucial for such many-core NoC systems. To achieve this, we utilize
an agent-based management system where agents are organized in a three-level hierarchy. We propose
to incorporate reallocation and reconfiguration procedures into agents hierarchy such that fault-toler-
ance mechanisms can be executed at run-time. Task reallocation enables local reconfiguration of a core
allowing it to be eventually reused in order to restore the original performance of communication and
computations. The contributions of this paper are: (i) an algorithm for initial application mapping with
spare cores, (ii) a multi-objective algorithm for efficient utilization of spare cores at run-time in order
to enhance fault-tolerance while maintaining efficiency of communication and computations at an ade-
quate level, (iii) an algorithm integrating the local reconfiguration procedure and (iv) formal modeling
and verification of the dynamic agent-based NoC management architecture incorporating these algo-
rithms within the Event-B framework.
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1. Introduction

Excessive many-core computations require a large number of
resources to be available at their disposal. Critical applications, in
their turn, require fault-tolerance mechanisms that can be exe-
cuted at run-time so that the computations can continue without
interruption. In addition, the computations have to be performed
in an efficient manner. Hence, it is necessary to provide a platform
and means that would satisfy these requirements.

A Network-On-Chip (NoC) platform is an emerging topology for
large-scale applications [1]. It provides a desired number of re-
sources for critical and excessive computations from, for example,
biomedical [2] or aerospace domain [3]. However, special means
are required to monitor the state of the platform and to apply dy-
namic procedures for tolerating faults. These means are usually
implemented in the form of agents [4]. The agents help to avoid
overloading the NoC platform with monitoring and recovering
activities while the platform performs routing algorithms, etc.
The bigger the platform, the more agents it requires. In order for
the system to manage a large number of agents, these agents are
organized in a hierarchy, typically of a multi-level structure [5].
This hierarchy usually consists of the platform (system) agent
managing the whole platform, cluster agents operating on certain
regions (i.e., sets of cores where applications are mapped) and cell
agents processing local (cell) information. The hierarchy permits
the agents to exchange the data about the current state of the plat-
form as well as to tolerate faults by applying run-time reconfigura-
tion procedures at different levels.

The use of NoC platforms with their run-time management sys-
tems in critical applications requires these platforms to be reliable.
One of the appropriate approaches for specifying and verifying reli-
able NoC systems is provided by formal methods. Formal develop-
ment enables stepwise and correct-by-construction design of the
specification of a system allowing mathematical reasoning of its
correctness. Moreover, formal methods are recommended by
safety standards [6] for the development of safety critical systems
which we envisage to be one of the application domains for the
system we develop in this paper. We adopt the Event-B formalism
[7] as the primary framework for the formal development. Event-B
supports system level modeling as well as supplies a proving
mechanism to reason about the correctness of the specification
w.r.t. the functional properties (requirements) postulated as
invariants. The specification within Event-B is created following

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.06.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.06.001
mailto:Sergey.Ostroumov@abo.fi
http://dx.doi.org/10.1016/j.sysarc.2013.06.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc
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the refinement-based approach, i.e., incremental unfolding of sys-
tem properties supported by mathematical proofs. Furthermore, it
has adequate tool support through the Rodin platform [8].

In our approach, we propose to incorporate dynamic realloca-
tion and reconfiguration procedures at different levels of the
agents hierarchy. In particular, we show a specific initial applica-
tion mapping to a region with spare cores at the platform agent le-
vel. The platform agent also assigns a cluster agent to each
application. Additionally, the platform agent can remap the entire
application or reallocate a task of a particular cell outside the appli-
cation region if all the spare cores within the cluster have been uti-
lized and there is a new fault. However, the platform may contain a
large number (thousand) of cores with many applications mapped
on such a platform. Hence, the reallocation of a task has to be per-
formed efficiently while still allowing efficient execution of an
application. To achieve this, a corresponding cluster agent utilizes
the available spare cores when moving a task from a faulty core to
a spare one within the application region. This allows a more effi-
cient task migration in terms of reallocation speed and power con-
sumption than task migration to free cores allocated at a great
distance from the region. After the task migration is complete, a lo-
cal cell agent initiates the local reconfiguration procedure that en-
ables the faulty core to recover its functionality and to be
reinvolved in the computations. This permits the region and,
hence, the application to restore the original performance of the
computations. The specification of this system is developed within
Event-B and supported by mathematical proofs of its correctness.

The contributions of this paper are (i) an algorithm for the ini-
tial application mapping and tasks allocation with free spare cores,
(ii) a multi-objective algorithm that facilitates fault-tolerance of
the platform while maintaining performance of communication
and computations at an adequate level, (iii) an algorithm integrat-
ing the local reconfiguration procedure and (iv) the Event-B formal
modeling and verification of a hierarchical agent-based dynamic
management architecture for NoCs incorporating these algorithms.
In this architecture, the platform agent dynamically creates and
destroys the cluster agents. The cluster agents, in their turn, are
fully distributed, i.e., they independently of each other execute
monitoring and reconfiguration procedures utilizing the spare
cores without overloading the platform agent. We follow the
refinement approach where the base system model has been de-
rived from a previously developed model [9].

The remainder of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we overview the Event-B
formal framework, briefly describe agent-based management sys-
tems for NoC platforms and present an approach to formal devel-
opment of such systems. In Section 4, we give the algorithms for
the reallocation and reconfiguration procedures performed at dif-
ferent levels of the hierarchy. In Sections 5, 6 and 7 we formally de-
velop the specifications of the platform, cluster and cell agents
through refinement, respectively. Finally, we conclude the paper
and highlight the directions of the future work in Section 8.
2. Related work

A fault-tolerant reconfigurable NoC has been proposed by Mota-
medi et al. [3]. The authors consider application specific architec-
ture for avionic systems. In particular, they use a star network
topology as the main active formation where the so called cockpit
switch is placed in the center of the topology. The redundancy is
achieved by placing redundant links in the system. When a fault
is detected, the topology is switched (reconfigured) from the star
formation to the ring one. In addition, the authors utilize an
Embedded Reliable Reduced Instruction Processor (ERRIC) as a
computational unit. ERRIC has been specially designed for perma-
nent faults. Additionally, the authors show the prototyping results
where the overhead of using their approach is marginal while the
required level of fault-tolerance is achieved. Although ERRIC is
used as a computational unit, it has a reduced instruction set
which may not be applicable to application domains other than
avionics. Moreover, ERRIC is implemented on Field-Programma-
ble-Gate-Array (FPGA) or Application-Specific-Integrated-Circuit
(ASIC), where a fault may also occur and, hence, this processing
unit is not available any more.

In comparison, instead of reconfiguring the NoC topology, we
consider a topologically fixed NoC platform that is not application
specific. We note however that the approach we propose in this pa-
per can be applied to any topology and any type of routing schemes
since it does not depend on the underlying platform. Our approach
allows for executing applications without interruption and recov-
ering the functionality of the platform by applying dynamic task
reallocation and local cell reconfiguration procedures, respectively.
The local reconfiguration, which is executed on the processing unit
instead of the topology, recovers the operational mode of the for-
mer. Nevertheless, redundant routers (and/or links) can comple-
ment our approach.

A three-level architecture for agent-based monitoring of the
NoC platform has been proposed by Guang et al. [10]. The approach
allows for effective monitoring of the state of the NoC platform.
The authors present a structured framework for designing such a
system. However, the framework only describes the main defini-
tions of the hierarchical agent-based system and do not consider
faults of the NoC elements. Moreover, the framework is not for-
mally verified.

Guang et al. [11] have also proposed to incorporate reconfigura-
tion procedures at coarse-grained (system) and fine-grained (local)
levels for tolerating permanent and transient faults in many-core
(thousand-core) Systems-On-Chip. They have suggested a two-le-
vel architecture where the system agent manages the whole plat-
form and the local agent monitors the local component such as a
router. The system also uses a portion of spare cores that are uti-
lized if some processor fails. However, the authors do not show
where these spare cores are located and do not describe the algo-
rithm of utilization of these spare cores. This may lead to a problem
of drastically decreased performance, if these spares are at a great
distance from applications running computations. Moreover, the
authors only consider the faults of the routers in which case the lo-
cal agent executes reconfiguration by replacing a broken wire with
a spare one. In addition, the functionality of the system agent in-
cludes many activities that may lead to a failure state of the agent
itself, although the system agent is designed with higher reliability.

In contrast to [10,11], we adopt a three-level architecture where
reconfiguration procedures are incorporated into different levels of
the hierarchy such that the platform can be dynamically adapted
and healed, if necessary. In particular, the platform agent can re-
map the entire application or reallocate a task of a particular cell
within the platform. This only occurs if all the spare cores within
the cluster have been utilized and there is a new fault. Since the
platform may contain a large number of cores (thousand-core)
and many applications can be mapped on such a platform, the real-
location of a task has to be performed efficiently while still allow-
ing efficient execution of an application. Hence, we propose to
introduce the reallocation procedure within the region into the
functionality of a cluster agent, which is responsible for its cluster
(region). These agents are dynamically created and destroyed
when an application is mapped to and released from the platform,
respectively. Finally, the local cell agent executes the local recon-
figuration procedure allowing the cell to recover. In our opinion,
the three-level architecture we propose provides better scalability
and structure for complex NoC platforms. Moreover, the function-
ality of the agents in this architecture is more balanced enhancing
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dependability of the platform and not overloading the platform
(system) agent. Furthermore, our approach has been developed fol-
lowing the refinement-based and correct-by-construction ap-
proach allowing formal verification by discharging proof
obligations.

A similar approach to remapping with spare cores has been pro-
posed by Chou and Marculescu [12]. The authors study three pos-
sible schemes of spare cores allocation at the system level only,
without considering assignments of spare cores within applica-
tion/cluster regions. The three possible assignments include: (1)
side assignment, (2) random assignment and (3) uniform assign-
ment. The authors provide the metrics for evaluation of the task
remapping to spare cores and point out that the remapping to
the randomly placed spare cores performs better than to the spare
cores placed to the side of the system. Clearly, a spare core allo-
cated at a great distance from an application drastically decreases
the entire system performance.

In contrast, we propose to incorporate spare cores at the side of
each cluster (region) instead of spare cores assignment at the sys-
tem level only. We note however that random (or other types of)
assignment of spare cores within the region is out of the scope of
this paper. Depending on the size of an application, a fixed number
of spare cores is provided to a corresponding cluster agent allowing
it to tolerate faults while maintaining the performance of the com-
putations at an adequate level. We provide an algorithm for spare
cores utilization at the cluster level. In addition, we propose to ini-
tiate a local reconfiguration procedure on a faulty cell in order to
recover its functionality. When this procedure is complete, the
cluster agent reallocates the task back restoring the original perfor-
mance of computations.

There are several other works proposing dynamic (re)mapping
of applications. Some of them are single-objective, i.e., they focus
on minimizing, for instance, energy consumption [13]. Other works
address simultaneous optimization of mapping and software-hard-
ware partitioning without considering faults of the platform [14].
In our approach, we propose to integrate and uniformly distribute
the reallocation and reconfiguration functionality within the
agents hierarchy such that a higher level of fault-tolerance is
achieved while performance remains at an adequate level. Further-
more, to the best of our knowledge, all of these approaches have
been developed informally, w.r.t. correct-by-construction and
proof-based development, while our approach is supported by
applying the Event-B formal framework through refinements and
correctness proofs.
3. Preliminaries and proposed approach

3.1. The Event-B formalism

Event-B is a formalism for stepwise and correct-by-construction
development of a system [7]. A specification in Event-B consists of
two parts: a context and a machine. The context can be extended
by another context while the machine can be refined by another
machine. In addition, the machine can refer to the context data,
if this machine sees this context.

The context defines the static part of the model – data types
(sets), constants, and their properties given as a collection of axi-
oms. The machine describes the dynamic behavior of the system
in terms of its state (model or state variables) and state transitions,
called events. The essential and guaranteed system properties are
formulated as invariants.

The machine is uniquely identified by its name <machine iden-
tifier>. The state variables of the machine are declared in the vari-
ables clause and initialized in the initialisation event. The
variables are strongly typed by constraining predicates given in
the invariants clause. The overall system invariant is defined as
a conjunction of constraining predicates and the other predicates
stating the functional system properties that should be preserved
during system execution. The machine may contain so-called con-
vergent events that are executed several times in a row. These
events must eventually terminate in order for other (non-conver-
gent) events to take place. This fact is assured by a variant intro-
duced into the variant clause. The variant represents a natural
number (or a finite set) whose value (or cardinality) is decreasing
each time a convergent event is executed. The behavior of the sys-
tem is then defined by a collection of atomic events specified in the
events clause. The syntax of an event is as follows:

E ¼ ANY x WHERE g THEN a END

where x is a list of event local variables, the guard g is a conjunction
of predicates over the state variables and the local variables and the
action a is a collection of assignments to the state variables.

The guard is a predicate that determines the conditions under
which the action can be executed, i.e., when the event is enabled.
If several events are enabled simultaneously, then any of them
can be chosen for execution non-deterministically. If none of the
events is enabled, then the system deadlocks.

The action of an event is a composition of assignments executed
simultaneously and denoted as ||. An assignment to a variable can
be either deterministic or non-deterministic. A deterministic
assignment is defined as y := E(v), where y is a list of the state vari-
ables and E(v) is a list of expressions over the state variables v. A
non-deterministic assignment is specified as y :| Q(v, y0), where
Q(v, y0) is a predicate and the primed variable y0 represents a
new value the variable y gets after the event execution. As the re-
sult of a non-deterministic assignment, the variable y gets such a
value y0 that Q(v, y0) holds.

The semantics of Event-B events is defined using before-after
(BA) predicates [15]. An action of an event is seen as a BA that de-
scribes a relationship between the system state before (v) and after
(v0) the execution of the event. The formal semantics provides us
with a foundation for establishing system correctness. To verify
correctness (consistency) of a specification, we should discharge
a number of proof obligations. In particular, each event of the mod-
el should be consistent with the invariant preservation proof obli-
gation (INV) whereas every event that contains a non-
deterministic assignment should also satisfy event feasibility (FIS):

Inv ^ ge ) ½BAe�Inv ðINVÞ

Inv ^ ge ) 9v0 � BAe ðFISÞ

where Inv is a model invariant, ge and BAe are the guard and the be-
fore-after predicate of the event e, respectively, and [BAe]Inv stands
for the substitution in the invariant Inv according to the before-after
predicate BAe of the event e.

When modeling a continuous procedure (e.g., a loop), some
events may be executed several times in a row (convergent
events). To guarantee that the number of times when such conver-
gent events are executed is finite, one has to provide a variant and
show the consistentency of these events with the following proof
obligation [16]:

8S;C;V � A ^ I) finiteðVarÞ ^ cardð½BAe�VarÞ < cardðVarÞ ðVARÞ

where S and C represent sets and constants introduced into con-
texts, respectively. V stands for a set of state variables. A is a collec-
tion of axioms. I depicts a set of invariants. Var is an expression (a
variant) that denotes a finite set of values.

The specification within Event-B is developed in a stepwise
manner through refinements. Invariance properties are preserved
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by refinement, hence, do not require to be re-proved. However,
concrete (refined) events must be able to simulate their abstract
counterparts according to some gluing invariant. This is formally
ensured by discharging the guard strengthening (GRD) and action
simulation (SIM) proof obligations [16]:

8S;C;Sr;Cr;V;Vr;x;xr � A ^ Ar ^ I ^ Ir ^ gr ) g ðGRDÞ

8S;C;Sr;Cr;V;Vr; x; xr � A ^ Ar ^ I ^ Ir ^ BAer ) BAe ðSIMÞ

where all letters with the subscript ‘‘r’’ stand for the refined ver-
sions of the structures described above.

The Rodin platform [8], a tool supporting Event-B, automatically
generates the required proof obligations and attempts to automat-
ically discharge (prove) them. Sometimes it requires user assis-
tance that is provided via the interactive prover. However, in
general the tool achieves high level of automation (usually over
80%) in proving.

3.2. Agent-based monitoring systems for NoCs

NoC is generally considered as an efficient and scalable inter-
connect paradigm [17]. It allows sophisticated applications to be
deployed on many-core platforms and execute their intensive
computations effectively. The cores in an NoC platform are inter-
connected with one structured net that permits the cores to
achieve a high level of communication performance. Hence, these
systems are likely to be used in many applications, especially crit-
ical ones.

Critical applications [2,3] require their computations to con-
tinue without interruption even when a fault occurs. Depending
on the size and the purpose of an application, it may take a large
amount of time for its computations [18], which increases the
probability of faults. Moreover, fault occurrence is rising on
many-core systems because of increasing resource integration
[19]. Due to the criticality of such applications, an NoC platform
has to provide necessary resources as well as redundancy. Hence,
the platform has to implement special means facilitating efficiency,
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redundancy and dynamic reconfiguration. These means are repre-
sented by agents that monitor the state of the platform and apply
necessary mechanisms statically and dynamically.

The number of these agents grows with the size of the platform.
To manage a large number of agents, they are organized in a hier-
archy that typically has a three-level structure generally applied to
a 2D mesh topology [4,5,10]. An example of the architecture we
propose for the system is shown in Fig. 1. In this architecture, a cell
has a heterogeneous structure that contains a control device, i.e., a
local cell agent, and a reconfigurable core: fine-grained (see for
example [20]) or coarse-grained reconfigurable regions (see for
example [21]). It may also contain other dedicated hardware
blocks for faster execution. This structure facilitates dynamic
reconfiguration and recovery of a cell. However, all the cells in
the platform have the same heterogeneous structure. This allows
for efficient mapping and task migration. A local cell agent moni-
tors the state of a corresponding cell and can change the cell
behavior, if necessary. Cluster agents are dynamically created
when an application is mapped onto the platform. They manage re-
gions where applications are mapped by monitoring and, e.g.,
adjusting regional parameters such as frequency and/or voltage.
The platform agent, which is persistent in the system, manages
the whole platform. It creates and destroys cluster agents while
mapping and releasing applications to and from the platform,
respectively.
3.3. Base formal model of agent-based management system

Let us now briefly describe what we have done in our previous
work relating to such agent-based management architectures. In
[9], we have developed a three-level hierarchy of the agents
through refinements. Fig. 2 illustrates the hierarchy of the agents
and their communication with shared variables. This system serves
as the base of the system we develop in this paper.

The developed model proposed in [9] is considered generic such
that it can be instantiated and further developed in accordance to
specific requirements. More specifically, applications have been
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modeled as a deferred set, i.e., they were given to the platform as
an abstract data type without considering application task graphs
[18,22] for efficient mapping. Furthermore, the mapping itself is
modeled as a simplistic function that mapped applications onto
rectangular shaped regions without spare cores whose area is com-
puted as area = x�2, such that x = dn/2e, where x is a number of col-
umns and n is the number of requested resources. This function is
mainly to show the implementation of the simple procedures for
resource searching. In addition, the platform agent can remap the
whole application to another region, if the whole region where
an application is mapped is faulty and there is another region
where the application can be remapped. If there exists no such a
free region, the platform agent can perform a task migration proce-
dure from a faulty cell to another cell within the platform non-
deterministically. This procedure may not be efficient for large-
scale platforms due to the fact that the reallocation procedure
(i.e., task migration) takes a certain amount of time and consumes
power as the platform agent has to find a free core and has to mi-
grate a task to that core. Moreover, the reallocation of a task to a
cell which is allocated at a great distance from other cells of the
application leads to drastically decreased performance since the
communication cost increases.

Cluster agents functionality includes only dynamic voltage/fre-
quency scaling down such that these parameters can only be de-
creased. These procedures could enhance reliability of the
platform. For instance, if the temperature of a cluster exceeds some
threshold, lowering frequency and/or voltage can reduce the dissi-
pated power such that the temperature is decreased. However,
applying only these procedures at the cluster level may not be effi-
cient since the whole cluster runs at a lower frequency, which de-
creases the overall computational performance. Furthermore, the
task reallocation procedure can only be performed by the platform
agent, which may overload it.

Each cell is managed by a local cell agent. Hence, the cell agents
are specified using total functions in order to represent all the cell
agents in the platform. The functionality of the cell agents is mod-
eled using non-deterministic events that had local variables. The
cell agent of a faulty core initiates a local reconfiguration proce-
dure after a task of this faulty core has been reallocated. This pro-
cedure aims at recovering the functionality of the cell, so that it is
reused in the computations. Consequently, the original perfor-
mance of the computations can be restored.

Overall, the specification described in [9] is developed as a
monolithic formal model that includes the generic functionality
of all three levels. Then, it is decomposed using the shared-variable
style [23], where shared variables shown in Fig. 2 represent the
interfaces between the levels, so that we can continue with further
individual refinements. However, the decomposition of the model
turned out to be too restrictive from the refinement point of view.
More specifically, the shared structures (i.e., shared variables and
external events) of a decomposed model could not be refined.
Refinement of the shared structures is an ongoing research topic
within the Event-B community [24]. Currently, the initial results
are not yet implemented in the Rodin platform. Hence, we gener-
ated three models out of the previously developed model only
keeping the details of each level (sets, axioms, variables, invariants
and events) as if the model was decomposed.

3.4. Proposed approach

In this paper, we continue individual parallel refinements of all
three agent levels. Firstly, we adopt an existing mapping algorithm
[13] and extend it with spare cores allocation within a region for the
platform agent. We provide a specific mapping function that substi-
tutes the simplistic function defined previously. The spare cores are
not running computations, i.e., they are in the idle mode, and, hence,
they consume the least power. We consider task graphs that provide
information about the application tasks and transitions (communica-
tion) between these tasks. When the platform agent maps an appli-
cation onto a region, it provides information about tasks allocation
as well as the task graph to a corresponding cluster agent.

Secondly, we propose a new algorithm for efficient utilization of
these spare cores by the cluster level agents. The corresponding
cluster agent, which is created initially when an application is
mapped, reassigns a task of a faulty cell to a spare one considering
an application task graph when a fault occurs. This allows a more
efficient task reallocation in terms of speed (e.g., time consumed
when searching for a free cell and actual reallocation of a task)
and energy consumption than that at the platform level. Further-
more, the cluster agent restores frequency and voltage such that
the computations can proceed as efficient as possible. Conse-
quently, the architecture of the cluster agents is fully distributed,
i.e., each cluster agent independently manages its region by utiliz-
ing the spare cores without overloading the platform agent.

Finally, the cell agent is typically a simplistic control device that
reads the inputs and updates the outputs depending on the values
of the inputs just read. It is usually implemented as a hardware
unit [25] using, for example, VHDL. However, the base specification
that contains total functions and non-deterministic events cannot
be directly used for code generation. Therefore, we continue the
development following the refinement approach such that an
implementable model of the cell agent is derived and VHDL code
is generated [26] from this specification.

When the desired hierarchical structure of the platform, cluster
and cell agents has been derived following a stepwise and correct-
by-construction formal process, the specification of the system is
split into three layers for further individual development. To con-
tinue with further parallel refinements of the agents incorporating
the described functionality, we propose the following design flow:

For the platform agent:
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1. Adjust the mapping function in accordance with the algorithm
proposed in Section 4.1.

2. Refine the model by extending it for processing task graphs that
should be supplied to the platform following the description in
Section 4.2.

For the cluster agents:

1. Extend the functionality such that frequency and voltage can be
restored.

2. Refine the model considering task graphs and the algorithm in
Section 4.3.

For the cell agent towards hardware implementation
(Section 4.4):

1. Refine the specification of the cell agents by specifying coordi-
nates of the agent and eliminating the non-determinism of
events.

2. Refine the model by introducing simply typed variables and
gluing invariants such that the functions are eliminated.

3. If there are variables that are involved in guards and in assign-
ments of a specification simultaneously, these variables repre-
sent a loopback in hardware. To model a loopback, refine
these variables by two simply typed variables, where one of
them is an input and the other one is an output.

In the next sections, we elaborate on the proposed approach in
details. We present algorithms for all three levels and show the for-
mal development of the allocation, reallocation and reconfigura-
tion procedures at different levels of the agents hierarchy.

4. Application mapping and reconfiguration

4.1. Application mapping with spare cores

The application domain we aim at is critical systems [2,3]. On
the one hand, such systems require some redundancy in order to
achieve the necessary level of reliability [6]. On the other hand,
they are envisaged to be deployed on many-core platforms due
to requirements on efficiency in terms of, for instance, power con-
sumption and/or performance (e.g., [31,32]). Therefore, the design
of such systems has to provide a balanced tradeoff between fault-
tolerance and efficiency. This can be achieved by using spare cores
available for utilization when required. Based on [19], the number
of spare cores depends on different factors such as chip yield, man-
ufacturing, service cost, etc. Nevertheless, having spare cores im-
proves dependability.

Considering these requirements, we adopt the generic algo-
rithm to tasks allocation presented by Chou and Marculescu [18]
and extend it with spare cores allocation within a region as shown
in Fig. 3, where n represents the number of requested resources
and n �m returns a quotient.
1: Find for an application a region that contains n requested 
if (n is 1 to 3) then

the number of spare cores = n
region = n rows * two columns

else {if (n > 3)} 
the number of spare cores = (n + 1) ÷ 2 
region = (n + 1) ÷ 2 rows * three columns

end if
2: if (the region is found ) then map the application tasks the

a) their communication is as efficient as possible [
b) the rightmost column retains free spare cores

end if

Fig. 3. The algorithm of initial applic
The platform agent performs the initial application mapping in
the following manner. The application is mapped onto a rectangu-
lar shaped region that contains the rightmost column of spare
cores. Depending on the number of resources requested by an
application, the region with spare cores varies. If an application re-
quests from one to three cores, the region contains the duplicated
number of cores such that the number of spare cores in the right-
most column conforms to the number of requested resources.
Since we target this system towards critical (safety–critical) appli-
cations and the corresponding standards [6] require redundancy
for applications with high safety integrity level, we propose to allo-
cate spare cores within a region so that their total number equals
to the half of the requested number of cores for an application
requiring more than three cores. Hence, the region has at most
three columns, where the rightmost column contains unallocated
spare cores. This allows a balanced tradeoff between fault-toler-
ance and efficiency for such an application (Fig. 4). In Fig. 4 and la-
ter on, the circles with ‘‘R’’ represent cores running computations
while the circles with ‘‘U’’ are the spare (unallocated) cores.

When an application is mapped onto a corresponding region,
the platform agent allocates application tasks inside this region
considering the application task graph.
4.2. Tasks allocation within a region

A task graph (or an application characteristic graph) [18,22] is a
directed graph that contains the information about vertices and
transitions. The vertices specify the tasks (or groups of tasks) while
the transitions show the communication between the tasks. In par-
ticular, the transitions denote the communication bandwidth be-
tween different tasks. Therefore, while processing the task graph
of an application, the agents can utilize the NoC platform in an effi-
cient manner.

The tasks allocation procedure runs in a similar manner for all
cores within the region as in [18], except for the cores allocated
at the rightmost column. These cores remain unallocated for future
utilization by a corresponding cluster agent. The platform agent
starts tasks allocation by assigning the task that communicates
the most with other tasks (i.e., the task that has the most number
resources and the calculated number of spare cores:  

re such that :
18]

ation mapping with spare cores.
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Table 1
Simulation of communication with the core at position 1.

Source Destination Average delay,
cycles

Energy,
Joule

Received
packets

0 1 4 2.469e�09 4
2 1 5.75 2.469e�09 4
3 1 6.25 4.938e�09 4
6 1 7.75 4.938e�09 4
8 1 9.25 7.407e�09 4
15 1 12 1.234e�08 4

Table 2
Simulation of communication with the core at position 0.

Source Destination Average delay,
cycles

Energy,
Joule

Received
packets

1 0 5 2.469e�09 7
2 0 9.85714 4.938e�09 7
3 0 9.42857 7.407e�09 7
6 0 10.2857 7.407e�09 7
9 0 8.71429 7.407e�09 7
15 0 21.7143 1.481e�08 7
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of links in the task graph) to a core in the center of the region. Then,
it proceeds with allocating tasks that communicate with this cen-
tral task with the highest bandwidth to the cores around the cen-
tral one. Finally, it assigns the remaining tasks to the free cores that
are left after the central task and the most communicating tasks
are allocated. An example of application mapping is shown in
Fig. 5, where the circle with ‘‘C’’ illustrates the core running the
task that communicates the most with other tasks (i.e., the central
task/core), the circles with ‘‘A’’ show the tasks around the central
one while the circles with ‘‘B’’ are the remaining tasks assigned
to the corresponding cores of the region.

After the platform agent completes an application mapping and
tasks allocation, it creates a cluster agent for the region and pro-
vides it with information about tasks allocation as well as the
application task graph. This scheme retains the simplicity of a clus-
ter agent as well as provides an efficient fault-tolerance mecha-
nism, namely a task migration within the region as the
corresponding cluster agent is aware of having spare cores and
the application task graph. The task migration inside the region
is deterministic.

4.3. Task reallocation inside a region

A corresponding cluster agent performs task reallocation inside
a region to one of the closest spare cores. This procedure consumes
less energy and time than reassigning a task to a free core outside
the region in the platform. Moreover, the efficiency of the result of
this procedure is directly affected by the communication perfor-
mance of the underlying platform. Hence, the communication per-
formance between the tasks within the region remains at an
adequate level.

To justify the above arguments, let us consider an example of
the application mapping that is shown in Fig. 6 and elaborate on
simulation results provided by the Noxsim simulator [27]. The sim-
ulation results have been chosen in such a manner that the number
of packets going from source to destination of interest is the same
and with minimum delay. This is important for the results to be
comparable. In Fig. 6, the circles with ‘‘F’’ illustrate the faulty cores
and the circles with ‘‘S’’ show their substitutions.

Suppose the core at position 0 sends four packets to the core at
position 1. Whenever the core fails, the cluster agent can reallocate
a task within the region either to the core at position 2 or to the
core at position 6 depending on the availability of these cores.
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Fig. 6. Examples of task reallocation withi
The platform agent, in its turn, can reallocate a task from this core
to any core in the platform which is free, i.e., no application is
mapped to that core. For this example, we consider the cores at
positions 3, 8 as the closest ones and at position 15 in the worst
case (Fig. 6a). The simulation results for these cases (Table 1) show
that the communication cost after task migration within the region
is lower than that of within the platform.

Similarly, consider another example where the core at position
1 sends seven packets to the core at position 0. The substituting
cores are at positions 2 or 6 (within the region) and 3, 9 or 15 (out-
side the region) as shown in Fig. 6b. The simulation results for this
case are shown in Table 2.

Please note that the example considers a single application
mapped onto the platform, i.e., the cores outside the region where
the application is mapped can be used for the task migration. How-
ever, this might not be possible due to many applications running
in the system. Moreover, the routers of the platform perform inter-
region communications between other cores affecting the delays
and energy consumption shown in the tables. For the work in this
paper, we do not restrict the usual routing of the NoC platform.

Considering the results presented in the tables, their compari-
son shows that the farther a task is migrated the more cycles (high-
er delay) and energy are required for a packet to reach the
destination. Hence, having spare cores within the region enhances
efficient utilization of the platform while allowing it to reach the
required level of reliability.

The task reallocation procedure allows an application to con-
tinue its execution without interruption. For efficient task realloca-
tion within a region, we propose a new algorithm shown in Fig. 7.
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1: if (a fault occurs in a topmost cell) then
if (the spare cell allocated on a row below is free) then reallocate task there 
else if (the spare cell allocated on the same row is free) then reallocate task there 
else reallocate task to any available free spare core, if any  end if

2: if (a fault occurs in a bottommost cell) then
if (the spare cell allocated on a row above is free) then reallocate task there 
else if (the spare cell allocated on the same row is free) then reallocate task there 
else reallocate data to any available free spare core, if any end if

3: if (a fault occurs in a cell which is not topmost nor bottommost) then
if (the spare cell allocated on the same row is free) then reallocate task there
else if (there are free spare cores on a row below and on a row above) and

(there are transitions with the tasks allocated on a row above or below) then
if (the number of transitions with the task on a row below > the number of transitions with the task on a row above)  then

reallocate task to the spare core allocated on a row below
else if (the number of transitions with the task on a row above > the number of transitions with the task on a row below)  then

reallocate task to the spare core allocated on a row above
else 
{the number of transitions with these tasks is the same}

if (the bandwidth with the upper task ≥ the bandwidth with the lower task) then
reallocate task to a spare core on a row above

else reallocate task to a spare core on a row below end if
end if

else 
{the spare cores allocated on a row below, the same row and a row above are taken) Or}  
{there are tasks on a row below and above, but there are no transitions to them} 

reallocate data to any available free spare core, if any 
end if

Fig. 7. The algorithm of task migration performed by a cluster agent.
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Fig. 8. Task migration within a region.
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The algorithm does not depend on the size of the platform since it
is performed within a cluster. Hence, it is applicable to large-scale
platforms.

The algorithm reallocates a task within the region such that the
communication cost is minimum. In general, there are three cases
for a task migration inside a region. The first one considers faults
that occur in a top-most cell. According to the algorithm of the ini-
tial task allocation which assigns tasks in a stepwise and incremen-
tal manner starting from the central task, a top-most core most
probably runs a task that has high communication bandwidth with
a task assigned to a core on a row below. Hence, the cluster agent
first tries to move the task from this cell to a spare one which is on
the row below so that these tasks are still allocated as close as pos-
sible. For instance, in Fig. 8a) a fault occurs in a top-most cell and a
task is reallocated to the spare core in the middle so that the com-
munication distance between the reallocated task and the task
running on the core in the middle of the region remains the same.
If this core has been already allocated, the cluster agent attempts
to ‘‘mirror’’ the task, i.e., it reassigns the task from a faulty core
to a spare one which is on the same row as the faulty core
(Fig. 8b). Finally, if none of these cores are free, the cluster agent
migrates the task to any core that is available in the set of spare
cores (Fig. 8c). In a similar manner, the cluster agent performs task
reallocation for faults occurring in a bottom-most core.

Finally, a fault can occur in a core which is neither top-most nor
bottom-most, i.e., the core is in the middle of a region. In this case,
the cluster agent reassigns the task from this cell to a spare cell on
the same row, if this cell is free (Fig. 8d). If this cell is allocated,
then the cluster agent is required to process the application task
graph [18], i.e., the transitions of the task allocated on the faulty
core. In particular, it inspects the number of links as well as the
bandwidth between this task and the tasks one row up and one
row down. Depending on the analysis results, the cluster agent
reallocates the task to a spare core with the higher communication
bandwidth (Fig. 8e). Lastly, if none of these cores are free, the clus-
ter agent moves a task to any available free spare core.

Whenever a cluster agent reallocates a task from a faulty core to a 
spare one, it keeps track between them. This allows the cluster agent to 
move the task back when the local reconfiguration procedure is 
complete. The local reconfiguration procedure starts when the task has 
been reallocated. A corresponding cell agent applies the reconfig-
uration command to the faulty cell. This procedure aims at recovering 
the functionality of the cell such that this cell is reused in the compu-
tations. Therefore, the original performance is restored.

4.4. Local reconfiguration

For the local reconfiguration of a cell, we adopt the functionality
of the cell agents we proposed in [9]. The algorithm performed by
the cell agents is shown in Fig. 9. The reconfiguration of a cell at the
hardware level stands for modifying the internal structure of it as if
it was, for instance, a single FPGA chip [28,29]. The modification is
performed via uploading a new configuration file to a core.
5. Formal modeling of the platform agent

Before we present the formal development within the Event-B
formalism, we show the summary of used symbols in Table 3.



while (true) do
1: monitor the state of a cell
2: promote data about the current state of the cell to the cluster agent
3: if (cell is not faulty ) then continue

else while (task is not reallocated ) do wait end while
initiate cell reconfiguration
while (the cell is not reconfigured ) do wait end while

end if
end while

Fig. 9. The algorithm of the cell agent.
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For the complete detailed formal definitions of the Event-B nota-
tions, the reader is referred to [30].

5.1. The platform agent: application mapping with spare cores

To proceed with the development of the platform agent taking
into account the proposed algorithm (Section 4.1) for the initial
application mapping, we introduce the function that returns a rect-
angular shaped region with spare cores, namely mapfun. The func-
tion takes three arguments (the number of requested resources
and the current position of indices in the matrix) and returns a re-
gion. Since a region where an application is mapped has at most
three columns (see Fig. 3), one of them is reserved for spare cores:

axiom mapfun 2 1::2 � IPnum�NoC P1ðNoCÞ

axiom partitionðdomðmapfunÞ; fðn#ðx#yÞÞjn 2 1::3 ^ x

2 1::IPnum� ðn� 1Þ ^ y 2 1::IPnum� 1g; fðn#ðx#yÞÞjn
2 4::2 � IPnum ^ x 2 1::IPnum� ððnþ 1Þ � 2� 1Þ ^ y

2 1::IPnum� 2gÞ

where NoC = 1. . .IPnum � 1. . .IPnum stands for a matrix of cores
(i.e., a NoC platform) assumed to be a 2D mesh of square shape,
IPnum P 2 is the constant defining the size of this matrix, n repre-
sents the number of requested resources and a pair x´y reflects the
coordinates in the matrix. Note however that the same approach
can be applied to other topologies and dimensions since the ap-
proach is independent of the routing scheme.
Table 3
Summary of used formal symbols.

Symbol Descr

£ The e
P(S) The p
P1(S) P(S)
card(S) Cardi
partition(S,A,B) Enum
finite(S) Speci
n..m An in
min(S) A mi
max(S) A ma
x´y An or
X � Y Carte

entry
id An id
dom(f) # S The d
ran(f) # T The r
f 2 S T A par
f 2 S ? T A tot
f 2 S T A par
f 2 S T A par
f 2 S � T A tot
f . R Rang
f R Dom
f - O Relat
f;g Forw
The definition of this function consists of two axioms stating the
result the function returns depending on its arguments. The first
axiom postulates that if an application requests from 1 to 3 cores,
the result is a rectangular region that contains two columns and
the number of rows that conforms to the number of requested
resources:

axiom 8n; x;y: n 2 1::3 ^ x 2 1::IPnum� ðn� 1Þ ^ y

2 1::IPnum� 1)mapfunðn#ðx#yÞÞ
¼ x::xþ ðn� 1Þ � y::yþ 1

The second axiom is for the case where an application requests
4 or more cores. Due to the fact that the division operation (de-
noted by �) within Event-B is the integer division ("k. k 2 N )
(k + 1) � 2 = dk/2e), the mapping function always returns a rectan-
gular shaped region that contains the rightmost column of spare
cores (see Fig. 3):

axiom 8n; x;y: n 2 4::2 � IPnum ^ x

2 1::IPnum� ððnþ 1Þ � 2� 1Þ ^ y

2 1::IPnum� 2)mapfunðn#ðx#yÞÞ
¼ x::xþ ððnþ 1Þ � 2� 1Þ � y::yþ 2

The mapping of an application onto an NoC platform proceeds
similarly to the mapping described in [9]. From now on, we only
show the variables and the parts of the events that have been af-
fected by the specified mapping with spare cores. Complete events
can be found in Appendix A.

Application requests are stored as a partial function that maps
an application to the number of requested resources. An applica-
tion can request a number of resources that ranges between 1

and 2�IPnum:

The request of resources is modeled with the event Request_re-

sources that has been derived from the base model. This event has
also been updated according to this requirement:
iption
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Fig. 10. The region search algorithm.
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event Request_resources e any app res_num
where

// There is an application that wants to run computations

app 2 APPLICATIONS ^ app R dom(pending_apps) ^
app R ran(mapping) ^
// The number of requested resources is in-between 1 and

2⁄IPnum

res_num 2 1..2⁄IPnum

then
pending_apps :¼ pending_apps [ {app´res_num}

end

The platform agent seeks for resources in the platform in a lin-
ear manner. It attempts to find a region for an application starting
with the top-most and leftmost cell whose coordinates are 1, 1.
Then, it proceeds throughout columns and rows incrementally
according to the algorithm shown in Fig. 10, where n is the number
of requested resources while r and c are the row and the column
indices in the matrix, respectively. In case the searching procedure
is unsuccessful, the platform agent resets the indices (r = 1 ^ c = 1)
such that a new searching procedure can be initiated.

The searching procedure is modeled using convergent events.
The convergence of the events along with the corresponding vari-
ant (PO (VAR) in Section 3.1) guarantees that the platform agent
can always find a region for an application, if such a region exists.
The shape of the region remains consistent (i.e., of the rectangular
shape) according to the algorithm presented in Fig. 3 (Section 4.1),
if no task reallocation occurs at the platform agent level. This is en-
sured by the following invariance property:

invariant 8a:a 2 ranðmappingÞ
) ððdomðmapping . fagÞ \ ranðCell traceÞ ¼£Þ
) domðmapping . fagÞ
¼ minðdomðdomðmapping

. fagÞÞÞ::maxðdomðdomðmapping . fagÞÞÞ
�minðranðdomðmapping

. fagÞÞÞ::maxðranðdomðmapping . fagÞÞÞÞ

where mapping 2 NoC running_apps is the model variable that
stores the mapping between cores (their coordinates) and running
applications (running_apps # APPLICATIONS), Cell_trace 2 NoC

n dom(mapping) dom(mapping) stores the track of task realloca-
tion performed by the platform agent and the antecedent
dom(mapping . {a}) \ ran(Cell_trace) = £ specifies that no task
reallocation has been performed at the platform agent level.

After the resources have been found, i.e., there is a rectangular
shaped region that satisfies the application request, the platform
agent assigns the application to the found region. In other words,
the platform agent stores the connection between the found region
and the application:
event Resources_found e any app

where . . . ^
(pending_apps(app) 2 1..3 )
r < IPnum�(pending_apps(app)�1) ^ c = IPnum�1) ^
(pending_apps(app) 2 4..2⁄IPnum ) r <

IPnum�((pending_apps(app)+1)�2�1) ^ c = IPnum�2)

then . . . || mapping :¼ mapping [
(mapfun(pending_apps(app)´(r´c))�{app})

end
where r 2 1..IPnum and c 2 1..IPnum are the model variables spec-
ifying the row and the column indices in the NoC matrix,
respectively.

In the next refinement, we introduce the actual task allocation
procedure with spare cores for the platform agent. We consider
application task graphs that allow the platform agent efficiently as-
sign tasks to cores.

5.2. The platform agent: tasks allocation considering task graphs

In general, applications are characterized by task graphs
[18,22]. We assume that these task graphs are provided to the plat-
form. Formally, a task graph is a directed graph and is denoted as a
tuple G = (V, T), where V is a set of vertices that determine tasks (or
groups of tasks) and T is a set of transitions with specified band-
width between the tasks. Every application is defined by a finite
graph. Hence, the sets of vertices and transitions are finite.

To represent task graphs in Event-B, we first introduce the sets
of vertices and transitions into a new context. The complete con-
text can be found in Appendix A. The generic deferred set of all ver-
tices that applications consist of is shown below:

sets VERTICES

axiom finiteðVERTICESÞ

Transitions represent a partial function that maps a pair of ver-
tices to some positive number. This number shows the bandwidth
between tasks in a task graph:

constant TRANSITIONS

axiom TRANSITIONS 2 VERTICES� VERTICES N1

Since the vertices determine the tasks of the application, they
cannot communicate with themselves. In other words, self-transi-
tions are implemented internally and the tasks communicate
through the NoC only with other tasks. Hence, the self-transitions
are not allowed:

axiom id \ domðTRANSITIONSÞ ¼£

To specify the relation between the deferred set of applications
defined previously [9] and task graphs, we introduce two func-
tions: one that stores a set of vertices and the other one that re-
turns a set of transitions for a particular application, namely
app_verts and app_trans, respectively:

axiom app verts 2 VERTICES� APPLICATIONS

axiom app trans 2 APPLICATIONS! PðTRANSITIONSÞ
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Notice that the function app_trans maps applications that con-
sist of a single vertex to the empty set since such an application
does not have transitions in its task graph. Otherwise, the function
returns a set of transitions for a particular application.

The properties of these functions are postulated as a number of
axioms. The first axiom states that if an application task graph con-
tains at least two vertices, there must be a transition between them:

axiom 8a;v: a 2 APPLICATIONS ^ ðcardðapp verts . fagÞP 2Þ ^ v

2 domðapp verts . fagÞ ) ð9v0: v0

2 domðapp verts . fagÞ ^ qðv ¼ v0Þ ^ ððv#v0Þ
2 domðapp transðaÞÞ _ ðv0#vÞ 2 domðapp transðaÞÞÞÞ

On the other hand, transitions of a particular task graph must
only have those vertices that belong to this task graph. Therefore,
if a vertex does not belong to the application task graph, there is
no transition to this vertex. This property is specified by the axiom
shown below:

axiom 8a; v: a 2 APPLICATIONS ^ v 2 VERTICES ^ qðv
2 domðapp verts . fagÞÞ ) qðv
2 domðdomðapp transðaÞÞÞÞ ^ qðv
2 ranðdomðapp transðaÞÞÞÞ

Finally, distinct applications have disjoint sets of transitions.
This property is postulated as follows:

axiom 8a1; a2: a1 2 APPLICATIONS ^ a2 2 APPLICATIONS ^ qða1

¼ a2Þ ) ðapp transða1Þ \ app transða2Þ ¼£Þ:

After defining necessary constants and functions, we proceed
with the task allocation functionality at the platform level. For this
purpose, we refine the previous model of the platform agent. We
start by introducing several variables modeling a continuous proce-
dure of tasks allocation within a region. Firstly, when the platform
agent finds an appropriate region for an application, it has to store
the application task graph for further processing. As the application
task graph represents a pair, two variables are required. The first one
stores the unallocated vertices the application task graph has:

invariant app vertices 2 ranðmappingÞ ! PðVERTICESÞ:

Note that this variable maps an application to a power set of
vertices including the empty set. When assigning a task (a vertex)
to a core, the platform agent removes the task from this variable.
Consequently, the platform agent identifies that all the tasks of
the application have been allocated when this application is
mapped to the empty set.

The second variable stores the transitions of the application task
graph, if any, so that the platform agent can process them as well:

invariant app transitions 2 ranðmappingÞ ! PðTRANSITIONSÞ

Secondly, the platform agent has to store the actual location of
application tasks. It uses another two variables. The first one specifies
the central core to which the most communicating task of the appli-
cation is assigned. If there are several tasks that have the same max-
imum number of communication links, the platform agent non-
deterministically chooses one of them. This task is the starting point
for allocating other tasks of the application. Furthermore, this task
mustbeallocatedwithintheregionwheretheapplicationismapped:
The second variable stores the mapping between the loca-
tions (i.e., the cores) and the tasks. This variable is an injective
function meaning that only one vertex (one task or one group
of tasks) can be allocated to one cell (core). In addition,
whenever the application task is allocated to a core, it must
be assigned to a core within the region that belongs to this
application:

invariant 8a: a 2 ranðmappingÞ ) ð8x: x
2 domðapp tasks allocation; ðapp verts . fagÞÞ
) x 2 domðmapping . fagÞÞ

After introducing necessary variables to model task allocation,
we postulate several invariant properties that must hold for the
whole model. Here, we only show the essential properties that
are crucial for the task allocation procedure.

The task allocation procedure has an iterative behavior. The
platform agent analyses the transitions and assigns tasks to cores
in a stepwise manner. This process ends when the least communi-
cating task is allocated. However, whenever the platform agent
allocates tasks, it has to keep the rightmost column of spare cores
unallocated according to the algorithm presented in Fig. 3
(Section 4.1). This main functional property is stated as the follow-
ing invariant:

invariant 8a: a 2 ranðmappingÞ ) ðdomðmapping . fagÞ
\ ranðCell traceÞ ¼£

^ ððdomðmapping . fagÞ
\ ranðCluster Cell TraceÞ ¼£Þ
) ðdomðdomðmapping . fagÞÞ
� fmaxðranðdomðmapping . fagÞÞÞgÞ
\ domðapp tasks allocationÞ ¼£Þ

where Cluster_Cell_Trace 2 dom(mapping) dom(mapping) is the
track of task reallocation executed by a cluster agent (Section 6).
The premise ((dom(mapping . {a}) \ ran(Cluster_Cell_Trace) = £)

reflects that no task has been reallocated within the region, i.e.,
the region remains consistent being of the rectangular shape deter-
mined by the mapping function. The value max(ran(dom(map-

ping . {a}))) represents the rightmost column in the region.
To be able to verify the main property shown above, we intro-

duce invariants that determine the relationship between variables
storing task graphs and application (tasks) mapping. Firstly, since
every application is defined by a unique task graph, the sets of
vertices of different applications must be disjoint. For the same
reason, the sets of transitions of different applications must be
disjoint as well:

invariant 8app1; app2: app1 2 domðapp verticesÞ ^ app2
2 domðapp verticesÞ ^ qðapp1 ¼ app2Þ
) app verticesðapp1Þ
\ app verticesðapp2Þ ¼£

invariant 8app1; app2: app1 2 domðapp transitionsÞ ^ app2
2 domðapp transitionsÞ ^ qðapp1 ¼ app2Þ
) app transitionsðapp1Þ
\ app transitionsðapp2Þ ¼£



convergent event Task_allocation_Transition_to_allocated_task e any app v vl

rt ct sur

where . . . ^ // After the central task allocation is complete,

// Choose a task that has a transition from a task being allocated to an already

allocated task

(v´vl)2dom(app_transitions(app)) ^
// Furthermore, choose one with the highest bandwidth

("v0.v02app_vertices(app)^:(v0=v)^(v0´vl)2dom(app_transitions(app)))
app_transitions(app)(v´vl)Papp_transitions(app)(v0´vl))

// Choose proper coordinates for this task within the region

// This core must not be allocated

// Choose coordinates near the allocated core, if any

then
// Store the task allocation and Remove a processed transition and a

processed task

end
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Secondly, when the platform agent has found a region, it has to
store the exact task graph of an application. In particular, if the
platform agent has not assigned the central task to a core within
the region, the variables app_vertices and app_transitions applied
to a particular application conform to the variables app_verts and
app_trans restricted to the same application, respectively. Further-
more, if the central task has not been assigned to a core, none of the
tasks have been allocated either:

invariant 8a: a 2 domðapp verticesÞ ^ qða
2 domðapp ctallocatedÞÞ ) app verticesðaÞ
¼ domðapp verts . fagÞ ^ app transitionsðaÞ
¼ app transðaÞ

invariant 8a: a 2 ranðmappingÞ ^ qða 2 domðapp ctallocatedÞÞ
) ð8v: v 2 domðapp verts . fagÞ ) qðv
2 ranðapp tasks allocationÞÞÞ:

When allocating a task to a core, the platform agent removes
this task from the previously stored set of vertices. Therefore, if
there is a vertex in the set of vertices, this vertex (this task) has
not been allocated to a core in the platform:

invariant 8a;x: a 2 domðapp verticesÞ ^ x 2 app verticesðaÞ
) qx 2 ranðapp tasks allocationÞ

Finally, the task allocation procedure is completed when an
application is mapped to the empty set in the variable app_verti-

ces, i.e., all the application tasks are allocated. Hence, the function
app_tasks_allocation applied to the region where the application is
mapped returns the exact set of vertices that belong to this
application:

invariant 8a: a 2 ranðmappingÞ ) ðapp verticesðaÞ
¼£() app tasks allocation½domðmapping . fagÞ�
¼ domðapp verts . fagÞÞ:

Next, we show the refined parts of the abstract events and pro-
vide new events that model the task allocation procedure. The
events implement the procedure described in Section 4. The com-
plete formal representation of the events can be found in Appendix
A.

In order for the model to be consistent with the stated invari-
ants, we refine the event Resources_found. We specify that when
the platform agent has found the region for an application, it stores
the application task graph such that the task allocation procedure
within the region can be initiated:

event Resources_found e any app

where . . . ^
// If there is a free region where an application can be

mapped, i.e., the region is found

// Choose the application that has not been processed yet

:// dom(app_verts . {app})2ran(app_vertices) ^
// And its tasks are not allocated yet ^
dom(app_verts . {app}) \ ran(app_tasks_allocation) = £

then . . . ||
// Create the cluster agent for the region

// Store the task graph, namely the vertices and the

transitions

app_vertices :¼ app_vertices [ {app´dom(app_verts . {app})} ||

app_transitions :¼ app_transitions [ {app´app_trans(app)}

end

The platform agent starts processing the task graph starting by

calculating the central task. To find the central task, the platform
agent examines the transitions and chooses the task that has the
highest number of them. This task is assigned to a core located in
the middle of the region. Since the region is of a rectangular shape,
the middle of it is an arithmetic mean for both coordinates.

After the central task is allocated, the platform agent allocates
all other tasks, if any. Due to the fact that the application task
graph is directed, there are at most two transitions between two
different tasks: one in one direction and the other one in the other
direction. Therefore, the platform agent should consider both pos-
sibilities of tasks communication.

The following event models the task allocation of a vertex v that
has a transition from v to some task vl already assigned to a core.
Furthermore, the platform agent chooses such a vertex v that has
the highest bandwidth with the vertex vl and allocates it to the
coordinates rt, ct:
where sur is a set of all free cores around an allocated task. It
contains coordinates of the cores whose place in the same column
one row above and one row below as well as the cores whose
place is in the same row, but one column to the left, excluding
the rows and columns outside the application region. The
platform agent uses this set when there are no available cores
around an allocated task, whereas there are free cores in the
region and there are tasks to be allocated. In this case, the
platform agent assigns such a task to a free core in the region
non-deterministically.

Similarly, the platform agent checks the other possibility of
tasks communication from vertex vl (an already allocated task)
to v (a task being allocated). When the platform agent assigns
a task to a core, it removes this task from the set of unallo-
cated tasks. These two events are applied repeatedly until all
the tasks in the task graph are allocated, i.e., until the
variable app_vertices applied to the application app returns
an empty set.

Due to the fact that these events as well as the event modeling
allocation of the central task remove an element from a set, they
must eventually terminate, so that the platform agent is able to
execute other functions. Therefore, these events are convergent
and the provided variant guarantees their termination (PO (VAR)
Section 3.1).

The platform agent can reallocate the whole application, after
all application tasks have been allocated and there is a fault in
the region. This occurs when there are no free spare cores left in
the cluster and there is a new fault. In this case, the platform re-
leases the application from the platform and initiates a new search
for resources. This case is modeled by event Reallocate_app whose
refined parts contain the guards and the actions similar to event
Computations_over. Additionally, this event has a guard specify-
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ing that all of the spare cores within the region are allocated:
card(dom(mapping . {app}) \ ran(Cluster_Cell_Trace)) =

(resources+1)�2.
Due to the fact that a cluster agent can reallocate a task from a

cell to another cell, this also affects the global reallocation proce-
dures at the platform level. Firstly, the task being reallocated must
not be the central one since the reallocation of the central task
drastically reduces performance of computations as the communi-
cation cost significantly increases. Secondly, whenever the plat-
form agent reallocates the task from a faulty cell inside a region
to a free cell outside the region in the platform, the shape of the
cluster changes and a corresponding cluster agent is adjusted to
the new topology. Finally, the platform agent can initiate realloca-
tion of a task outside the application region only if all the spare
cores within the cluster are utilized. Therefore, the events that
model task migration within the platform are refined as well. For
instance, the refined part of the event Reallocate_a_cell is shown
below:
event Reallocate_a_cell refines Reallocate_a_cell e any x y k l

where . . . ^
//Application tasks are allocated and the task being reallocated does not belong to the central task as it will

//drastically decrease communication performance of the application

app_vertices(app) = £ ^ app 2 dom(app_ctallocated) ^ qapp_ctallocated(app) = (k´l) ^
//There is a free spare core in the platform where the task can be reallocated

qx´y 2 dom(app_tasks_allocation) ^ k ´l 2 dom(app_tasks_allocation) ^
//A cell whose task is being reallocated does not belong to the rightmost column

ran(Cluster_Cell_Trace)\{k ´ l}=£ ^
//The ‘‘global’’ reallocation can take place if no spare cores are left within the cluster

card(dom(mapping .{app}) \ ran(Cluster_Cell_Trace)) =

(card(min(dom(dom(mapping . {app}))). . .max(dom(dom(mapping . {app})))�
min(ran(dom(mapping . {app}))). . .max(ran(dom(mapping . {app})))�1)+1)�2 ^
//The global reallocation procedure modifies the shape of the region such that it is no more rectangular

qdom({k´l} mapping . {app}) [ {x´y} = dom(dom({k´l} mapping . {app}) [ {x´y})�
ran(dom({k´l} mapping . {app}) [ {x´y})

//Move task to that spare core

then . . .|| app_tasks_allocation :¼ {k´l} (app_tasks_allocation [ {x´y´app_tasks_allocation(k´l)})

end
Upon deriving the specification of the platform agent, we have
generated and discharged proof obligations using the Rodin plat-
form [8]. The proof statistics for this model including contexts,
the abstract machine and the refinement is summarized in Table 4.
From the table, we observe that the Rodin platform generates 509
proof obligations and automatically discharges 356 of them (more
than 65%).

While discharging proof obligations invariant preservation and
feasibility ((INV) and (FIS) in Section 3.1) interactively, we observe
that these proof obligations required either case distinction
Table 4
The proof statistics for the platform agent.

Model Number of
proof
obligations

Automatically
discharged

Interactively
discharged

Contexts 9 8 1
The base

machine
240 184 56

The refinement 260 164 96
Total 509 356 153
technique or instantiation of quantified (bound) variables, which
are relatively complex to be proved automatically. The other proof
obligations ((VAR), (GRD) and (SIM) Section 3.1) for this specifica-
tion were proven automatically.

Since we consider reallocation procedures inside the region, we
have also refined the specification of the cluster agents. Let us now
examine the essential parts of this model.

6. Formal modeling of the cluster agents

6.1. The cluster agents: frequency and voltage restore

In the previous work [9], we have developed such a model of
the cluster agents that decreased frequency and voltage within
the region without eventually increasing them. However, when the
task of a faulty cell is reallocated, cluster agent can restore the value
of these parameters to their maximums so that the computations
can proceed as efficiently as possible. Therefore, we extend the
functionality of the cluster agents with a possibility of restoring
the values of frequency and voltage, when required:

event Restore_cluster e any app

where app 2 ran(mapping)

then
Cluster_Frequency :¼ Cluster_Frequency – {dom(mapping .

{app})´Max_Freq} ||

Cluster_Voltage :¼ Cluster_Voltage – {dom(mapping .

{app})´Max_Volt}

end

where Cluster_Frequency 2 {x j $a. a 2 ran(mapping) ^
x=dom(mapping . {a})} ? 0..Max_Freq is the frequency that the
set of cores (the cluster) runs at and Cluster_Voltage 2 dom(Clus-

ter_ Frequency) ? Min_Volt. . .Max_Volt is the voltage supply for
the region. The set {x j $a. a 2 ran(mapping) ^ x=dom(mapping .

{a})} represents the regions where applications are mapped. In fact,
the set {x j $a. a 2 ran(mapping) ^ x=dom(mapping . {a})} is of type
P1(NoC), which allows us to specify regions (clusters) instead of indi-
vidual cells and to model the cluster agents in a simpler manner. For
the complete events and invariants, the reader is referred to
Appendix B.
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6.2. The cluster agents: generic task reallocation within a cluster

The reallocation procedure performed by a cluster agent inside
a region proceeds similarly to the reallocation procedure executed
by the platform agent. That is, the cluster agent stores the trace be-
tween a faulty cell and its substitution and marks a faulty cell
when its task has been reallocated. To specify this functionality,
we introduce two variables. The first one keeps track of the faulty
cells and their substitutions (one cell can have one substitution):

The second variable indicates that the task of a cell has been
reallocated. The cluster agent adds to this variable the coordinates
of a cell whose task has been migrated:

invariant Cluster Cell Reallocated # domðmappingÞ

There is a clear relationship between these variables. Whenever
the cell has a trace, this cell is marked and vice versa. This property
is postulated as the invariant below:

invariant 8c: c 2 domðmappingÞ ) ðc
2 domðCluster Cell TraceÞ () c

2 Cluster Cell ReallocatedÞ

The task reallocation must be performed inside the region
where the application is mapped. The cluster agent only utilizes
the unallocated cores that belong to its region as it does not know
anything about other applications and their mapping, i.e., the
cross-cluster communication is not allowed:

invariant 8a; cell: a 2 ranðmappingÞ ^ cell

2 domðmapping . fagÞ ) ðcell

2 domðCluster Cell TraceÞ
) Cluster Cell TraceðcellÞ
2 domðmapping . fagÞÞ

Clearly, any task migration procedure affects the allocation of
tasks. Firstly, the cell that has a trace is not running computations,
i.e., no task is assigned to it:

invariant 8c: c 2 domðCluster Cell TraceÞ ) qc
2 domðapp tasks allocationÞ

Secondly, the substituting cell must run computations. This is
the primary function of a spare cell while the faulty cell is being
reconfigured:

invariant 8c: c 2 ranðCluster Cell TraceÞ ^ qc
2 Cluster Cell Reallocated) c

2 domðapp tasks allocationÞ

Finally, the local reconfiguration procedure initiated by a corre-
sponding cell agent commences when the task of a faulty core has
been reallocated:

invariant 8c: c 2 domðmappingÞ ) ðCell Start ReconfigðcÞ
¼ TRUE) c 2 Cluster Cell ReallocatedÞ

At this refinement step, we introduce two events that model
generic task reallocation within the cluster. Note that at this point,
the cluster agent can reallocate a task to any unallocated core,
which may not be at the rightmost column. The actual reallocation
algorithm and its properties described in Section 4.3 are modeled
in the next refinement.

The cluster agent reallocates a task in a non-deterministic
manner upon the detection of a fault. The event Cluster_cell_real-

location specifies task reallocation from a faulty cell to a spare
one:

event Cluster_cell_reallocation refines Restore_cluster e any
app x y k l

where
// A faulty cell and its substitution are within the cluster

app 2 dom(app_ctallocated) ^ k´l2dom(mapping . {app}) ^
x´y2dom(mapping . {app}) ^
// A faulty cell is running a task while a substitution does not

run any

k´l2dom(app_tasks_allocation) ^
:(x´y2dom(app_tasks_allocation)) ^
// A substituting cell is free

(x´y 2 dom(Cluster_Cell_Trace)) ^ :(x´y 2
ran(Cluster_Cell_Trace)) ^
// The application of DVFS did not help

Cluster_Frequency(dom(mapping . {app})) = 0 ^
Cluster_Voltage(dom(mapping . {app})) = Min_Volt ^
// Hence, the cell running a task is faulty

(Cell_Temp)(k´l) P Temp_Threshold _ Cell_Fault(k´l) =

(TRUE) ^
// while the substituting cell is not

Cell_Temp(x´y) < Temp_Threshold ^ Cell_Fault(x´y) =

FALSE

then . . . ||
// Rellocate a task

app_tasks_allocation :¼ {k´l} (app_tasks_allocation [
{x´y´app_tasks_allocation(k´l)}) ||

// Store a track from where to where the task has been

reallocated

Cluster_Cell_Trace :¼ Cluster_Cell_Trace [ {(k´l)´(x´y)} ||

// Mark the faulty cell

Cluster_Cell_Reallocated :¼ Cluster_Cell_Reallocated [ {k´l} ||

// If the faulty cell happens to be the central one, update the

corresponding mapping as well

app_ctallocated:j app_ctallocated02ran(mapping)

dom(mapping) ^
(qapp_ctallocated(app) = k´l ) app_ctallocated0 =

app_ctallocated) ^
(app_ctallocated(app) = k´l ) app_ctallocated0 =

app_ctallocated - {app´(x´y)})

end
We can observe from the event above that task migration oc-

curs if the frequency and the voltage the cluster operates at are
at their minimum values and a fault remains. Furthermore, the
cluster agent reallocates a task from a faulty core to a spare
one even if a fault occurs in the central core. This is because
the reallocation takes place within the cluster so that the com-
munication efficiency of the application remains at an adequate
level.

The other event, namely Cluster_cell_return, models
reallocation of a task back to the reconfigured cell according to the
stored trace:



event Cluster_cell_return refines Restore_cluster e any app x y k l

where . . . ^ // A reconfigured cell and its substitution are within the cluster

// There is a track between a reconfigured cell and its substitution

:(k´l2Cluster_Cell_Reallocated) ^ ((x´y)´(k´l))2Cluster_Cell_Trace ^
// The cluster runs normally

Cluster_Frequency(dom(mapping . {app})) > 0 ^ Cluster_Voltage(dom(mapping . {app})) > Min_Volt ^
// A cell whose task was reallocated has been reconfigured and it is not faulty anymore

Cell_Start_Reconfig(x´y) = FALSE ^ Cell_Temp(x´y) < Temp_Threshold ^ Cell_Fault(x´y) = FALSE ^
// If there is only one substitution left, the reallocation back proceeds such that the rightmost column is released

{(dom(mapping . {app}) \ ran(Cluster_Cell_Trace {k´l}) = £ )
x´y2dom(dom(mapping.{app}))�min(ran(dom(mapping.{app})))..max(ran(dom(mapping.{app})))�1)

then . . . || // The variables app_tasks_allocation and app_ctallocated are modified exactly as in the event above

// Remove the trace and unmark the reconfigured cell

Cluster_Cell_Trace:¼{x´y} Cluster_Cell_Trace || Cluster_Cell_Reallocated:¼Cluster_Cell_Reallocated\{x´y}

end
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6.3. The cluster agents: task reallocation within clusters based on task
graphs

In the previous sub-section, we have introduced a generic real-
location functionality of the cluster agents. Now, we refine it so
that the reallocation within the cluster proceeds in a more specific
manner following the algorithm presented in Section 4.3. In partic-
ular, the cluster agent utilizes the spare cores available at the right-
most column of the region when migrating a task from a faulty cell.
This crucial property is postulated as the invariant shown below:

invariant 8a: a 2 ranðmappingÞ ^ ðdomðmapping . fagÞ
¼ domðdomðmapping . fagÞÞ
� ranðdomðmapping . faÞÞÞ

) ð8c: c 2 domðmapping . fagÞ ^ c

2 ranðCluster Cell TraceÞ ) ranðfcgÞ
¼ fmaxðranðdomðmapping . fagÞÞÞgÞ

where (dom(mapping . {a}) = dom(dom(mapping .

{a}))�ran(dom(mapping . {a}))) shows that the shape of the cluster
is consistent, ran({c}) stands for the column coordinate of the core c

and {max(ran(dom(mapping . {a})))} is the rightmost column of the
region.

Following the algorithm described in Section 4.3, we refine the
abstract event Cluster_cell_reallocation into several events that
model different cases of task migration within the region. These
events are similar and only differ in several guards that determine
the manner the task is reassigned. Here, we show the textual
description of guards and actions of some events. The complete
subset of events modeling the reallocation algorithm within the
cluster can be found in Appendix B.

The cluster agent initiates the task migration procedure when
the decrease of frequency and/or voltage is not sufficient. The fol-
lowing event models all possible cases for the task reallocation of a
top-most cell, i.e., the reallocation to a core allocated on a row be-
low, to the core on the same row as the faulty one or to any avail-
able free spare core (see Fig. 8, a–c)):

event Cluster_top_cell_reallocation refines
Cluster_cell_reallocation e any app x l spares

where . . . ^
// The top-most core is faulty

// The core to be used as a substitution must not have a

trace nor be a substition already

// The regional parameters have reached their minimums

// The cell from where the cluster agent reallocates the task

is faulty

// The cell where the task is reassigned is not faulty
// The cluster agent utilizes spare cores from the rightmost

column

// If there is a cell below the current and this cell is free,

reallocate the task there

((min(dom(dom(mapping .

{app})))+1)2dom(dom(mapping . {app})) ^
(q(min(dom(dom(mapping . {app}))) +

1)2dom(ran(Cluster_Cell_Trace))) ) x =

min(dom(dom(mapping . {app})))+1) ^
// If there is no such a cell or this cell is allocated move the

task to the cell on the same row

((q(min(dom(dom(mapping .

{app})))+1)2dom(dom(mapping . {app})) _
((min(dom(dom(mapping .

{app})))+1)2dom(ran(Cluster_Cell_Trace)))) ^
q(min(dom(dom(mapping .

{app})))2dom(ran(Cluster_Cell_Trace))) ) x =

min(dom(dom(mapping . {app})))) ^
// Finally, if none of these conditions are true, but there is a

free spare, reallocate the task there

((q(min(dom(dom(mapping .

{app})))+1)2dom(dom(mapping . {app})) _
((min(dom(dom(mapping .

{app})))+1)2dom(ran(Cluster_Cell_Trace)))) ^
(min(dom(dom(mapping .

{app})))2dom(ran(Cluster_Cell_Trace))) ^q(spares = £) )
x2spares)

then// Store the trace and Mark the faulty cell

// Move the task to a spare core modifying the position of

the central task, if needed

end

Similarly, the cluster agent reassigns a task from a faulty core
allocated at the bottom of the region to a spare one in the right-
most column. The three options to reallocate a task are: to a core
on a row above, to a core on the same row or to a core any available
spare core. This case is modeled with a separate event, namely
Cluster_bottom_cell_reallocation.

Finally, if a fault occurs in a cell that is neither top-most nor bot-
tom-most, the cluster agent considers several cases of an efficient
task migration. These cases are specified using several events. For
the sake of brevity, we show only the essential ones. The others
have the same structure and differ only in several guards.

As the first attempt, the cluster agent moves a task of a faulty
core to a spare core, which is on the same row, but in the rightmost
column. This core is equidistant from cores running computations
(see Fig. 8d)):



// Acquire the transitions of the application task graph

// Verify if the number of links with the task allocated below is greater than

the number of links with

// task allocated above the task being reallocated

// If so, move the task to the spare core on the row below

then // Store the trace and Mark the faulty cell

// Move the task to a spare core modifying the position of the central task,

if needed

end
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event Cluster_middle_cell_reallocation_row refines
Cluster_cell_reallocation e any app k l

where . . . ^
// The faulty core is in the middle of the region

min(dom(dom(mapping . {app}))) < k ^
k < max(dom(dom(mapping . {app}))) ^
// There is a free spare cell on the same row

:(k 2 dom(dom(Cluster_Cell_Trace))) ^
// Move the task to this core

then // Store the track and mark the faulty cell

// Move the task to a spare core modifying the position of the

central task, if needed

end
However, if the spare cell on the same row is already utilized,
the cluster agent considers several possibilities of task reallocation
(see Fig. 8e)). In particular, the task can be reallocated to a spare
cell on a row above or below depending on the number of links
and/or communication bandwidth between a task allocated on a
faulty core and adjacent cells.

Every task in a task graph has at most two transitions with an-
other task. That is, it may have no transitions, one incoming or out-
coming transition or both an incoming and an outcoming
transition. Hence, it is reasonable to first consider if there are any
transitions between a faulty core and the cores above and below
it. If the number of transitions between a faulty core and the core
below is greater than the number of transitions between a faulty
core and the core above it, the cluster agent reallocates the task
to the spare core on a row below. Consequently, there are only
two hops between the spare core and the core with which there
are two communication links:
event Cluster_cell_reallocation_spare refines Cluster_cell_reallocation e any app x k l

where . . . ^
// If the spares on the current row, the row above and the row below are already allocated

("e. e2k�1..k+1 ) e2dom(dom(Cluster_Cell_Trace))) _
// or there is a task assigned to a core above, but current task does not have transitions to it

(((k�1)´l2dom(app_tasks_allocation) )
:(app_tasks_allocation(k�1´l)´app_tasks_allocation(k´l) 2 dom(app_trans(app))) ^

(app_tasks_allocation(k´l)´app_tasks_allocation(k�1´l) 2 dom(app_trans(app)))) ^
// nor with the core on the row below

((k+1)´l2dom(app_tasks_allocation) )
:(app_tasks_allocation(k+1´l)´app_tasks_allocation(k´l) 2 dom(app_trans(app))) ^
:(app_tasks_allocation(k´l)´app_tasks_allocation(k+1´l) 2 dom(app_trans(app)))))

// Reallocate the task to any free spare core

x 2 {sjs2min(dom(dom(mapping.{app})))..max(dom(dom(mapping.{app})))^(s2dom(ran(Cluster_Cell_Trace)))}

then // Store the trace and Mark the faulty cell

// Move the task to a spare core modifying the position of the central task, if needed

end

A cell

A cell

A cell

A cell

A cell

A cell

A cell

A cell
Analogously, we have considered the other cases when there is
only one transition with the upper and lower tasks. In total, there
are four cases for a task: (i) two incoming transitions, (ii) two out-
coming transitions, (iii) one incoming and one outcoming transi-
tion and (iv) one outcoming and one incoming transition (Fig. 11).

Finally, if none of these cases holds, the cluster agent simply
reassigns the task from a faulty core to any available spare core:
event Cluster_middle_cell_reallocation_down1 refines
Cluster_cell_reallocation Restore_cluster e any app k l

where . . . ^
// The spare cell on the same row is already assigned, but the spare cell on

a row below is free

// There are tasks assigned to cores above and below the faulty one, i.e.

// the cluster agent can try to verify if there are any links with those tasks
After a task has been reallocated, a corresponding cell agent ini-
tiates the local reconfiguration procedure. When this procedure is
complete and the cell is reconfigured, the cluster agent returns the
task in accordance with the stored trace. Hence, the original com-
munication performance within the region is restored:

event Cluster_cell_return refines Cluster_cell_return e any app

x y k

where . . . ^
// The substituting cell has a task

:(k´max(ran(dom(mapping .

{app})))2Cluster_Cell_Reallocated)

// Return a task according to the stored track

((x´y)´(k´max(ran(dom(mapping .

{app})))))2Cluster_Cell_Trace ^
then // Move the task back according to the stored track,

remove the track and unmark the reconfigured cell

end
While modeling the cluster agents within Event-B, the Rodin plat-
form [7] has generated 708 proof obligations of which 537 were
A cell A cell A cell A cell

(i) (ii) (iii) (iv)

Fig. 11. Variations of transitions between two communicating tasks.
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proven automatically (more than 75%). Table 5 summarizes the
proof statistics. Similarly to the platform agent, the proof obliga-
tions (INV) and (FIS) (Section 3.1) for invariant preservation and fea-
sibility required user assistance in showing correctness of the
cluster agents specification.

Let us now examine the implementation of the cell agent that
performs the local reconfiguration procedure.
7. Formal development of the cell agents

7.1. The cell agents: the base model

For the work in this paper, we adopt and adjust the specifica-
tion of the cell agents proposed in [9] such that hardware code
can eventually be generated as motivated in Section 4.4. This
code can then be synthesized using, for instance, Quartus-II soft-
ware [33]. Previously, we have used total functions to represent
all the cell agents of the NoC platform. Because of that, the func-
tionality of the cell agents was modeled using non-determinism
on events (events with local parameters). Since the cell agents
are the same independently of their location in the platform,
we can proceed with further refinements towards a determinis-
tic and implementable specification of a particular cell agent in
order to generate a VHDL description [26] for a cell agent. To ac-
hive this, we first provide specific coordinates of the agent. Then,
we eliminate functions so that code generation is feasible. Here,
we only show the essential parts for deriving an implementable
model from which a VHDL description can be generated. For the
more detailed formal description, the reader is referred to
Appendix C.

7.2. The cell agents: specifying coordinates of a cell agent

To specify coordinates of a cell agent, we introduce two con-
stants in a context. Note that we do not specify the actual location
due to the fact that the cell agents are the same. Hence, the location
is not important:

constants n m

axioms n 2 1..IPnum ^ m 2 1..IPnum

Then, we eliminate non-determinism of the any clause of
every event modeling the functionality of a cell agent. For
instance, consider the event modeling the beginning of the local
reconfiguration. It operates only on the cell whose coordinates
are the specified constants n and m. In other words, the event
is deterministic and executes at the same coordinates in the
platform:
Table 5
The cluster agents: proof statistics.

Model Number of proof
obligations

Automatically
discharged

Interactively
discharged

Contexts 9 7 2
The base

machine
144 99 45

The first
refinement

143 91 52

The second
refinement

412 340 72

Total 708 537 171
event Reconfigure_cell refines Reconfigure_cell e
where

Cell_Read(n´m) = TRUE ^ (Cell_Fault(n´m) = TRUE _
Cell_Temp(n´m) P Temp_Threshold) ^
Reallocated(n´m) = TRUE ^ Reconfigured(n´m) = FALSE

then Start_Reconfig :¼ Start_Reconfig - {(n´m)´TRUE}

end
Now, we can refine this specification further by substituting func-
tions with simply typed variables. These variables reflect the inputs
and the outputs of the cell agent while their types are feasible for
code generation.

7.3. The cell agent: substituting functions with simply typed variables
and code generation

The cell agent can be represented as a block diagram as shown
in Fig. 12. Since the inputs cannot be updated and the outputs can-
not be read directly in the hardware code, we propose to use exter-
nal loopback connections on the variables (signals) Start_Reconfig

and Cell_Read (see Fig. 12).
From Fig. 12 we observe the inputs and the outputs the cell

agents have. The variables with the suffix ‘‘_I’’ are the input
signals while the variables with suffix ‘‘_O’’ indicate the output
signals. The inputs and the outputs are represented as simply
typed variables, where most variables are of Boolean type. The
only variable that has the numeric type is ‘‘Temp_I’’ as it models
the changes on the temperature of the cell: Cell_Temp_I 2
0..Temp_max. The variables Cell_Fault_I 2 BOOL, Reallocated_I

2 BOOL stand for the faults that occur in the cell and the
reallocation of the task performed by the higher level agents,
respectively. To model a loopback, we introduce the following
variables:

invariant Cell_Read_I2BOOL ^ Cell_Read_O2BOOL ^
Start_Reconfig_I2BOOL ^ Start_Reconfig_O2BOOL
Since the decomposed model also includes external events that
simulate the environment for the cell agents, we have to refine
these events accordingly. To proceed correctly, we introduce func-
tions that are marked as external so that the code generation tool
skips these variables when deriving VHDL. For instance, the vari-
able Cell_Temp modeling the temperature of a cell is refined (re-
placed) by the variable Cells_Temp.

To prove the correctness of the refinement and derive the
implementable model used to generate VHDL code, we introduce
several gluing invariants. These invariants state that the value of
every simply typed variable conforms to the value of a function ap-
plied to the cell for which we have defined the constants. On the
Cell agent

Cell_Temp_I

Reallocated_I

Cell_Fault_I

Start_Reconfig_I

Cell_Read_I

Start_Reconfig_O

Cell_Read_O

Reconfigured_I

Fig. 12. The hardware representation of a cell agent.



Fig. 13. The event Reconfigure_cell.

Table 6
The cell agent: proof statistics.

Model Number of proof
obligations

Automatically
discharged

Interactively
discharged

The contexts 4 3 1
The base

machine
89 87 2

The first
refinement

83 82 1

The second
refinement

115 106 9

Total 291 278 12
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other hand, the abstract functions of the previous model remain
consistent:

The gluing invariant states that the value of the abstract func-
tion Cell_Temp is the same as the union of the values of the con-
crete function Cells_Temp without the coordinates n, m and the
variable Temp_I that complements the former. This approach al-
lows us to isolate a particular cell from the set of all the cells in
the platform.

Analogously, we refine the other variables except for the vari-
ables that model a loopback. For the variable Start_Reconfig, we
provide a similar invariant to the one shown above as well as
we postulate that the value of the output is the same as the
input:

invariant Start_Reconfig = ({n´m} Cells_Start_Reconfig) [
{n´m´Start_Reconfig_I} ^

Start_Reconfig_O=Start_Reconfig(n´m)

Since the variable Cell_Read modeling asynchronous communi-
cation between the agents in the hierarchy is not affected by the
event simulating the environment at the coordinates different
from the ones specified by the constants, the gluing invariants
for it are simpler:

invariant Cell_Read_I = Cell_Read(n´m) ^ Cell_Read_O =

Cell_Read(n´m)

Consequently, in every event we have replaced a function call with
the precise variable. For instance, consider the event Reconfig-

ure_cell (Fig. 13).
According to the gluing invariants, this event behaves ex-

actly the same as its ancestor. Notice, however, that this event
has a simultaneous assignment to both output and input vari-
ables Start_Reconfig_I and Start_Reconfig_O. This action mod-
els the loopback over the reconfiguration command (see
Fig. 13).

Although such an action allows us to model a loopback connec-
tion, the actual implementation in VHDL cannot have assignments
to the input signals. Hence, when generating the code, the tool [26]
skips the assignments to the input variables and keeps the updates
on the output variables. Additionally, the tool omits external vari-
ables and events as they are not relevant to the cell agent function-
ality. The example of the generated code for the event
Reconfigure_cell is shown below:
IF (Cell_Read_I = ‘1’) and
(Cell_Fault_I = ‘1’ or Cell_Temp_I > = Temp_Threshold)

and
(Reallocated_I = ‘1’) and
(Reconfigured_I = ‘0’)

THEN
Start_Reconfig_O <= ‘1’;

END IF;

In these events and the generated code, the cell agent has one
input displaying that a task has been reallocated. However, one
can proceed with an additional refinement step where this single
input is split into two: one coming from the platform agent and
the other one coming from a corresponding cell agent. Since this
refinement is easily performed through data refinement, we omit
it.

The proof statistics for this model is summarized in Table 6.
From the table, we observe that the Rodin platform [8] has gener-
ated 291 and has discharged 275 of them automatically. The proof
statistics illustrate that the tool could achieve a high level of auto-
mated proving (more than 95%). The interactive proofs include dis-
charging proof obligations feasibility, guard strengthening and
simulation (Section 3.1, POs (FIS), (GRD) and (SIM), respectively)
due to substituting data structures.

8. Conclusions

In this paper, we have presented the formal modeling and ver-
ification of a hierarchical agent-based dynamic management sys-
tem for NoCs incorporating application mapping and a novel task
reallocation procedure utilizing free spare cores available to each
running application. Specifically, the hierarchical agent-based
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management system consists of the platform agent, a number of
dynamically created and destroyed cluster agents and local cell
agents. We proposed (i) for the platform agent level, an algorithm
for the initial application mapping and tasks allocation with free
spare cores, (ii) for the cluster agent level, a multi-objective algo-
rithm that facilitates fault-tolerance of the platform while main-
taining performance of communication and computations at an
adequate level, (iii) for the cell agent level, an algorithm integrating
the local reconfiguration procedure for a cell. The distributed archi-
tecture of the cell and cluster agents allows independent execution
of monitoring and reconfiguration procedures utilizing the spare
cores without overloading the platform agent.

The development of each agent level proceeded through refine-
ments considering the overall requirements for the system. To the
best of our knowledge, this is the first approach for developing reli-
able agent-based management systems for dynamically reconfigu-
rable NoC platforms that incorporates a formal and proof-based
framework. The important functional properties (requirements)
of the system have been stated as invariants and the corresponding
proof obligations have been discharged. Therefore, we have veri-
fied the correctness of the proposed system w.r.t. these stated
properties.

We considered mapping of an application in such a manner that
a rightmost column of spare cores is at the disposal of a corre-
sponding cluster agent. One of our future directions is to investi-
gate other possibilities of placing spare cores within the region.
For instance, spare cores can be placed randomly following the ap-
proach presented in [12]. In addition, we will exploit reallocation
of tasks to unallocated spare cores within other clusters.

We have derived a VHDL description for the cell agents follow-
ing a correct-by-construction development. Similarly, we can
eventually derive implementations for the other agents. Hence, an-
other future direction is to evaluate efficiency of the proposed sys-
tem considering specific metrics.

Last but not least, a fault can also occur in the agents, although
the agents are much simpler than the processing cores. Therefore,
another future direction is to consider faults of agents and their dy-
namic reconfiguration.
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Abstract—Modern embedded applications often require high 
computational power and, on the other hand, fulfilment of real-
time constraints and high level of resilience. Simulink is one 
widely used tool for model-based development of embedded 
software. In this paper, we focus on the derivation of parallel 
programs from Simulink models and real-time resilient execution 
of derived implementations on a many-core platform. The main 
contribution is a fault-tolerance (FT) mechanism that prevents 
data loss when the platform is dynamically reconfigured to mask 
failures of individual cores. Finally, we evaluate the proposed 
solutions on an industrial case study using a commercially 
available NoC-based platform. The evaluation shows that the 
proposed FT mechanism has a marginal overhead. 

Keywords—Data Loss Prevention; Dynamic Reconfiguration; 
Many-Core Platforms; Parallel Programs; Resilience; Simulink 

I.  INTRODUCTION 
The highly dynamic nature of modern embedded 

applications requires high computational power while they 
also need to fulfil real-time constraints and a high level of 
resilience. To develop such systems, designers typically 
employ various modelling techniques. The Simulink model-
based design environment [1] is one such widely used 
technique that supports a complete design chain starting from 
modelling and simulation and ending in generation of, e.g., C 
code. However, the programs generated by the built-in code 
generator cannot fully utilize computational power offered by 
energy-efficient many-core platforms.  

A Network-On-Chip (NoC) which represents a 
communication network of cores has been proposed as a 
scalable paradigm that can provide high computational power 
and low power consumption [2]. For instance, a commercially 
available platform TilePro by Tilera [3] employs NoC. 
However, the high level of on-chip integration increases the 
probability of various faults [4] and high computational load 
may cause creation of hotspots leading to thermal problems 
[5]. Additionally, radiation which is frequent in space but 
becomes an issue at the ground level as well can cause 
transient faults [6]. This can eventually induce a faulty 
execution of applications. One of the powerful techniques to 
tolerate these faults is dynamic reconfiguration, namely tasks 
reallocation [4][7][8]. This technique can be executed by the 
agents that are integrated into the platform and perform 
efficient management without overloading the platform with 
monitoring and recovering activities [8][9]. However, when 

tasks are reallocated to non-faulty cores, they may lose data in 
the process, which can lead to the production of an erroneous 
output. Consequently, to achieve resilience, application tasks 
need to adopt a mechanism that provides means to continue 
execution without losing data when they are reallocated. 

Our contributions in this paper are: 1) an approach to the 
derivation of parallel implementations from Simulink models, 
2) based on 1), a fault-tolerance (FT) mechanism that prevents
data loss when application tasks are dynamically reallocated. 
In addition, we illustrate performance evaluation results for 
the proposed approaches by using the TilePro platform [3]. 

II. RELATED WORK

A Simulink model is a hierarchical dataflow diagram from 
which the Simulink design environment can generate 
sequential or fixed-priority multi-task C code scheduled 
according to the rate monotonic principle [1]. However, the 
generated code is not aimed at the parallel execution on a 
many-core platform. 

In contrast to [1], we propose to generate a parallel 
implementation from a Simulink model by using application 
characteristic graphs (ACG) [7] as an intermediate step. The 
use of ACG allows designers to employ mapping algorithms 
for many-core platforms considering various optimization 
objectives, e.g., performance (real-time constraints) and/or 
power consumption [10], resilience [4][8] etc. The generated 
concurrent code preserves the semantics of Simulink models. 
Moreover, the division of the system into parallel tasks 
enables the application of resilience mechanisms to tasks and, 
hence, improves the utilization of the platform. 

To achieve resilience to faults, redundancy is needed. For 
example, Bolchini, Carminati and Miele [6] propose to 
replicate the whole application or some of its threads in order 
to detect and tolerate failures of processors. They assume data 
parallel programs and consider duplication with comparison, 
triplication, as well as duplication with both comparison and 
re-execution FT techniques. The authors propose the 
adaptation engine that monitors several parameters and adapts 
the execution according to the evolving environment. 

Pinello, Carloni and Sangiovanni-Vincentelli proposed 
another approach to replicating dataflow actors [11]. The 
authors consider a fault model, in which components are fail-
silent, i.e., they either produce a correct result or produce no 
result. The authors use software replication for critical tasks 
statically at design time, where each replica is then executed 
on a separate control unit. 
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An approach to tackle hardware failures in process 
networks has been proposed by Ceponis, Kazanavicius and 
Mikuckas [12]. The authors present an extension of Kahn 
process networks, namely Error-Proof Process Network 
(EPPN). Using EPPN, the authors show a dynamic 
reconfiguration mechanism, where the actions of a faulty node 
are transferred to an adjacent non-faulty functional node and 
communication is adjusted accordingly using checks on the 
FIFO channels. However, according to the authors, this 
mechanism may lead to non-determinism in the network. 
Moreover, when functionality of a failed node is delegated to a 
non-faulty operating node, data loss occurs. To tackle this 
problem, the authors introduce the default value. Although the 
mechanism fulfils on-time result delivery, the default value 
may not preserve semantics of the original application. 

Similarly as in [6][11][12], we consider hardware failures 
of processing units in the underlying many-core NoC-based 
platform. However, in contrast to [6][11][12], we rely on 
dynamic tasks reallocation [4][8] that can be performed by 
agents integrated into the platform [8][9]. The tasks 
reallocation enables uninterruptable execution of applications 
[4][7][8] and avoids resource wasting caused by duplicating 
applications or threads (actors). To avoid data loss when tasks 
are reallocated, we propose an FT mechanism, in which the 
reallocated tasks operate on the current values instead of the 
default ones in contrast to [12]. Therefore, the determinism of 
the application is preserved. 

III. PRELIMINARIES

A. Simulink Models 
We consider Simulink models that represent hierarchical 

dataflow diagrams [1]. A Simulink model consists of a 
collection of functional blocks that have in-ports (inputs) and 
out-ports (outputs) allowing connections between blocks via 
typed signals. The blocks may have parameters that are 
initialized at the beginning of the execution and remain 
constant during the execution. Moreover, the blocks can 
contain memory. In this case, the output value depends not 
only on the inputs but also on the previously computed value.  

The blocks can be grouped into sub-systems. There are 
two types of sub-systems in Simulink: virtual and atomic [1]. 
Virtual sub-systems are used for the structural purpose only 
and do not affect the model execution. They can be seen as 
containers for functional blocks that are expanded by the 
Simulink engine in place before execution. Atomic sub-
systems are treated as single atomic units. 

The models can be continuous or discrete. We consider 
discrete-time models with atomic sub-systems that specify 
periodic real-time systems. Each block in a discrete-time 
model is evaluated at regular intervals with a specified 
sampling period. We further assume that the model is single-
rate, i.e., all its sub-systems fire at the same time intervals. In 
addition, we assume causal models, where outputs of a block 
have no direct connection to inputs of the same block. The 
models usually used for code generation are causal. 

Fig. 1 illustrates an example of a Simulink model. The 
model in Fig. 1, a) contains two in-ports and one out-port. It 
includes a constant parameter as well as a memory block. This 
model is grouped into a sub-system presented in Fig. 1, b).  

B. Communication platform 
The generation of a parallel code requires designers to take 

into account characteristics of the underlying platform. We 
assume a 2D mesh NoC-based many-core platform. It consists 
of tiles that include processing units (PUs) and routers (RTs) 
[2] (Fig. 2). We assume the platform to be homogenous at the 
global level, i.e., all tiles are identical, while their internal 
structure might be heterogeneous.  

RTs allow communication between tiles by routing 
packets. We assume deterministic routing, which is dead-lock 
and live-lock free, provides low latency and suits real-time 
control systems [13]. The communication mechanism 
typically employs FIFO buffers, which preserves the flow 
order of data. Moreover, the platform typically supports 
checks if the buffers are full or empty. Thus, the tasks can read 
packets as soon as they arrive in the input buffers and send 
processed data when there is an available space.  

IV. DERIVATION OF PARALLEL PROGRAMS FROM
SIMULINK MODELS 

We translate a Simulink model into a set of concurrent 
tasks that are given by the sub-systems and communicate 
according to the signals in between. This process can be 
summarized as the following algorithmic steps: 

1. Flatten the model following so that the top-level atomic
sub-systems reflect tasks according to the designer
choice.

2. Construct an ACG from the model as explained in the
next sub-section.

3. Generate implementations (i.e., threads) for the tasks
according to ACG.

4. Apply mapping algorithms using the ACG [4][8][10].
Here, we focus on steps 2 and 3. 

A. Construction of ACG from Simulink 
To apply mapping algorithms that enable optimization in 

terms of, e.g., performance and power consumption [10] or 
resilience [4][8], we need to construct an Application 
Characteristic Graph (ACG) from a flattened Simulink model. 
An ACG consists of tasks and edges. The edges show 
communication rates r between tasks via FIFOs. For brevity, 
we only provide an intuitive description of the ACG derivation 
from a Simulink model. Please refer to the technical report 
[18] for more details on the construction. 

The construction of an ACG from an arbitrary model is 
illustrated in Fig. 2. Similarly as in the approach proposed by 
Boström [14], we interpret each node of the model as a vertex 
of ACG with synchronous dataflow semantics, i.e., each 
atomic sub-system as a separate execution task that can be run 
on a single core. However, in contrast to [14], we group the 
links of the Simulink model into edges of ACG. An edge 
between an arbitrary pair of nodes in ACG reflects a group of 
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Fig. 2. Application characteristic graph and mapping example 

links between the same nodes in the model. In essence, the 
links constitute communication between the nodes. The rates 
of packets are computed according to the execution periods of 
the corresponding sub-systems. The input and the output 
signals of the blocks that interact with the environment do not 
participate in the construction of ACG. This is because these 
signals do not affect the application internal structure. 

B. Task pattern 
Each task of the ACG executes a function and is mapped 

to a separate PU in the platform. However, despite different 
functionality, each task instantiates the pattern shown in 
Fig. 3. A task runs the loop for Receiving, Processing and 
Sending (RPS) data: 
• a task starts processing data as soon as it has at least one 

token (i.e., one piece of data) in every input FIFO buffer, 
• when a task runs, it consumes one token from every input 

buffer and produces one token for every output buffer, i.e., 
the task processes the received data according to the 
function derived from the model and sends processed data 
further according to the edge of ACG, 

• a task without inputs fires every � sampling time. 
To preserve timing semantics between a Simulink diagram 

and ACG, we assume that the computation and 
communication time in ACG equals to 0 as it does in the 
Simulink blocks and links. 

V. RESILIENCE OF THE PLATFORM AND APPLICATIONS 
To achieve resilience to faults and maintain performance, 

various dynamic reconfiguration techniques are utilized. One 
such powerful technique is tasks reallocation [4][7][8], where 
a task is migrated to a non-faulty PU when some PU fails. 
However, when tasks are reallocated, they may lose data.  

Let us now focus on a resilience mechanism that prevents 
the data loss in the type of ACG considered in this paper. We 
start by describing faults and fault scenarios that can occur. 

 
Fig. 3. Task pattern 

A. Fault model 
We consider the fault model that captures physical failures 

of processing units of the platform. A failure can be caused by 
transient, intermittent or permanent faults due to high 
temperature [5], radiation [6], etc. We assume that only one 
failure of PU can occur at a time independently of the number 
of faults causing it. In other words, a sufficient amount of time 
must elapse between two consecutive failures. 

For the sake of simplicity, we assume that PUs are fail 
silent that either produce the correct result or no result at all 
[11][15]. Fail-silence assumption however can be softened if 
erroneous results are detected and isolated by using various 
mechanisms such as model-based diagnosis [16], runtime 
verification [17] or by integrating CRC-like sums into packets 
and their checks into tasks [15]. 

After a task is reallocated from a failed tile, the task starts 
over from the initialization phase (see Fig. 3); hence, all local 
variables receive initial values. However, the packets are 
stored in the buffers of RT which is a separate unit of a tile 
(see, e.g., [3]) or in the main memory. Therefore, these data 
remain intact and can also be reallocated along with the task. 

We can assume that reading from and writing to a FIFO 
buffer (queue) are atomic operations, i.e., either the buffer is 
read or updated, respectively, or not. However, if a task has 
several input and/or several output buffers, the reading and 
sending proceed in a buffer-by-buffer manner. In addition, we 
distinguish between source and regular tasks. The source tasks 
receive input data from the environment. The regular tasks 
consume data produced by other tasks and send processed data 
further or provide an output to the environment. Independently 
of whether a task is source or regular, it can be stateless 
(without memory) or stateful (with memory). Consequently, 
we have 4 cases in total: stateless regular tasks, stateless 
source tasks, stateful regular tasks and stateful source tasks. 

B. Fault scenarios 
According to the described fault model, there are several 

possible fault scenarios (FS) for the fault occurrence within 
the RPS loop (see Fig. 3): 
(FS1) A fault occurs before a task reads any input data. In 

this case, a task can still read the input data after 
reallocation as the input data remain intact. 

(FS2) A fault occurs while a task reads input data. A task 
reads packets from some queues but fails to read from 
others. Thus, some pieces of data may be lost. 
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(FS3) A fault occurs before the task sends the processed data. 
The task has read all the input data but has not finished 
processing them or has not been able to send the 
processed data. Hence, the task loses data of one firing.  

(FS4) A fault occurs while a task sends data. In this case, 
some successor tasks may receive packets with new 
data while others may not. This can lead to 
desynchronized data reception by the successor tasks. 

C. Packet sending 
To address data loss according to the described above FSs, 

we propose the following mechanism. Firstly, the packets used 
for communication between tasks incorporate a sequence 
number (packet id). The source tasks provide a value for this 
number starting from 0 and increase it every time when a new 
input is read. The regular tasks do not change this number 
which allows tasks to synchronize packets received from 
different buffers as explained later. 

Secondly, every task except for the ones that produce the 
output to the environment sends the same packet twice: the 
main packet and its duplicate (Fig. 4). Please notice however 
that the same approach can also be applied if tasks send more 
duplicate packets to tolerate a larger number of faults of PUs. 

As a result, the tasks now send and receive two packets 
instead of one each time they fire. The packets integrate a 
sequence number (id), where the main packet and its duplicate 
have the same id. However, the tasks need an intelligent 
procedure that filters duplicates if the tasks operate normally 
and use them upon failure according to the described FSs.  

For brevity, we provide a detailed description of intelligent 
packet handling for the stateless regular tasks in the following 
sub-section. Please refer to the technical report [18] for the 
details on the other types of tasks. 

D. Intelligent packet handling for stateless regular tasks 
Stateless regular tasks operate according to the algorithm 

presented in Fig. 5. In order for a task to detect a duplicate 
packet, it stores a local copy (���) of packets id after receiving 
all input packets. The initial value of the local copy equals to -
1 so that it is less than the starting value of the packets id (i.e., 
0). When reading packets, the task compares the id of the 
packet just read with the local copy. If no fault has occurred, 
the value of the local copy of the sequence number is less or 
equal to the sequence number of the packets read. Since the id 
of the main packet and its duplicate is the same, the task will 
simply reread the buffer for a packet with a greater id (Fig. 5, 
condition ����	
���������). This packet will contain new input 
data to process, i.e., be a new main packet. Thus, the task will 
filter duplicates when operating normally (see Fig. 6). 

In case a fault occurs, the local copy of the sequence 
number is initialized with -1. Depending on the FS, there are 
several possible outcomes. In (FS1), the task proceeds 
normally after reallocation as the main packets remain intact 
in the input buffers (see Fig. 4). The effect of the other FSs is 
shown in Fig. 6 which captures states of the input buffers of 
task ni considering (FS2)-(FS4). 

 
Fig. 4. State of buffers with and without FT 

If (FS2) takes place, there are two possible cases. In the 
first one, a fault occurs while the task reads main packets from 
buffers (Fig. 6, FS2, Case 1). In this case, the task can proceed 
normally after reallocation since there are duplicates in the 
buffers. In the second case, a fault occurs when the task has 
read duplicate packets from some queues but failed to read 
duplicates from other queues (Fig. 6, FS2, Case 2). This may 
lead to desynchronized packet receiving as the task reads data 
in a buffer-by-buffer manner. To avoid this, the task compares 
packet id received from the first queue with ids of the packets 
read from other queues. If the id of a packet from another 
queue is less than the id of a packet from the first queue, the 
task needs to reread this queue (Fig. 5, condition ����	
��� ��

����	���). This enables synchronization of packets read from 
different queues as only source tasks provide sequence 
numbers for packets and regular tasks do not modify them.  

In (FS3), where a fault occurs before the task starts 
sending the processed data, the task will use duplicates 
residing in the buffers after reallocation (Fig. 6, FS3). 

Finally, the algorithm also covers (FS4) if, e.g., task nl is 
reallocated due to a failure of PU (Fig. 6, FS4), as at least one 
copy of a packet always resides in the buffers. Please notice 
that a task can send more than two duplicates in case of (FS4). 
However, they will be filtered by the proposed algorithm. 

VI. EVALUATION RESULTS 
The proposed approach has been evaluated on a case study 

[18] implemented on the TilePro platform [3] without running 
other applications than OS (Linux Santiago 6.0, Kernel 2.6.36-
4). The platform integrates 64 tiles forming an 8x8 square 
mesh with a network-based communication between the tiles. 
The network connections are 32-bit full-duplex, there is single 
cycle latency between adjacent tiles and packet length is up to 
128 32-bit words. Bisection bandwidth equals 2660 Gbps. Due 
to the platform architecture, the size of FIFO buffers is limited 
to the power of 2. To tolerate faults, the proposed approach 
requires buffers of size 3. Hence, we provide communication 
buffers of size 4 for storing 3 packets in total: one current 
duplicate packet, one new main packet and one new duplicate. 
The platform runs at the frequency of 862.5 MHz so that one 
execution cycle approximately takes 1.1594 ns. The platform 
employs deterministic XY routing with the dead-lock and live-
lock free algorithm suitable for real-time systems [13]. 

We have first evaluated performance of non-FT and FT 
parallel implementations derived from the case study Simulink 
model without tasks reallocation. The evaluation results have 
shown that the proposed FT mechanism reduces performance 
of the parallel code by only about 1% due to the fact that the 
on-chip network provides high communication bandwidth. 

Moreover, we have evaluated tasks performance in the 
circumstances of dynamic reconfiguration. The results have 

 
Fig. 5. Algorithm for intelligent packet receiving in stateless regular tasks 
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Fig. 6. Intelligent reading in regular tasks: buffer states 

illustrated that the deviation of task performance is at most 
0.6% when comparing original and spare locations. In some 
cases, performance of the task reallocated to a spare PU has 
been better than the performance of the same task at the 
original location. This can be explained by the fact that there 
is lighter traffic to spare cores when routing packets. 

We have also analyzed performance of the reallocation 
procedure. Please refer to the technical report on details [18].  

VII. CONCLUSION AND FUTURE WORK

We have shown an approach to deriving parallel programs 
from arbitrary discrete single-rate Simulink models. Relying 
on the behaviour of the resulting ACG, we have introduced a 
scalable FT mechanism that prevents data loss when 
application tasks are relocated due to failures of PUs. We have 
evaluated performance of the derived programs as well as of 
the proposed FT mechanism. The results show only about 1% 
performance decrease when comparing non-FT and FT 
versions. Thus, the proposed approach maintains efficiency 
and provides resilience to faults allowing applications to 
produce the expected result. The proposed FT can also be used 
separately from Simulink but requires the aforementioned 
assumptions. Moreover, it is not restricted to data parallel 
applications and can be applied to functionally parallel ones.  

The future directions of our work include the development 
of a tool support for the proposed approach and its extension 
to multi-rate models. Moreover, one can integrate the 
proposed approach into FT dataflow proposed in [12]. 
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Abstract—In this paper, we present an approach that allows to 
generate VHDL code from formal models developed with the 
Event-B formalism. The approach is based on the relationship 
between the structure of the formal model and hardware 
description language statements. We are aiming at getting 
VHDL code whose behaviour is the same as the behaviour of 
the Event-B model. Our contribution lies in the fact that we 
show the main similarity between the formal model and VHDL 
code that allows us to derive the method and, hence, the 
algorithm for automatic translation. This algorithm can be 
implemented as a plug-in for the Rodin tool which supports the 
Event-B formalism. The approach is presented through a 
simplified version of an industrial case study developed in a 
stepwise refinement manner. We also present several ways of 
possible translation depending on the way the model has been 
developed through refinement. In addition, we present 
synthesis results that show space occupied by the VHDL code 
generated. 

Keywords-formal modelling; Event-B; VHDL; code 
generation 

I.  INTRODUCTION 
Advances in technology allow us to design embedded 

systems as single chip systems, so-called Systems-On-Chip. 
On one hand, it allows us to reduce the space and power 
consumption and diminish time delays in a system. On the 
other hand, the complexity of such type of systems leads to 
impossibility of performing exhaustive testing in order to 
ensure the correctness of the system. 

The first solution to this problem may be found by 
applying the model-checking approach to implementations 
[1]. The main idea of this approach is to derive a model of a 
system from the system implementation (code) and then 
check system properties on that model. However, this 
approach is time consuming because if errors are found, then 
it is necessary to return to the implementation, correct the 
errors and apply model-checking repeatedly until the correct 
system is derived. 

Another way to solve the problem is offered with a 
formal model development of a system [2]. A model can be 
developed in a stepwise manner which is known as the 
refinement approach. At every step of the refinement-based 
approach we introduce functional properties of the system 
that have to always be established while the model is being 
developed. These properties are called invariants. Each 
refinement step has to preserve the invariants mentioned at a 
particular step and all steps before. Therefore, the formal 
model of the system is correct by construction. In other 

words, we can guarantee that the behaviour of the system 
matches the requirements. 

There exist several formal methods for hardware 
specification and verification such as Action Systems [3], 
Lustre [4], Signal [5] and Esterel [6]. The synchronous 
formalisms Lustre, Signal and Esterel cannot model both 
synchronous and asynchronous systems in a straightforward 
manner because of the perfect synchrony hypothesis, in 
which outputs are produced synchronously with the inputs. 
Specifically, Signal has been applied to modelling globally 
asynchronous designs in synchronous networks [7] while 
Esterel has been extended to model multiple clock domains 
[8]. Moreover, Halbwachs and Baghdadi [9] introduced 
several extensions in order to avoid the limitations of the 
perfect synchrony hypothesis. These extensions add 
significant overhead to the specifications. Furthermore, only 
Signal supports the refinement approach. 

For the work in this paper we focus on the Event-B 
formalism [2], related to Action Systems and its extension 
B Action Systems [10], because it has adequate tool support 
enabling system-level modelling and analysis of both 
synchronous and asynchronous systems. It allows us to 
model a discrete transition system and prove the consistency 
of the model following the refinement approach. In addition, 
we can model concurrency by atomic events that can be 
executed in parallel if they operate on disjoint variables. This 
approach is supported by the Rodin platform [11], which is 
open source software and allows us to extend its 
functionality by adding new modules in the form of plug-ins. 

The target language we are aiming at is VHSIC 
Hardware Description Language (VHDL) [12]. This 
language is standardized [13] and is widely used in hardware 
design to describe systems based on field-programmable-
gate-arrays. There are a number of tools that support VHDL 
designs and allow us to synthesize the code and simulate its 
behaviour. In order to do that, we have used Quartus-II 
software for synthesizing the code and ModelSim software 
for simulating this code [14]. 

Since a formal model is correct by construction, it is very 
important to start with the formal modelling of the system 
and then transform the model into a programming language. 
We are aiming at the creation of a plug-in that makes the 
translation process automatic and the development of the 
method for generation of the VHDL code from the given 
Event-B model that the plug in implements. The method is 
based on the correspondence between a formal model and 
VHDL that enables the automatic translation to be performed 
correctly. 
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The rest of the paper is organised as follows. Section II 
describes related work and compares our approach to other 
approaches. In section III, we describe the structure of an 
Event-B model and present formal proof obligations that a 
model has to be consistent with. The structure and statements 
of VHDL code are depicted in section IV. The approach we 
use to derive VHDL code from a model is represented in 
section V. In section VI we show an application of this 
approach with a simplified version of an industrial case 
study. Section VII discusses possible extensions of the 
approach if a model is decomposed through refinement. We 
discuss future work and directions of the research in 
section VIII. 

II. RELATED WORK 
The work presented by Cansell, Méry and Proch [15] 

introduces the approach to transformation of the formal 
model into SystemC language. The authors aim at the 
formalization of the SystemC scheduler which handles 
timing requirements of a program in this language. However, 
this approach cannot be applied to transformation into more 
low level language, namely hardware description language 
(HDL), because HDL does not have any schedulers as such. 

An approach presented by Plosila and Sere [16] has been 
developed for modelling and verification of asynchronous 
hardware systems. In this work the authors describe the 
formal design process for an asynchronous pipelined 
processor that contains concurrent elements. This approach 
relies on the use of the Action Systems formalism. The 
application of the Action Systems formalism to synchronous 
systems has been extended by Seceleanu [17]. This approach 
relies on the two-phase operation (read and write) of a 
synchronous system modelled with the Action Systems 
formalism while our approach focuses on facilitating the 
translation of implementable hardware models developed 
within Event-B into a targeted hardware description 
language. 

An approach for transformation of formal models to 
VHDL has been developed by Hallerstede and Zimmermann 
[18]. This approach lies in the field of transforming a linear 
system into HDL. In fact, this approach is used by the 
AtelierB tool [19] which is based on the B Method 
formalism and supported by industrial partners [20]. This 
approach uses a middleware language called B0 and then 
allows us to get pure VHDL. Since Event-B is an extension 
of B Method [21] which allows us to model reactive systems, 
it is not straightforward how to apply this approach to the 
Event-B formalism. Besides, our approach considers Event-
B models as such and allows us to generate VHDL code 
directly from a formal model. 

III. EVENT-B 
Event-B is a formal method based on correct-by-

construction development of systems through stepwise 
refinement. To start with, we have to describe some 
important structures of an Event-B model [2]. The model 
consists of two parts: a context and a machine. The context 
contains static elements of the model such as sets, constants 
and axioms that can be seen by the machine. The machine 

consists of model properties (invariants) and dynamic 
constituents (variables and events). 

We do not give the structure of the context because from 
the relation between machines and contexts we can get all 
the required values. We focus on the detailed description of 
the dynamic part of a model (machine) to show the 
correspondence between a formal model and VHDL code. 

The overall structure of the machine is given in Fig. 1.  machine Machinesees Contextvariables //Global variables of a model invariants //Variables type and properties of a model events //Actions that model performs end
Figure 1.  The structure of an Event-B machine. 

There are five main sections in a machine. As any 
component, the machine has a label (its name), which we 
represent by using the machine keyword. If we have defined 
static properties in a context, then they are seen through the sees clause. Since the machine is the dynamic part, it 
changes its state by modifying variables introduced in the variables clause. In the invariants clause we give the types of 
the variables and the guaranteed state properties of the 
machine. The behaviour of the machine can be modelled by events specified in the corresponding clause. 

The events have the following structure which we are 
using for proper translation of the model to the code. The 
syntax of an event is as follows: Evt = WHEN g THEN S END 
where Evt is an event, g represents the conjunction of guards 
(conditions on which the event is enabled to be executed) 
and S is a statement defined as an assignment to the 
variables. 

In the model we can use two types of assignments: 
deterministic and non-deterministic. Since a hardware 
system must have a deterministic behaviour, the final model 
must have only deterministic assignments of the following 
form: x := Exp, where x reflects the vector of the variables 
and Exp is an expression. 

Formally, each event is viewed as a before-after predicate BA(x,x’) that links the values of the variables just before (x) 
and just after (x’) of the event execution. This scheme makes 
it possible to prove the correctness of the model by 
preserving the invariants. A model is consistent if the 
following proof obligations hold: 1. WD(Inv) 2. BA(x:=x0) ⇒ Inv’ 3. Gi ∧ Inv ∧ BAi(S) ⇒ Inv’ 
where 1. shows well-definedness [22] of an invariant, 2. 
depicts the establishment of this invariant at initialisation and 
3. states that every event preserves the invariant. Inv’ stands 
for a modified invariant containing the updated state 
variables after an event execution. 

Since a model is developed in a stepwise manner, the 
following proof obligations have to be consistent with 
respect to the refinement approach: 
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1. AbsInv ∧ ConcInv ∧ ConcG ⇒ AbsG 2. AbsInv ∧ ConcInv ∧ ConcG ∧ ConcBA ⇒ AbsBA 3. ConcG ∧ ConcBA ⇒ AbsBA 
where 1. corresponds to guard strengthening, 2. shows 
simulation of an action and 3. represents the equality of the 
preserved (“old”) variable. AbsInv, AbsG and AbsBA stand for 
an invariant, guard and before-after predicate of an event that 
appear in a previous refinement step while ConcInv, ConcG 
and ConcBA reflect an invariant, guard and before-after 
predicate of an event that are stated at the current refinement 
step. 

The whole Event-B model is developed in a stepwise 
manner following a refinement-based approach. At every 
refinement step, we add details of a system. In addition, we 
prove the consistency between a more abstract specification 
and a more concrete model by preserving the invariants from 
the previous steps. 

Thus, every model which is developed in this manner has 
logical proofs of its consistency with the respect to the 
properties derived from the system requirements. In other 
words, Event-B offers a proof-based verification. 
Nevertheless, a model checker and animator (ProB [23]) is 
also available. 

IV. VHDL
Similarly to the Event-B models, we have to present 

some VHDL constructions that are useful for the translation 
process. We begin with describing the structure that a VHDL 
project has [12, 13]. 

The starting point in VHDL code is a clause named entity 
(Fig. 2). Every entity must have a name and some ports. 
Additionally, we can define necessary parameters for the 
entity by using generic statement. Every input and output of 
the entity is introduced in the port clause. All the signals in 
the entity represent the interface of this entity and have a 
direction and a type. Thus, we introduce the in direction for 
the input signals and the out direction for the output signals. 
The usual type for every signal is std_logic independent of 
signal direction. entity Entity is generic ( --Parameters); port (--Inputs  : in std_logic, --Outputs  : out std_logic); end Entity; architecture arch of Entity is  --Internal signals  begin //Statements end 

Figure 2.  The structure of an entity in VHDL. 

Using the interface described in the entity, we implement 
the hardware behaviour in the architecture clause. Internal signals of the architecture depict the internal data of the 
entity. Since an action modifies the value of the variables, 
the assignment to signals in terms of VHDL has the 
following form: x <= E, where x is a signal and E is an 
expression. Every such an assignment is not instant. In other 

words, every signal has a buffer which contains the value 
after the assignment. Hence, it is not possible to perform 
several assignments to one signal unless this signal is in the 
process clause. Thus, we focus on the process clause where 
we use the “if condition then action end if” statement whose 
behaviour is the same as the behaviour of an event in the 
model. The syntax defining the process is as follows: process (<sensitivity list>) is begin operators end; 
where <sensitivity list> is the list of signals on which the 
process is activated and for operators we use the conditional 
statement described above.  

Therefore, we have derived the main similarity between 
the Event-B model and VHDL code. 

V. EVENT-B DEFINITIONS IN TERMS OF VHDL 
STATEMENTS 

The correspondence between a machine and an entity is 
depicted in Fig. 3 and Fig. 4. 

Since a machine may have different variables that 
represent the inputs and outputs as well as internal data, there 
is a necessity to distinguish them. In order to do that, all the 
variables that have “_I” suffix are considered to be the inputs, 
the variables with “_O” suffix represent the outputs, while the 
others reflect the internal data. All the variables have to be of 
the numeric or Boolean type. The correspondence of the 
types is given in Tab. I 

An Event-B model can be developed in different ways 
with respect to the refinement approach. Usually, we start 
with a very abstract model that has non-deterministic 
behaviour and we come to completely deterministic actions 
while refining the model. The final deterministic model can 
be translated into asynchronous VHDL code. Event-B structures VHDL statements machine Machinevariables//Inputs Outputs Internal invariants  //Variables type events event INITIALISATION     begin //Default values //on the variablesend

entity Machine is port (--Inputs and outputs, their type --and the default value, e.g. Inputs : in std_logic := def_val, Outputs : out std_logic := def_val ); end Machine; 
Figure 3.  Correspondence between a machine and an entity. 

In order to derive the VHDL code, we use the following 
correlation between the structure of Event-B events and 
VHDL statements (Fig. 4). 

TABLE I. TYPES CORRESPONDENCE Event-B types VHDL types BOOL = {TRUE,FALSE} Std_logic = {1,0}n..m, where n, m – numbers Integer range n to m
As it can be seen, every event of the model is reflected by 

the corresponding “if then end if” statement with the same 
name. The guards of the event are translated to be the 
conditions of the statement and the event actions are the 
assignments in terms of VHDL. There is one event which 
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needs to be translated in a different way. This event models 
the non-deterministic assignment on the inputs which 
distinguishes it from other events, i.e. this event models the 
environment. The variables that appear in a guard of this 
event and have a deterministic assignment on them are 
translated in accordance to the structure described above. If 
there are some variables that depend on new values of the 
inputs, then this assignment is translated as an additional “if” 
statement.  Event-B structures VHDL statements events   event evt1     when       @grd1 G     then       @act1 A   end end 

architecture a of Entity is begin//Internal variables   process (variables) is begin       evt1:       if G        then A       end if;   end process; end a 
Figure 4.  Correlation between events and architecture. 

To enable a smooth translation of the model into VHDL, 
the model has to be deterministic. In other words, the last 
refinement step has to contain only deterministic 
assignments on the variables that have presented types. 

Therefore, having the final Event-B model (the final 
refinement) we transform this model to VHDL code by 
following these rules. 

The translation algorithm contains the following steps: 
1. Every variable is transformed into signals that have 

the type defined in Tab. 1. 
2. All variables with suffixes “_I” and “_O” are put into 

port clause of the entity and are provided with 
corresponding keyword that reflects the direction of 
each signal (in or out). 

3. The other variables are represented as internal 
signals and are put into architecture clause. 

4. Since all the variables are initialized, so are the 
signals, independently of the clause they are put in. 

5. The process clause is added to the architecture with 
the sensitivity list containing all the signals. 

6. Every event of the model is transformed into “if then” 
statement that hat the corresponding label. 

7. The event that models an assignment to inputs is 
translated as a special “if” statement that changes the 
value of the signals appeared in the condition. 

The case study in the next section presents the 
application results of this approach. 

VI. CASE STUDY 
The case study is a simplified version of one of the 

avionics systems which was developed in collaboration with 
the SSPE “Corporation Kommunar” ST SCB “Polisvit” [24]. 
This industrial partner specialises on the development of 
control systems for avionics and space. One of those systems 
was taken as a basis for the case study. 

The main goal of the system is to prevent the moving 
parts of a plane from being covered with ice. In order to 
perform this function, the system turns heaters on under the 

following conditions: either a pilot switches on the system or 
the sensor detects ice on the moving parts of an airplane. 

There are two types of heaters in the system: one that is 
switched on constantly and another one that has a cyclic 
behaviour. The system consists of one heater of the first type 
and three heaters of the second type. Every heater of the 
second type is turned on one-by-one because it is forbidden 
for the controller to turn on several heaters of the second 
type simultaneously. 

We can now concentrate on the formal model of the 
system and its translation into VHDL code. We first present 
the initial formal specification and then we present the new 
features introduced in each refinement. The final refinement 
is the starting point for code generation. 

A. Initial Specification of the Case Study  
We start modelling the system as a “black box”. In other 

words, we introduce all the inputs and outputs of the system, 
but we do not specify all the algorithmic details. The initial 
specification of the case study is given in Fig. 5. All 
variables introduced in this step are of the BOOL type and the 
initial value that is assigned to all variables is FALSE. 

The safety invariants for this specification describe the 
dependencies between inputs and outputs. For instance, it is 
impossible for the system to have two input signals being TRUE at the same time. In this system, there are two main 
inputs that influence the mode of the system. They are 
reflected by the variables Manual_I and Auto_I. Manual_I 
equals to TRUE when a pilot switches the system on 
manually and Auto_I enables the automatic mode when the 
system detects ice. Hence, it is impossible to turn these two 
modes on simultaneously. These conditions are depicted by inv0_9 together with the thm2 and thm3. Furthermore, inv0_10 and inv0_11 state that the heaters are on under the 
above conditions on the inputs. Otherwise, they are off. 

Abstractly, the system reads the inputs, and produces the 
outputs (which are “On”/TRUE or “Off”/FALSE in this system) 
depending on the inputs read. These activities are modelled 
by the corresponding events, namely the Read_inputs event 
assigns some values to the inputs, the Heaters_OFF event 
reflects the turning off of the heaters and the Heaters_ON 
event modifies the outputs such that the heaters are on. 

B. The First Refinement of the Case Sudy 
In the first refinement step, we focus on the heaters – the 

outputs of the system. The system has heaters that cannot be 
switched on simultaneously. To specify this requirement, we 
introduce a new variable, named Iteration, as well as safety 
invariants stating impossibility of switching the heaters on 
concurrently. The variable is initialised to 0 and incremented 
each time when one of the heaters is turned on. The new 
variable and invariants are depicted in Fig. 6. 

Since these heaters are on one-by-one, the invariants inv1_1 and inv1_2 connect the iterations with switching on 
the heaters. In addition, while one of the heaters is on, the 
others must be off. This dependency is reflected by inv1_4, inv1_5 and inv1_6. These invariants guarantee the 
deterministic behaviour of the heaters. 
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machine M0_IPS variables AbsMode, Auto_I, Manual_I, Ice_I, Heater1_O, Heater2_O, Heater3_O, Heater_Knife_O invariants    //   All the variables have BOOL type in the abstract specificationinv0_9   :    Auto_I=FALSE ∨ Manual_I=FALSEinv0_10 :    AbsMode = FALSE ⇒ ((Manual_I = TRUE ∨(Auto_I = TRUE ∧ Ice_I=TRUE)) ⇔ ((Heater1_O=TRUE ∨ Heater2_O=TRUE ∨ Heater3_O=TRUE)))inv0_11   :    AbsMode = FALSE ⇒ (¬(Manual_I = TRUE ∨(Auto_I = TRUE ∧ Ice_I=TRUE)) ⇔ ((Heater1_O=FALSE ∧ Heater2_O=FALSE ∧ Heater3_O=FALSE)))thm1   :    (Manual_I = TRUE ∨ (Auto_I = TRUE ∧Ice_I = TRUE)) ∨ (Manual_I = FALSE ∧Auto_I = FALSE) ∨ (Auto_I = TRUE ∧ Ice_I = FALSE)thm2   :    Manual_I = TRUE ⇒ Auto_I = FALSEthm3   :    Auto_I = TRUE ⇒ Manual_I = FALSE
 events INITIALISATION   ≙    BEGIN //   All the variables are initialised to FALSE END Read_inputs   ≙       //   The system reads the inputsWHEN grd1   :    AbsMode = FALSE THEN act1   :    AbsMode ≔ TRUE 

 

act2 : Auto_I,Manual_I, Ice_I :∣  Auto_I' ∈ BOOL ∧Manual_I' ∈ BOOL ∧ Ice_I'∈BOOL ∧ (Auto_I'=FALSE ∨ Manual_I'=FALSE) END Heaters_OFF ≙WHEN grd1 : AbsMode = TRUE grd2 : ¬(Manual_I = TRUE ∨ (Auto_I=TRUE ∧ Ice_I = TRUE))THEN act1 : AbsMode ≔ FALSE act2 : Heater1_O,Heater2_O,Heater3_O, Heater_Knife_O ≔ FALSE,FALSE,FALSE,FALSEEND Heaters_ON ≙WHEN grd1 : AbsMode = TRUE grd2 : (Manual_I = TRUE ∨ (Auto_I=TRUE ∧ Ice_I = TRUE))THEN act1 : AbsMode :∈ BOOL 
act2 : Heater1_O,Heater2_O,Heater3_O :∣  Heater1_O'∈BOOL ∧ Heater2_O'∈BOOL ∧Heater3_O'∈BOOL ∧ (Heater1_O'=TRUE ∨Heater2_O'=TRUE ∨ Heater3_O'=TRUE)act3 : Heater_Knife_O ≔ TRUE ENDEND

Figure 5.  The initial specification of the case study. variables ..., Iterationinvariants inv1_1   :   Iteration ∈ 0‥Max_iter inv1_2   :   (AbsMode = TRUE ∧ Iteration=2) ⇒  (Heater1_O = TRUE ∧ Heater2_O = FALSE ∧ Heater3_O = FALSE)inv1_3   :   (AbsMode = TRUE ∧ Iteration=3) ⇒  (Heater1_O = FALSE ∧ Heater2_O = TRUE ∧ Heater3_O = FALSE)inv1_4   :   Heater1_O = TRUE ⇒ Heater2_O = FALSE ∧ Heater3_O = FALSEinv1_5   :   Heater2_O = TRUE ⇒ Heater1_O = FALSE ∧ Heater3_O = FALSEinv1_6   :   Heater3_O = TRUE ⇒ Heater1_O = FALSE ∧ Heater2_O = FALSE
 

Figure 6.  The first refinement. New variables and invariants. 

C. The Second Refinement of the Case Sudy 
In the second refinement step, we introduce new 

variables and invariants that reflect different properties of the 
system (Fig. 7). 

The TimeCnt variable models the counter that counts how 
long a heater is on. This counter is activated when the TimeCnt_Ena variable has the value TRUE. While the counter 
is enabled (i.e. TimeCnt_Ena = TRUE), one of the cyclic 
heaters is turned on (inv2_3). In addition, when the counter 
stops, it resets its value (inv2_4).  variables ..., TimeCnt, TimeCnt_Ena, TimeReached, Cmp invariants inv2_1   :    TimeCnt ∈ 0‥WordSize inv2_2   :    TimeCnt_Ena ∈ BOOL 

inv2_3   :    TimeCnt_Ena=TRUE ⇒  ((Heater1_O=TRUE ∧ Heater2_O=FALSE ∧  Heater3_O=FALSE)∨(Heater1_O=FALSE ∧  Heater2_O=TRUE ∧ Heater3_O=FALSE)∨ (Heater1_O=FALSE ∧ Heater2_O=FALSE ∧ Heater3_O=TRUE))
 inv2_4   :    TimeCnt_Ena = FALSE ⇒ TimeCnt = 0 

 

Figure 7.  The next refinements: new variables and invariants. 

D. The Last Refinement of the Case Sudy 
The counter cannot count infinitely long. Therefore, there 

exists an upper bound for counting. This bound is introduced 
in the last refinement step (Fig. 8). When this bound is 
reached the value of TimeReached variable becomes TRUE. In 

order to modify this value, every increment on TimeCnt is 
compared to the upper bound. If the Cmp variable has TRUE 
value, the comparator compares the current value of the 
counter with the upper limit. If these values are equal, then 
the counter has reached the limit (inv3_3).  machine M3_Comprefines M2_TimeCntsees C3_Comp variables       AbsMode, Auto_I, Manual_I, Ice_I, Heater1_O, Heater2_O, Heater3_O,       Heater_Knife_O, Iteration, TimeCnt, TimeCnt_Ena, TimeReached, Cmp invariants ...inv3_1 : TimeReached ∈ BOOL inv3_2 : Cmp ∈ BOOL inv3_3 : (TimeCnt = TimeLimit ∧ Cmp = FALSE) ⇒TimeReached = TRUE events INITIALISATION ≙extendedBEGIN // All variables of the BOOL type are initialised with FALSE act1_1 : Iteration ≔ 0 act2_1 : TimeCnt ≔ 0 END

Figure 8.  The model variables, their types and initialization. 

Before we present the translation of the formal model to 
corresponding VHDL code, we depict the statistics of proof 
obligations for the case study in Fig. 9.  

 
Figure 9.  Number of proof obligations. 
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E. Translation of the Last Refinement to VHDL Code 
The last refinement of the system contains all the 

variables with their types and initial values which can be 
translated into VHDL (Fig. 8). As it can be seen, all the 
variables have either BOOL type or Integer type with the 
range from 0 to some constant. These constants reflect the 
parameters of the model. The constant Max_iter represents 
the maximum number of iterations and the WordSize defines 
the maximum value of a counter. These constants are 
introduced in the contexts of the model and have type ℕ. The Max_iter equals to 4 and the WordSize takes a value of 2 to 
the power 2 (2^2). 

All the constants of the model appear as the parameters 
of the entity in the generic clause (Fig. 10). All variables 
with the “_I” suffix depict the inputs of the system while the 
variables with “_O” suffix are the outputs. The others 
correspond to internal signals in the architecture. 

Since all the variables in the model are initialised, so are 
the signals in the VHDL code. Besides, the input and internal 
signals are in the “sensitivity list” of the process that defines 
the behaviour of the entity. 

To be able to use types and operations on them, the 
translation process starts with adding library “ieee” with all 
necessary branches. This library is commonly used in 
hardware design. 

Compared to the initial specification, the last refinement 
contains eight events, namely Read_inputs, Heaters_OFF, Heaters_ON1, Heaters_ON2, Heaters_ON3, TimeCount, Comparator, TimeStop. We show several examples of the 
events translation to the corresponding “if” statements. 

The event depicted in Fig. 11 models the switching the 
heaters off. LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; ENTITY M3_Comp IS GENERIC ( Max_iter  : INTEGER := 4; WordSize  : INTEGER := 2**4; TimeLimit  : INTEGER := 2**2); PORT ( --Input ports Auto_I : IN  STD_LOGIC :=  '0'; Manual_I : IN  STD_LOGIC :=  '0'; Ice_I : IN  STD_LOGIC :=  '0'; --Output ports Heater1_O : OUT  STD_LOGIC :=  '0'; Heater2_O : OUT  STD_LOGIC :=  '0'; Heater3_O : OUT  STD_LOGIC :=  '0'; Heater_Knife_O : OUT  STD_LOGIC := '0'); END M3_Comp; ARCHITECTURE a OF M3_Comp IS SIGNAL AbsMode :  STD_LOGIC :=  '0'; SIGNAL Iteration : INTEGER RANGE 0 TO Max_iter := 0; SIGNAL TimeCnt : INTEGER RANGE 0 TO WordSize := 0; SIGNAL TimeCnt_Ena : STD_LOGIC :=  '0'; SIGNAL TimeReached : STD_LOGIC :=  '0'; SIGNAL Cmp : STD_LOGIC :=  '0'; BEGIN M3_Comp:PROCESS (Auto_I,Manual_I,Ice_I,AbsMode,Iteration,TimeCnt,TimeCnt_Ena,TimeReached,Cmp) IS BEGIN

Figure 10.  VHDL interpretation of the signals, their types and default 
values. 

Heaters_OFF ≙extendedREFINES Heaters_OFFWHEN grd1 : AbsMode = TRUE grd2 : ¬(Manual_I = TRUE ∨ (Auto_I=TRUE ∧ Ice_I = TRUE))THEN act1 : AbsMode ≔ FALSE act2 : Heater1_O,Heater2_O,Heater3_O,Heater_Knife_O ≔FALSE,FALSE,FALSE,FALSE act : TimeCnt ≔ 0act4 : TimeCnt_Ena ≔ FALSE act5 : TimeReached ≔ FALSE END
Figure 11.  Switch off the heaters event. 

Since the multiple assignments are not supported by 
VHDL, the second action of the event is split up into four 
separate assignments (Fig. 12). Heaters_OFF:IF (AbsMode = '1') and   (not(Manual_I = '1' or (Auto_I='1' and Ice_I = '1'))) THEN AbsMode <= '0'; TimeCnt <= 0;TimeCnt_Ena <= '0'; TimeReached <= '0'; Heater1_O <=  '0'; Heater2_O <= '0';Heater3_O <= '0';Heater_Knife_O  <= '0'; END IF;

Figure 12.  VHDL interpretation of the switch off the heaters event. 

The Read_inputs event represents the specific event that 
belongs to the environment. This event has variables that 
behave deterministically, namely AbsMode, TimeCnt, TimeCnt_Ena and TimeReached. The variable Iteration also 
has a deterministic behaviour, although it is modified 
depending on the new values on the inputs (Fig. 13). Read_inputs ≙ // The system reads the inputs extendedREFINES Read_inputsWHEN grd1 : Ab Mode = FALSEgrd2 : TimeCnt = 0grd3 : TimeCnt_Ena = FALSE THEN act1 : AbsMode ≔ TRUEAuto_I,Manual_I, Ice_I, Iteration :∣   Auto_I' ∈ BOOL ∧ Manual_I' ∈ BOOL ∧ Ice_I' ∈ BOOL ∧act2   :   Iteration'∈0..Max_iter ∧ (Auto_I'=FALSE ∨ Manual_I'=FA LSE)∧((Manual_I'=TRUE ∨ (Auto_I'=TRUE ∧ Ice_I'=TRUE)) ⇒ Iteration'=1)∧(¬(Manual_I'=TRUE ∨ (Auto_I'=TRUE ∧Ice_I'=TRUE) ⇒ Iteration'=0)) act3 : TimeReached ≔ FALSE END

Figure 13.  The read inputs event. 

These variables are translated into corresponding VHDL 
code (Fig. 14) in the same manner as other events. Since the 
values of the inputs come from the environment, there are no 
assignments on them in the VHDL code. The dependency of Iteration on the inputs generates an additional “if” statement. 
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Read_inputs: IF (AbsMode = '0') and    (TimeCnt = 0) and    (TimeCnt_Ena = '0') THEN AbsMode <= '1';  IF (Manual_I='1' or (Auto_I='1' and Ice_I='1'))  THEN     Iteration<=1;   ELSIF not(Manual_I='1' or (Auto_I='1' and Ice_I='1'))  THEN     Iteration<=0;   END IF;  TimeReached <= '0'; END IF; 
Figure 14.  VHDL interpretation of the reading event. 

The code achieved from the model has been synthesized 
and simulated. 

F. Synthesis results and behaviour comparison 
To synthesise the code, we have used the Quartus-II web-

edition software which is free of charge. This software shows 
the statistical information about the use of the different 
elements of the chip chosen (Fig. 15). It also produces the 
firmware file that can be uploaded into a chip. We opt for 
Cyclone II family chips because a development board sold 
by Altera company is based on this chip. 

In order to compare the behaviour of the formal model 
and the code, we used ProB tool [21] which allows us to 
animate (“run”) the model and ModelSim tool [11] that 
simulates the code. A result of the animation at an execution 
point is shown in Fig. 16. The corresponding simulation 
result is depicted in Fig. 17. Similarly one can observe and 
compare animations and simulations for each execution step. 
As it can be seen from the animation and simulation results 
the behaviours of the model and the code are the same. 

 

 
Figure 15.  Synthesis results for the generated code. 

VII. DECOMPOSITION OF EVENT-B MODELS 
During refinements the model can become complex and 

difficult to read. To cope with this problem, the model can be 
decomposed using the shared-variable [25] or the shared-
event [26] approach. The main goal of these approaches is to 
use a shared structure (a variable or an event) that allows us 
to introduce an interface between machines and, hence, the 
models. Our interest lies in the decomposition using shared-
variables approach. In this case, the shared variables are 
represented as the signals between modules in VHDL and 

every machine is interpreted as a separate vhdl file. In 
accordance to this scheme, we can get a hierarchy of the 
models which is reflected in the VHDL code 
correspondingly. Certainly, while translating the models into 
the code, we have to introduce a top-level entity in VHDL 
that joins all the modules into one project. 

 

 
Figure 16.  Animation result. 

For instance, a model can be decomposed in such a way 
that there are three machines: one that models one module, 
another one that reflects another module and the one that 
connects these two with each other. Then, the translation 
process may proceed as depicted in Fig. 18. The “joining” 
machine corresponds to the top-level entity in VHDL that 
maps signals of the modules defined by the other entities. 

 

 
Figure 17.  Simulation result. 
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Nevertheless, the translation method remains the same: a 
machine represents an entity with an architecture and all 
corresponding variables, events and statements. 

Figure 18.  Decomposition of the models and its reflection in VHDL. 

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented an approach that enables the 
translation from formal models developed in terms of the 
Event-B formalism into VHDL code. This approach is based 
on the similarities found between a formal model and the 
hardware design. Furthermore, the translation process that 
relies on this approach can be automated by using the 
scalability of the Rodin tool that allows us to extend its 
functionality with plug-ins. Currently, we have implemented 
a prototype version of the VHDL code generation plug-in in 
our department. In the near future we intend to make it 
available through the Rodin platform. 

One direction for future research is the decomposition of 
Event-B models which gives us an opportunity to construct a 
hierarchical structure of a model so that this structure will be 
reflected in the hardware code. Considering this structure we 
will investigate the optimisation of the VHDL code, for 
example the use of different hardware library components in 
order to increase performance of the target product. 

Another part of the future research is the introduction of 
the clock signal into a formal Event-B model. A variable that 
models clock present in the last refinement will not change 
the result of the translation process because the algorithm of 
the VHDL process statement does not change; the process 
will execute, for example, on every rising edge of the clock. 
Furthermore, the introduction of clock may depend on the 
way the model is decomposed and refined. 

These future directions require the deployment of our 
approach on more case studies which will also enable the 
investigation of various metrics such as performance and 
used hardware resources. 

In addition, we will investigate approaches to fully 
automate the comparison between the behaviour of a formal 
model and the behaviour of VHDL code. 
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Abstract—We propose a design approach to integrating 
correct-by-construction formal modeling with hardware 
implementations in VHDL. Formal modeling is performed 
within the Event-B framework that supports the refinement 
approach, i.e., stepwise unfolding of system properties in a 
correct-by-construction manner. After an implementable 
model of a hardware system is derived, we apply an additional 
refinement step in order to introduce hardware library 
components in the form of functions. We show the mapping 
between these functions and corresponding library components 
such that structural, i.e., component-based, VHDL 
implementation is derived. The application of functions binds 
unrestricted data types and substitutes regular operations with 
function calls. The approach is presented through examples 
that illustrate the additional refinement step and the code 
generation. We show the advantages in terms of occupied area 
(2,5% and 12,5%) and performance (13,7% and 15,4%) of the 
descriptions that incorporate hardware library components. 

Keywords—automated refinement; code generation; design 
flow; Event-B; formal methods; library components; structural 
VHDL 

I. INTRODUCTION

Due to advances in Very-Large-Scale-Integration 
technology, designers can create increasingly complex 
systems on a single chip enabling energy-efficient execution 
of applications. These systems usually consist of a number of 
components working in unison. However, as complexity of a 
system grows, it is rather infeasible to perform exhaustive 
testing in order to guarantee correct behavior of the system. 

One of the appropriate approaches for developing correct 
systems is provided by formal methods. The application of 
formal methods can be categorized into two techniques. The 
model-checking [1] technique focuses on extracting a formal 
model from an implementation and checking some properties 
on this model. These techniques have been successfully 
employed (e.g., [2]) to identify errors that were undetected 
during normal design process. Modification and re-checking 
of the implementation should then be applied until the 
required integrity level is achieved. 

Another technique to guarantee the correct behavior of a 
system is offered by a stepwise formal development. The 
formal modeling is performed following the refinement 

approach, i.e., unfolding system properties in a correct-by-
construction manner. Thus, the formal model of the system is 
proved correct with respect to its functional requirements 
introduced as invariants. The utility of this approach can be 
further enhanced by automated code generation. 

For the work in this paper, we utilize the latter approach 
and use the Event-B formalism [3] as the main framework 
for formal development. This formalism supports the 
refinement approach and has adequate tool support – the 
Rodin platform [4]. This platform is open source software 
offering the opportunity for an extension of its functionality 
in the form of plug-ins. Since code generation is a natural 
step for formal design flow, there are plug-ins that allow one 
to derive code in software languages such as C, Java, etc. [5]. 
However, due to the fact that hardware description languages 
(HDLs) differ in semantics and syntax from software 
languages, the same methods and techniques cannot be 
directly and completely applied to hardware design and code 
generation. Hence, we aim at facilitating the process of HDL 
descriptions generation from formal models.  

The target HDL is the VHSIC Hardware Description 
Language (VHDL). This language is standardized [6] and 
widely used in hardware design for systems based on field-
programmable-gate-array or application-specific integrated-
circuit technologies. VHDL supports the notion of library 
components allowing the designers to develop a system in a 
structural, i.e., component-based, manner and to derive 
possibly optimized code in terms of area and performance. 

In this paper, we present a design flow that integrates 
correct-by-construction formal modeling with hardware 
implementations in VHDL. The contribution of this paper is 
a generic approach to deriving component-based formal 
designs and generating structural VHDL descriptions for 
them through an additional refinement step. We propose to 
apply this refinement step to a deterministic implementable 
model where VHDL library components are introduced into 
a formal model in the form of functions. We give a subset of 
components and show the mapping between their formal and 
informal definitions. The formal library can be further 
extended with the components used during the design. 

To support our approach, we have developed a prototype 
of a plug-in for the Rodin platform. The plug-in automates 
the additional refinement step and generates structural 
VHDL code using components shown in this paper. 
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II. RELATED WORK

There exist several formalisms that provide specification 
and verification of hardware systems such as Signal [7], 
Esterel [8], ForSyDe [9] and others. Signal is dedicated to 
data-flow applications domain while Esterel is for control-
flow ones. ForSyDe represents the design methodology 
targeting at covering both domains. The commonality of 
these languages is that they are all based on the perfect 
synchrony hypothesis. This hypothesis assumes a zero delay 
between consuming inputs and producing outputs. In 
addition, only Signal and ForSyDe support the notion of 
refinement. Refinement in Signal relies on checking if 
simulation of inputs and outputs preserves flow-equivalence 
(model checking) [10]. Refinement in ForSyDe stands for 
the mapping one process network onto another one 
restricting these networks to have the same inputs and 
outputs [9]. Moreover, these transformations have to be 
performed according to the predefined library. 

BlueSpec [11] has been proposed as another solution to 
formal hardware verification and code generation. The 
language represents an extension of SystemVerilog and has a 
sound semantics allowing one to verify certain properties. It 
also supports design by refinement offering a possibility of 
integrating automated reasoning into the design flow [12]. 
However, automated verification of system correctness is 
provided by external theorem provers and/or model checkers 
such as PVS [12] and SPIN [22]. 

Evans [13] describes the mapping of VHDL to B and 
Communicating Sequential Processes (CSP) methods. The 
author proposes to derive a B model from VHDL and 
formalize requirements with CSP. This approach uses a 
model-checking technique that requires modification and re-
checking of the implementation until the desired integrity 
level is achieved. 

In contrast to these approaches, we propose to use the 
Event-B formalism, which provides data and superposition 
refinement [14]. These types of refinement allow for 
stepwise unfolding of system functionality without 
restricting the model to have the same number of variables in 
refinements. Furthermore, one can postulate vital properties 
in terms of invariants for every refinement step. Following 
this approach, the discharging (proving) proof obligations 
serves as the guarantee that each refinement step preserves 
invariants and that concrete refinement step sustains their 
abstract counterparts. After the required model is derived and 
proved correct, a structural VHDL description is generated. 

Another approach to deriving synchronous hardware 
systems proposed by Seceleanu [15] relies on Action 
Systems. The author describes the approach to modeling a 
synchronous system as read/write operations, where a 
combinational (asynchronous) circuit that consists of logic 
gates is followed by a synchronous component, namely a D-
flip-flop, which operates on the clock signal. In addition, the 
author points out the mapping of such modeling to a 
behavioral VHDL description, where all operations are at 
one level of code, i.e., the description without components. 
Despite the fact that the Action Systems framework is 
similar to the Event-B formalism, it has a different 

underlying structure, which makes it infeasible to completely 
apply this approach to Event-B models. Furthermore, in 
contrast to this approach, we propose to derive component-
based models and generate structural VHDL descriptions 
with library components. 

Hallerstede and Zimmermann [16] proposed an approach 
to VHDL code generation from formal B models. The 
authors describe the mapping between B models and VHDL 
code through a middleware language B0, which allows one 
to generate code without components. This approach is 
adopted by AtelierB tool and supported by industrial 
practitioners [17]. Since Event-B is a descendant of B 
method that allows us to model reactive systems and has a 
different underlying structure, it is not straightforward how 
to apply this approach to Event-B models. Furthermore, we 
consider a component-based design flow, where components 
are injected into a formal model in the form of functions. 
This design flow allows for generating a structural VHDL 
description from such a model. 

A similar approach to VHDL code generation has been 
proposed by Ostroumov and Tsiopoulos [18]. The authors 
suggest utilizing the conditional statement ��������� ����	�
����� 
��
��
��
���
��
���� �	� ���	� ���	� ���	� �� in the process clause. This guarantees 
conformance of sequential VHDL behavior to the behavior 
of its formal counterpart enabling generation of a behavioral 
(i.e., without components) VHDL description from an 
implementable model following the usual proof-based 
design. We adopt and vastly extend the approach of [18]. 
However, in contrast to this approach, we propose to apply 
an additional refinement step in order to derive a component-
based model and, consequently, a structural VHDL 
description. The correctness of the additional refinement step 
is established through the proof obligations of Event-B. 

A BHDL tool has been proposed for digital circuit design 
[23]. The tool converts a VHDL description into B 
specification with two machines: an abstract that represents a 
VHDL entity and an implementation that corresponds to 
architecture. Then, these two machines are verified using the 
B engine and the VHDL comments are interpreted as 
invariant properties. In contrast to this approach, we derive 
an implementable deterministic Event-B model following the 
usual refinement-based development. Then, components are 
injected into the model so that a structural VHDL description 
can be generated. 

III. VHDL DESCRIPTION

A. VHSIC Hardware Description Language 
VHDL, a standardized hardware description language 

[6], is widely used in hardware design and is supported by 
many Computer Aided Design tools (e.g., [20]). A VHDL 
description consists of two basic elements: an entity and an 
architecture. Every entity must have a name and ports. The 
entity contains two clauses: generic that determines 
parameters for this entity and port that specifies inputs and 
outputs of this entity (an interface). The inputs and the 
outputs are distinguished by the keywords in and out, 
respectively. 
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The architecture attached to some entity has a name and a 
body that describes the behavior (the function) of a hardware 
component. Inside the architecture, a designer can introduce 
internal signals and other (e.g., library) components using the 
keyword component (Fig. 1). A component is simply a 
predefined entity supplied with an architecture. The 
component entity has generic parameters that have to be 
instantiated using the keywords generic map. The connection 
between components is specified by the keywords port map. 
The keywords generic map and port map constitute the 
architecture body along with the process clause. The 
execution of the process is determined by a so-called 
sensitivity list. 

The VHDL action in the process is an assignment to a 
signal of the form �� ��� �, where � is an internal or output 
signal and � is either a constant or an expression over the 
input and/or internal signals. Every signal whose value is 
updated has a buffer so that the actual assignment takes place 
when the whole process completes its execution. Hence, all 
the signals involved in the process are updated 
simultaneously. 

B. Hardware Library Components 
Library components allow the designers to tackle 

complexity of a system facilitating faster design. Let us 
review a subset of library components available in Quartus-II 
software by Altera [20]. A small subset of them is presented 
in Tab. I, where the components ������������������� and 
������������������ differ in the output they produce and the 
abbreviations ���, ��� etc. of the ����������� component 
stand for � less than �, � equals to � etc., respectively. 
However, the library is not limited to the components 
presented in Tab. I and can be further extended since every 
library component has a unique definition. 

The inputs and the outputs of the library components 
described here are signals or collections of signals 
represented by VHDL types  !����"�� and 
 !����"������!��, respectively. The number of signals of 
type  !����"������!�� is determined by a constant (a 

Figure 1. VHDL entity and architecture 

parameter in the generic clause). For the sake of brevity, we 
exemplify the mapping between a formal model and a 
structural code by the library component that performs the 
addition operation (Tab. I, �������� ���������). The other 
components are interpreted in a similar manner. 

The component has three parameters: ����#��!$, 
���������!��% and ��������� �%!�!��%. ����#��!$
specifies the number of signals (the width) of the inputs and 
the output. ���������!��% determines the type of this 
component. If it equals to ���, the component represents an 
adder. The parameter���������� �%!�!��% specifies the type 
of addition performed (signed or unsigned). 

The adder operates on two inputs: the input port ��!��
and the input port ��!��. It returns the result of addition of 
the two inputs to the output port �� ��! as well as the carry 
flag to the output ���!. The input ports and the output port 
�� ��! are of type�  !����"������!�������#��!$&'� ��#%!��
(� while the carry flag is of type  !����"��. 

In the next section, we formalize library components as 
functions within Event-B to achieve correct-by-construction  

TABLE I. A SUBSET OF LIBRARY COMPONENTS

Components Generic Inputs Outputs Operation 
�������� ���

��������
����#��!$)����������!��%���*���+)�
��������� �%!�!��%���*�% �"%��+�

��!��)�
��!���

�� ��!)�
���!�

�� ��!����!��,��!��������#��!$&'--(�)�
���!����!��,��!��������#��!$��

�������� ���
� ��!���!����

����#��!$)����������!��%���* ��+)�
��������� �%!�!��%���*�% �"%��+�

��!��)�
��!��� �� ��!� �� ��!������!���&���!��������#��!$&'--(��

�������!� ����#��!$�)�����#��!$�)�����#��!$�)�
��������� �%!�!��%���*�% �"%��+�

��!��)�
��!��� �� ��!� �� ��!������!���.���!����

�����������
����������

����#��!$%)�����#��!$�)�
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���������� �%!�!��%���*�% �"%��+�
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���������
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design flow. In addition, we show the correspondence 
between formal and informal definitions of library 
components presented in Tab. I. 

IV. EVENT-B FORMALIZATION

A. The Event-B Formalism 
The Event-B formalism [3] allows designers to develop 

models in a stepwise and correct-by-construction manner. A 
specification within Event-B consists of two main elements: 
a context and a machine. The context contains static data 
such as sets, constants, generic theorems and axioms. The 
machine models the dynamic part, which includes state 
variables, theorems, invariants specifying system properties 
that must always hold and events that modify the state 
variables. The context can be extended by another context 
and the machine can be refined by another machine. 
Moreover, the machine can refer to the data defined in a 
context, if this machine sees this context. 

An event within the Event-B framework has the 
following structure: 

�8���9��9��9��9�:�;�<;�<;�<;�<�=�
��
��
��
������	�	�	�	,�
where : is a list of local variables, = stands for the guard and 
� represents an action of the event , respectively. The guard 
is a conjunction of predicates that determine the execution of 
the action. If the guard holds, the action is fired. 

The action represents a composition of parallel 
assignments (denoted as >>) that modify state variables. There 
are three types of assignments in Event-B: deterministic 
(denoted as ?�), non-deterministic from a set (denoted as ?@) 
and non-deterministic specified by a predicate (denoted as ?>). 

Each event in Event-B is viewed as a before-after 
predicate (��� �� ���A)� AB�) [3] that links the values of the 
variables before (A) and after (AB) the execution of the event . 
This scheme allows us to prove the correctness (consistency) 
of the model with respect to postulated invariants by 
discharging proof obligations (POs). In particular, every 
predicate (i.e., an invariant, a theorem, a guard or an action) 
has to be well-defined [19], i.e., sound. Each event, in its 
turn, has to preserve postulated invariants [3, 19]: 
� ��A�C�=�D�E��F��A,� (INV) 
where ��A is a model invariant whilst = and �� are the guard 
and the before-after predicate of the event , respectively. 
The expression E��F��A stands for a substitution in the 
invariant ��A with the before-after predicate ��. 

An Event-B model of a system is created in a stepwise 
manner following the refinement approach. At every 
refinement step, one adds details towards an implementable 
model. While refining the model, new variables, invariants, 
theorems and events can be added. However, the overall 
behavior of a more concrete model must conform to the 
overall behavior of its abstraction. This fact is guaranteed 
through discharging POs guard strengthening (GRD) and 
action simulation (SIM) [3, 19]: 
� ��A�C���A<�C�=<�D�=,� (GRD)�
� ��A�C���A<�C���<�D���,� (SIM)�

where structures with the sub-script < represent their refined 
versions. 

To ease proving effort when discharging the above POs, 
one can postulate and prove theorems. Depending on the 
Event-B element (a context and/or a machine) where a 
theorem is stated, corresponding POs (THMc for a context 
and THMm for a machine) have to be discharged: 
� ��D�!��,� (THMc) 
� ��C���D�!��,� (THMm) 
where � is a set of axioms defined in a context, � is a set of 
model invariants, !�� is a theorem postulated in a context 
whilst !�� is a theorem introduced to a machine. 

The Rodin platform [4] supporting the Event-B 
formalism automatically generates and attempts to discharge 
the POs stated above. The tool usually achieves high-level of 
automation (usually over 80%). 

B. Event-B Formalization of Library Components 
To be able to prove that Event-B formalization conforms 

to the definitions of hardware library components shown 
above, we define a function that converts a non-negative 
decimal number into its binary image. This function binds 
infinite data types (e.g., naturals) to be suitable for hardware 
implementation since hardware bit images cannot be infinite. 
Definition 1: A bijective function ���A��)� 	�� �� G2 converts a 
non-negative decimal number into its binary image. The 
parameter ��@�H' determines the upper bound (i.e., the width) 
on which the function operates. The parameter 	�@� (--IJ�&'
represents a non-negative decimal number within the range 
(--IJ�&', where IJ� stands for I to the power of �. The 
function returns a binary image of the number 	, namely G2�@�
K:�>�:�@�K()'L.�C�#�:�����L, where #�:� stands for the number of 
bits (the width) of the binary number G2. The function is 
defined recursively as follows: 

where :---92 is a binary number (e.g., 010b) whose length (i.e., 
the number of bits) is determined by the constant � and ��,2�
M is a binary sum defined as (2�,2�(2���(2, (2�,2�'2���'2, '2�,2�
(2���'2, '2�,2�'2���'(2. 
Example 1. Suppose � equals to N. Then, any non-negative 
decimal number from the set (--IJN&' (i.e., (--O) can be 
represented as a binary number from ((( to ''': 

���A�N)(����(((2; 
���A�N)P�� �� ���A�N)Q�� ,2� (('2� �� ���A�N)N�� ,2� (('2� ,2� (('2� ��

���A�N)I��,2�(('2�,2�(('2�,2�(('2������A�N)'��,2�(('2�,2�(('2�,2�(('2�
,2�(('2������A�N)(��,2�(('2�,2�(('2�,2�(('2�,2�(('2�,2�(('2���'('2. 
End of example.

The formalization of library components is performed by 
using functions applied to an Event-B context. A function �
in a context is a constant that has at least two axioms. The 
first axiom defines the type of the function, i.e., the type of 
its arguments (!) and returning result (!B): 

!'�R�---�R�!��S�!B'�R�---�R�!BM, 
where !'�R� ---�R�!� is the Cartesian product, i.e., the set of all 
the pairs formed from the types !' to !�.  
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The second axiom specifies the result returned by the 
function �:  

T:��-�:��@�!��D���:'U---U:����:V�:')---):��, 
where �� @� '--� and � is the number of arguments that the 
function � takes (determined by its type). The symbol U
represents an ordered pair and allows one to specify a 
number of arguments for a function. The function � produces 
the result defined by the expression �:V over :�.  

Following the approach of introducing functions into an 
Event-B context, we define a formal library of presented 
hardware components as shown in Tab. II. For instance, let 
us consider the function �		�W���=�	 in Tab. II that 
formalizes the VHDL adder component (Tab. I, 
�������� ��� �������) within Event-B. The type of this 
function is determined by the first axiom, where 
�		�W���=�	�;�	
��@�H' is the width. The returning result is 
specified by the second axiom that models the addition 
operation of two non-negative numbers. 

Theorem (ADD): �		�W���=�	 conforms to �������� ��, 
where �		�W���=�	�;�	
�� �� ����#��!$ and the parameters 
���������!��% and ��������� �%!�!��% of �������� ��
equal to ��� and �% �"%��, respectively (ensured by the 
code generation algorithm described in the next section). 

Proof: 
'- The function �		�W���=�	 operates on the same input 

values in decimal as the library component 
�������� �� in binary:�
T��V�-���V�@�(--�IJ�		�W���=�	�;�	
��&'�D�

�X��V2�-���V2������A��		�W���=�	�;�	
�)���V�, 

where ��V represents a decimal input to the function 
while ��V2 is a binary image of ��V supplied as an 
input to the component. 

2. The result of the function �		�W���=�	 ranges from (
to IJ��		�W���=�	�;�	
�,'�&', i.e., one bit more than 
the width of the inputs. Hence, the function returns 
the result as well as the carry flag which corresponds 
to the value on the outputs �� ��! and ���! of the 
component: 
T<��-�<��@�(--IJ��		�W���=�	�;�	
�,'�&'�D��

�X���!)��� ��!�-����!�,��� ��!���
���A��		�W���=�	�;�	
�,')�<���, 

where <� represents the result of the function 
whereas ���!� ,� �� ��! is concatenation of the 
outputs ���! and �� ��! of the component. Clearly, 
the overflow will never occur. 
Example 2. Suppose �		�W���=�	�;�	
��������#��!$�
�� N, the input ranges of the function and the 
component are (--O and (((--''', respectively, while 
the result ranges are (--'P and ((((--'''', respectively. 
The leftmost (the most significant) bit of 
�������� �� represents the carry flag. 
End of example. 

3. Finally, the definition of the function �		�W���=�	
models addition of two inputs, namely 	�
�� and 
	�
�2, i.e., the function of the adder component. 

Similarly, we can reason about other functions (Tab. II) 
that specify other library components in Tab. I. �. 

TABLE II. COMPONENTS AS EVENT-B FUNCTIONS

Function Constant(s) Axioms 

�		��
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;�	
��
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While modeling a system in Event-B, one has to 
discharge POs (INV), (GRD) and (SIM) to show correctness 
of the system specification (Section IV). To ease discharging 
of these POs, we postulated and proved the following 
theorems (PO (THMc)). These theorems are available along 
with the definitions of functions in the library context: 
� T��-��@H�D�(���IJ�,� (ThC1) 
� T:)9�-�:@H�C�9@H�C�:���9�D�IJ:���IJ9,� (ThC2) 
� T��-��@H�D�IZIJ����IJ��,'�. (ThC3) 

Theorem (ThC1) states that 2 to the power of some 
natural number is a positive number. In other words, the set 
of values starting from 0 and ending in 2 to the power of 
some constant is not empty. Hence, the functions formalizing 
VHDL library components are well-defined on these values. 
Theorem (ThC2) shows the order relation between numbers 
whose powers are in the order relation as well. Theorem 
(ThC3) postulates inductiveness of 2 to the power of �. 

V. THE DESIGN FLOW AND CODE GENERATION 
ALGORITHM

The use of Event-B as a starting point in the design flow 
of hardware systems facilitates correct-by-construction 
development with respect to postulated properties and 
requirements. An automated code generation enhances the 
utility of the approach reducing testing effort at later design 
phases. Hence, we propose the design flow shown in Fig. 2, 
where test cases can be used, e.g., for deploying online 
testing. The reader is referred to [24] for more details on 
generation of test cases. 

An implementable deterministic model is derived 
following usual refinement-based development. Then, we 
apply an additional refinement step that serves as the 
middleware between a component-based formal model and 
structural VHDL description. The correctness of this 
refinement step is established by proving POs (INV), (GRD) 
and (SIM) using theorems of types (THMc) and (THMm) 
(Section IV). The Rodin platform [4] generates these POs 
and attempts to prove them automatically. The algorithmic 
representation of the code generation utilizing the additional 
refinement step is as follows: 

Figure 2. The design flow 

1. Refine an implementable model by extending the 
most definite context (if any) and refining the most 
concrete machine of the model. 

2. Instantiate necessary functions to the newly created 
context by specifying the set of values they operate 
with (their width). This set is bounded by the 
corresponding constants. The necessity of functions is 
determined by the machine actions.  

3. Restrict the types of the state variables according to 
the specified constants and instantiated functions. 

4. Replace regular operations in actions with calls to the 
corresponding functions. 

5. To generate code, interpret each function in the 
context as a corresponding library component in 
VHDL according to the defined mapping. 

6. Interpret the type of a variable which has been 
restricted by some constant as  !����"������!�� in 
terms of VHDL types. The length (the width) number 
is determined by the corresponding constant. 

7. For every component instantiation, introduce an 
internal VHDL signal connected to the component 
output(s) in order to allow for chaining of diverse 
components. 
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Figure 3. Component chaining in separate events 
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TABLE III. SYNTHESIS RESULTS FOR STATE HOLDING IMPLEMENTATIONS

LE, qt. LE, % Tsu, ns Tsu, % Th, ns Th, % 
w/ lib w/o lib  w/ lib w/o lib  w/ lib w/o lib  

36 37 2,7 9.975 11.562 13,7 2.262 2.215 -2 

To support the proposed design flow, we have developed 
a prototype of the plug-in that automates the additional 
refinement step and generates structural VHDL description. 
The plug-in implements the algorithm described above and 
operates as follows. Firstly, it extends the most definite 
context of an Event-B project, if any, by copying theorems 
(ThC1)-(ThC3) (Section IV) to it. Secondly, the plug-in 
traverses the most concrete machine of the project. Each time 
it sees a regular operation that can be substituted with a 
function call, the plug-in instantiates a corresponding 
function available in the library context. A designer specifies 
the width of the function being instantiated. Thirdly, it 
refines the most concrete machine and replaces each regular 
operation with a function call. Fourthly, for every variable 
involved in such an action, the plug-in generates a type 
invariant (PO (INV) in Section IV) in order for the types to 
be feasible for translation. Finally, it applies theorems (ThM) 
of the form ��:U9�� �� :� �V� 9 to the machine (PO (THMm) in 
Section IV), where : and 9 are the operands and � and �V are 
the function and operation, respectively. For instance, if the 
function call �		�W���=�	�:U9� replaces the expression :,9, 
then the theorem for this substitution is �		�W���=�	�:U9����
:,9. These theorems help in proving the correctness of the 
additional refinement step.  

A specification may contain several identical operations, 
e.g., two or more addition operations etc. To distinguish 
them, the plug-in uses an id number that starts from 0 and is 
increased whenever another function definition is 
instantiated. For instance,��		�(�W���=�	, �		�'�W���=�	, etc. 
Therefore, each function determines one library component 
such that the mapping between a formal model and VHDL 
code is feasible. 

VI. EXPERIMENTAL RESULTS

Let us examine a couple of examples showing the 
application of our method to modeling within the Event-B 
framework and generating structural VHDL code. The 
examples show a sequential composition of components 
using different modeling styles in Event-B.  

A. Component Chaining in Separate Events 
This example illustrates the use of library components 

such that the result computed in one event is used as an input 
for the computations in another event (Fig. 3). Here, we 
model the calculation of temperature using Ohm’s law (event 
����
���MV), where temperature is proportional to 
resistance (variable ����
���). Then, the obtained value is 
compared to some threshold and the comparison result is 
promoted further (event ��MV�<). An instance of this 
example is aerospace designs domain (e.g., [18, 21]) where 
the temperature sensor represents a high-quality resistor. 

For this model, the Rodin platform generated 57 POs of 
which 51 were proven automatically. Three POs of type 
(THMc) with the proofs were automatically derived for the 
context theorems (ThC1)-(ThC3) (Section IV) by the plug-in. 
One PO of type (INV) as well as one PO of type (WD) for an 
automatically generated by the plug-in theorem of type 
(THMm) have been proved interactively in a straightforward 
manner by utilizing theorem (ThC3). The remaining PO of 
type (SIM) has then been proved using theorems (THMm). 

We generated VHDL descriptions with and without 
library components from this model. We then synthesized 
each description using Quartus-II [20]. The tool analyzed 
them and provided the information about occupied area and 
performance. The number of logic elements (LE) measures 
the area. The worst-case setup time (Tsu) and the worst-case 
hold time (Th) illustrate the performance of this example. 
The synthesis results are summarized in Tab. III. They show 
the advantages in terms of area (2,7%) and performance 
(13,7%) of the implementation with library components. 

B. Replacing Infix Operators with Prefix Function Calls 
This example illustrates the model, where a single event 

produces the result using different operators (Fig. 4). The 
computation of the result proceeds as follows. The variables 
��VW
'�� and ��VW
I�� are multiplied, their result is summed up 
with the variable ��VW
N�� and, then, this sum is divided by 
��VW
'��. The order in which the operations take place specify 
the chain of the corresponding hardware library components. 
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Figure 4. Replacing infix operators with prefix function calls 
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TABLE IV. SYNTHESIS RESULTS FOR PREFIX FUNCTION CALLS

LE, qt. LE, % W-C Tpd, ns W-C Tpd, % 
w/ lib w/o lib w/ lib w/o lib 

28 32 12,5 14,71 17,38 15,4 

For this model, the Rodin platform generated 53 POs of 
which 49 were proven automatically. Three POs (THMc) 
with the proofs were automatically copied for the context 
theorems (ThC1)-(ThC3) (Section IV) by the plug-in. The 
only proof obligation (INV) was proved in an interactive and 
straightforward manner using theorem (ThC2). 

Analogously to the previous example, we generated 
VHDL descriptions with and without library components 
from this model. Then, we used Quartus-II to synthesize 
each description and acquire information about area and 
performance. The worst-case time required to propagate the 
value on the input pin to the output pin (W-C Tpd) reflects 
the performance metric for this example. Tab. IV 
summarizes the synthesis results, which show the advantages 
in terms of area (12,5%) and performance (15,4%) of the 
description with library components. 

VII. CONCLUSION

We have presented a design flow integrating component-
based formal modeling within Event-B with structural 
VHDL implementation. The proposed approach is rather 
generic allowing one to derive component-based designs in 
an automated manner. To support the proposed approach, we 
have developed a prototype of a plug-in that automates the 
additional refinement step and generation of structural 
VHDL description. We believe that the application of formal 
methods at early stages of the design flow with automated 
code generation can reduce testing effort at later design 
phases. In addition, we have shown experimental results that 
illustrate optimization provided by the code with library 
components (2,5% and 12,5% in area as well as 13,7% and 
15,4% in performance). Although the presented experiments 
are relatively small, the optimization in area and performance 
of the descriptions with library components is noticeable. 

The formal library of hardware components is not limited 
to the presented components and can clearly be extended. 
Hence, one future direction is to extend the formal library to 
facilitate the design of diverse hardware systems as well as to 
deploy the proposed approach on more complex systems. 
This may require formalizing complex components using 
Event-B machines instead of lightweight context functions. 

The described components are considered combinational, 
i.e., clockless. However, there are combinatorial components
that depend on the clock signal. Therefore, another direction 
of our future work is to extend the approach with modeling a 
system that contains clocked components. This will allow a 
designer to derive a time-aware model and generate 
synchronous code from this model. 
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