
Z4-Goethals Codes,
Decoding and Designs

by

Kalle Ranto

To be presented, with the permission of the Faculty of Mathematics
and Natural Sciences of the University of Turku, for public

criticism in Auditorium XXI of the University on
October 25th, 2002, at 12 noon

University of Turku
Department of Mathematics
FIN-20014 Turku, Finland

2002



SUPERVISOR
DOCENT JYRKI LAHTONEN

Department of Mathematics
University of Turku
FIN-20014 Turku
Finland

REVIEWERS
PROFESSOR VICTOR ZINOVIEV

Institute for Problems of Information Transmission
Russian Academy of Sciences
Bol’shoi Karetnyi per. 19
GSP-4, Moscow, 101447
Russia

DR. GARY MCGUIRE

Department of Mathematics
National University of Ireland
Maynooth, Co. Kildare
Ireland

OPPONENT
PROFESSOR TOR HELLESETH

Department of Informatics
University of Bergen
N-5020 Bergen
Norway

ISBN 951-29-2314-9
ISSN 1239-1883
Painosalama Oy
Turku, Finland
2002



Acknowledgements

I would like to thank my supervisor Docent Jyrki Lahtonen for his constant sup-
port during this work. Without his suggestions for research and valuable com-
ments on my work I would not have finished this thesis.

I thank Professor Emeritus Aimo Tietäväinen for introducing me the fascinat-
ing field of coding theory and his friendly guidance during all these years. I also
thank Docent Iiro Honkala, Dr. Tero Laihonen, and Ph. Lic. Petri Rosendahl for
many inspiring discussions on and off the topic.

I thank all my colleagues in the Department of Mathematics and Turku Centre
for Computer Science TUCS for nice working atmosphere and especially Tuire
Huuskonen for doughnuts.

The Department of Mathematics and Turku Centre for Computer Science
TUCS have provided excellent working conditions which I hereby gratefully ac-
knowledge.

Special thanks are due to Professor Victor Zinoviev and Dr. Gary McGuire
for the preliminary examination of the thesis and their invaluable remarks.

Finally, I thank my family, my lovely wife Sanna for her steadfast support and
love, and my son Samuli for being such a cheerful boy.

Turku
September 2002 Kalle Ranto





Contents

Introduction 7

1 Algebraic preliminaries 9
1.1 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Equations and Kloosterman sums . . . . . . . . . . . . . 10
1.1.2 Affine geometry and polynomials . . . . . . . . . . . . . 11
1.1.3 Dickson polynomials . . . . . . . . . . . . . . . . . . . . 12

1.2 Galois rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Witt vectors . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Combinatorial preliminaries 19
2.1 Error-correcting codes . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Linear codes over F2 . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Linear codes over Z4 . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Z4-Goethals codes Gk . . . . . . . . . . . . . . . . . . . . 26

2.2 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Designs from linear codes over F2 . . . . . . . . . . . . . 29
2.2.2 Designs from linear codes over Z4 . . . . . . . . . . . . . 30

3 Decoding algorithm 33
3.1 Decoding problem . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Case of t = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Case of t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Case of t = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 New 3-designs from codes G1 41
4.1 Classification of supports of size 8 . . . . . . . . . . . . . . . . . 41
4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Syndrome equations . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Cases (0a) and (0b) . . . . . . . . . . . . . . . . . . . . . 47



6 Contents

4.3.3 Cases (1a) and (1b) . . . . . . . . . . . . . . . . . . . . . 48
4.3.4 Cases (2a) and (2b) . . . . . . . . . . . . . . . . . . . . . 51
4.3.5 Cases (3a) and (3b) . . . . . . . . . . . . . . . . . . . . . 52

4.4 Proof of Corollary 4.6 . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Link between 3-designs with block sizes 7 and 8 . . . . . . . . . . 54

5 New 3-designs from codes G2, G4, G8, and G16 57
5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Syndrome equations . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Cases (0a) and (0b) . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Cases (1a) and (1b) . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 Cases (2a) and (2b) . . . . . . . . . . . . . . . . . . . . . 60
5.2.5 Cases (3a) and (3b) . . . . . . . . . . . . . . . . . . . . . 66

5.3 Nonequivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Conclusions and open problems 69

Bibliography 71



Introduction

Error-correcting codes are nowadays used widely in telecommunications and elec-
tronics and the theory of these codes can be studied in the framework of engin-
eering, physics, or mathematics. In this thesis we study one specific family of
error-correcting codes, namely the Z4-Goethals codes, from mathematical view-
point leaving the practical details to a minimum.

This work continues the study started by Hammons et al. in the revolution-
ary article [19] which triggered off the research on Z4-codes and Galois rings in
coding theory. The binary nonlinear Goethals codes were introduced already in
1970’s [16, 17] but the work of Hammons et al. gave a fresh viewpoint to these
classical codes. For example, from the Z4-perspective it is straightforward to in-
troduce the generalized family of Z4-Goethals codes [22] which will be the main
objects of study in this thesis.

The binary Goethals codes are very good: they have four times as many code-
words as BCH codes of the same length and minimum distance. Unfortunately,
the binary Goethals codes are nonlinear and it is a difficult task to implement them
efficiently. However, the seminal paper [19] showed how these codes can be seen
as linear codes over Z4 and this extra structure makes them easier to handle.

In order to apply the Z4-Goethals codes in practice we should have an efficient
decoding algorithm which can correct errors occurred in the messages encoded
with these codes. We will develop a uniform decoding algorithm which is applic-
able to all Z4-Goethals codes and which corrects all errors up to the theoretical
error-correcting capability.

Another objective of this thesis is to construct some new families of t-designs,
actually 3-designs, from codewords of the Z4-Goethals codes. The t-designs are
combinatorial objects which were originally motivated by statistics and experi-
mental design but which are nowadays studied also purely as combinatorial struc-
tures, see [33] for example. We analyze the low-weight codewords of the Z4-
Goethals codes and construct several new families of 3-designs from them.

The mathematical methods used in this thesis belong mostly to known algeb-
raic and combinatorial machinery. However, there is one special feature which has
not appeared in the literature: the appearance of Dickson polynomials in solving
equations related to the Z4-Goethals codes.



8 Introduction

Next we outline the structure of the thesis.
In Chapter 1 we give some definitions and results from algebra which are used

frequently. We introduce in some detail the finite fields and the Galois rings and
some elementary results on them.

In Chapter 2 we develop the theory of error-correcting codes such that the Z4-
Goethals codes can be defined and studied. In the latter part of this chapter we
will define the t-designs and sketch some known results in design theory which
are needed in the later chapters.

In Chapter 3 we describe the decoding problem in more details and then a
uniform decoding algorithm for all Z4-Goethals codes is given. The analysis
branches into three parts which are considered in separate sections.

In Chapter 4 the classification of the low-weight codewords is done to the
extent which allows us to construct new designs. We introduce several new infinite
families of 3-designs and postpone the main proof to the following section. This
proof is divided into cases which are considered one by one. In the last section we
describe a special connection between the 3-designs with block sizes 7 and 8 with
the affine geometry.

In Chapter 5 we generalize the 3-designs from the previous chapter to some
of the generalized Z4-Goethals codes introduced in [22]. Also the question of
nonequivalence of these 3-designs is briefly considered.

The material after the two preliminary chapters are mainly from articles [46,
47]. The results in Chapter 5 are previously unpublished.



Chapter 1

Algebraic preliminaries

We start by recalling some properties of algebraic structures and results which are
needed in the later chapters. Some basic notions are not defined and the reader
may find them in [29, 30, 37] or some other algebra textbook.

1.1 Finite fields

The purpose of this section is to describe shortly the structure and arithmetic of
the finite fields. Informally, fields are algebraic structures with the usual four
operations: addition, subtraction, multiplication, and division. A finite field is a
field with only a finite number of elements.

Let Z denote a ring of integers with natural addition and multiplication. Every
positive integer k generates an ideal 〈k〉 = {kn | n ∈ Z} and the corresponding
residue class ring Zk = Z/〈k〉 is a ring with k elements and characteristic k. The
ring Zk is a field if and only if k is prime. In this case the prime number is denoted
by p and the field by Fp.

The ring of polynomials with coefficients in Zk and indeterminate x is denoted
by Zk[x] and 〈 f (x)〉 = { f (x)g(x) | g(x) ∈ Zk[x]} denotes an ideal generated by
f (x). The next theorem gives the structure of all finite fields. For proofs and more
details see [37, Chapters 1 and 2].

Theorem 1.1. Every finite field has pm elements with some prime p and positive
integer m. For every prime p and every positive integer m there exists a monic irre-
ducible polynomial f (x)∈ Fp[x] of degree m. The residue class ring Fp[x]/〈 f (x)〉
is the unique finite field with pm elements up to isomorphism.

We denote the finite field with q = pm elements by Fq and its multiplicative
group by F∗

q = Fq \{0}.

Theorem 1.2. There exists α ∈ F∗
q such that F∗

q = {1,α,α2, . . . ,αq−2}.

The generator α in the previous theorem is called a primitive element.
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1.1.1 Equations and Kloosterman sums

From now on we consider only the extensions of the binary field F2, i.e., the fields
F = Fq with q = 2m. These finite fields have the following properties:

x+ x = 0, x2m
= x, and (x+ y)2i

= x2i
+ y2i

for every x,y ∈ F and i ≥ 0

and these facts are used frequently without mentioning. Many concepts in this
section can be defined also in a more general setting but they may look quite
different.

The main results in this thesis and some preliminary facts below are valid only
for odd m. This restriction is mentioned when needed.

Definition 1.3. A trace function Tr : F → F2 is defined by

Tr(x) = x+ x2 + x22
+ · · ·+ x2m−1

.

With the identity x2m
= x it is easy to see that Tr(x2) = Tr(x). When m is

odd the next well known lemma shows how the roots of quadratic equations are
computed.

Lemma 1.4. Let m be odd. The quadratic equation x2 +x = a with a ∈ F has two
roots θ = ∑(m−1)/2

j=0 a4 j
and θ +1 in F, if Tr(a) = 0, and no roots in F, if Tr(a) = 1.

In the latter case the two roots θ +α and θ +α +1 are in the quadratic extension
F(α) where α satisfies the equation α2 +α = 1.

An equation x2 + bx = a where b ∈ F∗ can be transformed to (x/b)2 + x/b =
a/b2 and the condition in the previous lemma changes to Tr

(

a/b2
)

= 0.
From now on, and especially in the following well known result, gcd(m,k)

denotes the greatest common divisor of m and k.

Lemma 1.5. The equation x2k
+ x = a with a ∈ F has 2gcd(m,k) roots in F, if

Tr(a) = 0, and no roots in F, if Tr(a) = 1.

In Chapter 4 we count the number of solutions to certain systems of equations
and come up with character sums.

Definition 1.6. A Kloosterman sum K(a) for a ∈ F∗ is defined as

K(a) = ∑
η∈F∗

(−1)Tr(η+ a
η ).

Clearly, K(a) = K(a2) since x 7→ x2 is an automorphism of F, the so called
Frobenius automorphism.

The Kloosterman sums are closely related to Z4-Goethals codes as can be seen
in [26, 28]. Here we record the following theorem by Helleseth and Zinoviev [25]
that will be used in the proof of Theorem 4.5. We abbreviate F\{0,1} by F∗∗.
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Theorem 1.7. For every a ∈ F∗∗ K
(

a3(a+1)
)

= K
(

a(a+1)3
)

.

This theorem could also be proved for odd m by substituting a 7→ a/(1+a) to
the identity

K
(

a
1+a4

)

= K
(

a3

1+a4

)

from [51]. For odd m there is also a proof using elliptic curves and their isogenies,
see [43].

1.1.2 Affine geometry and polynomials

In this subsection we introduce an affine geometry over the finite field F and re-
lating polynomials which are needed in the analysis of low-weight codewords.

Let α be a primitive element of F with a minimal polynomial f (x) ∈ F2[x],
that is, F = F2[x]/〈 f (x)〉. The field F can be viewed as an m-dimensional vector
space over F2 with a basis {1,α,α2, . . . ,αm−1}. This basis is now identified with
the unit vectors {(1,0, . . . ,0),(0,1, . . .,0), . . . ,(0,0, . . . ,1)} and F with a vector
space Fm

2 .

Definition 1.8. An affine geometry AG(F) consists of all cosets z +U of all sub-
spaces U of F with the normal inclusion relation. A coset z+U of an r-dimensional
subspace U is called an r-flat.

A 1-flat is a coset z+{0,y} = {z,z+y} and clearly any two points z and y are
on a unique 1-flat. A 2-flat is a coset z+{0,y,w,y+w}= {z,z+y,z+w,z+y+w}
and it is easy to see that any three points are on a unique 2-flat. A 3-flat is a coset
x1 +{0,x2,x3,x2 +x3,x4,x2 +x4,x3 +x4,x2 +x3 +x4} = {x1,x1 +x2,x1 +x3,x1 +
x2 + x3,x1 + x4,x1 + x2 + x4,x1 + x3 + x4,x1 + x2 + x3 + x4} and any four points,
which are not a 2-flat, are on a unique 3-flat.

Definition 1.9. A polynomial of the form x2r
+ lr−1x2r−1

+ · · ·+ l1x2 + l0x, where
li ∈ F, is called linearized and a linearized polynomial plus a constant term is
called affine.

We can naturally relate any subspace U and r-flat z+U to the polynomials

L(x) = ∏
β∈U

(x+β ) and A(x) = ∏
β∈z+U

(x+β ).

For details and a proof for the next theorem see [37, Section 3.4].

Theorem 1.10. There is one-to-one correspondence between subspaces of F and
linearized polynomials whose all zeros are simple and in F. Similarly, r-flats
correspond exactly to the affine polynomials of degree 2r with all zeros simple and
in F.
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Definition 1.11. Let k be a positive integer. The kth elementary symmetric poly-
nomial in variables x1, . . . ,xn is σk(xi) = ∑1≤i1<···<ik≤n xi1

. . .xik
and the sum of kth

powers is Sk(xi) = ∑n
i=1 xk

i .

It is easy to see that

(x+ x1) · · ·(x+ xn) = xn +σ1(xi)x
n−1 +σ2(xi)x

n−2 + · · ·+σn(xi).

Example 1.12. By Theorem 1.10 a 2-flat {x1,x2,x3,x4} can be represented as
an affine polynomial A(z) = x4 + a2x2 + a1x + a0. On the other hand, we have
A(x) = x4 +σ1(xi)x

3 +σ2(xi)x
2 +σ3(xi)x+σ4(xi), so we conclude that xi’s form

a 2-flat if and only if σ1(xi) = 0, that is, x1 + x2 + x3 + x4 = 0.
Similarly {x1, . . . ,x8} form a 3-flat if and only if σ1(xi) = σ2(xi) = σ3(xi) =

σ5(xi) = 0.

The next theorem is [37, Theorem 1.75] modified to F[x1, . . . ,xn].

Theorem 1.13 (Newton’s formula). The power sums Si and the elementary sym-
metric polynomials σi in n variables satisfy the following relations:

Sk +σ1Sk−1 +σ2Sk−2 + · · ·+σnSk−n= 0, if k > n

Sk +σ1Sk−1 +σ2Sk−2 + · · ·+σk k = 0, if n ≥ k.

1.1.3 Dickson polynomials

In this thesis we use the properties of the Dickson polynomials several times. For
example, in the decoding algorithm in Chapter 3 we need to find all the roots of
equations of the form Dn(x,u)= v where Dn(x,u) is a certain Dickson polynomial.

Definition 1.14. A Dickson polynomial (of the first kind) of degree n in indeterm-
inate x and with parameter u is

Dn(x,u) =
bn/2c

∑
i=0

n
n− i

(

n− i
i

)

(−u)ixn−2i.

Let σ1 = x1 +x2, σ2 = x1x2, and Sn = xn
1 +xn

2 be the first and second elementary
symmetric polynomials and the sum of nth powers in two variables. Dickson
polynomials arise from Waring’s formula [37, Theorem 1.76] in the following
manner:

Sn = xn
1 + xn

2 =
bn/2c

∑
i=0

n
n− i

(

n− i
i

)

(−σ2)
iσ n−2i

1 = Dn(σ1,σ2) (1.1)

If we let σ2 = u and σ1 = x + u/x, this functional equation can be written as
Dn(x+u/x,u) = xn +(u/x)n.
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Dickson polynomials can be defined over any commutative ring but we study
these polynomials only over the finite field F = Fq with q = 2m. We state a few
basic properties of these polynomials. Most of them can be found from the survey
[36] and the others are easy exercises.

Lemma 1.15. The polynomials Dn(x,u) satisfy (n, l, k ≥ 0)

(i) Dn+2(x,u) = xDn+1(x,u) + uDn(x,u) with initial values D0(x,u) = 0 and
D1(x,u) = x;

(ii) Dnl(x,u) = Dn
(

Dl(x,u),ul
)

;

(iii) Dn(x,1)Dl(x,1) = Dn+l(x,1)+D|n−l|(x,1);

(iv) D2k(x,u) = x2k
;

(v) D2k+1(x,u+ v) = D2k+1(x,u)+D2k+1(x,v)+ x2k+1;

(vi) D2k+1

(

x,x2
)

=

{

0, if k is odd
x2k+1, if k is even.

The last two facts are consequences of the relation

D2k+1(x,u) = x2k+1 +ux2k−1 +u2x2k−3 +u4x2k−7 + · · ·+u2k−1
x (1.2)

which follows from Lucas’ theorem for binomial coefficients, see [38, Theorem
13.28].

Definition 1.16. A polynomial f (x) ∈ F[x] is called a permutation polynomial if
the associated function f : F → F, c 7→ f (c) permutes the elements of F, i.e., f is
a bijection.

Let s = gcd(n,q−1) and r = gcd(n,q+1). Clearly, when u = 0 the Dickson
polynomial Dn(x,0) = xn is a permutation polynomial if and only if s = 1. The
following theorem [40] (or [36, Theorem 3.2]) settles the cases with u 6= 0.

Theorem 1.17. If u ∈ F∗, the Dickson polynomial Dn(x,u) is a permutation poly-
nomial if and only if s = 1 = r, that is, gcd

(

n,q2 −1
)

= 1.

From now on we assume that u ∈ F∗ and we simplify the formulas below by
using u2 instead of u.The proof of the next theorem can be found from [10] (or
[36, Theorem 3.26’]).

Theorem 1.18. Let x0 ∈ F be a solution to the equation Dn
(

x,u2
)

= v. Then the
total number of solutions in F is











s, if v 6= 0 and Tr
(

u/x0

)

= 0
r, if v 6= 0 and Tr

(

u/x0

)

= 1
(s+ r)/2, if v = 0.
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In Chapter 3 we will always have s = 1 and in this case we deduce the follow-
ing lemma [46].

Lemma 1.19. Let s = 1 and Dn
(

x,u2
)

6= 0. Then

Tr
(u

x

)

= Tr
(

un

Dn (x,u2)

)

.

Proof. Clearly, x 6= 0 since Dn
(

x,u2
)

6= 0. Assume Tr(u/x) = 0. By Lemma 1.4
this means that we can express x in the form γ + u2/γ where γ ∈ F. Then γ n

and u2n/γ n are also in F. By (1.1) they are the roots of the quadratic equation
T 2 +Dn

(

x,u2
)

T +u2n = 0 and hence Tr
(

un/Dn
(

x,u2
))

= 0.
Assume that Tr

(

un/Dn
(

x,u2
))

= 0. This implies that the roots γ and u2n/γ of
the equation T 2 +Dn

(

x,u2
)

T +u2n = 0 are in F. We have assumed that s = 1 and,
therefore, γ has a unique nth root γ1/n in F. Then y = γ1/n + u2/γ1/n satisfies the
equation Dn

(

y,u2
)

= Dn
(

x,u2
)

by (1.1). Moreover, Tr(u/y) = 0 and by Theorem
1.18 we conclude that x = y.

As can be seen in the previous proof, solving the roots of Dickson polynomial
equation can be done by Cardano’s method for solving a cubic equation. This
was known already to Dickson, see [12, 13]. We specialize this fact for the cases
needed in Chapter 3.

Theorem 1.20. Let m be odd, q = 2m, s = 1, and v∈F∗. Then we have an effective
procedure for solving all the roots x ∈ F of the equation

Dn
(

x,u2)= v.

Proof. When Tr(un/v) = Tr(u/x) = 0 we find a unique root x as in the proof of
Lemma 1.19. In the computations we have to solve one quadratic equation and
this can be done using Lemma 1.4.

When Tr(un/v) = Tr(u/x) = 1 we find the roots γ and u2n/γ of the equation
T 2 +vT +u2n = 0 in the quadratic extension of F using Lemma 1.4. If there does
not exist an nth root of γ in this extension, the equation has no roots in F. If there
exists one nth root of γ , then there are r such roots, each of which gives a different
solution to the equation. According to Theorem 1.18 these are all the solutions.
Although the nth roots γ1/n are no longer in F, the roots x = γ1/n + u2/γ1/n still
are.

Example 1.21. Let us consider the roots x ∈ F of a cubic equation D3(x,1) =
x3 + x = v ∈ F∗ when m is odd. Clearly, we have s = gcd(3,2m − 1) = 1 and
r = gcd(3,2m +1) = 3. By Theorem 1.18 and Lemma 1.19 there is a unique root
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in F if and only if Tr(1/v) = 0. Berlekamp, Rumsey, and Solomon [5] have proved
this for all m with the condition Tr(1/v) 6= Tr(1).

A simple counting argument then gives us the following fact [34, page 591]
which we need in Subsection 4.3.2.

Let m be odd. The cubic equation x3 + x = a has 3 roots in F for (q− 2)/6
values of a ∈ F∗.

1.2 Galois rings

We introduce now Galois rings as they appear in [39, pages 307–335]. The inter-
ested reader is referred to this textbook for details. The construction of these rings
is given as an analogy to the construction of the finite fields. A less abstract and
less ring theoretical construction is given in the next subsection using the finite
field arithmetic.

Definition 1.22. Let pe be a prime power and m a positive integer. A Galois ring
GR(pe,m) is a Galois extension of Zpe of degree m.

A Galois ring GR(pe,m) has pem elements and characteristic pe.

Theorem 1.23. For every prime power pe and every positive integer m there ex-
ists a monic basic irreducible polynomial f (x) ∈ Zpe [x] of degree m. The residue
class ring Zpe [x]/〈 f (x)〉 is a unique Galois ring with pem elements and character-
istic pe up to isomorphism.

1.2.1 Witt vectors

The Galois rings can be seen as Witt vector rings which are studied, e.g., in [30,
pages 497–505]. As an example we show how the Galois ring GR(4,m) can be
identified with F×F if the operations are chosen suitably.

Definition 1.24. The ring of Witt vectors W2(F) of length 2 over F is a set of
ordered pairs F×F equipped with addition and multiplication as follows:

(a1,a2) + (b1,b2) = ( a1 +b1 , a2 +b2 +a1b1 )

(a1,a2) · (b1,b2) = ( a1b1 , a2
1b2 +a2b2

1 ).

We adapt the general results [30, Theorems 8.26 and 8.27] to the present case.

Theorem 1.25. W2(F) is a commutative ring with a zero element (0,0) and a unit
element (1,0). The ring W2(F) has a subring W2(F2) isomorphic to Z4.

Let R = W2(F). Identifying W2(F2) = {(0,0),(1,0),(0,1),(1,1)}with Z4 and
especially (1,0)+(1,0) = (0,1) with 2 we can state the following result.
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Theorem 1.26. The non-units of R form a maximal ideal 〈2〉 and R is a local ring.
In addition, R is a Galois extension of Z4, that is, R = GR(4,m).

Proof. By the multiplication rule, an element (a1,a2) has an inverse
(

a−1
1 ,a2a−4

1

)

if and only if a1 6= 0. On the other hand, the ideal 〈2〉 generated by 2 is clearly
maximal and contains exactly the non-units since 2(a1,a2) =

(

0,a2
1
)

. By [39,
Theorem V.1] R is a local ring.

The local ring R is an extension of the local ring Z4 since Z4 ⊂ R. If the
maximal ideal of the subring generates the maximal ideal in the extension, this
extension is called unramified. The element 2 generates the maximal ideals in
both Z4 and R, which makes this extension unramified and by [39, Theorem XV.4]
it is also Galois.

Let α be a primitive element of F and β = (α,0) ∈ R. As β i = (α i,0) this β
generates a cyclic subgroup of order q−1 in the multiplicative group of units R∗.
This subgroup together with the zero element

T = {0,1,β , . . . ,β q−2} = {(0,0),(1,0),(α,0), . . .,(αq−2,0)}

is called the Teichmüller set.

Lemma 1.27. Every element of R can be expressed uniquely as A + 2B where
A,B ∈ T .

Proof. The Frobenius map x 7→ x2 is an automorphism of F. Thus any element of
R can be expressed as

(

a1,a
2
2
)

= (a1,0)+2(a2,0).

1.2.2 Equations

In this thesis the Galois rings are needed in constructions of good linear codes
over Z4. In this setting we come up with systems of equations over the Galois
ring R. Now we show how such equations can be turned into an equivalent system
of equations over the finite field F.

The modulo 2 reduction mapping from Z4 to Z4/〈2〉 = F2

µ∗ : 0 7→ 0, 1 7→ 1, 2 7→ 0, 3 7→ 1

can be extended naturally to the Galois ring R.

Definition 1.28. The modulo 2 reduction mapping is defined as µ : R → R/〈2〉 =
F, (a1,a2) 7→ a1.

The µ-mapping is a bijection between the Teichmüller set T and the finite
field F. Hence the sums below and codes in the next chapter are indexed inter-
changeably with T or F depending on the situation.

As an example we prove the following lemma from [21] with Witt vectors.
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Lemma 1.29. Let (cX)X∈T
∈ Z2m

4 and C j = {µ(X) | cX = j} for j ∈ Z4. The
equation

∑
X∈T

cX X = A+2B, A,B ∈ T

is equivalent to the following system of two equations over F

∑
x∈C1∪C3

x = a and ∑
x,y∈C1∪C3

x<y

xy+ ∑
x∈C2∪C3

x2 = b2

where a = µ(A), b = µ(B), and ≤ is some total order on F.

Proof. The equation considered is equal to

∑
x∈F

cx(x,0) = (a,0)+2(b,0) =
(

a,b2) , a,b ∈ F.

By dividing the sum to three parts according to the sets C j we get

∑
x∈C1

(1,0) · (x,0)+ ∑
x∈C2

(0,1) · (x,0)+ ∑
x∈C3

(1,1) · (x,0)

= ∑
x∈C1

(x,0)+ ∑
x∈C2

(

0,x2)+ ∑
x∈C3

(

x,x2)

=





∑
x∈C1

x, ∑
x,y∈C1

x<y

xy






+

(

0, ∑
x∈C2

x2

)

+





∑
x∈C3

x, ∑
x∈C3

x2 + ∑
x,y∈C3

x<y

xy







=





 ∑
x∈C1∪C3

x, ∑
x,y∈C1∪C3

x<y

xy+ ∑
x∈C2∪C3

x2






=
(

a,b2)

and the claim follows.





Chapter 2

Combinatorial preliminaries

We give some basic definitions and properties of error-correcting codes and com-
binatorial designs which are relevant in this thesis. In Subsection 2.1.3 we define
the Z4-Goethals codes which are studied in the forthcoming chapters.

2.1 Error-correcting codes

Assume that a message word c over some alphabet is sent to a noisy communica-
tion channel (e.g. mobile network, hard disk, compact disk). The noise may cause
some errors to the message and a receiver of the message should somehow figure
out what message was sent.

The most studied subject within the theory of error-correcting codes, at least
from the mathematical viewpoint, is the theory of block codes. In this setting
the message words form a subset, called code, of all words of a fixed length n.
The errors are considered to be changes of symbols, i.e., the noise can change
letters of the message to other ones but can not for example shorten or lengthen
the message. The reader without background in coding theory can consult [38, 44]
for more extensive treatment of the subject.

In this work we are mainly interested in linear codes over F2 and Z4 which
are considered next.

2.1.1 Linear codes over F2

The words of length n over the binary field F2 form a vector space Fn
2 where addi-

tion and scalar multiplication are done componentwise. We define the Hamming
weight wH(x) of a vector x ∈ Fn

2 to be the number of nonzero coordinates and the
Hamming distance dH(x,y) = wH(x− y) between two vectors x and y to be the
number of coordinates where they differ.
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Definition 2.1. A binary code of length n is a nonempty subset of Fn
2. A [n,k,d]

linear binary code C is a k-dimensional subspace of Fn
2 with a minimum distance

d = dH(C) = min
x,y∈C
x6=y

dH(x,y).

Assume that we use the codewords in some code C with a minimum distance
d as a message words. The receiver of the message gets then the vector

r = c+ e

where the error vector e is nonzero in the error coordinates. If the weight of the
error vector is less than b(d−1)/2c, the transmitted message word c is the nearest
codeword to the received word r in the Hamming metric. Therefore the receiver
can decide which codeword was transmitted and the code C is said to have an
error-correcting capability equal to b(d−1)/2c.

Definition 2.2. We have the usual inner product x · c = ∑n
i=1 xici in the vector

space Fn
2 and a dual code of a linear code C is the orthogonal complement

C⊥ = {x ∈ Fn
2 | x · c = 0 for all c ∈C}.

Definition 2.3. Let C be a code of length n and Ai be the number of codewords
of weight i. The vector (Ai)

n
i=0 is called the weight distribution of C and the

corresponding polynomial

n

∑
i=0

Aiw
n−ixi = ∑

c∈C
wn−wH (c)xwH(c)

in two variables w and x is called the weight enumerator of C.

Clearly, a linear code has A0 = 1, Ai = 0 for all 0 < i < d, and Ad 6= 0. The fam-
ous MacWilliams theorem for binary linear codes can now be stated [38, Theorem
5.1.]. This theorem implies that we can count the weight distribution of C⊥ from
the weight distribution of C.

Theorem 2.4. If binary linear codes C and C⊥ have weight distributions (Ai)
n
i=0

and (Bi)
n
i=0 , respectively, then

n

∑
k=0

Bkwn−kxk =
1
|C|

n

∑
i=0

Ai(w+ x)n−i(w− x)i. (2.1)

As a linear code C is a subspace of Fn
2 it has a basis. If we write the basis

vectors as rows of a matrix G, we get a generator matrix of C. Another way



2.1 Error-correcting codes 21

to describe a linear code is via its parity-check matrix H which is the generator
matrix of the dual code C⊥. Then we have a relation

c ∈C if and only if cHT = 0

where HT is the transpose of H.
In this thesis most of the codes considered have dimensions k which are only

little less than the length n. Thus the parity-check matrix having only n− k rows
gives a more compact description than the generator matrix.

Let p : X → X be a permutation of the coordinate set X = {1,2, . . . ,n} of the
words in Fn

2. The permutation p acts naturally on codewords (ci) 7→ (cp(i)) and
codes p(C) = {p(c) | c ∈C}.

Definition 2.5. Two binary codes C and C∗ are equivalent if C∗ = p(C) for some
permutation p : X → X . Otherwise they are nonequivalent.

Usually, one is interested only in nonequivalent codes as the equivalent codes
are just permuted versions of each other. For example, a decoding algorithm for a
code is immediately applicable to an equivalent code, and often equivalent codes
are thought to be the same.

Below we have some examples of extended binary cyclic codes of length q =
2m. Parity-check matrices of these codes can be described with a primitive element
α of F = Fq and the coordinate set X = F.

Example 2.6 (Extended Hamming codes). Let us consider the binary extended
Hamming code H of length q = 2m with a parity-check matrix

H
H

=

(

1 1 1 1 . . . 1
0 1 α α2 . . . αq−2

)

.

We get an (m + 1)× q-matrix over F2 by replacing the powers of α with the
corresponding binary column vectors in the vector space Fm

2 presentation. The
first row implies that all codewords have even Hamming weight. It is well known
that H is a [q,q−m−1,4] code and the dual H ⊥ is a [q,m + 1,q/2] code with
the weight distribution (other Bi’s are zero)

B0 = 1, Bq/2 = 2q−2, and Bq = 1.

Example 2.7 (Extended two-error-correcting BCH codes). As the second ex-
ample we consider certain subcodes of H in the case where m is odd. Let Bk be
a linear code defined by a parity-check matrix

H
Bk

=





1 1 1 1 . . . 1
0 1 α α2 . . . αq−2

0 1 α2k+1 α(2k+1)2 . . . α(2k+1)(q−2)




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where 1 ≤ k ≤ (m−1)/2 and gcd(m,k) = 1. The code B1 is the usual two-error-
correcting extended BCH (Bose–Chaudhuri–Hocquenghem) code. We know ([4]
or [9, Section 4.3]) that the codes Bk are pairwise nonequivalent and have para-
meters [q,q−2m−1,6]. Their duals B⊥

k are [q,2m+1,q/2−
√

q/2] codes with
the weight distribution

B0 = 1, B
q/2−

√
q/2

= (q−1)
q
2
, Bq/2 = q2 +q−2,

B
q/2+

√
q/2

= (q−1)
q
2
, and Bq = 1.

Observe that the codes we for convenience choose to call BCH-codes are often
also referred to as BCH-like codes. Our terminology is motivated by the fact that
the weight distributions of these codes are identical. For the same reason we prefer
Goethals codes to Goethals-like codes as a name for codes Gk below.

Example 2.8 (Reed–Muller codes). One of the most studied families of block
codes are the Reed–Muller codes RM(r,m). In this thesis we need only two of
them, namely RM(m− 2,m) and RM(m− 3,m), and we omit the general defini-
tion. The definition and the results below can be found from [38, Chapter 13].

(i) RM(r,m) is a binary linear [q,∑r
i=0
(m

i

)

,2m−r] code;

(ii) RM(0,m) ⊂ RM(1,m) ⊂ ·· · ⊂ RM(m,m) = Fq
2;

(iii) RM(m−2,m) = H ;

(iv) Let m be odd. RM(m−3,m) is defined by a parity-check matrix

HRM =



















1 1 1 1 . . . 1
0 1 α α2 . . . αq−2

0 1 α21+1 α(21+1)2 . . . α(21+1)(q−2)

0 1 α22+1 α(22+1)2 . . . α(22+1)(q−2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1 α2k+1 α(2k+1)2 . . . α(2k+1)(q−2)



















where k = (m−1)/2 and therefore RM(m−3,m) ⊂ Bk ⊂ RM(m−2,m);

(v) We can identify every object in the affine geometry AG(F) with a binary
(incidence) vector of length q by the rule: the vector has 1 in a coordinate
α i (or 0) if and only if the object contains the point α i (or 0). The minimum
weight codewords of RM(r,m) are exactly the incidence vectors of (m−
r)-flats. In addition, these minimum weight codewords generate the code
RM(r,m) as a vector space.
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2.1.2 Linear codes over Z4

We have already seen how the construction of finite fields can be generalized
to construct Galois rings. Similarly the construction of some good linear codes
over F2 is now generalized to get good linear codes over Z4. The results in this
subsection are mostly from [19].

Words of length n over the alphabet Z4 form a free Z4-module Zn
4 with com-

ponentwise addition and scalar multiplication. This module is not a vector space
since Z4 is not a field. Hence we can not define linear codes as subspaces but
submodules. This characterizes the same feature as subspaces: a sum c+d of any
two codewords c and d is always a codeword.

Definition 2.9. A linear Z4-code of length n is a submodule of Zn
4.

We define the Hamming distance for words over Z4 as above but we have
another useful metric, too.

Definition 2.10. A Lee weight wL : Z4 → Z of an element in Z4 is defined as

wL(0) = 0, wL(1) = wL(3) = 1, wL(2) = 2

and a Lee weight of a vector c ∈ Zn
4 is naturally: wL(c) = ∑n

i=1 wL(ci).

The Lee distance is defined as dL(x,y) = wL(x− y)

r r

r

r

11 2 0 00

10

1

3

01
Figure 2.1: Gray map

and the minimum Lee distance dL(C ) of a Z4-code C

as dH(C ) but respect to the Lee metric. The code C

is said to have an error-correcting capability equal to
b(dL(C )−1)/2c.

Definition 2.11. A Gray map φ : Zn
4 → F2n

2 is defined
first for one component

φ(0) = 00, φ(1) = 10, φ(2) = 11, φ(3) = 01

and then for the whole vector c = (c1, . . . ,cn) as

φ(c) = (c1L,c2L, . . . ,cnL | c1R,c2R, . . . ,cnR) = (cL | cR)

where φ(ci) = (ciL,ciR).

The bit order of the Gray image vector is chosen just for technical reasons in
the proof of Corollary 4.6. The importance of the Gray map can be seen from
Figure 2.1: it preserves the weights and distances when mapping Z4-words to
binary words of double length. This well known fact is stated as an easy lemma
without a proof.

Lemma 2.12. The Gray map φ : (Zn
4,dL) →

(

F2n
2 ,dH

)

is an isometry of metric
spaces, that is, φ is a bijection and dH(φ(x),φ(y)) = dL(x,y) for all x,y ∈ Zn

4.
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The weights of codewords in a code C can be described with a weight enu-
merator as in the case of the binary codes. Sometimes it is useful to count how
many 1’s, 2’s, and 3’s there is in a codeword. Sometimes we do not distinguish
between 1’s and 3’s as they are both units in Z4 as opposed to 2’s. Sometimes only
Hamming weight counts. Thus we need several different weight enumerators.

Definition 2.13. The support of a vector c is χ(c) = {k | ck 6= 0} and the multi-
plicity of i ∈ Z4 in c is ni(c) = |{k | ck = i}|. We define complete, symmetrized,
Lee weight, and Hamming weight enumerator of c as

cwe(c) = W n0(c)Xn1(c)Y n2(c)Zn3(c)

swe(c) = W n0(c)Xn1(c)+n3(c)Y n2(c)

lwe(c) = W n0(c)Xn1(c)+2n2(c)+n3(c)

hwe(c) = W n0(c)Xn1(c)+n2(c)+n3(c)

and of a code C , for example, as cwe(C ) = ∑c∈C
cwe(c).

The variable W is usually unnecessary except with the zero word W n.
Definition 2.2 can be straightforwardly generalized to the case of Zn

4: the sum
in the inner product is now counted modulo 4. This defines the dual code C ⊥ of a
linear Z4-code C . To state MacWilliams theorem (Theorem 2.4) in a generalized
form we change the notation cwe(C ) to cwe

C
(W,X ,Y,Z).

Theorem 2.14. For every linear Z4-code C and its dual C ⊥ we have (i2 = −1)

cwe
C⊥(W,X ,Y,Z) =

1
|C | cwe

C
(W +X +Y +Z,W + iX −Y − iZ,

W −X +Y −Z,W − iX −Y + iZ).

With this theorem we can compute cwe(C ⊥) when cwe(C ) is known.
We can define permutations on the coordinate set X of Zn

4 as in the binary
case. As Z4 is a ring with two units 1 and 3 we also allow “sign changes” in fixed
coordinates when considering the equivalence of codes. Let s : X → {1,3} be a
function and define its action on a codeword c by a rule: (ci) 7→ (s(i) · ci).

Definition 2.15. Two Z4-codes C and C ∗ are equivalent if C ∗ = s ◦ p(C ) for
some permutation p : X → X and function s : X → {1,3}. Otherwise they are
nonequivalent.

In Subsection 1.1.2 we identified the finite field F with the vector space Fm
2 .

Now we do the same with the Galois ring R and the free module Zm
4 . Let β =

(α,0) be a generator of the Teichmüller set T with a minimal polynomial f (x) ∈
Z4[x]. It can be shown that R = Z4[x]/〈 f (x)〉 and {1,β ,β 2, . . . ,β m−1} is a basis of
R as an extension over Z4. We identify this basis with the unit vectors {(1,0, . . . ,0),
(0,1, . . . ,0), . . . ,(0,0, . . . ,1)} and the whole ring R with Zm

4 .
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In the previous subsection the extended binary cyclic codes were defined with
parity-check matrices and a primitive element α . Now the parity-check matrices
are defined similarly but the defining element is β = (α,0) and the coordinate set
X = T .

Example 2.16 (Preparata and Kerdock codes). Let m ≥ 3 be odd and q = 2m.
The Z4-Preparata code P of length q is defined by a parity-check matrix

H
P

=

(

1 1 1 1 . . . 1
0 1 β β 2 . . . β q−2

)

.

By replacing the powers of β with the corresponding column vectors in Zm
4 we get

an (m + 1)× q matrix over Z4. It is known that P has 22q−2m−2 codewords and
dL(P) = 6. The dual code of P is the Z4-Kerdock code K with cwe (W = 1)

1+Xq +Y q +Zq

+2(q−1)
(

Xq/2Zq/2 +Y q/2
)

+q(q−1)
(

Xq/4+
√

q/8Y q/4+
√

q/8Zq/4−
√

q/8

+Xq/4+
√

q/8Y q/4−
√

q/8Zq/4−
√

q/8

+Xq/4−
√

q/8Y q/4−
√

q/8Zq/4+
√

q/8

+Xq/4−
√

q/8Y q/4+
√

q/8Zq/4+
√

q/8
)

.

When m = 3, the codes P and K are the same code. This Z4-Nodrstrom–
Robinson code (or Z4-octacode) is the unique self-dual Z4-code of length 8, min-
imum distance 6 and with 256 codewords, see [19, Subsection IV.E].

Historical notes I

The interest in Z4-codes started about a decade ago with the seminal work of
Hammons, Kumar, Calderbank, Sloane, and Solé [19]. There had been some
earlier work, for example [41], but it was the article [19] which really started the
theory of Z4-codes and coding theorists’ interest in Galois rings.

The theory of Z4-codes has been fruitful in many fields of research but still
the main achievement is the result in [19]: original binary nonlinear Preparata [45]
and Kerdock [32] codes can be seen as Gray images of the linear Z4-codes P and
K . This gives an answer to the problem which was open for two decades: Why
the binary Preparata and Kerdock codes satisfy the MacWilliams identity (2.1)
although they are nonlinear? Since they are linear over Z4!

Actually, as explained in [19], the Gray images φ(K ) are equivalent to the
binary Kerdock codes but φ(P) are not equivalent to the binary Preparata codes,
although their distance distributions are the same. This can be seen as follows: the
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Table 2.1: Different choices for k with different codelengths

m length k 2k +1
3 8 1 3
5 32 1,2 3,5
7 128 1,2,3 3,5,9
9 512 1,2, 4 3,5, 17
11 2048 1,2,3,4,5 3,5,9,17,33
13 8192 1,2,3,4,5,6 3,5,9,17,33,65
15 32768 1,2, 4, 7 3,5, 17, 129
17 131072 1,2,3,4,5,6,7,8 3,5,9,17,33,65,129,257
19 524288 1,2,3,4,5,6,7,8,9 3,5,9,17,33,65,129,257,513

binary Preparata codes (as well as their generalizations in [14, 2]) are subcodes of
the linear Hamming codes H , see [50], but the Gray images φ(P) are subcodes
of nonlinear binary codes with the same distance distribution as H , see [19].

The classical binary Nordstrom–Robinson code [42] is the binary Kerdock
code of length 16 and hence equal to φ(K ) = φ(P) when m = 3.

The binary Goethals codes [16, 17] and the first codes from a family of Delsarte
and Goethals [11] are also formally dual nonlinear binary codes. This can be ex-
plained again with Z4-codes: Gray images φ(G ⊥

1 ) are equivalent to the binary
Delsarte–Goethals codes and Gray images φ(G1) have the same weight distribu-
tion as the binary Goethals codes, see [19] and Definition 2.17 below.

2.1.3 Z4-Goethals codes Gk

Now we are ready to introduce the main subject of this thesis.

Definition 2.17. Let m ≥ 3 be odd. The Z4-Goethals code Gk of length q = 2m is
defined by a parity-check matrix

H
Gk

=





1 1 1 1 . . . 1
0 1 β β 2 . . . β q−2

0 2 2β 2k+1 2β (2k+1)2 . . . 2β (2k+1)(q−2)





where 1 ≤ k ≤ (m−1)/2 and gcd(m,k) = 1 (see Table 2.1).

The codes G1 and Gk were introduced in [19] and [22], respectively, with the
results stated in the next theorem. These codes have 22q−3m−2 codewords which
means that the binary codes φ(Gk) have four times as many codewords as BCH
codes of the same length and minimum distance.
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We extend the reduction modulo 2 mapping µ∗ from Subsection 1.2.2 to a
mapping from Zn

4 to Fn
2 by applying µ∗ to all the components. We denote this

extension by µ also.

Theorem 2.18. (i) dL(Gk) = 8;

(ii) µ(Gk) = {µ(c) | c ∈ Gk} = Bk;

(iii) Gk ∩2Zq
4 = {c ∈ Gk | cwe(c) = Y i,0 ≤ i ≤ q} = {2d | µ(d) ∈ H }.

In [22] it was also proved that lwe(Gk) is the same for every k. This leads to a
natural question: are some of the codes Gk equivalent?

Theorem 2.19. The codes Gk are pairwise nonequivalent.

Proof. Suppose that Gk′ = s ◦ p(Gk) for some permutation p : X → X and func-
tion s : X → {1,3}. We reduce this relation modulo 2: by the previous theorem
µ(Gk′) = Bk′ and µ(Gk) = Bk and therefore Bk′ = p(Bk). By Example 2.7 the
codes Bk are pairwise nonequivalent and we must have k = k′.

In [22] the codes Gk were defined without the condition k ≤ (m−1)/2. This
restriction assures that we get exactly all the different codes since Gk = Gm−k , see
[38, Problem (6) in Chapter 15].

The next theorem [19] allows us to reduce the number of cases that need to
be considered in the proofs of Theorems 4.5 and 5.1. From now on we view the
codewords of Gk to be indexed with the finite field F.

Theorem 2.20. The codes Gk are invariant under the doubly transitive group of
affine permutations

ψa,b : F → F, x 7→ ax+b, a ∈ F∗, b ∈ F.

Low-weight codewords and supports

Now we start studying the low-weight codewords of the codes Gk. By Lemma
1.29 a codeword c = (cx)x∈F ∈ Gk should satisfy the next four equations over F

∑
x∈F

cx = 0 (in Z4) ∑
x∈C1∪C3

x = 0

∑
x,y∈C1∪C3

x<y

xy = ∑
x∈C2∪C3

x2 ∑
x∈C1∪C3

x2k+1 = 0.
(2.2)

With these equations and Theorem 2.18 we can analyze the codewords of
Hamming weight 8 or less.
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Lemma 2.21.

(i) If c ∈ Gk and hwe(c) = X i with 1 ≤ i ≤ 6, then cwe(c) ∈
{

Y 4,Y 6
}

;

(ii) If c ∈ Gk and hwe(c) = X7, then cwe(c) ∈
{

X6Y,X4Y Z2,X2Y Z4,Y Z6
}

;

(iii) If c,d ∈ Gk, hwe(c) = hwe(d) = X7, and χ(c) = χ(d), then c = ±d;

(iv) If c ∈ Gk and hwe(c) = X8, then cwe(c) ∈
{

X8,X6Z2,X4Z4,X2Z6,Z8,X5Y 2Z,X3Y 2Z3,XY 2Z5,Y 8
}

;

(v) If c,d ∈ Gk, swe(c) = swe(d) = X6Y 2, and χ(c) = χ(d), then c = ±d.

(vi) If c,d ∈ Gk, swe(c) ∈
{

X8,Y 8
}

, and swe(d) = X6Y 2, then χ(c) 6= χ(d).

Proof. The extended Hamming code H contains codewords of Hamming weight
4, 6, and 8, and by (iii) in Theorem 2.18 we have codewords of cwe-type Y 4, Y 6,
and Y 8 in Gk. The binary code Bk has codewords of Hamming weight 6 and 8
and by (ii) in Theorem 2.18 there could be codewords of swe-types X 6Y j and X8

in Gk for some j ≥ 0.
If j = 0, there would be a codeword of Lee weight 6 which contradicts (i) in

Theorem 2.18. For j ∈ {1,2} we list all cwe-types which satisfy the first equation
in (2.2). In addition, we list all cwe-types of swe-type X 8 which satisfy the same
equation. This proves the items (i), (ii), and (iv).

Suppose we have two codewords of hwe-type X 7 with the same support. They
must have 2’s in the same position as otherwise we would contradict the condition
dH(Bk) = 6. Even if the 2’s were in the same position, considering 1’s and 3’s in
the other 6 positions we always contradict (i) in Theorem 2.18 except in the case
c = ±d.

Assume we have two codewords of swe-type X 6Y 2 with the same support.
Again 2’s must be in the same positions by dH(Bk) = 6 and the fact dL(Gk) = 8
restricts the possibilities to c = ±d.

Let c and d be codewords in the item (vi) and suppose they have the same
support. If c is of swe-type X8, then 2c is of swe-type Y 8 and we can assume c to
be of swe-type Y 8. Thus we have codeword 2d of swe-type Y 6 within the support
of c which contradicts the fact dH(H ) = 4 by (iii) in Theorem 2.18.

2.2 Designs

In this section we introduce t-designs and review some basic results about them.
We also show how certain designs can be constructed from error-correcting codes.
These designs are needed in the construction of new designs in Chapters 4 and 5.
For the results in this section the reader is referred to [38, 33, 24].
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Definition 2.22. A t-(v,k,λ ) design is a pair (X ,B) where X is a v-element set
of points and B is a collection of k-element subsets of X (called blocks) with the
property that every t-element subset of X is contained in exactly λ blocks. A
design is simple if all the blocks are distinct; otherwise, the design is said to have
repeated blocks.

Almost all of the designs in this thesis are simple and therefore the simplicity
is not always mentioned. If a design has repeated blocks, it is explicitly stated.

Theorem 2.23. If (X ,B) is a t-(v,k,λ ) design and T is any s-element subset of X,
with 0 ≤ s ≤ t, then the number of blocks containing T is

bs = |{A ∈ B | T ⊆ A}| = λ
(v−s

t−s

)

/
(k−s

t−s

)

.

In particular, bs is an integer and (X ,B) is a s-(v,k,bs) design. The number of
blocks is equal to b0 satisfying

b0

(k
t

)

= λ
(v

t

)

.

Let p : X → X be a permutation of the point set X . There is a natural action of
p to the blocks b ⊆ X defined by p(b) = {p(a) | a ∈ b} and to the whole t-design
defined by p(B) = {p(b) | b ∈ B}.

Definition 2.24. Two t-designs (X ,B) and (X ,B∗) are equivalent (or isomorphic)
if B∗ = p(B) for some permutation p : X → X . Otherwise they are nonequivalent.

2.2.1 Designs from linear codes over F2

We present now the celebrated Assmus–Mattson theorem [1] which is a powerful
tool in constructing t-designs from linear codes over finite fields. For simplicity
we restrict ourselves to F2 and we can identify codewords with their supports.

Theorem 2.25 (Assmus–Mattson). Let C be a binary [n,k,d] linear code and
(Bi)

n
i=0 the weight distribution of C⊥. Suppose we can find an integer t, with

0 < t < d, such that there are at most d− t nonzero Bi’s in the range 1 ≤ i ≤ n− t.
Then for any i ≥ d the supports of size i in C form a simple t-design.

From now on we have n = q = 2m.

Example 2.26 (Extended Hamming codes). We show how Theorem 2.25 is ap-
plied to Example 2.6. The Assmus–Mattson theorem is applicable with t = 3 since
there are only one nonzero Bi in the range 1 ≤ i ≤ q− 3. So the supports of any
fixed size in H define a simple 3-design. We can calculate the weight distribu-
tion of H by Theorem 2.4 and the corresponding λ ’s by Theorem 2.23. As an
example we list below the three first 3-designs. We recall that the blocks of these
designs can be identified with the supports of cwe-type Y i in Gk by item (iii) in
Theorem 2.18.
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(i) The supports of size 4 in H form a 3-(q,4,1) design.

(ii) The supports of size 6 in H form a 3-
(

q,6, (q−4)(q−8)
6

)

design.

(iii) The supports of size 8 in H form a 3-
(

q,8, (q−4)(q−6)(q2−15q+71)
120

)

design.

Example 2.27 (Extended two-error-correcting BCH codes). We continue with
Example 2.7 so q = 2m with odd m. The Assmus–Mattson theorem is again ap-
plicable with t = 3 as there are only three nonzero Bi’s in the range 1 ≤ i ≤ q−3.

(i) The supports of size 6 in Bk form a 3-
(

q,6, q−8
6

)

design.

(ii) The supports of size 8 in Bk form a 3-
(

q,8, q3−25q2+246q−760
120

)

design.

Example 2.28 (Reed–Muller codes). We continue with Example 2.8. Instead of
the Assmus–Mattson theorem we use the affine geometry AG(F) to get 3-designs
from the minimum weight codewords in RM(m− 3,m). Recall that these code-
words are exactly the 3-flats in AG(F).

Choose three distinct points from AG(F). They define a unique 2-flat. We can
choose a point outside this 2-flat in q− 4 ways and this fifth point determines a
3-flat. Clearly, there are four choices which lead to the same 3-flat and thus there
are (q−4)/4 different 3-flats which contain the three fixed points.

• The supports of size 8 in RM(m−3,m) define a 3-
(

q,8, q−4
4

)

design.

2.2.2 Designs from linear codes over Z4

For linear Z4-codes we do not have such a powerful tool as the Assmus–Mattson
theorem above. There have been some attempts to generalize this theorem to Z4
but the results are much more complicated and restricted than the original one.
This is natural as Z4 is a ring and not a field.

Tanabe [54] gives one Assmus–Mattson theorem for Z4-codes but it does not
give any designs from the Z4-Goethals codes Gk. The required calculations are
messy and not included in this thesis; see also comments in [24].

An Assmus–Mattson type theorem by Shin, Kumar and Helleseth [52] does
not imply our main results, Theorems 4.5 and 5.1, but it gives us the next theorem
[52, Corollary 8] which is used in the proof of Corollary 4.8.

Theorem 2.29. The supports of any fixed hwe-type in G1 form a 3-design possibly
with repeated blocks.

The proof of Theorem 2.29 makes use of the next theorem [51].

Theorem 2.30. The supports of size 7 in G1 form a 3-
(

q,7, 14
3 (q−8)

)

design.
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In Chapter 5 we try to generalize this theorem for the codes Gk with different
values of k. Let us assume that we can prove the analogue of Theorem 2.30 for a
code Gk with some value of k > 1. The analogue of Theorem 2.29 will then also
hold. This is because a study of the proof of Theorem 2.29 in [52] reveals that a
reference to Theorem 2.30 is the only step of the argument where the assumption
k = 1 is needed.

We recall two classical related results [49, 3] in the form of one theorem.
A binary distance invariant (for the definition see [38, p. 40]) code is called
Preparata-like or Goethals-like if it has the same weight distribution as φ(P)
or φ(Gk), respectively.

Theorem 2.31. The supports of fixed size in any Preparata-like code form a 3-
design. The supports of fixed size in any Goethals-like code form a 3-design.

From this theorem we derive one 3-design needed in Section 4.4. We can
count the number of codewords of Hamming weight 8 in φ(Gk) and hence the
corresponding λ . This parameter can be derived also from [3, Theorem 3] or
more directly from [28, Proposition 1].

Corollary 2.32. The supports of size 8 in the Goethals-like code φ(Gk) form a

3-
(

2q,8, (2q−4)(4q−17)
60

)

design.

Historical notes II

Research on constructing t-designs from Z4-codes started with articles [18, 20]
where it was shown by computer searches that in the Z4-Golay code the sup-
ports of hwe-type X10 and X12 yield 5-(24,10,36) and 5-(24,12,1584) designs,
respectively. These results were later proved analytically in three different ways
[6, 53, 54].

In addition to the above interesting but restricted designs, Helleseth, Kumar,
and Yang [23] have constructed an infinite family of 3-designs from the Z4-
Preparata codes P . The supports of hwe-type X 5 form a 3-(2m,5,10) design
for all odd m ≥ 3. Also the supports of the Z4-Kerdock codes K contain infinite
families of 3-designs [55].

By Example 2.26 and Lemma 2.21 we see that supports of size ≤ 6 in the
Z4-Goethals codes Gk yield classical 3-designs. Shin, Kumar, and Helleseth [51]
settled the next case, i.e. supports of size 7 in G1, in Theorem 2.30. In Chapters 4
and 5 we find some 3-designs from supports of size 8 in Gk.

For a survey the reader is referred to [24].





Chapter 3

Decoding algorithm

In this chapter we describe an algebraic decoding algorithm for all the Z4-Goethals
codes Gk which corrects all errors up to the error-correcting capability. This al-
gorithm has been presented in [46] and is a generalization of a complete decoding
algorithm for G1 by Helleseth and Kumar [21].

3.1 Decoding problem

We have seen that dL(Gk) = 8 and thus look for an efficient decoding algorithm
which corrects all errors with Lee weight at most 3. Next we describe one such
an algorithm. As in Lemma 1.29 the variables in the Teichmüller set T and
their modulo 2 reductions in F are denoted by X ,Y,Z,A,B,C and x,y,z,a,b,c,
respectively.

We modify the setting in Subsection 2.1.1 to Z4-domain: the receiver gets
the word r ∈ Zq

4 which differs from the original codeword c by an error word
e = (eX)X∈T

∈ Zq
4, i.e., r = c + e. We calculate the syndrome of the received

vector

S = rHT
Gk

= cHT
Gk

+ eHT
Gk

= eHT
Gk

= (t,A+2B,2C)

where t ∈ Z4 and A,B,C ∈ T . This presentation with T is possible by Lemma
1.27 and with Lemma 1.29 it transforms to the following system of equations:

t = ∑
x∈F

ex (in Z4) a = ∑
x∈E1∪E3

x

b = ∑
x,y∈E1∪E3

x<y

xy+ ∑
x∈E2∪E3

x2 c = ∑
x∈E1∪E3

xd

where we abbreviate d = 2k + 1. Now the task for the decoder is: given any
syndrome, decide what codeword was most likely sent, or, for any syndrome give
the minimum weight codeword e (leader) in the corresponding coset e+C .
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We will divide the discussion into four cases depending on the value of t. As
examples we have expanded the resulting polynomial conditions in the case k = 2.
The case k = 1 was described in [21].

Observing that syndrome

−S = (−t,−(A+2B),−2C) = (−t,A+2(A+B),2C)

corresponds to the error vector −e we can reduce the number of different error
patterns that need to be considered. The case t = 3 is reduced to the case t = 1:
If we have a syndrome S = (3,A + 2B,2C) we decode with a syndrome −S =
(1,A+2(A+B),2C) and get an error vector e. The actual error vector is then −e.

3.2 Case of t = 0

Theorem 3.1. Let S = (0,A+2B,2C) denote the syndrome of a coset.

(i) If a = b = c = 0, then 0 is the coset leader.

(ii) If a 6= 0 and c =
(

b2/a+a
)d

+
(

b2/a
)d , then the coset leader has Lee weight

2 and is uniquely determined by x = b2/a + a, eX = 1, y = b2/a, and eY =
3. In particular, if k = 2, the latter condition can be rewritten in the form
a8 +a6b2 +b8 +a3c = 0.

(iii) If (i) and (ii) do not hold, then any coset leader has Lee weight ≥ 4.

Proof. (i) Clear.

(ii) Suppose we have an error of Lee weight 2 where eX = 1, eY = 3, and X 6= Y .
This leads to the syndrome equations

a = x+ y

b2 = xy+ y2

c = xd + yd .

Since X 6= Y it follows that a = x + y 6= 0. The first two equations have the
unique solution

x =
b2

a
+a and y =

b2

a
which satisfies the third equation if and only if

c =

(

b2

a
+a
)d

+

(

b2

a

)d

.

(iii) If cases (i) and (ii) do not hold, we detect an error of Lee weight ≥ 4, since
the conditions in (i) and (ii) describe all cosets of Lee weight 0 and 2, re-
spectively, where t = 0.
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3.3 Case of t = 1

Theorem 3.2. Let S = (1,A+2B,2C) denote the syndrome of a coset.

(i) If b = 0 and c = ad , then the coset leader has Lee weight 1 and is uniquely
determined by x = a and eX = 1.

(ii) If b 6= 0 and c = ad , then the coset leader has Lee weight 3 and is uniquely
determined by x = a+b, eX = 2, y = a, and eY = 3.

(iii) If b 6= 0, c 6= ad and Tr
(

bd
/(

ad + c
))

= 0, then the coset leader has Lee
weight 3. The coset leader is uniquely determined by eX = eY = 1, eZ = 3,
Dd−2

(

z+a,b2
)

=
(

ad + c
)/

b2, and x and y are the zeros of T 2 +(z+a)T +
b2 +az = 0. In the case k = 2, the variable z should satisfy

(z+a)3 +b2(z+a) =
(

a5 + c
)/

b2.

(iv) If b 6= 0, c 6= ad , Tr
(

bd
/(

ad + c
))

= 1, and

p(T ) = T 3 +aT 2 +
(

a2 +b2)T +σ3

has three distinct zeros in F where σ3 satisfies

Dn
(

σ3 +a3 +ab2,b6)=
(

ad + c
)/

f

and
{

n = d/3 and f = 1, if 2 - k
n = (d−2)/3 and f = b2, if 2 | k

then the coset leader has Lee weight 3 and is uniquely determined such that
x,y,z are the three distinct zeros of p(T ) in F and eX = eY = eZ = 3. Espe-
cially when k = 2, the term σ3 should satisfy σ3 =

(

c+a5 +a3b2 +ab4
)/

b2.

(v) If none of (i)–(iv) hold, then any coset leader has Lee weight ≥ 5.

Proof. (i) Consider a single error in the location X with eX = 1. Then a = x,
b = 0, and c = xd = ad and the coset leader with this syndrome is, therefore,
uniquely determined by x = a and eX = 1.

(ii) In the case of an error of Lee weight 3 where eX = 2, eY = 3, and X 6= Y , we
obtain the syndrome equations

a = y

b2 = x2 + y2

c = yd .
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Since X 6= Y we have b = x + y 6= 0. The above system of equations has a
solution if and only if c = ad and in this case the solution gives the coset
leader uniquely determined by

x = a+b and y = a

where eX = 2 and eY = 3.

(iii) Suppose we have an error of Lee weight 3 where eX = eY = 1 and eZ = 3
such that X , Y , and Z are pairwise-distinct. We get the syndrome equations

a = x+ y+ z

b2 = xy+ xz+ yz+ z2

c = xd + yd + zd .

If B = 0, we would have a codeword of Lee weight 4 in P with eX = eY = 1
and eZ = eA = 3. By Example 2.16 we know that dL(P) = 6 and therefore
b 6= 0. From the first two equations we see that xy = az+b2 and using (1.1)
and Lemma 1.15 we derive (notice that d−1 = 2k)

c =Dd(x+ y,xy)+ zd

=Dd

(

z+a,az+b2)+ zd

=Dd(z+a,az)+Dd

(

z+a,b2)+(z+a)d + zd

=ad +(z+a)Dd−1

(

z+a,b2)+b2Dd−2

(

z+a,b2)+(z+a)d

=ad +b2Dd−2

(

z+a,b2) .

All in all we have

Dd−2

(

z+a,b2)=
ad + c

b2 (3.1)

and s = gcd(d−2,q−1) = 2gcd(k,m)−1 = 1.

Assume we could solve z from the previous equation. Then we could find x
and y as roots of the equation

T 2 +(z+a)T +b2 +az = 0.

This has two roots in F if and only if

Tr
(

b2 +az
(z+a)2

)

= Tr
(

b
z+a

)

= Tr
(

bd

ad + c

)

= 0

by Lemma 1.4, (3.1), and Lemma 1.19. So when we have this error pattern
the above condition must hold and therefore we can also compute the unique
root of (3.1) by Theorem 1.20.
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(iv) Consider the error of Lee weight 3 with distinct error locations X , Y , and Z
where eX = eY = eZ = 3. This leads to the syndrome equations

a = x+ y+ z

b2 = xy+ xz+ yz+ x2 + y2 + z2

c = xd + yd + zd .

If B would be 0, we would have a codeword of Lee weight 4 with eX = eY =
eZ = eA = 3 in P . Again, Example 2.16 implies b 6= 0. We know that x, y,
and z are the zeros of the polynomial

p(T ) = T 3 +aT 2 +
(

a2 +b2)T +σ3

where σ3 = xyz. We need to find σ3.

From the syndrome equations we get xy = z2 +a2 +az+b2 and by (1.1) and
Lemma 1.15

c =Dd(x+ y,xy)+ zd

=Dd

(

z+a,z2 +a2)+Dd(z+a,az)+Dd

(

z+a,b2)+ zd

=(k +1)(z+a)d +ad +Dd

(

z+a,b2) .

If 2 - k, then 3 | d and

c = ad +Dd/3

(

D3

(

z+a,b2) ,b6) .

If 2 | k, then 3 | (d −2) and

c =(z+a)d +ad +(z+a)Dd−1

(

z+a,b2)+b2Dd−2

(

z+a,b2)

=ad +b2D(d−2)/3

(

D3

(

z+a,b2) ,b6) .

In addition,

D3

(

z+a,b2)= p(z)+σ3 +a3 +ab2 = σ3 +a3 +ab2 (3.2)

and we conclude that

Dn
(

σ3 +a3 +ab2,b6)=
ad + c

f
(3.3)

where
{

n = d/3 and f = 1, if 2 - k
n = (d−2)/3 and f = b2, if 2 | k.
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The polynomial p(T ) has three zeros in F if and only if (3.2) has three roots
in F. By Theorem 1.18 (s = 1, r = 3) and Lemma 1.19 this requires that
σ3 +a3 +ab2 6= 0 and

Tr
(

b
z+a

)

= Tr
(

b3

σ3 +a3 +ab2

)

= 1.

By Lemma 1.19 (s = gcd(n,q−1) = 1) and (3.3) the above trace condition
is equivalent to

Tr

(

b3n

Dn
(

σ3 +a3 +ab2,b6
)

)

= Tr
(

bd

ad + c

)

= 1

but this is always true as otherwise we would be in the case (iii). This means
that, when σ3 satisfies (3.3), then p(T ) = 0 has either zero or three roots.

It is straightforward to see that

r = gcd(n,q+1) =

{

1, if 3 - k
3, if 3 | k.

When 3 - k we can find the unique root of (3.3) by Theorem 1.20 and then
get the zeros x, y and z of p(T ). When 3 | k we compute three roots of (3.3)
which are then the candidate values for σ3. For two of the candidates the
resulting polynomial p(T ) has no zeros, and for the correct candidate σ3 the
polynomial has three zeros, which are then x, y, and z.

(v) In all other cases, when t = 1 we detect an error of Lee weight ≥ 5.

Of all the cases, (iv) is computationally the most demanding. Syndrome with
the coset leader of Lee weight 5 and t = 1 gives in the worst case three different
guesses for σ3 and for none of them p(T ) has three zeros.

Time consumption can be reduced by using more lookup tables. One table
could have “true” in index δ if and only if x3 +x = δ has three roots. With the aid
of such a table one can quickly check when p(T ) has three zeros. Another table
could list all (q + 1)th roots of unity in the quadratic extension of F. This can be
used to speed up the computation of nth roots in this larger field.

3.4 Case of t = 2

Theorem 3.3. Let S = (2,A+2B,2C) denote the syndrome of a coset.

(i) If a = c = 0, then the coset leader has Lee weight 2 and is uniquely determ-
ined by x = b and eX = 2.



3.4 Case of t = 2 39

(ii) If a 6= 0, c = Dd

(

a,b2
)

, and Tr(b/a) = 0, then the coset leader has Lee
weight 2 and is uniquely determined such that x and y are zeros of T 2 +
aT + b2 = 0 and eX = eY = 1. Especially when k = 2, then c should be
a5 +a3b2 +ab4.

(iii) If a 6= 0, c = Dd

(

a,a2 +b2
)

, and Tr(b/a) = 1, then the coset leader has Lee
weight 2 and is uniquely determined such that x and y are zeros of T 2 +
aT + a2 + b2 = 0 and eX = eY = 3. In particular, if k = 2, then c should be
a5 +a3b2 +ab4.

(iv) If (i)–(iii) do not hold, then any coset leader has Lee weight ≥ 4.

Proof. (i) Consider a single error in the location X with eX = 2. Then a = c = 0
and b2 = x2.

(ii) In the case of an error of Lee weight 2 where eX = eY = 1 and X 6= Y we
obtain the syndrome equations

a = x+ y

b2 = xy

c = xd + yd .

Since X 6= Y we have a 6= 0. The first two equations imply that x and y are
the roots of T 2 +aT +b2 = 0. By Lemma 1.4 this can happen if and only if

Tr
(

b2

a2

)

= Tr
(

b
a

)

= 0.

Then x and y obey the third equation if and only if c = Dd(x + y,xy) =
Dd

(

a,b2
)

which is given explicitly in (1.2).

(iii) Assume error of Lee weight 2 where eX = eY = 3 and X 6= Y . As mentioned
in the beginning of this section, we can now consider error −e as in the case
(ii) with one difference: we replace b2 by (a+b)2 = a2 +b2. So x+y = a 6=
0, xy = a2 + b2, and the equation T 2 + aT + a2 + b2 = 0 should have two
roots in F. This condition is equivalent to

Tr
(

a2 +b2

a2

)

= Tr
(

b
a

)

+1 = 0.

(iv) In all other cases than (i)-(iii) with t = 2 an error of Lee weight ≥ 4 is detec-
ted.



40 Decoding algorithm

By Lemma 1.15 we get that

Dd

(

a,a2 +b2)= Dd

(

a,b2)+

{

ad, if 2 - k
0, if 2 | k.

In the case 2 | k we could implement the algorithm in a slightly different order: if
c = Dd

(

a,b2
)

, then we may branch into the cases (ii) and (iii) according to the
value of Tr(b/a).

Historical notes III

The Z4-Kerdock codes have a Hadamard-transform soft-decision decoding al-
gorithm presented already in the seminal paper [19]. In the same article an algeb-
raic syndrome decoder for the Z4-Preparata codes was introduced. This algorithm
includes similar case-by-case analysis as the decoder above.

Helleseth and Kumar [21] presented a complete decoding algorithm for the
Z4-Goethals code G1. Our algorithm above generalizes this to all codes Gk except
that our algorithm works only up to the error-correcting capability and is thus not
complete. Some of the cases in the complete decoder [21] can be generalized with
Dickson polynomials for every k but we could not solve two hard cases.

There has been an intensive search for other good linear Z4-codes, see for
example tables in [31], but only a few have been found. These include two re-
markable linear Z4-codes discovered in [7, 8]: they have length 32, minimum dis-
tances 12 and 14, and 237 and 232 codewords, respectively. The 5-error-correcting
code has similar algebraic decoding algorithm [48] as above but for the 6-error-
correcting code this approach seems to fail. For this latter code another approach
is outlined in [35].



Chapter 4

New 3-designs from codes G1

In this chapter we derive many families of 3-designs with block size 8 from the
Z4-Goethals code G1. In the next chapter we generalize these designs for certain
other values of k. The results in this chapter are taken from [47].

4.1 Classification of supports of size 8

In order to get small 3-designs with block size 8 from the codes Gk we have to
analyze the supports of size 8. Below we abbreviate sentences by using phrase
“support of swe-type X8” instead of “support of codeword of swe-type X 8”.

We have seen in Lemma 2.21 that all possible swe-types of supports of size
8 are Y 8, X8, and X6Y 2. Let us consider more closely the relations between the
Z4-code Gk and the binary codes H and Bk. By Theorem 2.18 the supports of
swe-type Y 8 can be identified with codewords of Hamming weight 8 in H . By
the same theorem the supports of swe-type X 8 are codewords in Bk but not all
codewords of Hamming weight 8 in Bk are necessarily supports of swe-type X 8

— they can be µ-images of codewords with larger supports.

Definition 4.1. Let c∈Bk have a support S of size i. If there is a codeword d∈Gk
of swe-type X i such that µ(d) = c, we say that c can be lifted exactly to Gk. The
set of codewords which can be lifted exactly to Gk is denoted by B∗

k .

Lemma 4.2. Supports of hwe-type X8 in Gk divide into the following distinct
classes:

(A) Supports of size 8 in H \Bk;

(B) Supports of size 8 in Bk \B∗
k ;

(C) Supports of size 8 in B∗
k ;

(D) Supports of swe-type X6Y 2.
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Proof. The classes (A)–(B) are clearly distinct and contain all supports of cwe-
type Y 8 in Gk which are not in (C). The class (C) contains all supports of swe-type
X8 in Gk. By (vi) in Lemma 2.21 the class (D) is distinct from (A)–(C).

The relation between the codewords and the corresponding supports are simple
in the classes (A) and (B): there is exactly one codeword for each support. By (v)
and (vi) in Lemma 2.21 there are always two codewords for each support in the
class (D). The class (C) is more complicated. For example, there are codewords
like 11111111 and 11113333 which have the same support. For further analysis
of the class (C) we need to introduce the concept of lifting rank.

Definition 4.3. Let S be a subset of the index set F. The lifting rank of S is 4k12k2

if a generator matrix of a subcode Gk|S = {c ∈ Gk | χ(c) ⊆ S} is permutation-
equivalent to a matrix of the form

GS =

(

Ik1
A B

0 2Ik2
2C

)

.

From now on we consider only the lifting ranks of supports of swe-type X 8

and hence we always have k1 = 1. We abbreviate by saying that such a support
has (lifting) rank k2.

The rank counts linearly independent codewords of cwe-type Y 4 within the
support. It is easy to see that 0 ≤ k2 ≤ 3. The supports of rank 3 are special:
they are 3-flats in the affine geometry AG(F), that is, minimum weight words
in RM(m− 3,m), see Subsection 1.1.2 and Example 2.8. In the next lemma we
analyze the possible ranks and the corresponding subcodes. This analysis divides
the class (C) into five subclasses.

Lemma 4.4. Supports of swe-type X8 in Gk divide into the following distinct
classes:

(i) S has rank 3 and cwe
(

Gk|S
)

= X8 +14X4Z4 +Z8 +
(

W 8 +14W 4Y 4 +Y 8
)

.

(ii) S has rank 1 and cwe
(

Gk|S
)

= X6Z2 +2X4Z4 +X2Z6 +
(

W 8 +2W 4Y 4 +Y 8
)

.

(iii) S has rank 0 and cwe
(

Gk|S
)

= X6Z2 +X2Z6 +
(

W 8 +Y 8
)

.

(iv) S has rank 0 and cwe
(

Gk|S
)

= X8 +Z8 +
(

W 8 +Y 8
)

.

(v) S has rank 0 and cwe
(

Gk|S
)

= 2X4Z4 +
(

W 8 +Y 8
)

.

Proof. If S has rank 3, it is a 3-flat in AG(F) and a codeword in RM(m−3,m). A
Z4-word of cwe-type X8 and with a 3-flat support satisfies all the equations (2.2)
by Examples 1.12 and 2.8. We can take any 2-flat within the 3-flat and change 1’s
to 3’s in these positions obtaining another codeword in Gk. The 3-flat contains 14
different 2-flats and the cwe of the subcode follows.
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If S = {x1,x2, . . . ,x8} has rank ≥ 1 but is not a 3-flat, there is a 2-flat, say,
{x1,x2,x3,x4} in S and we can extend it to a 3-flat {x1,x2,x3,x4,x5,y1,y2,y3},
yi 6∈ S. This 3-flat support is in the class (i) and considering case-by-case we see
that the 2-flat {x1,x2,x3,x4} must have either 1 or 3 positions with a 3-symbol. So
only the combination (ii) can exist and then codewords 11131113 and 11133331
have the same support, that is, in a codeword of cwe-type X 6Z2 both 2-flats include
one 3-position. All other possibilities contradict with dL(Gk) = 8.

The classes (iii)–(v) clearly list all types of supports of rank 0.

In Example 4.10 we will see that when m = 5 only the classes (i) and (ii)
are nonempty. By computer we have checked that with m ∈ {7,9} all classes are
nonempty and it is reasonable to expect that this is true also with m ≥ 11.

4.2 Main results

We state now the main theorem and deduce some corollaries. All the design fam-
ilies in this chapter are new in the sense that they are not listed in [33, Table 3.31]:
the known infinite families of simple t-designs with t ≥ 3. From now on k = 1 and
we consider only the code G1.

Theorem 4.5. The class (ii) defines a 3-
(

q,8, 14
3 (q−8)

)

design.

The proofs of Theorem 4.5 and Corollary 4.6 are postponed to Sections 4.3
and 4.4, respectively.

Corollary 4.6. The class (C) forms a 3-
(

q,8, 32q2−985q+5892
60

)

design.

Corollary 4.7. The class (B) defines a 3-
(

q,8, (q−8)(q−32)(q−49)
120

)

design.

Proof. Subtract λ in Corollary 4.6 from λ in (ii) in Example 2.27.

Corollary 4.8. The class (D) forms a 3-
(

q,8, 56
15(q−8)(q−12)

)

design.

Proof. By Theorem 2.29 the codewords of hwe-type X 8 define a 3-design with re-
peated blocks. We can count its parameter λ ∗ = (q4 −25q3 +1269q2 −21390q+
100648)/120 from cwe(G ⊥

1 ) [52] by Theorems 2.14 and 2.23. This design con-
tains codewords of swe-types Y 8, X8, and X6Y 2 by Lemma 2.21. We drop out all
codewords of swe-types Y 8 and X8, and by (iii) in Example 2.26 and λ ′ in (4.7)
in page 53 we get a 3-design with λ equal to

λ ∗−λ2.26(iii) −λ ′ =
112
15

(q−8)(q−12).

We take the supports of the remaining codewords and by item (v) in Lemma 2.21
we get a simple 3-design with a parameter λ/2.
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Corollary 4.9. The supports of size 8 in G1 form a 3-(q,8,λ ) design with

λ =
q4 −25q3 +693q2 −10030q+44712

120
.

Proof. Add λ in (iii) in Example 2.26 to λ in Corollary 4.8.

Example 4.10 (3-designs with q = 32). The designs of length 32 are quite dif-
ferent from the longer ones. By counting the parameters of all designs above we
see that the classes (iii)–(v) and (B) are empty. All in all we get only three new
designs:

• 3-(32,8,112) design (class (ii))

• 3-(32,8,1792) design (class (D))

• 3-(32,8,5523) design (all supports of size 8)

Duursma et al. [15] noticed that for the length 32 the automorphism group of
G is 3-homogeneous (any 3-subset can be mapped to an arbitrary 3-subset) and
hence codewords of any fixed cwe-type form a 3-design possibly with repeated
blocks. Applying this result to the second design we can split it into 3-(32,8,672)
and 3-(32,8,1120) designs corresponding to the cwe-types X 5Y 2Z and X3Y 2Z3,
respectively.

Interestingly, we have 3-(32,6,112), 3-(32,7,112), and 3-(32,8,112) designs
by (ii) in Example 2.26, Theorem 2.30, and Theorem 4.5, respectively.

Example 4.11 (3-designs with q = 128). Now all classes (i)–(v) and (A)–(D) are
nonempty and we get all five new designs:

• 3-(128,8,560) design (class (ii))

• 3-(128,8,6735) design (class (C))

• 3-(128,8,7584) design (class (B))

• 3-(128,8,51968) design (class (D))

• 3-(128,8,1884347) design (all supports of size 8)

We claim by computer calculations that the design from class (D) no longer splits
into two designs corresponding the cwe-types X 5Y 2Z and X3Y 2Z3.

We can verify also the existence of the following designs by computer:

• 3-(128,8,2688) design (class (iii))

• 3-(128,8,3456) design (classes (iv) and (v))
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and we claim that the class (iv) alone do not define a 3-design.

Example 4.12 (3-designs with q = 512). We do not list the parameters of the five
new designs anymore but remark that, again, by computer we get:

• 3-(512,8,56448) design (class (iii))

• 3-(512,8,72576) design (classes (iv) and (v))

Conjecture 4.13. The class (iii) forms a 3-design.

4.3 Proof of Theorem 4.5

First of all, we want to acknowledge that the following proof and its character sum
methods imitate greatly the proof of Theorem 2.30 from [51]. As we will see in
Section 4.5 Theorems 2.30 and 4.5 are geometrically linked and equivalent. Nev-
ertheless, we present our proof below for self-containedness — it is also shorter
and more uniform than the proof in [51].

To prove the main theorem we have to show that any three distinct coordinate
positions are included in equally many supports of cwe-type X 6Z2 and rank 1.
By Theorem 2.20 we can assume that these positions are 0, 1, and an arbitrary
element a ∈ F∗∗. In this section all supports and codewords are assumed to be of
cwe-type X6Z2 and rank 1 unless otherwise stated.

Lemma 4.4 shows that codewords (of this considered type) can be identified
with their supports and we know that the support is a union of two 2-flats and both
of them contain one 3-position. In other words, codeword is split into two 2-flats
like: 1113 and 1113. This leads to a total of 22 combinations of positions 0, 1,
and a among the two 2-flats and 1’s and 3’s as shown in Table 4.1. The number of
codewords belonging to each combination with a fixed a is also shown.

We verify next the different frequencies and by summing them up we see that
λ is equal to 14(q−8)/3 and the supports, indeed, form a 3-design.

Assume that we have a codeword which is counted in the case (0b), that is,
the corresponding support includes the positions 0, 1, and a. Using permutation
x 7→ x/a and Theorem 2.20 we get a codeword which includes the positions 0,
1/a and 1. This permuted codeword is counted in the case (0b′) with a parameter
1/a ∈ F∗∗. Conversely, the codewords counted in (0b) are permuted versions of
codewords in (0b′) and therefore we need to prove the frequency only for one of
them.

With the same permutation we can link the cases (1a)–(3b) with (1′)–(3′).
Another permutation x 7→ x +1 links the case (0b′) with (0b′′) and cases (1′)–(3′)
with (1′′)–(3′′). We conclude that it suffices to prove only the cases (0a), (0b), and
(1a)–(3b).
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Table 4.1: All combinations of three coordinates

Case
1 1 1 3 1 1 1 3 Frequency
x1 x2 x3 x4 y1 y2 y3 y4

(0a) 0 1 a (q−8)/6

(0b) 0 1 a (q−8)/6

(0b′) 0 a 1 (q−8)/6

(0b′′) 1 a 0 (q−8)/6

(1a) 0 1 a 2(q−8)
3(1b) 0 1 a

(2a) 0 1 a q−8
2(2b) 1 0 a

(3a) 0 1 a q−8
6(3b) 1 0 a

(1′)
0 a 1 2(q−8)

30 a 1

(2′)
0 a 1 q−8

2a 0 1

(3′)
0 a 1 q−8

6a 0 1

(1′′)
1 a 0 2(q−8)

31 a 0

(2′′)
1 a 0 q−8

2a 1 0

(3′′)
1 a 0 q−8

6a 1 0

4.3.1 Syndrome equations

Next we consider the equations which the support {x1,x2,x3,x4,y1,y2,y3,y4} from
Table 4.1 should satisfy. The sets {x1,x2,x3,x4} and {y1,y2,y3,y4} form the two
2-flats and 3’s are thought to be in the positions x4 and y4. By (2.2) and the 2-flat
structure the following equations should hold:

σ1(x1,x2,x3,x4) = 0

σ1(y1,y2,y3,y4) = 0

σ2(x1,x2,x3,x4,y1,y2,y3,y4) = x2
4 + y2

4

S3(x1,x2,x3,x4,y1,y2,y3,y4) = 0

where σ j and S j are the jth elementary symmetric polynomial and the sum of jth
powers, respectively, see Definition 1.11 and Example 1.12.

We abbreviate the regularly used terms σ j(x1,x2,x3,x4) and σ j(x1,x2,x3) to
σ j(xi) and σ ′

j(xi), respectively. Similar notations hold for S3’s and yi’s.
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We simplify the third equation with the first two equations:

σ ′
2(xi)+σ ′

2(yi) = σ1(xi)σ1(yi)+σ ′
1(xi)x4 + x2

4 +σ ′
1(yi)y4 + y2

4 = 0.

By Theorem 1.13 the identity S3 = σ 3
1 +σ1σ2 +σ3 holds and the fourth equa-

tion becomes

S3(xi)+S3(yi) =σ1(xi)
3 +σ1(xi)σ2(xi)+σ3(xi)

+σ1(yi)
3 +σ1(yi)σ2(yi)+σ3(yi) = σ3(xi)+σ3(yi) = 0.

All in all the considered support should satisfy

σ1(xi) = σ1(yi) = 0

σ ′
2(xi) = σ ′

2(yi) (4.1)

σ3(xi) = σ3(yi).

If the variables xi and yi are distinct, the corresponding codeword is of the
desired type and rank. The items (i)–(iii) from Lemma 2.21 imply easily that
the only possible overlapping of the variables xi and yi satisfying (4.1) is the case
where the 2-flats are equal and x4 = y4, that is, they form the support {0,1,a,a+1}
of cwe-type Y 4. So the solutions of (4.1) have one extra codeword which must be
excluded.

4.3.2 Cases (0a) and (0b)

In the case (0a) we set x1 = 0, x2 = 1, and x3 = a. By (4.1) we have x4 = a + 1
and therefore σ ′

2(xi) = a and σ3(xi) = a2 +a. We have four unknown variables yi
which satisfy by (4.1)

σ ′
1(yi) = y4

σ ′
2(yi) = a

σ3(yi) = σ ′
2(yi)y4 +σ ′

3(yi) = aσ ′
1(yi)+σ ′

3(yi) = a2 +a.

We think of σ ′
1(yi) = σ as a free variable and the above equations show that

y1, y2, and y3 are zeros of the polynomial

p(T ) = T 3 +σ ′
1(yi)T

2 +σ ′
2(yi)T +σ ′

3(yi) = T 3 +σT 2 +aT +aσ +a2 +a.

Clearly, interchanging the roles of the variables y1, y2, and y3 affects neither the
above polynomial nor the corresponding codeword. Therefore the polynomials
p(T ) that have three distinct zeros in F correspond to the codewords in the case
(0a) or possibly to the extra codeword.

The polynomial p(T ) has always three distinct zeros in its splitting field as
p(T ) and its derivative p′(T ) = T 2 + a have no common zeros. The question is:
for how many values of σ all zeros of p(T ) are in F.
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We substitute T = U + σ and p(T ) transforms to U3 +(σ 2 + a)U + a2 + a.
For σ =

√
a this polynomial has only one zero in F and we can ignore that case.

We substitute again with U = (σ +
√

a)V and divide by (σ +
√

a)3 and get

V 3 +V +
a2 +a

(σ +
√

a)3 .

By Example 1.21 this polynomial has three zeros in F for (q− 2)/6 values of σ
since a2 +a 6= 0 and x 7→ x3 is a bijection F∗ → F∗. Our substitutions preserve the
number of zeros and hence p(T ) has three zeros in F for (q−2)/6 values of σ .

The codeword of cwe-type Y 4 would have {y1,y2,y3} = {0,1,a}, σ = a + 1,
and p(T ) = T 3 +(a + 1)T 2 + aT . Excluding this extra codeword we have all in
all (q−8)/6 codewords in the case (0a) as claimed in Table 4.1.

In the case (0b) we have x1 = 0, x2 = 1, x4 = a, and x3 = a + 1. The auto-
morphism x 7→ x + 1 links the case (0b) with (0a) and the frequencies are the
same.

4.3.3 Cases (1a) and (1b)

We have x1 = 0, x2 = 1, and y1 = a in the case (1a). Now there are unknown
variables in both 2-flats and the calculations are more complicated. We denote
the variable x3 by x and the elementary symmetric polynomials of y2 and y3 by
σ1 = y2 + y3 and σ2 = y2y3. The variables y2 and y3 are zeros of the polynomial
T 2 +σ1T +σ2 and by Lemma 1.4 the condition Tr

(

σ2/σ 2
1
)

= 0 must hold.
The extra codeword of cwe-type Y 4 has the support {0,1,a,a + 1} and then

σ1 ∈ {1,a,a+1}. On the other hand if σ1 ∈ {0,1,a,a+1} then the 2-flats would
overlap or the support would have rank 3. As rank 3 contradicts (4.1), the only
possible codeword is of cwe-type Y 4. To exclude this extra word we can restrict
ourselves to the cases σ1 ∈ Fa = F\{0,1,a,a+1}. We make this same restriction
also in the forthcoming subsections.

By (4.1) we know that x4 = x+1, y4 = a+σ1, x = aσ1 +σ2 and

x2 + x = aσ2 +aσ1(a+σ1)+σ2(a+σ1) = σ1σ2 +a2σ1 +aσ 2
1 . (4.2)

We substitute the value of x from the third equation to (4.2) and get a quadratic
equation in the unknown σ2

σ 2
2 +(σ1 +1)σ2 =

(

a2 +a
)

σ1(σ1 +1). (4.3)

As σ2 is an element of F, again by Lemma 1.4, the condition

Tr

(

(

a2 +a
)

σ1

σ1 +1

)

= Tr

(

(

a2 +a
)

σ1

σ1 +1
+a2 +a

)

= Tr
(

a2 +a
σ1 +1

)

= 0 (4.4)
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must hold. We simplified the condition using the identity Tr(a2) = Tr(a).
By dividing (4.3) by σ 2

1 from both sides, the other trace condition takes the
form

Tr
(

σ2
σ 2

1

)

= Tr
(

σ 2
2

σ 2
1

+
σ2
σ1

)

+Tr
(

a2 +a
)

+Tr
(

a2 +a
σ1

)

= Tr
(

a2 +a
σ1

)

= 0.

Therefore we should count the number

Na =
∣

∣

∣

{

σ1 ∈ Fa
∣

∣

∣ Tr
(

a2+a
σ1

)

= 0 and Tr
(

a2+a
σ1+1

)

= 0
}∣

∣

∣

=
1
4

1

∑
i, j=0

∑
σ1∈Fa

(−1)
i·Tr
(

a2+a
σ1

)

+ j·Tr
(

a2+a
σ1+1

)

=
1
4
(N0,0 +N0,1 +N1,0 +N1,1)

where Ni, j is the inner sum in the second line.
The number of codewords in the case (1a) is twice the number Na. This can

be seen as follows: for every σ1 which satisfies the trace conditions we have two
solutions σ2 and σ2 + σ1 + 1 for (4.3). The roles of y2 and y3 can be changed
without affecting the codeword and hence σ2 corresponds to one codeword. The
other solution σ2 + σ1 + 1 gives a different codeword since σ1 6= 1. It also satis-
fies the trace condition Tr

(

(σ2 +σ1 +1)/σ 2
1
)

= Tr
(

σ2/σ 2
1
)

= 0 by the identity
Tr
(

(a+1)/a2
)

= 0.
Clearly, N0,0 = q− 4. In the calculation of N0,1 we use the substitution z =

(a2 +a)/(σ1 +1)

N0,1 = ∑
σ1∈Fa

(−1)
Tr
(

a2+a
σ1+1

)

= ∑
z∈F\{a2+a,0,a,a+1}

(−1)Tr(z)

= −(−1)Tr(a2+a)− (−1)Tr(0)− (−1)Tr(a)− (−1)Tr(a+1) = −2.

By using the substitution z = (a2 +a)/σ1

N1,0 = ∑
σ1∈Fa

(−1)
Tr
(

a2+a
σ1

)

= ∑
z∈F\{0,a2+a,a+1,a}

(−1)Tr(z) = −2.

By the substitution z = 1/σ1 we get

N1,1 = ∑
σ1∈Fa

(−1)
Tr
(

a2+a
σ1

+ a2+a
σ1+1

)

= ∑
z∈F\{0,1, 1

a , 1
a+1}

(−1)
Tr

(

(a2+a)z+
(a2+a)z

z+1

)

.
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As in (4.4) we drop z from the last numerator and substitute u = z + 1 and w =
(a2 +a)u.

N1,1 = ∑
u∈F\{1,0, a+1

a , a
a+1}

(−1)
Tr
(

(a2+a)u+a2+a+ a2+a
u

)

= ∑
w∈F\{a2+a,0,a2+1,a2}

(−1)
Tr

(

w+
(a2+a)

2

w

)

= K
(

a2 +a
)

+1

where K
(

a2 +a
)

is the Kloosterman sum, see Definition 1.6 and the remark below
it.By combining the above results we have

Na =
1
4
(

q−7+K
(

a2 +a
))

.

The case (1b) goes almost as above. Now y4 = a, y1 = a+σ1, x = σ 2
1 +aσ1 +

σ2, the equation (4.2) still holds, but instead of (4.3) we get

σ 2
2 +(σ1 +1)σ2 =

(

a2 +a
)

σ1(σ1 +1)+σ 2
1 (σ1 +1)2.

Therefore the task is to calculate the number

N′
a =

∣

∣

∣

{

σ1 ∈ Fa
∣

∣

∣ Tr
(

a2+a
σ1

+σ1 +1
)

= 0 and Tr
(

a2+a
σ1+1 +σ1

)

= 0
}∣

∣

∣

For every σ1 counted in N′
a we get two codewords as in the case (1a) but this time

every codeword is counted three times in the number 2N ′
a. This follows from the

observation that among the three coordinates y1, y2, and y3 we can choose two
coordinates with three ways. The two chosen are identified with σ1 and σ2 and
the third one is equal to σ1 + a. Therefore the number of codewords in the case
(1b) is equal to 2N ′

a/3.
As above we know that N ′

0,0 = q−4. With the substitution z = σ1 +1 we have

N′
0,1 = ∑

σ1∈Fa
(−1)

Tr
(

a2+a
σ1+1 +σ1

)

= ∑
z∈Fa

(−1)
Tr
(

a2+a
z +z+1

)

= −K
(

a2 +a
)

−3

N′
1,0 = ∑

σ1∈Fa
(−1)

Tr
(

a2+a
σ1

+σ1+1
)

= −K
(

a2 +a
)

−3

N′
1,1 = ∑

σ1∈Fa
(−1)

Tr
(

a2+a
σ1

+ a2+a
σ1+1 +1

)

= −N1,1 = −K
(

a2 +a
)

−1.

Then N′
a =

(

q−11−3K
(

a2 +a
))

/4 and the total number of codewords in the
cases (1a) and (1b) together is equal to the number in Table 4.1:

2Na +
2
3

N′
a =

q−7+K
(

a2 +a
)

2
+

q−11−3K
(

a2 +a
)

6
=

2(q−8)

3
.
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4.3.4 Cases (2a) and (2b)

The situation in the case (2a) is: x1 = 0, x4 = 1, and y1 = a. As above we denote
x = x3, σ1 = y2 +y3, and σ2 = y2y3. We have by (4.1) that x2 = x+1, y4 = a+σ1,
and (4.2) holds, but this time the equation for σ ′

2 gives

x2 + x = aσ1 +σ2.

By combining this with (4.2) we get σ2 = σ1

(

aσ1 +a2 +a
)

/(σ1 +1). As we are
interested in roots x which are in F the variable σ1 should satisfy

Tr

(

aσ1 +
σ1

(

aσ1 +a2 +a
)

σ1 +1

)

= Tr
(

a2σ1
σ1 +1

)

= Tr
(

a2

σ1 +1
+a2

)

= 0 (4.5)

by Lemma 1.4. On the other hand σ1 should also satisfy

Tr
(

σ2
σ 2

1

)

= Tr
(

aσ1 +a2 +a
σ1(σ1 +1)

)

+Tr
(

a2σ1
σ1 +1

)

(4.6)

= Tr

(

(

a2 +a
)

(σ1 +1)

σ1(σ1 +1)
+

a2σ1(σ1 +1)

σ1(σ1 +1)

)

= Tr
(

a2 +a
σ1

+a2
)

= 0.

In the first line we added a term which is equal to zero by (4.5).
This time we are interested in the number

Ma =
∣

∣

∣

{

σ1 ∈ Fa
∣

∣

∣ Tr
(

a2+a
σ1

+a
)

= 0 and Tr
(

a2

σ1+1 +a
)

= 0
}∣

∣

∣

which is the number of codewords in the case (2a): for every σ1 satisfying the
trace conditions there is one σ2 and with them we get solutions x and x+1 for the
equation (4.2), but they correspond to the same codeword.

We count the number Ma as above. Clearly M0,0 = q−4 and

M0,1 = ∑
σ1∈Fa

(−1)
Tr
(

a2
σ1+1 +a

)

= ∑
z∈F\{a2+a,a, a

a+1 ,0}
(−1)Tr(z)

= −2− (−1)Tr(a)− (−1)Tr( a
a+1)

M1,0 = ∑
σ1∈Fa

(−1)
Tr
(

a2+a
σ1

+a
)

= (−1)Tr(a)N1,0 = −2(−1)Tr(a).
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We use the substitutions z = 1/σ1, u = z+1, and w =
(

a2 +a
)

u and then

M1,1 = ∑
σ1∈Fa

(−1)
Tr
(

a2+a
σ1

+ a2
σ1+1

)

= ∑
z∈F\{0,1, 1

a , 1
a+1}

(−1)
Tr
(

(a2+a)z+ a2
z+1 +a2

)

= ∑
u∈F\{0,1, a+1

a , a
a+1}

(−1)
Tr
(

(a2+a)u+ a2
u +a

)

= ∑
w∈F\{0,a2+a,a2+1,a2}

(−1)
Tr
(

w+
a3(a+1)

w +a
)

= (−1)Tr(a)K
(

a3(a+1)
)

−2− (−1)Tr( 1
a+1).

We conclude that

Ma =
1
4

(

q−8−3(−1)Tr(a) +(−1)Tr(a)K
(

a3(a+1)
)

)

.

The case (2b) is linked with the case (2a) by the automorphism x 7→ x + 1.
Therefore the total number of codewords in the cases (2a) and (2b) is equal to

Ma +Ma+1 =
2q−16+(−1)Tr(a)

(

K
(

a3(a+1)
)

−K
(

(a+1)3a
))

4
=

q−8
2

by Theorem 1.7. This is exactly the frequency given in Table 4.1.

4.3.5 Cases (3a) and (3b)

We have the following dependencies in the case (3a): x1 = 0, x4 = 1, and y4 = a.
As before we denote x = x3, σ1 = y2 + y3, and σ2 = y2y3. By (4.1) we know that
x2 = x+1, y1 = a+σ1, (4.2) holds, and x2 +x = σ 2

1 +aσ1 +σ2. As in the previous
cases we can solve σ2 = (a + 1)σ1(σ1 + a)/(σ1 + 1) and the trace conditions get
forms

Tr
(

σ2
σ 2

1

)

= Tr
(

(a+1)(σ1 +a)

σ1(σ1 +1)

)

= 0

and

Tr
(

σ 2
1 +aσ1 +σ2

)

= Tr
(

σ 2
1 +aσ1 +

(a+1)σ1(σ1 +a)

σ1 +1

)

= Tr
(

σ 3
1 +a2σ1
σ1 +1

)

= Tr
(

σ 3
1 +a2σ1
σ1 +1

+σ 2
1 +σ1

)

= Tr
(

(a+1)2σ1
σ1 +1

)

= 0.

We claim that the number of solutions to these two mutual trace equations is
equal to Ma+1: the substitution a 7→ a + 1 transforms the middle term in (4.6) to
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the former equation and the middle expression in (4.5) to the latter equation. Like
in the case (1b) every codeword is calculated three times and hence the number of
codewords in the case (3a) is equal to Ma+1/3.

The cases (3a) and (3b) are connected via the automorphism x 7→ x + 1 and
thus the number of codewords in the case (3b) is equal to Ma/3. The total number
of codewords in the cases (3a) and (3b) is then

Ma+1 +Ma

3
=

q−8
6

as claimed in Table 4.1. This concludes our proof for the main theorem.

4.4 Proof of Corollary 4.6

We prove that the number of supports of swe-type X 8 that include three fixed
coordinates does not depend on the coordinates.

Let us consider some consequences of Definition 2.11 and Corollary 2.32.
If c ∈ G1 is some codeword with three fixed coordinates, we can choose the
corresponding positions of φ(c) either from cL or cR. These eight left/right-
combinations of “binary” positions give us sets of codewords which we can count.

Take for example all three positions from the left side. The codewords of
φ(G1) that include these “binary” positions are images of Z4-codewords that have
either 1 or 2 in the three coordinates. If some position is chosen from the right
side then the corresponding Z4-codeword should have either 2 or 3 in this co-
ordinate. We illustrate half of the combinations in Table 4.2. The remaining four
combinations are obtained by multiplying the whole table by −1.

By Corollary 2.32 there are λb = (2q−4)(4q−17)/60 supports φ(c) of size
8 in φ(G1) containing three “binary” positions. In Table 4.2 we list all possible
cwe-types of the corresponding Z4-codewords c of Lee weight 8. The frequency
column gives the number of codewords in one column.

In the case (a) the frequencies come from (i) in Example 2.26 and in the cases
(b) and (c) from Table 4.3 or [51]. We conclude that the codewords in the case
(d) in all left/right-combinations, that is, the codewords of swe-type X 8, form a
3-design with repeated blocks and

λ ′ = 8? = 8
(

(2q−4)(4q−17)

60
− 5(q−8)

3
−1
)

=
4(4q2 −75q+404)

15
. (4.7)

We make this design simple using Lemma 4.4, Example 2.28, and Theorem
4.5. For every codeword c of swe-type X 8 there is a codeword −c with the same
support and it can be excluded. This settles the supports of rank 0. For the supports
of rank 3 and 1 there are still 7 and 1 extra codewords, respectively, and therefore
the simple design has

λ =
λ ′

2
−7λ2.28 −λ4.5 =

32q2 −985q+5892
60

.



54 New 3-designs from codes G1

Table 4.2: Half of the eight left/right-combinations

Case LLL LLR LRL RLL Frequency

(a) 222 2 222 2 222 2 222 2 1

(b)
111 1112 113 1132 131 1132 311 1132 2(q−8)

3111 1332 113 3332 131 3332 311 3332

(c)
211 1111

213
213

1113
1333

231
231

1113
1333

211 1111
q−8

3211 1133 211 1133
211 3333 211 3333

(c)
121 1111

123
123

1113
1333

121 1111
321
321

1113
1333

q−8
3121 1133 121 1133

121 3333 121 3333

(c)
112 1111 112 1111

132
132

1113
1333

312
312

1113
1333

q−8
3112 1133 112 1133

112 3333 112 3333

(d)
111 11111 113 11113 131 11113 311 11113

?111 11133 113 11333 131 11333 311 11333
111 13333 113 33333 131 33333 311 33333

Total λb λb λb λb λb

4.5 Link between 3-designs with block sizes 7 and 8

There is a considerable similarity between the proofs of Theorems 2.30 and 4.5:
the calculations involve similar exponential sums and Kloosterman sum identities,
and also λ ’s are equal. This suggests that there might be a relation between the
blocks of these designs. Indeed, a strong structural connection is illustrated in
Table 4.3 and explained below. This link makes Theorems 2.30 and 4.5 equivalent
and §4.3 gives us a simpler and more uniform proof for Theorem 2.30 as the
original one [51].

We assume that we have three fixed coordinates and consider blocks contain-
ing them. The corresponding Z4-symbols in these positions are shown in the
Fix-column. Every block of size 8 is viewed as a codeword of cwe-type X 6Z2

and rank 1 but the blocks of size 7 are viewed as codewords of cwe-types X 6Y ,
X4Y Z2, and X2Y Z4 depending on the situation. The case notations refer to Table
4.1.

The correspondence between the two designs associates a block of size 7 with
a block of size 8 if and only if the difference of the corresponding codewords is in
the class (i), i.e., the support of the difference is a 3-flat.

We recall a few facts from the affine geometry, see Subsection 1.1.2: Every
set of three points defines a unique 2-flat. Furthermore, any 2-flat and a fifth point
determine a unique 3-flat. By (iii) in Lemma 2.21 a support of size 7 does not
contain a 2-flat and thus any four points within a block of size 7 can be uniquely
completed to a 3-flat. The intersection of two 3-flats can have only 0, 1, 2, 4, or 8
points.
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Table 4.3: Structural dependence of blocks in Theorems 2.30 and 4.5

Case
Theorem 2.30 → Theorem 4.5 Theorem 4.5 → Theorem 2.30

Fix Comb Freq Fix Comb Freq

(0a)

111 1112

2(q−8)
3

1
¯
1
¯
1
¯

3
¯
1113

q−8
6

3
¯
3
¯
3
¯
13

¯
111 13

¯
3
¯
3
¯
3
¯
111

1
¯
1
¯
1
¯

33
¯
111 111 2111

111 1332 1
¯
1
¯
1
¯

3
¯
1113

3
¯
1
¯
1
¯
33

¯
113 13

¯
3
¯
1
¯
1
¯
133 3

1
¯
1
¯
1
¯

13
¯
113 111 2 133

(1a)

112 1133

q−8
3

1
¯
1
¯
1 1

¯
3
¯
113

2(q−8)
3

3 3
¯
3
¯
1
¯

1
¯
311 2 1

¯
3 3

¯
3
¯
1
¯
311

1
¯
1
¯
1 3

¯
1
¯
311 112 3 311

112 1133 1
¯
1
¯
1 1

¯
3
¯
113

3 3
¯
1
¯
1
¯
3
¯
311 2 1

¯
13

¯
3
¯
1
¯
133

1
¯
1
¯
1 1

¯
3
¯
311 112 1 133

(1b)

112 1111 1
¯
1
¯
3 1

¯
3
¯
111

1 3
¯
3
¯
3
¯

3
¯
111 4 3

¯
13

¯
3
¯
3
¯
111

1
¯
1
¯
3 1

¯
3
¯
111 112 1 111

112 3333 1
¯
1
¯
3 1

¯
3
¯
111

1 1
¯
1
¯
1
¯

1
¯
111 4 3

¯
3 3

¯
3
¯
3
¯
333

1
¯
1
¯
3 3

¯
1
¯
111 112 3 333

132 1113

q−8
3

1
¯
3
¯
1 1

¯
1
¯
113

q−8
2

(2a) 3 3
¯
3
¯
1
¯
1
¯
311 3 1

¯
3 3

¯
3
¯
1
¯
311 2

1
¯
3
¯
1 1

¯
1
¯
311 132 1 311

312 1113 3
¯
1
¯
1 1

¯
1
¯
113

(2b) 3 3
¯
3
¯
1
¯
1
¯
311 3 1

¯
3 3

¯
3
¯
1
¯
311 2

3
¯
1
¯
1 1

¯
1
¯
311 312 1 311

132 3331 1
¯
3
¯
3 1

¯
1
¯
111

q−8
6

(3a) 1 1
¯
1
¯
1
¯

1
¯
111 3

¯
3 3

¯
3
¯
3
¯
333 2

1
¯
3
¯
3 1

¯
1
¯
111 132 1 333

312 3331 3
¯
1
¯
3 1

¯
1
¯
111

(3b) 1 1
¯
1
¯
1
¯

1
¯
111 3

¯
3 3

¯
3
¯
3
¯
333 2

3
¯
1
¯
3 1

¯
1
¯
111 312 1 333

In Table 4.3 we describe all combinations that need to be considered. All other
cases come with the automorphisms as in Section 4.3. Every combination has
three rows: original codeword in the first row, the linking codeword with a 3-flat
support in the second row, and their sum in the third row. By suitable positioning
of 1’s and 3’s within a 3-flat we get the required connections. However, this is not
a 1–1 correspondence as we can sometimes associate a block of one design with
several blocks of the other design. This number is indicated in the Comb-column.

For example, in the first case in (1a) we can choose the position with 1 in the
3-flat from the two positions with 3’s in the original codeword. One 2-flat within
the 3-flat is indicated by underlining its coordinates. As the 3-flat and the sum
intersect in 5 points the sum has rank 1 and one of the 2-flats is underlined.
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The frequencies in the right side can be taken from Table 4.1 and then the
frequencies in the left side can be counted from the relations in the table. For
example, in the case (0a) we can construct one block of size 8 from one block of
size 7. On the other hand, from one block of size 8 we can construct four blocks
of size 7. Hence in this case there must be four times as many blocks in Theorem
2.30 as in Theorem 4.5.



Chapter 5

New 3-designs from codes G2, G4,
G8, and G16

In this chapter we generalize all the results from Chapter 4 for codes Gk with
k ∈ {2,4,8,16}. The parameters of the 3-designs are the same for every k.

5.1 Main results

The results are presented compactly with the class notation from Section 4.1.

Theorem 5.1. The class (ii) forms a 3-
(

q,8, 14
3 (q−8)

)

design for k∈{2,4,8,16}.

The proof of this main theorem is postponed to the next section.

Corollary 5.2. The supports of size 7, the class (C), and the class (B) define 3-
designs when k ∈ {2,4,8,16}.

Proof. The link in Section 4.5 does not depend on k and therefore Theorem 2.30
holds for those values of k for which Theorem 5.1 holds. Also the arguments in
the proofs of Corollaries 4.6 and 4.7 are valid for every k.

Corollary 5.3. The class (D) and the supports of size 8 form 3-designs when k ∈
{2,4,8,16}.

Proof. The proofs of Corollaries 4.8 and 4.9 need the knowledge of cwe(G1) or,
actually, the number of codewords of hwe-type X 8. We could not find any res-
ults about cwe(Gk) in the literature but we suspect that it is exactly the same as
cwe(G1). Fortunately, we can count below that the number of supports in the
class (D) is the same for all k. As the number of other supports of hwe-type X 8 is
already known to be the same for the considered values of k, the claim follows.

We know by (iv) and (v) in Lemma 2.21 that the codewords of swe-type
X6Y 2 are of cwe-type X5Y 2Z, X3Y 2Z3, and XY 2Z5, and that there are always two
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codewords for one support. Therefore we count only the codewords of cwe-type
X5Y 2Z and half of the codewords of cwe-type X 3Y 2Z3.

Let c ∈ Bk be a codeword with weight 6. If we view c as a word of cwe-type
X6 in Zq

4, we see that it satisfies the two equations on the right in (2.2). We can add
an odd number, say s, of 2’s in arbitrary positions yi without affecting the validity
of these equations, so that the first equation will also hold. When the equation

σ2(χ(c)) =
s

∑
i=1

y2
i

is satisfied we have a codeword in Gk.
Let us count the number of supports of cwe-type X 5Y 2Z, which means that

s = 3. We can choose a 3-position y1 in 6 ways from S = χ(c). Let y2 get all q−6
values outside the support S and this determines the third position y3 uniquely. If
y3 is in S, we have a codeword of cwe-type X 6Y or X4Y Z2. Excluding these 6
choices we have q− 6− 6 codewords of cwe-type X 5Y 2Z. Every codeword was
counted twice as the roles of the variables y2 and y3 can be changed. With the
choices of y1 there are 6(q−12)/2 = 3(q−12) codewords d of cwe-type X 5Y 2Z
such that µ(d) = c.

The above considerations go similarly with supports of cwe-type X 3Y 2Z3.
Now s = 5 and we choose 3 positions from S with

(6
3

)

= 20 ways but every
two choices correspond to the same support. Hence we consider only 10 dif-
ferent choices. Now y1, y2, and y3 are fixed within S and we let y4 go through
F \ S. This determines y5 and if it is in S we get codewords of cwe-types X 4Y Z2

and X2Y Z4. Again, the roles of y4 and y5 are interchangeable and we have
10(q−12)/2 = 5(q−12) different supports.

We can lift c to a support of swe-type X 6Y 2 with 8(q−12) different ways. By
Theorem 2.23 and (i) in Example 2.27 there are for every k

8(q−12)
q−8

6

(

q
3

)/(

6
3

)

=
56
15

(q−8)(q−12)

(

q
3

)/(

8
3

)

supports in the class (D) and this corresponds to λ in Corollary 4.8.

The Lee weight distributions of the codes Gk are equal [22] and also the coset
Lee weight distributions of these codes are the same [27]. In Chapter 3 we intro-
duced a unified decoding algorithm for all these codes. It would be surprising if
they would not yield designs with the same parameters.

Conjecture 5.4. All the results in Chapter 4 hold for every k.

5.2 Proof of Theorem 5.1

We have the same situation as in Section 4.3 except k 6= 1. The case notation refers
to Table 4.1.
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5.2.1 Syndrome equations

We simplify the equations (2.2) as in Subsection 4.3.1. Assume we have a code-
word in the class (ii) with a support {x1,x2,x3,x4,y1,y2,y3,y4} such that xi’s and
yi’s form the two 2-flats, respectively. Assume further that the codeword is of
cwe-type X6Z2 and the two 3-symbols are in the positions x4 and y4. The support
should then satisfy

σ1(xi) = σ1(yi) = 0

σ ′
2(xi) = σ ′

2(yi) (5.1)

S2k+1(xi) = S2k+1(yi).

For the definition of σ ′
2 see Subsection 4.3.1.

We could use Theorem 1.13 to represent the last equation with σ ’s. When k
is 2 and 3 this equation becomes σ2(xi)σ3(xi) = σ2(yi)σ3(yi) and σ2(xi)

3σ3(xi)+
σ3(xi)

3 = σ2(yi)
3σ3(yi)+σ3(yi)

3, respectively. This suggests that it may be sim-
pler to keep the last equation in the power sum form.

5.2.2 Cases (0a) and (0b)

By (i) in Example 2.27 there are (q− 8)/6 codewords of Hamming weight 6 in
Bk that contain the three fixed coordinates. These codewords can be uniquely
lifted to codewords in Gk of cwe-type X6Y : the codeword of Bk satisfies two of
the four equations in (2.2) and suitably positioning a single 2 makes the remaining
two equations hold, too. This 2-symbol can not be within the original support of
size 6 as dL(Gk) = 8.

As in the case (0a) in Table 4.3 we choose two 3-positions in three different
ways outside the three fixed positions and lift the corresponding word uniquely to
Gk as above. We have all in all (q− 8)/6 + 3(q− 8)/6 = 2(q− 8)/3 codewords
of swe-type X6Y in the case (0a) in Table 4.3 and therefore (q−8)/6 codewords
in class (ii). The value in Table 4.1 is valid for all k and the case (0b) comes with
automorphisms as in Subsection 4.3.2.

Actually, we could replace Subsection 4.3.2 with the link in Section 4.5 and
the above argument.

5.2.3 Cases (1a) and (1b)

Next we study the case (1a). We have the same situation as in the subsection 4.3.3:
x1 = 0, x2 = 1, x3 = x, x4 = x+1, y1 = a. We simplify notations by setting y2 = y,
y3 = z, and y4 = a+ y+ z.

The syndrome equations (5.1) imply that x = a(y+ z)+ yz and

1+ x2k+1 +(x+1)2k+1 = a2k+1 + y2k+1 + z2k+1 +(a+ y+ z)2k+1.
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Substituting the first equation to the second we get

W (U +V ) = UV

where W = a+a2k
, U = y+ y2k

, and V = z+ z2k
for any k.

By Lemma 1.5 the mapping u 7→ u + u2k
is two-to-one and its image is T0 =

{u ∈ F | Tr(u) = 0}. Now we have for all k the following equation

W (U +V ) = UV W,U,V ∈ T0. (5.2)

In Subsection 4.3.3 we noticed that the number of solutions does not depend
on a when k = 1. Therefore the number of solutions of (5.2) does not depend on W
and this holds now for all k. One value of W = a+a2k

corresponds to a and a+1
simultaneously but this is not a problem since there are equally many codewords
for the values a and a+1 as can be seen via the automorphism x 7→ x+1. Hence
the number of solutions of (5.2) does not depend on a.

In the case (1b) we have x1 = 0, x2 = 1, x3 = x, x4 = x + 1, y1 = y, y2 = z,
y3 = a+ y+ z, and y4 = a. By (5.1) we derive x = a(y+ z)+ yz+(y+ z)2 and

W (U +V ) = UV +(U +V )2 W,U,V ∈ T0.

With the same argument as above the number of solutions depends neither on k nor
on a. Considering U and V as roots of a quadratic equation T 2 +(U +V )T = UV
we see also that the value of

Tr
(

W
U +V

)

determines whether the solution (U,V ) belongs to the case (1a) or (1b).

5.2.4 Cases (2a) and (2b)

Let us consider the situation as in Subsection 4.3.4: in the case (2a) we have x1 = 0
and x4 = 1, and in the case (2b) x1 = 1 and x4 = 0, and in both cases y1 = a. We
denote x = x3, σ1 = y2 + y3, and σ2 = y2y3. One of the equations

x+ x2 = aσ1 +σ2 (2a)

1+ x+ x2 = aσ1 +σ2 (2b)
(5.3)

holds and now the third equation in (5.1) transforms to

x+ x2k
= a2k+1 + y2k+1 + z2k+1 +(a+σ1)

2k+1. (5.4)

Suppose now that k is even. With a telescopic identity

x+ x2k
=

k−1

∑
i=0

(

x+ x2)2i

=
k−1

∑
i=0

(

1+ x+ x2)2i
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we can consider the cases (2a) and (2b) simultaneously and writing (5.4) down
with a Dickson polynomial, see Subsection 1.1.3, we derive

k−1

∑
i=0

(aσ1 +σ2)
2i

= a2k+1 +D2k+1(σ1,σ2)+(a+σ1)
2k+1.

We substitute σ2 = T +aσ1 +a2 and get

k−1

∑
i=0

(

T +a2)2i

= a2k+1 +D2k+1

(

σ1,T +aσ1 +a2)+(a+σ1)
2k+1. (5.5)

By Lemma 1.15 and the identity a2k+1 +(a + σ1)
2k+1 = D2k+1

(

σ1,aσ1 +a2
)

we
have

k−1

∑
i=0

(

T +a2)2i

= D2k+1(σ1,T )+σ 2k+1
1 .

By regrouping the terms we arrive at the equation

Pk(T ) :=
k−1

∑
i=0

(

σ 2k+1−2i+1

1 +1
)

T 2i
=

k

∑
i=1

a2i
. (5.6)

We try to count the solutions T , and hence σ2, of the above equation for each
σ1 ∈ Fa = F \ {0,1,a,a + 1}. This restriction assures that the extra codeword of
cwe-type Y 4 is not included to the solutions, as in Subsection 4.3.3.

The polynomial Pk(T ) is linearized, see Definition 1.9 and [37, Section 3.4].
Below we seek to give a decomposition of this linearized polynomial into linear-
ized factors of degree 2 and to that end we introduce the following two auxiliary
families of polynomials and their properties.

Definition 5.5. ri(s) = ∑2i

j=0 s j and wn(s) = ∑n
i=1
(n

i

)

ri(s)
2n−i

.

Lemma 5.6. The polynomials wn(s) have the following properties:

(i) wn+1(s) = wn(s)2 +
(

s2n
+1
)

wn(s)+ s2n+1
+1 with w1(s) = s2 + s+1;

(ii) wn(s) 6= 0 for every s ∈ F;

(iii) Tr
(

wn+1(s)/wn(s)2
)

= 1;

(iv) w2l−1(s)
2 · (s+1) = D

22l
+1

(s+1,1) is a permutation polynomial.
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Proof. The fact (i) can be seen as follows:

wn+1(s) =
n+1

∑
i=1

((

n
i−1

)

+

(

n
i

))

ri(s)
2n+1−i

=
n

∑
i=0

(

n
i

)

ri+1(s)
2n−i

+
n

∑
i=1

(

n
i

)

ri(s)
2n+1−i

=
(

s2 + s+1
)2n

+
n

∑
i=1

(

n
i

)

(ri(s)+σ 2i

1 (ri(s)+1))2n−i
+wn(s)2

= σ 2n+1

1 + s2n
+1+wn(s)

(

s2n
+1
)

+ s2n
n

∑
i=1

(

n
i

)

+wn(s)2

= s2n+1
+1+wn(s)

(

s2n
+1
)

+wn(s)2.

For the fact (ii) suppose that wn(s) = 0 for some s ∈ F. If s = 1, we see by (i)
inductively that wn(1) = wn−1(1) = · · · = w1(1) = 0 contradicting w1(1) = 1. If
s 6= 1, we have a root W = wn−1(s) ∈ F of the quadratic equation

W 2 +
(

s2n−1
+1
)

W + s2n
+1 = 0

by the recursion formula (i). Lemma 1.4 then implies a contradiction (recall that
m is odd)

Tr

(

s2n
+1

(

s2n−1
+1
)2

)

= Tr(1) = 0.

The same argument applies also for the first polynomial w1(s) = s2 + s+1.
Now the fact (iii) is an easy consequence of (i) and (ii)

Tr
(

wn+1(s)
wn(s)2

)

= Tr

(

1+
s2n

+1
wn(s)

+

(

s2n
+1

wn(s)

)2
)

= 1.

For the fact (iv) we derive by (1.2)

D
22l

+1
(s+1,1)

s+1
= (s+1)22l

+
2l

∑
i=1

(s+1)22l−2i

= s22l

+
2l−1

∑
i=1

(

(s+1)22l−i−1
)2i

= s22l

+
2l−1

∑
i=1

(

r2l−i(s)+ s22l−i
)2i

=
2l−1

∑
j=1

(

2l −1
j

)

r j(s)
22l− j

= w2l−1(s)
2.
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Since gcd
(

22l
+1,22m −1

)

= 1 the Dickson polynomial is a permutation poly-
nomial by Theorem 1.17.

Definition 5.7. Let Qk(T ) be a composition (with respect to the variable T and
from right to left) of k−1 quadratic linearized polynomials

Qk(T ) =
(

T 2 +wk−1(σ1)T
)

◦
(

T 2 +wk−2(σ1)T
)

◦ · · · ◦
(

T 2 +w1(σ1)T
)

.

We will see that the conjecture below implies Theorem 5.1 and hence all
designs in Chapter 4 for every k = 2l which is a power of 2. This would be also a
nice result since often almost every k can be represented as a power of 2 modulo
m.

Conjecture 5.8 (Special case of Conjecture 5.4). For every l ≥ 1 the equation
P2l (T ) = (σ1 +1)Q2l (T ) holds.

Partial verification. We have verified the claim with Mathematica for l = 1,2,3,4.
This explains why we state Theorem 5.1 only for G2, G4, G8, and G16.

Example 5.9. The conjecture can be proven easily without a computer in the first
two cases:

Q2(T ) = T 2 +w1(σ1)T = T 2 +(σ 2
1 +σ1 +1)T

Q4(T ) =
(

T 2 +w3(σ1)T
)

◦
(

T 2 +w2(σ1)T
)

◦
(

T 2 +w1(σ1)T
)

=
(

T 2 +(σ 8
1 +σ 7

1 +σ 5
1 +σ 4

1 +σ 3
1 +σ1 +1)T

)

◦
(

T 2 +(σ 4
1 +σ 3

1 +σ 2
1 +σ1 +1)T

)

◦
(

T 2 +(σ 2
1 +σ1 +1)T

)

=
(

T 2 +(σ 8
1 +σ 7

1 +σ 5
1 +σ 4

1 +σ 3
1 +σ1 +1)T

)

◦
(

T 4 +(σ 3
1 +σ1)T

2 +(σ 6
1 +σ 4

1 +σ 3
1 +σ 2

1 +1)T
)

=T 8 +(σ 8
1 + · · ·+1)T 4 +(σ 12

1 + · · ·+1)T 2 +(σ 14
1 + · · ·+1)T

We mention that in the cases k = 3,5,6 we do not get a decomposition like
Qk(T ) and it may be that this approach is not applicable when k 6= 2l .

The next theorem shows how we can count the number of solutions of (5.6)
and complete our proof using the decomposition of Q2l (T ) and Conjecture 5.8.

Theorem 5.10. For every l ≥ 1 the equation (σ1 + 1)Q2l (T ) = ∑2l

i=1 a2i
has ex-

actly (q−8)/2 solutions which satisfy the conditions σ1 ∈Fa and Tr
(

σ2/σ 2
1
)

= 0.
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Proof. By the definition of Q2l (T ) the equation splits into a chain of 2l −1 nested
equations

(σ1 +1)
[

U2
2l−1 +w2l−1(σ1)U2l−1

]

=
2l

∑
i=1

a2i

U2
2l−2 +w2l−2(σ1)U2l−2 = U2l−1

...

U2
2 +w2(σ1)U2 = U3

U2
1 +w1(σ1)U1 = U2.

(5.7)

We show that the first equation has two roots for (q−8)/2 values of σ1 ∈ Fa and
that when we substitute these roots to the next equation this second equation has
two roots for exactly one of the previous roots. And so on; we can always “drop
down” one of the two roots.

We start now by studying the first equation in (5.7). By Lemma 1.4 and (iv)
in Lemma 5.6 it has two roots if and only if

Tr

(

∑2l

i=1 a2i

w2l−1(σ1)
2(σ1 +1)

)

= Tr

(

∑2l

i=1 a2i

D
22l

+1
(σ1 +1,1)

)

= 0. (5.8)

The denominator in the trace expression is a permutation polynomial with respect
to the variable σ1 and hence (5.8) has exactly q/2−4 solutions σ1 ∈ Fa if

(a) the numerator is nonzero and

(b) every σ1 ∈ {0,1,a,a+1} is a solution.

Let us consider first the fact (a). We calculate the kernel of a linear polynomial
mapping p : F → F, x 7→ p(x) = ∑2l

i=1 x2i
. We claim that

ker p = {x ∈ F | p(x) = 0} = {0,1}

which is equivalent to the identity gcd
(

p(x),x+ x2m)
= x+ x2. Both polynomials

are linearized and let us consider the conventional 2-associates of them (see [37,
Section 3.4] for linearized and conventional 2-associates):

gcd

(

2l

∑
i=1

xi,1+ xm

)

=gcd

(

2l−1

∑
i=0

xi,1+ xm

)

divides

gcd
(

1+ x2l
,1+ xm

)

= 1+ xgcd(2l ,m) = 1+ x.

Then the linearized 2-associate is the claimed x + x2. On the other hand, it is
clear that the kernel contains {0,1}. So the numerator in (5.8) is nonzero because
a ∈ F∗∗.
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In addition, the mapping p is two-to-one and therefore the solutions of the
original equation correspond exactly to the cases with a and a+1 simultaneously,
i.e., the cases (2a) and (2b) are grouped together.

For the fact (b) we consider (5.8) with σ1 ∈ {0,1,a,a+1}. When σ1 = 1 the
denominator in (5.8) is equal to zero and this corresponds to Tr(0) = 0. If σ1 = 0,
then D

22l
+1

(1,1) = 1 and the equation holds. In the case σ1 = a+1 we show that
a quadratic equation

V 2 +D
22l

+1
(a,1)V =

2l+1

∑
i=2

a2i

has a solution which implies

Tr

(

∑2l+1
i=2 a2i

D
22l

+1
(a,1)2

)

= Tr

(

∑2l

i=1 a2i

D
22l

+1
(a,1)

)

= 0. (5.9)

This solution is V = ∑2l

i=0 D
22l

+1−2i
(a,1) which is a sum of Dickson polynomials

with degrees coming from a Dickson polynomial. We get

V 2 +D
22l

+1
(a,1)V =

2l

∑
i=1

D
22l+1+2−2i+1

(a,1)+
2l

∑
i=1

D
22l

+1+22l
+1−2i

(a,1)

+
2l

∑
i=1

D
22l

+1−
(

22l
+1−2i

)(a,1)

=D2(a,1)+D
22l+1

(a,1)+
2l

∑
i=1

D2i(a,1) =
2l+1

∑
i=2

a2i
.

By substituting a 7→ a + 1 in (5.9) we see that (5.8) holds also when σ1 = a and
this completes the proof of the fact (b).

We conclude that the first equation in (5.7) has two solutions U2l−1 and U2l−1 +
w2l−1(σ1) for (q−8)/2 values of σ1 ∈ Fa.

The other equations have two solutions Ui and Ui + wi(σ1) if and only if
Tr
(

Ui+1/wi(σ1)
2
)

= 0. Since

Tr
(

Ui+1 +wi+1(σ1)

wi(σ1)
2

)

= Tr
(

Ui+1

wi(σ1)
2

)

+1

exactly one of the solutions Ui+1 and Ui+1 +wi+1(σ1) satisfies the trace condition
of the next equation. In the last equation we have solutions T =U1 and T +w1(σ1)
but exactly one of them satisfies the condition Tr

(

σ2/σ 2
1
)

= 0:

Tr
(

T +aσ1 +a2

σ 2
1

)

= Tr
(

T
σ 2

1

)

+Tr
(

a
σ1

+
a2

σ 2
1

)

= Tr
(

T
σ 2

1

)

(5.10)
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and

Tr
(

T +w1(σ1)

σ 2
1

)

= Tr
(

T
σ 2

1

)

+Tr
(

1+σ1 +σ 2
1

σ 2
1

)

= Tr
(

T
σ 2

1

)

+1.

We have (q−8)/2 solutions (σ1,σ2) which give us the variables y and z. The
variable x can be solved from exactly one of the equations (5.3). The other solution
x + 1 refers to the same codeword and all in all we have (q− 8)/2 codewords
containing the three coordinates 0, 1, and a.

5.2.5 Cases (3a) and (3b)

The setting and the notation are the same as in the Subsection 4.3.5. This differs
from the previous subsection such that the equations (5.3) are replaced by

x+ x2 = aσ1 +σ2 +σ 2
1 (3a)

1+ x+ x2 = aσ1 +σ2 +σ 2
1 (3b)

(5.11)

so there is one additional term σ 2
1 in both equations. The ideas are exactly the

same as above. By substituting σ2 = T +aσ1 +a2 +σ 2
1 we replace (5.5) by

k−1

∑
i=0

(

T +a2)2i

= a2k+1 +D2k+1

(

σ1,T +aσ1 +a2 +σ 2
1
)

+(a+σ1)
2k+1

and using twice Lemma 1.15 we have

k−1

∑
i=0

(

T +a2)2i

= D2k+1(σ1,T )+(k +1)σ 2k+1
1 .

When k is even we get the same equation (5.6) as above and when k is a power of
2 we can also calculate the number of roots.

Theorem 5.10 holds also in the present case and replacing (5.10) by

Tr
(

T +aσ1 +a2 +σ 2
1

σ 2
1

)

= Tr
(

T
σ 2

1

)

+1

we see that the solutions in this case are exactly those which were ruled out in
the last step of Theorem 5.10. Again the variable x can be solved from one of
the equations (5.11) but this time every codeword is counted three times as in
Subsection 4.3.5. All in all we have (q− 8)/6 codewords containing the three
coordinates 0, 1, and a.
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5.3 Nonequivalence

It is natural to ask whether some of the 3-designs constructed from the codes Gk
are equivalent for some k and k′.

Conjecture 5.11 (BCH). The minimum weight codewords, i.e. the codewords of
Hamming weight 6, generate the codes Bk.

Partial proof. We have verified this claim by computer for codelengths ≤ 29.

By (v) and (iv) in Example 2.8 this conjecture holds for Reed–Muller codes
and RM(m−3,m)⊂Bk ⊂ RM(m−2,m) and therefore the conjecture seems quite
natural.

Theorem 5.12 (Assuming BCH-conjecture). The designs with block size 7 from
the codes Gk, see Theorem 2.30 and Corollary 5.2, are pairwise nonequivalent for
different values of k.

Proof. Suppose we have two equivalent designs (F,Bk) and (F,Bk′) with block
size 7 corresponding to values k and k′. So we have a permutation p : F → F
such that Bk′ = p(Bk). We will deduce below that Bk′ = p(Bk) which implies by
Example 2.7 that k′ = k.

Consider arbitrary block b ∈ Bk. It is a support of swe-type X6Y in Gk which
can be divide into two parts: a X6-part which is a support in Bk and one 2-position.
We have all in all 16 blocks in Bk which contain the same X6-part: one support of
cwe-type X6Y and 15 supports of cwe-type X4Y Z2, see Subsection 5.2.2 for the
lifting procedure.

Let b′ = p(b) so b′ ∈Bk′ and b′ consists of two parts as above. If the p-image
of the X6-part of b differs from the X6-part of b′, we have two codewords of weight
6 in Bk′ which intersect in exactly 5 positions. This contradicts with the minimum
distance of Bk′ . We conclude that p must map a minimum weight codeword of
Bk to a minimum weight codeword of Bk′ and assuming BCH-conjecture we see
that p is a permutation of the codes Bk and Bk′ .

We suspect that all designs considered are nonequivalent for every k (if they
are not equal) but we could not prove it.

Conjecture 5.13. All designs in Chapters 4 and 5 are pairwise nonequivalent for
every k.





Conclusions and open problems

We have examined the Z4-Goethals codes and their low-weight codewords. Some
systems of equations connected to them were solved by representing the equations
with Dickson polynomials and also some results about the Dickson polynomials
were obtained in the course of study.

We introduced a unified decoding algorithm for all the codes Gk which corrects
all error patterns up to the error-correcting capability. For the code G1 Helleseth
and Kumar [21] presented even a complete decoding algorithm which suggests
the following problem.

Problem 1. Find a complete decoding algorithm for all the codes Gk.

We showed how several new families of 3-designs with block size 8 can be
defined with the supports of codewords in G1. There are still some sets of sup-
ports that seem to define 3-designs. We have verified some cases by computer
calculations, but have been unable to find general proofs.

Conjecture 4.13. The class (iii) forms a 3-design.

We generalized all the results in Chapter 4 to some codes Gk but, unfortunately,
we could not do this for other values of k than 2,4,8, and 16.

Conjecture 5.4. All the results in Chapter 4 hold for every k.

We could not find any results about cwe(Gk) in the literature. Fortunately, we
could prove Corollary 5.3 without this knowledge.

Problem 2. Is cwe(Gk) the same for all values of k?

The study of the nonequivalence of the 3-designs in Chapter 5 aroused a claim
concerning the structure of two-error-correcting BCH codes.

Conjecture 5.11. The minimum weight codewords, i.e. the codewords of Hamming
weight 6, generate the codes Bk.

This conjecture was used to obtain a partial result of the following general
conjecture.
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Conjecture 5.13. All designs in Chapters 4 and 5 are pairwise nonequivalent for
every k.

The study of this thesis can be expanded to many directions. As sugges-
tions for further research we conclude with two problems which were completely
sidestepped in this thesis.

Problem 3. Can one define 3-designs from larger supports of the codes Gk?

There are probably many designs definable from the supports of codewords in
the codes Gk but the methods in this thesis may be inadequate and cumbersome
for larger supports.

Problem 4. What is the most general adaption of the Assmus–Mattson theorem
in the Z4-domain? Can one use the notion of lifting rank in this setting?
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