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Abstract

Identification of low-dimensional structures and main sources of variation
from multivariate data are fundamental tasks in data analysis. Many meth-
ods aimed at these tasks involve solution of an optimization problem. Thus,
the objective of this thesis is to develop computationally efficient and theo-
retically justified methods for solving such problems.

Most of the thesis is based on a statistical model, where ridges of the
density estimated from the data are considered as relevant features. Finding
ridges, that are generalized maxima, necessitates development of advanced
optimization methods. An efficient and convergent trust region Newton
method for projecting a point onto a ridge of the underlying density is de-
veloped for this purpose. The method is utilized in a differential equation-
based approach for tracing ridges and computing projection coordinates
along them. The density estimation is done nonparametrically by using
Gaussian kernels. This allows application of ridge-based methods with only
mild assumptions on the underlying structure of the data.

The statistical model and the ridge finding methods are adapted to two
different applications. The first one is extraction of curvilinear structures
from noisy data mixed with background clutter. The second one is a novel
nonlinear generalization of principal component analysis (PCA) and its ex-
tension to time series data. The methods have a wide range of potential
applications, where most of the earlier approaches are inadequate. Exam-
ples include identification of faults from seismic data and identification of
filaments from cosmological data. Applicability of the nonlinear PCA to cli-
mate analysis and reconstruction of periodic patterns from noisy time series
data are also demonstrated.

Other contributions of the thesis include development of an efficient
semidefinite optimization method for embedding graphs into the Euclidean
space. The method produces structure-preserving embeddings that maxi-
mize interpoint distances. It is primarily developed for dimensionality reduc-
tion, but has also potential applications in graph theory and various areas
of physics, chemistry and engineering. Asymptotic behaviour of ridges and
maxima of Gaussian kernel densities is also investigated when the kernel
bandwidth approaches infinity. The results are applied to the nonlinear
PCA and to finding significant maxima of such densities, which is a typical
problem in visual object tracking.
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Chapter 1

Introduction and outline of
the work

1.1 Introduction

Analysis of nonlinear data and finding modes (maxima) of multimodal prob-
ability densities are tasks appearing in numerous research fielfs such as statis-
tics and computer science. Many methods aimed at these tasks involve so-
lution of an optimization problem. Therefore, the objective of this thesis
is to develop efficient and theoretically justified methods for such problems,
and thus bridge the gap between optimization and statistics.

Three different data analysis and machine vision tasks are covered in
this thesis with emphasis on nonlinear optimization methods.

1 Dimensionality reduction: Describe high-dimensional data in a low-
dimensional coordinate system such that relevant information is preserved.
The data can be any collection of real-valued vectors (e.g. digital images
[119], speech signals [129], climate data [105] or biomedical data [79]).
Dimensionality reduction can be used for visualization purposes. It also
facilitates other tasks such as classification, clustering and identifying the
main sources of variation. Such tasks can be carried out more efficiently
and reliably on low-dimensional data.

2 Shape extraction: Extract curves and surfaces from low-dimensional
scattered point sets or spatial data (e.g. earthquake patterns [115], fila-
mentary and wall-like shapes in galaxy clusters [20], GPS tracks [22] or
feature points extracted from images [6,117]).

3 Mode finding: Efficiently find global or significant modes of probability
densities. This global optimization problem arises, for instance, in real-
time visual object tracking, where the most significant mode represents
the most likely state of the tracked object [59,112].
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Our primary approach to tasks 1 and 2 is to use ridges of density func-
tions for estimation of underlying structure from point sets. The assumption
is that the points represent observations from some unknown distribution
whose probability density is estimated from the observations. This idea orig-
inates from Ozertem and Erdogmus [96], and it has been later refined by
Bas et al. [9-11] and Ghassabeh et al. [51]. A rigorous statistical treatment
for this idea has been given by Genovese et al. [49]. Nowadays, ridge-based
methods have become popular in many applications such as medical imaging
(e.g. [10] and [11]) and analysis of seismic data (e.g. [55]). A comprehensive
list of related applications will be given in Chapter 2.

(a) general function (b) density of a point set

Figure 1.1: Examples of function ridges.

A ridge of a function surface corresponds to the intuition of a landscape
ridge as a narrow elevated region between peaks. Paths lying on top of ridges
are of particular interest in our applications. This is illustrated in Figure
1.1a showing a function ridge with a curve lying on top of it. A statistical
interpretation for such a curve can be obtained via a density function, as
illustrated in Figure 1.1b. That is, when a point set is distributed around
a curve in a plane, the ridge curve of its density function passes through
regions of high concentration, and thus describes the underlying structure.
As we will see in the following, this idea can be generalized to r-dimensional
ridges in d-dimensional space.

The following questions are studied in this thesis because addressing
them is crucial for practical applicability of ridge-based methods.

(i) To what extent do ridges of the underlying density describe the struc-
ture of a point set?
(ii) How to find a ridge of a density function reliably and efficiently?

(iii) Do ridges of the underlying density induce a coordinate system and how
to obtain a representation for a point set in this coordinate system?

2



The statistical theory developed in [49] answers to question (i) to a large
extent. As ridges are generalized maxima, addressing question (ii) necessi-
tates development of advanced optimization methods. It has been partially
answered in [51] and [96], where a simple method is developed for projecting
a point onto a ridge of a density. Question (iii), on the other hand, has not
been studied in the context of data analysis. Providing an answer to this
question is crucial when using ridges for dimensionality reduction.

Unfortunately, the ridge-based approach is not ideal for high-dimensional
data. This is due to inherent difficulties in high-dimensional density esti-
mation (i.e. the ”curse of dimensionality”) [110]. For this reason, one part
of this thesis is devoted to computational improvements to the mazimum
variance unfolding (MVU) method by Weinberger and Saul [131]. Differ-
ently to density-based methods, this geometric graph-based dimensionality
reduction method is well-suited for high-dimensional data. However, it does
not have an easy interpretation in terms of an underlying model for noisy
data (see [5] for recent research on this topic).

The MVU method constructs a neighbourhood graph from a given point
set and produces a low-dimensional representation based on the structure of
the graph. Such a representation (i.e. an embedding of the graph) is obtained
by maximizing interpoint distances so that distances between neighbouring
points are preserved. This idea is illustrated in Figure 1.2 showing the input
point set and its embedding. Obtaining such an embedding involves solution
of a difficult optimization problem. Until now, the applicability of the MVU
method has been severely limited due to lack of efficient methods for solving
this problem. As we will see in the following, this problem has a rich theory,
which also motivates choosing the MVU method as one research topic in
this work.

-
e
l’//m,//;f/
‘(‘ \\/4,

U

(\\“

(a) input point set in R? (b) embedded graph in R?

Figure 1.2: Neighbourhood graph of a point set in the input space and the
embedding obtained by unfolding the graph.
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Task 3 mentioned on page 1, that is mode finding, is not directly related
to the other ones. Nevertheless, it is relevant for this thesis. This is because
ridge finding methods are also applicable to finding modes as a special case.
For this task, our focus is on Gaussian miztures and kernel densities. This
is due to their special structure and the universal ability to model other
probability distributions [110,128]. In addition, finding not only a significant
one but all modes of such a density is of interest in many applications.
This problem arises, for instance, in nonparametric clustering [34]. Finding
modes of more general posterior distributions is also an important problem
in Bayesian data analysis [48]. A multimodal density is shown in Figure 1.3.

Figure 1.3: Example of a multimodal density.

The emphasis of this thesis is on algorithmic development, and the ap-
proaches taken are quite pragmatic. The theoretical results established in
this work serve the purpose of justifying the algorithms or giving a guaran-
tee that the algorithms give the desired results. We omit technical proofs
in this introductory part, but they can be found in Papers [I]-[V] and the
technical reports for those who are interested. Another focus area is per-
formance of the developed algorithms. Numerical performance comparisons
with existing algorithms are given whenever possible.

1.2 Outline of the work

This thesis is organized as follows. The notion of a ridge is rigorously defined
in the form of an r-dimensional ridge set in the d-dimensional space R? in
Chapter 2. The theory developed in [49] is reviewed to provide a statistical
justification for estimation of nonlinear structures from density ridges, which
addresses question (i). Nonparametric density estimation from the data by
using Gaussian kernels [30,110,128] is considered for computational imple-
mentation of ridge-based methods. As it turns out, this powerful density
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estimation approach offers a great amount of flexibility, as no restrictive
assumptions are imposed on the data. On the other hand, this approach
has its own computational challenges that the following chapters attempt to
address.

Chapter 3 consists of two parts. The first part is based on Paper I that
addresses question (ii). The contribution of this paper is a novel generaliza-
tion of the classical trust region Newton method by Moré and Sorensen [91]
to finding not only maxima but also ridges. It is shown that the method can
be used for (approximately) projecting points onto r-dimensional ridges of
their underlying density that is estimated by Gaussian kernels. Another im-
portant contribution of [I] is a rigorous proof for convergence of the method
to a ridge point. Finally, it is empirically shown that the proposed method
has significantly faster convergence rate than the earlier mean shift method
[31,34,47] and its subspace-constrained variant [96] for finding modes and
ridges, respectively. Fast convergence is desirable because of high computa-
tional cost of evaluating Gaussian kernel densities.

The second part of Chapter 3 deals with another application of a trust re-
gion Newton method based on Paper I1. There the authors consider finding
global or significant modes of Gaussian mixtures and kernel densities. The
proposed approach is based on a homotopy continuation technique [92,133],
where the highly multimodal density is smoothly deformed into a unimodal
one. Tracing the mode of the density along such a transformation yields a
computationally efficient method that finds global modes with a high proba-
bility. A potential application area of this method is real-time visual object
tracking [59,112].

A more practically oriented approach is taken in Chapter 4 based on
Paper III. There the ridge projection method presented in Chapter 3 is
combined with the statistical theory presented in Chapter 2 and a kernel
density estimator implemented in [41]. This results in a highly efficient
method for extracting multiple curvilinear structures from noisy point sets.
The method is based on the theory of ridge curves [36,89] that are formulated
as a solution to a differential equation by utilizing the theory of gradient
extremal curves [19,64]. A predictor-corrector method utilizing the ridge
projection method of Chapter 3 is used for the numerical implementation.
As the predictor-corrector method yields a parametrization of a ridge curve,
it addresses questions (ii) and (iii) in the case r = 1, but differently to
the projection method presented in Chapter 3 that only produces a set
of unordered points along such a curve. Applicability of the method to
detection of faults from seismic data and to identification of filamentary
structures from galaxy clusters are demonstrated.

The properties of ridge sets are explored further in Chapter 5 based
on Paper IV addressing question (iii). The contribution of this paper is
development of a nonlinear generalization of principal component analysis
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(PCA) [69,97]. The linear PCA is a well-established, but rather limited
tool for reducing the dimensionality and identifying the main sources of
variation from multivariate data. To address its limitations, the proposed
method utilizes the structure of ridge sets to construct a nonlinear coordinate
system. This is done by utilizing the results established by Miller [89].
It is shown that the principal component coordinates of a point set can
be obtained one by one by successively projecting the points onto lower-
dimensional ridge sets of a Gaussian kernel density. Such projection curves
are defined as a solution to a differential equation. The equations are solved
by a predictor-corrector method that utilizes the ridge projection method of
Chapter 3. The applicability of the nonlinear PCA and its advantages over
the linear PCA are demonstrated with two examples. These are obtaining a
low-dimensional representation of a highly nonlinear climate model dataset
and separation of a periodic component from an atmospheric time series.

Finally, Chapter 6 based on Paper V is devoted to the MVU method
[131]. The graph embedding problem arising in MVU can either be for-
mulated as a semidefinite program (SDP) or a quadratically constrained
quadratic program (QCQP). The solution of the QCQP gives the SDP so-
lution when the embedding dimension is sufficiently large. These two ap-
proaches are compared, and an efficient solution method based on the QCQP
formulation is developed in [V]. The method solves a sequence of small-
dimensional quadratic problems and increases the embedding dimension un-
til the solution of the SDP is obtained. This approach is based on the theory
of semidefinite programs and their quadratic low-rank formulations devel-
oped in [24,56,70] and the duality theory of semidefinite programs [123].

The research topics covered in this thesis and their relations are illus-
trated in Figure 1.4.

trust region Newton methods

modef/ridge finding | global mode finding

N

statistical ridge model . . : —— -
kernel density estimation | | differential equation solvers | probablllspc modell.ng
visual tracking, clustering,
/ \ classification, etc.
| identification of curvilinear structures | | nonlinear PCA | | graph embedding / MVU

dimensionality reduction /
visualization

Figure 1.4: Research topics covered in this thesis and their relations.
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Chapter 2

Ridges and related statistical
models

In this chapter we formally define the notion of a ridge and review the
literature on ridge-based methods used in different application areas. We
then proceed by reviewing the necessary statistical theory for estimation of
underlying structure in point sets from density ridges. The last part of this
chapter is devoted to density estimation by nonparametric kernel methods.

2.1 Ridge definition and basic properties

Generalizing the intuition of a ridge curve, we now define an r-dimensional
ridge in the d-dimensional Euclidean space R?, where r < d. The definition
is based on the theory presented by Eberly [43]. A key property defining
a ridge is readily observed from Figure 1.1a, which illustrates the special
case with » = 1 and d = 2. That is, the centerline of a ridge connects
the maxima of the function, being a local maximum along the direction of
greatest downward curvature at each point it passes through.

More formally, the curvature of a twice differentiable function f : R¢ — R
at a given point @ is determined by its second derivatives. By the chain rule
of differentiation, we obtain the second directional derivative

2

Vii@) = of@tye)| = Vi@,
Y y=0

of f at « along a direction v such that ||v| = 1.
By defining the Lagrangian

Le(v;\) = 0T V2 f(z)v — MvTv —1)

and equating its gradient with respect to v to zero, we make the following
observation. The eigenvectors {v;(x)}?, and the corresponding eigenvalues
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A(x) > Aa(x) > -+ > Ng(x) of the Hessian V2f(x) are stationary points
and values of h(v) = V2 f(x), respectively, under the constraint ||v| = 1.

By the above observation, the Hessian eigenvectors v;(+) associated with
the d — r algebraically smallest eigenvalues correspond to the orthogonal
directions of smallest second derivatives of f. When they are negative,
the downward curvature of f is greatest along these directions. Thus, we
define an r-dimensional ridge point as a local maximum of f restricted to a
hyperplane via the function

d
9(y) = f(u(y)), where w(y)=ax+ Y yivi(@) (21
i=r+1

for some x € R,
By using the chain rule of differentiation, the conditions for y to be a
local maximum of g are written as

Vy(y) = V()" Vf(u(y)) =0, (22)
V2g(y) = V()T V2 f(u(y))V(x) is negative definite, (2.3)

where
V(x) = [vpq1(x) vpp2(x) ... vg(x)].

Letting y = 0 in equation (2.1) and applying the identities
V(@)TV(z)=T and V(z)'V:f(x)=A(x)V(z)’,

where
A(z) = diag [A\r41(x), Ary2(), - . ., Aa()]

to (2.3), conditions (2.2) and (2.3) yield the first two conditions of the fol-
lowing definition for a ridge point @ and a set of such points. In order to
make the definition well-posed, we also require that the first r eigenvalues
differ from the r + 1-th eigenvalue. In addition, we require that the first r
eigenvalues are mutually distinct. These assumptions, that are required for
continuity of the corresponding eigenvectors, will be justified later.

Definition 2.1.1 ([43]) Let f : RY — R be a twice differentiable function
and let 0 < r < d. A point & € R? belongs to the r-dimensional ridge set
R if

f

Vf(x)Tvi(x) =0, foralli>r, (2.4a)
Ar+1(x) <0, (2.4b)
A(x) > Xe(x) > -+ > Nja(x), ifr>0, (2.4¢)

where A\i(z) > Ao(x) > -+ > Ag(z) and {vi(x)}L, denote the eigenvalues
and the corresponding eigenvectors of V2 f(x), respectively.

8



A key property is that lower-dimensional ridge sets are contained within
higher-dimensional ones. In particular, the zero-dimensional ridge points
of a function are its maxima. This property that can be readily observed
from Figure 1.1, follows directly from Definition 2.1.1. The methods to be
described in Chapters 4 and 5 extensively use this property.

Proposition 2.1.1 If f : R — R is a twice differentiable function, then
R gR;ﬂ forallr=0,1,...,d—1.

Another important property is that the ridge sets of a function and
its logarithm coincide. This property will be extensively utilized later, as
it allows interchangeable use of f and log f when dealing with ridge sets.
Another reason is that many of the theoretical results derived in this thesis
hold for the logarithm of a density function but not for the density itself.

Proposition 2.1.2 ([96]) If f : R? — R is twice differentiable, then R, =
Rfogf forallr=0,1,2,...,d—1.

The algorithms described in the following chapters either project points
onto ridges or trace ridges. This is done by tracing curves determined by
Hessian eigenvectors. Therefore we need conditions to ensure their continu-
ity and differentiability. First, we state the following result that is a direct
consequence of the well-known result about continuity of eigenvalues of a
matrix with respect to its elements (e.g. [95], Theorem 3.1.2).

Theorem 2.1.1 If f : R? — R is twice continuously differentiable, then
there exist continuous functions {)\i}gzl :RY — R representing the eigenval-
ues of V2f such that A\i(x) > Xo(x) > --- > Mg(x) for all x € R

If we make an additional assumption that condition (2.4c) is satisfied in
some open set, then the corresponding eigenvectors are infinitely many times
differentiable in this set. The following result is a direct consequence of the
well-known results about continuity and differentiability of eigenvectors (e.g.
[86] and [95], Theorem 3.1.3).

Theorem 2.1.2 Let f : R — R be a twice continuously differentiable func-
tion, let 7 > 0 and let U C R? be an open set such that

Al(x) > Xa(x) > - > Nja(x) forallz e,
where the functions \; are defined as in Theorem 2.1.1. Then there exists a

set of C*-functions {v;};_, : U — R? representing the eigenvectors of V2 f
corresponding to the eigenvalues {\;};_;.



2.2 Applications of ridges and related concepts

Research on function ridges and related concepts has been done in many dif-
ferent disciplines such as image processing, theoretical chemistry and global
optimization. This makes some earlier results directly applicable in this
work. An overview of related research is given below.

2.2.1 Image processing

There exists a rich theory of ridge-like structures in digital image processing.
The so-called height ridges, as defined by Eberly [43] similarly to Definition
2.1.1, have been widely used for extracting curvilinear and tree-like features
from images. Such features are of interest in analysis of aerial, satellite and
solar images and in medical imaging. Road and river networks [60], solar
flares [68] and blood vessels [114] are examples of these.

The theory of ridges in image processing is closely related to the research
of this thesis. Since a digital image is a discrete set of pixels, such an image
is approximated by a smooth function in a majority of mathematical papers
dealing with image processing.

The usual approach is to convolve a discrete image by using a Gaussian
kernel. For an intensity function [ : [1,2,...,m] x [1,2,...,n] — R rep-
resenting a m x n grayscale image, the convolved image can be obtained
as

Hayy) =) > @i y) Ko(rig), 1o = /(@ — )2 + (y — 9i)*.
=1 j=1

J

Here the two-dimensional Gaussian kernel with standard deviation o is de-

fined as
1 r2
K,(r) = - .
(r) om0 P ( 202>

The above case, where the data points are aligned in a regular grid, is in
fact a special instance of a more general scattered point set that will be
considered in the following chapters.

As Definition 2.1.1 only gives pointwise conditions, it does not guarantee
any kind of connectivity of ridge sets. The theory developed by Damon
[36] and Miller [89] in the context of image processing addresses this issue.
Their results give conditions ensuring that an r-dimensional ridge set of a
C*°-function forms a connected smooth manifold. These results are directly
applicable to the kernel density estimates to be introduced in Section 2.4,
as such a density with a Gaussian kernel is a C°°-function. As it turns out,
these results are crucial for the methods described in Chapters 4 and 5.
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2.2.2 Theoretical chemistry

The so-called gradient extremal curves originally introduced by Hoffman et
al. [64] are a standard tool in theoretical chemistry for modeling reaction
paths. An important special case of these are valley curves along potential
surfaces, as they connect minima representing equilibrium states. For a
given function f, a valley curve is a ridge curve of —f.

A gradient extremal point is defined as a stationary point of gradient
norm along a contour curve (i.e. a curve where f(x) = ¢). In order to show
the relation between such a point and a ridge curve point, we consider points
at which the gradient norm is minimal. For a three times differentiable
function f: R? — R, such a point is a solution to

o1
min ~||Vf(x)|? st. f(x) =c (2.5)
xcRe 2
The Lagrangian of the above problem is

L(w:\) = IV F@)* ~ Alf(w) —

with Lagrange multiplier A, yielding the first-order Karush-Kuhn-Tucker
(KKT) condition

VoL(z*;\) = V2f(z*)VF(z*) — \*Vf(z*) = 0. (2.6)

This condition is equivalent to saying that the gradient is an eigenvector of
the Hessian. Hence, by orthogonality of the eigenvectors of the symmetric
matrix V2f(z*), this condition is equivalent to condition (2.4a) when the
ridge dimension r is one and the optimal Lagrange multiplier is A* = A\; (x*).

To further explore the relation between solutions of problem (2.5) and
ridge points, we note that the second derivative of the Lagrangian L with
respect to @ is

VaL(m; A) = V3 f(x)Vf(z) + [V f(x)] — AV f (). (2.7)

Plugging the optimal Lagrange multiplier A = Aj(x) into the above
equation and taking a vector product with any Hessian eigenvector v;(x)
for ¢ > 1 from both sides yields

vi(@)! VEL(x; \wi(@) =vi(@)" [V f(2)V f(2)]vi(z)+

M(@) (@) — (@), (23)

where

d
V@)V (@)in =D [V F(@)ijul V(@) i k=1,2,...,d (2.9)

Jj=1

11



By conditions (2.4b) and (2.4c), the right hand side of equation (2.8) is
strictly positive when @ € R} and the third derivative term V3 f(x)V f(x)
is sufficiently small. In this case, since v;(x) vy (x) = v;(x)TV f(z) = 0 for
all i > 1 and V f(x) is the gradient of the constraint in (2.5), we deduce that
any ridge curve point x € R} also satisfies the second-order KKT conditions
of problem (2.5) (see e.g. [7] for the definition of such conditions).

The above observations imply that a ridge curve point is a special case
of a gradient extremal point. Thus, some of the results presented in Chapter
4 dealing with ridge curves rely on existing results for gradient extremals.

2.2.3 Global optimization

Global optimization is another important application of ridge and valley
curves since such curves pass through local maxima and minima, respec-
tively. The so-called terrain method developed by Lucia et al. [84] builds a
network of extremum points of a function by following such curves. In that
paper and a series of related papers (e.g. [85]), the authors apply the terrain
method to molecular modeling. A related method has been developed by
Sminchisescu and Triggs [113] for global optimization problems arising in
computer vision.

2.3 Estimation of underlying structures from den-
sity ridges

As noted in the previous section, ridge-based methods have been used in var-
ious application areas. However, estimation of underlying low-dimensional
structure in scattered point set from density ridges appears to be a new
research area. This idea was first proposed by Ozertem and Erdogmus [96].
However, they do not provide any statistical model for such structure. Con-
sequently, the quality of the estimates obtained from density ridges is not
rigorously analyzed. To the knowledge of the author, such analysis has not
been carried out until very recently by Genovese et al. [49]. Therefore we
recall in this section the necessary results to justify the use of density ridges
as estimators.

One common approach to measure the quality of an estimator for some
underlying structure in a point set is to assume a generative model (e.g. [18],
[49], [61] and [120]). Such a model typically describes a random process
where the points are sampled from one or more a priori known generating
functions with additive noise. When low-dimensional structure is modeled,
the generating functions are mappings from some subset of a low-dimensional
space to a higher-dimensional space (e.g. a curve segment in R? with d > 1).
Figure 1.1b shows an example of a point set sampled from such a model.

12



Assuming a generative model, it can be shown in certain special cases
that the density ridges coincide with the generating function. One such
case is when the points are sampled from an m-dimensional hyperrectangle
with normally distributed isotropic noise (i.e. with covariance matrix 21
for some o > 0).

More specifically, let us assume that the points are sampled from an
m-dimensional hyperrectangle

'DI{OERm’aigeigbi,i:1,2,...,m} (2.10)

with a; < b;, © = 1,2,...,m and then embedded into the d-dimensional
space R? via the generating function

F(O)=zo+) b (2.11)
=1

with some x¢ € R? and mutually orthogonal vectors {u;}™, C R\ {0}.

The coordinates on D are modeled by an uniformly distributed random
variable ®. Given a sample from ®, denoted as 8, the above noise assump-
tion yields the conditional density

oy 1 Iz — £(0)]*
rx(z|©=0)= (Vano)l P (‘202)

for the observed variable denoted by X.
Integration of the joint density px o(x;0) = px(x | ® = 0)pe(0) with
respect to @ then yields the marginal density

N Sy ey o e ()] s
px(x) = (\/%a)dV(D)D/ p( 5,2 )d@, (2.12)

where
m

V(D) =[] (b — @)
i=1
denotes the volume of the hyperrectangle D.
The following result is proven in Paper I for the above model.

Theorem 2.3.1 Let 0 < m < d, let D be defined by (2.10) and let f be
defined by (2.11). If px is defined by (2.12), then {f(6) |0 € D} C R} .

In addition, we have R}' = {xo} + span(ui,ug,...,uy,). Unfortunately
the result of the above theorem does not generally hold when the points are
sampled from a general nonlinear hypersurface. That is, the estimates for
the underlying structure obtained from density ridges are biased.

13



Error bounds for ridge-based estimates are derived in [49] in terms of
the noise deviation o. Instead of a hyperrectangle, the points are assumed
to be sampled from a more general smooth manifold M. The sampling
from M is done under some probability distribution W defined on M and
having density w. The noise, that is added to the samples, is assumed to
be normally distributed with isotropic covariance o>I as above. The error
bounds guarantee that as ¢ approaches zero, the density ridges converge to
the manifold M. In addition, it is shown that when two densities and their
derivatives are close to each other, this is also the case for their ridge sets.

In analogy with (2.12), for the more general manifold model we obtain
the marginal density

po(x) = /gbg(ar: — z)w(z)dz (2.13)
M

for the observed variable X, where

o) = e ()

Here we have omitted the subscript X. The subscript ¢ is added to denote
the dependence on o, which is needed for stating the error bounds. For the
remainder of this section, we assume that the dimension d of the input space
and the dimension 0 < m < d of the manifold M are fixed.

The concept of an e-dilation of a set is needed for stating the results of
this section.

Definition 2.3.1 ([49]) Fore > 0, the e-dilation of a set A C R%, denoted
by Ade, is

A@s:{xERd‘ inf ||z — y| Se}.
yeA

The following assumption is made in [49] for the manifold M. Due to
space constraints we omit the formal definition of a reach. Essentially this
assumption states that the manifold is a closed smooth surface with no self-
intersections (e.g. a sphere or a torus).

Assumption 2.3.1 M is a compact manifold such that reach(M) > 0 and
has no boundary.

Assumptions on the structure of the manifold M alone are not sufficient
because the data points are assumed to be sampled from M under some
probability distribution w. Therefore the following assumption is needed.

Assumption 2.3.2 The density w is twice differentiable and 0 < w(x) <
oo for all x € M.

14



The results established in [49] include the following condition. This
condition is a strengthening of the pointwise conditions (2.4b) and (2.4c) to
hold uniformly in a dilation of a given set.

Condition 2.3.1 For a given function p: R* = R and a set U C R?, there
exist >0 and § > 0 such that

Amt1(x) < =B and Ap(x) — Apg1(x) > B

forallx € Udd, where Ai(x) > Aa(x) > -+ > A\y(x) denote the eigenvalues
of V?p(x).

In the statement of the following results, the distance between two sets
A and B is given by the Hausdorff distance defined as

Haus(A, B) = max{sup inf || — y||,sup inf ||z — y||}. (2.14)
zcAYEB yeBTEA

Finally, we can formulate the main results of [49]. The first one states
that under appropriate assumptions the density (2.13) has a ridge and the
ridge converges to the manifold M as ¢ tends to zero.

Theorem 2.3.2 ([49]) Suppose that Assumptions 2.3.1 and 2.3.2 are sat-
isfied. Let M, = M & r, with ro = ao for any 0 < o < 1 and let
Ry =Ry My. Let A> 2 and define

1
- 2
K, = \/20 log <UA+d>'

Then for all sufficiently small o > 0 we have that

(i) Condition 2.3.1 holds for p, and R’ with B = co~4="+2) for some
c> 0.

(i) Haus(M,R:) = O(K2) as 0 — 0.

2

If p, is replaced by logp,, the above conditions hold with 8 = co™* and

My, = M & Kk, where k = reach(M).

Theorem 2.3.2 is applicable when the marginal density p is known and
can be computed exactly. However, in practice this is not the case and
the density needs to be estimated. The following result applies when the
density estimate and its derivatives are sufficiently close to those of the
marginal density p.

'For two functions f and g and a constant a, f(z) = O(g(z)) as  — a if and only if
there exists C' > 0 and § > 0 such that |f(z)| < Clg(z)]| for all x such that |z — a| < 4.
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Theorem 2.3.3 ([49]) Suppose that functions p and p are three times dif-
ferentiable and all the derivatives are bounded. Assume that Condition 2.3.1
holds for p and R} Let g, H, H' g, H and H' denote the gradient, Hes-
sian and the third derivatives of p and p, respectively. Define

e = [lp = plloo, €’=mja><||gj — Gjlloos
" = max | Hjr, — F[ijom " = max HHfjk - ﬁz(jk”OOa
ik ijk
where
[flloo = sup |f(z)]
TERMD

P

for a given function f. Let 1y = max{e,e’,e"} and let ¥ = max{e, &’ ", e"}.
Then there exists C' > 0 such that for any sufficiently small ¥

(i) Condition 2.3.1 holds for p and R}
. . m m 2CY
(it) Haus(Ry', Ry') < =5=.

Assuming the generative model described above, Theorems 2.3.2 and
2.3.3 give a theoretical justification for the ridge projection and tracing al-
gorithms described in the following chapters. For sufficiently small o, the
marginal density p, satisfies Condition 2.3.1 in R by condition (i) of Theo-
rem 2.3.2. When this is the case and a density estimate p and its derivatives
are sufficiently close to those of p,, Condition 2.3.1 also holds for p and R},
by Theorem 2.3.3. Consequently, the ridge sets of p are well-defined when o
is sufficiently small. In addition, condition (ii) of Theorem 2.3.3, and conse-
quently condition (ii) of Theorem 2.3.2 imply that for sufficiently small o, it
is reasonable expect that ridges of p give good estimates of the underlying
manifold M.

Due to restrictive assumptions, the above results are mostly of theoretical
interest. The error bounds do not generally hold when the manifold M
intersects itself or is not closed or when the model has multiple manifolds.
Though not formally verified, it is conjectured in [49] that relaxing the
closedness assumption yields an error bound of order O(K,) in condition
(ii) of Theorem 2.3.2.

2.4 Kernel density estimation

The density estimation methods considered in this thesis are based on Gaus-
sian kernels [110,128]. The idea of kernel density estimation is to assign
each sample point a kernel function. A Gaussian kernel density estimate is
essentially a sum of such kernels, as stated in the following definition.
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Definition 2.4.1 ([128]) The Gaussian kernel density estimate pg o0b-
tained by drawing a set of samples Y = {yi}f\il C R from a probability
density p: R — R is

| N
pH(x) = N ZKH(CIC —Yi), (2.15)
i=1

where the kernel Kgr : RY =)0, 00| is the Gaussian function

Ku(e) = ——exp (-iﬂH%) (2.16)

with a symmetric and positive definite kernel bandwidth matriz H € R4,

Gaussian kernels have certain advantages over other possible choices.
First, a Gaussian kernel density is infinitely many times differentiable. As
we shall see in the following, the ridges of such a function are well-defined.
Second, rigorous error bounds have been derived for such kernel estimates.
Such error bounds typically give the asymptotic rate of convergence for an
appropriately chosen sequence of bandwidth matrices H. That is, for a
desired order k, the k-th derivatives of the estimator pg converge to the k-
th derivatives of the true density p as the number of samples N approaches
infinity.

The error bounds for kernel density estimators in the literature are typ-
ically derived with respect to a squared error measure. With the notation
introduced in [30], such a quantity is written as

SE(w; H) = || D®*p(a; H) — D% p(a)|?, (2.17)

where D®Fp denotes a vector containing all partial derivatives of p of order

k and D®kp denotes a kernel estimator for the k-th derivatives of p.
Integrating the pointwise error (2.17) and taking the expectation E over
the samples Y yields the mean integrated squared error

MISE(H) = E /SE(m;H)dac . (2.18)

Consequently, the problem of density estimation is transformed into a prob-
lem of determining the optimal bandwidth matrix H with respect to MISE.

The MISE error measure is computationally intractable except in certain
special cases (e.g. when p is a normal density or a mixture of normal densities
[87]). Thus, MISE is usually approximated by a computable formula that
converges to this quantity as the sample size N approaches infinity. It can
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be shown that for any sequence of bandwidth matrices H such that H — 0
elementwise and N~ H|(H 1)®F — 0 as N — oo, the expansion

MISE(H) = AMISE(H) + o( N~} H |~z [tr(HV)]* + [tr(H)]?)  (2.19)

is valid as N — oo. The formula for the asymptotic MISE (AMISE) ap-
pearing in the above equation is derived in [30].23

Asymptotic error bounds for density derivative estimators of a given
order k are derived in [30] under the following assumptions.

Assumption 2.4.1 The density p and the kernel function Kg satisfy the
following conditions.

(i) The density p has all partial derivatives up to order k+2, all its partial
derivatives of order k are square integrable, and all its partial deriva-
tives of order k + 2 are bounded, continuous and square integrable.

(ii) Kgr is a positive, symmetric, square integrable density function such
that

/:l:scTKH(a:)da: =cl

R4
for some constant c, and all its partial derivatives of order k are square
integrable.

Theorem 2.4.1 ([30]) Under Assumption 2.4.1, every element of the op-
timal (symmetric and positive definite) bandwidth matriz

HAMISE = arg H}}n AMISE(H)

is of order O(N—2/(d+2k+9)) = Burthermore, the minimal AMISE(H) is of
order O(N~4/(d+2k+4)),

Plugging the above estimates to the formula (2.19) shows that any
AMISE-optimal bandwidth matrix H is also asymptotically MISE-optimal.
That is, for any such bandwidth, MISE approaches zero as the sample size
N approaches infinity.

It can be shown that the density p satisfies condition (i) of Assump-
tion 2.4.1 for any k when it is a marginal density of the form (2.13) and
Assumptions 2.3.1 and 2.3.2 are satisfied. This is because p is a Gaussian
convolution of a bounded and compactly supported function. In addition, it
can be shown by using the standard formulae for Gaussian integrals (e.g. [2])
that the Gaussian kernel (2.16) satisfies condition (ii). Under these assump-
tions, Theorem 2.4.1 thus justifies the use of an AMISE-optimal Gaussian

2The symbol ®k denotes the k-fold Kronecker product of a matrix with itself.
3For two functions f and g and a constant a, f(z) = o(g(z)) as  — a if and only if
for all € > 0 there exists § > 0 such that |f(z)| < e|g(z)| for all z such that |z — a| < 4.
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kernel density estimator assuming that the data is sampled from the model
described in Section 2.3.

Various different bandwidth estimators have been implemented based
on the MISE and AMISE criteria. Duong and Hazelton [42] propose deter-
mining the bandwidth H by smoothed cross-validation and give asymptotic
error bounds. Chacén and Duong [29] propose a plug-in bandwidth selector.
Chacén et al. [30] extend the earlier methods to density derivatives. Band-
width selectors based on the above references and more recent ones have
been implemented in the ks package for the R software by Duong [41].

2.5 Practical error estimates and examples

The results of Sections 2.3 and 2.4 give asymptotic error bounds for the ridge
and kernel density estimates as the noise standard deviation o approaches
zero and the sample size N approaches infinity. Unfortunately, these results
provide no insight on how good the estimates are in practice with nonzero o
and finite N. Therefore this section is devoted to analysis of the estimation
errors with realistic test cases. The results presented here are based on
Paper III dealing with one-dimensional ridges (i.e. ridge curves).

2.5.1 Model bias

A practical analysis of the bias of ridge estimates is given in [III]. That is,
the bias when a ridge estimator is applied directly to the (a priori known)
marginal density without kernel estimation. In [III], the author considers a
special case that also reflects the general behaviour of the bias. In this ex-
ample, the model consists of a single generating function f(6) = (cos#,sin6)
parametrizing the unit circle on a plane.

In analogy with (2.12), the marginal density induced by f at a point
r = ($1, 1‘2) is

2
1
polaran) = 5 [ Golar. a0,
0

where

_ 2] 2 _sinf 2

Go(x1,29;0) = exp _(xl cosf)” + (xg — sinf) .
202

The components of the gradient of p, at a given point = (x1,z2) with

x9 = 0 are given by

2
Ops B 1 . Opo B
6w1(:p1,0)— Py /(xl cos 0)Gy(x1,0;0)dh, and 8x2(x1’0)_
0
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For the Hessian, we have

27
0?py 1 (1 — cos f)?
¢ Po - 1] Gy (x1,0:0)d6, 2.2
S @.0) = s / [ 2 Go(21,0:0)d0,  (2.20)
0
o 1 [ (sin6
Ps sin
——(x1,0) = — 1) Gy(x1,0;6)do
81‘% (331, ) Ar2qh / ( o2 ) (xl )
0
and ) X
0 Po 0 Do
0) = 0) =0. 2.21
8$18$2($17 ) 8%26$1($1’ ) ( )
It can be shown by numerical integration that the Hessian element (2.20)
has exactly one root in the interval [0, 1] when o €]0, g[ Furthermore,
82pg 32pa a2pa Kk
aT%(wl’O) <0 and Tx%(acl,O) < 903 (x1,0) for all 2y € [z77,1],

where z7* denotes the root of (2.20). In view of equation (2.21), this
implies that the normalized eigenvectors of the Hessian V2p,(z1,0) are
vi(z1,0) = (0,1) and va(z1,0) = (1,0) for all z; €]zi*,1]. They correspond
to the eigenvalues A\ (z1,0) = Ppe (21,0) and Ao(21,0) = Ppe (z1,0) < 0,

2 2
Oxs Oxy

respectively.

By the above observations, the x-coordinate of any ridge point x* =
(x7,0) of p, is a zero point of the derivative g—w‘;(ml, 0) in the interval |x7*, 1].
Such a point can be computed by numerical integration and root-finding.
The distance of such a ridge point &* to the actual generating curve (i.e.
the model bias) relative to o as a function of o is plotted in Figure 2.1. The
bias occurs towards the curvature center and is inversely proportional to the
ratio between the curvature radius (which is one) and o.

Furthermore, the ridge curve of the marginal density p, gives an accurate
estimate of the generating function. In the interval [0,0.35], the relative
distance between the point * and the generating curve grows linearly. With
o = 0.35 that corresponds to a large amount of noise, the distance is only 0.2.
This is also illustrated in Figure 2.2 showing both the generating curves and
density ridge curves. Though the results shown here represent theoretically
attainable accuracy with a ”perfect” density estimator, they nevertheless
suggest that the model bias is expected to be small in most cases.

2.5.2 Combined model and density estimation bias

Finally, we demonstrate by examples that ridge curves can give good esti-
mates of the generating functions even when computed from a kernel density
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Figure 2.1: Distance between the generating curve f(f) and the x-
coordinate x] of a ridge point of p, relative to noise standard deviation
o as a function of o.
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Figure 2.2: Circular data distributions with different values of o, generat-
ing functions (green lines) and ridge curves of p, (red dashed lines).
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estimate. Some datasets, their generating functions and ridge curves of ker-
nel density estimates are shown in Figure 2.3. The bandwidth matrices H
are chosen by using the Hpi estimator implemented in the ks package [41].
The bandwidths are chosen to be optimal for gradient estimation. Though
this choice does not yield the best possible estimate for the Hessian required
for ridge extraction, it nevertheless gives optimal estimates for modes be-
cause they are stationary points of the estimated density.

The ridge curves shown in Figure 2.3 contain both model bias and error
due to kernel estimation. Nevertheless, they give good estimates of the
generating functions. However, when the generating curve has sharp turns,
of which Figure 2.3b shows an extreme example, the deviation between the
ridge curve and the generating curve can be large. These observations agree
with the results presented for the model bias in Subsection 2.5.1.

1.0

0.5

0.0

—0.5]

-1.0 -0.5 0.0 0.5 1.0 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

(a) Circle (N = 800) (b) Zigzag (N = 800)

1.0f

0.5F

0.0

—0.5}
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-1.0 -0.5 0.0 0.5

(c) Spiral (N = 1400)

Figure 2.3: Generating functions (green curves and circles) and kernel
density ridge curves (red curves) of some datasets obtained by using the
algorithm described in Chapter 4.
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Chapter 3

Algorithms for finding
density ridges and global
maxima

This chapter deals with optimization methods for finding ridges and modes
of density functions, and it is divided into two parts. The first part (Sec-
tions 3.1-3.4) consists of a literature review on the earlier mean shift-based
methods and a summary of Paper I. The contribution of [I] is development
of a trust region Newton method for projecting a given point onto an r-
dimensional ridge set (a set of maxima when r = 0). Assuming a generative
model and applying the method to Gaussian kernel densities, applicability
of the method to extraction of underlying structures from noisy point sets is
demonstrated. Numerical comparison with mean shift-based methods shows
that the Newton method has superior performance.

The second part of this chapter (Section 3.5) is based on Paper II. The
contribution of this paper is development of a Newton-based method for
finding significant modes of Gaussian mixtures and kernel densities at a low
computational cost. This problem arises, for instance, in real-time visual
tracking. It is shown in [II] that by applying a Gaussian convolution, such a
highly multimodal density can be smoothly deformed into a unimodal one.
Applying this idea reversely, a homotopy continuation method is proposed.
The method starts from the mode of the unimodal density and traces the
mode while deforming the density into the original one. This process is
formulated as a solution to a differential equation. It is demonstrated by
numerical experiments that this approach is highly efficient and finds global
modes with a high probability.
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3.1 Mean shift-based methods

The mean shift method was first introduced by Fukunaga and Hostetler [47]
and later refined by Cheng [31] and Comaniciu and Meer [34]. By now,
this method has become a popular approach to finding modes of densities
that can be expressed in the form (2.15). It has been utilized in a wide
variety of applications. Examples include clustering [31], image smoothing
and segmentation [34] and object tracking [35].

The mean shift method is a first-order method based on a fixed-point
iteration. The iteration formula is obtained by equating the gradient of the
kernel density (2.15) given by

N
Vin(e) = + > Kelw —y)H (@ ~y,)
=1

to zero and solving for . This yields a fixed-point iteration

Tpt1 = X + Sk, where s = fy(xr) — @k (3.1)
and
N
Z Ku(z —y,)y;
i=1
fal) ="

~ . (3.2)
Z Ku(z —y;)
i=1

With an appropriately chosen kernel function Ky and under certain as-
sumptions, this simple iterative process converges to a stationary point of
the kernel density pg.

Li et al. [80] prove convergence of the above mean shift iteration under
mild assumptions on the kernel function by assuming that the number of
stationary points of the density is finite. Carreira-Perpindn [27] shows that
the mean shift method is a variant of an expectation-maximization (EM)
method and claims its convergence based on this argument but without a
rigorous proof. A similar argument is given by Fashing and Tomasi [45], but
again without proof. Refining the earlier results, Ghassabeh et al. [50,51]
give a rigorous convergence analysis. Unfortunately, none of the earlier
research addresses the limitation that as a first-order method, the mean shift
method can only be proven to converge to a first-order stationary point.

Carreira-Perpinan [27] shows that the convergence rate of the mean shift
method is generally Q-linear (see e.g. [94] for definitions of convergence rates)
for isotropic Gaussian kernel densities (i.e. the case H = h?I). When the
iteration converges to a mode x*, the convergence rate r is shown to be

h? .
" B L
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where \1(z*) denotes the greatest eigenvalue of the Hessian V2p2(z*).

Superlinear convergence rate is obtained in the special cases when h — 0
or h — oco. Unfortunately, these cases are irrelevant for practical applica-
tions since very narrow or wide kernels usually give poor density estimates.
Considering our application, the above result reveals an unsettling fact.
That is, the mean shift method is expected to have very slow convergence
when finding modes lying on a ridge. At a ridge point, the greatest Hessian
eigenvalue is usually near zero (cf. Figure 1.1b).

3.2 The subspace constraint

Ozertem and Erdogmus [96] propose the subspace-constrained mean shift
(SCMS) method. Generalizing the original mean shift method for find-
ing modes, this method (approximately) projects a given point onto an 7-
dimensional ridge set Riy of a Gaussian kernel density pry.

The idea of the SCMS method is to constrain the mean shift step (3.1)
according to

Tiy1 = xp + Pr(z)sg, (3.3)
where the matrix

Po(z)=1-) wvi(z)vi(x)"
=1

projects the step onto the subspace spanned by the Hessian eigenvectors
{vi(z)}L, 41 corresponding to the d — r algebraically smallest eigenvalues.
Here the eigenvectors are those of the log-Hessian

Vpu(x)  Viua(x)Vim(z)"
pHu(T) pr(T)? '

VZlog pa(z) = (3.4)

A convergence proof for the SCMS method, which appears to be the first
one in the literature, is given in [51].

The subspace constraint stems from Definition 2.1.1, which states that
an r-dimensional ridge point is a local maximum in the subspace spanned
by the d — r last Hessian eigenvectors. Taking the logarithm is justified
by the special case where the objective function is a normal density [96].
In this case, the SCMS iteration converges to a point that is an orthogonal
projection of the starting point @ onto the ridge set Rj. The set R, = fogp
is a hyperplane spanned by the first r Hessian eigenvectors. These properties
follow from the fact that the logarithm of a normal density p with mean u
and covariance matrix X is a quadratic function with

Viegp(x) = =X YHax —pu) and V?logp(x) = -1 (3.5)
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More generally, any iteration of the form (3.3) can be viewed as an
approximate method for tracing a solution curve of a differential equation.
Namely, for a starting point &g we can define a curve 7, : [0,00[— RY
satisfying

% { [; i (v, () wi (v, (1)"

VlogﬁH(%(t))} =0, t>0, (3.6a)

~,.(0) = zo. (3.6b)

By Theorems 2.1.1 and 2.1.2, the Hessian eigenvectors are differentiable in
some neighbourhood of &y whenever A\ (zg) > Aa(xo) > -+ > A1 (o).

Let us denote =, (tx) = xp and «,.(t;) = s for some nonnegative and
monotonous sequence {tx}. When the density pgr is replaced by its quadratic
approximation at each iterate xy, implying that the eigenvectors v;(-) are
constant, we observe that the steps sy obtained from (3.3) satisfy condition
(3.6a). This can be observed by taking the derivative with respect to ¢ and
using the chain rule and eigendecomposition of the Hessian V?logpgr. An-
other observation is that the solution curve =, gives an orthogonal projection
when pgr is a normal density.

It should be noted that the orthogonality of ridge projection does not
generally hold for arbitrary densities whose Hessian eigenvectors are not
constant. Furthermore, ignoring the eigenvector derivatives in (3.6a), which
leads to the iteration formula (3.3), leads to deviation from the actual so-
lution curve. Nevertheless, in this way it is possible to obtain approximate
ridge projections that are computationally cheap and accurate enough for
most purposes. A more detailed analysis of projection curves of the form
(3.6) will be given in Chapter 5.

3.3 The trust region Newton method

The conceptually simple mean shift method is easy to implement and works
well in many applications, but it suffers from slow convergence. Some im-
provements have been proposed to alleviate this shortcoming. For instance,
Carreira-Perpinan [26] proposes a hybrid method. This method alternates
between the Newton step and a gradient ascent step and resorts to the lat-
ter when the Hessian is not negative definite. A more sophisticated trust
region Newton method for finding not only modes but also r-dimensional
ridge points of kernel densities is developed in Paper I.

3.3.1 Overview of the method

The method developed in [I] is an extension of the classical trust region New-
ton method by Moré and Sorensen [91]. As in [91], the method successively
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maximizes the quadratic model

. . 1 .
Qr(s) = log p(xy) + Vlog p(ax) s + §STV2 log p(x)s (3.7)

of the objective function that is taken to be the logarithmic kernel density
log p. Here we omit the bandwidth H for notational convenience.

The difference to the classical trust region method is that as in SCMS,
the iteration is constrained to the subspace

Sr(xy) = span(vyi1(x), Vrg2(TE), - - ., va(xK)) (3.8)

spanned by the last d — r eigenvectors of the Hessian. This constraint is
incorporated into the trust region subproblem

max Q(s) s.t. {HSHSAk’
S

s € Sp(xy), (3.9)

whose solution yields the step sj at each iteration. The solution method is
described in Subsection 3.3.2.
In order to control the quality of the quadratic model (3.7), the ratio

_ logp(zy + s) — log p(zk)
P Qk(sk) — Qk(0)
between the actual increase of the objective function and the increase pre-
dicted by the model is tested. Based on this ratio, the algorithm adjusts the
trust region radius Aj and chooses whether to accept the step s obtained
by solving the subproblem (3.9). The radius Ay is adjusted according to the
rules

(3.10)

%Aka lf pk < i,
Apy1 = min{2Ay, Ay}, if [[s]| = Ay and py, > 3, (3.11)
Ap, otherwise,

where the constants are good-known values based on numerical experiments.
The parameter Apax specifies the maximum trust region radius, and it can
be used to adjust the accuracy of the ridge projection.

If the increase given by the quadratic model is sufficient, the step s is
accepted, and otherwise rejected according to

o Ty + Sk, lfpk > %7
Tht1 = { T, otherwise. (3.12)

Adapting the standard gradient norm stopping criterion to the ridge
Definition 2.1.1, the above iteration uses the criteria

|Vprlogp(xr)|| < epr and  Appi(xg) < 0. (3.13)
Here e, > 0 is some small user-chosen threshold value, and
Ve logp(zg) = Pr(,)V log p(xy,)

is the projection of the gradient onto the subspace S, (xy).
The iterative method described above is listed as Algorithm 3.1.
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Algorithm 3.1: GTRN (generalized trust region Newton)

input : Gaussian kernel density p : R — R
starting point xg € R4
ridge set dimension 0 <r < d
maximum trust region radius Apax > 0
stopping criterion threshold e, > 0
maximum number of iterations kpax
output: ridge point «* € R{ogﬁ.
for k=0,1,...,knax — 1 do
Evaluate log p(xy), Vlogp(xy), Vpr logp(zy) and V2 log p(xy).
Compute the eigendecomposition of V2 log p(xy).
if conditions (3.13) are satisfied then terminate with * = xy.
Obtain s as a solution to (3.9).
Compute py according to (3.10).
Choose A1 and @41 according to (3.11) and (3.12),
respectively.

i =~ B N U SR

8 Return with * = x;.

3.3.2 Solution of the trust region subproblem

It is shown in [I] that the solution to the subspace-constrained trust region
subproblem (3.9) can be obtained by using a projection of the eigendecom-
position of the Hessian V2 log pgr onto the subspace S,.(xz).

To simplify the notation, in the following we consider the equivalent
problem

1
max gls+ isTAs (3.14a)
S
st. |Is|| < A and s € span(vy41,Vry2,. .., Vq), (3.14b)

where A >0,0<r <d, g € R and {'ui}‘iizr+1 C R? denote the normalized
eigenvectors of a matrix A € R%? corresponding to the d — r smallest
eigenvalues A\p11 > Apya > -+ > Ag.

The solution method is based on the following lemma giving the sufficient
KKT optimality conditions for problem (3.9).

Lemma 3.3.1 ([I]) A vector s* € R? is a solution to problem (3.14) if s*
satisfies conditions (3.14b) and the conditions

V(A -rsI)VTs*=-VvVvig, (3.15)
r(A —ls"[)) =0, (3.16)
V(A — c)VT s negative semidefinite (3.17)
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hold for some k > 0, where

V = [UT+1,U7«+2, ... 7vd] c RdX(d—r),
A = diag[Ar i1, Arpa, - -, Ag] € R

and I denotes the (d —r) x (d — r) identity matriz.

By noting that condition (3.15) is equivalent to
sf=-V(A-r'I)"'VTg (3.18)

when s* € span(v,41, Vri2,...,04) and A\r41 — k* < 0, we obtain a formula
for the optimal solution to (3.14).

Formula (3.18) shows the main advantage of constraining the step com-
putation to the subspace defined by equation (3.8) instead of the tangent
space of solutions to (3.6). Though the ability to follow the solution space of
(3.6) accurately is lost, the computationally convenient form (3.18) cannot
be obtained when the terms containing eigenvector derivatives are included.

Using the step formula (3.18), solving problem (3.14) amounts to finding
a scalar k* > 0 such that conditions (3.16) and (3.17) are satisfied. To this
end, we observe that by parametrizing the set of possible solutions s* with
respect to Kk we obtain

L (g i) :
Is()l = IV (A = kD) "'V g = [ > o _;)2] . (319)
i=r+1 "

For k = 0, the above step reduces to the standard Newton step
s(0)=VA'vTg=A"lg

The Hessian eigenvalue A\, and the Newton step length ||s(0)| de-
termine the approach for solving the step s*. Special cases occur when
g"v, 41 = 0. An exhaustive list of all possible cases is given below.

(i) Ars1 < 0 and [[s(0)]| < A

(ii) conditions (i) are not satisfied and g* v, 41 # 0

(iii) conditions (i) are not satisfied, g v, 11 = 0 and either

(a) )\7«+1 <0
(b) Ary1 > 0 and gTw; # 0 for some i > 7 + 1 such that \; = A\,11

(¢) Ary1 >0 and g7v; =0 for all i > 7 + 1 such that \; = \,.1 and
Js(max{Ars1, 01 > A

(d) Ary1 >0, g"v; = 0 for all @ > r + 1 such that \; = A1 and
Js(max{Ar1, 01 < A
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Adapting the results of [91], each of the above cases is analyzed in [I]. In
case (i), the Newton step s(0) is well-defined and lies inside the trust region.
This step is a solution to (3.9) since conditions (3.16) and (3.17) are satisfied
with k = 0. In cases (ii) and (iiia)-(iiic), it is shown that the optimal x*
satisfying conditions (3.16) and (3.17) can be obtained as a solution to the
equation ||s(k)|| = A. Once the eigendecomposition of A has been obtained,
solving this equation amounts to univariate root-finding involving no matrix
computations, which can be seen from (3.19). A method for this purpose is
developed in [I]. The last case (iiid) is analogous to the "hard case” described
in [91], in which the root-finding method is not applicable. In this case the
solution can be obtained by using a formula derived in [I].

Differently to the algorithm of [91] that uses a Cholesky decomposition
of the Hessian, the proposed algorithm uses a full eigendecomposition. The
rationale behind this choice is that in typical applications of the algorithm
such as shape extraction, the dimension d is small, and thus computing a
full eigendecomposition does not incur a significant additional cost. This
is also because the projection onto the subspace (3.8) in any case requires
computation of either the first r or last d — r Hessian eigenvectors. Another
advantage of the proposed approach is that the root-finding iterations do
not require any matrix factorizations since the matrix-vector products in
(3.19) can be precomputed.

3.3.3 Convergence to a ridge point

A rigorous convergence proof for the trust region Newton method described
in Subsections 3.3.1 and 3.3.2 is given in [I]. Generalizing the earlier re-
sults by Moré and Sorensen [91] for convergence to a second-order station-
ary point, the authors prove convergence of the modified method to an
r-dimensional ridge point.

The analysis in [I] is done for Gaussian kernel densities, but the results
in fact hold for any twice continuously differentiable function f under mild
assumptions. The basic idea in [I] is to extend the proof construction of [91]
by using the reduced quadratic model

Qu(3) = flan) + ¥ ()5 + 37T ()3

and show that the algorithm converges to a ridge point when the steps
s, satisfy the extended KKT conditions (3.15)-(3.17). Here the reduced
gradient and Hessian are defined as

Viler) = ViVi(er) and V2f(ay) = ViV2if(zp) Vi,
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S = V;‘gsk denotes a projected step and

Vi = [vrg1(@p), Orpo (@), - .., va(xy)] € R,
Ay = diag[ArH(mk), )‘r+2($k)a e )\d(ajk)] c R(d—r)x(d—r)‘

The proofs in [I] are carried out under the following assumptions on the
objective function f and the starting point a.

Assumption 3.3.1 The following conditions are satisfied.

(i) The superlevel set L. = {x € R? | f(x) > c} with ¢ = f(x0) is
compact.

(ii) The Hessian V2 f is locally Lipschitz continuous on some superlevel set
L. whose interior contains x.

For any given starting point xg, the former condition is shown to hold for
the logarithm of a Gaussian kernel density in [I]. Consequently, as a C°-
function it also satisfies the latter condition.

The convergence proof given in [I] not only extends the proof of [91] to
ridge sets, but also adds some missing parts to the original one. In particular,
the authors show that after a finite number of steps the rule (3.12) always
yields an iterate @41 such that @41 # @), (ie. that py > ). This holds
provided that the step sy satisfies conditions (3.15)—(3.17) for some k > 0
at each iteration.

The main convergence result states the following. Given a starting point
xg and a twice differentiable function f satisfying Assumption 3.3.1, itera-
tion of Algorithm 3.1 converges to a ridge point in a weak sense.

Theorem 3.3.1 ([I]) Let f : R? — R be a twice differentiable function
satisfying Assumption 3.3.1 for a starting point o € R. Define the set

N’JZ ={x e R | Vf(x)Tvi(x) =0 for all i > r and \41(x) < 0}.

If {zy} is a sequence generated by Algorithm 3.1 applied to fwith0<r<
d, then either the algorithm terminates at some x), € R} or {wy} has a

subsequence converging to a point x* € 7@’}

If we make stronger assumptions, the sequence {xy} generated by Algo-
rithm 3.1 converges to a ridge point in the sense of Definition 2.1.1. Assum-
ing that the iterates lie in a set U such that

Arr1(x) <0 and Ap(x) > A\ppi(x) forallxz e U, (3.20)

then the limit point x* is a ridge point except condition (2.4c) for the first
r eigenvectors. Conditions (3.20) also guarantee the desired property that
the choice of the first r eigenvalues and eigenvectors is unique.
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Assuming conditions (3.20) is reasonable when Algorithm 3.1 is used in
the application it is primarily designed for. That is, projection of a sample
point y, onto a ridge of a kernel density estimate in the statistical framework
described in Sections 2.3 and 2.4. For this assumption to be valid, we need
certain additional assumptions.

(i) The points y; are sampled from an m-dimensional manifold with ad-
ditive noise (i.e. from the generative model described in Section 2.3).

(ii) The amount of noise (i.e. the standard deviation o) is sufficiently small.

(iii) The kernel density pgr gives an accurate estimate of the marginal den-
sity p and its derivatives up to third order.

(iv) The starting point g is sufficiently close to a ridge of pg.

(v) The ridge dimension r in Algorithm 3.1 is chosen as m.

Assuming conditions (i) and (ii), Theorem 2.3.2 implies that the loga-
rithmic marginal density logp satisfies conditions (3.20) uniformly in some
e-dilation of a subset of the ridge set Riogp lying near the underlying man-
ifold. For any asymptotically optimal kernel density estimator, condition
(iii) is satisfied when the sample size N is sufficiently large.! When condi-
tions (i)—(iii) are satisfied, also the kernel density estimate logpgr satisfies
conditions (3.20) uniformly in some e-dilation of such a subset of R{f, ;= by
Theorem 2.3.3.

By ”sufficiently close” in condition (iv), we mean by the above remarks
that the starting point xg lies in some e-dilation of log pgr where conditions
(3.20) are satisfied. Condition (iv) is implied by condition (ii). This is
because the points sampled from the model, that are used as starting points
for Algoritm 3.1, are expected to be near the underlying manifold. Condition
(v) is the most difficult to satisfy, because it requires a priori information on
the manifold dimension m. In principle, it can be estimated from the data,
but this topic is beyond the scope of this thesis.

If we in addition to conditions (3.20) assume that the kernel density
log ppr satisfies condition (2.4c) in the set U containing the iterates, we can
say more about the iteration of Algorithm 3.1. In this case, the iteration path
can be interpreted as an approximate projection in a curvilinear coordinate
system. This is because the first r Hessian eigenvectors are continuous
along the iteration path by the assumption that condition (2.4c) holds in U
and Theorem 2.1.2. This, in its turn, implies continuity of the orthogonal
subspace spanned by the last d — r eigenvectors from which the steps si are
obtained.

!The kernel density estimators discussed in Section 2.4 are not optimal for all deriva-
tives, but only for derivatives of the chosen order and not in the sense of the sup-norm
as in Theorem 2.3.3. Utilization of a more advanced method is left as a topic of future
research.
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Though assumptions (i)—(v) might seem restrictive, they are often sat-
isfied in practice. Some data sets and their projections onto kernel density
ridges shown in Figure 3.1 demonstrate cases where these assumptions are
plausible. Figure 1.1b shows another example of such a case.
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(a) Spiral3d (r =1) (b) Helix (r = 2)

Figure 3.1: Projections of synthetically generated point sets onto r-
dimensional kernel density ridges.

3.4 Comparison between trust region and mean
shift methods

In this section we discuss some theoretical advantages that the Newton-based
method has over the mean shift-based methods. We also summarize the
results of the numerical experiments done in [I] to compare the performance
of these methods.

3.4.1 Theoretical considerations

The trust region Newton method has several advantages compared to the
mean shift method and the SCMS variant. The most important ones are
listed below.

e As shown in the following, the trust region Newton method consis-
tently outperforms the mean shift-based methods due to significantly
faster convergence rate.

e The mean shift methods are only applicable to kernel densities un-
der certain assumptions on the kernel function. The Newton-based
method is applicable to any function satisfying Assumption 3.3.1 for
any given starting point xg.
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e The mean shift methods lack the ability to choose the step size. This is
conveniently incorporated in the trust region method via the maximum
trust region radius Apax.

e As pointed out by Carreira-Perpindn [27] and Carreira-Perpindn and
Williams [28], the mean shift method does not always converge to a
nearby mode. The attraction basins can be nonconvex or even discon-
nected. The trust region mechanism effectively forces the iteration to
converge to a nearby mode or a ridge point.

e Once the eigendecomposition has been obtained, computing the trust
region step comes at a nominal cost. The SCMS method cannot utilize
the d—r smallest eigenvalues and eigenvectors in the step computation.

Projection of a set of N d-dimensional points by using the trust region
Newton and SCMS methods with a full Hessian eigendecomposition has
a computational cost of O(N2d? + Nd?). This is because the projections
are done for all N points. The cost of evaluating the Hessian of the density
estimate (2.15) with a Gaussian kernel is O(Nd?). After each evaluation, the
Hessian eigendecomposition has a cost of O(d?). For the standard mean shift
iteration (3.1), the eigendecomposition is not necessary, and the total cost
reduces to O(N?2d?). The above observations imply that kernel density- and
ridge-based methods scale poorly to large or high-dimensional data. Possible
improvements to alleviate this shortcoming are discussed in Chapter 7.

3.4.2 Numerical experiments

A set of numerical experiments is carried out in [I]. The authors compare per-
formance of the GTRN algorithm (Algorithm 3.1) to the mean shift algorithm
and its subspace-constrained variant SCMS. The algorithms are implemented
in Fortran 95.

The numerical tests in [I] are done on test problems, where a set of
points is generated from a set of curves or surfaces with additive normally
distributed noise according to the model described in Section 2.3. A more
defailed description of the test problems is given in [I]. The densities are es-
timated by using Gaussian kernel estimates of the form (2.15) with diagonal
bandwidth matrices H = h’*I and hand-picked values for h.

The test runs are done by starting each algorithm from each sample
point in the dataset. This yields a projection of the points onto the ridge
set of their kernel density, as illustrated in Figure 3.1. The GTRN and mean
shift algorithms are run with e, = 10~% and 200 as the maximum number
of iterations. For the GTRN algorithm, the parameter Ap,.x is set to 3h. For
the mean shift algorithms, only the first condition in (3.13) is tested because
convergence to a second-order stationary point cannot be guaranteed.

Table 3.1 taken from [I] shows the number of function evaluations used
by the GTRN and the SCMS algorithms on some test problems. The ridge
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SCMS GTRN

num. eval. CPU time | num. eval. CPU time
Circle 13 965 7.85 3783 2.13
DistortedHalfCircle 12 161 6.81 3 684 2.08
DistortedSShape 10 561 5.93 3 384 1.91
HalfCircle 9 878 5.54 3 341 1.88
Helix 24 520 91.94 14 463 54.24
Spiral 15 984 15.19 5 701 5.44
Spiral3d 12 070 14.37 5 253 6.26
Zigzag 12 214 7.12 3 796 2.26

Table 3.1: Function evaluations and CPU times used by the SCMS and GTRN
algorithms for ridge projection.

Mean shift GTRN

num. eval. CPU time | num. eval. CPU time
Circle 85 496 35.51 4 541 2.54
DistortedHalfCircle 137 335 57.05 4 826 2.68
DistortedSShape 114 078 47.42 4 770 2.67
HalfCircle 119 016 49.46 4 699 2.62
Spiral 220 654 159.11 8 170 7.72
Spiral3D 163 564 107.56 7 363 8.71
Zigzag 111 563 47.07 4772 2.73

Table 3.2: Function evaluations and CPU times used by the mean shift
and GTRN algorithms for mode finding.
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(a) Ridge projection (b) Mode finding

Figure 3.2: Average number of function evaluations needed to reach stop-
ping criteria (3.13) on the Spiral3d test problem.
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dimension r is in these tests set to the dimension of the generating function
of the data (r = 1 for all datasets except Helix). These results show that
the subspace-constrained method inherits the rapid convergence rate from
the standard Newton method, and it consistently outperforms SCMS on all
test problems. The performance difference is even larger when the methods
are applied to mode finding (i.e. ridge projection with » = 0), which can be
seen from Table 3.2.

The results shown in Tables 3.1 and 3.2 might not give a complete pic-
ture. This is because the stopping criterion e, is too strict for most practical
applications, and the relative performance of the algorithms may depend on
the desired accuracy. In order to address this gap, the average function
evaluations needed to reach a given threshold e, on the Spiral3d test prob-
lem are plotted in Figure 3.2 taken from [I]. Here the evaluation counts are
averaged over the algorithm executions started from each sample point y;
in the dataset.

The plots shows in Figure 3.2 can be interpreted as convergence rates.
This is because each iteration of the GTRN algorithm typically uses k eval-
uations of the objective function and its gradient and Hessian, where k is
a small number. For the mean shift-based methods, this number is exactly
one. For ridge projection (r > 0), the GTRN algorithm converges faster
than the SCMS algorithm on a wide range of threshold parameters. This
strengthens the conclusion made from the results of Table 3.1. For mode
finding (r = 0), the GTRN algorithm achieves a superlinear convergence rate,
whereas the mean shift method converges at a very slow linear rate. This
result agrees with the theoretical convergence rate discussed in Section 3.1.
An interesting observation is that the convergence rate of GTRN seems to
degrade to linear when the subspace constraint is imposed. A theoretical
explanation of this behaviour remains as a topic of future research.

3.5 Finding global modes of Gaussian mixtures
and kernel densities

The second part of this chapter based on Paper II deals with finding global
modes of Gaussian mixtures and kernel densities. Performing exhaustive
mode finding of such a density, as described in [26], is not feasible in appli-
cations where the computational budget is limited. When this is the case,
one must resort to seeking for a single mode that preferably is the global
one or in some sense significant. A good example of such an application is
real-time object tracking in computer vision [59,112].

The mean shift method is a standard tool for finding modes of kernel
densities. However, as a local method, it tends converge to an irrelevant
local mode when applied to a highly multimodal density and the global
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mode is sought. To address this shortcoming, Han et al. [59] and Shen et
al. [112] propose a variant of a mean shift method that traces modes at
multiple scales by adjusting the kernel bandwidth. They demonstrate that
the method efficiently finds global modes of Gaussian kernel densities arising
in visual object tracking. Other approaches for finding a global mode include
the branch and bound method by Wirjadi et al. [132].

Tracing intensity maxima of images through different scales is also a key
task in digital image processing. Such methods are closely related to the
theme of this section. This is because an image may be viewed as a set of
points convolved by a Gaussian kernel (cf. Subsection 2.2.1). For example,
Collins [33] describes a method based on this idea and the scale space theory
from image processing (e.g. [81]).

A method for finding global modes of Gaussian mixtures and kernel den-
sities is developed in [II]. This paper extends the ideas of Han et al. [59] and
Shen et al. [112] to more general density functions and gives a more rigor-
ous mathematical treatment. The mathematical theory also borrows some
elements from the homotopy continuation methods by Moré and Wu [92]
and Wu [133] that were originally developed for applications in theoretical
chemistry.

In [II], the authors consider densities of the form

p(x) = wig(x; p;, Xi) (3.21)
=1

with weighting coefficients w; € R such that > ; w; = 1 and

1 < (x—u)TZ‘l(X—u)>
——F———exp | —
(2m)z/13]] 2
denoting a d-variate normal distribution with mean g and positive definite
covariance matrix 3. The Gaussian kernel density estimate defined accord-
ing to (2.15) and (2.16) is a special case of the density (3.21) with w; = +
and 3; = H for allt =1,2,...,n. Though various different interpretations
could be given to the density (3.21), in the following we will simply call it a
Gaussian mixture.

The Gaussian mixture (3.21) is a generalization of the standard Gaussian
mixture, where the weights w; are assumed to be positive. Mixture densities
with negative weights appear in many applications such as target tracking
and sensor data fusion. For instance, Koch [73] describes a model where
negative weights describe "negative information”. That is, expected but
missing sensor measurements.

In [II], the analysis is restricted to the isotropic case, where

g(x;p,X) = (3.22)

X =01, 0;>0, i=12,...,n
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and I denotes the d x d identity matrix. In this case, the Gaussian mixture
(3.21) reduces to

R - wzep< Ix —m\\2> (3.23)
(2m)? 5 oF 20}

3.5.1 The Gaussian convolution and homotopy continuation

The global mode finding method developed in [II] is based on a homotopy
continuation approach adapted from [92] and [133]. The idea is to apply the
Gaussian convolution

_ 1 oxp (==l
(oh(e) = R/ p(¥) p( - )dy,

where v > 0 is a smoothing parameter. This transformation can be intu-
itively interpreted as a local averaging operation. Larger values of v produce
a ”smoother” function, and the original function p is obtained at the limit
v — 0.

For the isotropic Gaussian mixture (3.23), the Gaussian convolution has
a closed-form expression given by

e — gl
Z C., iw; exp < 207 207 (3.24)

where v > 0 and

~ 1 9 5
C.; = L i=1,2,...,n. 3.25
T (em)s <72+203> (3:25)

The idea of the continuation principle is to start from some initial trans-
formation parameter 79 > 0 and let v approach zero. A local maximizer of
the objective function is traced along this transformation, which effectively
carries the optimization over undesired local maxima. This is illustrated in
Figure 3.3.

Formally, the continuation idea can be defined in terms of a homotopy
mapping. The Gaussian convolution (3.24) induces a C*°-homotopy p : R? x
[0, 00[— R defined as

p(x,7) = (p)y(),
p(z,0) = p(x).

The conditions that a maximum is traced along the transformation are
stated as

Vap(z(7),7) =0,
V2p(x(7),7) is negative definite for all v € 0,%0], 70 > 0. (3.26)
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Figure 3.3: A curve connecting the maximizers of the smoothed Gaussian
mixture (p), with different values of transformation parameter ~.

These conditions implicitly define the curve

x'(v) = —V%p(w(’y),7)_1§vap(a’(7)a7)’ 7 €10,70]; (3.27)

z(v0) = To

that is obtained by differentiating the condition Vyp(x(v),7) = 0 with
respect to ~.

The multiscale mean shift methods developed in [59] and [112] can be
viewed as simplified implementations of the above approach. In these meth-
ods, a convolved Gaussian kernel density is successively maximized by using
a sequence of hand-chosen values of the parameter v. On the other hand,
the above approach combined with a numerical method for tracing the so-
lution curve of (3.27) provides two advantages. That is, a rigorous way of
choosing the sequence of transformation parameters v and also the starting
point for each maximization of (p),.

3.5.2 Choice of initial values

Figure 3.3 illustrates how a transformed mixture (p), becomes unimodal
when the parameter +y is sufficiently large. A rigorous proof for this property
involves showing concavity of (p)- for such . The proof is carried out in [II]
for the isotropic Gaussian mixture (3.23). Furthermore, the authors derive a
computable condition for testing the concavity for a given . Differently to
the heuristic choices used in multiscale mean shift methods, this approach
provides a rigorous way of choosing the initial value ~q.
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A closely related result is that any density of the form (2.15) with a
compactly supported kernel with bandwidth matrix H = hI becomes uni-
modal in the whole R? when h is sufficiently large [58]. However, because
the support of the Gaussian (3.22) is infinite, we need to restrict the analysis
to a ball B(z;r) containing the mean vectors p,.

Assumption 3.5.1 The center point z € R? and radius r > 0 of the closed
ball B(z;r) defined as

B(zir)={x eR¥| |z —z|| <7}, z€RY r>0
are chosen such that p; € B(z;r) for alli=1,...,n.

Concavity of (p). in the ball B(z;r) is equivalent to negative definiteness
of its Hessian in B(z;7). In order to utilize this fact, the following result is
proven in [II] for the homotopy mapping p. In particular, it gives a condition
for testing whether the greatest eigenvalue Apax(-) of the Hessian V2p(-,7)
is negative in B(z;r), implying negative definiteness. The proof utilizes the
Weyl inequality for matrix eigenvalues (e.g. [65]).

Theorem 3.5.1 Assume 3.5.1. Then

e)\gl(a)f )(V?Ep(a:,’y)) < 2[A1(7) + Aa(v)]

for all v > 0, where

Cri (lz = pill +r)? Cyys
Ai(y) =— Z sz‘ exp <— -2 _:202 - Z Wwia
3

w; >0 v Ui w; <0 v (
2Cy,i 7i(7)?
M) = 3 (1) _ )7
2(7) = (72 T 20_?)2UJ17'1(7> exXp 72 T 20@2 )

the constants C.,; are defined according to (3.25) and

#i(y) = min{Hz — |l + 7,4/ —|—20§}.

Furthermore, there exists v* > 0 such that
A(y) + Aa(y) <0
for all v > ~*.

In order to guarantee unimodality of p(-,7) in B(z;r), it is also neces-
sary to show that it has at least one stationary point in this ball. For a
homoscedastic Gaussian mixture with positive weights (e.g. a density of the
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form (2.15)), one can easily observe from equation (3.2) that its stationary
points lie in the convex hull of the mean vectors u; for any admissible band-
width matrix H [28]. This property does not, however, hold for Gaussian
mixtures with negative weights. Instead, a weaker result is obtained in [II].
The result states that the stationary points of p(-,v) in B(z;r) converge to
a weighted sum of the mean vectors p; as the parameter v tends to infinity.

Theorem 3.5.2 Define the set
Sy = {z € R | Vap(z,~) = 0}

and let .
x* = Zwiui (3.28)
i=1

and r > 0. Then for all € > 0 there exists v* > 0 such that ||z —x*|| < € for
allz € Sy N B(x*;7) and v > ~*.

Theorems 3.5.1 and 3.5.2 give rise to Algorithm 3.2 for finding the start-
ing point &y = x(7y) and the initial transformation parameter ~y, for tracing
the solution curve of (3.27). The idea is to increase vy until two conditions
are satisfied. The first one is that the Hessian is strictly negative definite
in the ball B(x*;r) containing the mean vectors p; and the limit point *
given by equation (3.28). The second one is that a stationary point xq is
also found inside the ball B(x*;r). That is,

Amax  (VZp(x,7)) <0 and  Vyp(xo,70) = 0. (3.29)
xeB(x*;r)

Algorithm 3.2: Initial values

input : Gaussian mixture of the form (3.23)
starting point @y € B(x*;r)

tput: .
outpu transformation parameter vy > 0

} satisfying conditions (3.29)

1 X" Y0 wip,

2 r« max{||[x* — ;| |i=1,2,...,n}

3 Choose the initial 79 > 0.

4 while A;(y0) + A2(70) > 0 do increase 7.

5 repeat

6 Obtain x¢ € R? such that Vyp(xg,70) = 0, use x* as starting
point.

7 if x9 ¢ B(x*;r) then Increase .

8 until xg € B(x*;r)
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Remark 3.5.1 The proof for the property that p(-,v) has at least one sta-
tionary point in B(x*;r) for all sufficiently large v is not given in [II].
Howewver, the proof can be carried out showing that

lim M (y)Vgp(z,v) =" — x,

Y—00

where
M(7) = max (y°+207)2"
i=1,2,...,n
and the convergence is uniform in B(x*;r) (see the proof of Theorem 4.4 in
[II]). The claim then follows from the fact that at any boundary point  of
B(x*;r), the vector x* — x is parallel to the inward-pointing normal vector.

3.5.3 Implementation of the continuation method

A predictor-corrector algorithm for tracing the solution curve of the initial
value problem (3.27) is developed in [II]. At each iteration, the algorithm
takes a predictor step along a tangent direction of the solution curve of
problem (3.27). The expression for the predictor is given by

xp (1) = xp — 7T (), V1), (3.30)

where 9
T(x,7) = —V?cp(w,'y)’lavxp(wm) (3.31)

is obtained from the right hand side of (3.27).
The choice of the step size 7 is based on the rules

- 1
|Xe(7) —xkl| =4, and v —7> Z}/k'

The first rule attempts to keep the length of the predictor step at some
user-specified value A, > 0 to avoid too short step sizes. The second rule is
needed to avoid too large step sizes. These rules are imposed by choosing

. JAVS 3%}
T = Inin —_— . . 332
{||T<xk,vk>| i (3:32)

After each predictor step, the algorithm starts a corrector iteration
from the predictor iterate Zy(7) to find a point & satisfying the condi-
tion Vgp(Zk, 76 —7) = 0. As a corrector method, the algorithm uses a trust
region Newton method based on the ideas described in Section 3.3 (see [II]
for a detailed description). This method is also used in Algorithm 3.2 for
finding the starting point x.

The method described in Subsection 3.3.2 is applicable to the trust region
subproblem, though in [II] the authors use a truncated conjugate gradient
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method developed in [116]. The main advantage of the Newton method
over the mean shift method is faster convergence. In addition, when using
the method described in Subsection 3.3.2, the point &; is guaranteed to
be second-order optimal. It is also worthwhile to note that the mean shift
iteration may diverge when applied to a Gaussian mixture with negative
weights, which is not an issue for trust region Newton methods.

The predictor-corrector algorithm for tracing a solution curve of the
initial value problem (3.27) is listed as Algorithm 3.3.

Algorithm 3.3: Homotopy continuation

input : Gaussian mixture of the form (3.23)
maximum number of iterations kpyax
output: estimate of the global mode x*
1 Choose xg € R? and 7o > 0 satisfying (3.26) by using Algorithm 3.2.
2 while v, > ynin and k < ko do
3 Choose 7 according to (3.32).
4 Compute &y (7) from (3.30).
5 Solve Vxp(Xg, vk — 7) = 0 for xi, use X;(7) as starting point.
6 | Xpi1 ¢ Xg
7 Ve4+1 < Ve — T
8 k< k+1

9 if ymin = 0 then
10 L Solve Vxp(xg,0) = 0 for X, use xj, as starting point.

11 Return with =* = x;..

3.5.4 Test results

Two potential applications for the global mode finding method (Algorithm
3.3) are identified in [II]. The first one is finding modes of general Gaus-
sian mixtures with possibly negative weights such as those described in [73].
The second one, which is emphasized in [II], is finding global modes of kernel
densities. Though a kernel density is a Gaussian mixture with strictly pos-
itive weights w; = % and identical covariance matrices 3; = H, finding the
global mode of such a density is still a computationally demanding problem
when the sample size n is large.

To stress the inherent difficulty of finding the global mode of a Gaussian
kernel density estimate, such an estimate, and the true density are shown
in Figure 3.4 taken from [II]. This figure shows that a density estimate may
have a large number of spurious local maxima that are not present in the
true density. This is possible even when the true density is unimodal.

The case shown in Figure 3.4 is common in practical applications. The
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(a) Gaussian mixture

(b) kernel density estimate

Figure 3.4: A bivariate Gaussian mixture with 10 components and a Gaus-
sian kernel density estimate from 5000 simulated samples. The bandwidth
H = hI is obtained by approximate minimization of the MISE (2.18) be-
tween the true density and the estimate.

spurious maxima are present even with the MISE-optimal bandwidth when
a diagonal matrix H = h2I is used. The situation is usually not better when
using a cheap ”plugin” bandwidth chooser. Such bandwidth choosers are
commonly used to avoid the high computational cost of optimal bandwidth
calculation. Even in the case shown in Figure 3.4, the continuation method,
that traces the global mode through different bandwidths, can be used to
obtain a good estimate of the global mode of the true density.

A set of numerical tests are carried out in [II] to demonstrate the applica-
bility of the method to Gaussian kernel densities. The continuation method
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is not guaranteed to give a global mode in all cases. A failure can occur
when the density has a very narrow and high peak. This may happen, for
instance, when the density is a Gaussian mixture for which the o-parameter
of one component is small compared to the others. In such a case the method
is prone to converge to some broader, but lower peak. Another example is
a density having peaks of similar shape. Therefore, the success probability
Psuce defined as the ratio between the number of successful and total test
runs is an appropriate measure for the reliability of the method.

In the first set of tests conducted in [IT], the algorithm is run on randomly
generated Gaussian mixtures of the form (3.23). The parameters are chosen
as w; = % and o; = h for all ¢ = 1,2,...,n. In effect, the h-parameter
determines the width of individual modes and the number of modes of the
Gaussian mixture. For each run, the means p,; are sampled from the uniform
distribution such that p; € [~2,2]¢ for i = 1,2,...,n and d = 1,2,3. With
this choice and h in the range [0.25,0.6], the peaks of the mixture have
roughly equal shapes and heights.

The success probabilities Py from 1000 test runs together with the
average number of modes as a function of h are plotted in Figure 3.5. The
results show that the reliability of the algorithm depends on the choice of the
h-parameter. With small values of h, the modes of the Gaussian mixtures
are narrowly peaked. The number of modes in this case is also high, as shown
in Figure 3.5. This makes the global mode very difficult to identify, which
corresponds to the low success rates. On the other hand, with larger values
of h the peaks are broader, and the average number of modes decreases.
When the number of modes is less than ten, the algorithm achieves over
60% success rate. Also, with on average five modes, the algorithm achieves
75% success rate at identifying global modes.
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Figure 3.5: Success probability (solid curve) and number of modes (dashed
curve) as a function of & in the first tests with d = 3 and n = 1000.
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The function evaluation counts in the tests corresponding to Figure 3.5
are plotted in Figure 3.6 as a function of the bandwidth parameter h. Here
a function evaluation means one evaluation of the objective function, gra-
dient and Hessian at each iteration of the trust region Newton method.
The mixed-derivative evaluation means the evaluation of the tangent vector
(3.31). The conclusion from these results is that the number of expensive
function evaluations is small compared to that of exhaustive mode finding
for a wide range of bandwidths h. An exhaustive mode finding is typically
done by starting a local iteration from each of the n means of the Gaussian
functions, as in [26]. This takes roughly ¢ - n objective function and deriva-
tive evaluations, where ¢ > 1. For n = 1000, this number is much larger
than the numbers shown in Figure 3.6.

_evaluations

h

Figure 3.6: The average numbers of combined function/gradient/Hessian
evaluations (solid line) and mixed-derivative evaluations (dashed line) as a
function of h with d = 3 and n = 1000.

In the second set of tests conducted in [II], the algorithm is applied to
Gaussian kernel densities estimating simulated data from Gaussian mixtures
of the form (3.23). Ten random Gaussian mixtures p are generated with
random weights w; € [0.25,0.75], means p; € [—2,2] x [—2, 2] and standard
deviations o; € [0.4,0.7] sampled from the uniform distribution. The weights
w; are normalized to one. For each of the Gaussian mixtures, 5000 points
are sampled and a kernel density estimate is constructed from these samples.
The bandwidh h is computed by approximately minimizing the MISE (2.18)
between the true density and the kernel density estimate.

The results of the above tests are listed in Table 3.3. Only for two of the
ten Gaussian mixtures, the algorithm was not able to find the global mode
of the kernel density in any of the three attempts with different sample sets.
The failures were identified to occur when the true density had a narrow
peak.
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Chapter 4

Identification of curvilinear
structures from noisy data

This chapter is based on Paper III. In this paper, a ridge curve of a Gaus-
sian kernel density is formulated as a solution to a differential equation. A
predictor-corrector method is developed for tracing the set of such solution
curves. The idea of the method is to find the modes of the density and then
trace ridge curves passing through the modes. The trust region Newton
method described in Chapter 3 is utilized for these tasks. Differently to
this method that yields only an unordered set of ridge points, the method
described in this chapter traces a ridge curve by moving along it. This
yields a parametrization of such a curve. The ridge curve tracing method is
combined with a generalization of the statistical model described in Chap-
ter 2 to multiple filamentary structures and a kernel bandwidth estimator.
The resulting algorithm can be used for extraction of such structures from
scattered point sets with background clutter. Numerical experiments show
superior performance of the algorithm compared to ridge tracing algorithms
based on the mean-shift method. The algorithm also implements a disci-
plined way to determine endpoints of ridge curves. This is essential when
there are multiple curvilinear structures in the input data.

4.1 Relation to earlier research

There exists a vast amount of literature on identifying curvilinear structures
from point sets. In a pioneering work, Hastie and Stuetzle [61] introduce
the notion of a self-consistent principal curve that does not self-intersect
and has a finite length within any bounded subset of R?. They define a
principal curve point as the conditional expectation of the data distribution
on a hyperplane orthogonal to the curve. For a computational implementa-
tion, they use a scatterplot smoother and develop an iterative algorithm that
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alternates between projection and conditional expectation steps. An alter-
native formulation in a rigorous statistical framework is given by Tibshirani
[120]. Banfield and Raftery [6] and Stanford and Raftery [115] combine the
Hastie and Stuetzle algorithm with a clustering algorithm and apply their
algorithms to finding multiple curvilinear patterns from satellite images and
earthquake catalogs.

Kégl et al. [78] consider principal curves with bounded length. They
show that imposing the length constraint guarantees existence of such a
curve when the data distribution has finite second moments. Furthermore,
their definition allows relaxing the assumption that the principal curve does
not intersect itself. Based on this definition, they propose the polygonal
line algorithm. Using nearest-neighbour (Voronoi) partitions, the algorithm
constructs a piecewise linear curve fitted to the data. Kégl and Krzyzak [77]
further extend the algorithm to multiple principal curves with intersections.

Unfortunately, the above methods have serious limitations. Those based
on the Hastie and Stuetzle definition can only fit a single nonintersecting
curve to the data unless combined with a clustering algorithm or a special-
purpose scatterplot smoother. On the other hand, the polygonal line al-
gorithm requires a large number of user-supplied parameters and heuristic
rules when multiple curves with intersections are fitted to the data. Fur-
thermore, the methods that fit a curve based on a global goodness of fit
criterion are sensitive to the choice of the initial guess.

Recently, the need to address the shortcomings of the earlier methods
has given rise to local principal curve definitions. The idea is to construct
such a curve in a ”bottom-up” fashion based on local conditions rather than
a global criterion. This approach offers a large degree of flexibility as neither
the number of principal curves is restricted nor any parametric assumptions
need to be made on the data distribution. Einbeck et al. [44] propose a
heuristic method that iteratively traces a principal curve defined in terms
of locally weighted mean and covariance estimates. This approach can be
viewed as a simplified version of the principal oriented point method by
Delicado [37] and Delicado and Huerta [38].

Using density ridges is among the most recent approaches for extracting
curves from point patterns. The idea of defining a principal curve as a
ridge curve of a density is in fact closely related to the local principal curve
definitions proposed in [37], [38] and [44]. More insight on this aspect will
be given in Chapter 5. There we give a ridge point of a Gaussian kernel
density an interpretation in terms of locally weighted mean and covariance,
where the weights are Gaussian functions.

Most (if not all) of the research on ridge-based curve estimation has
been focused on projecting point sets onto density ridges. Among the most
notable examples is the work by Ozertem and Erdogmus [96]. However, the
only algorithms that proceed along a ridge curve to obtain a parametrization
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appear to be those developed by Bag [8] and Bag et al. [10,11]. In these
papers, a mean shift-based algorithm is applied to extraction of filamentary
and tree-like structures from biomedical images.

The aim of Paper III presented in this chapter is to fill the apparent
gaps in the algorithmic development of ridge-based methods. The proposed
algorithm uses the highly efficient Newton method described in Chapter 3
to locate the modes of a kernel density estimate obtained from the data.
A predictor-corrector method utilizing the Newton-based ridge projection
method is developed for tracing ridge curves originating from the modes.

In addition, the algorithm utilizes the theory of ridge curves in order to
guarantee proper termination at their endpoints. The earlier local principal
curve or ridge-based methods do not implement any rigorous rules for this
purpose. Finally, successful numerical experiments are conducted with an
automatic kernel bandwidth estimator. Combining such an estimator with a
ridge tracing method has not been extensively studied so far (see Grillenzoni
[55] for some earlier results).

4.2 The filament model

In [III], density ridges are incorporated into a generative model describing
multiple filamentary structures with background clutter. In this sense, the
model is a generalization of the model of [49] presented in Section 2.3.

The sample points represented by an observed variable X are assumed
to be generated in a random process. The type of a sample point is given
by the random variable

T 1, if the sample belongs to a filament,
0, if the sample is background clutter

having probabilities
PT=1)=p and PT=0)=1—-p (4.1)

with some p €]0, 1].
When a sample drawn from X is background clutter (i.e. when 7' = 0),
we assume that it is uniformly distributed in some compact domain Q C R
That is,
X | (T=0)~UQ). (4.2)

On the other hand, when the sample belongs to some of the n filaments
(i.e. when T' = 1), we assume that it is obtained from some of the n gener-
ating functions with noise. The generating functions {f;}I*, : D; — Q are
continuous mappings from some compact and connected domains D; C R.
When T = 1, the outcome of the random variable X depends on three ran-
dom variables: I, © and e. The random variable I with domain {1,2,...,n}
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specifies which filament the sample belongs into, and the random variable
© gives coordinate along the specified filament. In addition, we assume
that the sample is generated with additive noise represented by a random
variable e.

An example of a point set drawn from the model is shown in Figure 4.1.

Figure 4.1: Filaments parametrized by two generating functions f; : D; —
Qand f,: Dy — Q with D; C R, Dy C R and Q C R?, noisy samples and
background clutter.

We assume that the random variables I and € are distributed according

to
P(I=14)=w; and e~ Ny0,0%) (4.3)

with w > 0 such that Y1 ,w; = 1 and with Aj(0,02) denoting a d-
variate normal distribution with zero mean and covariance o?I. Given
i € {1,2,...,n}, the conditional variable © | (I = 1) is assumed to fol-
low some distribution defined in the domain D;.

The above assumptions yield the conditional random variable

X|(T=1,1=i,0=0)=f,0)+e¢ (4.4)

having the density

1 T—i0-0-_ 1 Iz — £4(0)|
pX(w‘T_l’I_Z7®_9)_WeXp(_W)' (45)

By applying the relation between the joint and conditional densities we
obtain

pX,T,I,@($717i>9) :pX(m | T= 1aI = Za@ = 9)])@(9 | I = Z)P(I = Z)P(T =

and
pX7T’17@(m,0,i,9) = px(m | T = O)P(T = 0).
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Summing the joint density px 71e(x,t,i,6) over the domains of the
discrete random variables 7" and I and integrating over the domain of the
continuous variable © together with equations (4.1)—(4.5) then yields the
marginal density. Analogously to the densities defined by equations (2.12)
and (2.13), this density is given by

2 . 1
px () 27ra sz/exp( ()”> po(0|I=14)do+ Wﬂf;’ (4.6)

where V(§2) denotes the volume of the domain 2. In particular, from this
we observe that the ridges of px are invariant with respect to uniformly
distributed background clutter.

Assuming that the samples are drawn from the above model, the aim is
to estimate the image sets

FZ:{fZ(9)|9€DZ}, 1=1,2,....n

representing the filaments. The approach proposed in [III] uses ridge curves
of the marginal density (4.6) for this purpose. While this density cannot be
used directly without prior knowledge on the generating functions or model
parameters, it can be estimated by using Gaussian kernels.

Based on the above ideas, the method developed in [III] proceeds in two
stages. First, the method employs a bandwidth estimator for determining
the optimal kernel bandwidth matrix H from the samples. Then the method
obtains estimates for the sets F'; by tracing the connected components of
the e-separated ridge curve set

Rine = Rop N{x €RY | prr(z) > €}

of the kernel density estimate pg. The purpose of the user-specified thresh-
old parameter ¢ is to exclude low-density areas that are not likely to contain
significant features in the data.

4.3 Properties of ridge curves

In the presence of multiple filaments in the data, a key problem is how
to deal with intersections. In such a case, the density estimated from the
data is also expected to have multiple ridge-like structures. Consequently,
a ridge tracing algorithm needs to implement a set of rules to ensure proper
termination at the endpoints of ridge curves.

In order to address the above issue, we first note that ridge curves belong
to a more general set of critical curves that we define as follows.

Definition 4.3.1 Let p € C®°(R% R) and let {vj};lzl : R? — R? denote the
eigenvectors of V2p corresponding to the eigenvalues \1(-) > Aa(-) > --- >
Aa(+). The set of critical curves of p of index i € {1,2,...,d} is

Ci={z e R’ | Vp(x) vj(x) =0 and \j(z) # \i(z) for all j # i}.
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A ridge curve belongs to a set of critical curves of index one with the
additional condition (2.4b). To illustrate this fact, the critical and ridge
curve sets of a Gaussian kernel density estimate obtained from a point set
are plotted in Figure 4.2 taken from [II1].
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Figure 4.2: Critical and ridge curves of a bivariate function. The set of
critical curves are plotted in red and its subset, the set of ridge curves is
plotted in green.

In the following, we recall the main results on the relation between crit-
ical and ridge curves from Damon [36] and Miller [89]. Motivated by ap-
plications in digital image processing, they give a rigorous analysis for such
curves of C*°-functions in a differential geometric framework.

Based on Definition 4.3.1, the following characterizations for different
types of critical curve points are given in [36] and [89].

Definition 4.3.2 Let p € C®(R% R) and let \(-) > Xao(-) > --- > M\g(*)
denote the eigenvalues of the Hessian V2p. If x € CZ’; for some index i, then
T isa

(i) ridge point of p if i =1 and \o(x) < 0.

(i1) valley point of p if i = d and Ag—1(x) > 0.
(#4i) r-connector point of p if i =1 and A2(x) > 0.

(iv) v-connector point of p if i = d and Ag—1(x) < 0.

(v) m-connector point of p if i > 1 and i < d.

Generalizing the earlier results by Damon [36] for bivariate functions,

Miller [89] shows that the one-dimensional ridge set of a C*°-function of
any dimension generically defines a set of smooth curves. Here a generic
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property means that if a function p does not satisfy this property, then any
arbitrarily small perturbation of p measured in the Lo-norm does.

One of the main results of [89] is that the following properties hold
generically for C'*°-functions, of which the Gaussian kernel density estimate
is a special case. For such a density, a generic property is satisfied for almost
all data point configurations except isolated special cases. For a rigorous
definition of genericity, we refer to [36] and [89].

Theorem 4.3.1 For p € C®°(R% R), the following properties are generi-
cally satisfied.

(i) The set C, = U‘Zflzl ; consists of a discrete (i.e. finite or countably
infinite) set of C*°-curves. The curves in Rll), which is a subset of C;,
may have endpoints.

(i) The curves C; intersect orthogonally at stationary points of p where the
Hessian V?p has distinct eigenvalues. There are no other intersection
points between curves C}i) having different indices.

(iii) The curves in R}D do not intersect at any point and they have no self-
intersections.

(iv) A connected component curve ofRIl) can have an endpoint x only when
)\1(33) = )\Q(SC) or )\2(&') =0.

(v) When a ridge curve ends at a point & such that \o(x) = 0, it is
smoothly continued by an r-connector curve.

(vi) When a ridge curve ends at a point x such that \i(x) = Ao(x), it
is smoothly continued by an m-connector curve (when d > 2) or a
v-connector curve (when d = 2).

4.4 Differential equation formulation

In this section, we formulate a ridge curve of a function p € C3(R%, R) as a
solution to a differential equation. That is, assuming that p has a nonempty
ridge curve set RII,, we give the equation for the tangent of a ridge curve
passing through a given point xy € Rll,. In what follows, we omit the
superscript 1 for notational convenience.

In [III], condition (2.4a) for xg is reformulated by using the fact that it
is equivalent to the condition

V2p(x0) Vp(xo) = A1 (20) Vp(0) (4.7)

defining a gradient extremal curve (cf. equation (2.6)).
It is then shown that this condition implicitly defines a curve x : [0, co[—
R? that is a solution to the initial value problem
d Vp(0) ] _
df IVp((0))]l
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Here the matrix
Vp(x)Vp(z)"

IVp()|?
projects a given vector onto the subspace orthogonal to the gradient Vp(x)
that is also the first Hessian eigenvector by condition (4.7).

It is shown, for instance, in [19] that the tangent vector z’(f) for a
solution curve of problem (4.8) can be obtained as a solution to

P(z)=1- (4.9)

P(x(0)A(z(0))x' (9) = 0, (4.10)
where

> V()" Vp(z)Vp(x)
V()2

and the product V3p(z)Vp(zx) is defined according to (2.9). The matrix
A(x) is in fact equivalent to the Hessian of the Lagrangian (2.7).

Whenever the matrix P(x(0))A(x(f)) has one-dimensional null space,
the tangent vector @’(f) can be uniquely determined from equation (4.10)
up to a scalar factor. The following result is an adaptation of a similar result
for gradient extremals given in [19].

A(z) = Vop(2)Vp(z) + [Vp()] Vep(z) (4.11)

Theorem 4.4.1 ([II1],[100]) Let p € C3(R%, R), = € R? and let
P(z) =U(x)U(x)", where U(x) € R>*(-D (4.12)

be the eigendecomposition of the matriz P(x) defined by equation (4.9).
Assume that Vp(x) # 0 and that the matriz C(z) = U(x)T A(z)U () is
nonsingular, where A(-) is defined by equation (4.11). Then the vector

. Vp(z)

= —— — T x) " 'b(x .
with
t — U(z)T[V _Vp(@)

and its scalar multiples are the only solutions to the equation
P(x)A(x)u = 0. (4.15)

It is important to note that due to the third derivative term in equation
(4.11), the ridge curve tangent is not in general parallel to the first Hessian
eigenvector as condition (2.4a) would suggest. In addition, the tangent
vector given by equation (4.13) is not defined at a stationary point, that is
when Vp(x) = 0. Nevertheless, the following result gives a limiting direction
for the tangent vector when an isolated stationary point of p belonging to R,
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is approached along a ridge curve. By an isolated stationary point we mean
a point with a neighbourhood containing no other stationary points of p.
The limiting direction is parallel to the eigenvector v1 (@) at the stationary
point @g. This result follows from equations (4.11)—(4.14).

Theorem 4.4.2 ([III],[100]) Let p € C3(R%,R) and assume that there ex-
ists a continuous curve  : D — RY defined on some domain D C R such
that condition (2.4a) is satisfied for all x(0) with § € D. Further, assume
that «(0) = o for some isolated stationary point &g € Rp. If we define

_ Vp(@(9))
V()]

where the matriz U(-) is defined according to (4.12) and the vector b(-) is
defined according to (4.14), then

u(6) —U(x(0))C(x(9)) " b((0)),

u()”
[u(0)]]

The matrix C(-) needed for computation of the tangent vector from
(4.13) may become singular in two distinct ways. The first case is covered
by the following theorem that is a simplified version of the one proven in
[100]. This result is a generalization of the one given in [19] for gradient
extremals.

lim =1.

0—0 v1 (:L'o)

Theorem 4.4.3 ([I11],[100]) Let p € C3(R%,R), = € R? and let the ma-
trices U(x), A(x) and C(x) be defined as in Theorem 4.4.1 and assume
that the matriz C(x) is singular with eigenvalues \; = 0 for i € I, where
Ic{1,2,....,d—1}. Let

C(z) =WDW7T

with W = [w1, wa, ..., wq_1] € RED*UED) gnd the diagonal matriz D €
R@=Dx@=1) pe the eigendecomposition of C(x) and define the vector b(zx)
according to equation (4.14). If wl'b(xz) # 0 for some i € I, then solutions
to equation (4.15) with respect to w are of the form

u(B) =U(x))_ Biw (4.16)
el
with B € R,

The singular points of the matrix C(-) covered by the above theorem
are called turning points. At such points, the solutions of equation (4.15)
become orthogonal to the gradient Vp. This is because by equation (4.16)
the solution vectors are spanned by the columns of the matrix U(-) defined
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by equation (4.12). Consequently, a ridge curve has a sharp turn near a
turning point, implying that it is not likely to give any meaningful estimate
for the underlying structure in the input data.

On the other hand, the so-called bifurcation points occur when w! b(z) =
0 for all 4 € I. As this condition involves all indices in I and all derivatives of
the density p, bifurcation points are not expected to occur except in special
cases where p is highly symmetric. However, turning points are common, and
hence the ridge tracing algorithm described in the next section implements
a stopping criterion to terminate at such points.

4.5 The algorithmic framework

In this section we describe an algorithm for constructing the e-separated
ridge curve set R . of a Gaussian kernel density estimate p. The subscript
H is omitted for notational convenience. The algorithm first finds the modes
of p belonging to the set Rs. Then, by using these modes as starting points
the algorithm constructs the set R; by tracing its component curves that
pass through the modes by Proposition 2.1.1.

4.5.1 Main algorithms

In this subsection we describe the main algorithms RCURVES and RCCOMP for
extracting the ridge curve set R .. That is, generating sequences of points
along the ridge curves. The algorithms presented here are simplified versions
of those developed in [III]. In particular, we omit some thresholds that are
needed in practical implementation because of limited numerical precision.

For computational reasons, the algorithms are applied to a scaled Gaus-
sian kernel density estimate whose bandwidth H is an identity matrix.
This is done by utilizing the fact that by using the Cholesky factoriza-
tion H = LL” the density p defined by equations (2.15) and (2.16) can be

written as
N

. 1 _
ple) =+ 3 Kr(w - L'y,).
i=1
The scaled density estimate p is related to the original one via the identity

B(L™'x) = V/|HIp(=).

The transformations L_lyi are precomputed as the first step of the algo-
rithm. As a final step, the extracted ridge points & are transformed to the
original coordinate system by applying the inverse transformation @ = L.

The main algorithm RCURVES is listed as Algorithm 4.1. The algorithm
proceeds in two stages. First it finds a set of non-duplicate modes of the
scaled kernel density p belonging to the ridge set R .. This is done by using
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Algorithm 4.1: RCURVES (extract ridge curve set)
input : point set Y = {y,}¥, c R?
Gaussian kernel density estimate p : R? — R
density threshold € > 0
output: collection of approximate ridge curves X C P(R;.)
Z* 0
for y e Y do
Apply GTRN to p with r = 0 to obtain y* from the starting point y.
if y* ¢ Z* and y* € Rg NRpe then
| Z*+—Z"u{y"}

U W N

6 X« 0
7T M 0
8 for z* € Z* do

9 if z* ¢ M then

10 Xt M + RCCOMP(p, M, z*,1,¢)

11 if wIJ;ﬂ—l # z* then

12 | X~,M + RCCOMP(p, M, z*, —1,¢)

13 Concatenate the sequences X~ and X1 to a sequence X.
14 | X« XU X.

the GTRN algorithm described in Chapter 3. The starting points are chosen
as the sample points y,. This is because the modes of a Gaussian kernel
density lie in the convex hull of the points y; (cf. equation (3.2)). The modes
obtained in this way are collected to the set Z* C R% NRpe.

In the second stage of Algorithm 4.1, the RCCOMP algorithm is called from
each mode z* € Z* to obtain point sequences X and X~ along a ridge
curve in two opposite directions. Recalling Theorem 4.4.2, these directions
are along the Hessian eigenvector corresponding to the greatest eigenvalue.
The test at line 9 of Algorithm 4.1 is done to prevent tracing the same ridge
curve components multiple times. This is done by using the set M where
the algorithm stores the modes visited during the executions of RCCOMP.
The test at line 11 is needed to avoid extraction of the same ridge curve
component two times when the first call of RCCOMP yields a closed loop.

Finally, the output of the RCURVES algorithm, denoted by X C P(Rj.),
is a collection of point sequences along the ridge curve components, one for
each connected component in the set R..

The RCCOMP algorithm used in RCURVES is listed as Algorithm 4.2. Given
a mode xj of p lying on a ridge curve (i.e. a point xj € Rg NRpe), the
algorithm traces a part of a ridge curve component passing through z{. In
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the following, we denote such a component by Rpeay- The component is
traced along positive or negative direction of the first Hessian eigenvector
depending on the specified sign parameter s* € {—1,1}.

The RCCOMP algorithm successively invokes the RCSEGMENT algorithm for
extracting ridge curve segments. The RCSEGMENT algorithm is listed as Al-
gorithm 4.3 in the next subsection. By a segment we mean a part of a ridge
curve component that starts from a mode and either terminates at another
mode or an endpoint of a ridge curve. The latter case occurs when the con-
ditions defining a ridge curve become violated (cf. condition (iv) of Theorem
4.3.1) or the density p falls below the threshold e.

Algorithm 4.2: RCCOMP (extract a part of a ridge curve component)

input : Gaussian kernel density estimate p: R — R
visited modes M C Rg NRpe
starting point x(, € R% NRpe
sign parameter s* € {—1,1}
low probability density threshold € > 0
output: subset of a ridge curve component X C Rjc oz
visited modes M C R¢

1 X 0

2 T — x)

3 while not terminated do

4 X x** ¢, s < RCSEGMENT(p, z*, s*, )
5 Concatenate the sequence X** with X.
6 M <~ M U {x*}

7 if ¢ =0 then

8 if ** ¢ M then

9 ¥ +— x**
10 §* ¢ g**
11 else
12 L Terminate.
13 else
14 L Terminate.

Each call of RCSEGMENT returns a sequence X ** along the traced ridge
curve segment. These sequences are concatenated with the sequence X
that is the output of RCCOMP. In addition, the previously visited mode x* is
added to the set M. When RCSEGMENT terminates at a mode ** (i.e. when
it returns ¢ = 0) and ™" is not in M, the next ridge curve segment is traced
by calling RCSEGMENT with «** as starting point. The sign s** returned by
the previous call is used to ensure that the direction of the tracing does not
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change. On the other hand, when RCSEGMENT terminates at an endpoint of
the ridge curve component (i.e. when ¢ = 1), RCCOMP is also terminated.

Note that at line 8 the above algorithm tests a more restrictive con-
dition than the theoretical results would require. Namely, Theorem 4.3.1
states that ridge curves generically cannot intersect each other or have self-
intersections, unless such a curve forms a closed loop. Theoretically, the
algorithm can thus arrive at a previously visited mode only in this kind of
case (that is when ** = xj). However, in some cases the stopping criteria
in the RCSEGMENT algorithm can fail to detect the endpoint of a ridge curve.
As a result, the algorithm ”jumps” from a ridge curve component to another
(see Figure 4.2 on page 54 for an example where this is possible). There-
fore the more restrictive test is used as a precautionary measure to prevent
extracting the same ridge curves multiple times.

4.5.2 Algorithm for tracing a ridge curve segment

The RCSEGMENT algorithm invoked from RCCOMP to extract ridge curve seg-
ments is described in this subsection. The algorithm listed here as Algorithm
4.3 is a simplified version of the one developed in [III]. Based on the theory
given in Section 4.4, the algorithm implements a predictor-corrector method
for tracing a ridge curve.

Predictor-corrector algorithm

The RCSEGMENT algorithm generates a sequence of points X = (g, x1,...) C
Rjp.e.xo along a ridge curve segment passing through xy. At each iteration,
the algorithm takes a predictor step

T = T + TESEUL

along the normalized solution curve tangent u; with step size 7, > 0 and
sign parameter s € {—1,1}. The tangent vector uy at * = xj, is computed
from equation (4.13) and normalized. A detailed description of the rules for
choosing the step size 73 is given in [III]. For the predictor estimate &y, the
algorithm tests the stopping criteria (4.18) given in the following subsection.

The sign si is used to ensure that the iteration moves forward along the
ridge curve. At the first iteration £ = 0, it is chosen as the user-supplied

parameter sp € {—1,1}. For the subsequent iterations k = 1,2,..., it is
chosen according to
1, if sk,luz qup >0
= ’ - ’ 4.1
Sk { —1, otherwise. (4.17)

After the predictor step, a corrector step is applied to project the predictor
estimate x; back to the ridge curve. For this purpose, the algorithm uses
the GTRN algorithm described in Chapter 3 with ridge dimension r = 1.
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Algorithm 4.3: RCSEGMENT (extract ridge curve segment)

© 00 N O ok W N =

=
o

11
12

13

14
15
16
17

18
19
20
21

input : Gaussian kernel density estimate p : R? — R

starting point xg € R% NRpe

initial sign parameter sg € {—1,1}
initial step size 19 > 0

low probability density threshold € > 0

output: points X = (xg,x1,...) C Rjez, On a ridge curve segment

stopping criterion type ¢ € {0,1}

(0O=mode, 1=low density or iteration has left a ridge curve)
Returned when terminated at a mode:

the mode &* € Rj ez,

the current sign parameter s* € {—1,1}

X (iBo)
ug  vi(xo)
for k=0,1,... do

if p(xr) < e or i;g:; > 1 — ¢, then Terminate with ¢ = 1.

if £ > 0 then
Obtain uy, from equation (4.13).
if u]vi(xy) < 1 — &, then Terminate with ¢ = 1.
Sk sgn(sk_luf_luk)
if conditions (4.19) are satisfied then
Apply GTRN to p with » = 0 to obtain x* from starting
point (xg + xp_1)/2.
X + (xg,...,xp_1,x*
s* «+ sgn(sp_1ul_jvi(z*))

Terminate with ¢ = 0.

if conditions (4.18) are satisfied then
‘ Increase 7.
else
Decrease 75, until conditions (4.18) are satisfied. If 75 is small,
L terminate with ¢ = 1.

Ty — T + TESEUL
Apply GTRN to p with » = 1 to obtain @y from starting point .
Tk+1 < Tk

| X« (mo, 1, , Tk, Thy1)
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Step size adaptation and stopping criteria

After each predictor step, the algorithm tests the conditions

[Vi(&) 01 (2|
IVD(@)]|

with some small &, €]0, 1], where the first condition corresponds to (2.4a)
and the second condition corresponds to (2.4b). If either one of conditions
(4.18) is not satisfied, the algorithm decreases 7. This is repeated until
conditions (4.18) are satisfied or 73 is below some small value (e.g. 1079).
The latter case indicates that the iterate xj lies near an endpoint of a ridge
curve, and the algorithm terminates with ¢ = 1. On the other hand, when
conditions (4.18) are satisfied for &, for the first attempt, then the step size
Tk is increased.

In addition to the predictor conditions (4.18), the RCSEGMENT algorithm
uses the stopping criteria

)\1(:Uk)
)\Q(wk)

to detect if the density falls below the threshold £ or the iteration crosses
an endpoint of the ridge curve. The second criterion with some small e, €
10, 1] tests whether the first and second eigenvalue of the Hessian become
identical (cf. condition (2.4c) and condition (iv) of Theorem 4.3.1). The
third criterion, where ¢, €]0, 1], measures the cosine of the angle between
the ridge curve tangent uy and the eigenvector v;(xy). When this quantity
is below the threshold 1 —¢,, these directions deviate significantly from each
other. By Theorem 4.4.3, this indicates that the iteration is approaching a
turning point.

The last stopping criterion tests whether the iteration has crossed a
mode of the density estimate p. This is detected by testing if the gradient
changes direction along the ridge curve. Before crossing a mode, the curve
tangent is approximately parallel to the gradient and after crossing the mode
approximately parallel to the negative gradient (cf. Theorem 4.4.2). For
k > 0, this yields the criteria

>1—¢, and (@) <0 (4.18)

p(xk) < e, >1—¢, and wlvi(zy) <1—g,

Vi(zs-1) ugp Vi(er)up
IVB(wk—1)]] VB

with some small e, €]0,1]. When these criteria are met, the algorithm
terminates and returns the mode x* found by the GTRN algorithm started
from the midpoint of the current iterate x; and the previous iterate xj_q.
In analogy with equation (4.17), the algorithm also determines the sign
parameter s* at the mode x* by comparing the directions of the previous
tangent vector sx_juk_1 and the eigenvector v (x*).

Sk—1 >1—¢e. and s (1—¢.) (4.19)
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4.6 Numerical experiments

In this section we demonstrate the applicability of the RCURVES algorithm
(Algorithms 4.1-4.3) to extraction of curvilinear structures from noisy data.
Illustrative examples on a representative selection of synthetic as well as
two observational datasets from seismology and cosmology will be given.
Numerical test results will also be provided to assess the computational
performance of the algorithm.

4.6.1 Datasets and test setup

Three different types of datasets are used in [III]: synthetic datasets where
the points are samples from a set of generating curves and an earthquake
and a galaxy dataset.

Earthquake epicenters are typically clustered around seismic faults. Due
to this fact, identification of faults from earthquake catalogs is a potential
application for the proposed method. This is illustrated in [III] with a
seismological dataset. The dataset covers the New Madrid seismic region
extending from Illinois to Arkansas. It contains the locations of observed
earthquakes in this region from 1974 to 2013 with magnitude one and above,
consisting of 6157 samples.

In cosmology, galaxies typically form clusters and filamentary structures.
A well-known example of this is the Shapley Supercluster [40]. The dataset
consists of the angular sky coordinates and recession velocities of 4215 galax-
ies in the supercluster. As a preprocessing step, the original data is trans-
formed in [III] into three-dimensional Cartesian coordinates by utilizing the
fact that recession velocities of galaxies are proportional to their radial dis-
tances [40].

In all tests, the kernel bandwidth matrix H is estimated by using the
Hpi estimator implemented in the ks package for the R software [41]. The
density estimator is chosen to be optimal for the first derivatives (see Sub-
section 2.5.2 for the rationale of this choice). As discussed in Chapter 3,
the RCURVES algorithm is applied to the logarithm of the kernel density. A
detailed description of the test setup is given in [III].

4.6.2 Illustrative examples

A key feature of the RCURVES algorithm is its ability to separate different
components of the ridge curve set and properly terminate at endpoints of
ridge curves. An example of the latter is shown in Figure 4.3. This figure
shows the ”Jakob” dataset from Verbeek et al. [127] and the kernel density
ridge curves obtained by the RCURVES algorithm. Each component of the
ridge curve set is plotted with a different color.
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It is also worthwhile to note that in the tests conducted in [III] with
synthetic datasets, the algorithm is able to accurately extract each gener-
ating curve and give a correct number of generating curves in all test cases
where the curves do not have intersections. However, when they do, the
ridge curves are split into two parts at each intersection point due to the
non-intersecting nature of ridge curves (cf. Theorem 4.3.1 and Figure 4.2).

Examples of point sets with multiple generating curves are shown in
Figure 4.4. The algorithm is also applicable for extracting curves with closed
loops, as shown in Figure 2.3a. The ridge curves extracted from the New
Madrid and Shapley datasets are shown in Figures 4.5 and 4.6.

3.0f

2.5F

2.0r

1.5}

1.0f

0.51

-1.0 -0.5 0.0 0.5 1.0

Figure 4.3: Kernel density ridge curves of the Jakob dataset.

(a) Arcs (b) Spiral3d

Figure 4.4: Estimates from kernel density ridges (red) and known generat-
ing curves (green lines and circles) of three-dimensional synthetic datasets.
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Figure 4.5: Faults extracted from the New Madrid dataset.

RCURVES-MS RCURVES
Dataset #f  #V time #Hf  #V3 time
Arcs 208 705 601 11.968 18 156 601  2.132
Circle 107 078 263  2.294 9 261 263 0.297
DistortedHalfCircle 133 724 137 2.843 9138 137  0.284
DistortedSShape 140 888 241 3.003 9333 241 0.298
HalfCircle 176 654 199  3.751 9417 199  0.297
Jakob 30 726 685 0.366 9691 643  0.195
Ladder 328 113 2002 28.360 34258 2016 6.506
New Madrid 365 772 372 63.388 61 349 348 14.282
Shapley (Figure 4.6a) 29 099 135  0.574 6 746 132 0.272
Shapley (Figure 4.6b) 24 756 135  0.308 4 069 132 0.122
Shapley (Figure 4.6c) 122 095 202 9.973 26 271 176 3.944
Spiral 278 515 472 10.137 15 683 472  0.826
Spiral3d 216 673 518  7.559 11 854 518  0.917
Zigzag 108 493 188 2311 8721 188  0.276

Table 4.1: Function evaluations, third derivative evaluations and wall clock
times used by the RCURVES-MS and RCURVES algorithms for kernel density
estimates obtained from the test datasets.
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Figure 4.6: Filaments extracted from the Shapley dataset in three-
dimensional Cartesian coordinates.
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4.6.3 Performance evaluation

Numerical experiments are done in [III] to assess the performance of the
RCURVES algorithm. A Fortran 95 implementation of the algorithm is com-
pared to a variant named as RCURVES-MS. In this variant, the Newton-based
mode finding and ridge projection methods are replaced with the mean shift
method and the SCMS method, respectively. The RCURVES-MS algorithm is
performance-wise comparable to the algorithms proposed by Bag [8] and Bag
et al. [10,11]. However, those algorithms do not implement any rigorously
derived formulae for tangent vector calculations or stopping criteria based
on the theory of ridge curves.

The conclusion made in [III] is that using the rapidly converging New-
ton method instead of the mean shift-based methods gives a decisive per-
formance advantage. This is shown in Table 4.1 taken from [III]. Here the
objective function and derivative evaluations up to second order are denoted
by #f. The more expensive third derivative evaluations needed for comput-
ing the tangent vector are denoted by #V?3. The measured computation
times are wall-clock times for running the RCURVES algorithm (time used for
kernel bandwidth estimation is not included).

The long computation times used by the RCURVES-MS algorithm are ex-
plained by the large number of function evaluations. This, in its turn, mostly
results from very slow convergence of the mean shift method during the mode
finding step. The modes of the densities lie on ridges, and thus they have
highly elongated peaks. This is another manifestation of the poor conver-
gence rates discussed in Section 3.1 and empirically observed from Figure
3.2b. The observations also strengthen the claim that the GTRN method is
particularly well-suited for finding modes of highly curved densities.
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Chapter 5

Nonlinear principal
component analysis

Principal component analysis (PCA) is a ubiquitous tool for identifying the
main sources of variation from multivariate data. The basic idea of the
method is to use an orthogonal transformation to identify linear subspaces
in which the data has maximal variance. However, as a linear method it
cannot adequately describe complex nonlinear shapes.

Based on Paper IV, this chapter deals with kernel density PCA (KD-
PCA) that is a nonlinear generalization of PCA. The key idea is to define
the principal components of a point set in terms of an m-dimensional ridge
set of its Gaussian kernel density. Using the coordinate system induced by
a nested collection of ridge sets of dimension r = 0,1,...,m, a key result
is that the first m principal component coordinates of the data points can
be obtained one by one by successively projecting the points onto lower-
dimensional ridge sets until » = 0. A projection path in a curvilinear coor-
dinate system is defined as a solution to a differential equation of the form
(3.6). In addition, KDPCA is extended to time series analysis by adopting
the notion of phase space of a time series from the linear singular spectrum
analysis (SSA).

Estimation of principal component coordinates from kernel density ridges
necessitates the use of advanced algorithms. To this end, the Newton-
based ridge projection algorithm described in Chapter 3 is combined with
a predictor-corrector algorithm for tracing curves that project points onto
lower-dimensional ridge sets. In addition, the ridge curve tracing algorithm
described in Chapter 4 is applied in the nonlinear SSA to parametrization
of phase space representations of time series.

Finally, KDPCA and its SSA-based extension are applied to climate
data. It is demonstrated that KDPCA is able to describe highly nonlin-
ear structure of a climate model output, giving an accurate low-dimensional
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representation. The SSA-based extension is applied to reconstruction of a
periodic pattern from an atmospheric time series, whose phase space rep-
resentation forms a closed loop. In both applications, KDPCA and the
SSA-based extension are shown to give a significant improvement over their
linear counterparts.

5.1 Relation to earlier research

In this section we give a literature review on the linear PCA and its nonlinear
extensions. Particular emphasis will be given to this method and the so-
called local PCA methods, as they form the basis of the method developed
in [IV].

5.1.1 Linear PCA

Since its introduction by Pearson [97], principal component analysis (PCA)
has become the standard tool for dimensionality reduction and identifying
the main sources of variation from multivariate data. This method has
appeared in numerous application areas with different names such as empir-
ical orthogonal functions (EOF) in climate analysis [130], proper orthogonal
decomposition (POD) in fluid mechanics [13] and the Karhunen-Loéve trans-
form (KLT) in the theory of stochastic processes [83]. In the following, we
give a brief overview of PCA based on [69].
The linear PCA attempts to capture the variability of a given data

Y=y, vy, - y,' eR™

by transforming the data into some m-dimensional coordinate system, where
0 < m < d, via an orthogonal transformation. The remaining d — m com-
ponents, that are interpreted as noise, are discarded. In this coordinate
system, the axes point along directions of maximal variance.

Let us denote the mean-centered samples by

_ . LI
i=y;— b, where i=—3 'y, (5.1)

i=1
A projection of the samples y; into an m-dimensional space can be obtained

via the mapping
BZ(A) = AT~ia

where A is a d X m matrix with 0 < m < d and with orthonormal columns.
Conversely, for the given coordinates 6; in the m-dimensional space, the
corresponding reconstruction (i.e. projection onto the hyperplane spanned
by the m first principal components) of y; in the input space is obtained as

7;(A) = 1 + A0,
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With the above definitions, it can be shown that finding the matrix
A that minimizes the reconstruction error is equivalent to maximizing the
variance in the transformed coordinate system. That is,

n n

. . D) 2
W ; 19:(4) — A -9l =, max | ; 16:(A)]*, (5.2)
where O(d, m) denotes the set of dxm matrices having orthonormal columns.
Furthermore, any i-th principal component corresponds to the direction of
the i-th largest variance, and these directions form an orthogonal set.

The solution to the above optimization problems is the matrix V,, =
[v1 w2 -+ vy, where the column vectors v; are the (normalized) eigen-
vectors of the d x d sample covariance matrix

1

Sy —
Y n—1

Z(?Jz — ) (y; — ﬂ)T (5.3)
i=1

corresponding to the m largest eigenvalues. Thus, projection of the mean-
centered sample set Y onto the m-dimensional subspace corresponding to
the directions of largest variance is given by

®e=YV,,.

In statistical literature, the coordinates ® € R™*™ obtained in this way are
called principal component scores.

5.1.2 Kernel- and neural network-based approaches

The kernel PCA (KPCA) developed by Scholkopf et al. [109] is among the
most well-known nonlinear extensions of PCA. The idea is to map the data
into a high-dimensional feature space by using a kernel function. The ra-
tionale behind this approach is that with an appropriate choice of kernel
function, the data is well-described by linear principal components in the
high-dimensional feature space. Rather than directly applying PCA in the
feature space, the method utilizes properties of kernel functions, which leads
to an n x n eigenvalue problem where n is the number of data points.

Unfortunately, KPCA requires a careful choice of a kernel function,
which depends on the input data. As the method is based on an artifi-
cially chosen kernel function rather than a statistical model, the output
might not reflect the actual structure of the data. Another limitation is
that the method produces only principal component coordinates and not a
reconstruction in the input space.

Nonlinear PCA methods based on neural networks have gained popular-
ity especially in chemical engineering and climate analysis. A neural network
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is essentially a layer of functions for performing a series of mappings. The
outcome of such mappings is a regression curve and a mapping between
the input points and the curve. Typically the shape of the curve is deter-
mined by weights assigned to the individual functions. The optimal weights
for a given data can be found by minimizing a cost function (e.g. a sum
of squared residuals). For a comprehensive review of neural network-based
PCA methods, see Scholz et al. [108].

The method by Kramer [74] designed for applications in chemical engi-
neering is among the earliest neural network-based nonlinear PCA (NLPCA)
methods. Kirby and Miranda [72] develop a neural network method that is
capable of fitting closed curves. Monahan [90] demonstrates applicability of
NLPCA to climate analysis. Other applications to climate data and some
improvements are given by Hsieh [66] and Hsieh and Hamilton [67]. Based on
NLPCA, they also develop a nonlinear variant of singular spectrum analysis
(SSA) that is a PCA-based method for time series data.

Neural networks have the advantage of being able to represent very com-
plex functions. Furthermore, they provide both a low-dimensional coordi-
nate representation as well as a reconstruction. However, as pointed out by
Christiansen [32], such methods are sensitive to overfitting, which necessi-
tates the use of additional penalty parameters. As a result, the fitted curve
or surface might not reflect the actual structure of the data. In addition,
Newbigging et al. [93] and Ross [105] point out that the principal compo-
nent coordinates do not have an arc length parametrization, which may
introduce a significant bias. Another issue is the increasing complexity and
the additional degrees of freedom in a neural network when fitting higher-
dimensional surfaces. Some higher-dimensional extensions are described in
[90] and [105]. A more recent approach is the hierarchical NLPCA [108] that,
similarly to PCA, is constrained to produce ordered principal components
according to their explained variance.

5.1.3 Local PCA methods

The so-called local PCA methods constitute another important research
area. The crucial difference to the above approaches is that these meth-
ods construct the principal components in a ”bottom-up” fashion. Rather
than minimizing a global goodness of fit criterion as in NLPCA, these meth-
ods operate directly in the input space by using local structure of the data.
Thus, the difficult global minimization of an auxiliary cost function with a
potentially large number of suboptimal solutions is avoided.

Kambhatla and Leen [71] propose a method that divides the input data
into disjoint partitions. The method then carries out principal component
analysis by computing the mean (5.1) and covariance (5.3) locally in each
partition. Successive clustering and principal component projection steps
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are carried out until the improvement of the reconstruction error (5.2) in
each partition is below a given threshold. The clustering is done with respect
to locally computed principal component hyperplanes rather than mean vec-
tors. Thus, the method can be viewed as a generalization of the well-known
k-means clustering [62].

Einbeck et al. [44] give an alternative definition for a local principal
component. In their approach, the localization of the mean vector (5.1) and
covariance matrix (5.3) is done via weighting by a Gaussian kernel (2.16)
with a diagonal bandwidth matrix H = h?I. This approach eliminates the
need to use a separate clustering algorithm to partition the data, though
it requires choosing the kernel bandwidth. Based on this idea, the authors
propose a heuristic algorithm for tracing the first principal component (i.e.
a principal curve). However, they do not extend this method to higher-
dimensional principal surfaces.

Unfortunately, the local PCA methods are not directly applicable when
one desires to find a global coordinate system. Aligning the local principal
component coordinates into a global coordinate system is a nontrivial task.
One well-known approach to solving this problem is the local tangent space
alignment (LTSA) method developed by Zhang and Zha [139]. Assuming
that the data is sampled from a smooth manifold that does not intersect
itself, the method first computes the nearest neighbours of each data point.
Then the method obtains an approximate tangent space of the manifold
at each point via local PCA restricted to nearest neighbours. As a final
step, the local principal component coordinates are aligned into a global
coordinate system by solving an eigenvalue problem. The main shortcoming
of LTSA is that the low-dimensional coordinates tend to become severely
distorted when the input data is noisy or the underlying manifold has high
curvature [138]. Another limitation is that the method only produces low-
dimensional coordinates but not a reconstruction in the input space.

5.1.4 The proposed method

In the following section, we describe the kernel density PCA (KDPCA)
developed in [IV]. The basic idea of the method is to construct a Gaussian
kernel density from the data and estimate the principal components from
its ridge sets. The method is essentially a local one, as the ridge definition
is based on pointwise conditions, but it also constructs a global coordinate
system by exploiting the structure of ridge sets.

The main features of the KDPCA method are listed below.

e KDPCA produces a set of m first principal components ordered ac-
cording to their significance. Differently to the linear PCA, they are
obtained from an m-dimensional ridge set that can describe nonlinear
structure.
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e When the kernel bandwidth is parametrized as H = h%I, the pa-
rameter h has an intuitive interpretation as a scale parameter. As h
approaches infinity, we obtain the linear PCA as a special case.

e KDPCA produces low-dimensional coordinates as well as a reconstruc-
tion in the input space. Most nonlinear dimensionality reduction meth-
ods are not capable of doing the latter. The reconstruction ability is
a desired feature, for instance, in climate analysis [105].

e KDPCA does not involve solution of any auxiliary problem. The prin-
cipal components are solely determined by the structure of ridge sets.
Connectivity of ridge sets can be guaranteed under mild assumptions.
This, in its turn, guarantees existence of a well-defined global coordi-
nate system.

e The nonlinear principal component scores are obtained by tracing
projection curves defined by a differential equation. Such curves are
parametrized by arc length, which avoids the bias problem of NLPCA.

e The ridge-based approach is also applicable when the data is con-
centrated around a closed curve. Namely, the RCURVES algorithm de-
scribed in Chapter 4 can be applied to obtain a consistent parametriza-
tion and automatically detect if the curve is closed, which NLPCA is
not capable of. An example of this will be given in Section 5.3.

5.2 Nonlinear kernel density PCA

In this section, we provide the necessary mathematical theory for estimation
of nonlinear principal components from a ridge set of a Gaussian kernel
density. We then describe an algorithm for estimating the corresponding
principal component scores. Finally, we give a brief overview of the SSA
method for time series analysis.

5.2.1 Properties of ridge sets

We begin with the following result that shows the connection between the
ridge set of a normal density and the linear principal components. This result
follows trivially from Proposition 2.1.2 and the fact that the logarithm of
a normal density with mean p and covariance X is a quadratic function
having gradient and Hessian given by equation (3.5).

Proposition 5.2.1 Let p be a d-variate normal density with mean pu and
symmetric positive definite covariance matrix 3. Denote the eigenvalues of
by A1 > Ay > -0 > Ag and the corresponding eigenvectors by {vi}?zl.
Then for any 0 < r < d such that Ay > Aa > --- > A\rq1 we have

r __ pr _ {/1/}7 TZO’
Rp_Rlogp_{ {“}—'_Spa’n(vlqu)""vT)’ T:]_,Q,...,d—]..
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More generally, the m-dimensional ridge set of a Gaussian kernel density
is related to an m-dimensional principal component hyperplane via its gra-
dient and Hessian. Here we use a function p; to denote a Gaussian kernel
density with bandwidth matrix H = h?I. The following result can be ob-
tained from a straightforward calculation by using equation (3.4). It shows
that an m-dimensional ridge point lies on an m-dimensional principal com-
ponent hyperplane. This hyperplane is determined by a weighted mean and
the eigenvectors of a weighted sample covariance matrix, where the weights
are Gaussian functions.

Theorem 5.2.1 ([IV]) Let p, : R? — R be a Gaussian kernel density, let
0 < r < d and denote the eigenvectors of V*log py(-) corresponding to the r
greatest eigenvalues by {v;(-)}/_,. Define

NE

mzx) =) ci(@)y;,
i=1
3(x) ci(@)[y; — m(@)][y; — m@)]",

=1

e (N2 = il
B 2h2
S ep (12l
L P 282
7j=1

Assume that the eigenvalues of V?log py(x) satisfy the condition \(x) >
Xo(x) > - > Np1(x). Then

where

ci(x)

1=1,2,...,n.

Viogpn(x) vi(x) =0 foralli>r

if and only if
x — fi(x) € span(vy(x), V2(x), ..., 0. (x)),

where {9;(x)}i_, denote the eigenvectors of X(x) corresponding to the r
greatest eigenvalues.

The above result provides an intuitive interpretation for the bandwidth
h. Namely, the weights ¢;(x) can be viewed as the influence of the i-th data
point at a given point . More weight is given for farther points for large
bandwidth A in computation of the mean and covariance estimates fi(x) and
3 (z). On the other hand, for small , the points in a small neighbourhood
of x are given a large weight. Thus, h effectively determines the scale of the
structure sought from the data. Another point of interest from the above
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result is that a ridge point of a Gaussian kernel density pp in fact coincides
with a principal point defined according to Einbeck et al. [44].

Another way of viewing the connection between linear principal compo-
nents and ridge sets of a Gaussian kernel density is to analyze their asymp-
totic behaviour as the bandwidth h approaches infinity. Namely, it can
be shown that in this case any r-dimensional ridge set converges to the r-
dimensional principal component hyperplane in a given compact set. The
convergence occurs with respect to a norm that is essentially the Hausdorff
distance (2.14). Consequently, by letting h approach infinity, the linear PCA
is achieved as a special case when desired. The following assumption does
not pose an additional restriction, as it is also required by the linear PCA
when the r first unique principal components are sought.

Assumption 5.2.1 Ther+1 greatest eigenvalues of the sample covariance
matriz Xy defined by equation (5.3) satisfy the conditions Ay > Xg > -+ >
>\r+1 > 0.

Theorem 5.2.2 ([IV]) Let py, : R? — R be a Gaussian kernel density, let
0 <r <d and let Assumption 5.2.1 be satisfied. Define the set

.
S&:{ﬂ+2aivi|aeﬂ%r},

i=1

where fi denotes the sample mean (5.1) and {v;}]_, denote the eigenvec-
tors of the sample covariance matriz Sy corresponding to the eigenvalues
{A\i}i_;. Then for any compact set U C RY such that UN ST, # () and £ > 0
there exists hg > 0 such that

dist(R5, MU, 85, <e,

>
dlSt(Sgo N U7 Rgh) <eé } fOT' all h = h07

where

dist(S1,S2) = sup inf ||z —y|.
xS Y52

5.2.2 Estimation of principal component scores from ridges

In this subsection, we provide the theoretical basis for estimating the first
m nonlinear principal component scores of a given point set. The idea is to
obtain the scores one by one by successively projecting the points onto lower-
dimensional ridge sets of a Gaussian kernel density. The projections are done
along eigenvector curves that are defined by a differential equation. The arc
lengths of the curves are interpreted as the principal component scores.
For now, we assume that a given point has already been projected onto
an m-dimensional ridge set of its underlying density p with some m < d.
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The aim is to obtain coordinates for the point in the m-dimensional coor-
dinate system induced by such a ridge set. For r = 1,2,...,m, we define
a projection curve v, : R — R onto the r — 1 -dimensional ridge set as a
solution to the initial value problem

&P, (1)V logp(y, (1)] = 0, 10, (5.4

1
'77“(0) =&y, *ToE Rfogp \ erog;ﬂ

where P,.(-) = I —v,(-)v,(-)T and {v;(-)}%_; denote the eigenvectors corre-
sponding to the eigenvalues A1(-) > Xo(-) > --- > A\g(-) of VZlogp.

The above definition is motivated by a special case that shows its con-
nection to the linear PCA projection. Namely, for any d-dimensional normal
density p, a ridge point xg € Rj,,,,, where 1 < r < m, can be projected
onto the lower-dimensional ridge set Rf(;glp C Ripgp by following the solution
curve of (5.4). The curve is a straight line parallel to the eigenvector v,.
This property follows trivially from the fact that log p is a quadratic function
with gradient and Hessian given by (3.5).

Proposition 5.2.2 ([IV]) Let p be a d-variate normal density with sym-
metric and positive definite covariance matriz 3 and let 1 < r < d. If the
eigenvalues of 3 satisfy the condition A1 > Ao > --- > Ay1, then for any
solution curve =y, of the initial value problem (5.4) we have

¥ @)/ |17 @) = £,
for all t > 0. Furthermore, if the sign of 4. is chosen such that
~() TV 1logp(,(t)) >0 forallt >0,

then logp has a unique mazximum point x* € R{"O?p along the curve =,.

When the density p is not normal, obtaining an expression for the tan-
gent vector ~/,(t) is nontrivial. However, by utilizing the formula for the
derivatives of eigenvectors (e.g. [86]), equation (5.4) can be rewritten as

Ar (v, ()7, (t) = 0, (5.5)
where

A, (x) =P,(x)V?logp(x) — F,(x), (5.6)
Fo(z) =v,(x)" Vg p(x) Vo, (x)" + v, (®)Viogp(z) Vo, (@)  (5.7)

and
Vo, (@) = M (@) I — V1ogp(x)] "V log p(z)v,(z) (5.8)
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and the operator ”” denotes the Moore-Penrose pseudoinverse (e.g. [52]).
It can be shown by straightforward calculation that when r = 1, equations
(5.5)—(5.8) are in fact equivalent to equations (4.9)—(4.11) defining the tan-
gent vector of a ridge curve.

For a general density p, projection onto the ridge set R{O_glp can still be
done by maximizing logp along the curve «,., but this requires additional
justification. To this end, we first give a result showing that when ~, ap-
proaches a ridge point «* € Rfo_glp, the tangent vector 4/ becomes parallel
to the eigenvector v,. This property is a higher-dimensional generalization
of the one stated in Theorem 4.4.2. It can be verified by inspecting the null
space of the matrix A,,(x) defined by equations (5.6)—(5.8). Here we need
a technical assumption that will be justified later in this subsection.

Assumption 5.2.2 The eigenvalues of V2 logp satisfy the conditions

(1) MV (1) > Aa(v,(8) > - > Arga (7, (2)),
(i) M(y,(t) <0

for allt > 0.

Proposition 5.2.3 ([IV]) Let 1 <r < d and let v, denote the normalized
tangent vector of a solution curve of (5.4). If Assumption 5.2.2 is satisfied
and

lim v, (v, ()" V1og p(,(t)) = 0

t—t*

for some t* > 0, then

: T
i [y, (6) o (v, (8)] = 1.
Proposition 5.2.3 implies the following properties that justify seeking for
a lower-dimensional ridge point by maximizing logp along the curve -,.

Proposition 5.2.4 ([IV]) If~, is a solution to (5.4) for some 1 <r <d

and Assumption 5.2.2 is satisfied, then either ~,(t) € R, \ Rfo_g; for all

t >0 orlimgy~,(t) € ,R’{o_glp for some t* > 0. In the latter case, logp
attains its local mazimum along =, at the limit point ~y,.(t*).

It is not formally proven in [IV] that the curve =, (t) always converges to a
point in R{O_glp. Proposition 5.2.2 nevertheless suggests that this is the case
when p is sufficiently close to a normal density (i.e. when h is large).
Recall that our aim is to use projection curves -, defined by equation
(5.4) to obtain the first m nonlinear principal component scores of the given
sample points y,. This is to be done by using the kernel density log p,, as the
objective function. Differently to the normal density in Proposition 5.2.2,

this density is not guaranteed to be unimodal or have connected ridge sets.

78



For instance, it is clear that such a density becomes multimodal when h is
too small.

Unimodality of the density and connectedness of its ridge sets are es-
sential here. This is because as in the linear PCA, our aim is to describe
the data in a global coordinate system having the mode as the origin (cf.
Proposition 5.2.1). Hence, we assume the following.

Assumption 5.2.3 Define the set
n
U= Ll
i=1

where
ﬁ? ={xz e R? | log pr(x) > log pr(y;)}-

Let A1(-) > Xo(-) > --- > Ag(-) denote the eigenvalues of V2 logpy,. Assume
that for all x € Uy, we have

0> A(x) > Aa(x) >+ > Apy1(x)
and that Uy, is compact and connected.

Miller [89] gives a rigorous analysis on the structure of ridge sets of C*°-
functions. Under the above assumption, the results of [89] guarantee that
the r-dimensional ridge set of the density log p;, forms a connected manifold
in the set Uy for any 1 < r < m. Furthermore, log p; is unimodal in the
compact set Up. In addition, Assumption 5.2.3 implies differentiability of the
Hessian eigenvectors via Theorem 2.1.2, which is essential for the definition
of the initial value problem (5.4). This assumption also entails Assumption
5.2.2 when the curves -, lie in Up,.

Assumption 5.2.3 can be satisfied by choosing a sufficiently large h,
though in this way the density estimate might not reflect the true density.

Theorem 5.2.3 ([IV]) Under Assumption 5.2.1 for r =m, for any Gaus-
sian kernel density py there exists hg > 0 such that Assumption 5.2.3 is
satisfied for all h > hg.

The arc length of a curve =, gives the (curvilinear) distance of its starting
point to the ridge set Rf(;g%h. Assume that we have projected a given sample
point y, onto the ridge set R{gg P Starting from such a point, tracing the
curves -, successively for r = m, m—1,..., 1 then yields the first m principal
component scores of y,. When Assumption 5.2.3 is satisfied, imposing the

conditions (cf. Proposition 5.2.2)

V()" Viog pr (v, (8)) >0 and |[ly.(t)] =1 (5.9)

forallr =m,m—1,...,1 and t > 0 guarantees that the curves =, lie in the
set Uy,
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Denote the projection of a given sample point y, onto the set Rigg o
as ¢, and the starting points of the curves «, as xj. The first m principal
component scores of y, are then obtained recursively as

tr
6=t [ Il (5.10)
0
where 3
o’ — { Y, r=m,
0 Yr4+1 (t:—l-l)a 1 <r<m
for r=m,m —1,...,1. Here we assume that for each r there exists ¢; > 0
* —1 R T * .
such that v,.(t}) € R}, - The multiplier s = tLl}Ifl;ﬁ sr(t), where
_ 17 if Wi(t)T,UT'(FYT(t)) > 07
sr(t) = { -1, otherwise, (5.11)

is introduced to ensure that the principal component score 6,. has the correct
sign.

5.2.3 Algorithm for computing principal component scores

Based on the theory given in Subsection 5.2.2, we now describe the algorithm
for estimating the nonlinear principal component scores

©=[6, 6, --- 0,7 cR™™
of a given sample set
Y=[y v - ya R

for a given 0 < m < d. This amounts to first projecting the samples y;
onto the ridge set Rjj, ; and then successively projecting them onto the
lower-dimensional ridge sets Rfog Py by tracing the curves -, until r = 0.

The initial ridge projection is done by using the GTRN algorithm (Algo-
rithm 3.1). The rationale behind this choice is that this algorithm produces
an approximate projection onto a ridge set in a computationally efficient
way. As pointed out in Subsection 3.3.3, the iteration of GTRN yields a
well-defined projection curve under Assumption 5.2.3. This is due to the
continuity of the first m Hessian eigenvectors in the set U, by Theorem
2.1.2.

After the initial ridge projection, the remaining m projections are done
by tracing the curves 7, by using a predictor-corrector method. The prin-
cipal component scores 6; , are obtained from a numerical approximation of
the integral (5.10) along the projection curves.
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Algorithm 5.1: NLPCS (nonlinear principal component scores)

input :sample points Y = [y, vy, --- y,]T € R™*d
Gaussian kernel density pp, : R — R
ridge dimension 0 < m < d
step size 7 > 0

output: principal component scores

e = [01 0, - On]T € Rnxm

10«0

2 fori=1,2,...,ndo

3 Apply GTRN to log py, with ridge dimension m to obtain x from

starting point y,.

4 forr=mm—1,...,1do

5 fori=1,2,...,ndo

6 Ty — T

7 for k=0,1,... do

8 Obtain the tangent uy from (5.5) such that ||ug| = 1.
9 sk < sgn(uf Vlog py(z))
10 if £ > 0 then
11 if sp_1ul jugs; <0 then
12 T (xp_1 +xp)/2
13 Apply GTRN to log py, with ridge dimension r — 1 to

obtain ] from starting point &.

14 Oir < O+ ||2f — )1
15 if (zf — 1) v, (x}) <0 then
16 L 61'7,“ — —91'77~
17 Return to line 5.

18 else

19 L Oir < Oir + || — 21|
20 T < Tk + TSpUL
21 Apply GTRN to log p, with ridge dimension r to obtain

Ti41 from starting point xy.

The algorithm for estimating the principal component scores is listed

as Algorithm 5.1. The first step is the initial projection onto the ridge set
fgg PR After that the algorithm carries out m x n iterations. Each iteration
forr =m,m —1,...,1 projects each of the n sample points onto the ridge
set Rfo;ah' The intermediate projections are stored in the variables {x}}7 ;.
In the following, we describe the steps for carrying out one ridge pro-

jection (i.e. one iteration of the loop over the index i) for a given r. The
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starting point xg for «, is chosen as x representing the projection of the
sample point y, onto the set Riogp,- For a monotonously increasing se-
quence {t} such that ~,(tx+) € ,R’fo_glﬁh for some k*, we introduce the nota-
tion @y = v, (tx) for the iterates along the curve «,. With this notation, an

approximation to the integral in (5.10) is given by

[ k* k*
/ o) ldt ~ 3 1, ) = Aot = S g — e -
0 k=1 k=1

The algorithm uses a predictor-corrector method to generate the iterates
x). At the predictor step (line 20), the algorithm proceeds along a tangent
vector u = v,(t;) solved from equation (5.5). That is,

T = X} + TSEUL,

where 7 > 0 is some user-supplied step size, ||ug|| = 1 and the multiplier
o — 1, if u{Vlogﬁh(wk) >0
T -1, otherwise

is introduced to impose conditions (5.9). To project the predictor estimate
i back to the ridge set Rfog PR the algorithm takes a corrector step by
invoking the GTRN algorithm at the last line.

A stopping criterion is imposed to terminate the tracing of the curve =,
when a maximum of log py, along -, is encountered (line 11). For k > 0, the
condition

sk_lu;‘g,luksk <0

tests whether the gradient changes sign along the curve. When this condi-
tion is met, the algorithm projects the midpoint of the current and previous
iterate onto a nearby ridge point x; € Rfo_glﬁh by invoking the GTRN algo-
rithm. At lines 15-16, the algorithm computes the sign s; for the integral
(5.10) by approximately testing condition (5.11). The inner iteration (i.e.
iteration of the loop over the index k) is then terminated, and the point x}
is retained as starting point for projection onto lower-dimensional ridge set.

Tests for unimodality or connectedness of the ridge sets of log py, are not
included in Algorithm 5.1 for conciseness. Unimodality can be tested by
finding its modes as in the initial step of Algorithm 4.1. This can also be
guaranteed by the approach described in Subsection 3.5.2. On the other
hand, disconnectedness of ridge sets can be detected by testing if a projec-
tion curve crosses a point © where A\, 1(x) = 0 or A\j(x) = \j(x) for some
i,7 = 1,2,...,7 + 1 such that ¢ # j, where \;(-) denote the eigenvalues
of V2logpy, [89]. When multimodality or a disconnected ridge set is de-
tected, the algorithm can be restarted with a larger h or smaller initial ridge
dimension m.
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Remark 5.2.1 When only the first principal component is sought, a more
efficient approach is to use the method of Subsection 3.5.2 to guarantee uni-
modality (this does not necessarily guarantee connectedness of ridge sets).
Then one can use Algorithms 4.2 and 4.3 to extract a sequence of line seg-
ments along the principal curve. The principal component scores can be
obtained by finding the nearest line segment for each data point and comput-
ing distance along the line segments to the origin (the mode of the density).

5.2.4 Extension to time series data

The extension of KDPCA to time series data, that we call KDSSA, is based
on the singular spectrum analysis (SSA) developed by Golyandina et al.
[53] and Vautard et al. [125]. In SSA, a time series is embedded into a
multidimensional phase space. This is done by constructing a trajectory
matriz from time-lagged copies of the time series. That is, such a matrix of

a time series © = (1,2, ...,2Ty) is given by
i T xT9 T3 cee Xy, i
o I3 T4 o T4l
Yoo = 3 T4 Ts T2 | (5.12)
| Tn—L+1 Tn—L+2 Tp—-L+3 *°° Tn

where L is a user-supplied time window length.

Applying the linear PCA to the above matrix, one can obtain the prin-
cipal components and the reconstructed time series by using the formulae
given by Vautard et al. [125]. Generalizing this PCA-based approach, we
minimize the reconstruction error

n—L+1 L
E(z) = Z Z(ﬂz‘,j — Tirjo1)’ (5.13)
=1 =1

using the first m nonlinear principal components, where m < L. Here the
vectors y; denote the projections of the row vectors y, of Y5 onto the
m-dimensional ridge set of their Gaussian kernel density.

A straightforward calculation shows that by equating the gradient VE(x)
to zero, we obtain the formulae

1 L
ZZ%*J’H,J’, L<i<n—-L+1

j=1
1 (]

wi=14 = G 1<i<L-1 (5.14)
i
1 L
h_ir1 Z Yiejy14, n—L+2<i<n
j=i—n+L
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for the elements of the reconstructed time series such that E(x*) minimizes
the reconstruction error (5.13).

Here the nonlinear SSA is applied to quasiperiodic time series (i.e. noisy
time series having some underlying periodic pattern). The motivation is as
follows. Assuming that a time series follows the model

X() = () +<(t)

for some periodic function f and e representing the noise, it is reasonable to
model the trajectory samples (i.e. the rows of the matrix Y 1) as a point
set that is concentrated around a closed curve.

5.3 Experiments with climate and time series data

In this section we give a summary of the experiments carried out in [IV].
That is, we demonstrate the applicability of KDPCA and its SSA-based
extension KDSSA to climate data where highly nonlinear phenomena are
common. Three potential applications are presented with illustrations.

e Estimation and analysis of principal component scores from a climate
model output representing gridded sea surface temperatures. The
scores are estimated by using the NLPCS algorithm (Algorithm 5.1).

e Reconstruction of a periodic component from an atmospheric time
series. This is done by projecting its phase space representation (5.12)
onto the ridge curve of its kernel density and then applying formula
(5.14). The projection is done by using the GTRN algorithm (Algorithm
3.1).

e Parametrization of the reconstructed phase space trajectory by using
the RCURVES algorithm (Algorithm 4.1). The parametrization is used
for detection of unusually short or long periods in the above time series.

In the first example, the RCURVES and NLPCS algorithms are applied
to a simulated sea surface temperature dataset obtained from the GFDL-
CM2.1 climate model [39]. This dataset has been previously used by Ross et
al. [106] for evaluating dimensionality reduction methods on climate data.
The dataset used in [IV] consists of 6000 samples where seasonal variation
has been removed by subtracting monthly mean values. For computational
reasons, the high-dimensional data (d = 10073) is first projected onto the
ten first linear principal components explaining 87.3% of the variance in the
data.

Figure 5.1 shows the first principal component (i.e. principal curve) esti-
mated from the kernel density ridge of the GFDL-CM2.1 dataset with kernel
bandwidth A = 40. Here the dataset and the curve are projected onto the
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Figure 5.1: The first nonlinear principal component estimated from the
GFDL-CM2.1 dataset (only a subset of the curve is drawn).

subspace spanned by the first three linear principal components. The prin-
cipal curve segment has been extracted by using the RCURVES algorithm.
Clearly, the ridge curve is able to capture the highly nonlinear shape of
the data (differently to the examples shown in Chapters 2 and 4, the true
generating curve is not known).

The curves shown in Figure 5.1 are plotted for illustration purposes.
When doing statistical analysis, the principal component scores are of main
interest. For the above dataset, the first principal component correlates
with the so-called NINO3 index related to the El Nino Southern Oscillation
(ENSO) phenomenon. The second one correlates with the Pacific warm
water volume [105].

To illustrate the application of the NLPCS algorithm, the two first princi-
pal component scores obtained by this algorithm are plotted in Figure 5.2.
The corresponding reconstruction with ridge dimension r = 2 obtained by
NLPCS is plotted in Figure 5.3. Examples of using such reconstructions to
visualize dominant ocean circulation patterns are given in [105].

Figures 5.2 and 5.3 clearly show the ability of KDPCA to capture non-
linear shapes that cannot be described by the linear PCA. That is, Figure

85



300 . . . . .
200f s .
100} T .
° PR S
Yoy ..
o~ .
# % R
o ol Y Ty .. ]
a e oo
\c -
-100} : 1
200} .
—30%55 —200 —~100 0 100 200 300

PC #1

Figure 5.2: Two first nonlinear principal component scores estimated from
the GFDL-CM2.1 dataset.
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Figure 5.3: Projection of the GFDL-CM2.1 dataset onto its nonlinear

principal component surface.
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5.2 represents an unfolding of the nonlinear principal surface shown in Fig-
ure 5.3. Such an unfolding cannot be obtained from the linear principal
component projections shown in Figure 5.1.

In the second example, the KDSSA described in Subsection 5.2.4 is ap-
plied to a wind measurement time series. The time series consists of monthly
mean zonal winds constructed from balloon measurements. It represents the
well-known periodic atmospheric phenomenon called quasi-biennial oscilla-
tion (QBO) in the tropical stratosphere.

PC #3

Figure 5.4: Phase space representation of the QBO time series and the
reconstructed trajectory curve obtained by kernel density ridge projection.

Due to the strong periodicity of the QBO time series, its phase space
representation is expected to be concentrated around a closed loop. This is
indeed the case, as seen from Figure 5.4 showing the phase space represen-
tation and the reconstructed trajectory. This figure represents projections
onto the first three linear principal components. The phase space repre-
sentation is obtained by constructing the matrix (5.12) with L = 18. The
reconstruction is obtained by projecting the trajectory points (i.e. the rows
of the matrix (5.12)) onto the ridge curve of the Gaussian kernel density
with h = 200 by using the GTRN algorithm with » = 1. For computational
reasons, the GTRN algorithm is applied to a projection onto the subspace
spanned by the four first linear principal components.

The estimate for the underlying periodic pattern in the QBO time series
is plotted in Figure 5.5. This estimate has been obtained by applying for-
mula (5.14) to the reconstructed trajectory points ¢, shown in Figure 5.4.
The original time series and the reconstructions obtained from the first two
linear principal components of the trajectory matrix (5.12) are also plotted
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for comparison. The conclusion is that the reconstruction obtained by the
nonlinear SSA gives the best estimate for the periodic component. The re-
construction obtained from the first linear principal component is insufficient
to describe the structure of the time series. On the other hand, including
the second principal component only replicates random fluctuations and not
the periodic pattern. This deficiency follows from the fundamental limita-
tion that as a linear method PCA cannot describe data that is concentrated
around a closed curve.

original
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year

Figure 5.5: The QBO time series and the reconstructed time series ob-
tained by using the first KDSSA component, the first linear SSA component
and the two first linear SSA components combined. The original time series
is plotted in gray in the lower figures.

In the last example, the RCURVES algorithm is applied to obtaining an
approximate parametrization of the reconstructed phase space trajectory
shown in Figure 5.4. The following analysis is done by following the approach
by Hamilton and Hsieh [67] who apply an NLPCA-based nonlinear SSA
method to the QBO time series.

By a parametrization we mean an ordered sequence of points along the
trajectory curve shown in Figure 5.4. The parametrization is not unique
because the curve forms a closed loop, but one can be obtained by fixing
one point along the curve as the origin. Figure 5.6 shows the coordinates of
the QBO time series along the parametrized trajectory curve (the ¢-values)
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normalized to the interval [—7, 7w]. At each time step, the coordinate ¢ for the
sample point is obtained by finding the closest point along the parametrized
trajectory curve and then computing the distance of this point to the origin
along the curve.

The parametrization can be used to analyze the lengths of individual
cycles in the time series. To demonstrate this, here we also compute at each
time step the expected total distance that the t-coordinate has moved along
the phase space trajectory since the beginning of the observation period.
By this quantity we mean the total distance along the trajectory assum-
ing that the speed is constant during the whole observation period. The
"t-anomaly” values (in the terminology of Hsieh and Hamilton [67]), that
represent deviations of the actual total distances from the expected value
are also plotted in Figure 5.6 with normalization to the interval [—1,1].
Comparison of the t-anomaly time series with Figure 5.5 shows that rapid
increases in t-anomaly values represents unusually short cycles and rapid
decreases represent unusually long ones.
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Figure 5.6: The first nonlinear principal component coordinate of the QBO
time series (¢) and the deviation from the expected value (t-anomaly).
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Chapter 6

Graph-based dimensionality
reduction

Though the KDPCA described in Chapter 5 is likely to perform well on
datasets of moderate size and dimensionality, it might not be the best ap-
proach for all dimensionality reduction tasks. When the number of samples
is large (say n > 100000) or the data is high-dimensional (say d > 100)
without any trivial low-dimensional structure, the computational cost of
evaluating the Gaussian functions becomes prohibitively high. In many
applications, one is dealing with such data. A typical example is a large col-
lection of digital images, where the data dimension is the number of pixels
in the image.

In particular, when the input data is high-dimensional, a more efficient
approach is to construct a low-dimensional representation based on a neigh-
bourhood graph of the data. Efficient methods for constructing such graphs
from high-dimensional data have been developed (e.g. [76]). In fact, a ma-
jority of nonlinear dimensionality reduction methods are based on the graph-
based approach. Just to name a few, there are Isomap [119], Laplacian eigen-
maps [12], locally linear embedding [107] and maximum variance unfolding
(MVU) [131] belonging to this category. Other neighbour-based methods
include stochastic neighbour embedding [63] and its variants [122,126].

Due to the inherent computational difficulties of the kernel density PCA,
the final part of this thesis based on Paper V is devoted to graph-based
dimensionality reduction. The focus is on exploring the computational fea-
sibility of the MVU method by Weinberger and Saul [131]. This method can
be conveniently formulated as a semidefinite optimization problem. Unfor-
tunately this comes with a high computational cost, and the development of
the MVU method has been hindered by computational difficulties. Only re-
cently, some attempts based on quadratic reformulations of the semidefinite
MVU problem have been made to overcome this difficulty [75,124]. Refin-
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ing the ideas presented in these references, a reformulation framework for
solving the MVU problem is presented in this chapter. State-of-the-art op-
timization methods are utilized in this framework, which is shown to yield
drastic performance improvements compared to the standard semidefinite
solvers.

6.1 Problem definition and the proposed approach

The optimization problem arising in the MVU method is a special instance of
a more general graph embedding problem. Therefore we present the problem
in a broader context. To this end, let G = (V, E') denote an undirected graph
with nodes V' ={1,2,...,n} and edges E C V x V.

The problem of embedding the graph G into the d-dimensional space
R is to assign each node i a point y; € R? such that distances between
adjacent points are equal to the edge weights. This requirement is often too
restrictive. Thus, a typical graph embedding problem is formulated as

find ¥y, Ys,--.,Y, € R?

. (6.1)
s.t. ClDZ‘j < Hyz - yjH < C2Dij7 {27.7} S

for the given constants 0 < ¢; < ¢a < 1, edges {i,j} € F and edge weights
D;; > 0 (see [82] for a general discussion on graph embeddings).

From the viewpoint of dimensionality reduction, it is desirable to find a
low-dimensional embedding that preserves the structure of the graph. As
discussed in [57], [118] and [131], this can be done by maximizing pairwise
distances between the points y; under the above distance constraints. This
approach is based on the intuition that, differently to the arbitrary embed-
ding (6.1), stretching the points apart from each other is likely to ”flatten”
the graph and thus produce a representation lying on some low-dimensional
subspace.

Here we consider graph embeddings that maximize the sum of squared
pairwise point distances under distance constraints with only upper bounds.
Together with a centering constraint, such an embedding problem is formu-
lated as the quadratically constrained quadratic program (QCQP)

n n
max ZZHyi_yjuz

d
Yi Y2, ¥ €RT T

n
S0
i=1

with some embedding dimension d. The advantage of relaxing the distance
constraints is that the feasible set is convex and has a nonempty interior for
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all d > 1 when D;; > 0 for all {i,j} € E. This would not be the case with
strict equalities. For instance, it is not possible to embed a general graph
into a line while strictly preserving the edge weights.

For solving graph embedding problems of the form (6.2), the standard
approach is to consider a semidefinite relaxation. By introducing the matrix
K=YY? withY = [y, Y2, s YUn ]T € R™ 4, problem (6.2) can
be reformulated as the semidefinite program (SDP)

max tr(K)
Kesn
st. K >0,
Kii — 2K+ K;; < D, {i,j} € E, (6.3)
n n
I
i=1 j=1

where 8™ denotes the cone of symmetric n x n matrices.

Reformulation of the difficult convex maximization problem (6.2) as the
SDP (6.3) has the advantage that the SDP is a concave maximization prob-
lem over a convex set, and thus any local maximum is a global one. More-
over, the SDP formulation eliminates the need of knowing the embedding
dimension d in problem (6.2) a priori. Once the SDP has been solved, an
embedding can be obtained from the eigenvectors of the matrix K corre-
sponding to an appropriately chosen small number of the largest eigenvalues
(e.g. [131]). The standard interior-point SDP solvers are applicable to the
SDP (6.3) (e.g. [21] and [137]).

Unfortunately, the interior-point SDP solvers scale poorly to large prob-
lems since the SDP (6.3) has O(n?) variables. Moreover, these solvers require
factorization and storage of a dense m x m matrix, where m is the number
of constraints in the problem [21]. Since the number of edges can be signif-
icantly larger than the number of nodes in the graph, this incurs a major
computational bottleneck.

Based on [V], we describe a computationally efficient approach for solving
the SDP (6.3). The approach is an adaptation of the theory of semidefinite
programs and their low-rank quadratic formulations developed in [24,25,56]
and [70] to problems (6.2) and (6.3). Based on these results, an incremental
low-rank method for solving the SDP (6.3) is developed in [V]. The idea is
to apply a NLP solver to sequence of small quadratic problems (6.2) with
increasing dimension d until a solution to the SDP is obtained. Furthermore,
it is shown that such a solution is globally optimal for (6.2) with dimension
d that gives an upper bound for the rank of the optimal solution of (6.3).
Due to zero duality gap, which is established in [V] for the SDP (6.3) and
its dual under mild assumptions, solution of the primal problem yields a
solution to the dual problem and vice versa. The dual problem is equivalent
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to determining the fastest mixing Markov process on a graph (e.g. [118]),
and similar problems also appear in graph theory (e.g. [57]).

6.2 Low-rank semidefinite programming

In this section we recall the main results concerning the relation between op-
timal solutions of semidefinite programs and their low-rank reformulations.

6.2.1 Notation and optimality conditions

In what follows, we recall the main results by Burer and Monteiro [25] and

Grippo et al. [56]. These results give necessary and sufficient conditions that
a (local) solution to the QCQP

min  y" (I, @ C)y
yeRnd (6.4)
st. yTIy@A)y=0b;, i=12,....m

arising from the change of variables K = YY1 with

Y1 Yn+1 0 Ynd—n+1
Y2 Yn+2 - Ynd—n+2

y=|" " T e rexd (6.5)
Yn Y2n - Ynd

such that d < n yields a solution to the standard form SDP

min CeK
Kesn
st. K >0, (6.6)

Ao K =0, i=12,...,m.

Here the operator ® between two matrices A € R™*"™ and B € RP*Y

defined as
anB cee alnB

A ® B — : .. : c Rmpan
amlB ant

denotes the Kronecker product. The operator e between two n x n matrices
A and B is defined as

AeB=tr(ATB) = Zn: iaijbijv

i=1 j=1

and I, denotes a d x d identity matrix.
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For a vector y € R™ obtained by stacking the columns of the matrix Y
defined by equation (6.5), we shall use the notation vec(Y). For a matrix
Y obtained from a vector y € R™ according to equation (6.5) we shall use
the notation mat(y).

A key assumption made in [56] is that the SDP (6.6) and its dual have
nonempty solution sets and the gap between the primal and dual solutions
of (6.6) is zero. The dual of problem (6.6) is

max bl A
AER™

m (6.7)
st. C — Z )\iAi E 0.

i=1

Assumption 6.2.1 Problem (6.6) and its dual (6.7) have nonempty solu-
tion sets. In addition, if K* € R™*" is a solution of (6.6) and A* € R™ is
a solution of (6.7), then C o K* = bl \*.

Under Assumption 6.2.1, the following theorem provides a sufficient con-
dition for a local solution of (6.4) to be the global one and also the solution
of the SDP (6.6). For the KKT optimality conditions, we refer to [7].

Theorem 6.2.1 ([56]) Under Assumption 6.2.1, if y* € R™ is a first-
order KKT point of (6.4) with Lagrange multipliers A* € R™ and the con-
dition

m

C+> XA =0 (6.8)

i=1
holds, then the matriz K* = Y*Y* with Y* = mat(y*) is a solution to
(6.6) and y* is a global solution to (6.4).

Conversely, the following theorem provides a necessary condition.
Theorem 6.2.2 ([56]) Under Assumption 6.2.1, if y* € R™ is a global

solution to (6.4) with Lagrange multipliers A* € R™ and the matriz K* =
Y*Y* withY* = mat(y*) is a solution to (6.6), then condition (6.8) holds.

Finally, a lower bound for d ensuring that any local solution y* of (6.4)
yields a solution K* = Y*Y*' of (6.6) is given in [25]. This holds when
problem (6.6) has a nonempty solution set and

dzd:max{d€N|d(d2+1)§m+l}. (6.9)

As we will see in Section 6.5, this bound is rather conservative, and optimal
solutions of problem (6.3) can in practice be obtained by solving problems
(6.2) with a much smaller dimension d. In fact, it turns out that in practice
the required d is exactly the rank of the optimal SDP solution K*. However,
giving a theoretical justification for this remains as a topic of future work.
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6.2.2 Matrix formulation of the graph embedding problem

Problems (6.2) and (6.3) are not in the standard forms (6.4) and (6.6), but
they can be stated in this form. For G = (V| F) denoting a graph with n
nodes and ng edges, we denote an ordered sequence of the edges by

E = ((i1, 1), (i2,72), - - - s (ing, Jng))- (6.10)
In addition, we define the matrices
C=-I, and A,=agal, k=1,2,...,ng, (6.11)
where the vectors a; € R™ are defined as

1, ifl =iy,
ar; =« —1, if 1= jg, (6.12)
0, otherwise.

We define the last constraint matrix as A, ,+1 = 1n1£ , where 1,, denotes
a vector of ones having length n.

Finally, we set m = ng + 1 and define the elements of the vector b
appearing in problems (6.4) and (6.6) as

2 —
bk_:{ Dik?jk’ k—l,z,...,nE, (6'13)

0, k=m.

6.3 Strong duality of the graph embedding SDP

Assumption 6.2.1 is essential in order to apply the results of Section 6.2 to
the SDP (6.3) and its quadratic low-rank reformulation (6.2). This assump-
tion is shown to hold in [V]. In the following, we give a summary of the
duality results established in [V] and the required assumptions.

Sun et al. [118] and Xiao et al. [136] show that the dual problem of the
SDP (6.3) can be written as

min b7
A>0

nE (6.14)
s.t. H(Z )\ZAZ) 2 1,
=1

where ng denotes the number of edges in the edge set E of the graph G,
the function x(-) denotes the second smallest eigenvalue of a matrix and the
matrices A; are defined according to (6.11) and (6.12). We assume that the
edges of the graph G are ordered according to (6.10) and define the vector
b according to (6.13).
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The duality results of [V] are established under two mild assumptions on
the input graph G. The first one is a nondegeneracy condition that excludes
zero edge weights. The second one is connectedness of the graph (i.e. any
two nodes can be connected by a path in the edge set).

Assumption 6.3.1 The edge weights D;; of the graph G = (V, E) satisfy
the condition D;; > 0 for all {i,j} € E.

Assumption 6.3.2 The graph G = (V, E) is connected.

In order to apply the standard duality results for semidefinite programs
(e.g. [123]), it is necessary show that the feasible sets of problems (6.3) and
its dual have nonempty (relative) interior. This is stated in the following
result. Consequently, Assumption 6.2.1 holds for the standard forms of the
primal and dual problems (6.3) and (6.14).

Theorem 6.3.1 ([V]) Under Assumptions 6.3.1 and 6.3.2, the primal prob-
lem (6.3) and its dual (6.14) have nonempty solution sets. Furthermore, if
K* € R™™ is a solution to (6.3) and A* € R"E is a solution to (6.14), then
tr(K*) = bT X*.

6.4 Incremental low-rank algorithm

Based on the above results, we now describe the algorithm developed in
[V]. The algorithm obtains a solution to the graph embedding SDP (6.3)
by means of the smaller QCQP (6.2). The idea is to successively solve
problem (6.2) with increasing dimension d until a solution of problem (6.3)
is attained. The algorithm is an adaptation of the incremental low-rank
algorithms by Journée et al. [70] and Piacentini [98] to the graph embedding
problem.

6.4.1 Problem formulation

It is shown in [V] that problem (6.2) can be equivalently stated in the stan-
dard NLP form as

min - f(y)
s.t. gfl(y) < b;, 1=1,2,...,ng, (NLPy)
h(y) =0, i=1,2,...,d,
where
fly) =yl
)=y Is© Ay, i=12,... ng,
hf(y):ch;i, 1=1,2,...,d
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d

and the nd-dimensional vectors ¢ are defined as

Z'7j -

o 1, fj=@G(—-Dn+1L,3GE-1)n+2,...,(i —1)n+n,
0, otherwise

fori=1,2,...,d. This problem is equivalent to problem (6.2) up to scaling
of the objective function. This is a concave minimization problem under
convex constraints, and thus the feasible set is convex. Furthermore, it is
shown in [V] that its feasible set is bounded under Assumption 6.3.2.

6.4.2 The algorithm

In this subsection we describe an algorithm that solves a sequence of quadratic
problems (NLP,) starting with some small dimension d = dy > 1 and in-
creases d as long as the solution is not optimal to the SDP (6.3).

The following theorem gives a computationally convenient form of con-
dition (6.8) adapted to the graph embedding SDP (6.3) and its quadratic
low-rank formulation (NLP,). For the sequel, we introduce the function
Kk : 8™ — R to denote the second smallest eigenvalue (among 7, not neces-
sarily distinct eigenvalues) of a symmetric n x n matrix.

Theorem 6.4.1 ([V]) Let y* € R™ be a solution to (NLP,) with Lagrange
multipliers X* € R™E corresponding to the constraints gf(y*) < b;. The
matriz K* = Y*Y*' with Y* = mat(y*) is a solution to (6.3) and y* is a
global solution of (NLPy) if and only if the condition

K(L(A")) > 1 (6.15)
1s satisfied, where

LX) = ZE: A A;
=1

and the matrices A; are defined according to (6.11) and (6.12).

Testing condition (6.15) can be implemented efficiently. When the ma-
trix L(A™) appearing in condition (6.15) is sparse (which is for instance the
case for k-neighbourhood graphs used in the MVU method), a Lanczos-type
algorithm (e.g. [88]) can be used to compute its second smallest eigenvalue.

When a solution to problem (NLP,) yields a vector y* € R™ for which
the matrix K* = Y*Y*' with Y* = mat(y*) is not a solution of the SDP
(6.3) by condition (6.15), the algorithm increases the dimension d by one
and solves problem (NLP;1). For solving this problem, the starting point
is chosen as an augmented solution ¢§* = [y*T 017,

The following theorem motivates the choice of §* as the starting point
for the solution of (NLP;,1). Namely, it states that when condition (6.15)
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is not satisfied, the augmented solution ¢* is a saddle point of problem
(NLPgy1). In this case, the theorem gives a descent direction from g*. This
direction is also feasible. That is, it is orthogonal to the constraint gradients
at y*.

Theorem 6.4.2 ([V]) Let y* € R™ be a first-order KKT point of problem
(NLP,) with Lagrange multipliers \* € R"® such that A* > 0 and p* € R?
corresponding to the constraints g(y*) < b; and hi(y) = 0, respectively. If
condition (6.15) is not satisfied, then the vectors

*

~x y* * ~x _ | M
y—[on},)\ andu—[o]

satisfy the first-order KKT conditions of problem (NLPgy1). Furthermore,
the eigenspace corresponding to the eigenvalue k(L(X*)) contains an eigen-
vector v* such that 11v* = 0. With such a vector v*, the Hessian of the
Lagrangian L(y; X; ) of problem (NLPgy1) satisfies the condition

d'VLL(G X5 pt)d < 0

d:[onﬁ].
v

In addition, the direction d satisfies the conditions

with

Vg;”l(’!}*)TdSO, 1=12,...,npg,
VA g Td =0, i=1,2,...,d+1.

When the augmented vector y* obtained from a solution to problem
(NLPy) is a saddle point of (NLPg4,1), Theorem 6.4.2 suggests a strategy
for escaping from the saddle point by moving along the descent direction d.
As a practical implementation of this idea, the algorithm obtains a solution
to problem (NLP41) by perturbing ¢g* along d and using a descent method
from the starting point

T e d
Yo=Y T
||

with some small ¢ > 0 and the vectors * and d defined as in Theorem 6.4.2.
Based on the above considerations, the incremental low-rank algorithm
for solving the SDP (6.3) is listed as Algorithm 6.1.

6.5 Numerical experiments

An extensive numerical comparison between the standard SDP solvers and
the ILR algorithm (Algorithm 6.1) with different NLP solvers is given in
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Algorithm 6.1: ILR (incremental low-rank graph embedding)
input : graph matrices {A4;}" C R"*"
squared edge weights b € R™® such that b > 0
initial solution dimension dy > 1
initial solution Yy € R™"*%
perturbation parameter € > 0
output: embedding Y* € R"*%" with d* > dj

1.d<+ do

2 yy < vec(Yy)

3 )\0 +~0

4 while d < d, where d is defined according to (6.9) do

5 Starting from y, € R™ and Ag € R™Z, obtain y*, a solution to

(NLP,) with Lagrange multipliers A*.

6 L* + Y 'F AFA;

7 Compute the eigenvalue (L™).

8 if K(L*) > 1 then

9 ‘ Terminate with Y* = mat(y*).
10 else
11 Compute the eigenvector v* according to Theorem 6.4.2.
12 d«[07, v T
13 yo [y Of" +epd
14 Ao & X*
15 d<—d+1

[V]. The tests are carried out on two different problem sets: synthetically
generated random graphs with different parameters and nearest neighbour
graphs. In all tests, the graphs are constructed so that Assumptions 6.3.1
and 6.3.2 are satisfied.

The neighbour graphs are constructed as in the MVU method, and
thus the incremental low-rank method can be viewed as a variant of MV U.
For constructing the neighbour graphs, synthetic datasets having a low-
dimensional embedding as well as benchmark datasets for machine learning
are used.

Performance of the following algorithms is evaluated (see [V] for a de-
tailed description of the solvers and the used parameters).

e Interior-point SDP solvers CSDP by Borchers [21] and SDPA by Ya-
mashita et al. [137].

e The ILR algorithm combined with augmented Lagrangian methods
ALGENCAN-TN and ALGENCAN-NW by Andreani et al. and Birgin et al.
[3,4,14-17]. The former uses a truncated conjugate gradient method
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for solving the linear systems to obtain the search directions. The
latter solves the linear systems by using Harwell MA57 [1].

e The ILR algorithm combined with Ipopt by Wachter and Biegler [134,
135]. Ipopt is an interior point NLP solver using a filter-based line
search method. The linear systems for obtaining the search directions
are solved by using Harwell MA57.

The motivation for using ALGENCAN and Ipopt is their ability to exploit
second-order information and sparsity in the highly structured graph em-
bedding problem. As we will see in the following, they scale well to large
problems. Recently, the L-BFGS -based augmented Lagrangian method
by Burer et al. [23,24] has also been proposed for solving graph embedding
problems [75,124]. However, as a first-order method it has slow convergence.

6.5.1 Random graphs

In the first tests carried out in [V], the solvers are run on random graphs
with different parameters to isolate the effect of each parameter. The key

parameters affecting to the performance of the solvers are the number of

edges ng, the embedding dimension d* and the number of nodes n.

In each test, the performance is measured as a function of one parameter
while keeping the other parameters fixed. The test problems are generated
by first sampling a set of points X = {x1,2,...,2,} C R uniformly from
a d*-dimensional unit cube. The edge set is then constructed by connecting
the points a; within a given distance ¢ from each other according to

Eo={i,jy c{L2,...on} [ [l@ — =) <, i # 7}

The number of edges (among all possible combinations) in the graph is an
increasing function of ¢ , and thus we call it as the graph density parameter.
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Figure 6.1: Computation times of the CSDP and SDPA solvers on random
graphs. 101



The results shown in Figure 6.1 reveal the limitations of the SDP solvers.
The computation times used by CSDP and SDPA grow rapidly with graph
density parameter ¢ and the number of graph nodes n. The SDP solvers
also have high memory requirements. As a result, the tests could not be
carried out with larger values of ¢ and n than those shown in Figure 6.1.

Two different tests are carried out for the NLP solvers combined with
the ILR algorithm. In the first tests, the initial dimension dy is set to the
dimension d* of the optimal solution. In the second tests, the dimension d
is successively incremented one by one by starting from dy = 1. Whereas
the first case is of theoretical interest, the latter one is more relevant for
practical applications. This is because d* is usually not known a priori,
which necessitates the use of an adaptive dimension update strategy such
as the ILR algorithm. In all tests, ILR terminated with d = d*.

Concerning the first tests where dy = d*, the main observations from the
left side of Figure 6.2 are listed below.

e Sharing the same MA57 linear solver, ALGENCAN-NW and Ipopt have
virtually identical performance when ¢ < 0.55. However, the com-
putation time used by Ipopt rises sharply when c is increased above
this limit. This is probably explained by the fact that Ipopt uses
ng additional slack variables to convert the inequality constraints to
equality constraits. This is not an issue for ALGENCAN that incorporates
inequality constraints directly into the augmented Lagrangian [3].

e ALGENCAN-NW and Ipopt scale similarly with respect to the embedding
dimension d* and the graph size n, though ALGENCAN-NW is slightly
faster for d* > 8. This is expected since both use the same linear
solver.

e ALGENCAN-TN has superior scalability with respect to ¢ and d* and also
scales significantly better with respect to n than the other solvers. In-
stead of solving a full linear system at each iteration, using a truncated
method (that typically takes only a small number of iterations) seems
to give a decisive performance advantage here.

When using ILR with dy = 1 and incrementally updating d, we can make
the following observations from the right side of Figure 6.2.

e For Ipopt, there is only a relatively small increase in computation
times compared to running it with initial dimension dg = d*. Rapid
convergence of Ipopt to solutions of (NLP,) and its effective warm-
starting strategy give it a decisive advantage.

e Using ALGENCAN-based methods incrementally incurs a major perfor-
mance penalty in all tests. A possible explanation is that warm-
starting from a previous solution of (NLP;) seems to lead to slow
convergence.
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Computation times of the Ipopt,
ALGENCAN-TN solvers combined with ILR on random graphs with dy = d*
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The above results suggest the following guidelines for choosing the solver
(SDP or ILR) and using the NLP solvers with ILR.

e Using interior-point SDP solvers is only advisable for small and sparse
graphs (say n < 2000 and np < 30n) due to high computational
cost and memory requirements. However, their performance does not
depend on dimension d* of the optimal solution.

e Ipopt scales poorly with respect to d. Thus, it is not advisable to
choose initial dimension dy larger than the solution dimension d* (if
d* is known or some estimate is available). On the other hand, using
Ipopt with dy = 1 leads to only a moderate increase in computational
cost compared to the ideal choice dg = d*. This strongly suggests that
Ipopt should be used incrementally with dy = 1.

e Asfor Ipopt, choosing a large dy for ALGENCAN-NW can be computation-
ally very costly. On the other hand, ALGENCAN-NW performs adequately
when the embedding dimension is small (say d* < 7). Therefore, the
same arguments that justify using Ipopt with dy = 1 also apply to
ALGENCAN-NW.

e When dy = d*, the performance of ALGENCAN-TN is largely unaffected
when c or d* is increased. This is clearly not the case when dy = 1 and
d is updated incrementally. The problem seems to lie in warm-starting
the solver from a previous solution. This suggests that ALGENCAN-TN
should be used with some large initial dimension (say dp = 10) and
increment d when necessary. When dj is sufficiently large, this poten-
tially avoids costly restarts of the solver at a small additional cost.

6.5.2 Synthetic and machine learning datasets

In the second set of experiments carried out in [V], the interior point SDP
solvers and the ILR algorithm combined with different NLP solvers are ap-
plied to k-neighbourhood graphs. The graphs are constructed from a set
of synthetic datasets that are known to have a low-dimensional embedding
and also from benchmark datasets for machine learning.

The k-neighbourhood graphs are constructed as in the MVU method
[131]. Such a neighbourhood of a given point belonging to a point set in R%
contains the point itself and its k nearest neighbours.

Definition 6.5.1 Let X = {x1,®2,...,z,} C RL The k-neighbourhood of
a point x € X is

N%k:{{mil,$i2,...,$ik+l}CX|Z'j7éil Vj;’él,
ly — || > ||z, — x| YyeX\Npp, j=12....k+1}
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In the k-neighbourhood graph of a given point set in R, two points are
connected by an edge if the other is a k-nearest neighbour of the other one,
or if they lie in the k-neighbourhood of another point.

Definition 6.5.2 Let X = {x1,z2,...,x,} C R?. The k-neighbourhood
graph of X is the graph Gx = (V, E) with V = {1,2,...,n} and

E={{i,j}cV]|3ze X :{mix;} € Ny}

The edge weights are chosen as D;; = ||x; — x;|| for {i,j} € E.

An embedding obtained by solving problem (6.3) for a k-neighbourhood
graph of the Swiss roll dataset is shown in Figure 6.3. As in the MVU
method, the two-dimensional embedding is obtained from the eigenvectors
of the solution matrix K* corresponding to the two largest eigenvalues.

=10
40 _15

(a) the original dataset (b) two-dimensional embedding

Figure 6.3: The Swiss roll dataset and the embedding obtained by solving
the MVU problem (n = 1600 and k = 6).

A detailed listing of the test problems is given in Table 6.1. The optimal
embedding dimensions d* are obtained by Ipopt (or by ALGENCAN-TN for
test problems where Ipopt fails). Again, it should be noted here that d*
is in most applications not known a priori. Thus, the most viable choice
is to use ILR with preferably small initial dimension dy. Another point of
interest is that due to finite sample size, d* is not in all cases the underlying
dimension of the data (two for the first eight datasets).

For each NLP solver used with ILR, the initial dimension dy is chosen
according to the guidelines given in Subsection 6.5.1. That is, dy = 1 is
used for Ipopt. This choice is also made for ALGENCAN-NW in order to allow
a direct comparison with Ipopt. For the first eight datasets listed in Table
6.1, ALGENCAN-TN is used with dy = 5 and for the remaining datasets with
dp = 10. As in Subsection 6.5.1, all runs terminated when d = max{dp, d*},
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QU
*

k n ng

800 4 800
1600 9600
2 500 15 000
4 000 24 000

800 5 702
1600 11 548
2 500 18 457
4 000 29 764

800 5933
1600 11 839
2 500 18 741
4 000 29 690

800 14 899
1600 32354
2 500 52 408
4 000 65 605

800 5807
1600 11 653
2 500 18 451
4 000 29 560

800 6611
1600 13083
2 500 20 607
4 000 32 695

800 8 065
1600 17 665
2 500 28 137
4 000 46 001

800 5 889
1600 11 688
2 500 18 582
4 000 29 666
Corel color histogram 6 5000 55239
Corel color moments 4 5000 32087
Corel co-occurrence texture 5 5000 42 321
Frey faces 10 1965 39263 7 560
MNIST 6131 64802 8 784
USPS 5 1100 10748 10 256

Helix 6

Incomplete tire 6

S-roll 6

Spiral 15

Swiss roll 6

Trefoil knot 9

Trefoil ribbon 9

Twin peaks 6
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Table 6.1: Neighbourhood sizes k, number of nodes n, number of edges ng
and embedding dimensions d* of the k-neighbourhood graphs constructed
from the test datasets. The input dimensions of the datasets are denoted

by D.
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Algorithm

Dataset n CSDP SDPA ALGENCAN-TN ALGENCAN-NW Ipopt
800 70.70 73.92 50.68 28.44 6.10

Helix 1600 1022.38*1  499.43* 112.39 193.45 15.12
2500  6003.98 3067.02* 54.98* 1242.09* 19.93

4000 2 - 184.05* 1324.51* 91.38

800 233.28 196.37 412.75 22.70 2.62

Incomplete tire 1600  2086.04  1575.87 1497.68 78.16 8.89
2500  9030.10  7794.99 4296.14 187.24 15.14

4000 - - 10633.47 529.23 18.57

800 293.89 213.85 232.47 29.34 2.72

S roll 1600 2175.45  1675.20 948.79 91.89 7.63
2500  9605.56  6925.95 3519.97 238.89 21.23

4000 - - 6509.31 789.42 42.94

800  5060.78 2217.75* 678.45 16.31 11.54

Spiral 1600 - - 2140.09 46.58 44.23
2500 - - 5798.27 91.48 125.93

4000 - - 2368.59 408.06 69.88

800 279.52 209.26 494.76 75.32 4.03

Swiss ol 1600  2262.69 1514.16* 2536.08 354.25 10.36
2500 10898.32 6053.26* 3771.10 500.03 18.35

4000 - - 9086.93 3153.98 32.98

800  726.50*  203.20* 157.31 41.46 3.61

Trofoil knot 1600 5298.22* 1421.72* 773.17 89.37 9.31
2500 - 5255.61* 654.99 67.99 20.75

4000 - - 1449.84 235.25 45.98

800 816.47 483.68 303.23 28.42 3.60

Trefoil ribbon 1600  6866.26 5970.95* 1045.04 117.98 11.12
2500 - - 2708.00 194.44 20.04

4000 - - 8119.87 630.77 44.81

800 242.64 207.46 125.52 18.84 2.76

Twin peaks 1600  1886.06  1774.86 432.58 57.04 11.13
2500  8783.87  6771.08 3661.15 138.91 19.85

4000 - - 6346.20 693.31 26.43

USPS 1100  1250.46  1192.97 112.97 12611.70  1089.52
MNIST 6131 - - 2095.75 - -
Frey faces 1965 - - 899.95 7224.71 845.01
Color moments 5000 - - 991.77 - 5415.14
Color histogram 5000 - - 9406.58 - 17744.69
Co-occurrence texture 5000 - - - 8087.31 1042.36

L 7% means that the solution was obtained with reduced accuracy due to premature termination.

2 7.7 means that the solver either ran out of memory or failed to reach the stopping criterion in five hours.

Table 6.2: Computation times for the test datasets.
107



although this cannot be guaranteed by the theoretical results. The com-
putation times are shown in Table 6.2. The cases where a solver did not
converge to the SDP solution in five hours are considered as failures.

The results shown in Table 6.2 further highlight the limitations of the
SDP approach. Excluding the smallest test problems, the interior-point
SDP solvers CSDP and SDPA are clearly the slowest. Moreover, the tests
with these solvers could not be carried out with n = 4000 or with the last
five test problems because the test system ran out of memory. We can also
observe that SDPA is generally slightly faster than CSDP. However, SDPA had
numerical difficulties, which led to premature termination in several cases.
This problem did not appear as often with CSDP, which suggests that it is
more robust.

Interestingly, the SDP solvers are competitive with the NLP solvers on
the USPS dataset having a ten-dimensional embedding. This example high-
lights the fact that when the input graph is small and has a high-dimensional
embedding, the computational cost of solving a large number of quadratic
problems can be higher than the cost of solving a single semidefinite relax-
ation.

Ipopt combined with the incremental rank approach performs excel-
lently on test problems where the neighbourhood graph is sparse, highly
structured and the embedding dimension is small. On the first eight test
problems, it mostly outperforms the other NLP solvers. On the other hand,
Ipopt performs less well on the last six test problems, where the neighbour-
hood graph is either large or dense or has a high-dimensional embedding.
For the MNIST test problem, it even failed to converge within the five hour
time limit.

The computation times of ALGENCAN-TN for the first eight test problems
are relatively long, and it is even outperformed by the SDP solvers on some
test problems with n = 800 and n = 1600. However, as observed in Subsec-
tion 6.5.1, ALGENCAN-TN scales well to large or dense graphs or graphs having
a high-dimensional embedding. This can clearly be seen with the last six test
problems, where ALGENCAN-TN is very competitive with Ipopt outperforming
it on the USPS, MNIST, Color moments and Color histogram test problems.
ALGENCAN-TN is also competitive with Ipopt on the Frey faces test problem,
where the embedding is seven-dimensional and the k-neighbourhood graph
is relatively dense due to the choice k& = 10.

ALGENCAN-NW is outperformed in nearly all tests by Ipopt. Though the
solver itself seems to have comparable performance with Ipopt (cf. Figure
6.2), the effect of its poor warm-starting ability can also be seen here. This
gives a particularly large performance penalty on the USPS and Frey faces
test problems, where the high embedding dimension requires solution of a
large number of problems (NLP;). Probably due to this reason ALGENCAN-NW
failed on the MNIST and Color histogram test problems.

108



Chapter 7

Conclusions and discussion

Nonlinear dimensionality reduction, identification of curvilinear features from
noisy data and finding modes of multivariate probability densities are fun-
damental tasks in modern data analysis. This thesis focuses on selected
topics from these research areas. The emphasis is on algorithmic develop-
ment and numerical comparison of algorithms. The common theme between
the developed algorithms is that they are aimed at solving some optimiza-
tion problem arising in the above tasks, thus placing the research at the
crossroads between optimization and statistics.

Estimation of underlying structure from point sets by using ridges of den-
sity functions is nowadays an actively studied research field. Though this
research field has gained popularity among statisticians, the development of
numerical algorithms has gained surprisingly small amount of research inter-
est. Therefore this thesis makes a threefold contribution to the algorithmic
development of ridge-based methods.

The first contribution made in Paper I was summarized in Chapter
3. The contribution of this paper is extension of the classical trust re-
gion Newton method to finding ridges that are generalized maxima. The
proposed method (Algorithm 3.1) has two important advantages over the
earlier mean shift method and its subspace-constrained variant for finding
modes and ridges, respectively. First, it was shown to consistently out-
perform the mean shift-based methods on all test problems. Second, it is
provably convergent for a very general class of objective functions. Such
convergence results can be obtained for the mean shift-based methods only
in restricted special cases, and second-order optimality conditions cannot
be guaranteed. These findings are of great significance, as the mean shift-
based methods have been the standard tools for finding modes and ridges
of Gaussian mixtures and kernel densities. However, no theoretical analysis
was given for the convergence rate of the Newton-based method for ridge
projection, which could be a worthy topic of future research.

109



Whereas the focus of Paper I is mostly theoretical, Paper I1I is more
aimed at practical applications. The contribution of this paper summa-
rized in Chapter 4 is the development of a highly efficient method for find-
ing curvilinear structures from noisy data. The method has a wide range
of applications such as identification of faults from seismological data and
identification of filamentary structures from galaxy clusters. It is based on
the statistical model and kernel density estimation methods presented in
Chapter 2. For a given point set, the method obtains estimates for curvilin-
ear structures by tracing the ridge curve set of its Gaussian kernel density
estimate.

The ridge curve tracing method (Algorithms 4.1-4.3) has two novel fea-
tures. The first one is definition of a ridge curve as a solution to a differen-
tial equation whose solution curves are traced by using a predictor-corrector
method. The second one is implementation of rigorous stopping criteria
based on the theory of ridge curves. The Newton-based method described
in Chapter 3 is utilized in the predictor-corrector method and also in the
mode finding step to obtain the starting points. An important computa-
tional result is that using the Newton method instead of the mean shift
-based methods yields a significant performance improvement.

The final contribution to ridge-based methods made in Paper IV was
summarized in Chapter 5. In this paper, the structure of ridge sets is utilized
in development of a novel nonlinear generalization of principal component
analysis (PCA). The so-called kernel density principal component analysis
(KDPCA) constructs a nonlinear coordinate system from a ridge set of a
Gaussian kernel density. A key result is that the principal component coor-
dinates of a point set can be obtained one by one by successively projecting
the data points onto lower-dimensional ridge sets of such a density. Another
important result is that the kernel bandwidth has a natural interpretation
as a scale parameter. As the bandwidth approaches infinity, the linear PCA
is obtained as a special case of KDPCA.

A numerical algorithm (Algorithm 5.1) was developed for tracing the
solution curve of a differential equation defining a projection curve onto
a lower-dimensional ridge set. The algorithm utilizes the ridge projection
method described in Chapter 3. To the knowledge of the author, obtaining
principal component coordinates from r-dimensional ridge sets with r > 1
has not been previously studied, and the proposed algorithm appears to be
the first one developed for this purpose. The applicability of KDPCA was
demonstrated on climate model output and time series data. These test
cases highlight the main advantages of KDPCA over its linear counterpart.
They are the ability to produce a low-dimensional representation from highly
nonlinear data and the ability to describe closed loops that occur in analysis
of time series having periodic patterns.

An extensive comparison of KDPCA with other nonlinear dimensional-
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ity reduction methods would be of great interest. Another interesting topic
would be a probabilistic extension of KDPCA, as in its present form it is
not based on any statistical model. This could be done by giving a statisti-
cal interpretation to the kernel density and applying a bandwidth chooser.
Based on the theory presented in Chapter 2, this was done in Paper III for
curve estimation. An alternative approach could be adaptation of the ideas
from the probabilistic PCA by Tipping and Bishop [121]. This method is
a variant of the linear PCA for which a probabilistic interpretation is given
via a latent variable model. The above aspects are partially covered in the
final published version of Paper IV.

A major shortcoming of the proposed ridge-based methods is their high
computational cost. The most important factor contributing to this was
identified to be the evaluation of the Gaussian kernel density and its deriva-
tives. Advanced methods have been developed for this purpose such as the
fast Gauss transform by Greengard and Strain [54]. This approximate eval-
uation method is most appropriate for large datasets having a low dimension
(say d < 3). On the other hand, Shaker et al. [111] describe an exact method
for efficient evaluation of Gaussian kernels and their derivatives and show
that the method is also applicable high-dimensional data. Determining the
applicability of these methods is definitely an important research topic.

Finding significant modes of Gaussian mixtures and kernel densities is
another important application area of trust region Newton methods. The
contribution of Paper II summarized in Chapter 3 is the development of a
homotopy continuation method (Algorithms 3.2 and 3.3) for this purpose.
The idea is to apply the Gaussian convolution to gradually deform the origi-
nal density into a unimodal one. Applying this idea reversely and utilizing a
trust region Newton method, the global mode of the transformed density is
traced back to a significant mode of the original density along the transfor-
mation. A computable estimate for a convolution parameter guaranteeing
unimodality was derived. The proposed method is computationally efficient
and finds global modes with a high probability, but is not guaranteed to do
so in all cases. In addition, a precise definition for the significance of a mode
found by the method still remains as a topic of future research.

The final contribution of the thesis is the development of an efficient
approach for solving the optimization problem arising in the maximum vari-
ance unfolding (MVU) method for dimensionality reduction. This prob-
lem can either be formulated as a quadratic nonlinear problem (NLP) or
a semidefinite problem (SDP). Paper V dealing with this topic was sum-
marized in Chapter 6. The incremental low-rank method (Algorithm 6.1)
applied to the quadratic formulation together with an efficient NLP solver
was shown to give a drastic performance improvement compared to the stan-
dard SDP solvers. To the knowledge of the author, neither an incremental
low-rank method nor the ALGENCAN and Ipopt solvers have been applied
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to the MVU problem (or the more general graph embedding problem) be-
fore. Thus, the research done in Paper V provides valuable knowledge on
the behaviour of different NLP solvers when applied to such problems.

It was briefly noted in Chapter 6 that by solving the graph embedding
problem, one also obtains a solution to its dual problem due to the zero
duality gap. The dual problem has important applications in graph theory
[46,57]. Other applications such as determining the fastest mixing Markov
process on a graph are described in [118]. A further study could be devoted
to the optimization problem (6.2) when lower bounds for distances between
neighbouring points are imposed. In this case, the feasible set becomes
nonconvex, but a solution could possibly be obtained under more restrictive
assumptions. Another interesting topic is a theoretical verification of the
property that when the dimension of the quadratic problem (6.2) is the
rank of the solution of the SDP (6.3) or larger, the NLP solvers yield a
global solution that is also the SDP solution. This was indeed observed to
be the case in all tests.
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