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Abstract

The ongoing global financial crisis has demonstrated the importance of a system-
wide, or macroprudential, approach to safeguarding financial stability. An essen-
tial part of macroprudential oversight concerns the tasks of early identification
and assessment of risks and vulnerabilities that eventually may lead to a systemic
financial crisis. Thriving tools are crucial as they allow early policy actions to
decrease or prevent further build-up of risks or to otherwise enhance the shock
absorption capacity of the financial system. In the literature, three types of sys-
temic risk can be identified: ¢) build-up of widespread imbalances, ii) exogenous
aggregate shocks, and iii) contagion. Accordingly, the systemic risks are matched
by three categories of analytical methods for decision support: %) early-warning,
i1) macro stress-testing, and i) contagion models. Stimulated by the prolonged
global financial crisis, today’s toolbox of analytical methods includes a wide range
of innovative solutions to the two tasks of risk identification and risk assessment.
Yet, the literature lacks a focus on the task of risk communication.

This thesis discusses macroprudential oversight from the viewpoint of all three
tasks: Within analytical tools for risk identification and risk assessment, the focus
concerns a tight integration of means for risk communication. Data and dimension
reduction methods, and their combinations, hold promise for representing multi-
variate data structures in easily understandable formats. The overall task of this
thesis is to represent high-dimensional data concerning financial entities on low-
dimensional displays. The low-dimensional representations have two subtasks: i)
to function as a display for individual data concerning entities and their time series,
and 74) to use the display as a basis to which additional information can be linked.
The final nuance of the task is, however, set by the needs of the domain, data and
methods. The following five questions comprise subsequent steps addressed in the
process of this thesis:

What are the needs for macroprudential oversight?

What form do macroprudential data take?

Which data and dimension reduction methods hold most promise for the task?
How should the methods be extended and enhanced for the task?

How should the methods and their extensions be applied to the task?

CUp W=

Based upon the Self-Organizing Map (SOM), this thesis not only creates the Self-
Organizing Financial Stability Map (SOFSM), but also lays out a general frame-
work for mapping the state of financial stability. This thesis also introduces three
extensions to the standard SOM for enhancing the visualization and extraction of
information: ) fuzzifications, i) transition probabilities, and iii) network anal-
ysis. Thus, the SOFSM functions as a display for risk identification, on top of
which risk assessments can be illustrated. In addition, this thesis puts forward the
Self-Organizing Time Map (SOTM) to provide means for visual dynamic cluster-
ing, which in the context of macroprudential oversight concerns the identification
of cross-sectional changes in risks and vulnerabilities over time. Rather than au-
tomated analysis, the aim of visual means for identifying and assessing risks is to
support disciplined and structured judgmental analysis based upon policymakers’
experience and domain intelligence, as well as external risk communication.
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Sammanfattning

Den pagaende globala finanskrisen har pavisat vikten av makrotillsyn, det vill sé-
ga betydelsen av 6vervakning av risker relaterade till det finansiella systemet som
helhet, utover traditionell tillsyn av risker férknippade med enskilda banker och
andra finansiella institut. En vésentlig del av makrotillsyn bestar av identifiering
och bedémning av risker och obalanser, vilka gor det finansiella systemet sarbart for
en systemisk finanskris. Effektiva verktyg for makrotillsyn &r av stor betydelse ef-
tersom de mojliggor tidiga politiska atgérder for att minska eller avvérja ytterligare
Okningar av systemrisker samt andra forbattringar i det finansiella systemets kapa-
citet for chockabsorbering. I litteraturen kan identifieras tre sorters systemrisker: )
uppbyggnad av systemvida makrofinansiella obalanser och risker, ii) exogena ag-
gregatchocker och %) smittoeffekter av chocker. Dessa systemrisker kan paras ihop
med motsvarande kategorier av analytiska modeller for beslutsstod: 7) med tidiga
varningsindikatorer och -modeller, ii) med modeller for stresstestning pa makroni-
va och #4) med sa kallade smittomodeller. Den forsta kategorins modeller stéder
riskidentifiering medan de tva sistnimnda stéder riskbedémning. Den langvariga
globala finanskrisen har lett till en utvidgning av modellerna i den analytiska verk-
tygsladan for makrotillsyn i flera avseenden, framfor allt verktyg for identifiering
och bedémning av risker. Vi saknar emellertid 16sningar pa analytiska modeller
som dven stoder kommunikation av risker.

Denna avhandling behandlar makrotillsyn med fokus pa alla tre ovanndmnda upp-
gifter, det vill sdga analysverktyg for riskidentifiering och riskbedémning som dven
stoder riskkommunikation. Metoder for att reducera mingden och dimensionalite-
ten av data, och deras kombinationer, lampar sig vil for att representera komplexa
data i lattforstaeliga format. Den 6vergripande uppgiften i denna avhandling &r att
projicera stora méngder av flerdimensionella data om finansiella enheter till lag-
dimensionella representationer. Dessa har tva deluppgifter: ¢) att fungera som en
lagdimensionell representation for visualisering av individuella observationer och
deras tidsserier, och ii) att anviinda den lagdimensionella representationen som en
bas till vilken ytterligare strukturell information kan ldnkas. Den slutliga uppgiften
definieras dock av behov relaterade till den underliggande doménen samt de tillim-
pade data och metoder. Foljande fem forskningsfragor omfattar fem pa varandra
efterfoljande steg for att uppna malsidttningen i denna avhandling:

1. Vilka ar behoven fér makrotillsyn?
2. Vilken form och hurudana egenskaper har makrotillsynsdata?

3. Vilka metoder for reduktion av data and dimensionalitet lampar sig bést for
uppgiften i denna avhandling?
4. Hur borde metoderna vidareutvecklas och forbéttras for uppgiften?

5. Hur skall metoderna och deras vidareutvecklingar tillimpas for uppgiften?

I denna avhandling anvinds huvudsakligen den sjilvorganiserande kartan (eng.
Self-Organizing Map, SOM) for att undersoka, analysera och framfor allt visualise-
ra finansiell stabilitet. Utover en applikation kallad den sjélvorganiserande kartan
over finansiell stabilitet (eng. Self-Organizing Financial Stability Map, SOFSM),



ldgger avhandlingen dven fram ett allmént tillvigagangssitt for att kartldgga finan-
siell stabilitet. Med avsikt att forbattra visualisering och utvinning av information
introduceras i avhandlingen, och framfo6r allt i samband med SOFSMen, tre forlédng-
ningar till standard SOMen i form av: ¢) fuzzifieringar, ii) 6vergangssannolikheter,
och #4) nédtverksanalys. Diarmed fungerar SOFSMen som en lagdimensionell re-
presentation for riskidentifiering, ovanpa vilken riskbedéomningar kan illustreras.
Dessutom ligger denna avhandling fram en sjilvorganiserande tidskarta (eng. Self-
Organizing Time Map, SOTM) som mojliggor visuell dynamisk klustrering, vilket i
kontexten av makrotillsyn stoder identifiering av forandringar i risker och obalanser
i tvarsnittsdata 6ver tiden. Syftet med modellerna i avhandlingen &r att fungera
som visuella hjdlpmedel for identifiering och bedémning av risker snarare dn verk-
tyg for automatiserad analys. Darmed fungerar de som stod for att disciplinera
och strukturera politiska beslutsfattares omdéme, vilket méjliggér utnyttjandet av
deras erfarenhet, kunskap och doménspecifik intelligens, savil som hjilpmedel for
extern kommunikation av risker.
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Yhteenveto

Kasilld oleva globaali finanssikriisi on osoittanut, kuinka téirke#d on valvoa ko-
ko rahoitusjérjestelmén yhteisié riskejé, eli makrovakautta, perinteisen yksittaisten
pankkien vakavaraisuuden ja riskien seurannan lisdksi. Keskeinen osa makrovakau-
den valvontaa on riskien tunnistaminen ja arviointi, erityisesti niiden riskien, jot-
ka mahdollisesti johtavat systeemiseen finanssikriisiin. Tehokkaat valvontatyckalut
ovat térkeitd, koska ne mahdollistavat varhaisia, kohdistettuja poliittisia toimia
pienentdméin tai kokonaan estdméan riskien karttumisen sekd muutoin paranta-
maan rahoitusjérjestelmén iskunkestiavyytti. Kirjallisuudessa on identifioitu kolme
systeemisen riskin tyyppié: i) laajalle levinneiden epiitasapainojen ja haavoittuvai-
suuksien kasvu, i) eksogeeniset aggregaattishokit ja 4ii) shokkien tartunta. Niin
ollen myés analyyttiset menetelmit jakautuvat kolmeen vastaavaan kategoriaan: )
ennakkovaroitusindikaattorit ja -mallit, 77) makrotason stressitestit ja ) tartun-
tamallit. Pitkittyneen globaalin finanssikriisin alla on riskien tunnistamiseen ja ar-
viointiin kehitetty laaja valikoima analyyttisid menetelmia. Mallit eivat kuitenkaan
tue kolmatta tehtavié, riskien viestintéa.

Tama vaitoskirja késittelee makrovakauden valvontaa kolmesta nakokulmastas: ris-
kien tunnistaminen, arviointi ja viestintd. Vaitoskirjan painopiste on riskien tunnis-
tamiseen ja riskien arviointiin tarkoitettujen analyyttisten tyokalujen integroinnis-
sa menetelmiin, jotka edesauttavat riskien viestintid. Menetelmét aineiston (eng.
data) méérin ja ulotteisuuden pienentémiseen, ja niiden yhdistelmiit, omaavat omi-
naisuuksia esittdméan moniulotteisen aineiston rakenteita helposti ymmérrettivis-
s muodossa. Viitoskirjan yleinen tehtévé on tuottaa moniulotteisesta rahoitusjér-
jestelmén yksikoiden havainnoista matalaulotteinen esitysmuoto, eli kartta. Mata-
laulotteisella esitysmuodolla on kaksi osatehtdvéé: ¢) toimia perustana yksittiis-
ten havaintojen ja aikasarjojen visualisointiin, ja i) toimia perustana, johon voi-
daan liitt44 muita rakenteellisia liséitietoja. Tehtdvén lopullinen méaritelmé perus-
tuu kuitenkin sovellusalueen, aineiston ja menetelmien ominaisuuksiin ja tarpeisiin.
Seuraavat viisi kysymystéd kuvaavat viitoskirjassa toisiaan seuraavia késiteltyja ai-
heita:

1. Mitké ovat tarpeet makrovakauden valvontaan?
2. Missd muodossa on makrovakauden valvontaan kiytettavé aineisto?

3. Mitkd menetelmét aineiston mééran ja ulotteisuuden pienentédmiseen sopivat
parhaiten tehtavian?

4. Miten menetelmié tulisi laajentaa ja tehostaa tehtdvian?
5. Miten menetelmét ja niiden laajennukset tulisi soveltaa tehtdvain?

Itseorganisoituvan kartan (eng. Self-Organizing Map, SOM) perusteella, timi véi-
toskirja seké luo sovelluksen nimelté itseorganisoituva rahoitusjérjestelmén vakaus-
kartta (eng. Self-Organizing Financial Stability Map, SOFSM), ett laatii yleisluon-
toisen kehyksen rahoitusjérjestelmén vakauden visualisointiin, erityisesti niin sanot-
tuun kartoittamiseen. Vaitoskirja esittdd myos kolme laajennusta, jotka parantavat
tavanomaisen SOMin visualisointia ja tiedon louhintaa: i) sumeutus, ) siirtymé-
todennikoisyydet ja i) verkostoanalyysi. Siten SOFSM toimii matalaulotteisena
perustana riskien tunnistamiseen, jonka péille voi visualisoida riskien arviointia
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koskevia tuloksia. Lisdksi vaitoskirja esittdd myos itseorganisoituvan aikakartan
(eng. Self-Organizing Time Map, SOTM) visuaaliseen dynaamiseen klusterointiin,
joka makrovakausvalvonnan asiayhteydessd mahdollistaa riskien ja haavoittuvuuk-
sien muutosten havainnollistamisen poikkileikkausaineistossa yli ajan. Automaatti-
sen analyysin sijaan mallien tavoitteena on toimia visuaalisena tukena riskien tun-
nistamisessa ja arvioinnissa. N&in ollen mallit toimivat tukena politiikantekijoiden
harkintakyvyn kurinalaistamisessa ja strukturoimisessa, mikd mahdollistaa heidén
alakohtaisen kokemuksen ja tietotaidon hyvéksikéyton, seké yleisené tukena riskien
ulkoisessa viestinnéssa.
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“When the crisis came, the serious limitations of existing
economic and financial models immediately became appar-
ent. [...] As a policy-maker during the crisis, I found the
available models of limited help. In fact, I would go fur-
ther: in the face of the crisis, we felt abandoned by con-
ventional tools.”

— Jean-Claude Trichet, President of the ECB, Frankfurt
am Main, 18 November 2010

1 Introduction

The narrative of the still ongoing global financial crisis — which undeniably has
become an economic crisis, not to say a crisis of economics — has no unambiguous
description. While the many factors directly and indirectly linked to the causes
of the crisis are divisive, the effects of the crisis are less so. The period since the
outbreak of the financial crisis in mid-2007 has been characterized by a number of
multifaceted problems in financial systems and society in general: liquidity issues
in large financial institutions, sovereign debt problems, government interventions
in banks, the collapse of housing and stock markets, overall losses in welfare and
growth, etc. While being divisive, today’s hindsight discussions illustrate a wide
range of so-called systemic risks, vulnerabilities and imbalances that depicted fi-
nancial systems prior to the collapse of Lehman Brothers, and the subsequent
worldwide financial meltdown. Yet, as wisely put by Bezemer (2011), "no one saw
this coming”. The aim herein is to provide tools to better see it coming.

So, what is financial instability and systemic risk? Paraphrasing Justice Potter
Stewart’s definition of explicit content, as noted by Bisias et al. (2012), describes
how vaguely financial instability and systemic risk is commonly viewed: we struggle
in defining it, but we think we know it when we see it. Yet, this is no basis for
measurement and analysis of threats to financial stability, however that is defined.
There is obviously no undisputed definition. In this thesis, from the viewpoint of
the antonym, financial instability is defined as an event that has adverse effects
on a number of important financial institutions or markets (ECB, 2009). Systemic
risk, as defined by the same source, is a risk of widespread financial instability
that impairs the functioning of the financial system, with severe implications on
economic growth and welfare.

Then, how costly is financial instability? Even though few foresaw financial insta-
bilities, the above definition indicates them being of high impact. Patterns of the
past and today are alike, in that financial crises have recurred throughout mone-
tary history. Research, not to only rely on perceived occurrences, has revealed a
doubling of the frequency of financial stress episodes since the end of the Bretton
Woods system in 1973 (Bordo et al., 2001). Numerous sources of evidence sug-
gest that historical financial costs of crises have been enormous. Cardarelli et al.
(2011) show that out of 113 episodes of financial crisis for key advanced economies,
29 were followed by an economic slowdown and an equal number by recessions.



Eichengreen (2004) reveals that the average output loss from a financial crisis is
around 9% of gross domestic product (GDP), whereas the most severe crises caused
a GDP loss of over 20%. Likewise, Hoggarth et al. (2002) find cumulative output
losses from a crisis to be up to 30% of GDP. Dell’ariccia et al. (2008) and Laeven
and Valencia (2008) highlight the importance of banking crises by revealing that
their median losses have been at around 20-25% of GDP. Hence, it is a trivial fact
that early identification of financial instability would be useful, in particular as it
would enable policymakers to make corrective actions prior to the event.

A key concept is, however, an early enough identification of financial instabilities.
The events of last years have illustrated that policy actions introduced at a late
stage may be highly costly for tax payers. The global financial crisis has brought a
large number of European banks to the brink of collapse, leading to bailout costs
beyond anything previously experienced. Data from the European Commission
shows that government assistance to stabilize the European Union (EU) banking
sector exceeded €1.6 trillion at the end of 2010. Though accounting only for a
moderate share of the total cost of a systemic banking crisis, this amounts to more
than 13% of EU-level GDP, not to mention the fact that the sovereign-bank nexus
in Europe still remains to be resolved. Yet, defining financial instability, and its
costs, provide no good means for measuring it. This accentuates a need for tools
for early identification and assessment of systemic risks that might possibly lead
to financial instability. These tools would allow policymakers to introduce policy
actions to decrease or prevent further build-up of risks and vulnerabilities and
otherwise enhance the shock absorption capacity of the financial system.

How should threats to financial stability be measured and analyzed? The current fi-
nancial crisis has highlighted the importance of a system-wide, or macroprudential,
approach to safeguarding financial stability, rather than one being only concerned
with the stability of individual financial institutions (i.e., microprudential). This
accentuates the need for a thorough understanding of not only financial entities, be
they economies, markets or institutions, but also their interconnections, interlink-
ages and system-wide importance. Analytical tools and models provide means for
two types of tasks: i) early identification of vulnerabilities and risks, as well as their
triggers, across financial instruments, markets and institutions, and i:) early assess-
ment of transmission channels of and a system’s resilience to shocks, and potential
severity of the risk materialization. As above noted by Mr. Trichet, the toolbox
of models for macroprudential oversight is, however, still in its infancy (see also,
e.g., Hartmann (2009) and Schou-Zibell et al. (2010)). In addition, Schou-Zibell
et al. (2010) note that the global financial crisis hit advanced economies that lie
in the very forefront of financial stability reporting. Yet, such reporting to a large
extent takes the form of overall qualitative assessments and policy discussions. To
this end, a systematic and data-driven approach to monitoring financial stability
is as likely to support the use of the rich information provided by policymakers’
judgment and experience as the latter is to support the former.

How does this thesis serve the task? While quantitative methods have been applied
for these purposes, they seldom focus on providing policymakers with representa-
tions of data in easily understandable formats. This points to the two tasks of risk
identification and risk assessment lacking the component of risk communication.
A visualization or abstraction of high-dimensional data can be seen as an artifact



supporting the knowledge crystallization process. This thesis puts forward a set of
tools for visual identification and assessment of systemic risks, in order to support
the task of risk communication. The tools, while providing means for a wide range
of analytics, should rather be treated as a starting point than an ending point
for the overall aims of macroprudential oversight, to which a central supporting
ingredient is policymakers’ judgment and experience.

The sequel of the introduction to this thesis is structured as follows. First, Section
1.1 presents the background of macroprudential oversight and briefly positions the
topic of this thesis. Then, Section 1.2 discusses the two key objectives of this thesis
and untangles them into five research questions, whereas Section 1.3 provides a
chapter-specific overview of the thesis. Finally, Section 1.4 presents a list of original
and directly related publications and their contributions.

1.1 Background

A comprehensive macroprudential approach to safeguarding financial stability ob-
viously starts from a thorough understanding of the inner (dys)functioning of the
financial system. In addition to the literature on financial systems, fragilities, risks
and instabilities being broad, the tidal wave of research that the global financial
crisis stimulated is also transforming it at a fast pace. Thus, a wide range of topics
in the literature remain to be disputed. Yet, one notion that few oppose is that
a key aim is to have a resilient and well-functioning financial system. One char-
acterization of such a financial system is through the following three pillars (Fell
and Schinasi, 2005): well-managed financial institutions, efficiently functioning fi-
nancial markets and a strong and robust financial infrastructure. That said, the
frequent incidences of costly financial crises do, however, indicate that the three
pillars of well-functioning financial systems have defects. While each recurrence of
financial instability may have sources of its own kind, market imperfections like
asymmetric and incomplete information, externalities and public-good character-
istics and incomplete markets are a central group of defects. These imperfections,
when being related to a financial sector, may lead to significant fragility of not only
individual entities or firms, but also the entire system (see, e.g., Carletti (2008)).
de Bandt and Hartmann (2002) relate fragilities in financial systems to three causes:
i) the structure of banks, ) the interconnection of financial intermediaries, and dii)
the information intensity of financial contracts. The material risks of these fragili-
ties support the role of governments and other supervisory authorities in addressing
and monitoring financial instability.

To concretize the notion of systemic risk, I follow the definition of three forms of
systemic risk by de Bandt et al. (2009): i) endogenous build-up and unraveling
of widespread imbalances; ii) exogenous aggregate shocks; and 4ii) contagion and
spillover. The first form of systemic risk focuses on the unraveling of widespread
imbalances and is illustrated by a thorough literature on the presence of risks,
vulnerabilities and imbalances in banking systems and the overall macro-financial
environment prior to historical financial crises. Early and later literature alike
have identified common patterns in underlying vulnerabilities preceding financial
crises (see, e.g., Minsky (1982) and Reinhart and Rogoff (2008)). The second type
of systemic risk, exogenous aggregate shocks, have been shown to co-occur with



financial instabilities (see, e.g., Gorton (1988) and Demirgii¢-Kunt and Detragiache
(1998)). Here, an example is the collapse of banks during recessions due to the
vulnerability to economic downturns. The contagion literature provides evidence
on the final, third form of systemic risk, that is, the cross-sectional transmission
of financial instability (see, e.g., Upper and Worms (2004) and van Lelyveld and
Liedorp (2006)). Here, episodes of financial instabilities have been shown to relate
to the failure of one financial intermediary causing the failure of another.

For macroprudential oversight, policymakers and supervisors need to have access to
a broad toolbox of models to measure and analyze system-wide threats to financial
stability. Broadly speaking, tools and models can be divided into those for early
identification and assessment of systemic risks. ECB (2010) provides a mapping
of tools to the above listed three forms of systemic risk: i) early-warning models,
i1) macro stress-testing models, and 4ii) contagion models. First, by focusing on
the presence of vulnerabilities and imbalances in an economy, early-warning models
can be used to derive probabilities of the occurrence of systemic financial crises in
the future (see, e.g., Alessi and Detken (2011) and Lo Duca and Peltonen (2013)).
Second, macro stress-testing models provide means to assess the resilience of the
financial system to a wide variety of aggregate shocks, such as economic downturns
(see, e.g., Castrén et al. (2009) and Hirtle et al. (2009)). Third, contagion and
spillover models can be employed to assess how resilient the financial system is
to cross-sectional transmission of financial instability (see, e.g., IMF (2009)). In
addition, the literature has also provided a large set of coincident indicators to
measure the contemporaneous level of systemic risk (see, e.g., Holl6 et al. (2012)).
While coincident measures may be used to identify, signal and report on heightened
stress, they are not designed for early identification and assessment of risk.

This brief review of tools for safeguarding financial stability illustrates the ap-
proaches for identification and assessment of potential risks, vulnerabilities and
imbalances. Yet, the improvement of ex ante prediction results has at the very
least been modest, as we have clearly not been able to avert major financial crises.
To the defense of such models, their results have been neglected in the past, such
as the signals of the current crisis by Borio and Lowe (2002, 2004). Supported
by the fact that build-up phases prior to crises share common characteristics (see,
e.g., Reinhart and Rogoff (2009)), early-warning models still have merit for early
risk identification. However, one key challenge for risk identification in general and
early-warning models in particular is the changing nature of crises, not the least
due to financial innovation. Thus, there remains two questions: i) How do we bet-
ter communicate results to policymakers and persuade them to take actions? and
it) How should models be adapted to the changing nature of events that potentially
even surpass historical experience? Stand-alone numerical predictions are unlikely
to be the answer to these questions.

In this vein, another conclusion from reviewing tools for safeguarding financial
stability is the lack of visual means for identifying and assessing risks and vulnera-
bilities, particularly in the case of early-warning models. The literature on macro-
prudential oversight clearly illustrates the lack of integration of a third component,
risk communication, with risk identification and assessment tools, an approach that
would particularly support external communication. The soar in the availability
and precision of data — both in terms of the number of reporting economies and



the reporting frequency of the economies — further motivates the development of
tools that provide easily interpretable views of complex, high-volume and high-
dimensional data, not the least for internal use. In the case of contagion models,
as well as macro stress-testing to some extent, visualizations based upon network
and graph theory have been and are still gaining further interest within the policy-
making community. Yet, the task of representing high-dimensional early-warning
indicators on a low-dimensional display has not been addressed in an advanced
manner. As a complement to numerical predictions, these visualization tools are
a starting point for assessing threats to financial stability. The tools move from
artificial intelligence (AI) to intelligence amplification (IA) through the effective
use of information technology (IT) in augmenting human intelligence rather than
only relying on computational human-like intelligence. TA refers to the notion in-
troduced by Ashby (1957), where he stresses the abilities of human intelligence and
the pattern recognition capabilities of the human brain, in particular when aug-
mented with the effective use of visual representations. In this context, Flood and
Mendelowitz (2013) note that visualization tools can make a major contribution in
assessing systemic risks by pointing to the fact that certain tasks of classification
and monitoring can be automated, whereas many require a human analyst, such
as the difficulty to train a well-performing machine to analyze anomalous financial
market activity.

We are obviously fortunate in that rapid advances in IT have enabled access to
massive databases for macroprudential oversight. Alas, analyzing these data is
not completely unproblematic. Except for incompleteness of data due to missing
values and comparability issues due to cross-country differences in national (e.g.,
Hartwig (2007)) and firm-level (e.g., Nobes (2006)) accounting practices, as well
as outliers and skewed distributions (e.g., Deakin (1976)), the dimensionality of
the problem is a central challenge for comprehension. In the case of country-level
financial stability, the large variety of sources of financial stress can be measured
along several subdimensions. Generally, the data for macroprudential oversight
can be said to be of three types: macroeconomic data, banking system data and
market-based data. For instance, the state of a country may be described by
data that proxy asset price developments and valuations, credit developments and
leverage, as well as more traditional macroeconomic and banking system measures,
defined both on a domestic and a global level. Factors that further complicate
the assessment of these high-volume and high-dimensional data are temporal and
cross-sectional dependencies and relations, invoking also assessments of how risk is
distributed in the cross section, e.g., through linkages and exposures among entities.

This particular complexity of the data may be one reason why the interpretability of
the monitoring systems has not previously been adequately addressed. As with raw
statistical tables, standard two- and three-dimensional plots have, of course, their
limitations for high dimensions, not to mention the challenge of including a tem-
poral or cross-sectional dimension or assessing cross sections over time. Although
composite indices of leading indicators and predicted probabilities of early-warning
models enable comparison across countries and over time, these indices fall short in
disentangling the individual sources of vulnerability. More importantly, they lack
the ability of preserving similarity relations in data. The recent work by Interna-
tional Monetary Fund (IMF) staff on the Global Financial Stability Map (GFSM)



(Dattels et al., 2010) has sought to overcome the challenge of disentangling the
sources of distress. The GFSM is a radar chart visualization of six composite in-
dices and has appeared quarterly in the Global Financial Stability Report since
April 2007, as well as in a number of other financial stability reports of national
central banks. Even here, however, by plotting these types of raw indices, rather
than individual indicators, the GFSM leaves a large share of the task of similar-
ity assessment and pattern recognition for the human to solve, where even overall
comparability may be questioned (e.g., areas of radar charts scale non-linearly with
increases in dimensions and depend on their order).

Methods from the fields of data mining and knowledge discovery in databases
(KDD) may help in overcoming these shortcomings, not the least those for ex-
ploratory data analysis (EDA). The notion of EDA was coined by Tukey (1977)
and aims at representing data in easily understandable formats through numerical,
counting and graphical detective work. Data and dimension reduction methods,
and their combination, are common EDA approaches that hold promise for illustrat-
ing multivariate data structures in formats easy to comprehend. Data reductions
provide overviews of data by compressing information into fewer mean profiles,
whereas dimension reductions provide low-dimensional overviews (or mappings) of
similarity relations in data. Along these lines, a key focus of this thesis is to ap-
ply and extend data and dimension reduction methods to support macroprudential
oversight. A particular focus of the extensions is related to two tasks in need of fu-
ture research. First, Chaomei (2005) and Wong et al. (2012) highlight a paradigm
shift from only visualizing structures to visualizing dynamics, not to say dynam-
ics of structures. Second, to be aware of the quality and potential distortions of
dimension reductions, Wismiiller et al. (2010) and Wong et al. (2012) stress that
they are not an end, but provide only a means to display useful information on top
of them, such as evidence, uncertainty and individual data. This leads us to the
objectives of this thesis.

1.2 Research objectives and questions

The background of macroprudential oversight illustrates challenges with predictive
methods and a lack of visual means for the tasks. This motivates building visual
tools for identifying and assessing vulnerabilities and risks. Rather than only re-
lying on conventional early-warning models, a visual approach enables the use of
judgment and domain intelligence in combination with the abstractions of data.
For data to lend for analysis through summarizations and visualizations, one ap-
pealing, yet obvious, approach is the use of data and dimension reduction methods.
I broadly summarize herein the two key research objectives (ROs) of this thesis,
from which I then derive concrete research questions (RQs).

Yet, before turning to the concrete RQs, the commonly used term the task at
hand needs to be defined. The overall task is to represent high-dimensional data
concerning financial entities, be they countries, markets or institutions, on low-
dimensional displays to facilitate the identification, assessment and communication
of vulnerabilities and risks. The low-dimensional representations have two subtasks:
i) to function as a display for individual data and their time series (i.e., observation-
level data concerning financial entities), and i) to use the display as a basis for a



wide range of additional visualizations, such as qualities of models and structural
properties of data. The final nuance of the task is, however, set by the needs of the
domain, data and methods.

In this vein, the thesis touches upon data and dimension reduction in macropru-
dential oversight and can hence be divided into two non-mutually exclusive ROs:

i) RO1: to choose and extend data and dimension reduction methods such that
they meet the needs set by macroprudential oversight and data, and

i1) RO2: to apply data and dimension reduction methods in macroprudential
oversight to be used by and introduced to the policymaking community.

To deliver on RO1, a large number of steps have to be explored, involving an un-
derstanding of the domain, data and methods, in order to compare and extend
methods according to the demands set by macroprudential oversight. The applica-
tions of methods in RO2 can also be supported by a comprehensive understanding
of the needs set by macroprudential oversight, the underlying data and used meth-
ods. An indirect implication of RO2, while being a somewhat hazy concept to be
measured, is to increase awareness and acceptance of the methods in policy use and
to introduce them to the policymaking community, in particular macroprudential
oversight.

The two ROs are broad and may hence be refined to more precise RQs that resemble
the main steps needed for successful fulfillment of the above stated objectives. In
particular, whereas the ROs focus on methods and subsequent applicability in
policymaking, one key ingredient of successful applied research is that it lies on a
strong basis with respect to the domain and the underlying data. This provides
three research themes (RTs), where two RTs derived from the above objectives
(RT2 and RT3) are preceded by a thorough discussion of the general needs for
macroprudential oversight (RT1).

The following five RQs comprise subsequent steps to be addressed in the process
of this thesis:

i) RQ1: What are the needs for macroprudential oversight?
1) RQ2: What form do macroprudential data take?

i11) R(Q)3: Which data and dimension reduction methods hold most promise for
the task?

iv) RO4: How should the methods be extended and enhanced for the task?
v) RO5: How should the methods and their extensions be applied to the task?

The RQs are interdependent in the sense that they define the process of this thesis.
The process is illustrated as blocks in the upper part of Figure 1.1, where the color
coding shows in which RT each block is a member of. The red blocks relate to an
understanding of the macroprudential domain and data, the blue blocks relate to
optimal methods and their extensions, and the green block relates to applications
of the methods to the task at hand. The lower part of the figure illustrates the
interdependence between the RQs by separately relating each question to all other
RQs. In the following, this section provides a more detailed discussion of the RQs.



Research questions:
RQ 1)
RQ 2)
RQ 3)
RQ 4)

RQ 5)

Notes: The figure shows in the upper part the RQs as a process. The interdependence between the
RQs is illustrated by separately relating each question to the previous ones. The coloring of the blocks
divides the RQs into RTs. The red blocks relate to an understanding of the macroprudential domain
and data, the blue blocks relate to deriving optimal methods and their extensions, and the green block
relates to applications of the methods to the task at hand. The color coding of an RQ in the lower part
of the figure refers to where its core contribution lies.

Figure 1.1: Relations between the RQs.

RQ1: What are the needs for macroprudential oversight? The first RQ
sets the basis for the thesis. It focuses on untangling the key tasks of a macropru-
dential supervisory body that aims at safeguarding financial stability. The aim is
to shed light on the functioning of the financial system, and its inherent instabilities
and fragilities, as well as the empirical and theoretical literature describing the con-
cepts. Further, a central theme is also a review of related works on tools and models
for macroprudential oversight, and the entire process, to identify shortcomings and
needs in the literature.

RQ2: What form do macroprudential data take? An issue of all types of
data analysis is the form of the underlying data. The second RQ takes a broad view
on macroprudential data and attempts to map them to the needs of macropruden-
tial oversight. In addition to viewing data through the lens of a policymaker, a
particular focus is obviously on stylized facts about the data. The key aim of the
question, in combination with RQ1, is to provide a solid basis for the rest of the
questions and the main objectives of the thesis.

RQ3: Which data and dimension reduction methods hold most promise
for the task? The main aim of the third RQ is to capture the most suitable
methods for macroprudential oversight in general and the task at hand in particular.
Hence, the basis for the answer to this question lies also in the answers to RQ1
and RQ2, i.e., what are the needs and demands of the domain and data. While
an important task for a comparison of data and dimension reduction methods is to
review and categorize existing methods, the most central problem is still to identify
the methods that hold most promise for the current task.

RQ4: How should the methods be extended and enhanced for the task?
With the aim of extending previous methods, the fourth RQ draws upon not only
the identified methods, but also the needs and data for the task, involving the



answers to RQ1, RQ2 and RQ3. In particular, the identified needs for macropru-
dential oversight set the needs in terms of data, which both on the other hand
impact the chosen method. When then deciding to what direction the methods
are to be extended, one needs to consider the limitations of the used methods, in
addition to the needs for the task. While not having a substantial focus on human-
computer interaction, perception and cognition, a central question is still to bridge
the approaches of the so-called machine learning and information visualization com-
munities. The former addresses mainly mathematical and algorithmic aspects of
data and dimension reductions, whereas the latter focuses on visual representations
of abstract data, and the interaction of humans, to reinforce cognition.

: How should the methods and their extensions be applied to the
task? In the fifth RQ, the focus is on applications of the provided methods as
tools for macroprudential oversight in general and the task at hand in particular.
Again, the answer to this question relies upon the answers to all the previous
questions: RQ1, RQ2, RQ3 and RQ4. The key use of the applications derive from
the needs for macroprudential oversight and data, as discussed in the first two
questions. The approach, on the other hand, comprises the methods provided in
RQ3 and RQA4.

1.3 Overview of the thesis

In this thesis, I aim at indirectly meeting the ROs by following the process set by
the RQs. Figure 1.2 uses the same representation as in Figure 1.1, but relates the
chapters to the process of RQs. In the following, this section discusses the structure
of this thesis chapter by chapter.

Chapter 2 discusses the research approaches and paradigms related to this thesis.
The chapter focuses on discussing the epistemological and methodological view-
point on %) predictions of the future, i) visual representations, and i) building
artifacts (particularly constructs, models and methods). With a critical realistic
and post-positivistic ideology, the thesis leans against data mining as a scientific
method and a design science research approach.

Chapter 3 focuses first on the definition of financial systems, financial instabil-
ity and systemic risks, as well as on the reasons for financial systems being fragile.
Next, it briefly summarizes some theoretical and empirical underpinnings of system-
wide risks, whereafter the chapter focuses on giving an overview of the state of the
art of risk assessment and identification tools used by macroprudential policymak-
ers, especially the use of visualization tools. The chapter concludes by relating
the fragilities, risks and tools to an overall macroprudential oversight process. The
process clearly illustrates the lack of integration of a third component, risk com-
munication, with risk identification and assessment tools. A key notion for the
thesis is the three forms of systemic risk and the respective risk identification and
assessment tools, whereas a key implication is the illustrated scarcity of visual-
ization tools, in particular for the task of identifying the build-up of widespread
imbalances.

Chapter 4, while heavily relying on the previous chapter, discusses data needs
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Figure 1.2: The RQs and the chapters.

and demands for macroprudential oversight, with a particular focus on early-
warning models. The broad notion of macroprudential data is untangled into a
four-dimensional cube representation. Finally, this chapter discusses stylized chal-
lenges related to macroprudential data. A key implication of the chapter is that the
shown characteristics of macroprudential data need to be acknowledged when at-
tempting their use to support macroprudential oversight. More importantly, rather
than aggregating data into composite indices, the chapter further motivates visu-
alizing these complex data in easily understandable formats to support disciplined
and structured judgmental analysis based upon policymakers’ experience.

Chapter 5 provides an overview of data and dimension reduction methods. First,
it discusses the relation of data and dimension reduction to knowledge discovery,
data mining, information visualization and visual analytics. Then, the chapter sets
a basis for a comparison of data and dimension reduction methods by reviewing
the basics of classical methods and relating a comprehensive set of methods in a
taxonomy.

Chapter 6 relates the needs for macroprudential oversight and properties of macro-
prudential data to the characteristics of data and dimension reductions, and their
combinations. The suitability of three classical, or so-called first-generation, di-
mension reduction methods for the task at hand is illustrated with qualitative
comparisons and illustrative experiments. A key implication of the chapter is that
the Self-Organizing Map (SOM) holds most promise for the task at hand.

Chapter 7 presents a number of extensions of the SOM to meet the needs and
demands for both macroprudential oversight and macroprudential data. The en-
hancements not only aid in analyzing and visualizing individual cross-sectional
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and/or time-series data on the SOM, but also contribute to the assessment of over-
all properties and qualities of the SOM. Extensions to be used with a standard
SOM comprise approaches for fuzzification, transition probabilities and assessing
shock propagation. The chapter also presents the stand-alone Self-Organizing Time
Map (SOTM) for assessing how cluster structures evolve over time (i.e., visual dy-
namic clustering).

describes the construction of the Self-Organizing Financial Stability
Map (SOFSM). First, I present the used data, including macro-financial indicators
and a database of financial crises, a model evaluation framework and a model
training framework. Then, the training and evaluation frameworks are applied
for constructing the SOFSM based upon the standard SOM. Finally, I perform a
range of robustness tests on the final SOFSM. The SOFSM can be used to monitor
macro-financial vulnerabilities by locating a country in the financial stability cycle
on a two-dimensional display. Besides of its visualization capabilities, the SOFSM
is evaluated as an early-warning model and calibrated according to policymakers’
preferences between missing a crisis and issuing a false alarm (i.e., type I and II
errors). The SOFSM performs on par with a statistical benchmark model and
correctly calls the crises that started in 2007 in the United States (US) and the
euro area.

applies the SOFSM for risk identification, assessment and communication
by a mapping of financial stability. Thus, the extensions in Chapter 7, except for
the SOTM, are applied to macroprudential oversight in this chapter, including a
fuzzification, transition probabilities and shock-propagation analysis. I also show
how the SOFSM can be used for illustrating results of stress tests and detecting
outliers (i.e., imbalances in macro-financial conditions). The SOFSM is also paired
with a stand-alone predictive model to illustrate the complementary role of such
approaches. Hence, the SOFSM not only provides means for visual early-warning
exercises, but also enable superimposed visualizations of stress tests and shock-
propagation assessments.

applies the SOTM to macroprudential oversight in general and risk iden-
tification in particular by providing two decompositions of global financial crises.
The SOTM performs temporal data and dimension reduction for visual dynamic
clustering. The first decomposition applies a standard SOTM to describe the global
financial crisis that started in 2007. The second section uses a SOTM on time-to-
event data to generalize patterns before, during and after financial crises.

Chapter 11 concludes with a thorough discussion of the key contributions of the
thesis, its limitations and suggestions for future research. The contributions are
discussed both from the viewpoint of dimension reductions and policy (i.e., the
research objectives), whereas limitations set a basis for future research, in addition
to the numerous other questions that remain to be explored.

1.4 Original publications and their contributions

This thesis is based upon a number of publications. While not being listed at the
end of this thesis, as is oftentimes done in paper-based theses, a large share of the
material in this thesis is based upon the contribution, text and material found in
the following 11 papers:
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Paper 1: Sarlin P. Data and Dimension Reduction for Visual Financial Performance
Analysis. Resubmitted (3™ review round) to Information Visualization, Sage
pub (also as TUCS Technical Report No. 1049/2012).

Paper 2: Sarlin P, Eklund T, 2011. Fuzzy Clustering of the Self-Organizing Map: Some
Applications on Financial Time Series. Proceedings of the 8" International
Workshop on Self-Organizing Maps (WSOM’11), Helsinki, Finland, June 13-
15, pp. 40-50, Springer.

Paper 3: Sarlin P, Yao Z, Eklund T, 2012. Probabilistic Modeling of State Transitions
on the Self-Organizing Map: Some Temporal Financial Applications. Intelli-
gent Systems in Accounting, Finance and Management 19(1), pp. 189-203,
Wiley-Blackwell (also as TUCS Technical Report No. 1023/2011).

Paper 4: Sarlin P, 2013. Self-Organizing Time Map: An Abstraction of Temporal Mul-
tivariate Patterns. Neurocomputing 99(1), pp. 496-508, Elsevier (also as
TUCS Technical Report No. 1022/2011).

Paper 5: Sarlin P, Yao Z. Clustering of the Self-Organizing Time Map. Neurocomput-
ing, forthcoming, Elsevier, DOI: 10.1016/j.neucom.2013.04.007 (also as TUCS
Technical Report No. 1062/2012).

Paper 6: Sarlin P, 2013. On policymakers’ loss functions and the evaluation of early
warning systems. Economics Letters 119(1), pp. 1-7, Elsevier (also as TUCS
Technical Report No. 1054/2012 and ECB Working Paper No. 1509/2013).

Paper 7: Sarlin P, Peltonen TA. Mapping the State of Financial Stability. Journal of In-
ternational Financial Markets, Institutions € Money, forthcoming, Elsevier,
DOI: 10.1016/j.intfin.2013.05.002 (also as ECB Working Paper No. 1382/2011
and BOFIT Discussion Paper 18/2011).

Paper 8: Sarlin P, 2013. Exploiting the Self-Organizing Financial Stability Map. FEn-
gineering Applications of Artificial Intelligence 26(5-6), pp. 1532-1539, Else-
vier.

Paper 9: Sarlin P. Decomposing the Global Financial Crisis: A Self-Organizing Time
Map. Pattern Recognition Letters, forthcoming, Elsevier, DOI:
10.1016/j.patrec.2013.03.017.

Paper 10: Sarlin P, 2013. A Self-Organizing Time Map for Time-to-Event Data. Proceed-
ings of the IEEE Symposium on Computational Intelligence and Data Mining
(CIDM’13), Singapore, April 16-19, 2013, IEEE.

Paper 11: Sarlin P. On biologically inspired predictions of the global financial crisis.
Neural Computing & Applications, forthcoming, Springer, DOI:
10.1007/s00521-012-1281-y.

In the following, this section discusses the main papers that this thesis is based
upon, their contribution and the contribution of their authors. The contributions
of the papers, in relation to the RQs, are shown in Figure 1.3.

Paper 1 compares data and dimension reduction methods for overall financial per-
formance analysis. The focus is hence broader than in this thesis, but the results
still apply to the more narrow case of suitability for macroprudential oversight. A
qualitative comparison and illustrative experiments show that out of three first-
generation dimension reduction methods the SOM holds most promise for the task
at hand. A large share of Chapter 6 is based upon this single-authored paper.

Paper 2 provides a fuzzification of the SOM to better judge membership degrees
of data in a particular cluster. Usefulness of the fuzzification to visual monitoring
of temporal data on SOMs is illustrated with two financial applications: financial
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benchmarking of companies and monitoring indicators of exchange-rate pressure.
One part in Subsection 7.2.1 draws upon this joint paper with Tomas Eklund. I
initiated the paper and was in charge of the writing, analyses and simulations.

Paper 3 enhances the SOM paradigm for temporal data by presenting a framework
for computing, summarizing and visualizing transition probabilities on SOMs with
a second-level clustering. The usefulness of the framework is demonstrated on two
SOM models for temporal financial analysis: financial performance comparison of
banks and monitoring indicators of exchange-rate pressure. Subsection 7.2.2 draws
upon this joint paper with Zhiyuan Yao and Tomas Eklund. Again, I initiated the
paper and was the main author.

Paper 4 adapts the SOM for visual dynamic clustering. The two-dimensional rep-
resentation of the SOTM attempts twofold topology preservation: the horizontal
direction preserves time topology and vertical direction data topology. This en-
ables discovering the occurrence and exploring the properties of temporal structural
changes in data. The functioning of the SOTM is illustrated on artificial toy data,
whereas the usefulness of the SOTM in a real-world setting is shown on poverty,
welfare and development indicators. A large share of Section 7.3 is based upon this
single-authored paper.

Paper 5 extends the SOTM by pairing it with classical cluster analysis. This pro-
vides an objective means for the identification of changing, emerging and disappear-
ing clusters over time. The functioning of the second-level clustering is illustrated
on toy data and in two real-world financial settings. A subsection of Section 7.3
is based upon this joint paper with Zhiyuan Yao. I initiated the paper and was in
charge of the writing, analyses and simulations.

Paper 6 introduces a new loss function and usefulness measure for evaluating early-
warning models that incorporate policymakers’ preferences between issuing false
alarms and missing crises, as well as computes the usefulness beyond the best guess
of a policymaker. A large share of Section 8.2 is based upon this single-authored
paper.

Paper 7 creates the SOFSM. It lays out a framework based upon data and dimen-
sion reduction for mapping the state of financial stability, and visualizing potential
sources of systemic risks. As an early-warning model, the SOFSM is shown to per-
form on par with a statistical benchmark model and to correctly call the crises that
started in 2007 in the US and the euro area. A large share of Chapter 8 is based
upon this joint paper with Tuomas Peltonen. I initiated the paper and was the
main author, whereas Peltonen was in charge of the policy context and relevance.

Paper 8 enhances the visualization and extraction of information on the SOFSM.
This is performed by the means of four tasks: %) fuzzification of the map, )
probabilistic modeling of state transitions, #4) contagion analysis and 4v) outlier
detection. While the second extension uses the methods in Paper 3, the rest go
beyond previous approaches. The usefulness of the extensions is shown with sample
visualizations and predictive performance. Parts of Chapter 9 are based upon this
single-authored paper. As Figure 1.3 illustrates, this paper also has a contribution
to the SOM extensions in Section 7.2.

Paper 9 performs visual dynamic clustering using the SOTM on macro-financial
indicators before, during and after the global financial crisis in 2007. It shows
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contribution lies.

Figure 1.3: The RQs and the papers.

thus an application of the SOTM, as well as its combination with classical cluster
analysis, in macroprudential oversight. This paper uses the SOTM for decomposing
and identifying temporal structural changes in macro-financial data. A large share
of Section 10.1 is based upon this single-authored paper.

Paper 10 provides a solution to exploring dynamics across entities in multivariate
data paired with a time-to-event dimension. The SOTM provides means for visual
dynamic clustering. Likewise, by interchanging the z-axis the SOTM provides
means for illustrating patterns in time-to-event data. The time-to-event SOTM is
illustrated on toy and real-world data. The real-world case illustrates dynamics in
macro-financial data before, during and after modern systemic financial crises, that
is, a generalization of the patterns in the previous paper. A large share of Section
10.2 is based upon this single-authored paper. As Figure 1.3 illustrates, this paper
also has a contribution to the SOTM methodology in Section 7.3.

Paper 11 taps into the early-warning literature by introducing biologically in-
spired models for predicting systemic financial crises. Model evaluations show that
biologically inspired models outperform conventional models. Moreover, neuro-
genetic (NG) models are shown not only to provide largest usefulness for policy-
makers as an early-warning model, but also in form of decreased expertise and labor
needed for, and uncertainty caused by, manual calibration of an artificial neural
network (ANN). A large share of Section 9.8 is based upon this single-authored

paper.
Beyond the above discussed papers, the RQs are also supported by or otherwise
related to a number of additional works. Mentioning these papers here is worthwhile
as they are not thoroughly discussed in this thesis. Below, I briefly relate them to
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the above papers.

The findings of Paper 1 are supported by applications to similar domains and
types of data. In Sarlin (2010), I present the first exploratory study of the SOM
as a display of crisis indicators with a focus on the Asian currency crises in 1997-
1998. In Sarlin and Marghescu (2011b), we extend this to a journal article by
an application of the SOM as an early-warning model, including an evaluation in
terms of predictive performance, and with a larger sample of indicators. In Sarlin
(2011), T apply the SOM to a wide range of indicators of sovereign default. All of
these works highlight the usefulness of the SOM for the task and thus obviously
also relate to Paper 7.

The findings of Paper 2 are supported by two works. In Sarlin and Eklund (2013),
we introduced an unsupervised version of the fuzzification approach presented in
Paper 8. Further, I illustrate the usefulness of the fuzzification in Sarlin (2012b),
where a fuzzified SOM is used for mapping poverty, welfare and development indi-
cators.

The transition probability approach in Paper 3 is supported by a work on customer
segmentation and response profiling. In Yao et al. (2012a), we visualize customer
behavior during sales campaigns by the means of transition probabilities. Likewise,
the SOTM in Paper 4 is supported by an application to customer data. To iden-
tify changes in customer behavior, we applied the SOTM for temporal customer
segmentation in Yao et al. (2012b).

The findings in Paper 8 are supported by Sarlin (2012a). The paper is an outcome
of a Chance Discovery workshop and hence relates the SOM paradigm to that of
Chance Discovery, which also includes an illustration of a superimposed network
topology. Moreover, the NG approach in Paper 11 is supported by a similar appli-
cation. In Sarlin and Marghescu (2011a), we use a simpler version of that model
to the prediction of the Asian currency crises of 1997-1998.
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?I can calculate the motions of heavenly bodies, but not
the madness of people.”

— Sir Isaac Newton, after loosing £3 MM (adjusted for
inflation) in the South Sea Bubble, 1719-1720

2  From Epistemology to Methodology

The concepts of epistemology and methodology are indeed different. While the
main concern of epistemology is to define what knowledge is, methodology mainly
relates to how knowledge is acquired. In Boland’s (1991) words, “epistemology is
like a restaurant’s menu whereas methodology is more like a street map showing
how to get to the restaurant”.

This chapter discusses research approaches related to this thesis in general, as
well as the philosophical positioning of this thesis. The first discussion relates
to general research approaches from the viewpoint of paradigmatic assumptions,
including an in-depth consideration of the epistemology of predictions in social
sciences and the constructive approach and design science in information systems
(IS) research. Then, we turn to the positioning of this thesis. It obviously concerns
the paradigmatic assumptions, but also discusses the role of the scientific method
and design science.

2.1 Research approaches

This section discusses research approaches and paradigms from three viewpoints.
We start with a general overview of the paradigmatic assumptions throughout the
history of social sciences. Then, we narrow down by in-depth discussions about two
key aspects to this thesis. First, the discussion concerns epistemological challenges
related to predicting the future. Thus, to support the later discussion of research
approaches taken in this thesis, the epistemological discussion relates not only to the
lack of order and regularity in social sciences, and the motivations of visualizations,
but also to the possibility and value of predictive modeling and evaluations. Second,
it concerns IS research from the direction of the constructive approach and design
science. Generally, the purpose of this section is to provide a philosophical frame,
within which I position this thesis in Section 2.2.

Definition of key terms Before moving on to discuss research approaches,
it is essential to start by defining some of the terms to be used. The terms ap-
proach, paradigm, methodology, method and technique are multifaceted and subject
to multiple interpretations. To clarify their use herein, I provide my interpretation
of their definitions and their intent of use. The broad concept of a research ap-
proach is defined as the combination of assumptions and methods of a researcher,
whereas research paradigms are defined as the generally accepted combination of
philosophical assumptions (or even entire research approaches) within a scientific
community at any particular period of time (see, e.g., Kuhn (1962) and Lakatos
(1970)). Methods and techniques are synonymous concepts that comprise activities
undertaken when conducting research, such as executing and analyzing surveys,
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Paradigmatic

Objectivism assumptions Subjectivism
Realism ———— Ontology —-———— Nominalism
Positivism + — —— Epistemology — —— — Anti-positivism

Nomothetic + — ——  Methodology ———— Ideographic

Notes: The scheme is an adapted version of one in Burrell and Morgan (1979) and draws upon the
categorization therein.

Figure 2.1: Paradigmatic assumptions.

laboratory and field experiments or developing conceptual models. As opposed to
individual methods, methodology concerns the set of methods for valid and reliable
research results under the assumptions of an approach or paradigm.

2.1.1 Paradigmatic assumptions

Throughout the history of social sciences, the commonly accepted research ap-
proaches have evolved between one extreme and the other. Rather than a broad
timeline of philosophy of science, we briefly discuss herein both extremes of research
approaches in social sciences: the objective and subjective approaches. Burrell and
Morgan (1979) provide a categorization that differentiates the approaches based
upon key paradigmatic assumptions about the nature of the social world and how
it ought to be investigated. I focus on the following three assumptions: ontologi-
cal, epistemological and methodological. The assumptions and their objective and
subjective extremes are illustrated in Figure 2.1.

Ontology refers to the question of what is considered to exist, and to what extent
reality is external from or a product of individual consciousness. The objective and
subjective views of reality are realism and nominalism (or idealism). Realists view
the world as one that has hard and intangible structures that exist irrespective
of labels, where reality is independent of observers and equal for all. Nominalists
view the social world as names, concepts and labels based upon which an individual
structures relative reality as a product of one’s own mind. In between these views,
there exist a wide range of realities. One today oftentimes followed ontology is that
of critical (or scientific) realists, who accept the existence of a reality independent
of observers but admit relativism as socially and historically conditioned (Mingers,
2004). Thus, while accepting subjectivity, reality can only be understood by making
use of non-immutable models.

The second paradigmatic assumption of epistemology concerns the nature of knowl-
edge, how it can be acquired and whether it is valid. Epistemological views
range from positivistic law-like regularities to the anti-positivistic view of the non-
existence of objective truths. Positivism assumes that the social world can be ex-
plained and predicted by defining laws and theorems based upon relationships and
regularities in human behavior. Anti-positivism rejects that one can understand
behavior by observing it, and instead stresses the importance of experiencing it.
They take it even further by rejecting the creation of entirely objective knowledge
in social sciences.

Methodology, while being categorized as the third paradigmatic assumption, is a
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product of how one defines reality and knowledge, where the two opposite views
split into nomothetic and ideographic approaches. It is worth remembering that
the concept of methodology refers to the abstract approach undertaken in research
rather than specific methods. The group of nomothetic methods relies on quanti-
tative testing of hypotheses, following the approaches in natural sciences and the
scientific method. It makes use of questionnaires, mathematical analysis, experi-
mental methods, and laboratory and field experiments. Ideographic methods are,
on the other hand, based upon first-hand knowledge of the investigated subject by
getting inside the objects under analysis, which can be acquired through interviews
and field diaries, for instance.

This simplified categorization as per three assumptions can be, and has been, ex-
tended along multiple directions. Burrell and Morgan (1979) themselves included
a fourth dimension representing human nature, in which determinism is individual
behavior driven by the environment and external conditions, and voluntarism be-
havior driven by human’s strong free will and the ability to interact with and affect
the environment. Iivari et al. (1998) view the framework by Burrell and Morgan
from the IS perspective, in which human nature is a part of the ontology, whereas
they include axiology (i.e., ethics) as a category of its own. Further, they also in-
troduce the constructive approach as a third type of research methodology, which
comprises of oftentimes applied IT research divided into conceptual and technical
development.

Burrell and Morgan strictly refer to paradigms being incommensurable in that one
can not simultaneously incorporate the beliefs of more than one paradigm. This
view is not, however, shared by everyone. For instance, livari et al. (1998) assert
that the paradigmatic assumptions are not mutually exclusive. This is sometimes
also referred to as a pluralistic research, where pluralism can occur on the level
of ontologies, epistemologies and methodologies. Whereas this subsection has pro-
vided a broad overview of the paradigmatic assumptions, the following discussion
focuses on the validity of past, present and future knowledge, which lies at the core
of this thesis.

2.1.2 The epistemology of predictions

Throughout the major part of history, the philosophical foundations of economic
forecasting have been somewhat unanimous — as the future has not yet become
present reality, the future cannot be known. Yet, the epistemological problem of
validating knowledge is mainly philosophical, as predictions are a part of both
ordinary people’s and various decision makers’ everyday life, as well as forecasting
being a fruitful branch of science. On the other hand, for each discipline, the
philosophical foundations are the basis of research.

What is a prediction? The term prediction refers to a statement of an expected
occurrence in the future. The statement may be called a forecast, foresight, projec-
tion, prophecy, anticipation or prediction. Due to a lack of consensus, all statements
are herein used with an identical meaning to capture their shared function. A pre-
diction may thus be of several different natures: absolute or probabilistic, likely or
unlikely, single or multiple, conditional or unconditional, short- or long-term, small-
or large-scale, trivial or strenuous, exact or inexact, etc. Moreover, the occurrence
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may refer to a future outcome, event, condition, state or process, but is again used
with an identical meaning for simplicity herein.

Why would we then want to predict? Predictions are an important part in the ev-
eryday world of ordinary people. One might not think of it as predicting, but simply
steering oneself through social space and time necessitates — while concerning the
near future — every layman to make predictions. Likewise, ordinary decision makers
in the corporate world, as well as governmental policymakers, need to find their
way through social space and time, where the future might be distant. Moreover,
the objective of scientific theories, as positivists propose, is to enable predictions.

To shed light on the epistemological problems with predictions, I focus in this
subsection on two questions: i) (how) do we know the past and present? and
it) (how) do we know that the future will be like the past? Thus, we discuss the
validity of both past and present knowledge, as well as knowledge of the future.
The discussion herein draws partly upon the literature review in Wendell and Olick
(1989), in addition to a wide range of other sources to which I provide in-text
references.

(How) do we know the past and present? Descending from the Comtean
era in the mid-19th century, the positivist philosophy of science is based upon
the existence of determinism and causal relationships in reality. Positivists believe
that the objective of scientific theories is predictions (see, e.g., Friedman (1953)),
which implicitly also justifies having perfect knowledge about the past and present.
Several philosophers of science share this rationale: For example, while Neurath
(1959, pp. 282-317) views a science with accurate predictability as successful,
Reichenbach (1951, p. 89) rejects research that does not include the future as a
mere report of the past, and does not define it as knowledge. Along these lines,
the father of sociology, Auguste Comte, stated ‘savoir, pour prévoir’, or to know in
order to foresee. This remained the basis until the mid-20th century.

With post-positivists came an alternated view of justifying past and present knowl-
edge. The problem of knowing the past and present has been asserted by sev-
eral post-positivists, such as Popper (1957), Hanson (1958), Kuhn (1962), Lakatos
(1968) and Feyerabend (1975). The main causes that may prevent one from know-
ing the past and present are, among many others, the following: known theories
may hinder us from seeing the actual causal connections; there may exist an un-
explored hypothesis that explains the causal connections; our sample may not be
representative or random; our measuring techniques may be unreliable and invalid;
data may be coded and interpreted inaccurately; and the specific characteristics
and biases of the researcher may distort or weaken the results (see, e.g., Wendell
and Olick (1989)). Moreover, they believe it is certain — and obvious — that rela-
tions and trends exist in social sciences, but equally certain that they are not laws,
such as those in natural sciences. The essential message is hence that, as knowledge
in social sciences is formed by many complex interrelated networks of forces, we
cannot know past and present accurately and completely. That is, the validity of
past and present knowledge falls short in certainty.

Opposite to the positivist proposition that theories are constructed to make predic-
tions, Popperian criticism proposes by falsificationism that the objective of theories

20



is explanation. By empirical tests, trial and error and the possiblility of falsification,
the explanations of the world of social behavior evolve with experience (Popper,
1957). This conclusion was questioned and further developed by two renowned
philosophers. Kuhn (1962), on the one hand, describes the evolution of scientific
theories in two periods: normal and revolutionary science. In the former, scientists
continue to hold their theories despite anomalies, while in the latter, as anomalous
results build up, a new paradigm is accepted. Lakatos (1970), on the other hand,
asserted that scientific theories with common ideas are categorized in various dif-
ferent research programs. Within them, theories evolve using heuristic rules. The
positive heuristic approaches lead us the right way, while the negative heuristic
approaches lead us away from the wrong way. And the theories in each research
program evolves over time — subsequent developments show that one program is
progressive, while the other is degenerating.

Additionally, as discussed in Weimer (1979), the Weltanschauungen (or world view)
post-positivists asserted carefulness when the justification of past and present
knowledge is accepted; in the extreme, the validity of any knowledge should be
rejected. The relativism and subjectivism associated with the Weltanschauungen
had been, however, already previously criticized by Popper (1962) as something fi-
nally leading to pure nihilism. However, the Weltanschauungen views were over by
the mid-1980s. Weimer mentions the post-post-positivist, or post-Kuhnian, notion
of critical realism as a later stream, which involves the possibility of accepting past
and present knowledge. Regarding the justification of past and present knowledge,
critical realism is more or less a synthesis of the positivist and post-positivist asser-
tions. The critical realists state that the restriction of justification is set by human
abilities and methodologies to observe and sense the past and present. They believe
that the real world can be sensed and measured, but still emphasize the threats of
validity.

Reichenbach (1951, p. 246) suggests that, in every case, inductive reasoning is the
best practice for making statements about the future, and thereby also to explain
the past and present. Likewise, Putnam (1981, p. 79) asserts that induction is not
unjustified, it is an empirical statement. And there does not have to exist a formal
proof that justifies reliance on the empirical method. Coddington (1975) introduces
two concepts related to the problems of understanding knowledge: knowledge defi-
ciencies and surrogates. Whereas surrogates refer to hypotheses about the future
despite a barrier to actually know the future, deficiencies refer to the problem of
knowing the past and present. More precisely, as the present is a cause of action and
inaction of economic agents, their behavior, often based on surrogate knowledge,
cause the present. This particular process operates iteratively by economic agents
analyzing past knowledge, exploiting present options, and evaluating possibilities,
alternatives and probabilities regarding the future. However, as the surrogates
may be, and often also are, used for altering action, they will never be able to
illustrate the real future as it becomes the present. Thus, disregarding how sound
the surrogates and hypotheses are, they will still be probable, uncertain knowledge.

Yet, validating knowledge about the past and present, however that is done, does
not imply having reliable enough knowledge for prediction. And, yet, we have
not even discussed whether past and present knowledge is of any use in actually
knowing the future.
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(How) do we then know that the future will be like the past? As in
the future nothing has happened to know, there is in the strict sense nothing to
know about it. Thus, although knowing the future partly relates to the problem
of knowing the past and present, one can say that the primary problem lies in
that there are no future facts. A popular positivistic answer to this problem is
to not only shape a general statement about past and present, but also one that
applies in the future. In the mid-19th century, the Comtean positivists asserted
that, given sufficient research, scholars will find the invariant systems of society
similarly as natural scientists determine the laws of nature (Comte, 1855; reprinted
in 1974). The particular problem of knowing the future goes, however, back to
18th century, when Hume (1740, p. 89; reprinted in 1975) demonstrated that no
single logical argument justifies a conclusion that the phenomena from the past
resemble the phenomena in the future. In the 20th century, the idea of social
sciences as an analogue to natural sciences was undermined by Collingwood (1946),
among others. He asserted that regularities and patterns in the human nature, in
contrast to uniformities and laws in natural sciences, are historically conditioned,
and thus one can only provide a generalization of a particular phase in human
history. The short-run as well as long-run trends might alter at any time. Thus,
scientific predictions cannot be established on trends.

The historicists, a group of positivist social scientists, deal with the problem of
predicting history. To predict history, they try to explore the trends, rhythms,
laws and patterns of the historical evolution. Popper (1957), however, criticized
the possibility to forecast historical developments influenced by knowledge growth,
and thus the determinism assumed by historicists. The main argument was that
trends are not universal laws, but conditional to a certain period of time. That
is, human history cannot be predicted as history is affected by increases in human
knowledge and the growth of knowledge cannot be foreseen. This does not, however,
exclude all possibilities of social predictability.

Reichenbach (1951, p. 240) attempts to solve the epistemological problem by defin-
ing ‘certain’ knowledge as ‘probable’ knowledge. He argues that, when sample time
series measurements of past events build up, the probability of the forecast to come
true will finally, when the sample is large enough, converge to an accurate and sta-
ble prediction. Likewise, Wendell and Olick (1989) slightly modify Reichenbach’s
(1951, p. 240) concept of a ‘posit’. A posit refers to an epistemological statement
about the future that is treated as a truth although we do not know if it is true.
Wendell and Olick expand the definition from the statement of the most probable
event to any possible event, no matter how improbable it is. Thus, when used on a
conditional basis, posits may be used for planning for alternative futures. However,
these concepts do still not justify predictive knowledge logically. Hume’s criticism,
for example, may be applied to both certain and probable knowledge. Therefore,
the paradox of forecasting derives from the above facts: There are no future facts,
but the only useful and scientific knowledge is knowledge of the future.

So, can we predict the motion of society like we can predict the motion of physical
objects? As Popper asserted, it is impossible to seek for physical laws of motion
in social sciences by applying the method of inductive reasoning. If growth of
human knowledge exists, we cannot forecast what we will know tomorrow. Thus,
independent of the scientific method utilized, the future cannot be foreseen. The
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forecast will, on the other hand, at some point become a present fact — when results
appear in the present, the posterior results appear for falsification. This is, however,
too late for prediction. Thus, attempting to validate knowledge of the future under
the same criteria as those used for validating knowledge of the past and present
might be too strict.

As the process of stating (probable) future outcomes indeed involves assessing the
future effects of present actions, Wendell and Olick (1989) assert the evaluation of
the validity of knowledge solely based upon the correspondence of predictions and
occurred outcomes to be misleading. The main reason is that, as predictions are
conditional, a change in the conditions may lead to a perfectly sound prediction, at
the point of time when it was done, turning out false. One reason to the altering
of conditions may, as a matter of fact, even be the existence of the prediction.
Wendell and Olick have coined these concepts as presumptively true (or false) and
terminally true (or false) predictions. While the former refers to predictions that
are statements of the future that rely on the conditions assessed before the event,
the latter refers to predictions that are assessed after the event. In between true and
false, they consider uncertain judgments as indeterminate. Wendell (1998) provides
a clear explanation of the difference between the two terms, and the self-negating
prophecies:

“The conceptual distinction between presumptively-true and terminally-true asser-
tions about the future is important in evaluating both the utility and truth of pre-
dictions. For example, the prediction that in five years the schools will be unable to
accommodate all the students, if based on reliable and valid population projections,
is presumptively-true at the time it is made. It is useful in making a decision and
designing appropriate social action. Because the city council does decide to build
more schools, the original prediction turns out to be self-denying and terminally false.
Thus, it is much too simple to evaluate a prediction by whether or not the prediction
turns out to be true or false in the end. Predictions can be useful precisely because
they lead to action that negates them.”

There is, however, no objective way to assert that a prediction is presumptively
true, which leads to a somewhat subjective — yet not uninformative — assessment
of the concept.

So, what do all these slightly looser concepts regarding knowledge of the future tell?
Since knowledge of the future has not been, and I suppose cannot be, validated
in a strict sense, these less strict concepts of the future prevent us from ending
up with pure nihilism. While knowledge deficiencies may be reduced by advances
in technology — e.g., approximating more accurately initial conditions and past
trends — the knowledge surrogates have to be formulated on an as-if or what-if
basis. However, to make plausible posits about knowledge of the future, one needs
to possess presumptive evidence for the knowledge surrogates, as is above suggested
by Wendell and Olick (1989). This evidence should, among other things, be based
on explicit, intelligible and logically coherent formulations using all possible relevant
facts from the past and present.

Further, van Vught (1987) has discussed epistemological problems to better deal
with the paradox of forecasting. He confirms that, despite forecasting has grown
as a branch of science, the philosophical foundations concerning knowledge of the
future are weak. Thus, approached from the perspective of philosophy of science,
he proposes five pitfalls:

23



1) The pitfall of false continuity
1) The pitfall of ignoring theories

)
)
i17) The pitfall of corroboration
iv) The pitfall of intuition

)

v) The pitfall of scientific determinism.

The first pitfall refers to the problem that an inductive argument cannot logically
be justified. However, as the past and present are the only potentially available
knowledge domains, we have to show that we have a reason for assuming that the
future will be like the past. This takes us to the second pitfall: We should make use
of theories, as they provide us with reasons to assume that future will be like the
past. The third pitfall states that when there exists several competing theories, the
degree of corroboration should be used for assessing them. For subjective forecast-
ing techniques, the fourth pitfall warns that, since there is no other justification
for the judgments of these techniques than intuition, the danger of subjective error
is thus serious. The fifth pitfall is based upon the notion that any state of any
system at any future can be forecasted when one knows the theories and initial
conditions. This is, however, a scientific dream, since we will never have access
to all the relevant initial conditions, nor be able to formulate the needed laws of
nature. Although a forecaster may make errors of facts (i.e., falsities), the key
purpose of this checklist of pitfalls is to hinder a forecaster from making mistakes
in logical reasoning (i.e., fallacies).!

Makridakis and Wheelwright (1982, p. 3) and Armstrong (2001, p. 2) notice
that forecasting, as a branch of science, has grown, improved and become more
accepted during the past decades. As the scientific discipline has progressed, the
ability to produce and maintain high-quality forecasts has also improved. Among
the research in the discipline, there exists forecasts which do not have one scientific
truth — instead they concentrate on assessing possible, probable and preferable
futures. This particular field is called futures studies. The field has gained in
popularity since the mid-20th century, and thus contributed to the decrease of belief
in the positivist view of one, objective scientific truth. Although being a popular
branch of science, it was not — especially not the prognostic stream of futures
studies — widely acknowledge as a science before the 1980s (see, e.g., Krist6f (2006)).
Futures studies is thus highly related to epistemological anarchism (Feyerabend,
1975) — emphasizing that there should be no single methodological rule leading the
development of the growth of knowledge, which is also named as the ‘anything goes’
approach. Feyerabend asserted that theoretical anarchism would be beneficial for
society in general, since it is more humanitarian and democratic, and less restrictive
in the scientific progress.

2.1.3 Constructive research and design science

The science of design dates back to Simon’s The Sciences of the Artificial (Simon,
1969). He divides research into basic and applied approaches. One common ap-

LA similar forecasting audit checklist with possible falsities has been introduced by Armstrong
(1982).
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plied research field is that of IS, where the key aim is to produce research that
is applicable and useful in the real world. Following March and Smith (1995), IS
research can be split into descriptive (i.e., natural science) and prescriptive (i.e.,
design science), of which the former focuses on understanding the object of study
and the latter on improving performance.

The approaches of constructive and design science research are currently gaining in
popularity in the IS community. Having been pioneered by the early work of Simon
(1969), these approaches in IS research were brought forward by Iivari et al. (1998),
Kasanen et al. (1993), March and Smith (1995), Jirvinen (2001) and Hevner et al.
(2004). The constructive approach is defined by Kasanen et al. (1993) as “problem
solving through the construction of models, diagrams, plans, organizations, etc.”,
whereas design science is defined by Hevner et al. (2004) as an approach that "cre-
ates and evaluates IT artifacts intended to solve identified organizational problems”.
With IT artifacts consisting of constructs, models, methods and instantiations, the
two approaches are in this thesis defined to be essentially the same (henceforth
mainly denoted design science). In this vein, design science concerns the creation
of artifacts that produce solutions to explicit problems in the real-world. It is worth
noting that design science research may produce both conceptual and technical ar-
tifacts. Jarvinen (2001) also notes that an essential part of the approach is to show
the value of a construct by proving that it provides a better solution to a problem
than that of the previously used construct.

An early framework for design science research is the one by March and Smith
(1995). They divide IT research activities into two main types: design science and
natural science. Figure 2.2 presents the framework and its two key dimensions.
The first dimension is based upon outputs of design science research: constructs,
models, methods and instantiations. The second dimension illustrates the activ-
ities of design and natural sciences: build and evaluate, and theorize and justify.
Broadly speaking, a key focus of IT research is to build and evaluate the research
outputs. Likewise, it also theorizes about the artifacts and attempts to justify the
theories. The act of building and evaluating has design science intent, whereas that
of theorizing and justifying has natural science intent.

The four research outputs require a more granular and detailed breakdown. First,
constructs concern the domain-specific vocabulary used for describing the prob-
lem at hand, and can be formal or informal. Second, models comprise construct
statements of the problems and solutions. Third, a method has a construct and a
model as a basis for an algorithm that aims at performing a specific task. Fourth,
with all lower level outputs as its basis, instantiations are realized artifacts that
demonstrate the feasibility and effectiveness of the solution.

Out of the above mentioned studies, the latest addition to design science is provided
by the guidelines by Hevner et al. (2004). They extend the work by March and
Smith (1995) by putting forward seven guidelines to help researchers, reviewers,
editors and readers understand effective design science research. For a complete
design science approach, they suggest the following principles to be followed (the
below quotes are from Hevner et al. (2004)).

i) Design as an artifact: "Design-science research must produce a viable ar-
tifact in the form of a construct, a model, a method, or an instantiation.”
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Research activities
Design science Natural science

Build | Evaluate | Theorize | Justify
Constructs
Research Model
outputs Method
Instantiation

Notes: The table follows that in March and Smith (1995).

Figure 2.2: Research framework in design and natural sciences.

1) Problem relevance: " The objective of design-science research is to develop
technology-based solutions to important and relevant business problems.”

i11) Design evaluation: "The utility, quality, and efficacy of a design artifact
must be rigorously demonstrated via well-executed evaluation methods.”

iv) Research contribution: "Effective design-science research must provide
clear and verifiable contributions in the areas of the design artifact, design
foundations, and/or design methodologies.”

v) Research rigor: ”Design-science research relies upon the application of rig-
orous methods in both the construction and evaluation of the design artifact.”

vi) Design as a search process: "The search for an effective artifact requires
utilizing available means to reach desired ends while satisfying laws in the
problem environment.”

vii) Communication of research: ”Design-science research must be presented
effectively both to technology-oriented as well as management-oriented audi-
ences.”

2.2 The approach in this thesis

This sections discusses the research approach from the viewpoint of the three focus
areas of this thesis: 4) predictions of the future, i) visual representations, and i)
building artifacts. This thesis makes use of data mining methods and the KDD
process for building visual, yet predictive, models for risk identification and as-
sessment. This not only involves developing models, but also methods as per the
needs for the task. While it is essential to discuss the paradigmatic assumptions
with respect to the three above focus areas, the processes of the scientific method
and design science also play a key role in the final execution of the research. The
scientific method is used in that data mining provides means to generate hypothe-
ses, whereas design science relates to the creation of artifacts (including constructs,
models and methods) intended to aid policymakers in understanding and visualiz-
ing the state of financial stability.

Following the introduction to this chapter, the discussion in this section relates to
a restaurant visit in two manners. First, with the aim of picking my type of a
dish from a menu, this section presents a general epistemological and philosophical
positioning of the thesis. The positioning is also approached from the viewpoint
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of the three above mentioned focus areas. Second, for finding my way to the
correct restaurant, this section puts forward the methodology used in this thesis.
The methodological discussion relates to the positioning with respect to two non-
mutually exclusive approaches: data mining as the scientific method and the science
of design.

2.2.1 Philosophical positioning

Research endeavors of various kind seldom explicitly state their philosophical stance.
Indeed, explicating the paradigmatic assumptions is a challenging task. One natu-
ral reason for this lack is that the assumptions oftentimes are subconscious. Nev-
ertheless, the aim herein is to explicate the assumptions that underlie the research
in this thesis.

The paradigmatic assumptions — ontology, epistemology and methodology — are the
key concepts for the philosophical positioning of this thesis. From an ontological
viewpoint, the research in this thesis follows the philosophy of critical realism.
Thus, whereas I establish the existence of a reality independent of a researcher, 1
admit that reality may be partly socially and historically conditioned. Independent
of this slight subjectivity, I judge non-immutable models to be a necessity to assess
reality.

In a broad sense, this thesis takes the viewpoint of post-positivism in the episte-
mological question of past, present and future knowledge. Yet, on a scale between
positivism and anti-positivism, this thesis lies closer to the former. As above partly
discussed, post-positivism is a derivative of positivism. Positivism assumes that
facts produced by research represent an independent, value free reality and that le-
gitimate knowledge can be found from this experience. Post-positivism, or at least
my view of it, differs by acknowledging that knowledge claims are valid in that they
can be logically inferred, even though absolute truth cannot be established, which
averts resorting to epistemological scepticism or relativism, or even nihilism.

In this thesis, I mainly take a nomothetic approach to methodology, but acknowledge
that the wide variety of tasks performed in this thesis might necessitate pluralistic
research, such as the interpretation of visualizations.

Next, I relate the philosophical position to the three focus areas of this thesis:
i) predictions of the future, i) visual representations, and ) building artifacts.
First, while acknowledging the challenges, uncertainty and imprecision of predic-
tions, as noted in the previous section, the post-positivist stance of this thesis still
provides a philosophical foundation for predictions in social sciences. In the strict
sense, 1 believe that one single future cannot be accurately predicted by anyone,
while possible and probable futures can, and should, be assessed.

Second, the epistemological aspects of information visualization opens up a new
dimension related to the concept of knowledge. The key aim of information visu-
alization is often defined as developing insights from collected data, rather than
understanding a specific domain. As noted by Fekete et al. (2008), an ironic, yet
interesting, connection to information visualization is that of Popper’s (1959) falsi-
fication and inductive reasoning. Popper accepted that good theories are those that
have been selected among a set of competing theories in regard of the facts that
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they should describe and does not explain how new theories emerge, only how they
are selected when they do emerge. Popperianism is, however, the only one of the
paradigms stressing the importance of generating insights. In this vein, whereas
the key aim of information visualization is to generate insights, which indeed com-
plements the very standard type of inductive reasoning, Popper asserts that it is
impossible to justify a law by observation. Fekete et al. (2008) point that new in-
sights and ideas generated by information visualization are the seeds for generating
theories through the means of human perception. They describe perceptual and
cognitive capabilities of the human visual system as a fast filter for speeding up the
process of exploring competing theories in collected data. In this thesis, visuals are
seen as a support to inductive reasoning of information visualization, and thus also
theory building. While information visualization leaves room for subjective inter-
pretivistic reasoning, the positivistic viewpoint in this thesis is due to the focus on
quantitatively measurable qualities of visualizations.

Third, design science is seldom explicitly related to paradigmatic assumptions. In
fact, Tivari et al. (1998) introduce the constructive approach as a third type of
research methodology (in addition to nomothetic and ideographic), in which ap-
plied IT research is neither viewed as an objective nor subjective approach. In this
vein, subsequent frameworks, such as Hevner et al. (2004), seldom discuss the po-
sitioning of design science within the paradigmatic assumptions. Niehaves (2007)
notes that one key argument for separating design science from epistemology is
that it is concerned with designing artifacts, whereas only behavioral sciences seek
to produce true knowledge by the means of justified theories. The paradox lies in
that what differentiates design science from design practice is the contributions to
design knowledge. Thus, one can indeed believe that the definition of how humans
can achieve knowledge influences research approaches used in design science. Along
these lines, from the viewpoint of design science, this thesis is also positioned in
terms of paradigmatic assumptions, in addition to following the reasoning of the
constructive approach. The views in Hevner et al. (2004) and March and Smith
(1995) do indeed implicitly have a positivistic connotation. They promote evalu-
ations of artifacts by the means of mathematical formalism and experimentation.
Likewise, as Hevner et al. (2004) note that a key task of design science research
is to produce objective knowledge, which can be applied in design practice, they
implicitly also accept that it is possible to achieve objective knowledge. The posi-
tivistic stance in this thesis involves relying on nomothetic methods in the task of
evaluating artifacts.

2.2.2 Data mining as the scientific method

Viewing the world through a more positivistic than anti-positivistic lens relates the
research in this thesis to the scientific method. Its key characteristic is empirical and
measurable evidence, which is guided by making use of a specific scientific procedure
and specific principles of reasoning. The definition of the scientific method itself,
while not being as bound to temporal changes as the paradigmatic assumptions,
refers back to the very beginning of history of science. One early and simple, yet
illustrative, version of the scientific method is the three-step hypothetic-deductive
approach put forward by Whewell (1857; reprinted in 1967). The process starts
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from an observation of a novelty or the occurrence of an anomaly. Then, it follows
three steps:

i) Generation of conjectures: Given that nothing, or little, is known about
the problem, make use of abductive reasoning for the best possible explana-
tion or guess.

i1) Deduce hypotheses from the conjectures: Generate predictive hypothe-
ses based upon the conjectures.

i11) Empirical testing of the hypotheses: Experimental or observational tests
are performed to empirically evaluate the hypotheses, which may or may not
move towards generalization of theories.

Before turning to data mining in the scientific method, the concepts of KDD and
data mining ought to be clarified. Data mining, or more broadly KDD, is an es-
tablished approach in computer science that concerns ”the nontrivial process of
identifying valid, novel, potentially useful, and ultimately understandable patterns
in data” (Fayyad et al., 1996a), but is a novel, yet emerging, approach to research
in social sciences. In contrast to data mining, traditional econometrics relies upon
hypotheses and model specifications, which are set ex ante based upon economic
theory. For example, Hill et al. (2001, pp. 9-10) present a research format for
empirical economic research where the process starts with a specification of the
variables and the assumed direction of relationships between them based on eco-
nomic theory. However, being more data than theory driven, data mining conflicts
empirical economic modeling. Feelders (2002) asserts three reasons why economic
theories seldom lead directly to a correct specification of a model: ¢) there may
exist rival economic theories, i) the theories rarely specify the functional form
between variables, and iii) the theories might be formulated with a ceteris paribus
clause. Within the econometrics community, iterative, data-driven searching for al-
ternative specifications (i.e., significant estimates) without considering the amount
of search performed has, on the other hand, been called ‘data mining’ (see, e.g.,
Spanos (2000)). The data mining of computer science proposes, however, that one
data sample is used for finding hypotheses, whereas another is used for testing
them, and thus ‘drawing the target after firing the bullet’ is not the case. This sets
a basis for applying data mining, as well as KDD in general, in accordance with
the scientific method.

The processes of data mining and KDD, while being more precisely defined in
Section 5.1, obviously relate to the inquiry of scientific knowledge, given the focus
on empirical and measurable evidence. One example is the following procedure put
forward by Nisbet et al. (2009):

Define the problem

Gather existing information about a phenomenon
Form one or more hypotheses

Collect new experimental data

Analyze the information in the new data set

S ov e W

Interpret results
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7. Synthesize conclusions based upon the old data, new data and intuition
8. Form new hypotheses for further testing

9. Do it again (i.e., iterate).

In this procedure, there are elements of deductive and inductive reasoning. This
contrasts data mining from more conventional types of econometrics, and statistical
analysis and inference, in which the key aim of data analysis is to test hypotheses.
Yet, while data mining stresses induction, essential elements of data mining still
involve deduction. That is, Steps 1-4 involve deductive reasoning, whereas Steps
5-9 follow the inductive approach. Nisbet et al. (2009) exemplify the induction in
the latter part of the process by stating that even though data mining oftentimes
uses mathematics, they are not mathematically determined. Whereas the hypothe-
sization in the first part is theory driven, the latter part is data driven. In addition,
models are formed based upon empirical data, yet the inductive process is further
enhanced through the use of the human mind.

In order to build visual models for risk identification and assessment, this thesis
follows the KDD process (see Section 5.1 for a detailed presentation). This also in-
volves relying on the above scientific method by first relying on deductive reasoning
in Steps 1-4 and then on inductive reasoning in Steps 5-8. On the one hand, the
deductive steps make use of hypotheses in order to collect relevant data and utilize
correct methods, and are thus theory driven. On the other hand, the inductive
steps make use of data-driven approaches to identify relevant data and methods,
and generates thereby also new hypotheses (and knowledge).

2.2.3 The science of design

Design science, as discussed in Section 2.1, is an approach guiding the creation and
evaluation of IT artifacts with the intent to solve problems in organizations. A
starting point for the approach in this thesis is set by the three-step hypothetic-
deductive model, as well as the more specific procedure of the scientific method,
discussed in the previous section. These do not, however, relate to the design of an
artifact that solves a real-world problem in an organization.

The creation of artifacts in this thesis can be discussed from the viewpoint of the
guidelines by Hevner et al. (2004). Herein, I relate the following discussion to
the Self-Organizing Financial Stability Map (SOFSM), which includes the base
model and its extensions. The seven guidelines are obeyed as follows. (1) The
artifacts created in this thesis are constructs, models and methods, (2) which are
intended to aid policymakers in understanding and visualizing the state of financial
stability. The relevance of developing solutions to the stated problem is indeed
crucial, not the least due to costs of financial crises as was highlighted in Chapter
1. (3) The usefulness of the constructs and methods is evaluated by measuring how
well they depict reality in terms of discriminating financial stability states through
the use of thorough evaluations. (4) The constructs and methods are shown to
offer new, better solutions to existing problems. That is, tools for visualizing
the state of financial stability, which have to a large extent been neglected in
previous research. (5) Research rigor is derived from effective use of prior research
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in the construction phase and rigorous methods for evaluating the constructs and
methods. The evaluation relies on internal quality measures and discriminatory
power between financial stability states. (6) Problem solving is performed in an
iterative manner by finding the best possible solutions and continuously testing and
generating new solutions, and finally thoroughly testing the quality and robustness
of the final artifacts. (7) The final guideline of communication to technology and
management-oriented audiences is fulfilled by the means of academic presentations
(e.g., academic conferences, seminars, workshops and publications) and managerial
presentation (e.g., policy-oriented academic conferences, seminars, workshops and
publications).

In addition to internal quality measures, evaluations of predictive performance play
a central role in carrying out rigorous research. The main rationale for making use
of these quantitative metrics is that they capture the correctness and accuracy of
the artifacts, not the least in how well they correspond to reality. This is also
motivated by the value of predictions for the core scientific activities of theory
building and testing, as well as relevance assessment. Shmueli and Koppius (2011)
relate predictive analytics to IS research, and highlight that predictions are not
only relevant for creating practically useful models, but also play an important
role in theory building and testing. They describe six concrete roles in which
predictions may assist researchers: i) generating new theory, i7) developing new
measures, 44) comparing competing theories, iv) improving existing models, v)
assessing relevance, and vi) assessing predictability.

In addition to the academic communication specified in Chapter 1, the works in
this thesis (or other highly related works) have been widely communicated to prac-
titioners, including technology-oriented audiences? and management-oriented au-
diences®. The SOFSM has been published as a working and a discussion paper

2Technology-oriented presentations related to this thesis have been given at the following oc-
casions: 10th International Conference on Intelligent Systems Design and Applications on 29-30
November 2010 in Cairo, 10th International Conference on Data Mining on 14-17 December 2010
in Sydney, IEEE Symposium on Computational Intelligence and Data Mining on 11-15 April 2011
in Paris, IEEE Symposium on Computational Intelligence for Financial Engineering & Economics
on 11-15 April 2011 in Paris, 22nd International Joint Conference on Artificial Intelligence work-
shop on Chance Discovery on 16-22 July 2011 in Barcelona, 15th International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems on 12—-14 September 2011
in Kaiserslautern (Best Student Paper), 8th International Workshop on Self-Organizing Maps on
13-15 June 2011 in Helsinki, 16th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems on 10-12 September 2012 in San Sebastian, 12th Interna-
tional Conference on Data Mining on 10-13 December 2012 in Brussels and IEEE Symposium on
Computational Intelligence and Data Mining on 16-19 April 2013 in Singapore, as well as other
small-scale seminars.

3Management-oriented presentations related to this thesis have been given at the following
occasions: European System of Central Banks Macro-Prudential Research Network workshop on
14-15 April 2011 in Frankfurt am Main, Bank of Finland Institute for Economies in Transition
seminar on 10 May 2011 in Helsinki, European Central Bank (ECB) Financial Stability seminar
on 16 September 2011 in Frankfurt am Main, 1st Conference of the European System of Cen-
tral Banks Macro-Prudential Research Network on 5—6 October 2011 in Frankfurt am Main, 14th
Annual De Nederlandsche Bank Research Conference ’"Complex systems: Towards a better under-
standing of financial stability and crises’ on 3—4 November 2011 in Amsterdam, Bank of Finland
Financial Stability seminar on 11 November 2011 in Helsinki, Bank of Finland Financial Stability
seminar on 9 February 2012 in Helsinki, ECB Financial Stability seminar on 16 May 2012, ECB
Financial Stability conference 'Methodological advances and policy issues’ on 14-15 June 2012 in
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both at the ECB and the Bank of Finland, has been included as a special feature
in the Financial Stability Review of the ECB (see ECB (2011)), and has been high-
lighted by the ECB’s Vice President and Central Banking News, as well as won a
best paper award at the Bank of Finland.* In addition, the SOFSM is a project
in the Macro-prudential Research Network (MaRs) (see ECB (2012b)), which was
launched by the European System of Central Banks, as well as was highlighted by
the United States Government Accountability Office in a report to congressional
requesters as a novel approach to visual analysis of financial stability (GAO, 2012).
It is currently being implemented at the Bank of Finland for a map to be included
quarterly in their Financial Stability Report, at the ECB to be included in the risk
dashboard of indicators, and at a large Canadian pension fund for internal use. It is
also being implemented in a widely used software for financial regulators, Financial
Network Analytics (www.fna.fi).?

Frankfurt am Main, 3rd International Workshop on Managing Financial Instability in Capitalist
Economies on 19-21 September 2012 in Genoa, CEQURA Conference on Advances in Financial
and Insurance Risk Management on 24-26 September 2012 in Munich, Bank of Finland Finan-
cial Stability seminar on 3 October 2012 in Helsinki, 2nd Conference of the European System of
Central Banks Macro-Prudential Research Network on 30-31 October 2012 in Frankfurt am Main
and 21st International Conference on Money, Banking and Finance on 10-11 December in Rome,
as well as other small-scale seminars.

4The speech, news and best paper award can be found here, respectively:
http://www.bis.org/review/r120619a.pdf
http://www.centralbanking.com/central-banking/research /2099735 /bank-finland-paper-tests-
financial-stability-model
http://www.suomenpankki.fi/bofit /bofit /ajankohtaista/tapahtumat /Pages/best2011.aspx

5The website of the SOM module can be found here: http://www.fna.fi/solutions/som
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“In the absence of clear guidance from existing analyti-
cal frameworks, policy-makers had to place particular re-
liance on our experience. Judgement and experience in-
evitably played a key role. [...] But relying on judgement
inevitably involves risks. We need macroeconomic and fi-
nancial models to discipline and structure our judgemental
analysis. How should such models evolve?”

— Jean-Claude Trichet, President of the ECB, Frankfurt
am Main, 18 November 2010

3 Macroprudential Oversight

Paraphrasing Milton Friedman’s statement about Keynesians, Borio (2011) stated
“We are all macroprudentialists now.” Since the date when the still ongoing global
financial crisis broke out, the notion of a macroprudential approach to safeguarding
financial stability has grown consensus among the academic and policymaking com-
munities alike. Yet, it is by no means a new concept. The central bank of central
banks, the Bank for International Settlements (BIS), applied the term to describe
a system-wide orientation of regulatory frameworks already in the 1970s, and the
term appeared in publicly available material in the mid-1980s (see, e.g., BIS (1986)
and Borio (2011)), but the use of the concept remains somewhat ambiguous.

So, what is a macroprudential vis-a-vis a microprudential approach? With the
help of a comparison to the microprudential approach, Borio (2011) summarizes the
macroprudential orientation as follows. First, while the aim of the macroprudential
approach is to limit system-wide stress and possible costs for the macroeconomy,
a microprudential orientation attempts to limit an individual institution’s risk of
failure with the aim of minimizing costs for depositors and investors. Second, the
macroprudential approach explicitly accounts for the fact that risk is dependent
on the collective behavior of financial institutions (i.e., endogenous), rather than
being something outside their influence (i.e., exogenous) as is in the microprudential
case. Third, the macroprudential approach has a system-wide perspective, where
a top-down approach works out a desirable safety standard for the system as a
whole, rather than the stand-alone soundness of individual institutions approached
from the bottom-up. Thus, a macroprudential approach takes a holistic view on
the financial system with the aim and mandate to ensure system-wide stability,
rather than only being concerned with the failure of individual entities. Yet, the
two approaches are difficult to compartmentalize because they most often co-exist.

The comprehensive macroprudential approach thus obviously also involves an un-
derstanding of a large number of other concepts. It is crucial for regulatory decision-
makers to have a broad and deep understanding of financial systems, fragilities and
instabilities, as well as risks and vulnerabilities, in the economy. Hence, to carry out
macroprudential oversight aiming at ensuring system-wide stability, policymakers
need a thorough information basis and a large variety of risk identification and
assessment models and tools for data to become actionable information. Macro-
prudential oversight, while also requiring a large share of domain intelligence and
plain analysis of statistical data, has its core in analytical models and tools for
analyzing, summarizing and interpreting the widely available masses of data.

This chapter focuses first in Section 3.1 on the definition of financial systems and
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financial stability — or rather its antithesis, financial instability — as well as fragilities
in financial systems and the concept of systemic risk. Section 3.2 briefly summarizes
some theoretical and empirical underpinnings of three identified forms of systemic
risk. Then, Section 3.3, and the main focus of this chapter, attempts to give an
overview of the state of the art of risk assessment and identification tools used by
macroprudential policymakers, especially the use of visualization tools. Finally,
Section 3.4 relates the fragilities, risks and tools to the macroprudential oversight
process, to be followed by a summary of the key implications of the chapter for the
thesis in Section 3.5.

3.1 Financial systems, fragilities and instabilities

Understanding the key concepts related to financial systems, and their (in)stability
and fragility, is essential for a broader understanding of macroprudential oversight.
This section presents some key principles of financial systems and defines the no-
tions of stability and instability, as well as discusses why they are so fragile and
what are the main risks to stability. Hence, this section provides a basis for the
rest of the chapter, not the least by untangling systemic risks into three forms, to
which I oftentimes refer in the sequel.

3.1.1 Key components of financial systems

The basis for any discussion of financial fragilities, instabilities or risks ought to be
an understanding of the notion of a financial system. Hence, the main questions
are: What is a financial system, which components does it comprise and how do
they interact?

Broadly speaking, financial markets may be thought of as a mechanism for people
to trade various financial securities, commodities and other fungible items at prices
that reflect the markets. In a larger context, Schinasi (2004) summarizes the key
functions of a financial system in fostering and supporting the real economy by
matching investors with savers, allocating and pricing financial risks and resources
and supporting various intertemporal economic processes like wealth accumulation,
economic growth, and social prosperity. However, the functioning of financial sys-
tems is a multifaceted concept with multiple inter and intra relationships. Key
components of financial systems, as well as their relationships, are illustrated in
Figure 3.1. As is pointed out in the figure, the financial system comprises three in-
terrelated, yet separable, components (see, e.g., ECB (2005) and Fell and Schinasi
(2005)):

i) financial intermediaries ( );

i) financial markets (blue layer); and

i17) financial market infrastructures ( ).
Following the description in Fell and Schinasi (2005), entities of the household,
corporate, foreign and government sectors (red layer) invest their savings and ob-

tain funding for their activities through these three components. First, financial
intermediaries comprise mainly financial institutions and have as their main task
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Notes: The figure shows interrelations of the three components of the financial system: financial
markets, intermediaries and market infrastructures. The figure is an adapted version of that in ECB
(2012a) and follows the description in Fell and Schinasi (2005).

Figure 3.1: The financial system and its components.

to pool risks and funds of one counterparty and allocate them to another. Financial
institutions provide a wide range of services, in addition to those traditionally pro-
vided by banks. Depending on their profile, e.g., insurers, banks, pension funds,
hedge funds and hybrids of financial and non-financial companies (e.g., General
Electric) provide multiple different types of financial services. Second, financial
markets mainly aim at matching those who need capital with those who have it
(i.e., spenders with savers). The trading of financial securities (e.g., stocks and
bonds), commodities (e.g., precious metals and agricultural goods) and fungible
items in general occurs between people and firms, be they financial or not. For
financial markets to support the provision of credit, transfer of risk and risk man-
agement in general, it is crucial that they function smoothly and are resilient under
various circumstances. Third, the financial infrastructure of the financial system is
comprised of privately and publicly owned and operated institutions through which
financial market operations are concretely carried out. The infrastructure may be
provided by institutions like payment, clearing and settlement systems for financial
transactions and other types of monetary, legal, accounting, regulatory, supervi-
sory and surveillance infrastructures. Payment systems commonly transfer funds
electronically from one institution to another, clearing systems commonly transfer
credit risk in the derivatives market to a clearinghouse from each counterparty of a
trade, and settlement systems complete transactions like securities trades. Thus, I
follow Schinasi (2004) by defining the financial system as a term that encompasses
“both the monetary system with its official understandings, agreements, conven-
tions, and institutions as well as the processes, institutions, and conventions of
private financial activities”.

While financial intermediaries connect to the financial architecture, the household,
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corporate, government and foreign sectors are connected both directly and indi-
rectly to financial intermediaries, where financial markets may function as a mid-
dleman. Like private market participants, governments may borrow in markets
and hedge risks. The working principles of the financial system, and the general
performance of its key tasks, is based upon these components and their interre-
lations. Further, the external macro-financial environment will not only have a
direct impact on private and public participants, but will also indirectly affect the
functioning of financial markets and intermediaries, and in some cases even affect
the design of infrastructures.

It is hence obvious to conclude that a resilient and well-functioning financial system
is characterized by well-managed financial institutions and efficiently functioning
financial markets, as well as by a strong and robust financial infrastructure. This
might also be associated with less frequent and costly incidences of financial cri-
sis. The fact that we have experienced frequent incidences of financial crisis does,
however, indicate that financial institutions are not always well-managed, the func-
tioning of financial markets may be inefficient, and the financial infrastructures may
have cracks and weaknesses. Before discussing the reasons to this, we need a work-
ing definition of financial stability, particularly its antithesis.

3.1.2 Financial (in)stability

The term financial stability, not to paraphrase Justice Potter Stewart once again,
belongs to the group of concepts that are broad and vague, yet implicitly under-
stood. Still, we need to agree upon the definition of stable and unstable financial
systems before delving into the causes of fragilities and risks. Coining financial
stability with a commonly accepted and used definition has indeed been an elu-
sive goal ever since it has shifted towards a common policy objective. In spite of
numerous proposals, there is, as yet, no single, widely accepted definition for the
concept.

Some define financial stability broadly, such as "a condition where the financial
system 1is able to withstand shocks” (Padoa-Schioppa, 2003), while others focus on
situations when the financial system supports, rather than impedes, the functioning
of the real economy (e.g., Schinasi (2004)). However, guided by macroprudential
thinking, with an aim to ensure system-wide stability, the definition of financial
stability ought to be narrowed down along those lines. ECB (2009) provides a
somewhat long, but descriptive definition of system-wide stability: “a condition in
which the financial system — comprising of financial intermediaries, markets and
market infrastructures — is capable of withstanding shocks and the unravelling of
financial imbalances, thereby mitigating the likelihood of disruptions in the financial
intermediation process which are severe enough to significantly impair the allocation
of savings to profitable investment opportunities”.

Via its antithesis, Allen and Wood (2006) favor to define a financially stable system
as simply one: "which is not prone to episodes of financial instability”. This leads to
the question: What is financial instability? While being somewhat easier to define,
also a broad variety of definitions of financial instability exist. We may want to call
it “a situation in which normal-sized shocks to the financial system are sufficient
to produce financial distress” (Borio and Drehmann, 2009b) or "any deviation from
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the optimal saving—investment plan of the economy that is due to imperfections in
the financial sector” (Haldane et al., 2004). From the sample definitions, it is easy
to see the lack of unanimity with regards to these concepts.

Again, to meet the demands of a macroprudential approach, we narrow down from
the broad concept of financial instability to systemic financial crises or strong sys-
temic events. Such a crisis may be defined as an event that "adversely affects a
number of systemically important intermediaries or markets” (ECB, 2009). Rather
than only being interested in the systemic events per se, an obvious central theme
is to have an understanding of the underlying risk of experiencing a systemic finan-
cial crisis, i.e., systemic risks. In broad terms, systemic risk is defined as "the risk
that financial instability becomes so widespread that it impairs the functioning of a
financial system to the point where economic growth and welfare suffer materially”
(ECB, 2009).

Now, when we have defined the concepts of a stable and unstable financial system,
we can move forward in discussing what makes financial systems particularly fragile
and what are the underlying risks to stability.

3.1.3 Fragility of financial systems

Any form of systemic risk, while having sources of its own kind, is most often
preceded at an early stage by various market imperfections. Imperfections in mar-
kets may take the form of asymmetric and incomplete information, externalities
and public-good characteristics, incomplete markets, etc., and are to some extent
present in most economic sectors. However, the imperfections, when being re-
lated to a financial sector, may lead to significant fragility of not only individual
entities, but also the entire system (Carletti, 2008; ECB, 2009). Carletti (2008)
illustrates the need for regulation of the banking sector with a large sample of
examples of market imperfections, such as banks being exposed to deposit runs
due to the maturity transformation by investing short-term deposits in long-term
assets and informational asymmetries between depositors and borrowers, as well as
debtholders and firm managers having so-called misaligned principal-agency prob-
lems, leading to agents not acting in the best interest of the principal. Another
example is the parallel of financial stability to a public good and its absence to
externalities like pollution, as each entity manages its own risks with no need to
consider its impact on the system-wide risk as a whole. de Bandt and Hartmann
(2002) relate fragilities in financial systems to three causes:

i) the strong information intensity and intertemporal nature of financial con-
tracts and transactions;

i1) the balance-sheet structures of financial intermediaries with a high reliance
on debts or leverage, and maturity mismatches between assets and liabilities;
and

117) the high degree of interconnectedness between financial intermediaries and
markets.

In the following, this subsection focuses on the above mentioned three main features
behind the fragility of financial systems as identified by de Bandt and Hartmann
(2002).
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First, the information intensity and control intensity relates to the fact that fi-
nancial decisions concern intertemporal allocation of purchasing power (see, e.g.,
Stiglitz (1993)). This relates to the issue of asymmetric information, in which
lenders do not have full information about the intentions of the borrower, such
as whether or not they are capable and/or willing to repay their debt. Likewise,
the intertemporal nature leads to an inherent need for a lender to trust either the
borrower to repay her debt or a third party to enforce the contract, not the least
as the intertemporality leaves room for renegotiations of contracts. Thus, the de-
cisions have their basis in whether the outcome of future asset values and future
cash flows promised in contracts will meet expectations, such as is the case with
deposit contracts. Another obstacle is changes in uncertainty affecting investment
and disinvestment decisions (see, e.g., Shiller (1989)). This leads, for instance, to
substantial changes in asset prices not being explained by their fundamentals (e.g.,
companies’ earnings and inflation rates are fundamentals to shares and exchange
rates, respectively).

Second, the maturity-mismatch structure of banks is described by taking fixed-
value deposits and enabling them to be withdrawn at a short notice, as well as by
lending long term to the industry (see, e.g., Bryant (1980)). When exceptionally
high withdrawals occur and long term loans cannot be liquidated, the small fraction
of held reserves may lead to insolvency. Hence, the strength of a bank depends on
both the capability of lending to profitable investment projects and the confidence
of depositors on the bank’s loan book, as well as the confidence that other depositors
will not run the bank. Yet, the better the deposit insurance scheme the less likely
are confidence crises. While many fragilities relate to financial intermediaries in
general, Goodhart et al. (1998) note that these types of confidence problems do
most often only apply to banks, except for cases when the non-bank intermediary
is a part of the same entity as a bank.

Third, the complex interconnectedness and network structure of banks in particular
and financial intermediaries in general implies that the failure of one bank may
affect others (see, e.g., Humphrey (1986) and Folkerts-Landau (1991)). de Bandt
and Hartmann (2002) relate the networks of real exposures among banks to consist
partly of interbank lending and partly of those in wholesale and retail payment
and settlement systems. While the aim of the interbank lending market is to
provide a channel for short-term lending and borrowing to banks, a sudden low
transaction volume in this market due to various reasons may lead to liquidity
problems, such as during the financial crisis of 2007. Likewise, the exposures in
payment and settlement systems may be large enough for a failure to meet payment
obligations of one bank to impact the capability of other banks fulfilling their
payment obligations. This could subsequently lead to failures spreading through
amplified domino effects. However, the better the risk management measures,
margin requirements and portfolio insurance, the more robust are payment and
settlement systems (de Bandt and Hartmann, 2002).

These particularities support the role of governments and other supervisory au-
thorities in addressing and monitoring systemic risks.
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Figure 3.2: Systemic risk cube with three forms of risks.

3.1.4 A systemic risk cube

Above, we discussed systemic risk in broad terms, whereas the inherently complex
issue can reasonably not be covered by such a simple definition. Hence, there is a
need for a more precise and structured definition. To give some structure to the
concept, the definition in this thesis is untangled with the help of the systemic risk
cube (henceforth the risk cube) shown in Figure 3.2. The risk cube presented here
is an adapted version of that in ECB (2010). It represents the European Central
Bank (ECB)’s conceptual framework for systemic risk and has its origin in the
works by de Bandt et al. (2009), ECB (2009), Trichet (2009) and ECB (2010). The
sequel of this chapter is to a large extent guided by, and often paired with, the
systemic risks identified through the risk cube.

Due to the great complexity of systemic risk, a virtue of the risk cube is that it not
only helps untangling the forms of systemic risks, but also enables a subsequent
mapping of them to the theoretical and empirical literature, as well as to analytical
tools for identification and assessment of risks. The three dimensions of the risk
cube are the triggers, origins and impacts. The nature of triggers unleashing the
crisis could take the form of an ezogenous shock, which stems from the outside of the
financial system (e.g., a macro-economic shock and events like natural disasters or
political turmoil), or could emerge endogenously from within the financial system
or some other part of the economy (e.g., from financial intermediaries, markets
and infrastructures). The origins of the events may be distinguished to limited
idiosyncratic shocks and widespread systematic shocks. While idiosyncratic shocks
are those that initially affect only the health of a single financial market, financial
intermediary or asset, systematic shocks are those that, in the extreme, affect the
financial system as a whole, such as the entire banking sector. Here, it is important
to pay regard to the differentiation of the terms systemic and systematic. de Bandt
and Hartmann (2002) note that a systematic shock may cause a systemic event,
but a systemic event does not need to have its origin in a wide systematic shock.
Further, the impact of the events may be divided into those causing problems for
a range of financial intermediaries and markets in a sequential and simultaneous
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fashion.

To reduce the complexity of the risk cube, combinations of its elements (the triggers,
origins and impacts) may be limited to the materialization of three broad and
interrelated forms of systemic risk (see Figure 3.2):

i) endogenous build-up and unraveling of widespread imbalances (red boxes);
i1) exogenous aggregate shocks (blue boxes); and

i11) contagion and spillover ( ).

The first form of systemic risk refers to the risk that widespread imbalances, that
have built up over time, unravel abruptly. The underlying problems are caused
by an endogenous build-up of imbalances in one or several parts of a financial
system, such as high concentrations of lending in certain parts of the economy or
credit booms in general. While these imbalances, some may even say bubbles, may
in the short term last with mainly profitable implications, a shock leading to a
repricing of risk may be triggered by even a small event or change in expectations.
This resembles Kindleberger’s (1978) and Minsky’s (1982) financial fragility view
of a boom-bust credit or asset cycle. Hence, the subsequent abrupt unraveling
of the imbalances may be endogenously or exogenously caused by idiosyncratic
or systematic shocks, and may have adverse effects on a wide range of financial
intermediaries and markets in a simultaneous fashion. Second, systemic risk may
also refer to a widespread erogenous aggregate shock that has negative systematic
effects on one or many financial intermediaries and markets at the same time. For
instance, if banks go bad during recessions, they can be said to be vulnerable to
economic downturns. The third form of systemic risk is contagion and spillover,
which usually refers to an idiosyncratic problem, be it endogenous or exogenous,
that spreads in a sequential fashion in the cross section. For instance, a failure
of one financial intermediary causing the failure of another financial intermediary,
which initially seemed solvent, was not vulnerable to the same risks and was not
subject to the same original shock as the former. It is worth noting that contagion
refers to a situation when the initial failure is entirely responsible for subsequent
ones, whereas the term spillover is commonly used when the causal relationship is
not found or cannot be tested (see, e.g., ECB (2010)).

A categorization of systemic risks into the three forms provides means for a further
discussion on the empirical and theoretical literature.

3.2 Theoretical and empirical underpinnings

This section draws upon the above defined terms and concepts. In light of the
above discussion, I review and discuss theoretical and empirical works on systemic
risk. In both subsections, three parts match the identified forms of systemic risk.
Throughout this chapter, I draw upon literature reviews in de Bandt and Hartmann
(2002), de Bandt et al. (2009) and ECB (2009), in addition to a wide range of other
sources to which I provide in-text references.
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3.2.1 Theoretical models

This subsection discusses the theoretical literature related to the three forms of
systemic risk. While the literature is currently developing at a tremendous pace,
many important older works continue to be relevant. We start by discussing the
literature on lending booms and build-ups of imbalances that goes half a century
back in time, then we focus on theoretical works on macroeconomic aggregate
shocks to the economy, and finally on the literature on interbank contagion.

Endogenous build-up of widespread imbalances The notion of financial
fragility and lending booms relates back to early work by Minsky (1977, 1982)
and Kindleberger (1978), who pinpointed common historical reasons for financial
crises to be the endogenous build-up and abrupt unraveling of widespread im-
balances. The early authors explain the boom and bust cycle as follows. The
imbalances oftentimes derive from the pro-cyclicality of financial behavior; in good
times consumption and investment increases, which generates income, and further
fuels consumption and investment. During this time of "euphoria” and ”gregarious
behavior”, the financial activities become more speculative, or even so-called Ponzi
finance, in which a lack of expected income flows causes a reliance on the rise of
market value of assets or income to pay off interest or principal. In this "virtuous”
circle, risks are often neglected with mainly profitable implications in the short
term. Then, even a small trigger, shock, change in expectations, or other type of
event, be it exogenous or endogenous, may lead to a repricing of risk, an end of
the boom, unraveling of imbalances and possibly simultaneous adverse effects to
intermediaries and markets. This event may even be called a Minsky moment — a
term coined by the managing director of PIMCO, Paul McCulley, in 1998 when de-
scribing the Asian financial crisis. The early literature has its core in uncertainty
rather than only risk, such as the discussion on the relation between Knightian
uncertainty and investment returns and risk premiums in Guttentag and Herring
(1984). The same authors also explain disaster myopia by subjective probabilities
of disastrous events diminishing when time elapses after the previous realization
of such an event. The here described characteristics of a financial stability cycle
emerges, according to the early authors, endogenously in economies with particu-
larly unregulated financial markets.

There are a number of reasons to the build-up of imbalances, of which I summa-
rize four key notions, as is categorized in ECB (2009). First, financial markets
are inherently featured by herd behavior, leading to entities sharing similar risks.
Banerjee (1992) and Bikhchandani et al. (1992) describe these as rational herding
waves, if relative returns of investments are highly uncertain. Likewise, the herd-
ing by Scharfstein and Stein (1990) involves investment or fund managers and loan
officers that mimic each other when they are evaluated, which steers pay or reputa-
tion, in relation to the rest of the market. Second, the so-called curse of low interest
rates may diminish incentives to screen borrowers when interest rates are low (see,
e.g., Dell’ariccia and Marquez (2006)). Low interest rates over a wide maturity
spectrum have more often than not been quoted as an element of the imbalances
prior to the current crisis. Another obvious channel is an increase in collateral
values, such as real estate prices, when interest rates are low. For further discus-
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sions on the effect of low rates on crises, see Allen and Gale (2007). Third, positive
shocks to collateral, while enhancing the borrowing capacity in an economy, may
also contribute to leverage cycles (Kiyotaki and Moore, 2002). When an industry,
or another industry with similar collateral, benefits from an increase in collateral
value, it also allows more borrowing and investment, and thus further amplifies
leverage. Likewise, Geanakoplos (2010) asserts that variation in leverage impacts
volatility in asset prices and thus contributes to financial booms and busts. He
explains it by there being high-leverage buyers for whom an asset is more valuable
than it is for others, for instance, due to them being more sophisticated investors,
better in hedging exposures to the assets or less risk averse. This drives prices up,
whereas losses in wealth will, due to leverage, move the assets into more pessimistic
hands, which again amplifies the decrease in value. Fourth, risk-taking and moral
hazard may also be amplified by better safety net provisions. One example is a
decrease in depositors’ incentives to screen bank risks through deposit insurance
(see, e.g., Boot and Greenbaum (1993)). Similar effects can be derived from public
bailouts or lenders of last resort, that is, an institution providing credit in the lack
of other sources and with the aim of preventing failures of important institutions.

Exogenous aggregate shocks It is no new notion that macroeconomic shocks
or economic downturns have been a trigger of many historical financial crises (see,
e.g., Gorton (1988)). Yet, the theoretical literature directly addressing the topic
is somewhat scarce. Even though direct interbank connections and contagion is
missing, banking crises have still occurred simultaneously with aggregated shocks.
Banks may be seen as vulnerable to aggregated shocks as credit risks occur on the
asset side while liabilities are most often unaffected. A key point by Hellwig (1994)
is that the effect of macroeconomic shocks would be decreased by letting liabilities
be dependent on the macroeconomic state and depositors share the burden of asset
losses. Still, banks expand credit, relating to the above discussed lending booms,
while knowing that the risks may lead to problems as banks cannot pass on the
risk to depositors. In individual bank models, any information on the the macroe-
conomic state provides a signal about the quality of banks’ loans to depositors.
Accordingly, Allen and Gale (1998) show that macroeconomic shocks may lead to
a banking crisis if depositors make their withdrawal decisions based upon leading
indicators of business cycle fluctuations. Likewise, Chen (1999) illustrates in his
model that adverse macroeconomic events also increase the probability of bank
contagion. One may also assert the reverse when the business cycle is affected by
restrictions in bank lending caused by financial fragility (Mishkin, 1991).

Contagion, spillover and shock propagation A common feature of financial
instabilities, in particular banking crises, is the notion of contagion. There is a rich
and broad literature on the phenomenon. The theoretical literature may be dis-
tinguished into three types of contagion: ¢) bank runs, and ) contagion through
interbank lending and ii7) payment systems. This relates to two types of trans-
mission channels. The first type of contagion can be defined to occur through the
information channel, such as deposit withdrawals of creditors to whom the health
and exposures of banks are imperfect, whereas the two latter types occur through
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real channels, such as domino effects through common exposures in interbank mar-
kets and payment systems.

The first type of contagion is related to bank runs. These events are mostly charac-
terized by two features. First, the most prone banks and banking systems to runs
to retail depositors are those not covered by deposit insurance schemes. Second,
imperfectly informed investors judge the health of their own bank based upon the
health of other banks. There is a wealth of literature on single banks’ health based
upon the balance-sheet structure and the intertemporal nature of financial con-
tracts (as previously noted in Subsection 3.1.3), such as Bryant (1980), Diamond
and Dybvig (1983) and Jagannathan (1988). The classical Diamond-Dybvig model
illustrates how depositors’ expectations of a bank run increase their incentives to
withdraw their deposits, as late withdrawers lose all or some of their deposits.
However, today’s thorough deposit insurance schemes function as safety nets for
this type of contagion, which might be one of the main reasons why recent waves
of crisis have not, as yet, experienced this transmission channel. Hence, it is im-
portant to distinguish between the notions of a bank run affecting one entity and
a banking panic affecting multiple entities, i.e., the systemic nature of runs.

Bank run models have, accordingly, been extended to multiple banks. Chen (1999)
presents an extension of the Diamond-Dybvig model, where the difference is that
Chen includes two kinds of depositors: those who are informed and uninformed
about the value of a bank’s assets. As informed depositors are able to withdraw
earlier when they comprehend that the bank cannot repay all depositors, the un-
informed depositors may have an incentive to disregard their own information and
respond to other sources of more noisy information (e.g., the failure of other banks).
These misinterpretations may cause bank runs to become contagious. One might
also reason that bank runs based upon noisier information incur higher societal
costs as it might lead to defaults of healthier banks than those caused by expecta-
tions based upon correct information.

The second type of contagion focuses on the interbank market. This has also been a
key focus of many contagion studies since the 1990s. While differences in liquidity
shocks may be solved through interbank lending, the physical exposures among
banks provide a channel for contagion. For instance, Rochet and Tirole (1996) show
that peer monitoring, while resolving problems with moral hazard among bank
shareholder managers and bank debt holders, also causes contagion risk. Along the
same lines, Allen and Gale’s (2000) model of interbank market exposures shows that
even a small aggregate liquidity shock in a particular region can lead to systemic
risk. A bankruptcy of one bank may cause other banks, which have deposits in it,
to also go bankrupt. The key implication of many studies, yet not all, is that the
more complete, or diversified, the markets in terms of lending relationships, the
more resilient to contagion is the system.

More recent research has applied network theory to model connections between
banks in the asset and liability side of the balance sheet. For instance, the findings
of Babus (2006) corroborate those of Allen and Gale (2000) by considering opti-
mal interbank network formations to reduce the risk of contagion. Leitner (2005),
on the other hand, finds that the more interbank linkages a network exhibits, the
better the risk sharing among banks, while the higher the potential for contagious
multiple-bank failures. Conversely, emergency liquidity assistance by central banks
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may be motivated by surplus banks in the interbank market under-providing banks
with a cash shortage, as suggested in Acharya et al. (2012). Further, already early
literature has pointed out potential effects of information problems on interbank
contagion. For instance, Flannery (1996) relates asymmetric information to inter-
bank contagion through imperfect information on the quality of rivals’ borrowers.
A shock to the financial system may hence lead to a stop in interbank lending and
hoarding of liquidity, something related to the recent crisis by Cassola et al. (2008).

The third type of contagion relates to payment systems. The interbank lending
between financial intermediaries is determined by large-value payment systems.
The lending through payment systems, while not being as explicit as interbank
lending, is a more detailed view of interbank exposures that may influence the
propagation of shocks. From the larger family of payment systems, the main source
of systemic risk derives from pure net settlement systems as netting of payments and
infrequent settlements may continue for a longer time, such that they accumulate to
significant exposures (see, e.g., Freixas and Parigi (1998)). Kahn et al. (2003) relate
vulnerabilities of gross settlement systems to gridlocks and payment delays. The
problems in pay-ins may be driven by high opportunity costs in foregone interest
rate and doubts about other banks’ solvency.

3.2.2 Empirical findings

Next, we survey empirical works with a focus on explaining the three forms of
systemic risks. The main focus lies on comparing the scope of the theoretical
studies to the evidence provided by empirical studies.

Endogenous build-up of widespread imbalances The build-up phase of
widespread imbalances and the relation between a financial system’s pro-cyclicality
and fragility is, due to numerous reasons, not an entirely straightforward question.
This is illustrated by a multifaceted literature. Gourinchas et al. (2001) point to
the importance of lending by showing in a large cross-country study that the likeli-
hood of a banking crisis is higher directly after a lending boom than during tranquil
periods. Likewise, findings by Dell’ariccia et al. (2012) and Mian and Sufi (2009)
suggest that lending standards related to the mortgage market in the US declined
prior to the ongoing financial crisis, in particular in areas with larger mortgage
credit booms, house price booms and mortgage securitization rates. However, a
key monetary policy tool that obviously plays a vital role in pro-cyclicality is the
interest rate. Jiménez et al. (2007) and Ioannidou et al. (2009) find that reduc-
tions in interest rates often first affect positively the net present value of loans, but
then with low loan rates banks attempt to re-establish profitability by moving into
riskier loans. These risks, while often having somewhat long build-up episodes,
may materialize suddenly and strongly either to rises in interest rates or some
other unexpected trigger. Another factor leading to pro-cyclical effects is financial
regulation. Repullo et al. (2010) illustrate the pro-cyclicality through capital re-
quirements that are increasing functions of various regulatory measures of default
likelihood, which often affect the the supply of credit by decreasing in good times
and rising in bad times.
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Another line of research has focused on the determinants of banking crises through
the analysis of univariate indicators (i.e., the so-called signaling approach) and
multivariate regression. In general, periods prior to systemic banking crises have
been shown to be explained by traditional vulnerabilities and risks that represent
imbalances like lending booms. By an analysis of univariate indicators, Alessi
and Detken (2011) show that best-performing indications of boom/bust cycles are
given by liquidity in general and the global private credit gap in particular. Borio
and Drehmann (2009a) show that banking crises tend to be preceded by strong
deviations of credit and asset prices from their trend. Likewise, in a multivariate
regression setting, vulnerabilities and risks have, overall, been shown to precede
country-level crises on a large sample of developed and developing countries in
Demirgii¢-Kunt and Detragiache (1998) and for the US, Colombia and Mexico
in Gonzalez-Hermosillo (1999), as well as on a bank level in Eastern European
transition economies in Ménnasoo and Mayes (2009). Borio and Lowe (2002) and
Borio and Lowe (2004) show that already several years prior to the current financial
crisis a lending boom was awaiting behind the corner if not already visible. Lo Duca
and Peltonen (2013) show that modern financial crises have been preceded by a
range of macro-financial vulnerabilities and risks, particularly credit growth, equity
valuations and global measures like GDP growth, real credit growth and leverage.
This only provides a snapshot of the broad literature, but clearly illustrates the
unanimity of imbalances preceding modern financial crises.

Exogenous aggregate shocks Aggregate shocks in terms of economic down-
turns have commonly been shown to precede systemic banking crises. Gorton
(1988) shows that a large share of banking crises in the US in the latter part
of the 19th and the early part of the 20th century occurred as reactions of de-
positors to cyclical downturns and could hence have been correctly called with a
standard model for forecasting the business cycle. While partly being related to
the literature on the build-up of imbalances, systemic crises may be explained with
traditional macroeconomic fundamentals (e.g., current account imbalances, gross
domestic product (GDP) growth, real interest rates and inflation). Macroeconomic
fundamentals have been shown to be statistically significant explanatory variables
on a sample of the United States (US), Colombia and Mexico (Gonzalez-Hermosillo,
1999), the Eastern European transition economies (Mé#nnasoo and Mayes, 2009)
and European banks during the ongoing crisis (Betz et al., 2013). These stud-
ies have, however, long forecast horizons, which relates them to imbalances and
vulnerabilities prior to the crises. Yet, a number of authors show that also the tim-
ing of banking crises is related to macroeconomic fluctuations, rather than other
competing factors, such as contagion. Gorton (1988) illustrates evidence for the
US, Gonzalez-Hermosillo et al. (1997) for the Mexican crisis of the mid-1990s and
Demirgii¢-Kunt and Detragiache (1998) for a sample of developed and developing
countries. Further, whereas Alfaro and Drehmann (2009) show that a large num-
ber of banking crises were preceded by decreases in GDP growth, the share that
do not experience weakened GDP points at other driving factors, e.g., macroeco-
nomic feedback effects due to the fact that GDP generally drops during post-crisis
episodes.

While extreme value theory is mostly used to understand the third category of
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systemic risk, the study of interbank contagion, it may also be used to compute
so-called tail-betas for banks. Given an extreme crash in the market, the tail-
betas illustrate how the probability of crashes in individual bank stocks would
be influenced. The significance of aggregate shocks in stock markets in the US
(Straetmans et al., 2008) and Europe (de Jonghe, 2010) relates this to the concept of
systemic risk. In European context, de Jonghe (2010) finds that banks with a large
share of non-interest generating activities are more vulnerable to these aggregate
shocks. Further, a comparative analysis of the shocks in the two continents is
put forward by Hartmann et al. (2005). They find the effects of macro shocks
on banking systems to be relevant, but similar, in the euro area and the US.
Interestingly, they also show that the introduction of the euro had close to no
effect on banking system risk, and relate it to the possibility that the better risk
sharing and ability to absorb shocks would be offset by increases of cross-border
crisis transmission channels.

Contagion, spillover and shock propagation In the early contagion liter-
ature, the main attempts were related to measuring contagious effects of bank
failures on stock prices of other entities. In addition to those studies, the empirical
literature on measuring interbank contagion can be matched to the three types of
theoretical works: bank runs, interbank lending and payment systems.

Early studies have attempted to capture contagion through variation in stock prices,
e.g., by measuring effects of bank failures on stock prices of other entities using
event studies. Aharony and Swary (1983) and Peavy and Hempel (1988) focused
on US banks, and their resilience to a number of failures. However, many pieces of
work along this line (see, e.g., Slovin et al. (1993) and Dockinga et al. (1997)) found
mixed results on contagion effects depending on the considered banks. The concept
of contagion in terms of adverse stock market reactions also has been asserted as
being intertwined with flight-to-quality effects, where losses of someone are benefits
of others (see, e.g., Caballero and Kurlat (2008)), and to similar exposures rather
than pure interbank contagion (see, e.g., Smirlock and Kaufold (1987) and Wall
and Peterson (1990)). One explanation to the mixed results might be typically
observed differences in patterns during tranquil and crisis periods, where crises
include non-linear and extreme stock-price movements. Hence, the more recent
literature has turned the focus from regular stock price reactions to substantial
ones. One potential line of research is the use of extreme value theory to estimate
the spillover risk among large and complex banks (see, e.g., Hartmann et al. (2005)).
The findings of Gropp et al. (2009) illustrate that cross-border contagion risk among
key European countries was significant and increased between the early 1990s and
early 2000s. Yet, the focus herein is on matching the empirical works to the three
groups of theoretical studies.

The first group of models based upon theoretical research aiming at capturing
contagion through bank runs focuses on analyzing deposit flows. When there is no
deposit insurance, such as during the Great Depression in the US, Saunders and
Wilson (1996) have identified episodes when “bad news” about one bank caused on
some occasions withdrawals from other banks (i.e., herding behavior), and on other
occasions depositions in other banks (i.e., flight-to-quality effects). The results of
Calomiris and Mason (1997, 2003) show equally divisive results, as they observe
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contagious behavior of uninformed investors on some occasions and not on other.
Allen and Gale’s (2000) assertion of interbank lending explaining contagious deposit
withdrawals is corroborated in a case study on an Indian bank failure in 2001 by
Iyer and Peydré (2011). They show that interbank exposures to a failing bank drive
retail deposit withdrawals from the exposed banks. Likewise, Van Rijckeghem and
Weder (2003) test in an international context the directions of bank flows during
three major financial crises. After the Mexican crisis in the mid-1990s and the
Asian crisis in the end of the 1990s, the authors show that spillovers from one
country to another was caused by creditor banks’ exposures, whereas not during
the Russian crisis in 1998.

The second group of contagion models focuses on using counterfactual simulations
on balance-sheet data to assess contagion risk through the channel of interbank
lending. The network exposures are most commonly balance-sheet linkages and
the simulations often test the effects of a failure of one or several banks on the rest
of the network. The simulations are, however, somewhat sensitive to underlying
assumptions like the share of recovered assets from failed banks. Accordingly. the
literature has presented far from unanimous results, as simulated contagion risk is
negligible in Austria, Belgium, Italy and US (Elsinger et al., 2006; Furfine, 2003;
Mistrulli, 2011), whereas the risks are larger in Germany and the Netherlands (van
Lelyveld and Liedorp, 2006; Upper and Worms, 2004).

The third group of contagion models focuses on using simulations in large-value pay-
ment systems to assess interbank contagion risk. Contagion in payment systems
has been explored through similar simulations. Using payment data and Monte
Carlo simulations, the early literature has identified significant contagion risks in
net settlement systems (see, e.g., Humphrey (1986)). However, given appropriate
risk management in payment systems (e.g., legal certainty for multilateral netting,
limits on exposures, collateralization and loss sharing), some later studies have
shown that interbank contagion risk may be contained. Soraméki et al. (2007)
explore the network topology of the interbank payments over the Fedwire Funds
Service, the payment system operated by the 12 Federal Reserve Banks of the US.
Whereas they show a low average path length and connectivity for the network,
as well as a tightly connected core of banks and a close to scale free degree dis-
tribution, they still point out that it is not clear how the degree distribution and
other topological measures relate to contagion. Wetherilt et al. (2010) make use
of a dataset of individual trades in the United Kingdom (UK) Clearing House Au-
tomated Payment System (CHAPS) to construct a network of overnight market
lending. They illustrate a diversification of lending relationships that decreases
their dependence on the core during the crisis, in order to attempt reducing fund-
ing liquidity risk, but make no direct conclusions about overall resilience of money
market liquidity. Further, using data from the pan-European large-value payment
system (i.e., the Trans-European Automated Real-time Gross Settlement Express
Transfer System (TARGET)), Galos and Soraméki (2005) illustrate low systemic
consequences of one bank’s failure on the solvency of other banks. This indicates
that today’s payment systems exhibit a low risk of having systemic consequences.
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3.3 Tools for safeguarding financial stability

The literature, while in many aspects being in its infancy, has provided a variety of
tools for safeguarding financial stability. This section focuses particularly on tools
for early identification and assessment of risks. Following ECB (2010), I distinguish
the models into three broad analytical approaches that match the identified forms
of systemic risks:

i) early-warning models,
i1) macro stress-testing models and

i11) contagion and spillover models.

While the first approach aids in risk identification, the second and third approaches
provide means for risk assessment. From the viewpoint of the risk cube (see Figure
3.2), each of these aim to detect at an early stage one of the three forms of systemic
risk: ¢) imbalances, i) aggregate shocks and i) contagion. First, early-warning
models can be used to derive probabilities of impending systemic financial crises.
Second, macro stress-testing models provide a means to assess the resilience of
the financial system to a wide variety of aggregate shocks. Third, contagion and
spillover models can be employed to assess how resilient the financial system is to
cross-sectional transmission of financial instability. In addition to models for early
identification and assessment, the literature has provided a large set of coincident
indicators that measure the current state of instability in the financial system.
While these serve as means to measure the contemporaneous level of systemic risk,
and thus may be used to identify and signal heightened stress, they are not designed
to have predictive capabilities. This is not the focus of this thesis, but it is worth
noting that ex post measures may serve a function in communicating the occurrence
of unusual events to resolve fear and uncertainty, e.g., after the so-called flash
crash of May 6, 2010 in the US (Bisias et al., 2012). In the sequel of this section,
I focus on the three analytical approaches to derive tools for early identification
and assessment of risks. In line with the focus of this thesis, the final subsection
summarizes advances in visualization approaches in both risk identification and
risk assessment.

3.3.1 Early-warning indicators and models

Early-warning exercises may be performed with a wide range of methods and in-
dicators, which are also known in the literature as Early Warning Systems. The
main aim of these tools is to predict vulnerable states prior to financial instabili-
ties and crises. Hence, they oftentimes first define an index of financial instability
or stress in an entity, e.g., country, bank or market. The contemporaneous level
of systemic risk may, for instance, be derived from coincident stress indices, such
as the Composite Indicator of Systemic Stress (CISS) by Holl6 et al. (2012).6 A

6There are many coincident stress indices. For instance, Illing and Liu (2006) focus on measur-
ing financial stress in Canada and Hakkio and Keeton (2009) discuss more broadly what financial
stress is, how it can be measured and why it matters. Cardarelli et al. (2011) and Balakrish-
nan et al. (2009) construct financial stability indices for a broad set of advanced and emerging
economies, whereas the CISS aims at measuring stress in the euro area.

48



threshold, or some combination with other rules, on the index value defines binary
crisis/tranquil events for the entities. For the models to focus on imbalances, risks
and vulnerabilities, a binary pre-crisis variable is then set to 1 during some spe-
cific horizon prior to the crisis events, and to 0 in all other periods. The other
part of data used is a set of vulnerability and risk indicators. These are chosen
and transformed according to their performance in explaining and predicting the
binary pre-crisis variable. The outputs of such models mostly take the form of a
probability of a crisis within a specific time horizon and are monitored with respect
to threshold values (or cut-off values).

The early univariate signaling literature used country-specific percentile transfor-
mations of single indicators and turned them into signals by choosing an optimal
threshold. The optimal threshold is commonly chosen based upon specified weights
on the loss of type I and II errors (see Section 8.2 for an overview of evaluation
frameworks and the one used in this thesis). Kaminsky and Reinhart (1996) and
Kaminsky et al. (1998) introduced the signaling approach for predicting currency
crises. Lately, it has been applied to boom/bust cycles (Alessi and Detken, 2011),
banking system crises (Borio and Drehmann, 2009a), and to sovereign debt default
(Knedlik and von Schweinitz, 2012). However, the key limitation of this approach
is that it does not enable any interaction between or weighting of indicators, while
an advantage is that it demonstrates a more direct measure of the importance and
provides a ranking of each indicator.

Much of the early-warning literature deals, however, with models that rely on con-
ventional statistical methods, such as logit/probit models. Logit or probit regres-
sions use on the left-hand side the binary pre-crisis variable and on the right-hand
side the early-warning indicators. The linear regression models make use of a cu-
mulative probability function to force the value of the predicted variable within the
interval [0, 1]. This estimation provides a direct aggregate measure of the intensity
of the signal, i.e., the probability of an impending crisis. The two models are simi-
lar, except that the probit model uses the cumulative normal distribution and the
logit the cumulative logistic function to transform variables into the [0, 1] interval.
Logit and probit models have frequently been applied to predicting financial crises.
Eichengreen and Rose (1998), Frankel and Rose (1996) and Sachs et al. (1996) pro-
vide some early applications of probit/logit analysis to currency crisis prediction.
Later, Berg and Pattillo (1999) apply a probit model to predicting currency crises;
Schmidt (1984) and Fuertes and Kalotychou (2006) to predicting debt crises; Bar-
rell et al. (2010) to predicting banking crises; and Lo Duca and Peltonen (2013) to
predicting systemic crises. For an early, yet comprehensive, review, see Berg et al.
(2005).

In comparison to the signals approach, binary-choice methods allow for a multi-
variate approach to estimating crisis probabilities, while providing means to rank
risks and assess most significant indicators, but still depend largely on a number
of restrictive assumptions. While being non-linear in nature, the relationship be-
tween indicators and the events is still assumed to consistently follow some specific
function (e.g., logistic or normal). Further, the lack of interactions between indi-
cators may also limit performance as indicators of debt, currency, and systemic
crises have been shown to be non-linearly related (Fioramanti, 2008; Lo Duca and
Peltonen, 2013; Arciniegas Rueda and Arciniegas, 2009). While interaction terms
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can be included in logit/probit specifications, manually specifying the complex re-
lations between and interactions among various economic and financial factors is a
demanding task. This should be accounted for when choosing a predictive method.

A new approach to early-warning modeling has been the introduction of methods
commonly used in subfields of computer science, such as data mining, machine
learning and pattern recognition. Since the turn of last century, the use of such
intelligent, oftentimes also distribution-free and non-parametric, techniques in cri-
sis monitoring have increased. Indeed, the flexible non-parametric techniques have
slightly improved results in ez post crisis prediction (see Demyanyk and Hasan
(2010) for a review). The key methods in non-parametric early-warning models
have so far been based upon biologically inspired computing in general and ar-
tificial neural networks (ANNSs) in particular (Nag and Mitra, 1999; Franck and
Schmied, 2003; Peltonen, 2006; Fioramanti, 2008). The first to publicly try pre-
dicting financial crises with the help of an ANN were Nag and Mitra (1999). Their
findings on predicting the Malaysian, the Thai and the Indonesian currency crises
suggested that their ANN approach performed better than the signaling approach.
Similarly, Franck and Schmied (2003) also concluded that their application of an
ANN for predicting the speculative attacks in Russia in 1998 and Brazil in 1999
outperformed a logit model. Peltonen (2006) used an ANN to predict the Asian
currency crisis and showed that it outperforms a probit model. Fioramanti (2008)
shows in his study that a non-parametric ANN-based early-warning model outper-
forms analyses using the signals approach and probit or logit models. Yet, when
the focus is on the introduction of one specific method, it is important to note that
mostly "successful” experiments are reported.

A task that remains to be unexplored is the choice of indicators in the models.
A large number of studies use univariate predictive performance in terms of the
signaling approach to assess the extent of discriminatory power of individual indi-
cators (e.g., Kaminsky et al. (1998), Alessi and Detken (2011) and Lo Duca and
Peltonen (2013)), of which Lo Duca and Peltonen (2013) use the best predictors as
an input to a logit regression. Still, due to the possibly complex interactions, the
choice of indicators should be performed in a multivariate setting.

3.3.2 Macro stress-testing models

The key family of tools for assessing risks of exogenous aggregate shocks is that
of macro stress-testing models. Hence, while the above discussed tools aim at
risk identification, the tools for risk assessment are literally of different nature.
Stress-testing models allow policymakers to assess the consequences of assumed
extreme, but plausible, shocks for different entities. As stress-testing is no new
concept, there is a broad literature not only on micro stress-testing, but also on the
macro level. While being macro stress-tests, they commonly follow many principles
used in micro stress-testing and risk management to assess the loss potential of
specific portfolios given extreme market conditions (see, e.g., McNeil et al. (2005)).
Kida (2008) pinpoints the differences between micro and macro stress-testing to
three key factors. First, macro models commonly include multiple banks with
different portfolios, where differences affect how resilient one bank is to shocks
and how shocks to one bank affects the system. Second, macro models oftentimes
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include multiple time points by enabling shocks to propagate for several periods.
Third, a macro stress-test focuses on how risk is propagated between banks or
between sectors. The recent handbook edited by Quagliariello (2009) provides a
comprehensive overview of the macro versions of such models.

The key question of macro stress-testing, or stress-testing in general, is finding the
balance between plausibility and severity of the stress scenarios such that they are
plausible enough to be taken seriously and severe enough to be meaningful (see, e.g.,
Alfaro and Drehmann (2009) and Quagliariello (2009)). Then, the assessment of
shocks most often includes also the propagation of the shock among entities. Kida
(2008) pinpoints the feedback (or risk transmission and propagation) mechanisms
into four key types: i) interbank contagion (e.g., when exposures to risk spread
through the interbank loans market), i) correlation between credit and market risks
(e.g., when increases in interest rates raise the probability of default of borrowers
of a bank, and causes thus also increases in interest rates), iii) correlation between
asset prices and the portfolio adjustment mechanisms of a bank (e.g., when increases
in asset prices damage banks’ balance sheets, leading to large-scale sales of assets,
and thus further decreasing asset prices), i) propagation of shocks between the
financial system and the real economy (e.g., when banking system shocks affect
economic activity, and thus further weaken banks’ credit environment). Contrary
to the early-warning model literature, stress-testing does not attempt to derive the
likelihood and severity of shocks, but rather takes that as given. This information
could, obviously, come from an early-warning indicator or model. In a macro
setting, a policymaker is more interested in the resilience of the financial system
more broadly, or the banking system in particular. Policymakers may hence test
various adverse scenarios and design policy actions related to individual institutions
or the general architecture if the resilience of the system is judged not to be strong
enough.

A macro stress-testing approach to assessing a banking system uses multiple inputs
and consists of a number of different steps. First, most often a basis for the test is
a scenario of an adverse aggregate macroeconomic or macro-financial shock. This
shock may be defined on hypothetical grounds or estimated from data, such as a
tail density forecast of a macroeconometric model. The second step uses a set of
exposures and other mechanisms to link banks to the impact of the adverse sce-
nario. The links may be banks’ loan books or other credit risk exposures of a bank
or a country-level banking system. Thus, the effects of the scenario are shown as
changes in the probabilities of default and losses given default, and also lead to
indications of whether and how many banks fail (see, e.g., Castrén et al. (2009)).
Likewise, Castrén et al. (2010) estimate a so-called global vector autoregressive
model and link it to firms’ default probabilities for a model that may be used for
analyzing a financial sector’s probability of default given a range of macro shocks.
Alfaro and Drehmann (2009) use country-specific univariate autoregressive models
to forecast GDP growth, but focus more on showing that stress scenarios derived
from historical data are not severe enough in comparison to actual events. Hirtle
et al. (2009) describe the stress-testing model of the Supervisory Capital Assess-
ment Program, which tests a range of macroeconomic scenarios, e.g., variation in
GDP growth, housing prices and unemployment. For comprehensive reviews of the
stress-testing literature, see Sorge (2004) and Drehmann (2009).
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3.3.3 Contagion and spillover models

The main aim of contagion models is to assess the transmission of financial instabil-
ities in the cross section. Hence, they attempt to answer the question: With what
likelihood, and to what extent, could the failure of one or multiple financial interme-
diaries cause the failure of other intermediaries? Further, they may also focus on
the failure of one or several financial markets and their likelihood to cause failures
of other markets. Thus, contagion and spillover models attempt to grasp, show and
quantify the transmission channels of instability across financial intermediaries and
markets, as well as market infrastructures (for comprehensive reviews, see de Bandt
et al. (2009) and Upper (2007)). Herein, we discuss the use of three data sources
to answer these questions: ¢) market-based data, ) interbank balance-sheet data,
and #17) interbank payments data.

First, one can use market-based estimates to measure the extreme dependence of
negative asset returns, the so-called tail dependence. The first approach measures
the extent of losses, after controlling for common factors, caused by a large loss of
market value or a large increase in default probability. These approaches commonly
identify tail-risk drivers in a tail-dependence network and enable assessing which
entities are particularly vulnerable to large losses in the market. For instance,
IMF (2009) presents a co-risk model for assessing interdependence among banks
under extreme events and a distress dependence matrix for assessing pairs of banks’
distress probabilities, both using market data. Likewise, Hautsch et al. (2011)
propose the systemic risk beta as a measure for financial companies’ contribution
to systemic risk given network interdependence between firms’ tail risk exposures
measured using equity prices. While being widely available and capturing other
contagion channels than those in direct linkages between banks (Acharya et al.,
2010), market price data assume that asset prices correctly reflect all publicly
available information on bank exposures. Yet, it has repeatedly been shown that
securities markets are not always efficient in reflecting information about stocks and
are thus vulnerable to mispricing distortions (see, e.g., Malkiel (2003)). In addition,
market prices are most often contemporaneous, rather than leading indicators, and
it might be difficult to separate the factors driving market prices in order to observe
bilateral interdependence (Borio and Drehmann, 2009b).

The second approach, on the other hand, uses counterfactual simulations on balance-
sheet data, or some proxy of them. These studies simply simulate to what extent
and whether the failure of one financial intermediary would lead to losses of other
intermediaries. For instance, Castrén and Kavonius (2009) provide a tool for assess-
ing contagion and the transmission of risk in the euro area financial system. They
construct a sector-level network of bilateral balance sheet exposures of the euro
area financial accounts data, as well as include sensitivity of the balance sheets to
changes in leverage and asset volatility, to illustrate the propagation of local shocks
in the network. Likewise, Chan-Lau (2010) evaluates, under extreme adverse sce-
narios, interconnectedness risk in banking systems among mature and emerging
market economies, and between individual financial institutions in Chile, using
balance sheet-based network analysis. Along these lines, Battiston et al. (2012)
developed a network measure of centrality, the DebtRank, as one approach to cap-
ture the impact of distress in a financial institution to the cross section across the
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entire network. Moreover, the IMF (2009) presents a default-intensity model that
uses both direct and indirect linkages in the financial sector, as well as combines
them with failure probabilities of banks, to achieve a measure of the probability of
failure of a large fraction of financial institutions. Yet, balance-sheet data, while
measuring direct linkages between banks, are mostly not publicly disclosed. In
many cases, even supervisors and other market oversight authorities have access to
only partial information.

The literature on the third group of models focusing on payments data is somewhat
scarce. A concern once again is that interbank payment data, likewise interbank
lending data, are locked behind the doors of confidentiality. Yet, while not always
making use of real data, there exist some tools based upon payments data. In
particular, the three compilations edited by Leinonen (2005, 2007, 2009) provide a
broad overview of policy-oriented research on tools for payment systems simulation.
Recently, along the lines of DebtRank for balance-sheet data, Soraméki and Cook
(2012) developed a network metric for payments data, the SinkRank, for identifying
systemically important banks and most affected banks in the case of distress.

3.3.4 Tools with visual capabilities

Data visualization can serve multiple purposes in macroprudential oversight. First,
visual representations can generally be classified to be used to enhance communica-
tion with two audiences: ) internal and i) external. The purpose of use in internal
communication relates to enhancing the understanding of policymakers on various
levels. One task is obviously to support the analysts themselves, and within other
groups of active participants in the process of deriving analytical models. Further,
one may also want to communicate to the outside of the involved counterparties,
which involves making use of visuals when presenting to the management, entire
divisions and even on the level of the institution or organization as such. The key
task, at the lower level, is to provide means for interaction with visuals in order
to amplify cognition, that is, to better understand and model the task at hand
(for further discussion see Section 5.1), whereas the higher level focuses more on
reporting and presentation of information by the means of oftentimes static visu-
als. While the case of low-level analysts can easily be imagined, an example at a
higher level could be the dissemination of identified risks by the risk identification
division for assessment at the risk assessment division. FEzxternal communication,
on the other hand, refers to conveying information to other authorities with re-
sponsibility for financial stability and overall financial-market participants, such as
laymen, professional investors and financial intermediaries. Whereas this mainly
relates to communication of readily processed and finalized data products, such as
on the high level of internal communication, it obviously is a more challenging task
due to the large heterogeneity in the audience. A direct example of such commu-
nication is quarterly or biannual Financial Stability Reports, a recent phenomenon
that has quickly spread to a large number of central banks.

In the context of low-level internal communication of systemic risk modeling, Flood
and Mendelowitz (2013) note that data exploration is an area where visualization
tools can make a major contribution. They point to the fact that certain tasks
of classification, analysis and triage can be automated, whereas many require a
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human analyst, such as the difficulty to train a well-performing machine to analyze
anomalous financial market activity. This follows the very definition of visual
analytics (see Subsection 5.1.3). Ekholm (2012) — the Deputy Governor of Sveriges
Riksbank, the first central bank to publish a stability report in 1997 — notes that
there is a strive for not only openness and transparency, but also clear external
communication, in particular during times of crisis when "a “negative” but reliable
announcement can [...] be better for confidence than a “positive” but uncertain
announcement”.

Herein, I provide a brief overview of used visualization tools for the above discussed
three types of models: i) early-warning models, ii) macro stress-testing models,
and #17) contagion and spillover models.

First, the standard predictive early-warning models may be complemented by the
use of tools amplifying cognition. Due to the complexity of financial systems, a
large number of indicators are often required to accurately assess the sources of fi-
nancial instability. As with statistical tables, standard two- and three-dimensional
visualizations have, of course, their limitations for high dimensions, not to men-
tion the challenge of including a temporal or cross-sectional dimension or assessing
multiple countries over time. Although composite indices of leading indicators and
predicted probabilities of early-warning models enable comparison across countries
and over time, these indices fall short in describing the numerous sources of distress.

Some recent approaches make use of techniques for multidimensional visualization
to assess sources of risk and vulnerability. Work by International Monetary Fund
(IMF) staff on the Global Financial Stability Map (GFSM) (Dattels et al., 2010) has
sought to disentangle the sources of risks by a mapping of six composite indices with
a standard radar-chart visualization. Even here, however, the GFSM falls short
in disentangling individual sources, for which separate visualizations are needed.
In addition, familiar limitations of radar charts are, for example, the facts that
area does not scale one-to-one with increases in variables and that the area itself
depends on the order of dimensions. This is illustrated in Figure 3.3, where Country
A and Country B have an area of significantly (i.e., infinitely) different size but
the same aggregate risks (i.e., mean value). In addition, the use of adjustment
based on market and domain intelligence, especially during crisis episodes, and the
absence of a systematic evaluation gives neither a transparent data-driven measure
of financial stress nor an objective anticipation of the GFSM’s future precision.
Indeed, the GFSM comes with the following caveat: “given the degree of ambiguity

and arbitrariness of this exercise the results should be viewed merely illustrative”.”

Data and dimension reduction methods have also been used to represent these
complex data. In terms of Fuzzy c-means (FCM) clustering, a combination of
clustering models and the reasoning of fuzzy logic have been introduced to the
early-warning literature by finding risky clusters and treating relationships in data

"The authors state that the definitions of starting and ending dates of the assessed crisis
episodes are somewhat arbitrary. Similarly, the assessed crisis episodes are arbitrary, as some
episodes in between the assessed ones are disregarded, such as Russia’s default in 1999 and
the collapse of Long-Term Capital Management. Introduction of judgment based upon market
intelligence and technical adjustments are motivated when the GFSM is “unable to fully account
for extreme events surpassing historical experience”, which is indeed an obstacle for empirical
models, but also a factor of uncertainty in terms of future performance since nothing assures
manual detection of vulnerabilities, risks and triggers.
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Country A Country B

Emerging Emerging
market risks market risks
Macroeconomic Macroeconomic
) Credit risks ) Credit risks
risks risks
Monetary and Market and Monetary and Market and
financial \/ liquidity risks financial liquidity risks

Risk apetite Risk apetite
Notes: The figure provides an example of a radar chart, such as the one in Dattels et al. (2010).

Figure 3.3: Radar charts of two countries.

structures as true or false to a certain degree (Marghescu et al., 2010). This type
of analysis has the benefit of not only signaling a crisis in a timely manner, but
also signaling the type and degree of various sorts of financial imbalances. In an
exploratory study, Arciniegas Rueda and Arciniegas (2009) found, with the help of
the Self-Organizing Map (SOM), strong associations between speculative attacks’
real effects and 28 indicators, yet did neither focus on visualizing individual data
nor on early-warning performance. Resta (2009) also has applied the SOM to a
large set of indicators, but with a focus on rather general economic and financial
performance of countries and with limited evaluations of classification performance.

Second, macro stress-testing models, to the best of my knowledge, make no use of
advanced visualization techniques for representing the results of the tests, including
the processing of data at the input, interim and output stage. The visualizations
seldom go beyond a framework or schematic structure for the designed transmis-
sion mechanisms in the model and plots of loss distributions in various formats.
Obviously, standard visualizations from graph theory may be used in representing
networks, if such are used in the models. For instance, the macro stress-testing
model by Boss et al. (2006), which integrates satellite models of credit and market
risk with a network model for evaluating default probabilities of banks, enable one
to make use of concepts from graph theory in visualizing the network structure.
Network visualizations are, however, more common in contagion models.

As said, the third group of contagion and spillover models commonly make use of
concepts from graph or network theory to visualize the structure of linkages in the
models (see, e.g., Estrada (2011)). This provides means to represent entities as
nodes (or vertices) and their links as edges (or arcs). The combination of nodes
and edges provide all constituents for a network, where the edges may be directed
vs. undirected and weighted vs. unweighted. However, rather than a visualization,
a network is a data structure. The interpretability of networks has been enhanced
by the means of various methods. For instance, positioning algorithms, such us
force-directed layout methods, are commonly used for locating nodes with similar
edges close to each other, as well as ring and chord layouts for more standardized
positioning. Yet, the so-called hairball visualization, where nodes and edges are
so large in number that they challenge the resolution of computer displays, not to
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mention interpretation, is not a rare representation of complex financial networks
(see, e.g., Bech and Atalay (2010)). Still, it is worth noting that recent advances
in software for visualizing financial networks, such as Financial Network Analytics
(www.fna.fi), hold promise in bringing aesthetics and the ease of use to visualiza-
tions in the financial domain. An additional essential feature, not the least to deal
with hairballs, is the use of interaction techniques with visualizations.

3.4 A framework for macroprudential oversight

To connect the concepts defined in this chapter, we discuss them in how they re-
late to safeguarding financial stability. One might thus also say that this section
attempts to provide a holistic view of the macroprudential oversight process. The
ECB’s conceptual framework not only includes a systematic way of structuring risks
through the risk cube, but also includes a process of the steps that a macropruden-
tial supervisory body would follow.® The process in Figure 3.4 is an adapted version
of that in ECB (2010), where red components represent risks and vulnerabilities,
the green components represent the need for risk identification and assessment, and
the blue components represent the need for risk communication. Thus, the black
frames mark the use of tools for safeguarding financial stability, where the solid
lines represent the current approach and the dashed lines proposes an integration
of means for risk communication into the tools. A discussion of policy assessments
and implementations represented by gray components is beyond the scope of this
thesis.

The macroprudential oversight process begins with underlying market imperfec-
tions that at a later stage propagate as possible risks. In the first step of the super-
visory process (risk identification), the key focus is on identifying risks to stability
and potential sources of vulnerability. The vulnerabilities and risks could exist
in any of the three components of the financial system: financial intermediaries,
financial markets and the financial infrastructure. The necessary tools to identify
possible risks, vulnerabilities and triggers come from the set of early-warning mod-
els and indicators, as well as the use of market intelligence, and expert judgment
and experience. This provides means for ranking risks and vulnerabilities as per
intensity, as well as for assigning probabilities to specific shocks or future systemic
events.

In the second step of the process (risk assessment), the rankings and probabilities
may be used to assess the identified risks. The used tools come mainly from the
set of macro stress-testing models and contagion models. In macro stress-testing,
simulations of most plausible risk scenarios show the degree of impact severity on
the general financial system, as well as its components. The contagion models,
on the other hand, might be used through counterfactual simulations to assess the
impact of specific failures on the entire financial system and individual institutions.
The first and the second step of the process should not only provide a list of
risks ordered according to possible severity, but also contain their materialization

8 A macroprudential supervisory body is an institution tasked with macroprudential oversight
of the financial system and the mandate of safeguarding financial stability. Examples are the
Furopean Systemic Risk Board in Europe, the Financial Policy Committee in the UK, and the
Financial Stability Oversight Council in the US.
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probabilities, losses given their materialization, and losses in macroeconomic output
and welfare, as well as their possible systemic impact. Hence, these two initial steps
in the process aim at early risk identification and assessment and provide means
for safeguarding financial stability.

The third step (policy assessment) involves the assessment of policy actions as
early preventive measures. Based upon the identified and assessed risks, a macro-
prudential supervisory body can consider giving a wide variety of risk warnings
and recommendations for other parties to use policy instruments, as well as an
implementation of policies given the instruments at hand. To steer their decisions,
the policy assessment step can make use of the same analytical tools used for risk
identification and assessment. While policy tools and their effectiveness is slightly
outside macroprudential oversight and the general scope of this thesis, it is worth
noting that actions tailored to the needs of a system-wide orientation are a key
part of macroprudential regulation and supervision. As interest rate policy may be
a too blunt and powerful tool with material damage to other parts of the economy,
the policies could take the form of tighter standards — e.g., requirements on capital
adequacy, provisioning, leverage ratios, and liquidity management — for individual
financial institutions with larger contributions to systemic risk and calibrated to
address common exposures and joint failures. Macroprudential regulation and tools
may also be used for accumulating buffers or reserves in good economic times to
be used during worse times.

Performing risk identification and assessment is generally seen as the key task of
tools for safeguarding financial stability (solid black frame in Figure 3.4). This
points to a lack of integration between the tools for safeguarding financial stability
and the communication that occurs after the policy assessment step, in particular
the tasks of issuing risk warnings, giving policy recommendations and publishing
Financial Stability Reports, as represented by the blue components in Figure 3.4.
To answer the question, what is the overall purpose of communication through
a Financial Stability Report?, a survey among central bankers by Oosterloo and
de Haan (2004) pinpoints three main reasons for publishing these reports:

i) to contribute to overall financial stability,
i1) to increase the transparency and accountability, and

i11) to strengthen co-operation between authorities with financial stability tasks.

Thus, following the discussion in the previous section, a major concern is how the
results of these risk identification and assessment tools are communicated to a wide
range of stakeholders in easily understandable formats, with the ultimate aim of
achieving transparency and accountability. The broader perspective proposed by
the dashed black frame in Figure 3.4 argues for relating the third step to risk
communication, which would be supported by visual representations of the tools
used in the prior steps. Although not being illustrated in the figure, internal and
external risk communication would obviously have separate feedback loops: the
former to risk identification and assessment (green components), and the latter to
potential sources of systemic risk, vulnerabilities, and material risks (red compo-
nents). This would translate to a threefold focus of tools: risk identification, risk
assessment and risk communication.
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Tools for safeguarding financial stability

[l et

1 Risk identification and assessment Risk communication

Identify: Assess:

" ’ i) Vulnerabilities i) Transmission channels
Financial market ii) Possible triggers ii) Potential severity of risk
: P T
1 per L. iff) A ranking of their materialization
behind systemic risk: likelihood to materialize iii) Resilience to shocks
1) asymmetric Tools: Tools:
information i) Early-warning models 1) Contagion models
il) externalities i) Market intelligence i) Macro stress-testing

ifi) incomplete markets i) Experience/judgment i) Market intelligence

iv) Experience/judgment

\4 \ 4

Notes: The figure represents the role of analytical models and tools for identification and assessment
of systemic risk in the macroprudential oversight process. The red components represent risks and
vulnerabilities, the green components represent the need for risk identification and assessment, and the
blue components represent the need for visual means facilitating risk communication. Thus, the black
frames mark the need for tools for safeguarding financial stability, where the solid lines represent the
current approach and the dashed lines represent means for risk communication integrated in the tools.
The gray components are beyond the scope of this thesis. The figure is an adapted version of that in
ECB (2010).

Figure 3.4: The macroprudential oversight process.



3.5 Concluding discussion

This chapter has provided an overview of macroprudential oversight. Not only have
we discussed how financial systems work and what makes them fragile, but also
the specific systemic risks and tools for safeguarding financial stability. Finally, the
chapter ends by summarizing all the above ingredients within a larger framework
of the macroprudential oversight process.

Macroprudential oversight as such is not a new concept. Yet, supervisory bodies
with the mandate of safeguarding system-wide financial stability have only recently
been created, all in the aftermath of the financial instabilities of 2007-2008. The
European Systemic Risk Board in Europe, the Financial Policy Committee in the
UK, and the Financial Stability Oversight Council in the US were all either estab-
lished or announced in 2010. While we have discussed the complexity of factors
affecting financial systems, how fragilities may build up and what form systemic
risks may take, as well as empirical and theoretical underpinnings, an obvious fo-
cus of this chapter is on tools and models for macroprudential oversight. Given the
mandate of multiple macroprudential supervisory bodies, the central task ought to
be timely and accurate measurement of systemic risks. In this chapter, we have
discussed the following three categories of systemic risks (and tools):

i) endogenous build-up of widespread imbalances (early-warning models);
i) exogenous aggregate shocks (macro stress-testing models); and

ii1) contagion and spillover (contagion and spillover models).

This sets an inherent need for a broad basis of tools for the identification and
assessment of potential risks, vulnerabilities and imbalances. One key conclusion
of the review of tools and models is the lack of visual means for identifying and
assessing risks and vulnerabilities, particularly macro stress-test and early-warning
models. In the case of contagion models, visualizations based upon network mod-
els and graph theory have been applied and are still gaining further interest within
the policymaking community. Yet, the task of representing high-dimensional early-
warning indicators on a low-dimensional display has not been addressed in a suf-
ficient manner. Visual aids to the representation of macro stress-test models may
also hold promise due to their complex nature, but to provide a sufficient abstrac-
tion of the problem seems like an inherently different, yet highly interesting, task
to address. However, this is generally beyond of the scope of this thesis.

Another line of research is to purely focus on the forecasting capabilities of models.
The early-warning literature has indicated that ANNs are suitable for the complex
task. They are effective data-driven non-linear function approximators, but are
alas no panacea for binary-choice classification. To fully benefit from capabilities
of ANNs, they need to be provided with their computational demands (i.e., large
samples and computing power) and specific training schemes for generalization. In
addition, the literature showed that the choice of the optimal set of indicators is
either performed according to economic significance or univariate predictive per-
formance, whereas the choice has not been performed in a multivariate framework.

Yet, in all above tasks, it is worth remembering that the quality of a model is
highly dependent on the quality of the underlying data. The early-warning models

59



are generally dependent upon country-level macroeconomic, banking system and
market-based indicators of risks, vulnerabilities and imbalances. This takes us to
the topic of data in macroprudential oversight.
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?[ didn’t have time to write a short letter, so here’s a long
one”
— Mark Twain

4 Macroprudential Data

An understanding of all elements in the macroprudential oversight process is ob-
viously crucial for safeguarding financial stability. While providing a basis, such a
framework is still highly dependent on the underlying data. Access to complete, ac-
curate, and timely data is central not only for policymakers to make good economic
policy, but also for businesses and investors alike to make good financial decisions.
However, data for macroprudential purposes are, not surprisingly, as complex as
the system they describe. Alas, complexity oftentimes implies challenges. Gather-
ing, synthesizing, understanding and analyzing these data is hence not an entirely
unproblematic task. With the aim of having a holistic view of the financial system
to ensure system-wide stability, rather than only being concerned about individual
financial institutions, a macroprudential approach to oversight has a wide range of
data demands and needs. As early-warning models were at the core of the previous
chapter’s ending note, the key focus herein is also on input data for early-warning
exercises. Yet, as macro stress-testing and contagion models will throughout this
thesis be touched upon, this chapter will still provide a brief discussion on data
needs for risk assessment tools as well.

The focus of this chapter is on attempting to clarify what macroprudential data
consist of, from where they are derived, how complex they are and how their prop-
erties may or may not hinder analysis. Hence, after defining the concept of data
considered herein, I provide a brief overview of data for macroprudential oversight
and untangle the data into a four-dimensional cube representation. Finally, I dis-
cuss stylized challenges related to macroprudential data and summarize the key
implications for this thesis.

4.1 Data: What are they?

The tools and models for risk identification and assessment described in Section
3.3 (and summarized in Figure 3.4) made use of four broad sources of information:

1) open financial and macroeconomic data and statistics,

1) supervisory data and statistics,

#14) domain intelligence, and

)
)
iv) experience and judgment.

To enable a discussion of data in macroprudential oversight, we need to start by
defining the notion of data. In a broad sense, everything that can be encoded may
be seen as data. However, the early definitions differ significantly from the today’s
notion of data. Fry and Sibley (1976) follow its Latin origin by defining data as
a collection of facts. As a fact by definition cannot be false, the imprecision and
inaccuracies often found in data today suggest this definition to be unsound. Hence,
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later attempts have softened the definition of the notion, such as “data are facts or
are believed to be facts which result from the observation of physical phenomena”
(Yovits, 1981). Lately, the definition has significantly broadened. Along the lines
of one definition in a recent Delphi study of more than 50 leading scholars (Zins,
2007), I define data as everything that can be encoded and stored in a computer.

The implication of this definition is that it includes two of the above presented
sources, publicly available and supervisory statistics, while leaving out the "softer”
notions of implicit domain intelligence and judgment. The former may, for instance,
consist of numerical and textual data and oftentimes function as an input to tools
and models for risk identification and assessment (see Section 3.3), or as stand-
alone measures for monitoring various risks, vulnerabilities and imbalances. The
latter sources are, on the other hand, used for interpreting the results of tools and
models in particular, and during the overall process of macroprudential oversight in
general. Domain intelligence comprises various dimensions, such as market, policy
and institutional intelligence (e.g., understanding the role and risks of financial
innovations), whereas experience and judgment may, likewise, relate to a wide
variety of topics, ranging from the functioning of the financial system to statistical
methods. These types of qualitative information are an important complement
to quantitative data in assessing the soundness of financial systems. Schou-Zibell
et al. (2010) divide the qualitative dimensions to the following elements:

i) institutional processes;

i1) legal infrastructures and regulatory frameworks governing financial opera-
tions;

practices and standards with respect to disclosure and accounting;
surveillance and supervision of banks and other financial institutions;
incentive structures; and

safety nets to cover overexposure to international financial markets.

The authors exemplify the above six qualitative tasks with, for instance, compliance
with the core principles of the Bank for International Settlements (BIS), Interna-
tional Organization of Securities Commissions, and the International Association of
Insurance Supervisors. Such qualitative information may aid in understanding the
inner reasons for the behavior of banks and markets. It is not, however, straight-
forward to combine these types of qualitative information with current theory and
historical experiences of financial crises, not to mention the multitude of quanti-
tative models. Schou-Zibell et al. (2010) also stress the importance of structural
information in assessing how a financial system works. While structures in banks
may often be covered by data, this relates more to market intelligence and country
surveillance than to automated approaches for identifying vulnerabilities and risks.
Structural assessment may, for instance, be a combined analysis of the structure
of banks and their relative size, business strategy, ownership, concentration, and
competitive situation. However important qualitative information is, the key focus
herein is on numerical data.
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4.2 Data for macroprudential oversight

Data needs and demands for macroprudential oversight are set by a broad range
of issues. First, the availability of data obviously restricts the types of inputs to
tools and models used by policymakers. Second, the understanding of the financial
system, its fragilities and instabilities and the general oversight process defines what
a policymaker understands to demand. Third, the design of the tools and models
used for the task at hand set their final nuance to the data needs.

Early-warning exercises commonly make use of a wide range of indicators, mea-
suring various dimensions of risks, vulnerabilities and imbalances. In this thesis,
macroprudential data are related to three different categories:

i) macroeconomic data,
i1) banking system data, and

i17) market-based data.

Generally, the key three sources of macroprudential data measure the behavior of
three low-level entities: households, firms and assets. By grouping data for the
entities, we may produce data on various levels of aggregation. While firm-level
data may also be of interest in the case of systemically important financial insti-
tutionss (SIFIs), the data for macroprudential analysis most commonly refer to
high-levels or aggregations of three kinds (see, e.g., Woolford (2001)): macroeco-
nomic, banking system, and financial market behavior. Hence, for macroprudential
purposes, low-level entities may be aggregated as follows: from data on individual
households’ actions to the macroeconomic, from data on banks to the banking sys-
tem, and from data on individual assets to the financial market. For instance, an
entity could be a country, which would be described by country-level aggregates of
macroeconomic, banking system, and financial market behavior. It is still worth
to note that a system-wide approach does not always necessitate aggregation, as
an entire system may, for instance, be viewed from the perspective of a network
of entities. Further, the category aggregating banks to the banking system may
likewise be defined in broader terms (e.g. financial intermediaries in general) or
some other type of financial intermediaries (e.g., insurers).

Yet, these three categories do not perfectly cover all types of data relevant for
macroprudential oversight, especially not novel unexplored sources. These data
relate, for instance, to texts and discussions (e.g., news articles, blogs or discussion
forums) and tracking human behavior (e.g., search-terms used in Google and buying
behavior). Whereas text has, for instance, been utilized for mapping bank inter-
relations (see, e.g., Ronnqvist and Sarlin (2013)), trends in Google searches have
been used for nowcasting macroeconomic data with long publication lags (see, e.g.,
Carriere-Swallow and Labbé (2013)). The focus herein is, however, on the above
mentioned three categories of numerical data, and on an overview of their use as
indicators. The below discussion is supported by a long, yet incomplete, list of
indicators along all three categories in Table 4.1.
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4.2.1 Macroeconomic data

Macroeconomic data can be transformed to measure risks and vulnerabilities of
economic activity on a country level, and may hence function as leading indicators.
Rather than being narrow in definitions, many macroeconomic measures provide
a broad picture of overall economic and financial activity, as well as general cir-
cumstances, in the entire economy or a particular area of it, such as economic
and production growth, current account balance and inflation. Trends, and devi-
ations from them, indicate not only broad economic development in general, but
also whether quantities and prices are consistent with prospects, such as in credit
markets. For instance, vulnerabilities and risks to financial stability may be repre-
sented through above-normal and sustained rates of growth or valuation of credit
and investment.

The production of macroeconomic data involves a laborious and costly aggregation
process to derive figures that represent all households in an economy. The data
are obviously not only of interest for domestic analysis, but also for various cross-
country comparisons. This has stimulated a wide range of attempts to harmonize
macroeconomic measures. Explicitly aiming at standardizing macroeconomic data
across countries, the United Nations have issued their System of National Accountss
(SNAs) in 1953 and its revised versions in 1968, 1993 and 2008 (see United Nations
(2008) for the latest version). Likewise, the International Monetary Fund (IMF)
has issued a Balance of Payments Manual to provide an accounting standard for
reporting of balance of payments statistics (see IMF (2008) for the latest version).
The title of the version in 2008, in contrast to the versions in 1948, 1950, 1961, 1977
and 1993, has been amended to Balance of Payments and International Investment
Position Manual to reflect that it now covers both transactions and stocks of the
related financial assets and liabilities alike.

Lately, multiple initiatives mainly run by the IMF have attempted and also prompted
progress in data provision. In 1996, the IMF established the Special Data Dissemi-
nation Standard (SDDS) (see (IMF, 2007c¢) for the latest version) to guide member
countries in providing national economic and financial statistics to the public. The
SDDS is the first of a two-tier data standards initiative with the general aim of
improving access to comprehensive, timely and accurate data to facilitate macroe-
conomic policies and the functioning of financial markets. To function as a devel-
opment tool to prepare for SDDS subscription, the IMF established the second tier
in 1997, called the General Data Dissemination System (GDDS) (see IMF (2007Db)
for the latest version). Likewise, the Data Quality Reference Site (DQRS) was
established by the IMF in 2000 to foster a common understanding and importance
of data quality.

The national accounts may further be complemented with balance-sheet exposures
between aggregated entities, such as economies. These types of cross-border ex-
posures represent crucial links in the global economy. Since 2001, the IMF has
published data on bilateral portfolio investment positions among economies on an
annual basis. The data have been collected through the annual Coordinated Portfo-
lio Investment Survey. Likewise, the Coordinated Direct Investment Survey collects
bilateral position data on direct investments among economies.
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Table 4.1: Examples of macroprudential indicators.

(a)

Macroeconomic data

(b)

(c)

Banking system data Market-based data

Macroeconomic indicators

Internal indicators
GDP growth
Unemployment
Inflation
Debt imbalances
Credit imbalances
House prices

External indicators
Current account balance
External investment position
Unit labor costs
Real exchange rate

Ezxport market share

Banking system
indicators

Capital adequacy
FEquity to assets
Tier 1 and 2 ratio

Asset quality
Impaired assets
Non-performing loans
Loan loss provisions
Debt to equity
Return on assets

Management
Cost to income

Earnings

Return on equity

Market-based indicators

Asset valuation
Equity prices
Bond spreads
Derivative valuation
CDS prices
Option-adjusted spread
Credit ratings
Sovereign ratings
Firm ratings
Credit spreads
Sovereign yield spread
Default probabilities
Distance-to-default

Net interest margin Bond default probabilities
Liquidity
Liquid assets to liquid
liabilities
Interest expenses to
liabilities
Deposits to funding
Loans to deposits
Sensitivity to market risk
Share of trading income
Loans to assets

Net open position in
foreign exchange to capital

Net open position in
equities to capital

Market-based
co-movements

Macroeconomic linkages Banking sector linkages

Asset and derivative

Equity and debt exposures
interdependence

FEquity and debt exposures

Notes: The table draws upon compilations in Betz et al. (2013), Cihdk (2006), IMF (2006) and Woolford
(2001). The table presents three types of indicators: macroeconomic, banking system and market-based.
Macroeconomic indicators may be defined to describe different sectors, such as private and government
sector. Banking system indicators are defined on the country level, but may also be measured per firm
if needed, as oftentimes is for SIFIs. Likewise, market-based indicators may be used on an entity or
aggregated market level, as needed. Following IMF (2006), credit ratings are classified as market-based
indicators as they are produced mainly for use by market participants. The table does not discuss
how the data may be transformed. Hence, each mentioned indicator may address different imbalances
depending upon its transformation.
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4.2.2 Banking system data

Banking system data utilize, usually in the form of ratios, aggregated country-
level information collected from balance sheets and income statements of individ-
ual financial institutions. The need for macroprudential assessment of financial
conditions on the level of banking systems, rather than only a microprudential, or
institution-level, approach, has been accentuated not only by the ongoing financial
crisis, but also by the Asian financial crisis in the late 1990s. San Jose and Georgiou
(2008) describe that vulnerabilities in Asia were related to international capital flow
reversals, also involving shocks to the corporate and household sectors, whereas the
recent wave of distress stemming from the sub-prime mortgage markets highlights
the importance of balance-sheet exposures of financial institutions and vulnera-
bilities to credit and liquidity squeezes. Likewise, from a European viewpoint, the
increasing integration of national financial systems has stimulated efforts to develop
a common framework for financial stability analysis (Agresti et al., 2008).

The need for data to assess strengths and weaknesses in financial systems led to at-
tempts to derive a commonly accepted list of financial stability indicators, not the
least the financial soundness indicators (FSIs) developed at the IMF. Sundarara-
jan et al. (2002) were the first to propose sets of so-called “core” and “encouraged”
FSIs. The FSIs are measures of the current aggregated financial health and sound-
ness of the financial institutions in an economy. A final list, with more precise
definitions of the FSIs, was laid down in a set of indicators compiled by the IMF
(2006) in the Compilation Guide on Financial Soundness Indicators (henceforth
the Guide). IMF (2006) puts forward a handbook on concepts and definitions, as
well as sources and techniques, for compiling and disseminating FSIs. For macro-
prudential surveillance, the key indicators are based upon aggregated information
contained in the balance sheets and income statements of individual financial in-
stitutions. The literature on individual bank failures draws heavily on the Uniform
Financial Rating System, informally known as the CAMEL ratings system, in-
troduced by U.S. regulators in 1979, where the letters refer to Capital adequacy
(e.g., risk-based capital ratio), Asset quality (e.g., nonperforming loans to capital),
Management quality (e.g., cost to income), Earnings (e.g., return on equity) and
Liquidity (e.g., deposits to funding). Since 1996 the rating system also includes
Sensitivity to Market Risk (e.g., net open position in equities to capital, which de-
rives CAMELS). To implement the FSIs in the Guide, the IMF invited its members
to participate in a Coordinated Compilation Exercise (CCE), which eventually led
to 62 participating countries and regions (IMF, 2007a).

In the European context, the European Central Bank (ECB), jointly with the

Banking Supervision Committee (BSC) of the European System of Central Banks,
have put efforts into developing their own financial stability indicators, called

macro-prudential indicators (MPIs) (see Mérttinen et al. (2005) for an overview
of the methodology). The aim of the MPIs is defined to be to gauge conditions
in the financial system and its resilience to stress situations. While differing in
terms of the aim, the scope of FSIs and MPIs is analogous. The MPIs were re-
ported and analyzed in the European Union (EU) Banking Sector Stability report
prepared by the BSC until 2010, whereafter the data have only been reported in
the Consolidated Banking Data, a dataset published in the ECB Statistical Data
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Warehouse.

Cross-border linkages among banking sectors is obviously a potential contagion
channel (as also noted in Section 3.2), when assessing interdependence of the global
economy. The BIS has been collecting international banking statistics with bilateral
partner-country information on both a locational basis and on a consolidated group
basis. Likewise, to assess the system-wide risk within countries, balance-sheet
exposures between individual banks are of central interest.

4.2.3 Market-based data

Market-based data exploits aggregated information dispersed among financial mar-
ket participants. The rationale for using market data is that prices of financial
instruments, such as equities, bonds and options, capture forward-looking percep-
tions of financial market participants, not least related to vulnerabilities and risks
in the financial system. Rather than being a substitute for the previous sources
of information, market-based data complements analysis by conveying the view of
financial market participants. Lately, joint efforts by the IMF, ECB and BIS have
been put forward to assist the reporting and production of coherent, relevant and
comparable securities statistics for use in financial stability analysis and monetary
policy formulation. In a three-part series, the Handbook of Securities Statistics
was published in 2009, 2010 and 2012 (BIS-ECB-IMF, 2009, 2010, 2012).

Market-based data capture the perceptions of markets about vulnerabilities and
risks in the financial system. The degree of system-wide risk may be measured
by, for instance, yields and spreads of financial instruments, asset prices, externally
measured creditworthiness and sovereign ratings, interest rates, exchange rates and
stock market volatility. Depending then on how these data are transformed, they
function as forward-looking measures of the health of the financial system. They
may be, for instance, changes in government or corporate bond spreads, relative
stock-market prices, and indicators of volatility in share prices (e.g., Cihdk (2006)).

Moreover, market-based data are oftentimes transformed into some more advanced
stand-alone measures of default probability. One indicator that has gained large
attention is Merton’s (1974) distance-to-default, which uses a structural valuation
model to compute the ratio of a firm’s assets to debt. To be forward-looking, asset
value and volatility is, however, estimated from equity data. Since supervisors com-
monly intervene before capital is depleted, Chan-Lau and Sy (2006) and Danmarks
Nationalbank (2004) present two alternative, but similar, measures: distance-to-
capital and distance-to-insolvency. Likewise, bond prices may be turned into a
default probability by Fons’ (1987) function of the additional required rate of re-
turn over default-free bonds. A more direct measure of default probability may
be obtained from credit default swaps (CDSs). CDSs provide an insurance against
default, where the seller guarantees protection by compensating the buyer in the
event of a default of the reference obligor during the life of the contract and the
buyer pays a quarterly fee (i.e., the CDS spread). The default probability is then
calculated from the CDS spread, interest rate of default-free bonds and recovery
rate (i.e., the amount recovered in event of a default). While being defined on the
firm level, these measures can obviously be aggregated through simple or weighted
averages or measures for entire portfolios. However, due to the existence of large
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co-movements in market-based data, aggregating these indicators from the entity
level to the systemic level poses a number of challenges that still remain to be
solved. One suggestion is the indicator by Cihdk (2007) that attempts to account
for correlation of defaults across institutions in an aggregate measure of financial
stability.

These data may also be used to compute interdependence among economies. For
this task, one can compute co-movements in country-specific market data, such
as stock market indices, CDS spreads and bond spreads. Yet, the most common
approach is to make use of firm-level data, in order to assess co-movements in their
asset prices (see, e.g., Hautsch et al. (2011)).

4.3 A four-dimensional data cube

The previous section related macroprudential data to three key sources: macroe-
conomic data, banking system data and market-based data. Yet, the discussion
provided little structure on the form and complexity of the data. Based upon the
above discussion, macroprudential oversight can be said to utilize data that come
from a so-called macroprudential data cube (henceforth data cube). The charac-
teristics and challenges associated with macroprudential data can subsequently be
paired with this data cube representation. Rather than three, the data cube in
Figure 4.1 is described by four dimensions:

i) entities (e.g., countries);

i1) time (e.g., years);

ii1) variables (e.g., gross domestic product (GDP));

w

- = =

links (e.g., debt and equity exposures).

Each cell is hence defined by a specific cross-sectional entity, a specific time unit,
a specific variable (or in computer science so-called input or feature vector), and
a specific network of interlinkages. The value for each cell is the value for that
particular variable and the related vector of links.

Following the four dimensions, the data cube can be described according to four
types of slices. First, a multivariate cross section (red side) provides a view of mul-
tiple entities described by multiple variables at one point in time. Second, a cross
section of time series (blue side) is a univariate view of multiple entities over time.
Third, a multivariate time series (green side) provides a view of multiple variables
over time for one entity. Finally, the fourth view is a cross section of interlinkage
matrices (black edges) that represent links between multivariate entities at one
point in time. As noted in the previous section, while links may be estimated from
interdependence in the variable dimension (e.g., equity prices), a more common and
less noisy measure is direct linkages and exposures between entities. To exemplify
a macroprudential dataset in the data cube representation, the four dimensions
could be defined as follows: countries as entities, quarterly frequency as time, indi-
cators of various sources of risk and vulnerability as variables, and equity and debt
exposures between economies as links.
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Notes: The figure represents the macroprudential data cube. It represents four spaces: entities (e.g.,
country), time (e.g., year), variables (e.g., GDP), and links (e.g., debt and equity exposures). Likewise,
it illustrates four data slices: a multivariate cross section (red side), a cross section of time series (blue
side), a multivariate time series (green side), and a cross section of interlinkage matrices (black edges).

Figure 4.1: A macroprudential data cube.

4.4 Stylized challenges in macroprudential data

The more commonly used term ’stylized fact’ refers to a broad generalization of a
complex occurrence — which may be imprecise in the detail, but essentially true.
This section presents stylized challenges related to the use of macroprudential data
by not delving into atomic detail, but rather focusing on more general concerns
and relative prominence of different data sources. The data discussed in Section
4.2 are problematic due to numerous reasons. Not only is it difficult to identify
relevant data from the vast amounts available, but there are also challenges of
their own in compiling the components needed for the macroprudential approach
both within individual economies and across economies, not to mention challenges
related to time. Schou-Zibell et al. (2010) pinpoint that the key concerns related
to macroprudential data are excessive and frequently reoccurring delays, inaccura-
cies, inadequacies and incompleteness of data. The authors relate it to five major
reasons:

i) spread of data in various databases and institutions;
i1) non-availability or non-applicability of some indicators;

i11) incomparability of indicators over time owing to the absence of or changes in
accounting and prudential standards;

iv) lack of transparency and problems in the disclosure of data; and

v) late, incomplete, and inaccurate replies from participating institutions and
agencies.

These five reasons can, however, be complemented. In that vein, I untangle the
challenges according to two dimensions of the data cube: i) temporal and i)
cross sectional. The former relates to major challenges related to temporality and
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nonstationarity, whereas the latter relates to heterogeneity of countries in the cross
section.

With regards to temporality, the indicators on the watchlist are prone to change over
time, not least in the wake of the ongoing global financial crisis. A large number
of papers and projects, often led by supervisory authorities, have viewed possible
data gaps (see, e.g., Burgi-Schmelz (2009)). Gaps seem to exist on individual,
sectoral and market levels, where most frequently mentioned gaps are related to
the real estate, corporate, and household sectors, as well as to nonbank financial
institutions. This not only accentuates the importance of access to the data of
latest relevance, but also imposes challenges in the application of analytical tools
as the time dimension is commonly short for new types of data. In addition, with
the aim to use historical data to infer about the future, nonstationarity may also
easily become a problem. Bisias et al. (2012) note that the field of econometrics has
provided a large number of techniques to address specific types of nonstationarities,
such as deterministic and stochastic trends and cointegration relationships, whereas
the type of nonstationarity that complicates risk assessment and identification,
such as political institutional and cultural changes, is less easily dealt with through
transformations or parametrizations. For instance, complex financial instruments,
such as CDSs and collateralized debt obligations, as well as high-frequency trading
in general, were not part of the risk assessment and identification agenda in the
beginning of the 1990s, whereas they are in the core of today’s analysis.

Yet, an even more important and recurring challenge appears to be the deliberate
migration of activities to areas which are not on the current watchlist. These
included special purpose entities (e.g., in the context of loan securitization) and
off-balance-sheet operations (e.g., in the context of hiding risky assets) during this
crisis, but are likely to evolve into another form in the future. Another problem is
the pace with which activities have moved to nonbank financial intermediaries not
under the watchlist of regulatory and supervisory bodies. For instance, Feldman
and Lueck (2007) show that the market share of "other financial intermediaries”
has increased from less than 10% in the 1980s to about 45% in 2005, which does
not yet include activities in hedge funds. The implications of the changing nature
of risks and vulnerabilities relates obviously not only to data provision, but also in
broad terms to macroprudential oversight and supervision in general. Likewise, due
to advances in telecommunications, computer technology and financial innovation,
Bisias et al. (2012) note that the intensity of activity in the financial sector has
experienced a tremendous growth. More precisely, they pinpoint the challenges to
the leisurely pace of quarterly financial reporting and annual examinations, as well
as the failure of accounting standards in conveying all risk exposures due to light
reporting requirements in unregulated markets.

The latter of the two challenges relates to heterogeneity in the cross section. The
common problem of comparability is often cited as a cause of the lack of regular
and uniform reporting of indicators for various types of financial institutions, such
as nonbank financial institutions. For instance, Burgi-Schmelz (2009) provides a
recent review of what has been achieved in the international collection, distribu-
tion and availability of statistical data, and highlights that a large number of gaps
should be filled to further improve the coverage of statistical information, not the
least dimensions accentuated by the ongoing global financial crisis. Another chal-

70



lenge is the identification of relevant indicators to signal risks and vulnerabilities in
a particular financial system. Due to differences in financial and economic devel-
opment, indicators useful in one country may not necessarily be useful for another.
For instance, Schou-Zibell et al. (2010) relate cross-country differences in develop-
ment to disparities in institutional and legal frameworks, the size and liquidity of
financial markets and the versatility of financial instruments.

These remarks highlight challenges in overall use of these types of data for macro-
prudential oversight. The sequel of this section focuses on a comparative discussion
of the identified three types of macroprudential data. The problematic nature of
macroprudential data relates to a wide range of issues that hinder identification
and assessment of risks and vulnerabilities. Hence, I pinpoint challenges particular
for each category of data.

4.4.1 Macroeconomic data

Macroeconomic data have been harmonized through the SNA and are hence es-
timates of aggregates. Yet, statistical offices have had multiple reasons not to
either participate at all or to only fulfill partial requirements. Examples of rea-
sons are, for instance, not being able to devote enough resources to implement the
suggested harmonizations or preferring to stick to their own national income ac-
counting rules (see, e.g., the case of the United States (US) in Mead et al. (2004)).
Hence, national accounting practices still have substantial differences. Further,
Hartwig (2006) shows differences in the used deflators of Switzerland and the SNA.
In a larger context, Hartwig (2007) illustrates that partial differences in economic
growth in the SNA and Europe may be explained by different deflators, in partic-
ular a deflation method introduced in the SNA in 1997. Whilst National Income
and Product Accounts, and the GDP, tend to be computed from the demand side
in the US, the SNA uses the supply side, i.e., differences between gross output
and intermediate inputs, to compute GDP. Most literature on accounting differ-
ences describe problems when comparing firm-level data in different countries using
various reporting standards. The above mentioned issues illustrate, however, the
existence of similar problems with the country-level aggregates.

Moreover, uncertainty in data are often caused through survey-based collection.
For instance, an economy’s value added and employment may be collected through
household surveys. These, however, comprise only a small percentage of the popu-
lation, may not always have reliable answers and are difficult to extrapolate to the
macro level. Bruyere and Chagny (2002) exemplify the uncertainty in surveys by
showing that in most of 8 Organisation for Economic Co-operation and Develop-
ment (OECD) countries labor input growth according to household surveys exceed
counterparts retrieved through establishment surveys.

An issue of crucial importance in early-warning exercises is to take into account
publication lags for data. For instance, GDP, money and credit related indicators
have an approximate lag from 1 to 2 quarters depending on the country. One sel-
dom discussed, yet important, issue is to account for revisions of macroeconomic
data. When evaluating early-warning models, the data that would have been avail-
able in real time (i.e., preliminary first-releases) should be used. Likewise, while
relating to all categories of data, it is also important to only use the available in-
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formation set when performing transformations of variables that are dependent on
the historical data distribution (e.g., detrending or percentiles). Missing values, as
well as outliers, are obviously an issue on their own.

4.4.2 Banking system data

The aggregation procedure of banking system data does not involve equally com-
prehensive procedures as macro data. Still, the constraints faced by empirical
analyses have illustrated challenges in availability and quality of banking system
data. Cihdk and Schaeck (2010) collected banking system indicators with the aim
of testing the early-warning capabilities of the FSIs listed in the Guide by the IMF
(2006). However, to collect a sufficiently large dataset, they had to narrow down
the focus to three FSIs from the core set (i.e., regulatory capital, asset quality
and profitability of deposit taking institutions) and two proxies for FSIs from the
encouraged set (i.e., profitability and leverage). The low number of indicators was
driven by the limited availability of data. Likewise, availability leads to time series
of annual frequency that only date back to 1994. Still, many economies deviate
from definitions in the Guide (IMF, 2006), which is likely to increase cross-country
differences. For instance, minor errors in the reporting of one element of an indi-
cator, such as non-performing loans, is likely to impact a large number of other
indicators.

Between 2004 and 2007, the IMF conducted the Coordinated Compilation Ex-
ercise (CCE) for FSIs, after which they report that a total of 57 out of the 62
participating countries submitted their data and metadata (IMF, 2007a). Yet, the
final report of the CCE revealed in FSIs cross-country diversity on account of four
issues (IMF, 2007a): i) accounting and supervisory practices; i) data availability;
ii1) additional data collection costs for fully implementing the FSIs; and iv) views
on how to compile the FSIs. This indicates that cross-country standardization is
still a goal to be achieved. However, the metadata compiled by the CCE facilitate
more informed cross-country comparisons and unifications. While the 2008 update
of the Guide improved the FSIs, Agresti et al. (2008) point out that the MPIs
better follow international accounting and supervisory standards and thus requires
only few adjustments to original national banking sector data.

Schou-Zibell et al. (2010) also note that the commonly used weighted averages of
indicators may lower their accuracy. Likewise, relating indicators to asset size,
or other data measuring size of banks, implies an implicit assumption that small
banks are not contributing to systemic risk. Even though Schou-Zibell et al. (2010)
suggest the use of qualitative information to complement the quantitative assess-
ments, there are obvious measurement problems. Qualitative information, such as
poor banking supervision, is challenging to quantify, whereas a qualitative assess-
ment across countries may vary significantly. Other factors that are important in
predicting a crisis, but are difficult to measure, include the quality of corporate gov-
ernance, independence of the national central bank, reliability of the legal system,
political stability, and other institutional qualities.

The aggregation procedure to derive data on the banking system is rather easy.
However, while balance sheets and income statements of individual financial inter-
mediaries are simple to add up, comparisons of them have limitations not only due
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to differences in individual firms’ business models, but also due to cross-country
variance in business models and accounting standards (see, e.g., Nobes (2006)).
They and their analysis can, however, be treated in close to similar manners as
financial ratios for individual firms. Likewise, they oftentimes also exhibit outliers
and skewed distributions (see, e.g., Deakin (1976)). An issue of even more crucial
importance than with macroeconomic data is to lag variables such that they take
into account publication delays. Although some economies report quarterly bank-
ing system data, others report only on an annual basis, which means that data
for a reference period are in most cases available only in the second quarter of the
following year. That is, at the time of writing, in February 2013, the available
data would refer to 2011. Pointing at the fact that in today’s quick paced financial
world, the frequency of financial reporting falls short in granularity.

4.4.3 Market-based data

Relying on prices of assets and other financial instruments, one can create a battery
of financial stability indicators. These have been shown to have merits for some
tasks, whereas they still exhibit a range of weaknesses (see, e.g., IMF (2007a) and
Cihdk (2006)). Advantageous features of market-based indicators is availability at
high frequency and short publication lags, as well as the rarity of missing values
and the lack of differences in accounting standards. They function as a measure
of market participants’ forward-looking assessment of risks and vulnerabilities, in
contrast to some more backward-looking accounting measures (e.g., nonperforming
loans and loan loss reserves). It is also worth noting that these data are publicly
available and widely accessible, unlike supervisory data. Yet, market-based data
also have their limitations. Availability is not only restricted to publicly traded
institutions, but also to those with non-limited trading, where examples of unsuit-
able entities are government- or family-owned companies. Moreover, the quality
of market-based data is directly linked to how efficient the financial markets are.
If markets are not liquid, robust and transparent, price changes may reflect other
factors than the health of the issuer. Likewise, if public information related to an
institution is limited (e.g., loan classification data in some economies), prudential
information collected by supervisors through other sources may be of higher value.
Moreover, the forward-looking assessment of financial market participants only ac-
counts for potential losses to their holdings (e.g., equities and bonds), rather than
losses to depositors or systemic effects in general. It is also worth noting that some
more advanced market-based indicators are based on distributional assumptions.
For instance, measures based upon the distance-to-default methodology assume
that asset values are drawn from a lognormal process, which implies the absence
of extreme tail events relevant for systemic risk assessments.

With regards to market-based data, the aggregation procedure is simple and easily
automated. Yet, it is obvious that market-based data exhibit cross-country differ-
ences. The financial market architecture and infrastructure, as well as many trad-
ing activities, differ depending on the state of financial development in the country,
such as differences between advanced and emerging economies. When transforming
market-based indicators, one should consider that they are oftentimes contempora-
neous measures of financial stress, and hence lagged transformations (e.g., moving
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averages) or deviations from trends (e.g., Hodrick-Prescott filtering) may improve
the early-warning capacity of the indicators. Due to the effortless aggregation and
data collection procedure, problems related to missingness and non-complete data
ought to be relatively rare.

4.5 Concluding discussion

Today’s world has already for some time experienced access to ever-increasing
amounts of data. Yet, this chapter has highlighted that big data does not nec-
essarily imply good data. Crises have more often than not exposed weaknesses in
data. The crises of the 1990s (e.g., Mexican and Asian crises) prompted progress
in data provision along multiple fronts. Examples of standards and efforts to im-
prove data provision are the establishment of SDDS, GDDS and DQRS, as well as
updates of previous establishments. Likewise, this crisis has revealed weaknesses in
data provision. Burgi-Schmelz (2009) pinpoints issues highlighted by the current
crisis to be lack of data on who holds what, the balance-sheets on nonbanks and
contingent risks and derivative positions, in addition to the longstanding need for
more accurate, complete, frequent and timely data. The IMF is working on these
issues in two projects that hold promise for improving macroprudential data. The
Data Link Project is an internal project and aims at developing a set of timely
and higher-frequency indicators, initially for a number of systemically important
economies. Externally, the IMF is chairing an interagency group on national statis-
tics with the aim of a global website of economic and financial indicators. In the US,
the Dodd-Frank Wall Street Reform and Consumer Protection Act created, among
many other things, the Office of Financial Research to support the Financial Sta-
bility Oversight Council and its member agencies by providing financial research
and data. The improvements with respect to data concern collecting and providing
financial data of higher quality and with better accessibility and transparency. The
creation of the European Systemic Risk Board points to similar efforts in Europe.
Hence, turning these current large-volume data also into high-quality data remains
to be a critical objective for the available tools for safeguarding financial stability
to bear fruit.

Another key challenge for creating tools for monitoring threats to financial stability
has been the limited access to data. While mostly being available, some data are
restricted to only specific supervisory authorities. This has not only an effect
on monitoring, but also on research. One example is that the limited access to
bilateral interbank exposures has stimulated research on methods for circumventing
the use of such data. For instance, so-called maximum entropy (Mistrulli, 2011)
and stochastic block modeling (Halaj and Kok, 2013) have been used to estimate
interbank exposures from larger aggregates. Whereas research along these lines
obviously improves the current state of monitoring, it still wastes resources that
could be spent on advancing the state of the art, rather than on circumventing
data accessibility.

In addition to a number of challenges that remain to be solved, this chapter has
illustrated multiple characteristics of data that need to be acknowledged. The chap-
ter described that the complexity and dimensionality exhibited by macroprudential
data is large, and new plans on improving data provision have been established.

74



Yet, the key question remains: What should we do with these data? Obviously,
the data not only enable, but also motivate designing tools for risk identification
and assessment with the ultimate aim of risk communication. Aggregating multi-
dimensional information into crisis probabilities, systemic risk indicators and other
quantitative measures capturing the functioning and interconnectedness of financial
systems provide means for supporting decisionmaking in general and policymaking
in particular. Yet, visualizing these complex data in easily understandable for-
mats not only provides means for binary decisions, but also enables disciplined and
structured judgmental analysis based upon policymakers’ experience, as noted by
Mr. Trichet in the quote prior to Chapter 3. As this is also the key focus of this
thesis, the next chapter digs deeper into possible approaches for such exploratory
means to analysis.
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?The eye, which is called the window of the soul, is the
principal means by which the central sense can most com-
pletely and abundantly appreciate the infinite works of na-
ture”

— Leonardo da Vinci

5 Data and Dimension Reduction

Data and dimension reduction techniques hold promise for representing data in eas-
ily understandable formats, as has been shown by their wide scope of applications.
Data reductions provide summarizations of data by compressing information into
fewer partitions, whereas dimension reductions provide low-dimensional overviews
of similarity relations in data. Thus, these techniques provide means for exploratory
data analysis (EDA). From a broader perspective, EDA is only one approach out
of many in data mining, and knowledge discovery includes data mining as only one
of its steps. To provide a holistic view in a top-down manner, I start by the broader
concepts, and end with discussions of data and dimension reductions and their com-
bination. As the aim of Chapter 6 is to provide a comparison of early dimension
reduction methods, the focus of this chapter is also on more detailed presentations
of so-called first-generation methods, including Multidimensional Scaling (MDS),
Sammon’s mapping and the Self-Organizing Map (SOM).

Along these lines, this chapter first presents an overview of EDA, knowledge discov-
ery in databases (KDD), information visualization and visual analytics, and then
focuses on reviewing methods for both data and dimension reduction. As the focus
of this thesis lies on dimension reductions, and data reductions are mainly used for
enhancing the interpretation of the dimension reductions, this chapter also has a
greater focus on dimension reductions.

5.1 Some key concepts and definitions

To better position data and dimension reduction, this section takes a broad per-
spective on EDA. EDA, as vaguely defined by Tukey (1977), is numerical, counting
and graphical detective work. However, none of Tukey’s works seems to provide a
precise and concise definition of EDA. In a later work with two collaborators, he
provided yet another broad definition, but still one with somewhat more precision
(Hoaglin et al., 1983): “Exploratory data analysis isolates patterns and features of
the data and reveals these forcefully to the analyst”. The focus of the field may
thus be related to representing data in easily understandable formats, which might
involve summarizing characteristics of interest with descriptive statistics or visual
examinations. Rather than being an approach to test hypotheses, EDA concerns
tasks supporting the formulation of hypotheses, which may be tested with other
methods, and the assessment of assumptions in data, on which statistical inference
may rely. Hence, Tukey (1977) defines EDA to be exploratory or descriptive in
nature, whereas it is not concerned with confirmatory or inferential tasks, in which
the focus is on using data to confirm a number of assumptions or the validity of a
hypothesis or model.
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In the following, this section proceeds by first viewing EDA from above, i.e., knowl-
edge discovery and data mining, and then zooming in on the most central parts
of its core, i.e., information visualization and visual analytics. That is, EDA can
be seen as a part of the broader concept of data mining. From a more narrow
perspective, the increased importance of visual examinations strengthens the link
between EDA and information visualization, which has lately burgeoned into a
broad field on its own. Finally, the third topic of discussion is visual analytics, the
combination of information visualization and data mining.

5.1.1 Knowledge discovery and data mining

Data mining is an interdisciplinary subfield of computer science, of which EDA is
one out of many approaches. While being a topic that has lately attracted broad
attention in academia, industry and media alike, the original definition of data
mining is only a step of the broader concepts of knowledge discovery (KD) and
knowledge discovery in databases (KDD). The definitions of these three terms,
and their variations, are not seldom confused. This motivates a further look into
them.

KD, and later called KDD, concerns the broad knowledge discovery process ap-
plied to large databases. More precisely, KD was first defined as "the nontrivial
extraction of implicit, previously unknown, and potentially useful information from
data” (Frawley et al., 1992). Later, Fayyad et al. (1996a) revised the definition
of KD to the following definition of KDD: “the nontrivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in data’.
Hence, KDD concerns the entire knowledge extraction process, including how to
store and access data, how to develop efficient and scalable algorithms for analyz-
ing large datasets, how to visualize and interpret results, and how to model and
support human-machine interaction (Fayyad et al., 1996b). Data mining, on the
other hand, is most often only one of the steps in the KDD process. When untan-
gling the concepts of KDD and data mining, Fayyad et al. (1996a) define the latter
as follows: "applying data analysis and discovery algorithms that, under acceptable
computational efficiency limitations, produce a particular enumeration of patterns
over the data”. They further note that as the enumeration involves a search in
the space of patterns, which oftentimes is infinite, computational constraints may
restrict the subspace that is feasible to be explored through data mining. Although
some define data mining as the process of automatically finding interesting facts in
data (see, e.g., Fekete et al. (2008)), I do not restrict the notion of data mining to
automated pattern recognition, but rather also see various types of interactive ex-
ploratory approaches as a support to the KDD process in general and data mining
in particular.

Data mining in a KDD process So far, we have discussed and untangled
the concepts of data mining and KDD, while the general process of KDD and the
precise role of data mining is yet to be discussed. Alas, there is no one process of
KDD. Table 5.1 provides four versions of the KDD process, as well as one generic
example. Following a blend of all KDD processes in the table, especially the Cross
Industry Standard Process for Data Mining (CRISP-DM) process (Shearer, 2000)
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Table 5.1: Examples of KDD processes.
Anand and ~ CRISP-DM  Generic
s Fayyad et al. Cabena et al. h Sh (Kurgan and
teps (1996¢) (1998) ](31‘9‘)%8?‘9‘” googz)irer, Musilek,
2006)
1. Developing
an o ..
1 understanding lia_Bu:a_me‘ss L. ‘Human 1. Business }i AP.phcatlon
. of the objectives resource understanding omain )
S determination identification understanding
application
domain
2. Problem
specification
2 2. Creating a 2. Data 3. Data 2. Data 2. Data
* target dataset preparation prospecting understanding understanding
4. Domain
knowledge
elicitation
3. Data 3. Data
3 Cieanin and 5. Methodology 3. Data preparation and
° ro rofe"in identification preparation choice of data
prep ssing mining method
4. Data
reduction and 6. Data .
projection preprocessing
5. Choosing the
data mining
task
6. Choosing the
data mining
algorithm
4 FU e L. 7. Pattern . S
. 7. Data mining 3. Data mining dis 4. Modeling 4. Data mining
iscovery
. 4. Domain
8. Interpreting 8. Knowledge . .
5. mined patterns gﬁgx;i?ff post-processing 5. Evaluation 5. Evaluation
%onsolidatin 5. Assimilation 6. Knowledge
6. discovered g O'f knowledge 6. Deployment  consolidation
knowledge and deployment

Notes: The table relates five versions of a KDD process to each other. It is an adapted version of the

compilation in Kurgan and Musilek (2006).

and the generic example (Kurgan and Musilek, 2006), I compose a simplified KDD
process that corresponds to that applied in this thesis. The upper part of Figure

5.1 summarizes the herein used KDD process into the following six steps:

(13

Data preparation

w) Data mining

v

)
)
1)
)
)
)

i) Domain understanding

Data understanding

Performance evaluation

vi) Knowledge consolidation and deployment.

The key objective of Step I is to have the necessary knowledge about the applica-
tion domain for proceeding with further analysis. Only after that, it also involves
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formulating the key objectives of the project from the perspective of all stakehold-
ers, translating these general objectives into a KDD problem, and then drafting
a broad and preliminary plan for achieving the objectives. As in the CRISP-DM
process (Shearer, 2000), this type of a plan is the basis of the entire KDD process.
Data exploration in Step 2 involves achieving an understanding of the underly-
ing data, whereas data preparation in Step & addresses the observed deficiencies
and properties. The understanding may involve exploring the existence of outliers
and missing values, as well as distributions of data. To address these concerns,
data preparation may comprise transforming, cleaning, imputing and preprocess-
ing data. An initial task is to select and collect data as per relevance, availability,
quality, and other domain-specific constraints and objectives. Another key task
is to clean the selected data by identifying and correcting, replacing or removing
data that are erroneous, irrelevant, incomplete or inaccurate. Further, it is also
important to transform collected data and construct entirely new data, both as
per the needs for the task at hand. Finally, one should not forget the oftentimes
time consuming tasks of integrating and formatting data. There is some contro-
versy concerning the order of Steps 2 and 3, as preparation is often needed before
one can explore the data. I judge that the task of understanding has to logically
precede that of preparation. Still, this is largely a detail of presentation as these
two steps are most often iterated multiple times.

In Step 4, data mining techniques are applied to the selected data and parametrized
for optimal performance. While data mining is only one step in the process, and
the quality of work in Steps 1-3 also significantly impact the results, data mining
is the one step that has the largest influence on what the output or outcome is of
the KDD process. Generally, multiple techniques are applied to the same problem
for testing their suitability for the task at hand, including the stages of selecting
a modeling technique, generating a test design, creating models and assessing the
output of models (see, e.g., Shearer (2000)). While also involving a ranking of
models according to evaluation measures, as well as performance in fulfilling the
objectives from the viewpoint of the domain in general and project in particular,
the more thorough performance evaluation of the models is done in Step 5. This
step involves a range of evaluation methods for determining the performance and
robustness of the created models. The evaluation may not only relate to quanti-
tative measures of performance, such as accuracies (errors) and profits (costs) of
classification tasks, but also to softer notions of achievement of the project objec-
tives and domain requirements. Finally, Step 6 involves a knowledge consolidation
of the entire exercise and a deployment of the model for future use.

The lower part of Figure 5.1 shows the methods that the KDD process makes use
of and that support the overall process, such as in data preparation, understanding
and mining, and performance evaluation. This is the following topic.

Methods in the KDD process The lower part of Figure 5.1 points out the
need for a variety of methods in the KDD process. The figure shows that data
preparation in Step 2 needs an own set of methods for preparing data into a format
that lends to analysis. Likewise, performance evaluation in Step 5 needs a wide
range of methods for judging the quality of data mining models. In between these
steps, the most important groups of methods are utilized for data understanding
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Figure 5.1: KDD process and data mining techniques.

in Step 2 and data mining in Step 4. These four separate groups of methods are
discussed below.

First, in Step 2, methods for unsupervised exploration function as an aid in un-
derstanding data. Whereas methods in this category provide means for EDA in
general, a focus at this stage is on methods that aid in exploring the existence of
outliers and missing values, as well as distributions of data. Univariate and bivari-
ate summary statistics (e.g., ranges, standard deviations and normality tests) and
visual plots (e.g., box plots, histograms and time series) provide simple means for
a range of descriptive assessments. Yet, having a multivariate viewpoint may be
beneficial in the case of understanding structures in the high-dimensional space,
such as exploring multivariate cluster structures and similarities in multivariate
data. The former multivariate exploration may obviously be conducted with data
reduction (or clustering) approaches and the latter with dimension reduction (or
projection) approaches.

Second, data preparation involves the tasks of refining initial raw data such that
they can be fed into the data mining methods. After selecting and collecting data
needed, key tasks of preparation relate to cleaning, transforming and constructing
data. A principal task is to clean the collected data by identifying, correcting,
replacing or removing data that are erroneous, irrelevant, incomplete or inaccurate.
For instance, missing values may be replaced with a wide range of imputation
methods (e.g., the SOM (Cottrell and Letrémy, 2005) and multiple imputation
(Rubin, 1987)) and identified outliers may be replaced or removed (e.g., modified
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boxplots, Winsorizing and other model-based methods like Chauvenet’s criterion),
both as per the needs for the task. Further, new data may be created by, for
instance, translating symbolic fields to numerical data or deriving new variables
based upon already collected data. Deriving new variables from already collected
data may hence involve a wide variety of transformation methods, where some are
simpler (e.g., levels, ratios, annual changes, logs and differencing) and others are
more advanced (e.g., the X-12-ARIMA seasonal adjustment procedure and Hodrick-
Prescott detrending). For some data mining methods, it is also of high importance
to standardize or normalize data with an appropriate pre-processing method (e.g.,
min-max, z-score, percentiles and sigmoids)

Third, the key group is the one that comprises data mining methods, where ex-
ploratory unsupervised and predictive supervised methods are split into various
categories. While exploratory methods are divided as per the data (univariate, bi-
variate and multivariate), the predictive methods are divided as per the output and
aim of methods (classification, regression and clustering/projection). It is hence
obvious that there is an overlap between the two broad groups, in particular multi-
variate exploratory methods like data and dimension reduction and clustering and
projection, which in essence can be seen as the same methods. The categories over-
lap in that not only can projection and clustering methods be used for prediction
of unlabeled data, but also as they can be semi-supervised. Projection methods,
such as MDS and its variants (see, e.g., Cox and Cox (2001)), map multidimen-
sional data into a lower dimension. The MDS methods do not, however, reduce the
amount of presented data. Clustering techniques attempt to find clusters in the
data, and thus reduce the amount of data by enabling analysis of a smaller number
of profiles or partitions.

Fourth, the evaluation of the modeling mainly relates to quantitative measures
of performance, but also includes softer notions of achievement. The quantita-
tive goodness-of-fit measures are most often chosen based upon the applied data
mining methods. If the key aim is classification, then measures of classification
performance are used, where one might want to account for imbalanced class size
and misclassification costs, both on the level of classes and entities. That is, cost-
sensitive evaluations focus on estimated profits or costs of a model. Likewise, if
the aim is regression or time-series forecasting, one should choose the evaluation
methods that best measure conducted errors (e.g., mean square and mean abso-
lute error, mean absolute deviation or root mean squared error). Unsupervised
multivariate methods, such as data and dimension reduction, focus on how well
they can preserve the structures in original data. In data reduction, a common
quality measure is the quantization error, whereas dimension reduction oftentimes
uses pairwise distances between data as a measure of preservation of similarity re-
lations. As Shearer (2000) points out, one should also qualitatively evaluate the
adequacy of the overall process and whether there are any important factors or
tasks missing. The quality assurance also includes controlling whether the model
was correctly built and whether only attributes available for future use were uti-
lized in the models. Likewise, a more general-level check covers the extent to which
project objectives and domain requirements have been achieved.
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5.1.2 Information visualization

Information visualization has lately emerged as one of the key fields to support
EDA. Mainly, it has its origin in the fields of human-computer interaction, com-
puter science, graphics and visual design (Bederson and Shneiderman, 2003). A
more precise definition of information visualization is “the use of computer-supported,
interactive, visual representations of abstract data to amplify cognition” (Card et al.,
1999), where the aim is to improve human understanding of the data with graph-
ical presentations or graphics. Thereby, the aim resembles what we discussed as
intelligence amplification (TA) in the introduction. Generally, tools for information
visualization are mainly and best applied for EDA tasks, which oftentimes includes
browsing a large space of information. The identification of situations where brows-
ing is useful aids in determining when information visualization is of value. Lin
(1997) lists browsing to be useful when:

i) there is a good underlying structure and when related items are located close
to one another;

i) users are unfamiliar with the contents of the collection;

i11) users have little understanding of the organization of a system and prefer to
use a method of exploration with a low cognitive load;

iv) users have difficulty in articulating or verbalizing the specific information
need; and

v) users search for information that is easier to recognize than describe.

Above, we see five situations when browsing information visualizations is useful, yet
we still need to discuss the elements of information visualization in depth. The rest
of this subsection focuses on three subtopics of information visualization: human
perception and cognition, data graphics and visualization techniques.

Human perception and cognition An essential part of visual communication
relates to the attempt to match the design according to the capabilities and limits
of the human information and visual system. The visual system comprises the hu-
man eye and brain and can be seen as an efficient parallel processor with advanced
pattern recognition capabilities (see, e.g., Ware (2004)). The focus of human per-
ception is the understanding of sensory information, where the most important form
is the visual perception. The final TA of information visualization can be viewed
as a type of cognitive support. The mechanisms of cognitive support are, however,
multiple. Hence, visualization tools should be targeted to exploit advantages of
human perception.

Mostly, arguments about the properties and perception capabilities of the human
visual system rely on two grounds: ) information theory (Shannon and Weaver,
1963), and 4) psychological findings. Information theory states that the visual
canal is best suited to carry information to the brain as it is the sense that has
the largest bandwidth. Ware (2004) asserts that there are two main psychological
theories for explaining how to use vision to perceive various features and shapes:
preattentive processing theory (Triesman, 1985) and gestalt theory (Koffa, 1935).
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Prior to focused attention, preattentive processing theory relates to simple visual
features that can be perceived rapidly and accurately and processed effectively at
the low level of the visual system. Whereas more complex visual features require
a much longer process of sequential scanning, preattentive processing is useful in
information visualization as it enables rapid dissemination of the most relevant
visual queries through the use of suitable visual features, such as line orientation,
line length or width, closure, curvature and color (Fekete et al., 2008). At a higher
cognitive level, gestalt theory asserts that our brain and visual system follow a
number of principles when attempting to interpret and comprehend visuals. Ware
(2004) summarizes the principles as follows:

Proximity: Items close together are perceptually grouped together.
Similarity: Elements of similar form tend to be grouped together.
Continuity: Connected or continuous visual elements tend to be grouped.
Symmetry: Symmetrical elements are perceived as belonging together.
Closure: Closed contours tend to be seen as objects.

Relative size: Smaller components of a pattern tend to be perceived as objects.

The principles of gestalt theory can easily be related to some more practical con-
cepts. For instance, most dimension reduction methods, when aiming at visualizing
data, may be seen to relate to the proximity principle, as they locate data with
high proximity close to each other, whereas others are pushed far away. Likewise,
a time trajectory may be paired with continuity. More related to the cognition
of visualizations, Fekete et al. (2008) explain that the core benefit of visuals is
their functioning as a frame of reference or temporary storage for human cogni-
tive processes. The authors assert that visuals are external cognition aids in that
they augment human memory, and thus enable allocating a larger working set for
thinking and analysis. In the above stated definition of information visualization
by Card et al. (1999), visuals are presented as a means to “amplify cognition”. Fol-
lowing that definition, the authors also list a number of ways how well-perceived
visuals could amplify cognition:

i) by increasing available memory and processing resources;
i1) by reducing the search for information;

i17) by enhancing the detection of patterns and enabling perceptual inference
operations;

iv) by enabling and aiding the use of perceptual attention mechanisms for mon-
itoring; and

v) by encoding the information in an interactive medium.

Examples of the first way to amplify cognition, the increase in available resources,
are parallel perceptual or visual processing and offloading work from the cognitive
system to the perceptual system (Larkin and Simon, 1987). Second, visuals facili-
tate the search procedure by the provision of a large amount of data in a small space
(i.e., high data density) (Tufte, 1983) and by grouping information used together in
general and information about one object in particular (Larkin and Simon, 1987).
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Third, abstraction and aggregation aid in the detection of patterns and operations
for perceptual inference (Card et al., 1991). Fourth, perceptual monitoring is en-
hanced, for instance, through the use of pop-out effects created by appearance or
motion (Card et al., 1999). Likewise, Card et al. (1999) exemplify the fifth way to
amplify cognition, the use of a manipulable medium, by allowing the user to explore
a wide range of parameter values to interactively explore properties of data.

Yet, matters concerning human perception and cognition also constitute a large set
of issues that may hinder, disturb or generally negatively affect how visualizations
are read. A key starting point is to take into account the deficiencies and limitations
of human perception. Preattentive processing, for instance, becomes a deficiency if
visuals are not designed properly. Patterns a user is supposed to identify quickly —
or give visual but not conscious attention to — should hence be made distinct from
the rest by using features that can be preattentively processed. Likewise, visual
attention functions as a filter in that only one pattern is brought into working
memory (Baddeley and Logie, 1999). Hence, if provided with multiple patterns,
we only see what we need or desire to see by tuning out other patterns. Ware
(2005) also mentions the fact that humans process simple visual patterns serially
at a rate of one every 40-50 msec. and a fixation lasts for about 100-300 msec.,
meaning that our visual system processes 2—6 objects within each fixation, before we
move our eyes to visually attend to some other region. In addition, one important
factor to account for is how perception of visuals is affected by properties of the
human eye, such as acuities, contrast sensitivity, color vision, perception of shape
or motion with colors, etc. Another aspect of crucial importance is obviously to pay
regard to human perceptions of shapes in visuals, such as distances, sizes and forms.
Cognitive deficiencies should also be accounted for when designing visuals, such as
the limited amount of working memory. For instance, Haroz and Whitney (2012)
show that the effectiveness of information visualizations is severely affected by the
capacity limits of attention, not the least for detecting unexpected information.
Hence, an understanding of the functioning of the human visual system aids in
producing effective displays of information, where data are presented such that the
patterns are likely to be correctly perceived.

Data graphics The literature on data graphics has its focus on the principles for
visual representations of data. Herein, the focus is on the early, yet brilliant, work
by Tufte (1983) and Bertin (1983). Their works, while being principles for graph-
ics design, are to some extent also valid to overall computer-based visualizations.
Tufte’s set of principles are called a theory of data graphics, whereas Bertin’s work
is most often denoted a framework of the planar and retinal variables. However,
rather than an exact theory, Tufte and Bertin provide a set of rules of thumb to
follow.

The following overview is included to provide concrete guidelines, in addition to
the above discussion of human perception and cognition. Herein, we will discuss
only the key components of frameworks and theories by Bertin and Tufte. We
start from Bertin’s (1983) framework called the Properties of the Graphic System,
which consists of two planar and six retinal variables. The two planar variables
are the z and y dimensions of a visual, whereas the six retinal variables describe
the following visual marks on the plane: size, value, texture, color, orientation and
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shape. The eight variables can be categorized according to the following levels of
organization, or so-called perceptual properties:

i) Associative (=): If elements can be isolated as belonging to the same cat-
egory, but still do not affect visibility of other variables and can be ignored
with no effort.

i1) Selective (#): If elements can immediately and effortlessly be grouped into
a category, and formed into families, differentiated by this variable, whereas
the grouping cannot be ignored.

117) Ordered (O): If elements can perceptually be ordinally ranked based upon
one visually varying characteristic.

iv) Quantitative (Q): If the degree of variation between elements can percep-
tually be quantified based upon one visually varying characteristic.

When having an understanding of the four levels of organization, we can return
to discussing Bertin’s (1983) eight visual variables. Bertin describes the plane,
and its two dimensions (x,y), as the richest variables. They fulfill the criteria for
all levels of organization by being selective, associative, ordered and quantitative.
The retinal variables, on the other hand, are always positioned on the plane, and
can make use of three types of implantation: a point, line, or area. First, size is
ordered, selective but not associative, and the only quantitative retinal variable.
Second, value is the ratio of black to white on a surface, according to the perceived
ratio of the observer, and is also sometimes called brightness. The usage of value
in this case is close to the one in the HSV (hue, saturation and value), cylindrical-
coordinate representation of points in an RGB (red, green and blue) color space.
It is an ordered and selective retinal variable. Third, texture represents the scale of
the constituent parts of a pattern, where variation in texture may occur through
photographic reductions of a pattern of marks. That is, it may range from null
texture with numerous but tiny elements that are not identifiable to large textures
with only few marks. Texture as a retinal variable can be ordered and is both
selective and associative. Fourth, variation may occur in color. The variation of two
marks with the same value or brightness is thus more related to changes in hue of
HSV. Color as a retinal variable is selective and associative, but not ordered. Fifth,
the orientation variable enables variation in the angle between marks. In theory,
this opens up an infinite set of alternatives of the available 360 degrees, whereas
Bertin suggests the use of four steps of orientation. The orientation variable is
associative and selective only in the cases of points and lines, but has no direct
interpretation of order. Finally, the sixth variable of shape, while being a retinal
variable on its own, also partly incorporates aspects of size and orientation. It is
associative, but neither selective nor ordered.

A complement to Bertin’s framework is the Theory of Data Graphics by Tufte
(1983), which consists of a large number of guidelines for designing data graphics.
The two key, broad principles are graphical excellence and graphical integrity. In
addition to these, Tufte provides two more focused principles: data-ink maximiza-
tion and data density mazimization.

Tufte (1983) defines graphical excellence as something that "gives to the viewer
the greatest number of ideas in the shortest time with the least ink in the smallest
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space”. The principle of graphical excellence summarizes a number of his guidelines
that encourage graphical clarity, precision, and efficiency: i) avoid distortions of
what the data have to say; 4i) aid in thinking about the information rather than
the design; 4ii) encourage the eye to compare the data; iv) make large data sets
coherent; v) present a large number of data in a small space; vi) reveal data at
multiple levels of detail ranging from a broad overview to fine detail; vii) and closely
integrate statistical and verbal descriptions of the data.

The second of Tufte’s (1983) principles, graphical integrity, relates to telling the
truth about data. To follow this principle, Tufte provides six key guidelines: i)
visual representations of numbers should be directly proportional to the quantities
which the visuals represent; i) clear and detailed labeling should be used to avoid
ambiguity; ¢i¢) show data variation, not design variation; iv) deflate and stan-
dardize units when dealing with monetary values; v) the number of dimensions
depicted should not exceed the number of dimensions in data; and vi) data should
not be showed out of context. The aim of these principles is to avoid deception
and misinterpretation.

Third, the principle of data-ink mazimization proposes that data graphics should
focus on the data, and nothing else. Hence, a good graphical representation fo-
cuses on data-ink maximization with minimum non-data-ink. The data-ink ratio is
calculated by 1 minus the proportion of the graph that can be erased without loss
of data information. Tufte (1983) puts forward the following five guidelines related
to data ink: 7) above all else, show data; #) maximize the data-ink ratio; ii) erase
non-data-ink; ) erase redundant data-ink; and v) revise and edit.

The fourth of Tufte’s (1983) principles, data density maximization, relates to the
share of the area of the graphic dedicated to showing the data. For too low densities,
Tufte suggests to either reduce the size of the graphic (shrink principle) or the use
of a table. In particular, he claims that graphs can oftentimes be shrunk in size
without losing legibility or information. In terms of concrete design, he proposes
the small multiples, a design for showing varying data onto a series of the same
small graph repeated in one visual.

Bertin’s and Tufte’s principles provide a guiding set of rules of thumb to follow
when spanning the space of two-dimensional visualizations. Yet, visualizations,
not the least interactive visualizations, go beyond a static two-dimensional space
by including additional visual variables, such as depth and time. The next part
discusses a range of visualization techniques and tools, where interaction becomes
essential.

Visualization techniques The literature has provided a long list of techniques
for creating visual representations. Herein, we will mainly focus on a rough overview,
as well as a brief and simple taxonomy, of methods, rather than a detailed survey
of methods. Obviously, a key issue of information visualization is what formats and
features the methods will help to organize and visualize, as well as how that re-
lates to the use of human visual capabilities. Following Zhang et al. (2012), I start
by dividing the techniques supporting information visualization into two groups:
graphical representations of data and interaction techniques. The former group
refers to the visual form in which the data or model is displayed, such as standard
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visualization techniques like bar and line charts. Yet, visualizations may often
refer to manipulable graphical displays of data. The latter group of interaction
techniques refers to how the user can interact with or manipulate the graphical
displays, such as zooming or panning. These oftentimes have their basis in one
or more graphical displays such that they enable more freedom and flexibility to
explore the data.

From the viewpoint of the underlying data, rather than the formats of visual dis-
plays, Zhang et al. (2012) categorize visualization techniques into four groups:
numerical data, textual data, geo-related data and network data. First, numerical
data can be visualized by a vast number of approaches, such as standard visualiza-
tion techniques like bar and pie charts and scatter plots. These focus most often
on the visualization of low-dimensional numerical data. On the other hand, visu-
alization techniques like parallel coordinates, heatmaps and scatter plot matrices
provide means to display data with higher dimensionality. Second, visualization of
textual data is a new, growing field. Recent techniques include word cloud (Kaser
and Lemire, 2007) and theme river (Havre et al., 2000), for instance. Likewise,
the availability of the third type of data, geo-tagged data, has caused a soar in
the demand for geo-spatial visualizations. Geo-related univariate or multivariate
information is oftentimes projected into conventional two-dimensional and three-
dimensional spaces. Fourth, graph visualizations provide means for displaying pat-
terns in network data with relationships (i.e., edges) between entities (i.e., nodes).
They most often consist of a technique for positioning, such as force-based algo-
rithms, as well as coloring or thickness of edges to display the size of a relationship.
Graph or network visualizations have been increasingly applied in a wide range of
emerging fields like social and biological network analysis, not to mention financial
network analysis.

A categorization of visualization techniques as per the types of data does not,
however, differentiate all possibilities of techniques. While being some years old,
Keim and Kriegel (1996) groups visualization techniques into five categories: geo-
metric, icon-based, pixel-oriented, hierarchical, and graph-based techniques. First,
geometric techniques provide means for visualization of geometric transformations
and projections of data. Examples of the methods are scatterplot-matrices, parallel-
coordinate plots and projection methods. Second, icon-based techniques, as already
the name states, visualize data as features of icons. The methods include, for
instance, Chernoff-faces and stick figures, of which the former visualize multidi-
mensional data using the properties of a face icon and the latter use stick figures.
Third, pizel-oriented techniques map each attribute value to a colored pixel and
present attribute values belonging to each attribute in separate subwindows. For
instance, query-independent techniques arrange data from top-down in a column-
by-column fashion or left to right in a line-by-line fashion, while query-dependent
techniques visualize data in the context of a specific user query. Four, hierarchi-
cal techniques provide means to illustrate hierarchical structures in data. Most
often, hierarchical methods focus on dividing an n-dimensional attribute space by
‘stacking’ two-dimensional subspaces into each other. Finally, the fifth category,
graph-based techniques, focus on the visualization of large graphs, or networks, to
illustrate the properties of the network, as was above discussed. In addition, Keim
and Kriegel also illustrate the existence of a wide range of hybrids that make use
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of multiple categories.

The above discussion obviously illustrates the importance of choosing a suitable
type of display format, given the data and the task at hand. Yet, it not only il-
lustrates, but also guides in the choice. Following the above paragraphs, we can
use the data and display categories. The first factor to define the nature of the
chosen visualization technique is the properties of the data, such as the form of
data, dimensionality of data, data structures and size of data. The second factor
to determine is the expected output and purpose of use, where the variation of
purposes is large, such as predictive vs. exploratory, temporal vs. cross-sectional,
and univariate vs. multivariate analysis and similarity vs. dissimilarity matching,
as well as other purposes related to a focus on geo-spatial visualizations and net-
work relationships, for instance. While there is no one way to choose the correct
technique, considering the two dimensions of data and display, as well as other
restrictions, demands and needs for the task, provides an adequate basis.

Given a technique, a critical factor of information visualization is, however, the
possibility to interact with the visuals. Like the KDD process in the entire knowl-
edge extraction process, a common guideline for interactions with visualizations is
the visual information seeking mantra (Shneiderman, 1996): ”Overview first, zoom
and filter, then details-on-demand”. Whereas Shneiderman (1996) characterizes
the mantra with seven abstract tasks, we focus only on the following four explic-
itly mentioned ones: First, a user should gain an overview of the entire collection
through a high-level representation. Second, users should have the possibility to
zoom in on a portion of items that are of particular interest. Third, there should
exist the possibility to filter out or to eliminate uninteresting and unwanted items,
such as allowing users to specify which items to display. Fourth, the user should
have the option to select an item or group of items to get further details-on-demand,
such as clicking a group or individual items.

This provides a starting point to data visualization and user interaction, but does
still not address the role of analytical or data mining techniques in visualization.
The next step is to combine graphical representations of data and interaction tech-
niques with analytical methods.

5.1.3 Visual analytics

By adding data mining to the ingredients of information visualization, we end up
with the original definition of visual analytics (Thomas and Cook, 2005): "the sci-
ence of analytical reasoning facilitated by interactive visual interfaces”. Hence, the
field of visual analytics has strong roots in information visualization. Likewise,
visual analytics is also strongly related to the KDD process. The term visual data
mining descends from the integration of the user in the KDD process through vi-
sualization techniques and interaction capabilities (see, e.g., Keim (2001)). This
has taken visual analytics to be applied in areas with challenging problems that
were unsolvable using standalone automatic or visual analysis (see, e.g., Keim et al.
(2009)). In particular, automated analysis enables scaling to larger and more chal-
lenging tasks, whereas visualizations may be used to effectively communicate the
outcome to the user in particular or a broad audience in general.

Since we derive visual analytics from three above presented concepts — graphical
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representations of data, interaction techniques and data mining techniques — there
is no need to repeat the discussion of each component. Yet, the above presented
information seeking mantra only mentions visualizations in the KDD process, while
not integrating the two concepts. Keim et al. (2006) propose combining the KDD
process and information seeking mantra for a visual analytics mantra: ”Analyze
first, show the important, zoom, filter and analyze further, details on demand’.
The authors exemplify the visual analytics mantra with analysis of large network
security data. As graphical representations of raw data is infeasible and seldom
reveals deep insights, the data need to first be analyzed, such as computing changes
and intrusion detection analysis. Then, the outcome of the automated analysis
is visualized. Out of the displayed results, the user filters out and zooms in to
choose a suspicious subset of all recorded intrusion incidents for further, more
careful analysis. Thus, the mantra involves automated analysis before and after
the use of interactive visual representations. Following the mantra, an adapted
version of the visual analytics process in Keim et al. (2010) is presented in Figure
5.2. The key steps in the process are data preparation, visual and automatic
analysis, and knowledge consolidation. Whereas the step of data preprocessing
and transformations is similar to that discussed in the previous section, the user
selects in the following step between visual or automatic analysis methods. The
user might prefer to start from whichever of the two tasks, but it is likely that
several iterations of data visualization and interaction, and automatic analysis is
needed. Finally, after alternating between visual and automatic methods, the thus
far gained knowledge is not only gathered, but also transferred through a feedback
loop to support future analysis.

Visual analytics in general and the visual analytics mantra in particular link to the
core of this thesis, the use of data and dimension reduction methods to support
human cognition. While clustering and data reduction methods provide overviews
or summarizations of data by compressing information into fewer profiles, projec-
tion and dimension reduction methods lend to the visualization of high-dimensional
spaces in a low-dimensional mapping by preserving similarity structures. Following
the above four categories of data, they lend to analysis of numerical, textual and
network data, given adequate preprocessing. Likewise, they may also be paired
with geo-spatial visualizations. The sequel of this chapter focuses on aims of and
methods for data and dimension reduction, where the underlying data are assumed
to be numerical.

5.2 Dimension reduction

Before defining the concept of dimension reduction, it is worth to note that it goes
by multiple other names. Some call it a projection, vector projection or projec-
tion pursuit, and others call it a mapping. Whereas the key aim of dimension
reduction is to provide a low-dimensional overview of similarity relations in data,
slight variation in purposes of use lead to different preferences of preserved struc-
tures. In this section, we will first broadly discuss variations in aims and purposes
of use with respect to dimension reduction and then review first-generation and
second-generation methods, as well as position them in a taxonomy.
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Figure 5.2: Visual analytics process.



5.2.1 Aims of dimension reduction

Reducing dimensionality may be motivated by a large number of reasons. For in-
stance, Zhang and Liu (2005) relate the desire of dimension reduction to enhancing
the understanding of data, reducing the complexity of the system, and avoiding
the curse of dimensionality. Yet, different purposes of use and applications have
different aims and preferences of the preserved properties. Without going into the
details of how to preserve structures, and what are the similarity relations of crucial
interest in various tasks, we can categorize dimension reductions by relating them
to three broad aims (see, e.g., Lee and Verleysen (2007) and Zhang and Liu (2005)):
i) visualization and exploration, i) regression, and i) classification. The first aim
of visualization relates to embedding high-dimensional data into a low-dimensional
space by preserving their intrinsic dimensions. The second aim is regression, in
which the focus is on reducing the dimensionality of the predictor vector (i.e., ex-
planatory variables), but at the same time minimizing the loss in inferences about
the predicted variable (i.e., explained variable). Third, the aim may also relate to
classification, in which case the goal is to find a low-dimensional space with the
minimum classification error.

Another approach to categorization is to view the problem of dimension reduction
as supervised and unsupervised (see, e.g., Zhang and Liu (2005) and Gisbrecht
et al. (2012)). Whereas the standard approach to dimension reduction is an un-
supervised search for a low-dimensional representation of similarity relations in
high-dimensional data, one may also opt to supervise the mapping by integrating
class information. The supervised version, also called a discriminative dimension
reduction, may be thought of as having two parts in its cost function, where one
consists of the preserved structures in the observed variables and the other of the
preserved structures (e.g., distances) of the labels. The use of labels to steer the
dimension reduction can oftentimes be a useful addition when interpreting the low-
dimensional output, as users oftentimes have a direct understanding of the classes.
In addition to amplifying the understanding of the underlying class structure, a
central task of supervised dimension reductions is also to aid in visually classifying
data and communicating the results of a classification.

This boils into the following question: What are the tasks that the methods perform
and the functionalities that are needed? Lee and Verleysen (2007) describe that
the key functionalities of dimension reductions are to be able to: i) estimate the
number of latent variables, ii) reduce dimensionality by embedding data, and/or
ii1) recover latent variables by embedding data. First, to judge the number of
latent variables, one needs to perform an estimation of the intrinsic dimensionality.
Yet, only few methods provide means for such an estimation. For instance, with
the two latter of the above aims (i.e., regression and classification), one might be
interested in reducing dimensionality only up to a point that captures variations
of the latent variables, whereas the ones capturing noise and other imperfections
are disregarded. Second, a natural next step is to re-embed the high-dimensional
data into a better filled lower dimension. The aims may be to achieve a compact
representation and/or to facilitate subsequent processing of data, where the former
aids in visualizing the data and the latter supports a further data compression (or
data reduction). Third, the task of latent variable separation also involves means
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for recovering the variables, in order to fulfill an aim beyond only a reduction of the
dimensionality. One intuitive approach to recovering latent variables is to model
the observed variables as linear combinations of the latent ones. However, it is
worth noting that the same method seldom performs the second and third tasks
of reducing dimensionality and separating latent variables. In the following, while
presenting a broad palette of methods, the focus herein is on embedding data into
a lower dimension to support data compression and visualization.

5.2.2 An overview of methods

The first dimension reduction methods date back to the early 20th century. How-
ever, only since the 1990s has there been a significant soar in the number of de-
veloped methods. I use that as a cutting point for dividing the methods into
first-generation and second-generation methods, which are then described in a tree-
structured taxonomy.

First-generation methods The first generation consists of the well-known clas-
sical methods that are still broadly used and accepted in a wide range of domains.
Drawing upon the first introduced, but still commonly used, variance-preserving
Principal Component Analysis (PCA) (Pearson, 1901), an entire family of distance-
preserving MDS-based methods have been developed. The MDS counterpart to
PCA, classical metric MDS, which attempts to preserve pairwise distances, was
proposed by Young and Householder (1938) and Torgerson (1952). Non-linear
versions are the first introduced non-metric MDS by Shepard (1962) and Kruskal
(1964) and the later developed Sammon’s (1969) mapping. As said, the key aim
of these methods is to project high-dimensional data z; (i.e., the input space) to
a two-dimensional data vector y; (i.e., the output space) by preserving distances.
I first illustrate the functioning of the distance-preserving counterpart of PCA,
classical metric MDS. Let the distance in the input space between x; and z; be
denoted d, (7, k) and the distance in the output space between y; and y;, be denoted
dy(j, h). This gives us the objective function of metric MDS:

Eyvps = Z (da(j, h) — dy(5, 1)) (5.1)
Kl

Due to the simple linear form of metric MDS, we also explore the functioning of a
non-linear MDS-based method, Sammon’s (1969) mapping. It is an MDS method
in that it also attempts to preserve pairwise distances between data but differs
by focusing on local distances relative to larger ones. The square-error objective
function for Sammon’s mapping is

Boany — — L (da(j, h) — dy (5, 1))
Zk;ﬁl d:v (]7 h) das (.7’ h) ’

(5.2)
k#l

and shows that it considers all pairs (j, h) normalized by the input space distance
d.(j, h) and weighted with 1/d,. (4, h). The objective functions of MDS-based meth-
ods are most often optimized with an iterative steepest-descent process.
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The topology-preserving family of methods was launched through the introduction
of the SOM (Kohonen, 1982). The SOM differs by reducing both dimensions and
data through a neighborhood-preserving vector quantification. A further discussion
is given separately in Section 5.4, as it falls into both data and dimension reduction
methods.

Second-generation methods The second generation is a less homogeneous
group of methods ranging from so-called spectral techniques to graph embedding.
Due to the large number of methods, I only broadly mention some of the most
recent methods, in order to later present their location in a taxonomy. A soar in
developed methods at the turn of the century lead to several innovative approaches,
such as Curvilinear Component Analysis (CCA) and Curvilinear Distance Analy-
sis (CDA) (Demartines and Hérault, 1997), Local MDS (LMDS) (Venna and Kaski,
2006; Chen and Buja, 2009), Generative Topographic Mapping (GTM) (Bishop
et al., 1998b), Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap
(Tenenbaum et al., 2000), Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2001)
and Maximum Variance Unfolding (MVU) (Weinberger and Saul, 2005). Some
more recent methods are, for instance, t-distributed Stochastic Neighbor Embed-
ding (t-SNE) (van der Maaten and Hinton, 2008) and Exploration Observation
Machine (XOM) (Wismiiller, 2009). These methods, while differing along multiple
properties, generally aim at the above three tasks of non-linear dimension reduc-
tion. A detailed mathematical treatment of them is, however, outside the scope of
this thesis.

A taxonomy In addition to two generations, dimension reduction methods can
also be illustrated in a tree-structured taxonomy. The tree-structure in Figure 5.3
is a non-exhaustive taxonomy of dimension reduction methods based upon that in
Lee and Verleysen (2007, p. 234). While the focus herein is on methods based
upon geometrical concepts, there exists also other methods, such as the Auto-
Associative Neural Networks (AANNs). The tree structure ends with some exem-
plifying methods, where first-generation methods are differentiated from second-
generation methods through a gray background. Methods can roughly be divided
into those aiming at distance and topology preservation. The distance-preserving
methods can still be divided into different distances, such as spatial (e.g., PCA,
MDS, Sammon’s mapping and CCA), graph (e.g., Isomap and CDA) and other
(e.g., MVU). Topology-preserving methods can be divided into those with a pre-
defined grid shape (e.g., SOM, GTM and XOM) and those without (e.g., LLE, LE
and t-SNE). It is worth considering that the example methods in the taxonomy
are only a subset consisting of the most commonly used ones.

5.3 Data reduction

Data reduction, as also dimension reduction, goes by multiple names, such as data
compression, data clustering and cluster analysis. In today’s information rich world
with vast amounts of available unlabeled data it is not enough to decrease di-
mensionality, oftentimes one also needs to focus on reducing the number of data.
Moreover, unsupervised approaches are frequently the only feasible approach to
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Notes: The gure represents a non-exhaustive taxonomy of dimension reduction methods adapted
from Lee and Verleysen (2007, p. 234). The lowest level associates methods to their families, where a
gray background indicates rst-generation methods and white second generation. Acronyms: Auto-
Associative Neural Network (AANN), Principal Component Analysis (PCA), Local MDS (LMDS),
Multidimensional Scaling (MDS), Curvilinear Component Analysis (CCA), Curvilinear Distance Analy-
sis (CDA), Maximum Variance Unfolding (MVU), Self-Organizing Map (SOM), Generative Topographic
Mapping (GTM), Exploration Observation Machine (XOM), Locally Linear Embedding (LLE), Lapla-
cian Eigenmaps (LE) and t-distributed Stochastic Neighbor Embedding (t-SNE).

Figure 5.3: A taxonomy of dimension reduction methods.

form an understanding of the data, not the least when they are unlabeled. Clus-
tering methods provide means for exploring tendencies and structures in data by
reducing data to fewer partitions, mostly with the aim of having small intra-cluster
distances and/or large inter-cluster distances. In this section, we rst discuss how
overall aims of data reduction may di er and then provide a brief classi cation of
methods and introduction to the ones essential for this thesis.

5.3.1 Aims of data reduction

A key aim of data reduction is the exploratory task of organizing data into sensible
groupings to nd structure in them. Whereas data reduction methods can be used
for dividing data into homogeneous groups, however those are de ned, aims and
objectives of these methods may be inherently di erent. Jain (2010) presents three
overall aims of data reduction: i) to explore the underlying structure, i) to nd
a natural classi cation, and éii) to perform a compression of data. The rst aim
of exploration concerns gaining insight into data, generating hypotheses, detecting
anomalies, and identifying salient features in data. The second type of aim involves
the attempt to derive a natural classi cation that identi es the degree of similarity
among objects. Finally, the third aim is to compress data such that they can easily
be organized and summarized, as well as utilized as an input for additional analysis,
through the use of a smaller set of representative cluster prototypes.

It is also worth noting that data reduction, while most often being unsupervised in
that it does not use class information, has lately also been used in a semi-supervised
manner (see, e.g., Chapelle et al. (2006)). There are three key arguments for having
a semi-supervised approach to data reduction (Chapelle et al., 2006; Jain, 2010):
i) sometimes only a small portion of class information is available to the user, in
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which case one can let it partly guide the process through limited supervision; i)
the available class information may also be too far from an ideal target variable for
pure supervised learning to be feasible; and i) the user might possess pair-wise
must-link and cannot-link constraints that can be used to guide two objects to be
or not to be assigned into the same cluster.

While having three overall aims, Jain (2010) notes that data reduction is prevalent
in any type of discipline involving the analysis of high-dimensional data. As there
is no exhaustive list of all scientific fields and application areas utilizing some
form of data reduction, Jain et al. (1999) and Jain (2010) provide a number of
examples: i) image segmentation to facilitate computer vision, i) clustering views
of two-dimensional and three-dimensional objects to aid in object and character
recognition, i) clustering of text documents to automatically provide segments and
hierarchies and improve efficiency, i) customer segmentation to aid in marketing
campaigns, v) to group genome-wide expression data to arrange genes according
to similarity of gene expression patterns in biology and vi) overall data mining to
facilitate predictive modeling, exploratory segmentation, and visualization of large
databases. To support the tasks in this thesis, the focus is on compressing data to
support their organization, summarization and visualization, and the final category
of applications.

5.3.2 An overview of methods

Although there is no common taxonomy of data reduction methods, several prop-
erties can be used for differentiating between methods: soft vs. hard clustering,
hierarchical vs. non-hierarchical methods and monothetic vs. polythetic goals,
for instance. While soft clustering reduces data by assigning them to each clus-
ter to a certain degree, hard clustering either assigns data to a cluster or not.
Fuzzy c-means (FCM) clustering exemplifies the difference by being a soft coun-
terpart of the classical k-means (or c-means to be consistent) clustering algorithm.
Hierarchical methods (e.g., Ward’s (1963) method) produce a taxonomy of clus-
ter structures, in which small child clusters are also nested within larger parent
clusters, and may be divided into agglomerative (bottom-up) and divisive (top-
down) approaches. Non-hierarchical methods approach data reduction from nu-
merous different viewpoints, and may roughly be divided into centroid-based (e.g.,
k-means clustering (MacQueen, 1967) and Vector Quantization (VQ) (Linde et al.,
1980)), distribution-based (e.g., Expectation-maximization algorithm (Dempster
et al., 1977)) and density-based clustering (e.g., DBSCAN (Ester et al., 1996)).
The SOM may also be seen as a spatially constrained form of centroid-based clus-
tering. The differences between monothetic vs. polythetic methods relate mainly
to hierarchical clustering, where the former uses the inputs one by one and the
latter all the inputs at once. To illustrate the above described differences, I below
present the functioning of a number of classical methods in more detail.

Centroid-based clustering This part introduces two centroid-based clustering
methods: VQ (Linde et al., 1980) and k-means clustering (MacQueen, 1967). They
can be seen as counterparts of the SOM, where the former relates to the sequential
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and the latter to the batch SOMs. VQ attempts to model the probability den-
sity functions in data x; by reference vectors m; (where i = 1,2, ..., M). It uses
min(||z; — my||) for finding the best-matching unit (BMU) my, for z;, and then
updates sequentially only the BMU towards the data vector. Hence, it attempts
to minimize the standard squared error function, or quantization error:

N
Jvq = de(j7b(j))27 (5.3)
=1

where d;(j,b) is the input space distance between the data x; and reference vector
my(;) and b(j) denotes that b is the BMU of data j.

K-means is a similar least-square partitioning algorithm that pairs each data x; to
a cluster k (where k = 1,2,...C") and then updates the centroids ¢j to averages of
all attracted data. Thus, the aim is again to minimize the squared error function:

N C
Trm =3 Y da(j. k)%, (5.4)

j=1k=1

where d, (4, k) is the input space distance between the data x; and cluster centroid
Ck.

Fuzzy clustering We illustrate the functioning of the FCM algorithm, devel-
oped by Dunn (1973) and improved by Bezdek (1981), that assigns a degree of
membership of each data in each of the clusters. The FCM algorithm implements
an objective function-based fuzzy clustering method. The objective function Jy
is defined as the weighted sum of the Euclidean distances between each data and
each cluster center, where the weights are the degree of memberships of each data
in each cluster, and constrained by the probabilistic requirement that the sum of
memberships of each point equals 1:

N c 2 c
Jo = Zj:l D=t “?k ;= exll”, D ket Uik =1, (5.5)

where 6 € (1,00) is the fuzzy exponent, u;j is the degree of membership of data
x; (where j = 1,2,...,N) in the cluster center ¢; (where k = 1,2,...,C, and
1< C < N),and ||z; — ¢* is the squared Euclidean distance between z; and cj.
It operates through an iterative optimization of Jy by updating the membership
degree wuj:

ey (3 [lz=a] ™), -

= Ll = el

where s are the iteration steps, and by updating the cluster centers cy:

N N
cp = Zugkmj / Zu?k , (5.7)
j=1 j=1
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The algorithm proceeds as follows. First, the cluster centers are initialized ran-
domly. Thereafter, each data x; is assigned a membership grade u;;, in each cluster
k. Then the so-called Picard iteration through Equation 5.6 and Equation 5.7 is
run to adjust the cluster centers ¢, and the membership values u; . The algo-
rithm stops when the minimum amount of improvement between two consecutive
iterations is less than a small positive number ¢ or after a specified number of
iterations.

Hierarchical clustering The third type of data reduction is hierarchical clus-
tering. The following Ward’s (1963) criterion is used as a basis for agglomerating
clusters with the shortest distance:

= —"d.(k,1)% (5.8)

where k and [ represent clusters, n; and n; the cardinality of clusters k and [/, and
d.(k,1)? the squared Euclidean distance between the cluster centers of clusters k
and [. When clusters k£ and [ are merged to cluster h, the cardinality n; is the
sum of ng and n; and the centroid ¢, the mean of ¢, and ¢; weighted by nj and
n;. Hence, this specification accounts for cluster size. A particularly advantageous
feature of hierarchical methods is that agglomeration can be restricted to some
specific property of the underlying relations between clusters. For instance, the
distance between non-adjacent clusters can be set to infinite, where adjacency needs
to be defined (e.g., neighborhoods of data or clusters). Again, clusters can be said
to agglomerate as to minimize the Euclidean distance to the centroids, or the
squared error function. The algorithm starts with each data as its own cluster and
merges units for all possible numbers of clusters using the minimum Ward distance
(1,2,...,N).

5.4 The Self-Organizing Map (SOM)

The SOM (Kohonen, 1982, 2001) is an inherently different, yet not unique, method
in that it performs a simultaneous data and dimension reduction. It differs from
non-linear projection techniques like multidimensional scaling by attempting to
preserve the neighborhood relations in a data space €2 on a k-dimensional array of
units (represented by reference vectors m;) instead of attempting to preserve ab-
solute distances in a continuous space. On the other hand, it differs from standard
VQ by also attempting neighborhood preservation of the m;. The VQ capability of
the SOM performs this data reduction into mean profiles (i.e., units m;). It models
from the continuous space 2, with a probability density function p(x), to the grid
of units, whose location depend on the neighborhood structure of the data 2.

There exists two commonly used versions of the basic SOM algorithm: the sequen-
tial and the batch SOM. I employ the batch training algorithm, and thus process
data simultaneously instead of in sequences. Important advantages of the batch
algorithm are the reduction of computational cost and reproducible results. Repro-
ducibility is, given the same initialization, independent of the order of data. Before
training, initial values are assigned to the reference vectors (e.g., random, sample
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or linear initializations). Following the initialization, the batch training algorithm
operates a specified number of iterations ¢ (where t = 1,2,...,T) in two steps. In
the first step, each input data vector x; is assigned to the BMUs my:

where d(j,b) is the input space distance between data x; and reference vector
my (i.e., BMU) and d,(j,4) is the input space distance between data z; and each
reference vector m;. Hence, data are projected to an equidimensional reference
vector my, not a two-dimensional vector as in MDS. In the second step, each
reference vector m; (where ¢ = 1,2,..., M) is adjusted using the batch update
formula:

Zj-v:l hiv(j) (t)z;
Zj-vzl i (1)

where index j indicates the input data vectors that belong to unit b, N is the
number of the data vectors, and h(;) is some specified neighborhood function. In
comparison to the update formula of the k-means algorithm in Equation 5.4, the
batch update of the SOM can be seen as a spatially (hib(j)) constrained version.

Mathematical treatment of the SOM has, however, shown to be difficult. Despite
an extensive discussion of the form and existence of an objective function, the
literature has still not provided one for the general case (see, e.g., Yin (2008)).
It has, however, been noted that a decomposed distortion measure illustrates the
learning of the SOM (a discrete form with a fixed neighborhood of that suggested
in Lampinen and Oja (1992)):

mi(t+1) = (5.10)

N M
Esom = Z de(j,i)thbdm(ia b), (5.11)

j=1i=1

where d(j,1) is the input space distance between data x; and reference vector m;
and d,(i,b) is the input space distance between reference vectors m; and my,.

5.4.1 Parametrizing the SOM

Setting the parameters, or parametrizing, a SOM involves a number of choices by
the user.” While Kohonen (2001) has noted that the selection of all parameters

9There are several software implementations of the SOM. The seminal packages — SOM_PAK,
SOM Toolbox for Matlab, Nenet, etc — are not regularly updated or adapted to their environment.
Out of the newer implementations, Viscovery SOMine provides the needed means for interactive
exploratory analysis. For a practical discussion of SOM software and an early version of the imple-
mentation in Viscovery SOMine, see Deboeck (1998b) and Deboeck (1998a). See also Moehrmann
et al. (2011), for a comparison of SOM implementations. The first analyses of this thesis were
performed in the Viscovery SOMine 5.1 package due to its easily interpretable visual represen-
tation and interaction features, not the least when introducing it to practitioners in general and
policymakers in particular. Recently, the packages available in the statistical computing environ-
ment R have significantly improved, in particular regarding the visualization of SOM outputs.
Thus, the final parts of the research in this thesis, particularly the figures included herein, have
been produced in R.
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is not crucial if map size is small, it is needless to say that Kohonen does not
generally overlook the importance of finding an adequate specification, as it indeed
impacts the final result. The choices are defined to be on three different levels: i)
architecture, and i) internal and i) external specifications. The framework put
forward herein draws upon the discussion in Kohonen (2001) and Vesanto et al.
(2000). First, one needs to make decisions related to the architecture of the SOM,
that is, the form of the array of units created before training. In practice, the
array may have one to three dimensions, of which the most common choice is the
two-dimensional array. Moreover, the array is associated with a lattice, where
hexagonal and rectangular forms are the most often used. In a rectangular lattice,
a unit has four neighbors and in the hexagonal six. While most often being two-
dimensional, the lattice shape may also vary from the standard sheet to toroids
and cylinders, for instance.

Second, one has to decide upon internal specifications of the SOM algorithm. Over
the years, a large number of variations to the specifications of the standard SOM
have been provided. To start with, one needs to chose the initial values for the refer-
ence vectors using, for instance, random, sample or linear initialization. One com-
monly modified parameter is the neighborhood function h;,¢;) that could take the
form of a bubble, Gaussian, cut Gaussian and Epanechicov, for instance. Whichever
function is chosen to be used, it is also common to implement the neighborhood
function to be decreasing over training iterations as per a specified scheme.

Third, the external parameters, which most often are specified outside the SOM
machinery, are defined as the true free parameters. The neighborhood function,
whichever form it takes, commonly has a radius of the neighborhood parameter to
be specified. The user also has to decide the number of training iterations. Finally,
one also has to decide upon the number of units and the map shape (ratio of X
and Y dimensions).

At this point of the thesis, I only discuss the choices regarding architecture and
internal specifications, whereas external parameters outside the SOM machinery
have to be specified during each training phase. Kohonen (2001) and Vesanto et al.
(2000) provide a range of solutions, hints and tips, not to say rules of thumbs, re-
lated to the specifications when designing and training a SOM. First, specifications
relating to the architecture are set as follows. The use of a hexagonal lattice is not
only common practice for its visual appeal, but also advisable for six neighbors of a
unit being at the same distance, rather than only four in the case of a rectangular
lattice. For the purpose of this thesis, the output of the SOM is chosen to be a two-
dimensional sheet. The rationale for not using a one-dimensional array is to better
represent general detail, particularly differences within clusters, whereas a three-
dimensional map, while adding a further dimension, impairs the interpretability of
data visualizations, not the least visualizations displayed on static paper. Koho-
nen’s (2001) general suggestion is to set the shape of the lattice to correspond to
the shape of the data manifold. Given a two-dimensional SOM, a common recom-
mendation is thus to set the side length along each dimension to equal the PCA
eigenvalues of the training data.

Second, the internal specifications are as follows. The training process starts with a
linear initialization of the reference vectors set to the direction of the two principal
components of the input data. The principal component initialization not only
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further reduces computational cost and enables reproducible results, but has also
been shown to be important for convergence when using the batch SOM (Forte
et al., 2002). Following Kohonen (2001), this is done in three steps:

i) Determine two eigenvectors, v1 and vo, with the largest eigenvalues from the
covariance matrix of all data 2.

i1) Let v1 and vy span a two-dimensional linear subspace and fit a rectangular
array along it, where the two dimensions are the eigenvectors and the center
coincides with the mean of 2. Hence, the direction of the long side is parallel
to the longest eigenvector v; with a length of 80% of the length of v;. The
short side is parallel to ve with a length of 80% of the length of vs.

117) Identify the initial value of the reference vectors m;(0) with the array points,
where the corners of the rectangle are +0.4v; £ 0.4vs .

In this thesis, I make use of the commonly utilized Gaussian neighborhood func-
tion. Its properties are desired as it gives a non-linearly increasing weight to data
the closer they are to the updated unit, highlighting the importance of close-by
neighbors. The neighborhood function h;,;y € (0,1] is defined as the following
Gaussian function:

d,(b,7)*

where d,.(b, %) is the distance between the coordinates r;, and r; of the reference vec-
tors my and m; on the two-dimensional grid. Moreover, the radius of the neighbor-
hood o (t) is a monotonically decreasing function of time ¢. Here, Kohonen stresses
that special caution is required in the choice of the starting radius to achieve global
ordering, as otherwise one risks ending up with mosaic-like patterns. The radius of
the neighborhood begins as half the diagonal of the grid size ((X? + Y?2)/2), and
decreases towards a user-specified radius 0. As above mentioned, external param-
eters outside the SOM machinery need to be specified and discussed during each
training phase.

5.4.2 Supervision of the SOM

The standard SOM may be used in a semi-supervised manner (see, e.g., Koho-
nen’s (1991) Hypermap). It is most common to use the SOM for unsupervised
learning, where input data are used for learning previously unknown patterns in
data. However, if one possesses class information (e.g., labels), they can be used
to supervise learning for a classification task. The main rationale for using the
SOM over more traditional methods for classification is its inherent local modeling
property and topology preservation of units that enhances the understanding of the
problem, as well as the availability of, for instance, growing SOMs that facilitate
the choice of parsimony (for a thorough review see Barreto (2007)). While unsu-
pervised versions use only the explanatory variables in matching (Equation 5.9),
the supervision of the semi-supervised versions is introduced by the use of both the
explanatory and the class variables in matching. Both unsupervised and supervised
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versions may or may not include the classes in the batch update (Equation 5.10)
without affecting the general learning procedure.!® An additional possibility with
the semi-supervised SOM is the use of multiple classes, rather than only binary.
Multi-class supervision may be thought of as a way to separate all, say four, classes
in data, which involves an even better understanding of the dimension reduction
as the classes might be associated with separately interpretable properties.

5.4.3 Qualities of the SOM

When using the SOM for a classification task where class labels are known, a direct
and obvious measure of quality is the classification performance (see Chapter 8 for
a further discussion of measuring classification performance). However, rather than
the quality of a classification, the SOM is most often measured in terms of the qual-
ity of the unsupervised data and dimension reduction. The literature has provided a
large number of metrics for measuring different qualities of the SOM (see Pélzlbauer
(2004) for a review): quantization error, topographic product, topographic error,
trustworthiness, neighborhood preservation and the distortion measure. Herein, I
illustrate the three most common goodness measures: quantization error, distortion
measure and topographic error.

The fit of the SOM to the data distribution can be measured with the standard
quantization error and distortion measure. The quantization error £, computes
the average distance between x; and my:

(5.13)

N
Z =

The distortion measure 4, indicates, similarly, the fit of the map to the shape of
the data distribution, but also accounts for the radius of the neighborhood:

11 N M
= N1 2 2 ) s = g

j=1:i=1

|, (5.14)

~.

The topology preservation of the SOM can be measured using the standard topo-
graphic error e;.:

N
1
G = 5 _Zlum), (5.15)
j:

where u(z;) measures the average proportion of x; € 2 for which first and second
BMUs are non-adjacent units.

101n the literature, learning of the SOM has been defined through the entire spectrum of super-
vision. For instance, van Heerden and Engelbrecht (2008) define semi-supervised SOMs as similar
to the supervised ones, except for them not being included in the matching phase (Equation 5.9),
whereas the semi-supervised version herein is their supervised SOM. However, as the SOM is
never fully supervised, I stick to the definition of an unsupervised and a semi-supervised version.
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5.5 Concluding summary

This chapter has provided a necessary overview of not only data and dimension
reduction methods, but also their relation to the KDD process, information vi-
sualization and visual analytics. Thereby, the emphasis is clearly on dimension
reduction methods and their relation to the above mentioned topics. Likewise, a
greater focus has been on first-generation dimension reduction methods to support
a subsequent comparison of methods. To this end, this chapter has provided a basis
for a more thorough comparison of data and dimension reduction methods, as well
as their combination for data-dimension reduction, for financial performance anal-
ysis and macroprudential oversight. This is a crucial task as the choice of method
is not always a straightforward, quantitative decision to make.
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6 Data-Dimension Reductions: A Comparison

Data and dimension reduction techniques, and particularly their combination for
data-dimension reduction (DDR), have in many fields and tasks held promise for
representing data in an easily understandable format. However, comparing meth-
ods and finding the most suitable one is a challenging task. Above, I pinpointed
the aim of dimension reduction to three tasks. For the third task of visualization,
the most popular method has been the Self-Organizing Map (SOM), which is of-
tentimes asserted as an artifact of its simplicity and intuitive formulation (e.g., Lee
and Verleysen (2007) and Trosset (2008)). Yet, being well-known or simple, while
being an asset, is not a proper validation of relative goodness. The focus of this
chapter is to challenge the superiority of the SOM by comparing it to alternative
methods.

To capture the most suitable methods for visual financial performance analysis ac-
cording to the needs for the task, I assess in this chapter the suitability of three
classical, or so-called first-generation, dimension reduction methods: metric Multi-
dimensional Scaling (MDS) (Torgerson, 1952), Sammon’s mapping (Sammon, 1969)
and the SOM (Kohonen, 1982). Rather than being the most recent methods, the
rationale for comparing these is to capture the suitability of well-known dimen-
sion reduction methods with inherently different aims: global and local distance
preservation and topology preservation, respectively. For DDR, and due to access
to overabundant amounts of data, I test serial and parallel combinations of the
projections with three data reduction or compression methods: Vector Quantiza-
tion (VQ) (Linde et al., 1980), k-means clustering (MacQueen, 1967) and Ward’s
(1963) hierarchical clustering. While conceptually being similar, the functioning of
the SOM differs from the other DDR combinations as the two tasks of data and
dimension reduction are treated as concurrent subtasks. In serial combinations, the
dimension reduction is always subordinate to the data reduction, whereas parallel
combinations deal separately with the initial dataset.

This chapter is based upon Paper 1 and compares DDR combinations to financial
performance analysis as follows. I begin with a general review of the literature
on comparisons of data and dimension reduction methods. Then, we discuss the
aims and needs of DDR combinations in general and for the task at hand in par-
ticular. That is, building low-dimensional mappings from high-volume and high-
dimensional data that function as displays for additional information, be it individ-
ual data (e.g., time series of entities) or general structural properties of data (e.g.,
qualities, distance structures and densities). The relative goodness of methods for
financial performance analysis will then be discussed from a qualitative perspective.
Further, experiments on a dataset of annual financial ratios for European banks is
used to illustrate the general applicability of the DDR combinations for the task.
After illustrating some approaches to link information to the visualization displays,
results of these comparisons are then projected to the second generation of dimen-
sion reduction methods for a final discussion on the superiority of methods for
overall visual financial performance analysis, including tasks for macroprudential
oversight, as well as the general applicability of this comparison. These discussions
also include an information visualization perspective to dimension reductions.
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6.1 The optimal method: A literature review

When reviewing the literature on method comparisons, we first focus on dimension
reduction methods and then on data reduction methods. The focus is on neutral
evaluations of methods rather than evaluations in papers presenting novel methods.
While papers presenting new methods generally include an evaluation and conclude
at least partial superiority of it, such as some of those found in Section 5.3, they
may be biased to a lesser or greater extent towards data and evaluation measures
suitable for that particular approach.

6.1.1 A comparison of dimension reductions

The large number of methods has obviously also stimulated a large number of per-
formance comparisons between them. The comparisons mainly vary in terms of
used data and evaluation measures, whereas there may still be some variation in
the precise utilization of methods. For instance, Flexer (1997, 2001) used Pearson
correlation, Duch and Naud (1996) hypercubes in 3-5 dimensions and Bezdek and
Pal (1995) the metric topology preserving index to show that MDS outperforms
the SOM. Trosset (2008) argues that a serial combination of clustering and MDS is
superior to the SOM. Venna and Kaski (2001) and Nikkili et al. (2002) show supe-
riority of the SOM and Generative Topographic Mapping (GTM) in terms of trust-
worthiness of neighborhood relationships, while later Himberg (2004) and Venna
and Kaski (2007) show superiority of Curvilinear Component Analysis (CCA) in
terms of the same measure. Not surprisingly, de Vel et al. (1996) show, using
Procruses analysis and Spearman rank correlation coefficients on various datasets,
that the superiority of a method depends on the used evaluation measures and
data. Hence, despite many attempts, inconsistent comparisons do not indicate the
superiority of one method.

Lately, Lee and Verleysen (2009) proposed a unified measure based upon a co-
ranking matrix for evaluating dimension reductions, an adequate ground for generic
evaluations. Lueks et al. (2011) further developed the measure by letting the user
specify the properties that are more important to be preserved. While being useful
aids in comparing methods, they neither show nor propose existence of one superior
method for every type of data and preferences of similarity preservation.

6.1.2 A comparison of data reductions

When reviewing the literature on methods for data reduction, one can easily ob-
serve that neither is there a unanimity on the best available method. Herein, the
focus is on comparisons between the SOM and stand-alone data reduction meth-
ods. Bagao et al. (2005) show that the SOM outperforms k-means clustering with
3 evaluation measures and 4 datasets. Flexer (1997, 2001) show that k-means clus-
tering outperforms the SOM using a Rand index and 36 datasets. Waller et al.
(1998) show on 2,580 datasets that the SOM performs equally well as k-means
clustering and better than other methods. Balakrishnan et al. (1994) show that
k-means outperforms the SOM on 108 datasets, but do not decrease the SOM
neighborhood to zero at the end of learning (as, e.g., Kohonen (2001) proposes).
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Vesanto and Alhoniemi (2000) showed on 3 datasets that two-level clustering of
the SOM is equally accurate as agglomerative and partitive methods, while being
computationally cheaper and having merits in visualizing relations in data. Ultsch
and Vetter (1994) compare the SOM with hierarchical and k-means clustering and
conclude that the SOM not only provides an equally accurate result, but also an
easily interpretable output. Despite no unanimity on superiority, the literature
still indicates that the SOM, and its adaptations, are equally considerable alterna-
tives for data reduction as other methods, such as centroid-based and hierarchical
clustering.

6.1.3 Why is the literature so divided?

While the quality of data reductions can be quantified by common evaluation mea-
sures like quantization error, assessing the superiority of one dimension reduction
method over others with a quantitative measure is more difficult. And there is still
no unanimity on the superiority of one data reduction method over others. What
varies in the above discussed studies is mainly the underlying data, which indicates
that methods show different performance on different types of data. One reason
might be that clusters in the SOM topology learn from and are provided guidance
by neighboring data as well, which aids the analysis of noisy data, whereas accuracy
suffers on well-behaving toy data. This is supported by the findings of de Bodt et al.
(1999) and Bagao et al. (2005), where they propose that the SOM better spans the
search space as neighborhood relations force units to follow each other. This is,
however, only speculative reasoning about the above lack of unanimity.

Since the mid-20th century, the overload of available data has stimulated a soar
in the development of dimension reduction methods with inherent differences (as
reviewed in Chapter 5). However, most differences in the quality of dimension
reductions, as all structural information can impossibly be preserved in a lower
dimension, derive from variations in preserved similarity relations, such as pairwise
distances or topological relationships. The performance, and choice of model spec-
ification, of one method can generally be motivated by its own quantitative quality
measure. However, the relative goodness of different methods depend strongly
on the correspondence between the particular quality measure and the objective
function.

Despite the fact that the large number of dimension reduction methods has stim-
ulated quality comparisons along different measures, inconsistency of the compar-
isons has lead to no unanimity on the superiority of one method (see, e.g., Flexer
(1997, 2001) and Venna and Kaski (2001)). This also indicates that the goodness
of methods depends to a large extent on the correspondence between the measure
and the objective function, and confirms that the quality measure is a user-specified
parameter depending on the task at hand. While recent advances in unified mea-
sures for evaluating dimension reductions have included a parameter for the user
to specify properties that are more important to be preserved (Lee and Verleysen,
2009; Lueks et al., 2011), quantitative measures still have difficulties in including
qualitative differences in properties of methods, such as differences in flexibility for
difficult data and the shape of the low-dimensional output. This motivates assess-
ing the suitability of data and dimension reduction methods for a specific task from
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a qualitative perspective.

6.2 DDR combinations for the task at hand

This section discusses specific aims, needs and restrictions of DDR combinations for
visual financial performance analysis. From this discussion, I pinpoint dimensions
of DDR combinations relevant for measuring the suitability of methods for the task
herein.

6.2.1 Aims and needs for the task

So, what is the so-called task at hand? The aim of models for visual financial
performance analysis, including tasks for macroprudential oversight, is to represent
high-volume and high-dimensional data of financial entities on low-dimensional
displays. The data for such a task are derived from a data cube, as the one repre-
sented in Figure 4.1 (see Section 4.3). Data and dimension reductions hold promise
for the task, but the form of the models still set some specific needs and restric-
tions. While recent advances in information technology have enabled access to
databases with nearly endless amounts of macroeconomic and financial informa-
tion (e.g., Bankscope, Bloomberg, Standard & Poor’s and Capital 1Q), as well
as provision and integration of multiple sources (e.g., Haver Analytics), data are
oftentimes problematic in being incomplete and non-normal (e.g., Deakin, 1976).
For instance, in the case of representing a financial entity with its balance-sheet
information, it is more common than not that some items of the balance sheet are
missing. Due to changes in reporting rules and financial innovation, data might be
missing or start in the latter part of a time series. An example of skewed distribu-
tions is the commonly appearing power-law distribution and Benford’s law, as well
as the particularly fat tails of market-based data. While there exist a multitude
of preprocessing methods for transforming, normalizing and trimming data, the
tails of financial ratio distributions are oftentimes of high interest. This derives
two necessities: the computational cost of the method needs to be considerably low
and scalable and the method needs to be flexible for problematic data.

The main aim of the low-dimensional mappings is to use them as displays for ad-
ditional information, in particular for: ¢) individual data, ii) structural properties
of data, and i) qualities of the models. This is due to three respective reasons:

i) the two-dimensional plane should function as a basis or display for visual
performance comparisons of financial entities (i.e., observation-level data)
and their time series;

i1) for the human visual system to recognize patterns in data, we need to provide
guidance for interpreting general data structures, and oftentimes also possess
this types of linkable information; and

i11) qualities of a dimension reduction may vary across mappings and locations
in mappings as all information cannot be correctly preserved in a lower di-
mension.

The main aim of these mappings is hence not to be an ending point, but rather to
function as a basis for a wide range of additional visualizations.
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6.2.2 Aims and needs of DDR combinations

When evaluating or comparing performance of data and dimension reduction meth-
ods, particularly DDR combinations, quantitative measures have difficulties in ac-
counting for qualitative differences in properties of methods. Hence, as I perform
a qualitative comparison, the needs for visual financial performance analysis are
suppressed into four qualitative criteria for evaluating DDR, combinations: form
of structure preservation, computational cost, flexibility for problematic data and
shape of the output. Next, I define these criteria in more detail.

Form of structure preservation As all relations in a high dimensional space
can obviously not be preserved in a lower dimension, there are differences in what
locations are stressed when preserving the structure. Given these differences, the
main characteristics of structure preservation should obviously match important
desires of the particular task at hand. The key question is thus: Which relations
are of central importance for visual financial performance analysis? With a main
focus on visualizing individual financial entities on a low-dimensional display, cor-
rectly locating neighboring data becomes essential. This leads to trustworthiness
of neighborhood relationships being more important than precision on the exact
distance to those far away. Noise and erroneous data as well as comparability issues
related to reporting differences, for instance, also motivate attempting this type of
a local order-preserving mapping rather than focusing on global detail.

Computational cost We oftentimes have access to vast amounts of macro-
financial data in today’s databases, including high-dimensional data for a large
number of entities with a high frequency over long periods (i.e., a large data cube
along all three dimensions), not the least if the used data are based upon market
sources. This obviously sets some restrictions on computational cost and scal-
ability of methods. While I acknowledge that computation time is not entirely
a qualitative property, it has still not been incorporated in quantified evaluation
measures. As also noted by van der Maaten and Hinton (2008), the practical appli-
cability of a dimension reduction method relies upon its computational complexity,
as application becomes infeasible if the computational resources needed are too
large. In addition to the properties of data, computational cost of a method is
set by the dimensionality of the output, the definition of a neighborhood in the
case of neighborhood preservation and for iterative techniques the number of it-
erations, not to mention the form of input data (e.g., pairwise distance matrices
or high-dimensional data points). It is also worth to consider that computational
expense is not only a one-off cost when creating a dimension reduction, but also
when updating it. Combinations with data reduction methods may also affect the
computational cost of a dimension reduction. Still, it is important to acknowledge
that a cut-off between computationally costly and non-costly methods is difficult.
Yet, the differences between methods oftentimes tend to be significant.

Flexibility for problematic data Methods differ in flexibility for non-normal
and incomplete data, something more common than not in real-world macro-
financial settings. Hence, desired properties of dimension reduction methods are
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flexibility for incomplete and non-normal data. While the former can be defined
in terms of treatment of missing values, the latter depends largely on the task at
hand. Most often data are preprocessed for ideal results, including treatment of
skewed distributions. Yet, preprocessing seldom does, and is most often not desired
to, compress the data into uniform density. Oftentimes, the most extreme values
of data are among the most interesting states of financial performance. Hence, one
type of tolerance towards outliers can be derived from the output of methods. A
method is judged to be tolerant towards outliers and skewed distributions if prob-
lematic data do not significantly impair the intelligibility of an output or display
(e.g., stretch towards outliers).

Shape of the output One of the main aims is to use a dimension reduction as
a display to which additional information is linked. In particular, I use the low-
dimensional mappings as displays for individual data, structural properties and
qualities. This turns the focus to the shape of the outputs of dimension reduction
mappings. They can take a wide range of forms. I consider the interrelated proper-
ties of the shape to be: continuous vs. discrete mappings, optional vs. mandatory
data reductions and predefined vs. data-driven grid shapes. While a mandatory
data reduction is generally not desirable, I do not consider it a significant disad-
vantage. Rather the opposite, due to the large amounts of available data. This
leads also to restricting mappings to discrete rather than continuous, whereas con-
tinuous mappings would obviously be desirable from the perspective of detail and
accuracy. The largest difference for interpretation, especially in terms of linking
visualizations, is between predefined and data-driven grid shapes. While methods
with data-driven grid shapes may better adapt to data, the methods with prede-
fined regular shapes are superior in functioning as a regularly formed display for
additional information. This is a key property as the mappings are starting points
rather than ending points of the analysis, where additional information may be
individual data, structural properties of data and qualities of the models.

6.3 A qualitative comparison

This section presents a qualitative discussion of DDR combinations for visual per-
formance analysis and relates it to the four identified criteria: form of structure
preservation, computational cost, flexibility for problematic data and shape of the
output. Below, we discuss MDS, Sammon’s mapping and the SOM from the view-
point of the task at hand and the four criteria.

Form of structure preservation The main difference between DDR combi-
nations is how the dimension reduction methods differ in the properties of data
they attempt to preserve. For the task of visual financial performance analysis,
the focus is on one question: Which methods better assure trustworthy neighbors?
MDS-based methods with objective functions attempting distance preservation,
while potentially being better at approximating distance structures, may end up
with skewed errors across the projection. To this end, Venna and Kaski (2001)
and Nikkild et al. (2002) have shown that the SOM, which stresses neighborhood
relations, better assures trustworthy neighbors. That is, data found close-by each
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other on a SOM display are more likely to be similar in terms of the original data
space as well. The conceptual difference in structure preservation between distance-
and topology-preserving methods is illustratively described by Kaski (1997) with
an experiment on a curved two-dimensional surface in a three-dimensional space:
the former methods may follow the surface in data with two dimensions, whereas
the latter require three dimensions to describe the structure.

Computational cost Expensive computations is obviously an issue when dealing
with large-volume financial data. Generally, computing pairwise distances between
data is costly with an order of magnitude of N2. The topology preservation of the
SOM relates instead to the grid size M with an order of magnitude of M? (Kaski,
1997). This implies that the complexity of the methods are similar if the grid size
M equals the number of data N, but more importantly that the SOM allows for
adjusting M for cheaper complexity. Further, parallel DDR combinations suffer
from an additional computational cost as the clustering is performed on the initial
dataset rather than on a reduced number of units. The computational cost of
MDS-based methods motivates serial DDR combinations. Another issue related
to computational cost is the lack of an explicit mapping function for the MDS-
based methods. Hence, when including new samples, the projection needs to be
recomputed. While new samples can be visualized via projection to their best-
matching data, each update requires recomputing the projection.'' In contrast, the
SOM can cheaply be updated with individual data using the sequential algorithm
(i.e., an online version of the batch SOM).

Flexibility for problematic data The methods significantly differ in flexibility
for problematic data. Methods dealing with distance preservation have obvious
difficulties with incomplete data. However, the SOM, and its self-organization,
can be seen as tolerant to missing values by only considering the available ones in
matching (Samad and Harp, 1992). In practice, the SOM has been shown to be
robust when up to approximately 1/3 of the variables in a row (i.e., data vector
x;) are missing (Kaski and Kohonen, 1996; Kohonen, 2001; Denny and Squire,
2005; Sarlin, 2012b). Indeed, the SOM has even been shown to be effective for
imputing missing values (e.g., Cottrell and Letrémy (2005)). Tolerance towards
outliers is measured in terms of representation of skewed distributions. An MDS-
based mapping becomes difficult to interpret if it is stretched towards directions
of outliers and extreme tails. While the processing of the SOM does not per se
treat outliers, its regularly shaped grid of units facilitates visualizing data with
non-uniform density functions. This provides a hint of the final criterion.

Shape of the output A key to using a dimension reduction as a display, and
linking information to it, is the shape of its output. Whereas the SOM has a
discrete mapping, mandatory data reduction and predefined grid shape, MDS-
based methods are its contrasts by having continuous mappings, optional data
reduction and data-driven lattice (if combined with data reduction). The predefined

H'While Relative MDS (Naud and Duch, 2000) allows to add new data to the basis of an old
MDS, it does still not update all distances within the mapping.
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SOM grid, while also having drawbacks for representing structural properties of
data, facilitates the interpretation of linked information. Today, it is standard
that the SOM comes with a wide set of linked extensions for visual analytics,
such as the so-called feature planes, U-matrix and frequency plots (Vesanto, 1999).
Even though visual aids for showing distance structure and density compensate for
constraints set by the grid shape, there is a large group of other aids that enhance
the representation of available information in data. The visual aids, while not
always being even applicable, have generally not been explored in the context of
MDS-based projections. Feature planes (see next section), for instance, are difficult
to visualize due to the lack of a reduced number of units. Even DDR combinations
with serial VQ, i.e., processing similar to that of the SOM, would still lack the
concept of neighborhood relations of a regularly shaped grid.

6.4 Illustrative experiments

The qualitative discussion of properties of DDR combinations for financial perfor-
mance analysis still lacks illustrations of the above discussed properties of methods.
Here, I show experiments with these methods. Dimension reduction is performed
with the SOM, metric MDS and Sammon’s mapping and data reduction with
Ward’s hierarchical clustering, k-means clustering and VQ. We explore various
combinations for DDR with the aim of achieving easily interpretable models for
visual financial performance analysis. The methods are chosen and combined as to
their suitability for data reduction of dimension reductions, and vice versa.

Data The dataset used in these examples consists of annual financial ratios for
banks from the European Union (EU), including all provided financial ratios in
the Bankscope database from Bureau van Dijk. Initially, the dataset consisted of
38 annual financial ratios for 1,236 banks spanning from 1992:12-2008:12. A large
concern in the dataset is the share of missing values. I chose to use 24 ratios by
dropping those with more than 25% missing data. Observations with missing values
for more than 1/3 of the ratios were removed. Finally, we are left with a resulting
9,655 rows of data, and a total of 855 banks. Yet, the dataset still includes missing
values. Although the SOM is tolerant to missing data, we need to impute them in
this work as distance-preserving methods require complete data. For simplicity, 1
use the SOM for imputing missing values. A SOM allows mapping incomplete data
to their best-matching units (BMUs) by only considering the available variables.
Hence, complete data were used for training a SOM, incomplete data were mapped
to their BMUs and the missing values were imputed from their BMUs. Moreover,
although outliers are not a problem per se, they may still affect the interpretability
of the models, in particular MDS-based models. Not to lose significant amounts
of data, I use modified boxplots for trimming with replacement. The modified
boxplot is preferred over Winsorizing, for instance, as it accounts for variable-
specific distributions, resulting in replacement of a total of 7.39% of the data,
distributed as needed per variable and tail. In the following experiments, we use
the entire dataset, in particular when creating displays with data and dimension
reduction methods. Further, a sample of trajectories are used to illustrate the
visualization of individual data on the created displays. The trajectories consist of
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all input variables spanning from 2002 to 2008 for Deutsche Bank, ABN Amro and
Société Général.

Parallel DDR Figure 6.1 shows parallel DDR combinations on the entire dataset.
Sammon’s mapping is combined with k-means clustering, and MDS and the SOM
are combined with Ward’s clustering.'? Ward’s clustering of the SOM is, however,
performed on its units rather than on the dataset and restricted to agglomerate
only adjacent clusters in the SOM topology. I do not, however, consider this op-
tion for MDS-based projections as there is no natural definition of adjacency. On
top of all three mappings, I superimpose cluster color coding and a performance
comparison of trajectories from 2002-2008 for three large European banks. Cluster
memberships are visualized through a qualitative color scheme from ColorBrewer
(Harrower and Brewer, 2003), where groups are differentiated in hue contrast with
nearly constant saturation and lightness. The projections of MDS and Sammon’s
mapping on this large dataset are very similar, whereas k-means clustering has
less overlapping cluster memberships in the mapping than Ward’s clustering. The
trajectories as well as the underlying variables confirm that, while the orientations
of the two MDS-based projections are somewhat different from those of the SOM
model, their structure is still inherently similar. Yet, the computational cost differs
significantly. While it takes on an ordinary personal computer only a few seconds to
train SOM-based models on these data, the MDS-based projections require several
hours on a dedicated server.

Serial DDR.  For cheaper complexity, we further explore possibilities of MDS
by testing serial combinations. Figure 6.2 shows a Sammon’s mapping of the k-
means cluster centroids as well of the second-level centroids of the SOM, where size
represents the number of data in each cluster. This type of usage of MDS-based
methods was already proposed by Sammon (1969) due to their high computational
cost, and later applied by Flexer (2001), for instance. It is, indeed, a cheap way to
illustrate relations between the cluster centroids, but lacks detail for structural as
well as individual analysis.

Serial and parallel DDR Costly, yet detailed, MDS-based projections in Figure
6.1 and cheap, yet crude, projections in Figure 6.2 motivate finding a compromise
solution. For reducing computational expense, it is still necessary to rely on a
serial DDR combination. For more detail, however, I attempt to reduce the initial
dataset to a smaller but representative dataset. This type of data compression can,
for instance, be achieved with standard VQ that approximates probability density
functions of data. The compressed reference vectors can then be used as an input
for a parallel DDR. Conceptually, while still lacking the interaction between the
tasks as well as the regular grid shape, we come close to what is achieved using a
SOM in Figure 6.1 by relying on both serial and parallel DDR combinations. The

12When training SOMs, one has to set a number of free parameters. I use a set of quality
measures to track the topographic and quantization accuracy as well as clustering of the map.
Given the purpose herein, details about the parametrization of the models in the experiments are
not presented in depth.
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SOM and Ward's clustering

Deutsche Bank

Sammon's mapping and k-means clustering Multidimensional scaling and Ward's clustering
e ° [ d L[]

Notes: The figures show parallel DDR combinations on the entire financial dataset; Sammon’s mapping
is combined with k-means clustering, and MDS and the SOM are combined with Ward’s clustering.
Color codes on each mapping correspond to clusters and the superimposed trajectories to a performance
comparison of three large European banks from 2002-2008.

Figure 6.1: Parallel DDR combinations.

k-means clustering and Sammon's mapping SOM, Ward's clustering and Sammon's mapping

Notes: The figure shows serial DDR combinations on the entire financial dataset; Sammon’s mapping
is combined with k-means clustering, and the SOM with second-level Ward’s clustering. Color codes on
each mapping correspond to clusters. Not to clutter the display, trajectories are not displayed in this
figure.

Figure 6.2: Serial DDR combinations.
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VQ, Sammon's mapping and k-means clustering SOM, Sammon's mapping and Ward's clustering
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Notes: The figures show serial and parallel DDR combinations on the entire financial dataset; Sam-
mon’s mapping is combined with VQ and k-means clustering, and the SOM with Ward’s clustering and
Sammon’s mapping. Color codes on each mapping correspond to clusters and the net-like representation
illustrates neighborhood relations.

Figure 6.3: Serial and parallel DDR combinations.

left plot in Figure 6.3 shows a VQ of the initial dataset and then a subsequent
Sammon’s mapping and k-means clustering on the VQ reference vectors. The right
plot in Figure 6.3 shows a corresponding Sammon’s mapping of SOM units with a
superimposed cluster color coding. However, the figure illustrates two issues: the
ordered SOM units have less overlap of cluster memberships and the importance
of naturally defined topological relations. The former issue is partly a result of
interaction between the tasks of data and dimension reduction and partly of the
inclusion of neighborhood relations when agglomerating clusters. The latter issue
of a regularly shaped grid is particularly useful when attempting to visualize as
much of the available information as possible through linked visualizations.

6.5 The SOM and its visualization aids

This section first briefly reviews visualization aids for the SOM and then illustrates
the use of the regularly shaped SOM grid, and its visualization aids. Figure 6.1
showed the two-dimensional SOM grid, and trajectories for three large European
banks from 2002-08, but a central question remains: How should we interpret
the map? The possibility of linking additional information to the SOM grid has
stimulated the development of a wide scope of visualization aids (see Vesanto (1999)
for an early overview). Below, I classify the aids into three groups:

i) those compensating structural properties inherent in data that the regular
grid shape eliminates;

i1) those extending the visualization of properties inherent in data but not nor-
mally accessible in dimension reductions; and

i11) those linking the SOM grid with other methods or data to further enhance
the understanding of the task.

The first group includes means to represent the distance structure and density on a
SOM, something missing due to the VQ and grid shape. Densities on the SOM are
generally assessed with frequency plots and the Pareto density estimation matrix
(P-matrix) (Ultsch, 2003a). Examples of aids for assessing distance structures are
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Sammon’s mapping, the Unified distance matrix (U-matrix) (Ultsch and Siemon,
1990) and cluster connections (Merkl and Rauber, 1997). Moreover, some methods
attempt to account for both structures and densities, such as the U*-matrix (Ultsch,
2003b), the sky metaphor visualization (Latif and Mayer, 2007), the neighborhood
graph (Polzlbauer et al., 2005), smoothed data histograms (Pampalk et al., 2002),
and cluster coloring (Kaski et al., 2001; Sarlin and Rénnqvist, 2013).

The second group consists of visualizations that enhance the representation of the
high-dimensional information. Feature planes are a standard method for visualiz-
ing the spread of values of individual dimensions on the SOM, but they have been
further enhanced in several aspects. For instance, Vesanto and Ahola (1999) use a
SOM for reorganizing the feature planes according to correlations and Neumayer
et al. (2007) introduced the metro map discretization to summarize all feature
planes onto one plane. Kaski et al. (2001) have developed a visualization of the con-
tribution of each variable to distances between units, that is, the cluster structure.
Another extension, while partly also belonging to the other groups, is visualization
of vector fields (Polzlbauer et al., 2006) for assessing contributions to the cluster
structure and for finding correlations and dependencies in the underlying data.

The third group uses other methods or data for further enhancing the understand-
ing of the task. One common way to represent cluster structures in a SOM is
applying a second-level clustering on the units, and visualizing it through color
coding (Vesanto and Alhoniemi, 2000). The reference vectors have been used as
an input for other predictive methods, such as a neural network in Serrano-Cinca
(1996), whereafter the prediction may be visualized on the SOM grid.

Here, I show some examples of how visualizations from the above three groups can
be linked to the SOM. The previously presented SOM in Figure 6.1 already showed
a financial performance comparison over time of three large European banks using
labels and trajectories. Figure 6.4 uses the regular shape of the SOM grid as a
basis for seven different representations of additional information. Whereas cluster
memberships are visualized through a qualitative color scheme, the rest of the
visualizations are shown through variation in luminance (light to dark to represent
low to high values) in a blue hue. It is worth noting that a complicating factor
in using luminance is that perceived lightness is dependent on context (Purves
et al., 2004), namely the lightness of surrounding colors. For this reason, color
scales ought to be presented with a consistent reference color to be comparable in
lightness. The units of the SOM are in this thesis represented with circles rather
than hexagons to leave space for reference coloring.

First, Figures 6.4a, 6.4b and 6.4c illustrate structural properties of the model: (a)
shows crisp cluster memberships of the second-level clustering, (b) shows distance
structures using a U-matrix visualization, and (c) shows the frequency distribution
on the SOM grid. While Figures 6.4a and 6.4b show similar characteristics of cluster
structures, Figure 6.4c shows no specific patterns in density, except for borders
being comparatively less dense. Second, 6.4d shows qualities of the model, where
larger quantization errors cluster around the lower right corner. Third, Figures
6.4e, 6.4f and 6.4g enable assessing correlations and distributions by showing the
spread of three financial performance measures on the SOM grid: capital, loan and
profitability ratios. Here, one can observe that, generally, the right part represents
well-performing and the left part poor banks, which gives a direct interpretation
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Notes: The figures link additional information to the regularly shaped SOM grid. Charts (a—c) illus-
trate structural properties of the model: (a) shows cluster memberships of the second-level clustering,
(b) shows average distances between units, or the so-called U-matrix, and (c) shows the frequency dis-
tribution on the SOM grid. Chart (d) shows qualities of the model, whereas charts (e—g) show the
spread of three subdimensions of financial performance on the SOM grid: capital, loan and profitability
ratios.

Figure 6.4: An exemplification of information linked to a SOM.
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to the trajectories in Figure 6.1.

So, how does the SOM relate to information visualization? Following the discus-
sion about data graphics in Section 5.1, I relate herein the SOM to Bertin’s (1983)
framework. The plane, and its two dimensions (z,y), are described as the rich-
est variables, which can be perceived at all levels of organization. On the SOM,
they represent discrete neighborhood relations. This corresponds also to the key
aim of the SOM, that is, to preserve neighborhood relations, whereas global dis-
tance structures are of secondary importance. The retinal variables, and their three
types of implantation (point, line and area), are thus positioned on the grid. The
six retinal variables may be used to represent properties of the SOM grid, partic-
ularly properties of the units. To refresh memory, they are as follows (where the
parenthesis refers to Bertin'’s levels of organization): size (ordered, selective and
quantitative), value (ordered and selective), texture (ordered, selective and associa-
tive), color (selective and associative), orientation (associative, and selective only
in the cases of points and lines), and shape (associative). The choice of retinal
variable should be based upon the purpose of the visualization and the type of
data to be displayed. For instance, variation in size has been used to represent
frequency of data in units (see, e.g., Resta (2009)). Value, or brightness, has been
used to visualize the spread of univariate variable values (i.e., feature planes) on
the SOM (see, e.g., Figure 6.4). Likewise, texture has been used for representing
cluster memberships (see, e.g., Sarlin (2012a)). Orientation is commonly applied
to represent high-dimensional reference vectors by the means of arrows (see, e.g.,
Kohonen (2001, p. 117)). Variation in color (or hue) has been used for illustrating
crisp cluster memberships (see, e.g., Figure 6.4) and for a coloring that reveals mul-
tivariate cluster structures (see, e.g., Kaski et al. (2001) and Sarlin and Ronnqvist
(2013)). Variation in shape is commonly used on the SOM by the means of labels,
such as phoneme strings and phonemic symbols (Kohonen, 2001, pp. 208-210).

6.6 Discussion

This chapter has considered data and dimension reduction methods, as well as
their combination, for visual financial performance analysis. The discussions and
illustrations in this chapter, while being at times somewhat trivial, are motivated
by inconsistency of argumentation for and application of various methods. The
main conclusion of the comparison is that the SOM has several useful properties for
financial performance analysis. In particular, I have noted the following advantages
of the SOM over alternative distance-preserving methods:

1) trustworthy neighbors,

13) low computational cost,

11) flexibility for problematic data, and

)
)
iv) a regularly shaped grid.
So, is the superiority of the SOM supported by information visualization theories?

Indeed, the SOM representation can be related to Tufte’s (1983) advise and princi-
ples on graphical clarity and precision. Due to a potential loss of information when
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projecting from a high-dimensional space to one of a lower dimension, trustworthy
neighbors clearly relates to Tufte’s advise on avoiding distortions of data (given
some losses in detail). Furthermore, the regular, predefined grid shape of the SOM
enables and facilitates many types of information linking to the same grid structure.
This functions as an aid in thinking about the information rather than the design
and encourages the eye to compare data. The SOM’s property of approximating
the probability density functions of data also facilitates presenting vast amounts
of data in a small space, as units will be located in dense areas of the data space,
which could also be thought of as an aid in making large data sets coherent. On
the SOM, data may be revealed at multiple levels of detail ranging from overview
of multivariate structures on the grid, to illustration of individual data on the grid
(e.g., trajectories located in their BMUs), which also integrates statistical and ver-
bal descriptions. Along these lines, Tufte’s six guidelines on telling the truth about
data are also supported. For instance, showing data variation, not design variation,
and not showing data out of context relates to, and is supported by, the use of a
regular grid shape. Likewise, an example of visuals being directly proportional to
the quantities they represent is the adjustment of color scales used for the linked
visualizations, such as normalizations of feature plane scales in order for all vari-
ables to be comparable (see, e.g., Subsection 7.2.2), and the use of perceptually
uniform color scales, such as CIELab (1986).

It is, however, worth noting that the relative goodness of a method depends always
on the task in question. That said, the SOM is obviously far from a panacea for all
sorts of data and dimension reduction. When only attempting stand-alone tasks,
it is indeed very likely that there exists better methods than the SOM. Similarly,
when attempting DDR, the superiority of one method over others depends entirely
on the aims of the task in question.

Even though the SOM has been assessed as advantageous for visual financial per-
formance analysis, it is worth to carefully consider its limitations:

i) The SOM performs a crude mapping. Rather than data points, the SOM
attempts to embed the reference vectors, a significant constraint if detail is
of central importance and/or if only projecting a few data points.

i1) The regular grid shape sets some restrictions on the SOM. For instance, it
may cause interpolating sparse locations with idle units, it may lead to an
analyst overinterpreting the regular-like y and z axes, and leads to the need
for additional visual aids to fully represent structures.

i11) Mathematical treatment of the SOM has shown to be problematic. The lack
of an objective function, as well as a general training schedule for or proof of
convergence, complicates parametrizing a SOM.

The comparison in this section has covered classical first-generation dimension re-
duction methods. This leads to one key question: Can the results of this comparison
be generalized to all available methods? As reviewed in Section 6.1, CCA has been
shown to outperform the SOM in terms of trustworthiness of neighborhood relations
(Himberg, 2004; Venna and Kaski, 2007). Likewise, two more recent local versions
of MDS, denoted Local MDS (LMDS), by Venna and Kaski (2006) and Chen and
Buja (2009) adapt the functioning of standard MDS to preserve local relations.
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These methods, while holding promise for one criterion, fall short in other, not the
least in the shape of the output. It is thus important to consider methods from the
second generation with the key properties of the SOM. There are two conceptu-
ally similar topology-preserving methods that possess the capabilities of the SOM
and a predefined grid shape: GTM and Exploration Observation Machine (XOM).
GTM mainly differs from the SOM by relying on well-founded statistical prop-
erties. It is based upon Bayesian learning with an objective function, namely
the log-likelihood, which is optimized by the Expectation-maximization algorithm.
The objective function directly facilitates assessing convergence of the GTM. Even
though Bishop et al. (1998a) originally stated that the GTM is computationally
comparable to the SOM, it has later been shown that the SOM is cheaper (e.g.,
Rauber et al., 2000). This may result from the number of developed algorithmic
shortcuts for computing SOMs, such as fast-winner search (Kaski, 1999). Both
methods are flexible for problematic data, i.e., outliers and missing values, through
a similar predefined grid shape and an extension of the GTM for treating missing
values (Carreira-Perpinan, 2000; Sun et al., 2001). However, while choosing pa-
rameters for the SOM may be a tedious task, given adequate initializations and
parametrization, convergence has seldom appeared to be a problem in practice (see,
e.g., Yin (2008)). A decade after the introduction of the GTM, neither it nor its
variants, such as the S-Map (Kiviluoto and Oja, 1997), have displaced the standard
SOM.

The XOM is a computational framework for data and dimension reduction. By in-
verting the functioning of the SOM, the XOM systematically exchanges functional
and structural components of topology-preserving mappings by self-organized model
adaptation to the input data. It has two main advantages compared to the SOM:
i) reduced computational cost, and ) applicability to non-metric data as there is
no restriction on the distance measures. Even though the use of non-metric dis-
similarity measures is of little use on the data in these particular examples, while
still having potential for other pairwise financial data, the reduced computational
cost is particularly beneficial for large financial datasets in general. The XOM has,
however, been recently introduced and is thus still lacking thorough tests in rela-
tion to other methods, such as comparisons to SOMs with algorithmic shortcuts.
Yet, the XOM should be considered as a valid alternative to the SOM paradigm.

The key message is thus that all four criteria are fulfilled by three methods that
perform a topology-preserving mapping to a regularly shaped grid: the SOM, GTM
and XOM. It is worth noting, as widely suggested (e.g., Lee and Verleysen, 2007;
Trosset, 2008), that one of the main reasons for the SOM being very popular for
a broad range of tasks, such as classification, clustering, visualization, prediction,
missing value imputation, etc, might be because it produces an intuitive output
using a simple and easily understandable principle. This simplicity, while being
beneficial for a method to be widely accepted, applied and understood, should still
not be used for assessing relative goodness. One should, nevertheless, note that
when introducing dimension reductions to the general public, such as policy- or
decision-makers in general, simplicity is definitely an asset. To this end, I argue that
the most suitable method for financial performance analysis is one from the family
of methods that perform a topology-preserving mapping to a regularly shaped and
predefined grid. In this thesis, out of the above described family of methods, the
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choice of the SOM is motivated by the simplicity of and large number of extensions
provided to the SOM.

6.7 Concluding summary

The literature shows a lack of unanimity on the superiority of one dimension reduc-
tion method over others. Yet, every task has its own needs. Data and dimension
reduction for financial performance analysis should thus be performed with methods
that have the best overall suitability for the performed task, not the best process-
ing capabilities for some other objective. To this end, this chapter has addressed
the choice of method for visual financial performance analysis from a qualitative
perspective. We have first discussed the properties of three inherently different
classical first-generation dimension reduction methods, and their combination with
data reduction, and illustrated their performance in a real-world financial applica-
tion to benchmarking European banks. The conclusions drawn from the compar-
ison of classical methods was then prolonged to second-generation methods. The
qualitative discussion and experiments showed superiority of the SOM for financial
performance analysis in terms of four criteria: form of structure preservation, com-
putational cost, flexibility for problematic data and shape of the output. When
considering second-generation methods, the recently introduced GTM and XOM
have clear potential for similar tasks. GTM improves the SOM paradigm with its
well-defined objective function, but is computationally more costly, whereas XOM
is a recently introduced promising method, but lacks still thorough comparisons.

From the discussions in this chapter, an obvious conclusion is that the family of
methods that perform a topology-preserving mapping to a regularly shaped and
predefined grid provides means for visual financial performance analysis. The aims
and needs for the task at hand, where the main focus lies on using the output as a
display for additional information in general and individual data in particular, are
neither rare objectives in other fields. While not being generalizable to their full
extent, parts of the conclusions herein will also apply in other fields, domains and
tasks. The methods advocated in this thesis do obviously not provide a panacea for
visual financial performance analysis. They should be paired with other methods,
not least visualizations of different kinds, that compensate for missing properties
when having, for instance, a regularly shaped grid. To this end, the chapter also
motivates exploring the information commonly linked to the SOM in not only the
same family of methods with predefined grid shapes, but also other dimension
reduction paradigms in general. In Figure 6.5, I exemplify how "feature planes” for
a Sammon’s mapping visualize the spread of individual variables for the Sammon’s
mapping coordinates.

To sum up, the SOM was found to hold most promise for the task performed in this
thesis, which also sets the direction in the sequel of this thesis. Yet, the standard
SOM as such is not always enough for the task at hand. In the following chapter,
I will discuss how the SOM can be extended to better meet the aims and needs for
the tasks and data at hand.
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Capital ratios Loan ratios Profitability ratios

Notes: The figures link additional information to the coordinates of the Sammon’s mapping. All three
plots show the spread of three individual variables measuring financial performance (i.e., feature planes):
capital, loan and profitability ratios. They are comparable to the feature planes of the SOM grid shown
in Figure 6.4d—f. The reader is referred to these scales for an interpretation of the color scale.

Figure 6.5: An exemplification of linking information to a Sammon’s mapping.
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?As the present now

Will later be past [...]

And the first one now

Will later be last

For the times they are a-changin’.”
— Bob Dylan

7 Extending the SOM

The standard Self-Organizing Map (SOM), while having merit for the task at hand,
may be extended in multiple directions, not the least to better meet the demands
set by macroprudential oversight and data. Chapters 3 and 4 spell out the needs
and demands for the task at hand, to be used as a basis for the applications and
extensions of methods. As discussed in Chapters 5 and 6, the method of preference
for the purposes in this thesis is the SOM. A particular focus of the extensions is
related to two tasks that not only meet the demands of macroprudential oversight
and data, but have also been stated to be in need of future research in the fields
of information visualization and dimension reductions. First, Chaomei (2005) and
Wong et al. (2012) highlight a paradigm shift from only visualizing structures to
visualizing dynamics. An even further step is to assess dynamics of structures.
Second, to be aware of the quality and distortions of dimension reductions, Wis-
miiller et al. (2010) and Wong et al. (2012) stress that they are not an end, but
provide only a means to display useful information on top of them, such as evidence,
uncertainty and individual data.

Along these lines, with a key focus on temporality, this chapter first discusses the
literature on time in SOMs. This is followed by extensions to the standard SOM
paradigm. In general, I present extensions to the SOM paradigm for processing data
from the cube representation, i.e., along multivariate, temporal and cross-sectional
dimensions, where a focus of emphasis is on a better processing and visualization
of time. The motivation and functioning of the extensions is demonstrated with a
number of illustrative examples.

7.1 Time in SOMs: A brief review

There is a wide range of literature adapting and extending the standard SOM
for temporal processing. While the literature on time in SOMs has been thor-
oughly reviewed in Barreto (2007), Barreto et al. (2003), Barreto and Araijo
(2001), Guimaraes et al. (2003) and Hammer et al. (2005), a unanimous classi-
fication dividing it into distinct groups of studies is not clear-cut. Drawing upon
the above reviews, I attempt to reduce the literature related to time in SOMs into
four groups of works: i) those with an implicit consideration of time, i) those
adapting the learning or activation rule, i) those adapting the topology, and iv)
those combining SOMs with other visualization techniques.

The first group implicitly considers time by applying the standard SOM algo-
rithm and illustrates the temporal dimension either as a pre- or post-processing
step. The preprocessing concerns embedding a time series into one input vector,
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such as so-called tapped delay (e.g., Kangas (1990)). A time-related visualiza-
tion through post-processing is, however, more common. A connected time series
of best-matching units (BMUs), i.e., a trajectory, has been used in the literature
to illustrate temporal transitions (e.g., Kohonen (1988) and Martin-del Brio and
Serrano-Cinca (1993)). By exploiting the topological ordering of the SOM, visu-
alization of the current and past states enables visual tracking of the dynamics
in multivariate data (i.e., process dynamics). However, while temporal patterns
require large datasets for generalization and significance, trajectories can only be
visualized for a limited set of data. Thus, strengths and actual directions of the
patterns can be obtained by probabilistic modeling of state transitions between
SOM units (e.g., Sulkava and Hollmén (2003), Luyssaert et al. (2004) and Fuertes
et al. (2010)).

The second group of works adapts the standard SOM activation or learning rule.
Those decomposing the learning rule of the standard SOM into two parts, past
and future, for time-series prediction have their basis in the Hypermap (Kohonen,
1991). The past part is used for finding BMUs, while the entire input vector is
used within the updates of the reference vectors. For predicting out-of-sample
data, the past part is again used for finding BMUs while the future part of that
unit is the predicted value. This type of learning has been used for standard time-
series prediction (e.g., Principe and Wang (1995) and Ultsch et al. (1996)) and
predictions through non-linear regression (e.g., Sarlin and Marghescu (2011b)). As
noted in Section 5.4, the latter type of decomposition can still be divided into semi-
supervised and unsupervised SOMs, where the difference depends on whether or
not the present part is used for matching in training. Instead of considering the
context explicitly in SOM training, it can be treated as the neighborhood of the
previous BMU. Kangas (1992), for instance, constrains the choice of a BMU to
the neighborhood of the previous BMU and thus has a behavior that resembles the
functioning of SOMs with feedback in the next group.

The third group deals with adaptations of the standard SOM mnetwork topology
through feedback connections and hierarchical layers. The feedback SOMs have
their basis in the seminal Temporal SOM (TSOM) (Chappell and Taylor, 1993), also
called the Temporal Kohonen Map, that performs leaky integration to the outputs
of the SOM. The Recurrent SOM (RSOM) (Varsta et al., 1997; Koskela et al., 1998)
differs by moving the leaky integration from the output units to the input vectors.
A recent recurrent model is the Merge SOM (MSOM) (Strickert and Hammer,
2005) whose context combines the current pattern with the past by a merged form
of the properties of the BMU. The Recursive SOM (RecSOM) (Voegtlin, 2002)
keeps information by considering the previous activation of the SOM as part of
the input to the next time unit, while the Feedback SOM (FSOM) (Horio and
Yamakawa, 2001) differs by integrating an additional leaky loop onto itself. The
SOM for structured data (SOMSD), on the other hand, labels directed acyclic
graphs to regular (Hagenbuchner et al., 2003) and arbitrary (Strickert et al., 2005)
grid structures. Finally, Hammer et al. (2004) define a general formal framework
and show that a large number of SOMs with feedback can be recovered as special
cases of the framework. The hierarchical network architectures, on the other hand,
use at each layer one or more SOMs operating at different time scales. The next
level in the hierarchy can either use the lower level SOM as input vectors without
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any processing, such as two-level clustering commonly does, or use transformed
input vectors by computing distances between units or concatenating a time series
to one input vector, for instance. Kangas (1990) introduced hierarchical network
architectures to SOMs, and shows that a hierarchical SOM without any additional
processing outperforms SOMs with backwards averaged and concatenated input
vectors.

The fourth group of studies attempts to create SOM-based visualization tools for
exploratory analysis of data by combining the SOM with other methods and inter-
active interfaces. The particular focus of these tools is to provide means for dealing
with spatiotemporal data. Standard SOMs using both cross-sectional and tempo-
ral data have, in addition to trajectory and state-transition analysis, been paired
with stand-alone visualization aids for a spatial mapping (e.g., Kaski et al. (2001)).
Guo et al. (2006) introduces an integrated approach of computational, visual and
cartographic methods for visualizing multivariate spatiotemporal patterns, where
parallel coordinate plots and reorderable matrices enhance the information prod-
ucts of the SOM. The visualization tool created by Andrienko et al. (2010) extends
the one in Guo et al. (2006) by not only grouping spatial situations as per time
units, but also spatial locations as per temporal variations. Further, a SOM-based
visualization tool for temporal knowledge discovery is introduced in Guimaraes
(2000) and Guimaraes and Ultsch (1999). The tool presents a hierarchical SOM to
handle complexity, and includes a U-matrix visualization, trajectory analysis and
a transformation of data into linguistic knowledge.

These four groups of extensions, while covering a wide range of temporal processing,
leave room to provide better means for visualizing patterns in macroprudential
data. This is the topic of the following sections.

7.2 Extensions for exploiting the SOM

Directed by the task at hand, this section takes the standard SOM as a basis and
then aims at extending it, as well as combining it with other methods, to better
meet the needs and demands of macroprudential oversight and data. The section
proposes three extensions: a fuzzification; transition probabilities; and shock prop-
agation assessment. The functioning of all three extensions is demonstrated with
simple examples on the bank SOM used in Chapter 6.

7.2.1 Fuzzification of the SOM

In the early days, information extraction on the SOM was mainly facilitated by
visual analysis of some form of the U-matrix (e.g., Ultsch and Siemon (1990)),
where a color code between all neighboring units indicates their average distance.
The SOM units have also been used as input for a second stage (or hierarchy) of
two-level clustering. However, one source of ambiguity with the SOM clustering is
that the degree of membership in a particular cluster is not always easy to judge.
Although location on the SOM represents closeness, the distance structure on the
SOM is most often not uniform. In some cases, it might be beneficial to judge
the degree to which a particular area of a cluster (i.e., one or more units) differs
from the rest of the cluster, and what its closest match among the other clusters is.
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While the SOM is commonly partitioned using a crisp clustering technique (e.g.,
Vesanto and Alhoniemi (2000)), one solution to judging membership degrees is to
fuzzify the SOM. The motivation for using a fuzzification is threefold:

i) for monitoring belongingness of individual data (e.g., over time),

i1) for assessing distance structures of the SOM units with respect to clusters;
and

111) for assessing topological ordering of the SOM.

The fuzzification can take various forms. Below, I present three possible ap-
proaches: Fuzzy c-means (FCM) clustering, distance-based fuzzification and class
and distance-based fuzzification.

Fuzzy c-means clustering The FCM algorithm, developed by Dunn (1973)
and Bezdek (1981), may be employed for assigning a degree of membership of each
unit in each of the clusters, as suggested in Paper 2. This provides a fuzzified
representation of the SOM. Following the presentation of FCM clustering in Section
5.3, the objective function Jy can also be applied to SOM units. The objective
function Jy is thus defined as the weighted sum of the Euclidean distances between
each unit and each cluster center, where the weights are the degree of memberships
of each unit in each cluster, and again constrained by the probabilistic requirement:

M le} 2 c
Jo = Zi:l Zk:l Ufk [mi — x|, Zkzl U = 1, (7~1)

where 0 € (1,00) is the fuzzy exponent, ;i is the degree of membership of reference
vector m; (where ¢ = 1,2,..., M) in the cluster center ¢, (where k = 1,2,...,C,
and 1 < C' < M), and ||m; — ¢||* is the squared Euclidean distance between m;
and c¢. After a random initialization, it optimizes the cluster centers ¢, and the
membership values u;; with the same Picard iteration through Equation 5.6 and
Equation 5.7 as was shown in Chapter 5. Thus, it applies the same procedure, but
instead directly on the reference vectors m;.

Distance-based fuzzification Instead of using FCM clustering on the units,
Sarlin and Eklund (2013) compute the membership degrees directly using Euclidean
distances between SOM units (or data) and the centroids of crisp clusters. For this,
any crisp clustering method, as appropriate, is applicable. The crisp clustering is
fuzzified by computing the inverse distance between reference vector m; (or each
data point z;) and each cluster center cy:

1
Vik = 3 (7.2)
1+ ||m1 — CkH o1

where 6 € (1,00) is again the fuzzy exponent (i.e., the fuzzifier) which controls
the extent of overlap between the clusters. However, the similarity matrix v, is
normalized to the following cluster membership matrix for each unit:
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to fulfill the probabilistic constraint ch=1 u;r = 1. The extent of overlap between
the clusters is set by the fuzzy exponent §. When 6 — 1, the fuzzy clustering
converges to a crisp clustering, while when § — oo the cluster centers tend towards
the center of the data set. # = 2 and 8 = 3 can be seen as benchmarks, since they
give squared and simple Euclidean distances. The fuzzy exponents in the above
and below approaches also follow these guidelines.

This approach resembles that in Cottrell and Letrémy (2005), but differs by being
implemented on a second-level clustering instead of directly on the units, by not
assuming inverse exponential distances, and by introducing a fuzzification param-
eter. More importantly, Cottrell and Letrémy (2005) use the derived memberships
for imputing missing values. As the fuzzification is implemented on the units, it can
be used for assessing the topological ordering and distance structure of the grid.
While FCM clustering necessitates visualizing memberships of individual data ac-
cording to those of their BMUs, this approach enables one to also compute them
for individual data. This is particularly important as one-unit movements may be
switches between clusters, but still changes in data may be minor. A plot of the
memberships would capture this.

Class and distance-based fuzzification In cases when one possesses class in-
formation in data, it is not necessary to estimate clusters and their centroids. They
can be derived from their distribution on the SOM. Thus, one might not only have
class information, but also utilize a semi-supervised SOM with the classes in the or-
dering process. Following Paper 8, the above fuzzification of the SOM is adapted
for computing class memberships. Let the input data consist of two parts: class
vector xj(.y and input vector z;(;,,). The SOM can be classified and fuzzified based
upon the class vectors x(.) by assuming the following: the number of clusters C
equals the number of classes K, i.e., C = K, and the cluster center ¢, (where
k=1,2,...,C) for each class is a perfect representative state vector, i.e.,

1 if k equals the state of ¢y
ko = { 0 otherwise (7.4)
While there exist other methods for class visualization on the SOM, such as Voronoi
regions (Mayer et al., 2007), they fall short in dealing with imprecision in class
memberships. Following the approach in Equations 7.2 and 7.3, we can compute
a membership degree using Euclidean distances between units and state centers,
but only use x;) and m;(y) for measuring these distances. The rationale for this
is the focus on distances between mean profiles of classes () rather than those
between inputs z;(;,). The SOM is fuzzified by computing the inverse distance
between reference vector m;(.;) and each state center c (., as in Equation 7.2, and
normalized as in Equation 7.3 to fulfill the probabilistic constraint. In addition
to computing membership degrees, I also propose a defuzzification of the results
using the maximum-membership method. This enables deriving crisp clusters of
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reference vectors such as in two-level clustering, which is also applicable for the
FCM clustering.

Visualizing a fuzzification Similarly as feature planes for individual variables,
membership degrees can be associated to each of the SOM units, and linked to the
SOM grid, where one unique point represents the same unit on a SOM. Thereby,
the structure of the clusters of a SOM model can be identified by studying so-
called membership planes. They show the degree of membership in cluster &k for
each unit m; on an own grid, such that the color code of each unit m; represents its
membership in cluster k. The temporal dimension of an individual entity can also
be represented by computing for each data point an own membership degree in each
cluster. This enables a line graph representation of the state switch probabilities
over time for individual data, where cluster centers express representative states
and variations of membership degrees represent their fluctuation over time.

An illustrative example To illustrate the functioning and usefulness of fuzzi-
fications, we turn to illustrative examples on simple real-world data. The SOM
model created on data for European banks, when comparing methods in Chapter
6, can be used for illustrating the fuzzification. As the SOM is entirely unsuper-
vised and already uses Ward’s hierarchical method for a second-level clustering, I
apply the distance-based fuzzification. Thus, the crisp clustering of the above SOM
model is fuzzified using Euclidean distances. The fuzzifier 6 € (1, 00) was tested for
values in (1,10]. Based upon these experiments, a benchmark #-value of 2.0 pro-
vided an adequate fuzzification of the map. It introduces a fuzziness degree large
enough to show relationships between clusters, but small enough not to completely
eliminate cluster borders. The computation provides the membership of each unit
in each cluster, as well as the memberships of each data point in each cluster.

Figure 7.1 shows membership planes, in each of which the membership degrees of all
units in one cluster are visualized, and finally a membership plane to illustrate the
crisp clusters and the trajectories of UniCredit Banca and ING Bank. The figure
illustrates the crispness of the clusters, and locations in general. For instance, while
the cluster center of cluster D is located in its lower part, where cluster memberships
are somewhat crisp, one can observe the opposite for units on the borders between
clusters A, D, E and G. In broad terms, as the memberships overall decrease over
distances from cluster centers on the grid, the membership planes indicate no major
concerns with topological ordering.

The line graphs in Figure 7.2 illustrate an assessment of individual time-series
points that have a partial membership in all identified, but overlapping, clusters.
UniCredit Banca switches between clusters A, D, E and G, which is also illustrated
by the low membership degrees. This functions as a particular motivation for using
memberships, as only tiny differences in the underlying data may lead to switches
between clusters. On the contrary, strong membership degrees can be observed
in the case of ING, where the final movement to a unit that borders cluster D
actually increases the membership in cluster F. Hence, additional aids are needed
to understand the implications of movements on the SOM.
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Notes: The figure links membership degrees to the SOM. The first seven grid representations are called
membership planes, as each of the planes visualizes the membership degrees of all units to one cluster.
The final grid is a crisp membership plane that shows the same cluster memberships as those displayed
in Figure 6.4. The crisp membership plane also overlays trajectories for UniCredit Banca and ING
Bank.

Figure 7.1: An exemplification of a fuzzification of the SOM.
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Notes: The figure visualizes times series of membership degrees for two banks, UniCredit Banca and
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Figure 7.2: Line graphs of a fuzzified SOM.
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7.2.2 Transition probabilities on the SOM

The SOM has been shown to be an ideal tool for building low-dimensional displays
for the visualization of individual data. However, manually identifying the tem-
poral patterns in a SOM model is not necessarily a simple process. As is already
apparent from Chapter 4, as well as the above example, data are commonly drawn
from a three-dimensional data cube, including the multivariate, cross-sectional and
temporal dimension. These types of data are not unique. Also in other fields than
accounting, finance and economics, such as process monitoring (see Alhoniemi et al.
(1999) and Fuertes et al. (2010)), it is more common than not for multivariate data
to include both a temporal and cross-sectional dimension. For instance, when data
are cyclical (or scarce), one may want to build a standard SOM model with data
on several entities over time to include both the temporal and cross-sectional dif-
ferences. Given a model with this type of data, an obvious interest would be the
temporal properties of the model.

The standard SOM paradigm does not, however, explicitly address the issue of
temporality. Variations of the SOM algorithm itself, as reviewed in Section 7.1,
have been proposed for dealing with temporal data. Oftentimes, these extensions,
however, turn their focus from the entities to the sequences, or otherwise enhance
time-series prediction. The extensions, while holding promise for a wide range
of other tasks, do not provide means for visualizing the temporal structure on
a standard SOM. While trajectories have been a common means to illustrate
temporal movements, as has already been illustrated in this thesis, small samples
give no indication of overall patterns and large samples clutter the display. Thus,
trajectories and the above presented fuzzification provide no overall information
about trends in the dataset. For finding these patterns, be they cyclical or not,
movements should be summarized from transition probabilities, something that
is not apparent from only studying the elements of the SOM units. Transition
probability matrices (TPMs) can be used to produce a probabilistic model of the
temporal variation in a SOM model. This has been introduced through unit-to-unit
transition probabilities (Sulkava and Hollmén, 2003; Luyssaert et al., 2004; Fuertes
et al., 2010). These types of transition probabilities generalize the strengths and
actual directions of the temporal patterns on the SOM.

Three approaches to transitions This subsection presents the approach to
transition probabilities put forward in Paper 3 by focusing on unit-to-cluster
switches on SOMs with a second-level clustering. Thus, the below presented frame-
work provides better means to compute, summarize and visualize strengths and
actual directions of transition probability patterns.

Movements between units on the two-dimensional SOM are used to compute prob-
abilities of switching from a unit to a specified region in a specified time period,
where the location of data per time unit is their BMU (see Equation 5.9). First,we
compute for each unit m; the probability of transition to any other unit m,,:

Nyt + s
piu(t + S) — leu( )

—_— 7.5
Zu:l Tliu(t =+ 8) ( )
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where n;,, is the cardinality of data switching from m; to m,,, t is a time coordinate
and s is the time span for the switch. In other words, the transition probability
piu(t + 8) equals the cardinality of transitions from unit m; to unit m, divided
by the sum of transition from unit m; to mj 2, . . On a SOM grid with four
units, this could in practice mean that for, say, unit m; the probability of being in
period t41 in m; 2. 4 could be 0.5, 0.2, 0.2 and 0.1, respectively. More formally, a
TPM corresponds to a stationary first-order Markov model or maximum-likelihood
estimates of the switches (Anderson and Goodman, 1957). It can, however, be
computed for different time spans, as appropriate, and summarized to switches
between clusters or any other region on the map. For example, unit-to-cluster
switches are computed using p;;, where the transition refers to movements from
reference vector 4 to cluster [ (where [ =1,2,...,C), thus:

ny(t + s)

¢]
> ie1 nat(t + )
For larger samples, and thus more robust results, the transition probability matrixs

(TPMs) pi; (as well as p;,,) can be computed as an average of several s values (where
s=1,2,...,9):

pu(t+s) = (7.6)

S
pat+{1,2,..,§}) = —2us=1 Mt +5) (7.7)

S C
D=1 2i— Nat(t +8)

Thus, I propose the following three computations:

i) TPMs for unit-to-cluster switches (p;; (¢ +s) as in Equation 7.6 for a specified
set of s values.

i1) Summarize the TPMs from Step ) by computing to which cluster I an obser-
vation in m; is most likely to switch and with what likelihood, i.e., showing
maximum transition probabilities (max;(p;;)) conditional on switching. This
combines the direction and strength of all probabilities into one vector.

i17) For summarizing the computations in Steps ) and i) over time, compute av-
erage transition probabilities over a chosen set of s values (p; (t+{1,2,...,S})
as in Equation 7.7).

Visualizing the transitions Similarly as membership planes, transition proba-
bilities can be associated to the SOM units, and linked to the SOM grid. Thereby,
the structure of the transitions on the SOM model can be directly identified by
studying these so-called transition planes. The above computations are represented
using the following three visualizations:

i) Transition planes show the probability to transit to cluster [ for each unit
m; on an own grid, such that the color code of each unit m; represents its
probability of transition to cluster [.

it) Summarized transition planes aggregate the transition planes for all C' clus-
ters to one grid by using a color code for m; to represent the probability of
the most likely switch and a label to represent that cluster.
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i17) Create the same feature planes as in Steps i) and 4i), but as an average over
a chosen set of s values.

To normalize the color scales for different cluster sizes, but still show differences
over time spans, the color scales of the feature planes for all s values and sets
of s values can be specified as to that for the shortest time span min(s) (e.g.,
s =1and ¢t 4+ 1). The temporal dimension of an individual entity can as well be
represented by associating each time-series point with the transition probability
of its BMU (Equation 5.9). This enables a line graph representation of the state
switch probabilities over time for individual data, where clusters are representative
states and the variation in transition probabilities represent changes in indications
of future characteristics. The transition probabilities can also be used for profiling
by presenting characteristics of low- and high-risk mean profiles based upon future
transitions.

An illustrative example The same model based upon European banks is also
used to illustrate transition probabilities on the SOM. Thus, I follow the above
three-step framework when computing the transition probabilities. First, TPMs are
computed as switches from units to clusters (p;(t+ s) as in Equation 7.6). Second,
the direction and strength of the switches are summarized by computing maximum
transition probabilities max;(p;;) conditional on switching. Third, I compute the
above steps for three different transition time spans (¢t + 1, ¢ + 2 and ¢ + 3) and
an average for S = 3. However, for the sake of brevity, I only visualize in Figure
7.3 the average of all three time spans. The illustrated transitions on the SOM
may be utilized for exploring patterns of interest. Clusters E, F and G can be seen
as inherently stable, as there are few transitions from the units in these clusters.
Clusters A, B and C, on the other hand, are less stable. Cluster D is an unstable
transition cluster. Further, we can see that banks in clusters A, F and G are quite
stable, while clusters B, C and E exhibit more transitions.

The differences in stability between cluster A and clusters B and C might be due to
differing business activities, as an inspection of the feature planes (partially shown
in Figure 6.4) illustrate that cluster A differs from B and C primarily in capital
ratios, loan interest revenue and subordinated debt. This indicates that clusters
B and C are higher risk clusters than cluster A, and thus probably more sensitive
to changes in the business environment, such as interest rates and other macro-
financial conditions. For cluster B, an interesting strong cluster-to-cluster pattern
is the high probabilities of movements to cluster D. Another interesting pattern
is the difference in stability between cluster E and clusters F and G. While E, F
and G are quite similar clusters in terms of performance, a clear difference can be
seen in the high ratio of non-operating items of cluster E. Non-operating items are
items not related to ongoing, day-to-day operations, such as dividends, financial
investments or significant write-downs, which might partially explain the unstable
nature of positions in cluster E.

The line graphs in Figure 7.4 show a practical bank-specific application of the
transition-probability framework. The figure shows the state transition probabili-
ties for UniCredit Banca and ING Bank for 2002-2008. If one is interested in likely
future switches, the addresses of the switches and the probability trend of the most
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Notes: The figure links transition probabilities information to the SOM. The first three grids are
so-called transition planes, as each plane visualizes the transition probability of all units to one cluster.
The final grid is the same crisp membership plane shown in Figure 6.4. The membership plane also
overlays trajectories for UniCredit Banca and ING Bank.

Figure 7.3: An exemplification of transition probabilities on a SOM.

likely switch should be assessed, as the probability of staying in a cluster is mostly
highest. The patterns for the two case banks resembles that of the fuzzification
application. The transition probabilities for UniCredit, who also switches cluster
frequently, are spread out in all three cluster groups, whereas those of ING are
shown to be dominated by the only state it is a member of, cluster F.

7.2.3 Shock propagation on the SOM

The process of some event being transmitted to another entity goes by different
names, such as contagion, shock propagation or spread of an event. On a SOM, I
analyze this occurrence with two approaches: links between entities and similarities
in inputs. This subsection presents the approaches put forward in Paper 8.

Networks on the SOM While most thus far discussed tasks have utilized data
from the cube representation, they have disregarded the fourth dimension of link-
ages. The first approach superimposes a cross-sectional network of bilateral links
on the SOM. Network analysis, or link analysis, can be seen as the exploration
of crucial relationships and associations between a large set of objects that may
not be apparent from assessing isolated data. Networks of relationships are mostly
expressed in matrix form, where the link between entities g and [ in a matrix A is
represented by element ag. The matrix is of size n?, where n is the number of enti-
ties. Matrices of directed graphs can be read in two directions: rows of A represent
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Notes: The figure visualizes times series of transition probabilities for two banks, UniCredit Banca and
ING Bank.

Figure 7.4: Line graphs of transition probabilities for SOM trajectories.

the relationship of g to [ and columns of A represent the relationship of [ to g. To
combine SOMs and network analysis, I superimpose network relations on top of the
standard SOM grid by visualizing relationships between entities. Labels of entities
under analysis, say g and [, are projected to their BMUs on the SOM based upon
their data 2, and z;. After that, relations between entities g and I are visualized
by edges between the locations of the BMUs of x, and x; on the SOM grid using
elements ag and a;y. This visualizes simultaneously the data topology of the SOM
and a network topology of pure data relationships. While these two topologies have
thus far been mainly assessed in isolation, they are oftentimes highly interrelated as
changes in one of the topologies may have significant implications on the stability
of the other or the combined topology.

In Figure 7.5, I exemplify the visualization of a standard directed network on a
dataset of bilateral financial exposures. As interbank exposures are not publicly
available, I illustrate the network on country-level exposures. More specifically, the
data represent banks’ outstanding loans and holdings of securities, i.e. ”claims”, in
other countries and are collected from the Bank for International Settlements (BIS)
banking statistics. The figure shows a graph of financial relationships between
countries where objects are represented by nodes and bilateral relationships by
edges. Number of objects n equals 16, giving us a matrix A of the form 16 x 16,
where each element Ay; represents the size of financial linkages between country k
and [. Node size of each country is scaled based upon the sum of exposures to other
countries and other countries’ exposures to the base country. The thickness of each
edge represents the size of exposure to total exposures of each country, where the
color of the edge indicates the address of the exposure holder. Figure 7.5 illustrates,
for instance, that the share of Ireland’s exposure to United Kingdom (UK) is large,
while UK only has a minor exposure to Ireland. Moving to a SOM grid from the
representation in Figure 7.5 involves only positioning the nodes as per their BMUs
based upon the data x;.

Neighborhoods on the SOM The second approach follows that in Paper 8
to measure neighborhood effects on the SOM. First, we assign one of the classes C'
to be the event of interest. Then, we assign the locations of the event of interest in
period ¢ to be signals of similar events in that location (or some neighborhood) in
period t + s, where s is the time span for transmission. One can choose to define
the time span and neighborhood as suitable for a given task.
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Notes: The figure illustrates an example of a network of financial linkages. Nodes of each economy are
scaled as to the sum of exposures to other economies, whereas the thickness of the edges represent the
size of external exposure to total exposures per economy and the color of the edge indicates the address
of the exposure holder.

Figure 7.5: A network of financial linkages.

Contagion is exemplified on a SOM grid in Figure 7.6, on which the labels of
UniCredit Banca, ING Bank and ABN Amro are shown. Given the hypothetical
failure of ABN Amro in 2002, it would also have been an indication of a failure of
banks similar to it, such as UniCredit Banca in this case. It is worth noting that it is
not conditional on location, such as the part of the grid that has experienced failures
in the past, which implies that there is no dependence on historical data. This is a
particularly important feature when dealing with events of changing nature, where
data based upon history are from time to time of little use.

7.3 The Self-Organizing Time Map (SOTM)

Most often, the main concern of exploratory data analysis (EDA) is the analysis
of either time-series or static cross sections. Given that data are drawn from a
cube representation, a question of central importance is how to combine the tasks
of cross-sectional and time-series analysis. That is, how to identify the occurrence
and explore the properties of temporal structural changes in data, as well as their
specific locations in the cross section. This can also be called exploratory temporal
structure analysis.

For exploratory analysis on data from the data cube, it is critical to visualize,
or present an abstraction across, all dimensions (i.e., multivariate, temporal and
cross-sectional spaces). Using a standard two-dimensional SOM for exploratory
temporal structure analysis, processing of the time dimension has thus far been
proposed along two suboptimal directions: computing separate maps per time unit
(e.g., Back et al. (1998), Denny and Squire (2005) and Denny et al. (2010)) or one
map on pooled panel data (e.g., Back et al. (2001), Sarlin and Marghescu (2011b)
and Paper 7). Owing to a possibly high number of time units and temporal
differences in correlations and distributions, comparing separate maps per time unit
is a laborious task while their structure may not in the least even be comparable.
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Notes: The figure shows the labels of UniCredit Banca, ING Bank and ABN Amro on the SOM. The
final grid is the same crisp membership plane shown in Figure 6.4.

Figure 7.6: An exemplification of contagion on a SOM.

Denny and Squire (2005) and Denny et al. (2010) enhance temporal interpretability
by applying specific initializations and visualizations. Nevertheless, the method has
the drawback of an unstable orientation over time and complex comparisons of two-
dimensional grids. SOMs trained with pooled data, for which time can be inferred
as a type of latent dimension that is definable but unordered, fail in describing the
structure in each cross section.

While Section 7.1 presented several improvements to the SOM paradigm for tempo-
ral processing, the problem of visualizing changes in data structures over time has
not been entirely addressed. The existing SOM literature can thus be said to have
shortcomings in disentangling the temporal dimensions and cross-sectional struc-
tures for exploratory temporal structure analysis, which is the main focus of the
SOTM. Thus, the SOTM can directly be related to the approach of evolutionary
clustering (Chakrabarti et al., 2006), which concerns processing temporal data by
producing a sequence of clustering solutions. An effective evolutionary clustering
aims to achieve a balance between clustering results being faithful to current data
and comparable with the previous clustering result. In this vein, Chakrabarti et al.
(2006) illustrate that the usefulness of such an approach is fourfold: i) consistency
(i.e., familiarity with previous clustering), ) noise removal (i.e., a historically
consistent clustering increases robustness), i) smoothing (i.e., a smooth view of
transitions), and 4v) cluster correspondence (i.e., relation to historical context).
The SOTM is a visual approach to evolutionary clustering by providing means to
a low-dimensional representation of all three dimensions of data: i) cross-sectional,
i) temporal, and i) multivariate.

The SOTM, as proposed in Paper 4, uses the clustering and projection capabili-
ties of the standard SOM for visualization and abstraction of temporal structural
changes in data. However, here ¢t (where t = 1,2,...,T) is a time-coordinate in
data, not in training iterations as is common for the standard SOM. To observe the
cross-sectional structures of the dataset for each time unit ¢, the SOTM performs a
mapping from the input data space Q(t), with a probability density function p(z,t),
onto a one-dimensional array A(t) of output units m;(t) (where i = 1,2,..., M).
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After performing a mapping for all ¢, the timeline is created by arranging A(t) in
an ascending order of time ¢. The positions on the SOTM carry a different mean-
ing than those on the standard SOM; the horizontal direction has a parametric
interpretation of time ¢ while the vertical direction represents positions in the data
space §)(t). Hence, the topology is rectangular rather than hexagonal and topology
preservation is twofold, where the horizontal direction preserves time topology and
the vertical preserves data topology.

The orientation preservation and gradual adjustment to temporal changes is per-
formed as follows. The first principal component of Principal Component Analy-
sis (PCA) is used for initializing A(t1) and setting the orientation of the SOTM.
PCA on Q(t1) provides the eigenvector of the first principal component, which
is used for initializing A(¢;). For preserving the orientation between consecutive
patterns in a time series, the model uses short-term memory to retain information
about past patterns. Thus, the orientation of the map is preserved by initializ-
ing A(ts3, .. ) with the reference vectors of A(t — 1). Adjustment to temporal
changes is achieved by performing a batch update per time ¢. For A(t; 2. .. 1),
each data point z;(t) € Q(t) (where j = 1,2,...,N(t)) is compared to reference
vectors m;(t) € A(t) and assigned to its BMU my(t):

[ (&) —mp (8)]] = min [Ja; (t) —mi (L) - (7.8)
Then each reference vector m;(t) is adjusted using the batch update formula:
N
5553 Bingy) (8)es (1)

S hangy ()

where index j indicates the input data that belong to unit b and the neighborhood
function hy(;)(t) € (0,1] is defined as a Gaussian function

m;(t) =

(7.9)

o (t) = ri()|I”

5 , (7.10)

hiv(j)(t) = exp
where ||r(t) — r;(£)||” is the squared Euclidean distance between the coordinates
of the reference vectors my(t) and m;(t) on the one-dimensional array, and o is the
user-specified neighborhood parameter. From this follows obviously that neighbor-
hood ¢ only includes vertical relationships. In contrast to what is common for the
standard batch SOM, the neighborhood ¢ is constant over time for a comparable
timeline, not a decreasing function of time as is common when time represents
iterations.
To sum up, Figure 7.7 presents the functioning principles of the SOTM. Yet, even
though the figure illustrates the notion of a neighborhood function with a crisp
hiy(jy above the BMU, it is worth noting that the function decreases gradually
below the BMU. Further, the algorithmic principles of the SOTM can be distin-
guished as follows:

t=1
initialize A(t) using PCA on Q(¢)
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Notes: This figure shows the functioning of the SOTM. The lower part of the figure represents the
temporal data (where time increases from left to right) and the upper part represents the SOTM grid
and its training.

Figure 7.7: The functioning principles of the SOTM.

apply the batch update to A(t) using Q(t)

while t < T
t=t+1
initialize A(t) using the reference vectors of A(t—1)
apply the batch update to A(t) using Q(t)

end

order A(t) in an ascending order of time t

7.3.1 SOTM properties

The above presented SOTM specification, while being flexible in nature, disposes
some assumptions on distance metrics and grid shapes, as well as other compu-
tational details. Even though a SOTM mapping to one-dimensional arrays looses
in granularity and detail to the two-dimensional one, the sole case of successful
complete mathematical study of the SOM is in one dimension (though with one
input dimension as well) (for a review see Cottrell et al. (1998)). Further, a two-
dimensional representation of the SOTM, while describing less detail, facilitates
interpretation over the three-dimensional case. The SOTM is implemented using
the Euclidean metric for the sake of simplicity and purpose herein as well as sticks
to the standard batch SOM with exponential neighborhood functions. The batch
SOM is preferred over the sequential SOM for its well-known properties of effi-
ciency and precision (see, e.g., Kohonen (2001)). Further, the disadvantage of all
data points having to be available in batches is not a concern given that the entire
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cross section is accessible simultaneously at each time t. In this sense, the SOTM
can be seen as a type of online batch SOM.

When compared in terms of computational cost, the SOTM is cheaper than a
standard SOM of the same size since matching and learning is restricted by time
t. Thus, the SOTM also has the asset of keeping the most important properties
and the interpretation of the SOM as it has its basis in the very standard SOM
algorithm. While the purpose of use of the SOTM is different, the functioning of
it can also be linked to several other pieces of literature extending the SOM. For
instance, the increase in number of units over time resembles the functioning of
Growing SOMs (Fritzke, 1994) and the short-term memory initialization resembles
SOMs with feedback connections (e.g., Voegtlin (2002)).

While the SOTM herein uses specifications from the very standard SOM literature,
such as batch training, Euclidean metric and exponential neighborhoods, its match-
ing, learning and neighborhoods could be implemented in various modified fashions,
such as those discussed in the related literature (Section 7.1). Parametrization of
batch training can also be performed in a number of ways depending on the task and
data at hand. For instance, the first array A(¢1) may be trained until convergence if
the initialization is far from converged and the number of training iterations of each
array A(t) may be increased if quantization accuracy is relatively important. Idle
units, i.e., units not attracting any data, while representing a discrepancy between
array A(t) and data €(t), may also be dealt with through increases in training
iterations.

Finally, by simply interchanging the time dimension of a SOTM to a time-to-
event dimension, Paper 10 shows that the SOTM provides means for illustrating
patterns in time-to-event data. Time-to-event data are, in their most frequent def-
inition, nothing more than the time that elapses until some specified event occurs.
Yet, in addition to the time before an event, time-to-event data may have an af-
terlife as well as a life during the event. Hence, the time-to-event SOTM focuses
on understanding dynamics in multivariate data before, during and after events,
such as in the case of assessing the path to and afterlife of a failure of a financial
institution or country and diagnosis of a disease in patient data. Yet, the z-axis
of the SOTM need not be limited to the definitions of time and time to an event.
It could, in fact, represent any variable, such as age in customer segmentation and
states in process monitoring.

7.3.2 Qualities and properties of the SOTM

Common quality measures for evaluating the goodness of a SOM are quantization
error, distortion measure and topographic error. These, as well as other measures
of the SOM, could be adapted to apply for quantifying the qualities and properties
of SOTMs, where quality refers to the goodness of the mapping and property to
characteristics of the data. Computations of quality and property measures can be
distinguished as follows: quality measures of SOTMs are summed over T whereas
property measures of a SOTM depict the characteristics of data at each t. However,
property measures obviously also illustrate time-specific qualities of SOTMs.

The fit of the SOTM to the data distribution can be measured with an adaptation
of the standard quantization error and distortion measure. The time-restricted
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quantization errors e, and €4 (t) compute the average distance between x;(t) €
Q(t) and my(t) € A(¢):

T N(t)

£e = Z ZH% =m0+ (7.11)

gqelt) = Zij — (5 ( )H (7.12)

The distortion measures €4, and €4,,(t) indicate similarly the fit of the map to the
shape of the data distribution, but also account for the radius of the neighborhood:

T N M
=7 z:: TW z:: Z:: han(g) (8) |25 (8) = ma (1) | (7.13)
Ly Nwwme
Edm(t) = N M@ Z Z hang) (8) || (8) — mag (1)) - (7.14)

The topology preservation of the SOTM can also be measured using an adaptation
of the standard topographic error. The time-restricted topographic errors &;, and
€te(t) measure by u(z;(t)) the average proportion of z;(t) € Q(t) for which first
and second BMUs (within A(t)) are non-adjacent units:

T 1 N(t)
Ete = f ; Ni ’LL (715)

<.
=

1 N(¢)
re(t) = R0l Z u(zi(t)). (7.16)

While quantifying the degree of temporal changes in data is of central importance,
it is oftentimes a difficult task. The SOTM enables approximating the structural
change between time units ¢ — 1 and ¢ by an average Euclidean distance between
mi(t — 1) € A(t) and m;(t) € A(t) for all pairs ¢ = 1,2,..., M. The distance is
meaningful given that the ending point of A(t — 1) is the starting point of A(t)
in training and given that the adjustment to temporal changes (i.e., o) is constant
over time. The structural changes €,. and e4.(t) are computed as follows:

T M(t)
Esc Z Z lmi(t —1) = mi @), (7.17)

M(t)

Esclt Z [mi(t —1) =mi(@)] - (7.18)
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When the quantization error eg4(t), distortion measure e4,,,(t) and topographic
error €..(t) are computed for ¢ = 1,2,...,T and structural change e4.(t) for t =
2,3,...,T, they can be plotted over time. This is useful for identifying properties
and qualities of data at each time unit, in particular the degree of temporal changes
in data. Similarly, the €4¢, €4m, €te and 5. can also be plotted over different free
parameters, such as grid size and neighborhood radius.

7.3.3 Visualizations of the SOTM

The output of the SOTM is a two-dimensional array of units, with time on the
horizontal direction and data structures on the vertical, which represents a mul-
tidimensional space. While there exist numerous visualizations for the SOM that
could be applied to the SOTM framework, I present here the standard ones that
enhance the objectives of the SOTM. For each individual input, a feature plane
represents the spread of its values. Thus, one can interpret vertical differences as
cross-sectional properties and horizontal differences as temporal changes. As for
the standard SOM, the feature planes are different views of the same map, where
one unique point represents the same unit on all planes. The coloring of the feature
planes is again performed using the ColorBrewer’s (Harrower and Brewer, 2003)
scale, in which variation of a blue hue occurs in luminance and light to dark rep-
resent low to high values. As the scale is common for the entire SOTM (i.e., A(t)
for t =1,2,...,T) for each feature plane, the changes in the spread of values are
shown by variations in shade.

While plots of €4e(t), €am(t), €e(t) and es.(t) show the changes in the measures
over time, the assessment of structural differences on the horizontal and vertical
dimensions of the SOTM can be enhanced by a Multidimensional Scaling (MDS)
method, such as Sammon’s non-linear mapping (Sammon, 1969). The reason for
preferring Sammon’s mapping over other MDS methods is its focus on local dis-
tances. Time is disentangled by mapping all multidimensional SOTM units m;(t)
(where t = 1,2,...,T) to one dimension using Sammon’s mapping and then plot-
ting that dimension individually for each time ¢. Thus, this representation has
Sammon’s dimension on the y axis and time on the = axis. The detection of struc-
tural changes and topographic errors is facilitated by connecting adjacent units
with solid (data topology) and dashed (time topology) lines for a net-like represen-
tation and showing topographic errors u(z;(t)) through color coding. Moreover,
a coloring method based upon that in Kaski et al. (2001) for revealing changes
in cluster structures can be applied to the SOTM. The well-known uniform color
space CIELab (1986) is used, where perceptual differences of colors represent dis-
tances in the data space, as approximated by the Sammon’s mapping. However,
as the SOMs of the SOTMs are one-dimensional, I only use one dimension (blue
to yellow) of the color space.

As proposed in Paper 5, the visualization of cluster structures on the SOTM
may still be enhanced by pairing it with classical cluster analysis. This provides
objective means for identification of changing, emerging and lost clusters over time.
Hence, I define the three types of dynamics in cluster structures as follows: i) a
cluster is lost when one or more units are a member of it in time ¢ and none is
in t + 1, i) a cluster emerges when no unit is a member of it in time ¢ and one
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or more are in ¢t + 1, and iii) a cluster changes when the (positive) number of
units being a member of it in time ¢ and ¢ + 1 differ. Again, cluster memberships
are visualized through a qualitative color scheme from ColorBrewer (Harrower and
Brewer, 2003), where groups are differentiated in hue contrast with nearly constant
saturation and lightness.

7.3.4 Some illustrative examples

To illustrate the functioning, output and quality and property measures of the
SOTM, I make use of toy data drawn from the three-dimensional data cube. This
subsection motivates the choice of a SOTM over a naive SOM model and validates
the output of a SOTM by representing expected patterns, as well as provides a
guide for interpreting patterns on a SOTM. The illustrative examples also cover
second-level clustering of the SOTM and a time-to-event SOTM.

Toy data The data need to come from a three-dimensional cube, where one
dimension represents time, one the cross-sectional entities and one the input vari-
ables, such as the data cube in Figure 4.1. The toy data are generated by setting
five weights w;—5 that adjust a mixture of randomized shocks on four different
levels: group-specific (g), time-specific (t), variable-specific (r) and common (j)
properties. For each variable, group-level differences are included to have artificial
clusters, time-level properties to introduce temporal trends, and group-specific and
common shocks to introduce general noise. I generate data x(r, g, j,t) by combining
group-specific trends E with common shocks across data and over time,

x(rvgmja t) = E(Tvg7t) + wy (Tv g) €4 (Ta t) + ws (T7g) €5 (T7j7t)’ (719)

and

E(r,g,t) = wi (r)e1(9) + w2 (r) ez (9)t +ws (r)es(g,t), (7.20)

where eq 35 ~ N (0,1), e ~ U (0, 1), r stands for variables, g for groups, ¢ for time
and j for entities, and E computes group-specific trends. The rationale for drawing
eo from a uniform rather than a normal distribution is to have larger variation in
the group-specific slopes. Finally, each variable z; is transformed into [0,1] through
a logistic sigmoidal function.

Weights specify the following properties of data: w; sets the group-specific inter-
cepts, we the group-specific slopes over time, ws the magnitude of group-specific
random shocks, wy the magnitude of time-specific common shocks, and ws the
magnitude of common shocks. Figure 7.8 plots four variables and reports the used
weights for generating 100 entities over 10 periods, where the color coding illus-
trates five groups of entities. Particular characteristics of the below four variables
are as follows: z1 has small differences in intercepts and a positive slope; xo has
large differences in intercepts, a negative slope and minor group-level and common
shocks over time and across entities; x3 has large differences in intercepts, and a
constant trend with minor common shocks across entities and over time; and x4
has large differences in intercepts and large common shocks over time.
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Notes: Data consist of 5 groups of 20 cross-sectional entities over 10 periods, where the color coding
illustrates the groups, the = axis represents time and y axis the values.

Figure 7.8: Four toy variables for the standard SOTM.
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Figure 7.9: A na ve one-dimensional SOM.

A na ve SOM model Comparing the applicability of methods for EDA in gen-
eral and exploratory temporal structure analysis in particular is not an entirely
straightforward task. The absence of a quantitative evaluation, such as common
prediction or classi cation comparisons, is due to the lack of a comparable evalua-
tion function. Instead, I focus herein on illustrating the advantages of the SOTM
by comparing it to a na ve one-dimensional SOM model on the entire dataset
Although a fair comparison would make use of a two-dimensional SOM, the ex-
ercise is still feasible for illustrating how time, when being embedded, cannot be
fully represented on a standard SOM, not even when utilizing post-processing tech-
niques. In this SOM, the pooled toy dataset is used as an input to a SOM with 5
units as per the number of groups in data. Figure 7.9 shows the SOM, its feature
planes and a post-processed trajectory for the toy dataset. Figure 7.9a shows the
SOM where di erences in units are represented by perceptual di erences in colors.
Its feature planes in Figure 7.9b depict characteristics of the data in Figure 7.8,
but obviously disregard the time dimension. For instance, neither time trends of
1 and x9 nor time shocks of z4 are depicted. Variable x3 is, however, correctly
depicted as it is close to constant over time. A trajectory of an entity can be used
for describing its evolution on the SOM over time. In Figure 7.9c, a trajectory
of an arbitrary data point over the 10 periods exempli es that, while temporal
movements of individual data exist, changes in cluster (or unit) structures are not
represented. In particular, this illustrates that the evolution of data structures in
Figure 7.8 is not represented by a static SOM.
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Illustrating a standard SOTM Next, I apply the SOTM on the toy data.
While I use the above presented standard SOTM specification, the free parame-
ters still have to be specified. The SOTM is chosen to have 5x10 units, where 5
units represent data topology at time ¢ on the vertical direction and 10 units the
time topology on the horizontal direction. The number of units on the horizontal
axis is set by the number of time units T in data, while the number of units (or
clusters) on the vertical axis equals the number of groups in the data. The quality
measures presented in Section 3 are used for evaluating performance over different
parameters. For all time units ¢, the distortion measure €4, and quantization error
€4e measure the fit to data €, while topographic error ;. measures the aggregated
topology preservation. The structural change €., on the other hand, shows the
distance between horizontal units. Figure 7.10 shows the quality measures over
radius of the neighborhood ¢ ranging from 0.4 to 8. The figure illustrates aspects
of not only these data in particular, but also SOTM training in general. It shows
the strength of the topology preservation in the SOTM; a topology error & is
only found for experiments with ¢ = 0.4. Though the magnitude of quantization
error €4, and distortion measure €4, differs due to simple and squared distances,
an obvious effect is the increase of the measures when o increases. The structural
change starts to decrease when o = 0.6, and decreases until it stabilizes for o > 1.6.
When aiming at data abstraction and exploratory analysis, choosing optimal pa-
rameter values for a SOTM, likewise for a SOM, is a difficult task; the choice can be
said to depend on the relative preferences of the analyst between topographic and
quantization errors. However, as the interpretation of a SOTM relies heavily on
topology preservation, not the least the time dimension, topographic errors ought
to be of higher importance. As we here only have topographic errors for o = 0.4, we
can choose a SOTM with minimum quantization error and distortion. The chosen
SOTM has thus a radius of the neighborhood o = 1.6.

The final SOTM is found in Figure 7.11a and a Sammon’s mapping of it in Figure
7.11b. The coloring of the SOTM uses the CIELab unified color space, where
perceptual differences in colors represent differences between units as approximated
by Sammon’s mapping. Feature planes in Figure 7.11c represent layers of the
SOTM, while Figure 7.11d reports trajectories of all data on the SOTM. Figure
7.12 illustrates a plot of property measures €4¢(t), €4m (%), €te(t) and es.(t) over
time.

A guide for interpreting the SOTM In this part, I give a brief guide for
interpreting the SOTM and its visualizations. A key to interpreting the SOTM
is to understand the grid structure and the following representation of data along
two directions. The vertical direction (or columns of units) has a similar inter-
pretation as a standard SOM (cf. Figure 7.9), but each one refers to a specific
time unit. Thus, it represents the cross-sectional data structure, or data topology,
at time t, where similar units are located close together. The horizontal direc-
tion (or rows of units), while being conceptually different from a standard SOM,
has a similar interpretation. It represents the time structure, or time topology,
where similar units are again located close together, but refers instead to resem-
bling units at different points in time. Hence, differences along both directions
represent differences between respective topologies when interpreting properties of
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Figure 7.10: An example of quality measures of the SOTM.
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Notes: The figure shows (a) a SOTM grid with perceptual differences in color representing distances
between units, (b) a plot of the SOTM units according to Sammon’s topology on the vertical axis and
time on the horizontal axis where neighboring units are connected with lines, (c) feature planes and a
frequency plot on the SOTM grid, and (d) the data overlaid as time series, or trajectories, on top of
the SOTM grid with coloring that corresponds to that in Figure 7.8.

Figure 7.11: An illustrative example of the SOTM.
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Figure 7.12: An example of property measures of the SOTM.

high-dimensional structures, values of individual inputs or any other linked infor-
mation. Below, I will use the above toy example for illustrating the interpretation
of the SOTM visualizations.

Figures 7.11a and 7.11b give information on the distance structure of the SOTM.
Perceptual differences in colors (blue to yellow) in Figure 7.11a represent differences
between units as per distances in the Sammon’s mapping in Figure 7.11b. In Figure
7.11b, differences between units on both vertical and horizontal directions should,
however, be interpreted by values of Sammon’s topology (color in Figure 7.11a
and y axis in Figure 7.11b). The differences in values of units on the vertical
direction represent distances in cross-sectional data structures at a specific time
t and differences in values of units on the horizontal direction represent distances
over time. In the Sammon’s mapping, solid connections between units represent
data topology and dashed connections time topology. The figures show that the
data are clustered into two distinct groups: the three uppermost horizontal rows
(vellow, green and blue, cf. Figure 7.8) and two lowest rows (red and purple, cf.
Figure 7.8). The structure of the SOTM illustrates two types of temporal changes:
common trends of the entire structures and movements of individual units. The
former type preserves distances between units at each point in time, but moves
the entire structure to some direction, while the latter type illustrates changes in
distances to neighboring units. Figures 7.11a and 7.11b show that the two distinct
groups converge over time, in particular that the uppermost groups of data move
towards the rest of the data, as the raw data in Figure 7.8 confirm. Convergence
is mostly a result of inputs z; and zo moving towards maximum and minimum
values over time, in particular the large changes of x5.

Figure 7.11c illustrates the spread of values for each of the four inputs and should
similarly be interpreted along the two directions. One type of validation of the
SOTM is that the four feature planes correspond to the description of differences
in group-level intercepts and slopes, as well as time-specific shocks, for the inputs
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(cf. Figure 7.8). That is, x; has small differences in intercepts and a positive slope,
o has large differences in intercepts and a negative slope, x3 has large differences
in intercepts and a constant trend, and x4 has large differences in intercepts and
large common shocks over time. The frequency plane in Figure 7.11c represents
density of data on the SOTM grid and is particularly useful for two purposes. Since
the SOTM attempts to update cluster structures in A(t — 1) to A(t) by a batch
update, while structures in data Q(t — 1) and Q(¢) may be of different nature,
one purpose of use is locating idle units. While idle units represent a change
in cluster structures, the reference vectors are still transmitted to A(t) through
the short-term memory.!> The frequency plots also enable observing evolution of
densities over time. While changes in the spread of values indeed indicate changes
in data, frequencies are an equally important property of structures. In this toy
example, the main interpretation is the absence of idle units. Another validation
of the SOTM is the plot of all individual data on the SOTM in Figure 7.11d. The
coloring of the trajectories corresponds to that in Figure 7.8 and illustrates the
evolution of the groups on the SOTM. While the groups are separated during most
of the periods, some overlap and interchange of positions occurs over time. The
one-period overlaps of red and purple groups accurately correspond to the time-
specific shocks of x4. The occurrence of position interchanges of blue and green
groups at periods 3-5 are likely due to change in input z; and finally in period 7
due to substantial changes in input xs.

Plots of property measures over time in Figure 7.12 illustrate the variation of
€qe(t), €am(t), €re(t) and e5.(t) over time. When assessing properties for each time
unit ¢, the structural change e,.(¢t) measures divergence of m;(t) from the units
m;(t — 1), whereas the rest mainly visualize quantization and topographic qualities
across a SOTM. While increases in quantization error e4¢(t) and distortion €4, (t)
represent the fit of data Q(t) to units m;(t), increases in topographic error e¢(t)
represents the topology preservation for each array A(t). For the toy data, the large
variation in e4.(t) depicts the existence of large differences between data structures.
In particular, we can see that highest values of €4.(t) in periods 3—4 and 6-8 co-
occur with large common temporal shocks in z4. Small or none variation of €4¢(t),
eam(t) and e4(t) confirms that quantization and topographic errors are low over
time, while the difference in the magnitude of the quantization accuracies is a result
of them being measured with simple and squared distances, respectively.

Illustrating the clustering of the SOTM This part introduces the second-
level clustering of SOTMs with experiments on toy data. The experiments on data
with expected patterns illustrate the usefulness of combining clustering techniques
with the SOTM. I make use of the process for generating toy data in Equations 7.19
and 7.20. Figure 7.13 reports the used weights for generating the four variables
with five groups of 20 cross-sectional entities over 10 periods, where the color
coding illustrates the groups. Particular characteristics of the below four variables
are obviously that the time series of x1—5 are quasi-stationary and those of x3—4 are
non-stationary. While we may not fulfill all conditions of stationarity, particularly

131 suggest to illustrate with idle units through some color coding. While idle units have
implemented to be colored in gray, these specific cases are not encountered in the experiments
performed here.
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Figure 7.13: Four toy variables for the clustering of the SOTM.

not constant variance and autocorrelation, the aim of these data is to have two
variables with a somewhat constant data structure and two with a time-varying
and converging structure. That is, the time-varying data are generated such that
parts of the groups converge whereas others diverge. Evident changes of 34 in
Figure 7.13 are, for instance, that the red group diverges from the purple group
and the blue converges to the green group.

Herein, I present two toy examples of the SOTM: one with quasi-stationary and one
with non-stationary data. The quasi-stationary data x1—o and the non-stationary
data x3—4 are separately used as inputs for the SOTM. The SOTM is specified to
have 5x10 units, where 5 vertical units represent data topology and 10 horizontal
units time topology. Again, the number of units (or clusters) on the vertical axis
is set to equal the number of generated groups in data, while the number of units
on the horizontal axis is fixed by the number of time units 7. When choosing the
final specification of the SOTM, the above presented quality measures are used, but
not shown, for the sake of brevity. As the main focus ought to be on topographic
accuracy, I choose a neighborhood that leads to minimum quantization error given
no topographic errors.

To the trained SOTM, I apply a second-level Ward’s clustering. As the number
of generated groups is predefined, I do not compare the performance of different
K using clustering validation measures. On the quasi-stationary variables z1—o, I
obviously set K equal to the number of created groups. In the non-stationary case,
I use the same K to better illustrate the difference to the quasi-stationary case.
However, exploring different K would be useful for illustrating properties of the
data. The first row of Figure 7.14 shows feature planes and cluster memberships
for a SOTM on the quasi-stationary data x1—9. It is worth noting that the coloring
of the clusters follows the coloring of the groups in Figure 7.13. Indeed, one can
observe that both the two feature planes and the cluster memberships are constant
over time. This illustrates that quasi-stationary data may be labeled by the rows
of the SOTM. Likewise, the second row of Figure 7.14 shows feature planes for
a SOTM on the non-stationary data xs—4. The feature planes clearly depict the
increasing and decreasing trends in data. This is also reflected in the cluster mem-
berships. The feature of approximating the probability density functions of data
p(x,t) lead to a direct interpretation of memberships; the denser a part of the data
space €(t), the higher is the number of units in that location. The convergence of
the green, blue and orange groups and divergence of the red from the purple group
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Figure 7.14: A SOTM applied to data with and without temporal variation.

(as also shown in Figure 7.13 ) are shown as increases and decreases of vertical
units in a second-level cluster. That is, in Figure 7.14, we can observe that cluster
2 (blue) disappears in period 7 and that cluster 1 (red) emerges from cluster 4 (pur-
ple) in period 3, as well as cluster 3 (green) and 4 (purple) change from one vertical
unit to two and from two units to one, respectively. This motivates the need for a
second-level clustering to aid in interpreting changes in cluster structures.

Illustrating a time-to-event SOTM This part aims at illustrating and val-
idating the performance of the SOTM on time-to-event data. The SOTM for
time-to-event data has a different interpretation for time ¢. Rather than repre-
senting the time span in data, it represents the time to a specific event. Hence, it
takes, for instance, the following form: ¢t = =T, -T +1,...,T — 1,T, where T sets
the range of time units before and after the event. For illustrative purposes, the
experiments use an equal number of periods before and after the events, but the
SOTM obviously sets no such restriction. The process is a modified version of that
in Equations 7.19 and 7.20 and is steered with similar parameters for setting the
properties of data. Whereas data need to come from a three-dimensional space,
where one dimension represents time, one the cross-sectional entities and one the
input variables, the time dimension needs to be transformed to represent the dis-
tance of each data point to some event v, in order to represent time-to-event data.
The process starts by first drawing random events for a specified number of entities
over a number of periods. The number of periods is set to equal the number of
time-to-event states: 27"+ 1. Hence, for each entity j, the events v are drawn from
a discrete uniform distribution as follows: v « U (1,27 + 1) Then, the data are
generated by setting the five weights w;—5, where only ws differs by representing
time-to-event specific properties.

After generating the multivariate time-series, as well as time-stamped events, I
turn them into time-to-event data. I generate 5 groups with 20 entities each over
19 periods (where T' = 9). The time stamps for the events are drawn from the
above presented discrete uniform distribution, and are hence equally likely for all
19 periods. Figure 7.15a plots the four generated variables and reports the used
weights wy—5. The figure illustrates the group memberships through ColorBrewer’s
qualitative color scheme. While only showing minor randomized shocks over time,
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Notes: The figure represents (a) four toy variables, and (b) their time-to-event counterparts. Data
consist of 5 groups of 20 cross-sectional entities over 19 periods, where the color coding illustrates the
groups, the x axis represents (a) time or (b) time to an event, and the y axis the values. The figure
reports the used weights wi—5 for generating the 14 above each plot.

Figure 7.15: Four toy variables and their time-to-event counterparts.

x4 better illustrates the five distinguished groups in data. Although the data are
generated with group-specific effects, one key message of Figure 7.15a is that the
groups cannot clearly be distinguished. This is due to the patterns being related
to the events and the events being randomly distributed. Thus, the data are trans-
formed to time-to-event data by ordering them according to time to the events.
Figure 7.15b shows a plot of the same above used data, but in time-to-event for-
mat, where the color coding again illustrates 5 groups of 20 entities each. This
figure better illustrates the generated patterns in data. It shows increases towards
the events for z1 and x3, decreases for x5 and weak decreasing patterns related to
the events for 4.

For illustrative purposes, I conduct two experiments on these data: a standard
SOTM and a time-to-event SOTM. In both experiments, the quality measures
are used for finding an adequate SOTM, but are not reported for brevity. First, 1
apply the standard SOTM on data ordered and grouped as per the periods (t =
1,2,...,19). Figure 7.16a shows for the standard SOTM the feature planes for
variables x1—4 and the events v, i.e., the spread of variable values on the SOTM
grid. The event feature plane shows averages of data located in each unit for the
binary variable indicating whether or not an event occurs, and illustrates that the
events mostly occur in the upper part of the SOTM. The information illustrated by
the figure complements the patterns in Figure 7.15a (and confirms those in Figure
7.15b): high values for z; and x3 and low for z» are positively related to the events,
whereas x4 shows no clear patterns related to the events. Yet, this says little about
the dynamics before, during and after the events, such as how early prior to events
do the changes start. The time-to-event SOTM in Figure 7.16b addresses these
patterns. The figure includes the feature planes for the time-to-event SOTM, and
thus illustrates the dynamics before, during and after the events. I focus on 7'=9
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Notes: The figure represents (a) a standard SOTM and (b) a time-to-event SOTM on the four generated
toy variables. For both figures (a) and (b), the four first grids are feature planes and represent the spread
of values of x£1—4, whereas the final grid shows the spread of events on the map.

Figure 7.16: A standard and a time-to-event SOTM on toy data.

(i.e., t—9 to t+9) to keep the time dimension comprehensible. Again, the patterns
in Figure 7.16b follow those in Figure 7.15b. The events are obviously all in the
column of units at ¢t — 0. The values for x; and x3 increase towards the events,
values for xo decrease towards the events and values for x4 do not vary over time-
to-event dates. Likewise, values for ;1 and z3 decrease and values for x5 increase
after the events. While the patterns are symmetrical and quite well-behaving, one
can observe for x1; and z3 that towards the events positive slopes increase and
away from the events negative slopes decrease, and wvice versa for xo. Further,
while Figure 7.15b illustrates differences in x; and x3, Figure 7.16b shows that the
general time-to-event patterns are close to similar. A detailed look at Figure 7.16b
does, however, illustrate that the reaction of x; to the events is more peaked than
that of 3. The former starts increasing at a later stage with a peak at the event
higher than the rest, whereas the latter increases at an earlier stage and can be
seen as having a peak with broader shoulders.

7.4 Concluding summary

This chapter has discussed a number of extensions to the standard SOM paradigm.
After a broad, yet brief, literature review of time in SOMs, the chapter introduces a
number extensions mainly focusing on improving temporal processing. Besides a fo-
cus on time, the general aim has been to enhance the SOM paradigm for processing
data from the data cube in Figure 4.1, i.e., along multivariate, temporal and cross-
sectional dimensions. The suggested extensions are four. First, a fuzzification of
the SOM provides means for visualizing temporal belongingness of individual data
to second-level clusters and the cluster structures on the SOM. Second, transi-
tion probabilities enable visualizing probabilities of transition of individual data to
second-level clusters and for assessing the overall cyclical and temporal structure on
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the SOM. Third, neighborhoods on the SOM and superimposed portfolio network
visualizations provide means for assessing links between entities and potential for
the spread of events. Finally, the fourth extension, the SOTM, enables visualiz-
ing and assessing changes in cluster structures over time. Further, the proposed
second-level clustering of the SOTM enables objective identification of the temporal
changes, whereas a time-to-event SOTM enables assessing patterns in multivariate
data before, during and after user-specified events.

At this point, we have compared and chosen the most suitable method in Chapter
6 and suggested a range of extensions for the task at hand. The sequel of this
thesis focuses on how these methods are applied in macroprudential oversight for
the two tasks of risk identification and assessment, not to forget the third task of
risk communication.
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T would very much welcome inspiration from other disci-
plines: physics, engineering, psychology, biology. Bringing
experts from these fields together with economists and cen-
tral bankers is potentially very creative and valuable. Sci-
entists have developed sophisticated tools for analysing com-
plex dynamic systems in a rigorous way. These models have
proved helpful in understanding many important but com-
plex phenomena: epidemics, weather patterns, crowd psy-
chology, magnetic fields. [...] I am hopeful that central
banks can also benefit from these insights in developing tools
to analyse financial markets and monetary policy transmis-
ston.”

— Jean-Claude Trichet, President of the ECB, Frankfurt am
Main, 18 November 2010

8 Self-Organizing Financial Stability Map (SOFSM)

This chapter ties together most of the previous parts of this thesis. Macroprudential
oversight and data alike not only motivate, but also provide guidelines for building
tools with visual capabilities. Data and dimension reductions, as well as their
combinations, provide means for creating visual displays for a wide range of tasks,
whereas a qualitative comparison shows that the Self-Organizing Map (SOM) is
suitable for the task we have at hand. This chapter unifies the above discussed
topics by creating a SOM-based financial stability map, coined the Self-Organizing
Financial Stability Map (SOFSM). The task involves five key building blocks:
the SOM, crisis dates, vulnerability indicators, a model training framework and a
model evaluation framework.

The aim of this chapter is to put forward a framework for creating, as well as to
build, a two-dimensional display that represents a high-dimensional financial sta-
bility space. The map represents a financial stability cycle consisting of pre-crisis,
crisis, post-crisis and tranquil states. Whereas the key aim of the SOFSM is to
function as a display for visualizing the state of financial stability, the evaluation
of it is performed with a focus on predictive performance. In particular, it is evalu-
ated in terms of an early-warning model and according to policymakers’ preferences
between missing a crisis (type I errors) and issuing a false alarm (type II errors).
Yet, the creation of the SOFSM in this chapter merely sets a starting point for
visualizing threats to financial stability, which is the focus of Chapter 9.

Most parts of this chapter is based upon material in Paper 7. The creation of the
SOFSM follows the process of knowledge discovery in databases (KDD) described
in Section 5.1. The six steps are performed as follows.

i) Domain understanding: This mainly relates to discussions in previous
chapters. Whereas Chapter 3 discussed broadly the domain, Chapter 6 de-
fined the task at hand: to represent high-dimensional data concerning finan-
cial entities, be they countries, markets or institutions, on low-dimensional
displays to facilitate the identification, assessment and communication of vul-
nerabilities and risks.

it) Data understanding: Whereas Chapter 4 discussed macroprudential data
from a broad viewpoint, Section 8.1 in this chapter presents the process of
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collecting data for the task.

111) Data preparation: Relating to the previous step, Section 8.1 in this chapter
also presents the process of transforming and preprocessing the collected data
so that they lend to analysis.

iv) Data mining: The performed data mining makes use of data and dimension
reduction methods and follows the basis put forward in Chapters 5 and 6, as
well as Chapter 7. This chapter focuses on using the standard SOM to create
the SOFSM, whereas extensions are applied in Chapter 9. In this chapter,
Section 8.3 introduces a model training framework, which is to be applied in
Section 8.4.

v) Performance evaluation: An essential part of the KDD process is to eval-
uate the performance of models. The model evaluation framework discussed
in Section 8.2, in addition to other internal quality measures discussed in
Section 5.4, provides direct means for evaluating the models. The evaluation
of the models is discussed in Sections 8.4 and 8.5.

vi) Knowledge consolidation and deployment: The final step involves tasks
partly outside the scope of this chapter. The SOFSM is exploited in Chapter
9, which also functions as knowledge consolidation and a type of deployment.

8.1 Data

The data used for creating the SOFSM have been chosen with the ultimate goal of
representing financial stability as broadly and globally as possible. This obviously
imposes challenges in the retrieval of data, as small emerging market economies
(EMESs) differ in data provision in comparison to larger advanced economies (AEs).
The necessary data for the task consist of vulnerability measures commonly used in
the macroprudential literature and binary class information representing pre-crisis,
crisis, post-crisis and tranquil periods. In this thesis, large parts of the dataset
used follow that in Lo Duca and Peltonen (2013). Quarterly data are collected for
28 countries, 10 AEs and 18 EMESs, spanning from 1990Q1-2011Q2. The AEs are
Australia, Denmark, the euro area, Japan, New Zealand, Norway, Sweden, Switzer-
land, the United Kingdom (UK), and the United States (US), while the EMEs are
Argentina, Brazil, China, the Czech Republic, Hong Kong, Hungary, India, Indone-
sia, Malaysia, Mexico, the Philippines, Poland, Russia, Singapore, South Africa,
Taiwan, Thailand and Turkey. That is, a multivariate panel dataset, consisting
of both a cross-sectional and a temporal dimension, such as the macroprudential
data cube in Figure 4.1. The rationale for using cross-sectional data, rather than
creating country-specific models, is threefold: the relatively small number of crisis
events in individual countries, the strive to capture a wide variety of crisis types,
and the requirement of a global policy approach. Further, results indicate that
accounting for country and time-specific effects in early-warning models lead to an
improved in-sample fit, while it decreases predictive performance on out-of-sample
data (e.g., Fuertes and Kalotychou (2006)). Hence, a data vector z; € R!® is
formed of a class vector ;) € R* and an indicator vector x;(;,) € R for each
quarter and country in the sample. The data are retrieved from Haver Analytics,
Bloomberg and Datastream.
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To assess linkages among economies, the events and indicators are complemented
with exposures between economies. The focus herein is on the real transmission
channel and balance-sheet exposures among economies. The network of financial
linkages is based upon external assets (equities and bonds), i.e., holdings of one
economy in another, as reported in the Coordinated Portfolio Investment Survey
by the International Monetary Fund (IMF). It is worth noting that exposures
of central banks are not included due to the different nature of their holdings.
Following Section 7.2.3, the relationships are expressed in matrix form. Hence,
the link between object k£ and [ is represented as element Ag; in an n X n sized
matrix, where n is the number of economies. However, the linkages are only used
in Chapter 9.

In the following, we focus on the two key types of data: crisis events and vulnera-
bility indicators.

8.1.1 Identifying systemic financial crises

This section explains how systemic financial crises are identified and how all four
class variables are defined for enabling assessment of the entire financial stability
cycle. The identification of systemic financial crises is done using the Financial
Distress Index (FDI) (Lo Duca and Peltonen, 2013). This approach provides an
objective criterion for the definition of the starting date of a systemic event. While
there are several composite indices for measuring financial stress, the FDI differs
from most indices by focusing on systemic events. More importantly, the general
specification, including the three key market segments, enables applying the FDI to
economies of different nature, such as advanced and emerging economies. Financial
stress indices for advanced economies, such as the Composite Indicator of Systemic
Stress (CISS) for the euro area (Hollé et al., 2012), include a substantially larger
number of indicators, and covers also other financial market segments, which may
not always be available for emerging markets.

The rationale behind the FDI is that the larger and broader the shock is (i.e., the
more systemic the shock), the higher the co-movement among variables reflecting
tensions in different market segments. By aggregating five variables to an index
that measures stress across market segments, the FDI captures the starting and
ending points of a systemic financial crisis. The FDI is a country-specific composite
index that covers the money market, equity market and foreign exchange market
segments of the domestic financial market:

i) the spread of the 3-month interbank rate over the 3-month government bill
rate (Ind, );

i) negative quarterly equity returns (Inds);

i11) the realized volatility of the main equity index (Inds);

)
)
iv) the realized volatility of the nominal effective exchange rate (Indy); and
v) the realized volatility of the yield on the 3-month government bill (Inds).!4

14When the 3-month government bill rate is not available, the spread between interbank and
T-bill rates of the closest maturity is used. The equity returns are multiplied by minus one, so
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Each indicator Ind; for country ¢ at quarter ¢ is transformed into an integer from 0
to 3 according to the quartile of the country-specific distribution, after which the
transformed variable is denoted g;; +(Ind;; ;). For example, a value for indicator
j falling into the third quartile of the distribution would be transformed to a “2”.
The FDI is computed for country i at time ¢ as a simple average of the transformed
variables as follows:

5
> j=1j,i.¢(Indji¢)

FDL,, = :

(8.1)

To define systemic financial crises, the FDI is first transformed into a binary vari-
able. While I acknowledge that discretization leads to some loss of information, it
provides a useful means to define the starting and ending points of crises. Moreover,
the fundamental idea of predicting vulnerabilities prior to financial crisis, i.e., pre-
crisis periods, does not allow modeling a continuous, coinciding index of financial
stress.

Hence, a systemic financial crisis is defined as a period of extreme financial stress
that has in the past on average been followed by negative consequences for the real
economy (i.e., output loss in relation to potential output). One motivation for cali-
brating the models by choosing average real consequences is to not have a selection
bias. If one would only select events with strictly negative real consequences, we
would have a selection bias for modeling only events which the policymaker had
either failed to predict or the potential policy action that she had taken had not
been successful in preventing the negative impact on the real economy. Given that
controlling for policy actions are beyond the scope of this thesis, I calibrate the
level of financial stress to average negative real consequences similar to Lo Duca
and Peltonen (2013).

In practice, I create a binary “crisis” variable, denoted CO, that takes a value 1
in the quarter when the FDI is above the threshold of the 90th percentile of its

country-specific distribution Q?Oth(FDIi)t) and 0 otherwise:

0 otherwise (8.2)

This approach identifies a set of 94 systemic events over 1990-2011 for the 28 coun-
tries in the sample. To describe the financial stability cycle, I create a set of other
class variables, in addition to the crisis variable. First, a “pre-crisis” class variable
C18 is created by setting the binary variable to 1 in the 18 months preceding the
systemic financial crisis, and to 0 in all other periods. The pre-crisis variable mim-
ics an ideal leading indicator that perfectly signals a systemic financial crisis in the
18 months before the event. In order to evaluate robustness for different horizons,
I also create other pre-crisis class variables, by setting the binary variables C24,
C12 and C6 to 1 in the 24, 12 and 6 months before the systemic event and zero
otherwise. Similarly, I create “post-crisis” class variables P6, P12, P18 and P24
that are set to 1 in the 6, 12, 18 and 24 months after the systemic event. Finally,

that negative returns increase stress, while positive returns are set to 0. When computing realized
volatilities for components Inds—5, average daily absolute changes over a quarter are used.
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when none of the benchmark horizons C18, C0O and P18 take the value 1, then a
period is called “tranquil”, denoted as T0O. Thereby, the class vector ;) € R*
consists of the benchmark horizons C18, C0, P18 and TO.

8.1.2 Macro-financial indicators of vulnerabilities and risks

The set of indicators consists of commonly used measures in the macroprudential
literature for capturing the build-up of vulnerabilities and imbalances in the do-
mestic and global economy (see, e.g., Alessi and Detken, 2011; Borio and Lowe,
2002, 2004). The key included variables measure asset price developments and val-
uations, and proxy for credit developments and leverage. In addition, traditional
variables (e.g., government budget deficit and current account deficit) are used to
control for vulnerabilities stemming from macroeconomic imbalances. Following
the indicators used in Lo Duca and Peltonen (2013), I use only two of the indicator
groups for macroprudential oversight identified in Section 4.2: macroeconomic and
market-based indicators. With the aim of a global dataset, banking system data
are not used due to poor availability for emerging markets.

Following the literature, several transformations of the indicators are constructed
to proxy for imbalances, misalignments and a build-up of vulnerabilities. The
transformations are levels, annual changes, deviations from short (8 quarters) and
long (20 quarters) moving averages, deviations from short (A = 1600 in Hodrick-
Prescott detrending) and long (A = 400000) trends, which results in total into
more than 200 indicators. Further, to proxy for global macro-financial imbalances
and vulnerabilities, a set of global indicators are calculated by averaging the trans-
formed variables for the US, the euro area, Japan and the UK. The indicator vector
Zj(in) € R consists of the best-performing transformation per indicator in terms
of their univariate performance in predicting systemic events. The performance is
tested with the univariate signaling approach (see Section 3.3). The indicators and
their summary statistics and transformations are shown in Table 8.1.

Statistical properties of the chosen indicators (Table 8.1) reveal that the data are
significantly skewed and non-mesokurtic, and thus do not exhibit normal distri-
butions. To take into account cross-country differences and country-specific fixed
effects, I follow Kaminsky et al. (1998) by measuring indicators in terms of country-
specific percentiles. While such outlier trimming is unnecessary for the clustering
of the SOM, the even distribution of percentile scales still facilitates judgment and
interpretation of the visualization.

Finally, the analysis is conducted in a real-time fashion to the extent possible.
Thus, publication lags are taken into account by using lagged variables. For gross
domestic product (GDP), money and credit related indicators, the lag ranges from
1 to 2 quarters depending on the country. The variables are also detrended and
measured in terms of country-specific percentiles using the latest available informa-
tion, such that data at time ¢ are only related to data prior to t. Hence, it is worth
remembering in the subsequent analyses and visualizations that data refer to the
date they are available, rather than the reference period. To test the predictabil-
ity of the 2007-2008 financial crisis, the sample is split into two sub-samples: the
training set spans 1990Q4-2005Q1, while the test set spans 2005Q2-2009Q2.
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Table 8.1: Statistical properties of the dataset.

Type Variable Abbreviation Mean SD Min. Max. Skew. Kurt. KSL AD
Domestic Inflation” Inflation 0.89 517 -10.15 42.53 4.80 26.72 0.29*  263.90*
Domestic Real GDP® Real GDP growth 373 3.76 -17.54 14.13 -0.86 3.16 0.06* 11.34*
Domestic Real credit to private sector to GDP” Real credit growth 23407  4724.00 -69.42  101870.34 20.76 429.59 0.51* Inf*
Domestic Real equity pricesb Real equity growth 593 33.01 -84.40 257.04 0.99 431 0.05* 7.28*
Domestic Credit to private sector to GDP" Leverage 348 51.64 -62.78 1673.04 2276 67335 0.29% Inf*
Domestic Stock market capitalisation to GDP"  Equity valuation 3.90 2832 -62.79 201.55 0.77 241 0.03* 3.86%
Domestic Current account deficit to GDP® CA deficit -0.02 0.07 -0.27 0.10 -0.98 0.73 0.09* 33.12%
Domestic Government deficit to GDP® Govemnment deficit 0.01 0.05 -0.19 022 -1.09 346 0.09* 35.90*
Global  Inflation” Global inflation 0.03 0.64 -1.33 229 0.71 1.28 0.08* 12.12*
Global Real GDP” Global real GDP growth 1.84 1.59 -6.34 4.09 -3.02 11.74 0.20%  122.16%
Global  Real credit to private sector to GDP® Global real credit growth 3.87 1.68 -0.23 7.20 -0.21 -0.31 0.07* 8.82*
Global ~ Real equity priccsb Global real equity growth 231 19.08 -40.62 3777 -0.57 -0.68 0.15% 41.90*
Global ~ Credit to private sector to GDP" Global leverage 1.15 2.79 -2.79 11.21 1.84 340 0.22%  105.26*
Global  Stock market capitalisation to GDP* ~ Global equity valuation 0.89 17.41 -40.54 2746 -0.50 -043 0.09% 19.11%*

Notes: Transformations: ¢, deviation from trend; °, annual change; ©, level. KSL: Lilliefors’ adap-
tion of the Kolmogorov-Smirnov normality test. AD: the standard Anderson-Darling normality test.
Significance levels: 1%, *.

8.2 Model evaluation framework

Crisis data require evaluation criteria that account for their complex nature. Crises
are oftentimes outlier events in three aspects:

i) they differ significantly from tranquil times,
i1) they are commonly more costly, and

i17) they occur more rarely.

Given these properties, especially the two latter ones, I show that the evaluation
framework in Paper 6 better resembles the decision problem faced by a policy-
maker. I first briefly review the literature on evaluating early-warning models and
then discuss a general framework for deriving a policymaker’s loss function and the
Usefulness of a model.

While an own strand of literature has focused on the evaluation of early-warning
models, the utilized measures seldom cover the wide spectrum of factors that may
concern a policymaker. The seminal study by Kaminsky et al. (1998) utilized the
simple noise-to-signal ratio to set an optimal threshold value.!> Based upon Re-
ceiver Operating Characteristics (ROC) curves and the area below them, measures
applied by Sarlin and Marghescu (2011a) to early-warning model evaluations, Jord4
and Taylor (2011) formulated a Correct Classification Frontier (CCF) with advan-
tages like providing visual means and summarizations of results for all possible
thresholds. Yet, the measures do not properly pay regard to varying misclassifica-
tion costs and imbalanced data, and suffer from the fact that some thresholds may

15The noise-to-signal ratio is a ratio of the probability of receiving a signal conditional on no
crisis occurring to the probability of receiving a signal conditional on a crisis occurring. Demirgiic-
Kunt and Detragiache (2000) and El-Shagi et al. (2012) showed that minimizing the noise-to-signal
ratio could lead to a relatively high share of missed crisis episodes (i.e., only noise minimization)
if crises are rare and the cost of missing a crisis is high. This type of a common corner solution to
the optimization problem is mainly due to the fact that the marginal rate of substitution between
type I and II errors is unrestricted. Lund-Jensen (2012) concludes the same, and chooses not
to use the measure, while Drehmann et al. (2011) choose to minimize the noise-to-signal-ratio
subject to at least two thirds of the crises being correctly called. Likewise, Paper 6 also illustrates
such a corner solution.
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be far from policy relevant (e.g., both ends of the CCF). Likewise, while the com-
prehensive toolbox for evaluating early-warning models by Candelon et al. (2012)
provides significant contributions to statistical inference for testing the superiority
of one early-warning model over another, they lack an explicit focus on variations
in misclassification costs and imbalanced data. A crucial characteristic of measures
attempting to grasp a problem of this order of complexity is to explicitly tailor
forecasting objectives and validations to the preferences of a decision-maker and
the properties of the underlying data.

The literature on the derivation of a policymaker’s loss-function has attempted
to deal with these so-called low-probability, high-impact events. Demirgiic-Kunt
and Detragiache (2000) introduced the notion of a policymaker’s loss-function in
a banking crisis context, where the policymaker has a cost for preventive actions
and type I and II errors (i.e., probability of not receiving a warning conditional on
a crisis occurring and of receiving a warning conditional on no crisis occurring).
Later, adaptations of this type of loss functions have been introduced to early-
warning models for other types of crises, e.g., debt crises (Fuertes and Kalotychou,
2007), currency crises (Bussiere and Fratzscher, 2008), and asset price boom/bust
cycles (Alessi and Detken, 2011). While Bussiére and Fratzscher (2008) still focused
on costs of preventive actions, the later literature has mainly focused on the trade-
off between type I and II errors. There are two key motivations for focusing on
relative preferences between the errors:

i) the costs of actions and no actions can be incorporated in preferences between
type I and II errors as unrealized benefits can be "rolled up” into error costs
(Elkan, 2001; Fawcett, 2006), and

i1) the uncertainty of exact costs associated with preventive actions, false alarms
and missing crises.

In addition to a loss function, Alessi and Detken (2011) also propose a Usefulness
measure that indicates whether the loss of the prediction is smaller than the loss of
disregarding the model. However, while the above evaluation frameworks have be-
come state-of-the-art, they fail to account for characteristics of imbalanced data.'®
In the following, I put forward a loss function and Usefulness measure to better
account for the complex nature of crises.

A loss function and Usefulness measure The occurrence of crisis can be
represented with a binary state variable I;(0) € {0,1} (where observation j =
1,2,...,N). Predicting the exact timing of distress does not, however, provide
enough reaction time for a policymaker. The wide variety of triggers may also com-
plicate the task of identifying exact timings. To enable policy actions for preventing
or decreasing further build-up of vulnerabilities and strengthening the financial sys-
tem, the focus should rather be on identifying pre-crisis periods I;(k) € {0,1} with

16While the seminal loss function by Demirgiig-Kunt and Detragiache (2000) accounts for un-
conditional probabilities, they do not propose a Usefulness measure for the function. Given
their complex definition of loss, deriving the Usefulness would not be an entirely straightforward
exercise. Further, the version applied in Bussiére and Fratzscher (2008) neither accounts for
unconditional probabilities nor distinguishes between losses from correct and wrong calls of crisis.
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Table 8.2: A contingency matrix.

Actual class I
Crisis No crisis
Signal A B
Predicted class P, & True posgive (TP) | False posli)tive (FP)
No signal
OB palse negative (FN) | True negative (TN)

a specified forecast horizon h. Let I;(h) be a binary indicator that equals one dur-
ing pre-crisis periods and zero otherwise. Using univariate or multivariate data,
various methods can be used for turning indicators into estimated probabilities of
an impending crisis p; € [0, 1] (i.e., probability forecasts). To mimic the ideal lead-
ing indicator I;(h), the probability p; is transformed into a binary point forecast
P; that equals one if p; exceeds a specified threshold A and zero otherwise. The
correspondence between P; and I; can be summarized into a so-called contingency
matrix (i.e., frequencies of prediction-realization combinations), as shown in Table
8.2.

From the elements of the above matrix, one can then define various goodness-of-fit
measures. 1 approach the problem from the viewpoint of a policymaker.!” In a
two-class prediction problem, policymakers can be assumed to have relative pref-
erences of conducting two types of errors: issuing false alarms and missing crises.
Type I errors represent the probability of not receiving a warning conditional on a
crisis occurring P(p < A | I(h) = 1) and type II errors the probability of receiv-
ing a warning conditional on no crisis occurring P(p > X | I;(h) = 0). The loss
of a policymaker consists of 77 and T, weighted according to her relative prefer-
ences between missing crises (u € [0,1]) and giving false alarms (1 — p). However,
when only using 77 and T, weighted according to relative preferences, we fail to
account for imbalances in class size.'® Finally, given probabilities p; of a model, the
policymaker should aim at choosing a threshold A such that her loss is minimized.

The preference parameters may also be derived from a benefit/cost matrix that
matches the contingency matrix. A standard 2x2 benefit /cost matrix may easily be
manipulated to only include error costs by scaling and shifting entries of columns
without affecting the decisions (Elkan, 2001; Fawcett, 2006). A benefit may be
treated as a negative error cost and hence unrealized benefits can be "rolled up”
into error costs. For instance, the costs ¢ for the elements of the matrix with two
degrees of freedom can be derived to a simpler matrix of class-specific costs ¢; and
¢o with one degree of freedom: ¢; = c¢c — ca and ¢3 = ¢g — ¢p (the subscripts

17A further discussion on shaping decision-makers’ problems through loss functions, as well as
on the relation between statistical and economic value of predictions, can be found in Granger
and Pesaran (2000) and Abhyankar et al. (2005).

8 The loss function used by Alessi and Detken (2011) differs from the one introduced here as
it assumes equal class size. Their Usefulness measure does, similarly, not account for imbalanced
classes, as the loss of disregarding a model depends solely on the preferences. Usefulness measures
close to that in Alessi and Detken (2011) have been applied in a large number of works, such as
Lo Duca and Peltonen (2013), Sarlin and Marghescu (2011a), El-Shagi et al. (2012), and Bisias
et al. (2012). Similar loss functions have been applied in Fuertes and Kalotychou (2007), Candelon
et al. (2012), Lund-Jensen (2012), and Knedlik and von Schweinitz (2012).
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refer to Table 8.2). Most likely, cp and cc have a non-negative cost, while cy
and cp have a non-positive cost. From this, we can derive the relative preferences
pw=-ci/(ci +co) and 1 — p = co/(c1 + c2).

By accounting for unconditional probabilities of crises P(I;(h) = 1) and tranquil
periods P(I;(h) = 0) =1 — P, a loss function is as follows:

L(p) = pTh P+ (1 = p)To Py (8.3)

As the parameters are unknown ez ante, we can use in-sample frequencies to esti-
mate them. Given a threshold A and forecast horizon h, P; and P, are estimated
with the frequency of the classes (P, = (A+C)/(A+B+C+D) and P, =
(B+D)/(A+ B+ C+ D)) and T} and T with the error rates (T3 = C/ (A + C)
and T, = B/ (B + D)). Using the loss function L(u), we can then define the Use-
fulness of a model. A policymaker could achieve a loss of min(Py, P;) by always
issuing a signal of a crisis if P; > 0.5 or never issuing a signal if P, > 0.5. However,
by weighting with policymakers’ preferences, as she may be more concerned of one
of the classes, we achieve the loss min(uPy, (1 — p) P2) when ignoring the model.
First, we derive the absolute Usefulness U, (1) of a model by computing the loss
generated by the model subtracted from the loss of ignoring it:

Ua(p) = min(uPr, (1 — p) P2) — L(p). (8.4)

This measure highlights the fact that achieving well-performing, useful models on
highly imbalanced data is a difficult task. Hence, already an attempt to build an
early-warning model with imbalanced data implicitly necessitates a policymaker
to be more concerned of the rare class. With a non-perfectly performing model,
it would otherwise easily pay-off for the policymaker to always signal the high-
frequency class. Second, we compute the share of U,(u) to the maximum possible
Usefulness of the model with a measure that is coined relative Usefulness:

Ua(p)
min(pPy, (1 - p) P2)’

That is, U, () reports U, (1) as a percentage of the Usefulness that a policymaker
would gain with a perfectly performing model. This derives from the fact that
if L(p) = 0 then Uy(p) = min(pPr, (1 — p) P2). The U,(u) provides means for
representing the Usefulness as a ratio rather than only reporting a number diffi-
cult to judge. In particular, it facilitates comparisons of models for policymakers
with different preferences. Within the above framework, we can derive U, (u) and
U, (u) for policymakers of different kinds depending on their preferences, which is
essentially a parameter to be specified ad hoc.

This derives to a cost matrix with costs p for type I errors and 1 — p for type
IT errors. While constants could be added to these entries and their scaling may
be modified, this approach favors simplicity. Hence, the rationale for preferring
this framework is that it enables setting relative preferences of the errors. Setting
specific costs for each entry of the cost matrix is a difficult task in a real-world
setting not only because the problem with two degrees of freedom may be difficult
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to untangle, but also because most often exact values of cost matrix entries are
unknown.

In addition to the above framework, the use of pooled panel data motivates in-
cluding observation-specific costs into the loss function, as the importance of a
single country in the evaluation phase may vary depending on the objectives of
the policymaker. In an evaluation framework, this leads to a need for weighting
entities in terms of their importance, such as systemic relevance or size. The entity-
level importance is, however, also a time-varying parameter, and should thus more
preferably be defined on the observation level. Although a policymaker’s loss func-
tion and Usefulness measure that depend on observation-varying costs are shown
in Paper 6, this thesis focuses only on class-specific costs (that is, does not dis-
criminate between the importance of countries).

Other goodness-of-fit measures The literature has provided and applied a
wide range of goodness-of-fit measures. A large number of them can be defined
from the elements of the contingency matrix in Table 8.2. Thus, the following
goodness-of-fit measures are used to support the evaluation of models: recall and
precision rates, False Positive (FP), True Positive (TP), False Negative (FN) and
True Negative (TN) rates, and overall accuracy.'® In addition, the global per-
formance of models can be measured using ROC curves and the area under the
curve (AUC), i.e., under the ROC curve. The ROC curve shows the trade-off be-
tween the benefits and costs of choosing a certain threshold. When two models
are compared, the better model has a higher benefit (expressed in terms of TP
rate on the vertical axis) at the same cost (expressed in terms of FP rate on the
horizontal axis). In general, the ROC curve plots, for the whole range of measures,
the conditional probability of positives to the conditional probability of negatives:
ROC=PP=1|C=1)/(1—P(P=0]C=0)). In this sense, as each FP rate
can be associated with a threshold for classifying crisis and tranquil events, the
measure shows performance over all thresholds. The size of the AUC is estimated
using trapezoidal approximations. It measures the probability that a randomly
chosen crisis observation is ranked higher than a randomly chosen tranquil one. A
random ranking has an expected AUC of 0.5, while a perfect ranking has an AUC
equal to 1.

8.3 Model training framework

A key part in modeling in general and dimension reduction in particular is how
to train and parametrize the models. In the analysis, I employ a semi-supervised
SOM by using data vector z; € R'®, including class variables (C18, C0, P18 and
TO0), in training. In contrast to Sarlin and Marghescu (2011a), where only the indi-
cator vector x;(;n) € R is used in determining the best-matching units (BMUs),
I also let the class vector x;(.) € R* have an impact when determining the BMUs

9Recall positives = TP/(TP+FN), Recall negatives = TN/(TN+FP), Preci-
sion positives = TP/(TP+FP), Precision negatives = TN/(TN+FN), Accuracy =
(TP+TN)/(TP+TN+FP+FN), TP rate = TP / (TP + FN), FP rate = FP/(FP+TN),
FN rate = FN/(FN+TP) and TN rate = TN/(FP+TN).

162



in training. By including the class variables in the topology preservation, the pro-
jection better separates the classes, which yields the benefit of easier interpretation
of the stages of the financial stability cycle. As discussed in Section 5.4, this fol-
lows the semi-supervised SOMs in general and multi-class supervision of SOMs in
particular.

The predictive feature of the model is obtained by assigning to each data point
zj(m) € R the C18 (as well as C6, C12 and C24 when testing robustness) value
of its BMU.2? The performance of a model is then evaluated using the U, (1) and
U,(u) for a policymaker. The performance is computed using static and pooled
models, i.e., the coefficients or reference vectors m; are not re-estimated recursively
over time and across countries. Following Fuertes and Kalotychou (2006), it can
be assumed that by not deriving new models per time unit and country, the parsi-
monious pooled models better generalize in-sample data and predict out-of-sample
data. Although static models have the drawback of ignoring the latest available
information, they are a necessity for visualizations of long time series (see Chapter
9). Yet, it is worth noting that recursive re-estimations would computation-wise
be feasible when using the model in real-time fashion. Moreover, I account for a
possible adjustment process that economic variables go through in between crisis
and tranquil periods, i.e., a crisis and post-crisis bias (Bussiére and Fratzscher,
2006), by including the crisis and post-crisis class variables (CO and P18) in SOM
training.

The training framework and choice of the SOM specification is implemented with
respect to three aspects:

i) the model does not overfit the in-sample data (parsimonious);
i) the framework does not include out-of-sample performance (objective); and

i11) visualization is taken into account (interpretable).

For a parsimonious benchmark model that avoids overfitting, I estimate a logit
model similar to the one in Lo Duca and Peltonen (2013).2' The SOM is parametrized
as follows. Whereas the number of units M and radius o are varied, the map format
(75:100) and training length are kept constant. As is recommended by Kohonen
(2001) for a stable orientation, this particular map format approximates the ratio of
the two largest eigenvalues. Generally, the varied parameters, M and radius o, have
the following effect on performance: an increase in the M value increases the in-
sample Usefulness, where U,.(u) — max(U,(u)) = 1 when M — oo, but decreases

20The BMU is the unit that has the shortest Euclidean distance to a data point. When eval-
uating an already trained SOM model, I project all data onto the map using only the indicator
vector Z;(in) € R4, For each data point, probabilities of a crisis in 6, 12, 18 and 24 months are
obtained by retrieving the values of C6, C12, C18 and C24 of its BMU (my(cq))-

21The logistic regression proceeds as follows. First, it forms a predictor variable which is a linear
combination of the explanatory variables. The values of this predictor variable are transformed
into probabilities by a logistic function. This logistic function operates through f(z) = 1-&-%’
where z = Bo + B1x1 + Sz + B3x3 + ... + Brxk, B, is the intercept and B, + 5 +B35+ ..., are the
regression coefficients of x1 4+ x2 + x3 + ... + ), respectively. The value of z measures the total
contribution of all the predictor variables used in the model. It is worth to note that f(z) — 0
when z — —o0, and f(z) — 1 when z — co. Moreover, when z = 0, then f(z) = 0.5. Thereby, a
response curve for a logistic regression is S-shaped.
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out-of-sample Usefulness. In fact, if M equals the cardinality of z;, then perfect
in-sample performance may be obtained by each m; attracting one data point. This
would, however, be an overfitted model for out-of-sample prediction. Increases in
radius decrease quantization accuracy, and thus in-sample Usefulness, whereas ex-
periments do not show a direct effect on out-of-sample performance. Aiming at a
parsimonious, objective and interpretable model, I employ the following training
framework.

i) Train and evaluate in terms of in-sample U, (¢) models for o = {~ 0,0.3,0.5,
0.75,1.0,1.5,2.0} and M = {50,100, 150,200, 250, 300, 400, 500, 600, 1000}.
For each model, set the threshold on the probability of a crisis such that
the U, (1) is maximized. For each M-value, order the models in a descending
order.

i1) Find for each M-value the first model with in-sample U, (1) equal to or better
than that of the benchmark logit model. Choose none of the models if for an
M -value all or none of the models’ U, () exceed that of the logit model.

i11) Evaluate the interpretability of the models chosen in Step #i). Choose the
one that is easiest to interpret and has the best topological ordering.

Due to a lack of consensus on a single topology-preservation metric of the SOM
projection, it is evaluated following an approach discussed in Kaski et al. (2001).
The units m; are projected into two- and three-dimensional spaces using Sammon’s
mapping, a distance-preserving mapping from a high-dimensional input space to
a lower dimension. Topology preservation is defined to be adequate if the map is
not twisted at any point and has only adjacent units as neighbors in the Euclidean
space. Interpretability is a subjective measure of the SOM visualization defined by
the user. The above evaluation framework results in a performance matrix with
positions for each M-c combination, highlights first models per M to outperform
the logit model and uses information on topological ordering and interpretability
for choosing the final model.

To partition the map into a reduced number of clusters, the units are grouped using
Ward’s clustering. By performing the clustering on the class variables (C18, CO,
P18 and T0), the map is partitioned according to the four stages in the financial
stability cycle. This creates four crisp so-called class clusters or financial stability
states. The clustering given by lines on a map is, however, oftentimes overlapping,
and should thus only be interpreted as an aid in finding the four stages of the
financial stability cycle rather than four distinct clusters.

8.4 Training and evaluation of the SOFSM

This section creates the SOFSM with the help of the five building blocks: the
SOM, crisis dates, vulnerability indicators, and model training and model evalu-
ation frameworks. The model training phase starts by estimating a pooled logit
model as a benchmark. The logit model is estimated using the quarterly in-sample
panel data for 28 countries from 1990Q4-2005Q1. The estimates are reported in Ta-
ble 8.3 and are later used for predicting out-of-sample data from 2005Q2-2009Q2. 1
assume the policymaker to be more concerned of calling crises, and thus set u = 0.8.
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Table 8.3: The estimates of the logit model.

Variable Estimate  Error V4 Sig.
Intercept -6.744 0.612 -11.024 0.000 ***
Inflation -0.100 0.300 -0.334 0.738
Real GDP growth 0.076 0.334 0.229 0.819
Real credit growth -0.001 0.001 -0.613 0.540
Real equity growth 1.791 0.382 4.685 0.000 ***
Leverage 0.003 0.001 3.204 0.001 ***
Equity valuation 0.002 0.001 2.689 0.007 ***
CA deficit 1.151 0.308 3.741 0.000 ***
Government deficit 0.076 0.342 0.223 0.823
Global inflation 0.207 0.341 0.608 0.543
Global real GDP growth 1.156 0.419 2.761 0.006 ***
Global real credit growth 0.685 0.381 1.799 0.072 *
Global real equity growth 0.832 0.419 1.985 0.047 **
Global leverage 0.712 0.427 1.668 0.095 *
Global equity valuation 0.959 0.472 2.029 0.042 **

Notes: Significance levels: 1%, ***; 5 %, **; 10 %, *. The model has benchmark specifications of
p = 0.8 and h = 18 months.

Table 8.4: The evaluation of the SOFSM over M and o values.

© (tension) 0.001 0.3 0.5 0.75 1 1.5 2

M (#units)

50 (52) 0.07 0.06 0.06 0.06 0.06 0.06 0.06
100 (85) 0.08 0.07 0.07 0.06 0.06 0.06 0.06
150 (132) 0.09 0.07 0.08 0.07 0.06 0.06 0.06
200 (188) 0.09 0.09 0.09 0.07 0.07 0.06 0.06
250 (247) 0.09 0.09 0.09 0.07 0.07 0.07 0.06
300 (331) 0.09 0.09 0.09 0.08 0.07 0.07 0.06
400 (408) 0.10 0.10 0.10 0.09 0.09 0.09 0.09
500 (493) 0.11 0.10 0.10 0.10 0.09 0.09 0.09
600 (609) 0.11 0.11 0.10 0.10 0.09 0.09 0.09
1000 (942) 0.11 0.11 0.11 0.10 0.10 0.10 0.10

Notes: The table evaluates the SOFSM over M and o values for the benchmark specifications p = 0.8
and h = 18. Over the neighborhood radii o, first models to outperform the logit model (U, (p) = 0.08)
per M value are highlighted in gray and the chosen map is shown in bold. The real number of units is
shown in parenthesis since fulfilling the map ratio (75:100) affects the number of units.

A preference parameter of 0.8 belongs to a policymaker who is substantially more
concerned about missing a crisis than issuing a false alarm. The rationale for this
is that the model is targeted for use in risk identification, leading to further risk
assessments, rather than direct policy recommendations. This also follows the his-
torically large costs of financial crises (see Section 1) relative to the costs of an
internal in-depth investigation of risks and vulnerabilities. On the in-sample data,
the pooled logit model has U, (u) = 0.08. The training of the SOFSM is performed
on the same panel data and the evaluation results are shown in Table 8.4. For
M = 50, 400, 500, 600, 1000 no model is chosen for analysis, as they never or always
exceed the U, (u) of the logit model (U, () = 0.08). Finally, of the five highlighted
models, I select the one with M = 150 and ¢ = 0.5 (shown in bold) for its in-
terpretability and topological ordering. The Sammon’s mapping used as an aid in
judging topological ordering is shown in Figure 8.1.

The chosen model has 132 units on an 11x12 grid. Figure 8.2 presents the two-
dimensional SOFSM that represents the high-dimensional data. By performing
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Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial
stability space. The four clusters representing financial stability states, distinguished by lines and
colors, are derived using the values of the class variables (C18, C0O, P18, T0). Hence, the location on the
SOFSM represents the state of financial stability. Distributions of the individual indicators and class
variables are shown in Figures 9.2 and 9.3.

Figure 8.2: The two-dimensional grid of the SOFSM.

Ward’s clustering on the class variables, four class clusters are created according
to the stages of the financial stability cycle. The upper left cluster represents the
pre-crisis cluster (Pre-crisis), the lower left represents the crisis cluster (Crisis), the
center and lower-right cluster represents the post-crisis cluster (Post-crisis) and the
upper right represents the tranquil cluster (Tranquil). Yet, as already noted, the
four clusters are overlapping and hence the lines should only be used as an aid in
interpreting the map. When maximizing the U, (u) for policymakers with different
preferences, Figure 8.3 shows how the map is classified into two parts, where the
shaded area represents early-warning units and the rest tranquil units.

8.5 Performance and robustness of the SOFSM

Even though the aim of the SOFSM is a two-dimensional display for visualizing
threats to financial stability, the evaluation of it is performed with a focus on pre-
dictive performance. This section focuses on two types of performance evaluation:
comparisons to benchmark models and robustness tests of the SOFSM.

First, this section compares the performance of the semi-supervised SOFSM with an
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Notes: In the figure, the shaded area on the SOFSM (same map as in Figure 8.2) represents the part
of the map that is classified as early-warning units when maximizing the policymakers’ preferences with
three different parameter values (x = 0.7, 4 = 0.8 and p = 0.9) and a horizon of 18 months according
to the evaluation framework.

Figure 8.3: Early-warning units for different policymakers’ preferences.

Table 8.5: In-sample and out-of-sample performance of the benchmark models.

Positives Negatives
Model Data set Threshold TP FP TN  FN Precision Recall Precision Recall Accuracy U (u) U, (u) AUC
Logit Train 0.72 162 190 830 73 0.46 0.69 0.92 0.81 0.79 0.08 0.50 0.81
SOFSM Train 0.60 190 314 706 45 0.38 0.81 0.94 0.69 0.71 0.08 0.50 0.83
SOM Train 0.58 215 319 701 20 0.40 0.91 0.97 0.69 0.73 0.09 0.60 0.88
Logit Test 0.72 77 57 249 93 0.57 0.45 0.73 0.81 0.68 0.04 0.27 0.72
SOFSM Test 0.60 112 89 217 58 0.56 0.66 0.79 0.71 0.69 0.06 0.37 0.75

SOM Test 0.58 139 95 211 31 0.59 0.82 0.87 0.69 0.74 0.08 0.51 0.76

Notes: The table reports results for the logit, semi-supervised SOFSM and unsupervised SOM on
the train and test datasets, as well as the optimal threshold, for the benchmark specifications p =
0.8 and h = 18. To assess the performance of the models, the table also reports in columns the
following measures: TP = True positives, FP = False positives, TN= True negatives, FN = False
negatives, Precision positives = TP/(TP+FP), Recall positives = TP/(TP+FN), Precision negatives
= TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = (TP4+TN)/(TP+TN+FP+FN), U =
Usefulness (see Section 8.2), AUC = area under the ROC curve (TP rate to FP rate, see Section 8.2).
For further information on the evaluation measures, see Section 8.2. The best accuracy measure, as per
data set and evaluation measure, is shown in bold.
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unsupervised counterpart and a logit model. I train an unsupervised model with the
same specifications as the SOFSM to compare their performance. In Table 8.5, the
in-sample and out-of-sample performance with the benchmark specifications (u =
0.8 and C18) are shown for the semi-supervised SOFSM, unsupervised SOFSM
(denoted only by the SOM) and the logit model. As anticipated, the unsupervised
SOFSM performs to some extent better than the SOFSM along all measures, but
also lacks the separation of classes, which is necessary for interpreting the stages
of the financial stability cycle. Hence, as this is a key feature of the SOFSM,
henceforth I only focus on comparing the semi-supervised SOFSM and the logit
model.

For the benchmark models, the overall performance is similar between the SOFSM
and the logit model. On the train set, the SOFSM performs slightly better than
the logit model in terms of recall positives, precision negatives and the AUC mea-
sure, while the logit model outperforms on the other measures, and Usefulness is
by definition equal. The classification of the models are of opposite nature, as the
SOFSM issues a larger share of false alarms (FP rate=31%) than it misses crises
(FN rate=19%), whereas the logit model misses a larger share of crises (31%) than
it issues false alarms (19%). That explains also the difference in the overall accu-
racy, since the class sizes are imbalanced (around 20% pre-crisis and 80% tranquil
periods). The performance of the models on the test set differs, in general, similarly
as the performance on the train set, except for the SOFSM having slightly higher
overall accuracy and Usefulness. This may, in general, be due to the higher share
of crisis episodes in the out-of-sample dataset. In terms of out-of-sample U,.(u), the
SOFSM outperforms the logit model by 10 percentage points and underperforms
the unsupervised counterpart by 14 percentage points.

Second, the robustness of the SOFSM is tested with respect to policymakers’ pref-
erences (¢ = 0.7 and p = 0.9), forecast horizon (6, 12 and 24 months before a
crisis) and thresholds (A € [0, 1] with the AUC measure). The results of the ro-
bustness tests are shown in Tables 8.6 and 8.7 and Figure 8.4. Table 8.6 shows
the performance over different policymakers’ preferences, Table 8.7 over different
forecast horizons and Figure 8.4 and the second last column of Tables 8.6 and 8.7
over all possible thresholds.

For a policymaker, who is less concerned about issuing false alarms (u = 0.9),
the performance of the models are similar, except for slightly higher Usefulness of
the SOFSM compared to the logit model. This confirms that the SOFSM better
detects the rare crisis occurrences. For a policymaker, who is less concerned about
missing crises (¢ = 0.7), the Usefulness of the models is similar, but the nature of
the prediction is reversed; the SOFSM issues less false alarms than it misses crises,
whereas the logit model issues more false alarms than misses crises.

Over different forecast horizons, the in-sample performance is generally similar.
However, the out-of-sample Usefulness, with the exception of forecast horizon of
12 months (C12), is better for the SOFSM than for the logit model. Interestingly,
the logit model fails to yield any Usefulness (U,.(1) = 0.03) at a forecast horizon
of 6 months. Finally, the AUC measure, which summarizes the performance of a
model over all thresholds, can be computed for all models by calculating the areas
under the ROC curves, such as those shown in Figure 8.4 for the benchmark models
(1 = 0.8 and C18). It is the only measure to consistently show superior performance
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Table 8.6: Robustness tests for different preference values .

Positives Negatives
Model Dataset y Threshold TP FP TN FN Precision Recall Precision Recall Accuracy U (#) U, (u) AUC

Logit Train 0.7 0.72 162 190 830 73 0.46 0.69 0.92 0.81 0.79 0.06 039 038l

SOFSM  Train 0.7 0.75 153 166 854 82 0.48 0.65 0.91 0.84 0.80 0.05 037 0.83
Logit Train 0.8 0.72 162 190 830 73 0.46 0.69 0.92 0.81 0.79 0.08 050 0381
SOFSM  Train 0.8 0.60 190 314 706 45 0.38 0.81 0.94 0.69 0.71 008 050 0.83
Logit Tran 0.9 0.54 197 381 639 38 0.34 0.84 0.94 0.63 0.67 0.03 030 0.81
SOFSM  Train 0.9 0.50 214 419 601 21 0.34 0.91 0.97 0.59 0.65 0.04 032 083
Logit  Test 0.7 0.72 77 57 249 93 0.57 0.45 0.73 0.81 0.68 0.01  0.08 0.72
SOFSM  Test 0.7 0.75 76 56 250 94 0.58 0.45 0.73 0.82 0.68 0.01 0.07 0.75
Logit  Test 0.8 0.72 77 57 249 93 0.57 0.45 0.73 0.81 0.68 0.04 027 072
SOFSM  Test 0.8 0.60 112 89 217 58 0.56 0.66 0.79 0.71 0.69 0.06 037 0.75
Logit  Test 0.9 0.54 110 109 197 60 0.50 0.65 0.77 0.64 0.64 0.01 013 072

SOFSM  Test 0.9 0.50 134 109 197 36 0.55 0.79 0.85 0.64 0.70 0.03 027 0.75
Notes: The table tests robustness on in-sample and out-of-sample data for different p values given
h = 18. See the notes for Table 8.5.

Table 8.7: Robustness tests for different horizons h.

Positives Negatives
Model Data set HorizonThreshold TP FP TN FN Precision Recall Precision Recall Accuracy U () U, () AUC
Logit  Train C6 0.72 70 282 882 21 0.20 0.77 0.98 0.76 0.76 0.08  0.53 0.81
SOFSM  Train C6 0.51 88 530 634 3 0.14 0.97 1.00 0.54 0.58 0.08 051 0.83
Logit  Train Cl12 0.72 117 235 855 48 0.33 0.71 0.95 0.78 0.77 0.08 049 0.80
SOFSM  Train Cl12 0.69 123 267 823 42 0.32 0.75 0.95 0.76 0.75 0.08  0.50 0.84
Logit  Train C18 0.72 162 190 830 73 0.46 0.69 0.92 0.81 0.79 0.08  0.50 0.81
SOFSM  Train C18 0.60 190 314 706 45 0.38 0.81 0.94 0.69 0.71 0.08  0.50 0.83
Logit  Train C24 0.58 242 286 673 54 0.46 0.82 0.93 0.70 0.73 0.08 052 0.81
SOFSM  Train C24 0.63 233 241 718 63 0.49 0.79 0.92 0.75 0.76 0.08  0.54 0.85
Logit Test Cc6 0.72 18 116 302 40 0.13 0.31 0.88 0.72 0.67 0.00  0.03 0.57
SOFSM  Test Cc6 0.51 47 205 213 11 0.19 0.81 0.95 0.51 0.55 0.05  0.32 0.65
Logit Test Cl12 0.72 49 85 275 67 0.37 0.42 0.80 0.76 0.68 0.03  0.19 0.64
SOFSM  Test C12 0.69 51 102 258 65 0.33 0.44 0.80 0.72 0.65 0.02  0.16 0.68
Logit Test C18 0.72 77 57 249 93 0.57 0.45 0.73 0.81 0.68 0.04 027 0.72

SOFSM  Test C18 0.60 12 89 217 58 0.56 0.66 0.79 0.71 0.69 0.06  0.37 0.75
Logit Test C24 0.58 132 68 185 91 0.66 0.59 0.67 0.73 0.67 0.05 0.32 0.76
SOFSM  Test C24 0.63 150 51 202 73 0.75 0.67 0.73 0.80 0.74 0.07  0.47 0.80

Notes: The table tests robustness on in-sample and out-of-sample data for different forecast horizons
h given the policymakers’ preferences p = 0.8. See the notes for Table 8.5.

for the SOFSM. A caution regarding the AUC measure is, however, that parts
of the ROC curve that are not policy relevant are included in the computed area.
When comparing Usefulness for each pair of models, the SOFSM shows consistently
equal or superior performance except for a single out-of-sample evaluation with a
forecast horizon of 12 months. To sum up, we can conclude that the SOM performs,
in general, as well as or better than a logit model in both classifying the in-sample
data and in predicting out-of-sample the global financial crisis that started in 2007.

8.6 Concluding summary

The essence of this chapter was to describe how the SOFSM is created. The general
framework used for creating the SOFSM consists of five building blocks: the SOM,
crisis dates, vulnerability indicators, a model training framework and a model evalu-
ation framework. This chapter has discussed the identification of systemic financial
crises, the use of macro-financial vulnerabilities, risks and imbalances, and model
evaluation and training frameworks. However, the general framework should not
be restricted to precise definitions of the building blocks used herein. For an appli-
cation with another focus, the components should obviously be defined differently.
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Notes: The figure shows on in-sample and out-of-sample data ROC curves given policymakers’ prefer-
ences i = 0.8 and forecast horizons h = 18 months. The vertical and horizontal axes represent True
Positives (TP) rate (TP / (TP + FN)) and False Positives (FP) rate (FP/(FP+TN)). The AUC, given
in Tables 8.5, 8.6 and 8.7, measures the area below these curves.

Figure 8.4: ROC curves for the SOFSM and the logit model.

For instance, the choice of explanatory variables and the dating of financial crises
should be designed according the task at hand, such as the events being banking,
debt or currency crises and vulnerabilities being indicators measuring banking sys-
tems, solvency or exchange-rate pressure. Likewise, the framework could be applied
to firm-level data, where the events could be bank failures and indicators financial
ratios based upon balance-sheet and income-statement data. Ironically, the view
of a “financial stability cycle” could still apply, as banks tend not to disappear due
to a failure.

The outcome of this chapter is a two-dimensional display for visualizing the high-
dimensional state of financial stability. Hence, this chapter only provides a basis
for monitoring threats to financial stability, whereas this display can be used as a
groundwork for a wide range of tasks. The following chapter focuses on exploiting
the SOFSM for assessing and identifying the three key systemic risks of macropru-
dential oversight: ) endogenous build-up of widespread imbalances (early-warning
models); i) exogenous aggregate shocks (macro stress-testing models); and iii)
contagion and spillover (contagion and spillover models).
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? Lastly, movel methods such as self-organising financial
stability maps provide an alternative means of gauging
systemic stress through visual means — thereby providing
a useful complement to numerical signalling methodolo-
gies.”

— Vitor Constancio, Vice-President of the ECB, Frankfurt
am Main, 14 June 2012

9 Exploiting the SOFSM

This chapter exploits the Self-Organizing Financial Stability Map (SOFSM) for
tasks in macroprudential oversight. The SOFSM was created in Chapter 8, whereas
the Self-Organizing Map (SOM) extensions used for exploiting it were introduced
in Chapter 7. The tasks performed with the SOFSM are two, risk identification
and assessment, of which the former is supported by early-warning models and
the latter by macro stress-testing and contagion or spillover models. The three
models target the three respective forms of systemic risk: widespread imbalances,
aggregate shocks and contagion and spillover risk. Drawing upon Papers 7 and 8,
the SOFSM is exploited by the means of the following eight approaches (where the
numbering refers to sections and the parenthesis represents the addressed systemic
risk).

9.1: Assessing distributions of the macro-financial indicators and all class variables
with the help of the feature planes of the SOFSM (imbalances).

9.2: Mapping the state of financial stability for individual data and aggregates by
the means of labels and trajectories on the SOFSM (imbalances).

9.3: Fuzzification of the SOFSM for visualizing temporal belongingness to finan-
cial stability states of individual data and class distance structures on the
map (imbalances).

9.4: Probabilistic modeling of state transitions on the SOFSM for visualizing prob-
abilities of transition to financial stability states of individual data and for
assessing the cyclical and temporal structure of the financial stability cycle
(imbalances).

9.5: Scenario analysis for economies on the SOFSM by assessing the effects of pos-
itive and negative shocks, both domestically and globally (aggregate shocks).

9.6: Using superimposed portfolio network topologies and neighborhoods on the
SOFSM to assess the spread of financial distress and shock propagation (con-
tagion and spillover).

9.7: Computing distances between data and their mean profiles on the SOFSM to
find extreme events and imbalances in economies’ macro-financial conditions
(imbalances).

9.8: Complementing the SOFSM with a solely predictive model that uses geneti-
cally optimized neural networks for the identification of risks (imbalances).

Figure 9.1 relates the eight means for exploiting the SOFSM, as well as the Self-
Organizing Time Map (SOTM) in the subsequent chapter, to risk identification,
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risk assessment and risk communication. The red components represent risks and
vulnerabilities, the green components represent the need for risk identification, as-
sessment or communication, and the blue frame marks the contributions of this
thesis. The final ingredient of the process highlights the need for visualization
tools not only for internal communication, but also for external risk warnings,
policy recommendations and Financial Stability Reports in general. The figure
illustrates separate feedback loops of internal and external risk communication,
where the solid black line shows that internal communication interacts with risk
identification and assessment (green components), and the dashed black line shows
that external communication has effects on potential sources of systemic risk, vul-
nerabilities, and material risks (red components). The lack of focus on aids for risk
communication directly follows from the literature review in Section 9.1 and the
conventional macroprudential oversight process presented in Section 3.4 (see Fig-
ure 3.4). Hence, the figure highlights the importance of visual means for external
communication of the results of risk identification and assessment tools, in addi-
tion to the visuals’ inherent properties of amplifying cognition and understanding
of policymakers in the internal monitoring process.

The creation of the SOFSM in the previous chapter was related to the process of
knowledge discovery in databases (KDD), in which this chapter was mainly po-
sitioned as the final step of knowledge consolidation and deployment. Yet, this
chapter can also be related to the visual analytics process introduced in Chapter
5. There is a direct link to the fields of information visualization (Card et al.,
1999) and visual analytics (Thomas and Cook, 2005) in that the tools illustrated
herein provide means to amplify cognition through visual representations, as well
as a combination with analytical reasoning and methods. The connection can be
illustrated by Keim’s (2006) visual analytics mantra: “Analyze first, show the im-
portant, zoom, filter and analyze further, details on demand”. The SOFSM created
in the previous chapter provides an analytical solution for the first step of analyze
first. In this chapter, many of the visualizations on the SOFSM provide means for
showing the important, zooming, and filtering (e.g., mappings of individual data).
Moreover, the analytical approaches put forward in this chapter provide means
for analyzing further, after which details on demand can be viewed. Thus, the
mantra involves automated analytical analysis before and after the use of visual
representations.

From the viewpoint of macroprudential oversight, each of the following sections dis-
cusses how that particular approach aids in either risk identification or assessment,
given an ultimate aim of risk communication.

9.1 The SOFSM: its output and interpretation

This section presents the output of the SOFSM and an interpretation of it. In par-
ticular, the SOFSM is used for describing the four states of the financial stability
cycle. For this purpose, we can make use of Figures 8.2, 9.2 and 9.3, in which the
SOFSM, feature planes for the 14 macro-financial indicators and the main classes,
and feature planes for all the class variables are shown, respectively. Figure 8.2
displays the two-dimensional SOFSM that represents a high-dimensional financial
stability space. The feature planes in Figures 9.2 and 9.3 are layers of the SOFSM.
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Risk identification

Identify:

i) Vulnerabilities

i1) Possible triggers

iii) A ranking of their
likelihood to materialize

Tools:

i) Early-warning models
ii) Market intelligence
ii) Experience/judgment

Risk assessment

Assess:

1) Transmission channels
1i) Potential severity of risk
materialization

1ii) Resilience to shocks

Tools:

i) Contagion models
ii) Macro stress-testing
iif) Market intelligence

Internal and external

Risk communication

Communicate:

i) Internal announcement
1i) Policy recommendations
ifi) Risk warnings

Tools:

i) Internal communiqués

ii) Financial Stability Reports
iii) External warnings and
recommendations

iv) Experience/judgment

Thesis: Thesis: Thesis:

9.1: Feature planes 9.5: Scenario analysis 9.1: Feature planes

9.2: Labels and trajectories 9.6: Shock-propagation 9.2: Labels and trajectories
9.3: A fuzzification 9.3: A fuzzification

9.4: Transition probabilities 9.4: Transition probabilities
9.7: Extreme events 9.5: Scenario analysis

9.8: Predictive modeling 9.6: Shock-propagation

10.: Self-Organizing Time Map 10.: Self-Organizing Time Map

Notes: The figure represents the role of the tools in this thesis in the process of risk identification,
assessment and communication. The red components represent risks and vulnerabilities, the green
components represent the need for risk identification, assessment or communication, and the blue frame
marks the location of contributions of this thesis. The feedback loops of internal and external risk
communication are illustrated with solid black lines and and the dashed black lines, respectively.

Figure 9.1: The SOFSM for risk identification, assessment and communication.

Figure 9.2 shows the distribution of the indicators and the four main class variables
(Pre-crisis, Crisis, Post-crisis and Tranquil periods), whereas the feature planes in
Figure 9.3 show the distribution of the classes on the SOFSM. An assessment
of these figures may aid in understanding relations among the variables, includ-
ing all macro-financial indicators and all classes, which is a key ingredient of risk
identification.

In contrast to early-warning models using binary classification methods, such as
discrete choice techniques, the SOFSM enables simultaneous assessment of the as-
sociations with all four stages of the financial stability cycle, i.e., class clusters.
Thus, new models need not be derived for different forecast horizons or definitions
of the dependent variable. The feature planes in Figures 9.2 and 9.3, which disen-
tangle the individual vulnerabilities and risks of the SOFSM in Figure 8.2, enable
one to directly detect signals of a crisis (or any of the four states). For instance, the
following strong associations are found. First, we can differentiate between “early”
and “late” signs of a crisis by assessing differences within the pre-crisis cluster. The
strongest early signs of a crisis (upper right part of the cluster) are high domestic
and global real equity growth and equity valuation, while most important late signs
of a crisis (lower left part of the cluster) are domestic and global real gross domestic
product (GDP) growth, and domestic real credit growth, leverage, budget surplus,
and current account deficit. Second, the highest values of global leverage and real
credit growth in the crisis cluster exemplify the fact that increases in some indica-
tors may reflect a rise in financial stress only up to a specific threshold. Increases
beyond that level are, in these cases, more concurrent than preceding signals of
a crisis. Similarly, budget deficits characterize the late post-crisis and early tran-
quil periods. The characteristics of the financial stability states are summarized in
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Table 9.1: Summary statistics of the financial stability states.

Variable Pre crisis Crisis Post crisis Tranquil
Centre Range Centre Range Centre Range Centre Range
Inflation 0.49 [0.22,0.66] 0.55 [0.30,0.69] 0.59 [0.26,0.76] 0.37 [0.17.0.68]
Real GDP growth 0.67 [0.40,0.80] 0.48 [0.14,0.83] 0.34 [0.25,0.50] 0.53 [0.30.0.72]
Real credit growth 0.66 [0.28,0.85] 0.55 [0.35,0.82] 0.39 [0.18,0.68] 043 [0.21.0.75]
Real equity growth 0.68 [0.41,0.85] 0.28 [0.16,0.58] 0.39 [0.23,0.80] 0.61 [0.40.0.74]
Leverage 0.63 [0.31,0.80] 0.59 [0.37,0.81] 0.52 [0.23,0.83] 0.29 [0.18.0.51]
Equity valuation 0.73 [0.62,0.80] 0.55 [0.27,0.81] 0.33 [0.17,0.66] 0.45 [0.30.0.63]
CA deficit 0.58 [0.30,0.78] 0.54 [0.26,0.80] 0.48 [0.25,0.77] 0.41 [0.19.0.66]
Government deficit 0.38 [0.19.0.74] 0.45 [0.22,0.62] 0.53 [0.32,0.85] 0.61 [0.26.0.85]
Global inflation 0.33 [0.08,0.61] 0.61 [0.34,0.76] 0.46 [0.20,0.79] 0.63 [0.11.0.90]
Global real GDP growth 0.67 [0.54.0.74] 0.67 [0.30,0.86] 0.29 [0.13,0.69] 045 [0.13.0.71]
Global real credit growth 0.55 [0.28,0.77] 0.86 [0.61,0.92] 0.37 [0.16,0.67] 0.33 [0.15.0.52]
Global real equity growth 0.72 [0.47,0.80] 0.4 [0.23,0.63] 0.34 [0.11,0.79] 0.54 [0.20.0.73]
Global leverage 0.35 [0.18,0.60] 0.79 [0.57,0.91] 0.58 [0.17,0.77] 0.33 [0.16.0.73]
Global equity valuation 0.67 [0.48,0.82] 0.81 [0.54,0.91] 0.36 [0.14,0.76] 0.27 [0.19.0.55]

Notes: Columns represent characteristics (cluster center and range) of the financial stability states on
the SOFSM and rows represent indicators. Since data are transformed to country-specific percentiles,
the summary statistics are comparable across indicators and clusters.

Table 9.1 through summary statistics.

In the remainder of this chapter, I mostly use the SOFSM for mapping the state of
financial stability by combining the SOFSM display with data concerning economies’
macro-financial conditions

9.2 Visualizing the state of financial stability on the SOFSM

In this section, cross-sectional and temporal samples of the panel dataset are
mapped on the two-dimensional SOFSM. Aggregates for groups of countries are
also computed in order to explore the state of financial stability globally, in ad-
vanced economies and in emerging economies. Data points are mapped onto the
grid by projecting them to their best-matching units (BMUs) using only the indica-
tor vector x(;,) € R'. Trajectories of consecutive time-series data are shown with
arrows. These mappings provide means for visualizing the state of financial stabil-
ity on the SOFSM, which is clearly linked to not only the task of risk identification,
but also provides direct means for risk communication.

For a simultaneous temporal and comparative analysis, I map the state of finan-
cial stability based upon the evolution of macro-financial conditions for the United
States (US) and the euro area in Figure 9.4. The data for both economies repre-
sent the first quarters of 2002 to 2010 and the final point of the sample, 2011Q2.
Without a precise empirical treatment for accuracy, the map well recognizes for
both economies the pre-crisis, crisis and post-crisis stages of the financial stability
cycle by circulating around the map during the analyzed period. The early-warning
units in Figure 8.3 confirm that even a policymaker with u < 0.7 would have cor-
rectly predicted crises in both economies. Interestingly, the euro area is located in
the tranquil cluster in 2010Q1. This indicates that the aggregated macro-financial
measures for the euro area as a whole did not reflect the elevated risks in the euro
area periphery at that point in time. However, it also coincides with a relatively low

176



'son[eA S[RIIRA [[}IM POJRIDOSSE 9 URD UOIIRIO] [ORD dIOYM

‘A3111qe)s [RIOURUY JO 93e)s 1) sjuesardal NSJIOS Y3 UO UOI3ROO[ ey} J0€J oy} YSIYSIY smoe1a 9sey ], '(sportad [mbuei} 10 sistro-3sod ‘sisto ‘sistio-axd)
spottad juaisyip ur ejep jo uorpriodoird y3iy e jussaidal senjea Y3IiY ‘() pur [ seneA oye) 1RY) So[qRLIRA SSR[D AIRUI] JO 9sed oY} U] ‘puI8 NSJOS 2y uo
Uwnjod e)ep Yoes Jo UOIINJLIISIP 9y} moys soue[d 9Injes] 9so1) ‘SO[(RIILA SSR[O UIRW  PUE SIOJEIIPUI T JO SISISUOD 10909A BJep Yoed sy *(0J,) sporad
[mbuel], pue (81J) SISI0-1504 ‘(0D) SISLI) ‘(|T) SISLIO-dIJ dI' SI[(RLILA SSBR[O UIRW INOJ oY} ‘T°Q 9B, Ul PAUYIP I SI0JeDIPUI oY) S[IYA\ ‘T'S
®.H5w_,m~ ur INSAOS 243 jo m.~®%ﬁ~ aIe mwﬁ.me 2anjea] 9y, "So[qreLIRA SSB[D MIRWOUL(q 9Y) pur SI0}edIpUIl {yT 973 I0J m@ﬁdﬁﬁ 2anjeaJ smoys W,Hﬂw@ 9], ‘S93ON

1o
20
€0
70
S0
90

20
€0
70
S0
90
20

20
€0
70
S0
90
L0
< A A A S g0
ymmoib dao [eai [eqo|D uopeyul [eqo|9 ymo.B ypaio esy

ymouB 4ao [eay

20
€0
70
S0
90
20
80

z0
€0
70
S0
90
20
80

uonjeyu|

20

z0
€0
v0
S0
90
L0
80

Feature planes for the SOFSM

9.2

igure

F

177



Notes: The figure shows the distributions of different pre- and post-crisis horizons. As in Figure 9.2,
these are layers of the SOFSM in Figure 8.2. The feature planes C24, C18, C12, C6, P24, P18, P12
and P6 show the map distribution of class variables that represent 24, 18, 12 and 6 months before and
after a crisis, respectively. While CO and TO show the distribution of crisis and tranquil periods, PPCO
represents the co-occurrence of pre- and post-crisis periods.

Figure 9.3: Feature planes for all classes.

Financial Distress Index (FDI) for the aggregate euro area. This can be explained
by the weaknesses and financial stress in smaller economies being averaged out
by improved macro-financial conditions in larger euro area economies, highlighting
the importance of country-level analysis. As the SOFSM is flexible with respect
to input data, it is of central importance that the included set of vulnerability
indicators capture the particular events of interest. The macro-financial vulnera-
bilities currently used are best suited for capturing the build-up of vulnerabilities
in the form of boom-bust cycles. However, they are less useful in identifying sit-
uations, where, for example, bank funding constraints or counterparty risks in a
post-crisis recovery phase cause elevated financial stress that feeds back to the real
economy, increasing the probability of a financial crisis. Furthermore, by using the
traditional macro-financial vulnerabilities, it is rather difficult to capture situations
where, as in the ongoing debt crisis, self-fulfilling expectations drive the equilibrium
outcomes. Nevertheless, the euro area has moved to the border of the pre-crisis
cluster in 2010Q4, and to an adjacent unit in 2011Q1 and Q2. This reflects the
ongoing sovereign and banking crises as with p < 0.7 this particular location is an
early-warning unit (see Figure 8.3). The US is located in the post-crisis cluster in
2010Q1 and in the tranquil cluster in 2011Q2.

Figure 9.5 represents a cross-sectional mapping of the state of financial stability for
all countries in 2010Q3 and in 2011Q2, which is the latest data point in the analysis.
In 2010Q3, the countries are divided into three groups of financial stability states.
The map indicates elevated risks in several emerging market economies (Mexico,
Turkey, Argentina, Brazil, Taiwan, Malaysia and the Philippines), while most of
the advanced economies are in the lower right corner of the map (post-crisis and
tranquil cluster). Three countries (Singapore, South Africa and India) are located
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Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial
stability space (same as in Figure 8.2). The lines that separate the map into four parts are based on
the distribution of the four underlying financial stability states. Data points are mapped onto the grid
by projecting them to their BMUs using only macro-financial indicators. Consecutive time-series data
are linked with arrows. The data for both the US and the euro area represent the first quarters of
2002—2011 as well as the second quarter of 2011.

Figure 9.4: A mapping of the US and the euro area.
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on the border of the tranquil and pre-crisis clusters, which is an indication of a
possible future transition to the pre-crisis cluster. Interestingly, in 2011Q2, most
economies are located in the tranquil cluster, while the euro area has the highest
financial stress by being located close to the pre-crisis cluster.

Further, I map the state of financial stability for three aggregates: the world, emerg-
ing market economies and advanced economies. The state of financial stability for
the aggregates is computed by weighting the indicators for the countries in our sam-
ple using stock market capitalization to proxy their financial importance. Hence,
an aggregated data vector is computed as follows: qg4¢;) = Zi[:l(wi,t/Wt)xi’t),
where z; ; is a data vector for country ¢ at time ¢, w; ; is stock market capitalization,
W is aggregated stock market capitalization and I represents all countries. These
aggregates can, like any data point, be projected onto the map to their BMU.

The upper map in Figure 9.6 shows the evolution of global macro-financial condi-
tions in the first quarters of 2002 to 2011. The global state of financial stability
enters the pre-crisis cluster in 2006QQ1 and the crisis cluster in 2007Q1. It moves
via the post-crisis and tranquil cluster back to the post-crisis cluster in 2011Q1.
This coincides with the global evolution of the FDI. More interestingly, the model
signals out of sample a global financial crisis as early as in 2006Q1. The separation
of the global aggregate into emerging market and advanced economies is shown in
the lower map in Figure 9.6. The mapping of the advanced economy aggregate
is very similar to the one of the world aggregate, which is mainly a result of the
high share of stock market capitalization of the advanced economies. Notably, the
movements of the financial stability states of the emerging markets are also similar
to those in the advanced economies, illustrating the global dimension of the cur-
rent crisis. While the emerging market cycle moves around that of the advanced
economies, it does not indicate significant differences in the timeline or strength of
financial stress.

9.3 Fuzzification of the SOFSM

Judging the degree of membership in a cluster on the SOFSM is not an en-
tirely straightforward task. This section interchanges the current clustering of the
SOFSM by fuzzifying and classifying it with a distance-based metric. As we not
only have class information, but also utilize a semi-supervised SOM with the classes
in the ordering process, there is no need to estimate clusters and their centroids.
Following Paper 8 (and Section 7.2.1), membership degrees are computed using
inverse Euclidean distances by only using the class vector () € R*. The rationale
for this is the focus on distances between mean profiles of classes rather than those
between indicators. The SOFSM is fuzzified by computing the inverse distance
between reference vector m;() and each perfect representative state center cy .y
(as in Equation 7.2), and normalized to fulfill the probabilistic constraint (as in
Equation 7.3). By a defuzzification of the results using the maximum-membership
method, I also provide a crisp clustering. This enhances the visualization capability
by enabling assessment of temporal belongingness to the financial stability states,
where the states are expressed by representative cluster centers and fluctuations in
macro-financial conditions are represented by the temporal variation of belonging-
ness. In addition, visualizations of the memberships of units on a SOM grid enable
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2010Q3

Notes: The figure presents a cross-sectional mapping of financial stability states for all countries in
the sample in 2010Q3 and 2011Q2. The figure displays the two-dimensional SOFSM that represents a
high-dimensional financial stability space (same as in Figure 8.2). The lines that separate the map into
four parts are based on the distribution of the four underlying financial stability states. Data points
are mapped onto the grid by projecting them to their BMUs using only macro-financial indicators, but
positions are approximate to fit all labels. The data for all economies represent the third quarter of
2010 and the second quarter of 2011.

Figure 9.5: A mapping of all countries in 2010Q3 and 2011Q2.
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Notes: The figures displays the two-dimensional SOFSM that represents a high-dimensional financial
stability space (same as in Figure 8.2). The lines that separate the map into four parts are based on
the distribution of the four underlying financial stability states. Data points are mapped onto the grid
by projecting them to their BMUs using only macro-financial indicators. Consecutive time-series data
are linked with arrows. On the first figure, the data for the aggregated world economy represent the
first quarters of 2002-2011. On the second figure, the data for both advanced economies (AEs) and
emerging market economies (EMEs) represent the first quarters of 2002—2011.

Figure 9.6: A mapping of aggregates.
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assessment of the class structures. In the macroprudential oversight process, this
supports risk identification, not the least the communication of individual data on
the SOFSM.

Thereby, class information is accounted for by setting the number of states equal to
the number of classes, i.e., four, and their centers as perfect states of the financial
stability cycle: pre-crisis, crisis, post-crisis and tranquil states. I test different spec-
ifications of the fuzzifier (§ = 1.0,1.2,...,5.0), but end up using squared Euclidean
distances (§ = 2) since that allows for overlapping, yet neither entirely crisp nor
erased, state borders. While the differences between the most extreme choices of
0 are significant, the results are stable for values close to § = 2. In Figure 9.7,
memberships to each state are shown on membership planes, where also the de-
fuzzified crisp states are shown by contour lines (as well as on all other following
grids, e.g., Figure 9.7). The crispest part is the upper right corner of the tranquil
state, whereas the rest have more overlap. The location of the cluster center (i.e.,
units closest to the perfect representative state center cy(.;)), as shown by white
X-marks, also depict the location of largest memberships. For instance, in the pre-
crisis cluster, units closest to the crisis cluster have the largest memberships. Figure
9.9 shows how the fuzzification can be turned into line graphs for the trajectories
in Figure 9.7, where membership in states and their variation over time represent
fluctuation in the current state of financial stability, and vertical lines represent
occurred crises. In addition to the crude trajectories on the SOFSM, this enables
one to assess how the degree of membership in the financial stability states vary
over time. The line graphs clearly depict increases in membership degrees in the
pre-crisis states prior to crises. The figures depict, for instance, that the pre-crisis
memberships in the US were of a larger magnitude than in the euro area.

9.4 Transitions on the SOFSM

Probabilities of transition provide means to support the judgment of the temporal
structure on the SOFSM in general and the cyclical nature of the financial stability
cycle in particular. The temporal patterns are approached by the means of comput-
ing, summarizing and visualizing probabilities of future state transitions. From the
viewpoint of macroprudential oversight, this enables not only (risk) identification
of the most likely future state transitions for each unit, and thus also pairing to
individual data, but also country profiling of low- and high-risk financial stability
states.

As shown in Figure 9.10, the transition probabilities are computed for unit-to-state
switches and visualized on own transition planes, and summarized as maximum
transition probabilities conditional on switching, where labels show location and
color probability. I tested a wide range of time spans (s = 6,12,18,24,48), but
chose for analysis a time span of 18 months (s = 18). Hence, transition prob-
abilities represent the likelihood of switching to a state within 18 months. The
rationale behind choosing s = 18 is that the SOFSM is also calibrated for optimal
performance in terms of predicting vulnerable states 18 months prior to a crisis.
Moreover, the transition patterns are considerably robust to changes in s. The
length of movements increase with increases in s, as expected, while the directions
of movements are stable. Most notably, while the transition patterns validate the
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Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial
stability space (same as in Figure 8.2), but differs with respect to the partitioning of the map. I use a
defuzzification of the financial stability states to derive the lines that separate the map into four clusters.
Data points are mapped onto the grid by projecting them to their BMUs using only macro-financial
indicators. Consecutive time-series data are linked with arrows. The data for both US and the euro
area represent the first quarters of 2002—2011.

Figure 9.7: The US and the euro area on a fuzzified SOFSM.
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Tranquil Pre-crisis Crisis

Notes: The figure represents memberships to the financial stability states, where white X-marks show
the location of perfect representative state centers. The contour lines that separate the map into four
clusters are derived using a defuzzification of the memberships.

Figure 9.8: Membership planes for the SOFSM.

assumed financial stability cycle, the cycle is shown not to be entirely well-behaving
or continuous. For instance, the SOFSM shows high probability of transition to
the crisis state on the border between the tranquil and pre-crisis states, as well as
during extreme tranquil times. I also perform a similar line graph representation
as that for the fuzzification, but instead with indications of future states, where
vertical lines again represent occurred crises. Figure 9.11, while depicting proba-
bilities according to the financial stability cycle, illustrates the crisis indications in
the extreme part of the tranquil state and a rise of new instabilities in 2010.

9.5 Scenario analysis on the SOFSM

This section applies the SOFSM to scenario analysis. While the approach herein
is an extremely simple version of what-if or scenario analysis, as it excludes all
ingredients of more advanced macro stress-testing, the focus is on illustrating how
the SOFSM suits for visualizing potential scenarios. We have previously used the
SOFSM as a low-dimensional display onto which we have projected realized obser-
vations of macro-financial conditions, i.e., history. Scenario analysis differs only in
the sense that the projected data are various scenarios of future conditions rather
than historical patterns. However, more advanced macro stress-testing approaches
should be used to derive effects of various scenarios. This relates to the task of risk
assessment, in addition to the simultaneous means for risk identification.

Figure 9.12 presents transitions of the euro area given five different scenarios. In
order to facilitate the visual representation of the scenarios, cluster memberships
are illustrated with texture (i.e., a Bertin’s selective variable) and the scenarios in
hue (i.e., a Bertin’s associative variable). The three types of introduced shocks are
as follows.
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State memberships for US from 2002-2011
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Notes: The figure represents memberships of the US and the euro area trajectories in the financial
stability states (see trajectory in Figure 9.7). The vertical lines represent occurred crises.

Figure 9.9: Line graphs of US and euro area membership degrees.
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Figure 9.10: Transition planes for the SOFSM.

1) Univariate shocks: +20 percentile variation in any variable.

2) Internal shocks: 2a) a positive (+30 percentiles) and 2b) negative (—30 per-
centiles) shock to domestic variables.

3) External shocks: 3a) a positive (+30 percentiles) and 3b) negative (—30 per-
centiles) shock to global variables.

The internal shocks represent changes in domestic macro-financial conditions that
involve changes in real GDP, credit and equity growth, as well as leverage and
equity valuation. Likewise, the external shocks involve the same changes in macro-
financial conditions, but on a global level. The aim of positive and negative shocks
is to represent increases and decreases in boom-like conditions.

The results of the scenario analysis in Figure 9.12 are as follows. First, the intro-
duced univariate 420 percentile variation in any variable shows that the euro area
is not substantially sensitive to minor changes. The black arrows illustrate only
a one-unit transition. Second, the introduction of positive and negative internal
shocks in Figure 9.12 show different behavior with solid green and red arrows. A
positive shock, involving booms in macro-financial conditions, would move the euro
area to a substantially more vulnerable position. On the contrary, a negative inter-
nal shock would only involve a one-unit transition towards a less vulnerable state.
Third, Figure 9.12 also tests the resilience of the euro area conditions to external
positive and negative shocks (shown with dashed green and red arrows), involving
global increases and decreases in macro-financial vulnerabilities. Opposite to inter-
nal shocks, the results show that the euro area is more sensitive to negative external
shocks than positive ones. That is, a positive shock to macro-financial conditions
only illustrates a two-unit transition towards a more vulnerable state, whereas a
negative shock, or decrease in boom-like conditions, would involve a substantial
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Figure 9.11: Line graphs of US and euro area transition probabilities.
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Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial
stability space (same as in Figure 8.2). The lines that separate the map into four parts are based on
the distribution of the four underlying financial stability states. The euro area is mapped onto the grid
by projecting it to its BMU using only the macro-financial indicators. The three types of introduced
shocks are as follows: i) univariate shocks: £20 percentile variation in any variable (black solid line);
i) internal shocks: 2a) a positive (430 percentiles, ) and 2b) negative (-30 percentiles,
red solid line) shock to domestic variables; and %i%) external shocks: 3a) a positive (+30 percentiles,
) and 3b) negative (-30 percentiles, red dashed line) shock to global variables.

Figure 9.12: Scenario analysis on the SOFSM.

transition towards a less vulnerable state. In a policy context, this could be re-
lated to the extent that one should be concerned about worsened macro-financial
conditions globally, or some other specified shock.

9.6 Shock propagation on the SOFSM

Transmission of financial shocks is often defined by a wide variety of measures,
such as financial or trade linkages, proxies of financial shock propagation, equity
market co-movement or geographical relations (see, e.g., Dornbusch et al. (2000)
and Pericoli and Sbracia (2003)). I assess transmission of shocks on the SOFSM
with two methods: a superimposed portfolio network topology and neighborhoods
on the SOFSM. This enables analyzing the spread of financial instabilities from
two points of views: the portfolio network topology indicates propagation of finan-
cial stress through asset-based real linkages, while the financial stability topology
indicates propagation to similar macro-financial conditions. The latter type of
spread of events could propagate through both real (e.g., common exposures) and
information (e.g., similar risks as judged by the markets) channels.

On the SOFSM grid in Figure 9.13, I have superimposed a network of financial links
in 2010Q1 with the US as its center and a network in 2011Q2 with the euro area
as its center. The networks are based upon external assets (equities and bonds)
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as reported in the Coordinated Portfolio Investment Survey by the International
Monetary Fund (IMF). Nodes of each economy are located in their BMUs and
their size is scaled as to the sum of exposures to other economies. The thickness of
the edges represents the size of external exposure to total exposures per economy,
where the color of the edge indicates the address of the exposure holder. Indeed,
Figure 9.13 combines the state of financial stability, or probability of a crisis, with
the system-wide exposures of each economy. In 2010, the size of financial linkages
to high-risk economies (e.g., Brazil and Mexico) enlighten about both past and
present: high levels of previous financial stress in the US may have impacted their
current state and they still have a high risk of current and future shock propagation
from the US. Likewise, the strong connections of economies to the euro area is an
indication of transmission channels in the case of distress in the euro area (e.g.,
Denmark, Poland, Turkey and United Kingdom (UK)).

While crises are often transmitted through asset-based contagion channels, such
as financial linkages, they may also be propagated through similarities in macro-
financial conditions, something particularly important when dealing with data of
changing nature. When assessing the SOFSM, the concept of neighborhood of a
country represents the similarity of the current macro-financial conditions. Hence,
independent of location on the map, an economy adjacent to countries in crisis
could through shock propagation experience a similar wave of financial distress.
This type of representation may help in identifying events surpassing historical ex-
perience and the changing nature of crises. Thus, an economy in the upper left part
of the network for 2010 in Figure 9.13, say Mexico, could propagate financial in-
stabilities to countries with similar macro-financial vulnerabilities, e.g., Argentina
and Brazil. While this is particularly useful for visual real-time surveillance, we
can also test this by letting locations of crises in period t be signals of crises in that
location in period t + s. More precisely, I create a leading indicator that signals a
crisis in unit my in period t+s if a country that experienced a crisis in ¢ was located
in my, where s = 6,12,18,24,48. As the indicator is a point forecast P;, it needs
no transformation through threshold values. Table 9.2 shows the predictive per-
formance of neighborhoods on the SOFSM with forecast horizons of 6-48 months,
where a horizon of 24 months outperforms the rest. A policymaker with y = 0.8
derives the largest Usefulness. While the table confirms the usefulness of detecting
the spread of crisis, the nature of the shock-propagation measures suggest that they
are rather complements than substitutes to standard early-warning models.

9.7 Outlier analysis with the SOFSM

The SOM paradigm provides a simple measure of extremity. Relating to the general
task of risk identification, one may assess whether or not, and to what extent,
distances between each datum and its mean profile on the SOFSM (i.e., BMU) is
an indication of financial imbalances. The computational rationale for this is that
the units of the SOM, while being topologically ordered, tend to approximate the
probability density function of data, which relates the distance to a BMU to a fit
of a single datum to the multivariate data distribution, i.e. its degree of extremity.
On the other hand, the economic rationale, when monitoring financial stability, is
that one could assume that large distances represent financial imbalances in macro-
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Notes: The figures displays the two-dimensional SOFSM that represents a high-dimensional financial
stability space (same as in Figure 8.2). The financial stability states are differenced with texture,
rather than color. The figure superimposes a financial network on the SOFSM, of which the US and
the euro area are in the center, respectively. The network of financial linkages is based upon external
assets (equities and bonds). Nodes of each economy are located in their BMUs my, but positions are
approximate to fit all nodes and edges. The size of the nodes is scaled as to the sum of exposures to
other economies. The width of the edges represents the size of external exposure to total exposures per
economy, where the color of the edge indicates the address of the exposure holder. The data for all
economies represent the first quarter of 2010 and the second quarter of 2011.

Figure 9.13: A financial network topology on the SOFSM.
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Table 9.2: Predictive performance of spillover and outliers on the SOFSM.

Model  Horizon Threshold RP RN PP PN Accuracy U (n=0.7) U, (u=0.8) U (u=0.9) AUC
Contagion 6 BMU 0.23 0.92 0.21 0.93 0.86 0.30 0.27 0.03 -
Contagion 12 BMU 0.22 0.91 0.32 0.86 0.80 0.30 0.26 0.01 -
Contagion 18 BMU 0.19 0.89 0.35 0.78 0.73 0.38 0.35 0.12 -
Contagion 24 BMU 0.17 0.88 0.39 0.71 0.67 0.56 0.57 0.45 -
Contagion 48 BMU 0.13 0.85 0.47 0.48 0.48 0.42 0.36 0.13 -

QE (dj) 6 0.65 0.49 0.66 0.12 0.93 0.65 0.19 0.02 -0.38 0.56

QE (d)) 12 0.66 0.48 0.69 0.23 0.87 0.65 0.17 0.00 -0.40 0.55

QE (dj) 18 0.66 0.54 0.71 0.30 0.86 0.67 0.13 -0.03 -0.44 0.60

QE (dj) 24 0.63 0.72 0.71 0.35 0.92 0.71 0.11 -0.06 -0.49 0.73

QE (dj) 48 0.71 0.53 0.79 0.44 0.84 0.73 0.05 -0.12 -0.56 0.69

Notes: The table reports results for contagion and quantization errors (QEs) on the SOFSM. QE
is a percentile transformation of d; and contagion neighborhood is the BMUs of previous pre-crisis
periods. The following measures are reported: TP (True positives), FP (False positives), TN (True
negatives), FN (False negatives), Precision positives (PP) = TP/(TP+FP), Recall positives (RP) =
TP/(TP+FN), Precision negatives (PN) = TN/(TN+FN), Recall negatives (RN) = TN/(TN+FP),
Accuracy = (TP+TN)/(TP+TN+FP+FN), AUC = area under the Receiver Operating Character-
istic curve (not computed for contagion as it is binary), and Usefulness Uy (p) = Min(p,1 — p) —
(W(FN/(FN +TP))+ (1 — p)(FP/(FP 4+ TN)), where p stands for cost of FP and FN. For QE, the
threshold is chosen as for optimal Usefulness. Best values per measure and method are bolded.

financial conditions. Our approach goes beyond applying a predefined threshold
value on the distance to assess whether or not a datum is an outlier (see, e.g.,
Vesanto et al. (1998) and Saunders and Gero (2001)), by setting the threshold to
optimize predictive performance.

More formally, the units m; of the SOM, while being topologically ordered, tend
to approximate the probability density function of data p(z) (Kohonen, 2001).
The standard quantization error (QE) can be seen as the correspondence between
m,; and x;. However, a more meaningful estimate of event rarity is computing
the distance of individual data points x; to their BMUs m;. An outlier, and
its degree of extremity, can thus be estimated by the distance to the SOM in a
multidimensional setting, i.e., d; = Hx] — mb(j)H. To be precise, given that m;
approximate the probability density functions, then the individual QE represents
in a temporal setting the fit of a single data point to the historical multivariate
data distribution. Finally, the distance d; is turned into a probability forecast p;
through a percentile transformation, on which a threshold A € [0, 1] is chosen to
optimize Usefulness U, (u).

I assess whether or not, and to what extent, distances between each data vector
and its BMUs is an indication of financial imbalances. Table 9.2 shows the pre-
dictive performance of QEs on the SOFSM with forecast horizons of 6-48 months.
The table illustrates that, while the aim is conceptually different, outliers do not
provide equally good means to predict financial instabilities as contagion does. The
predictive capability improves with shorter forecast horizons and yields the largest
Usefulness for a horizon of 6 months. The measure is most useful for a policymaker
with g = 0.7. The weak performance may reflect the fact that it provides only in-
formation of possible impending instabilities rather than information on the exact
timing of a crisis, as the imbalance may be located in any state of the financial
stability cycle. This is, however, an important property as this does not restrict
modeling to the precise nature of crises in the past.
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9.8 Combining the SOFSM with predictive methods

The aim of this section is to illustrate how the SOFSM can, and should, be comple-
mented by other tools for risk identification and assessment alike. In particular, this
section combines the SOFSM with a model for predicting systemic financial crises
with the aim of risk identification. The approach herein follows that in Paper 11
by applying a standard Genetic Algorithm (GA) for finding the optimal configu-
ration of an artificial neural network (ANN) — and coin it the neuro-genetic (NG)
model. The rationale for this is to test whether, and to what extent, ANN-based
models are better than the SOFSM and logit models and the effect of automated
calibration of the NG model.

Even very simple ANNs have been shown to be universal approximators by follow-
ing any continuous function to any desired accuracy (Hornik et al., 1989). This
said, the focus of data-driven ANN applications in real-world settings with noise
and uncertainty (e.g., financial markets) should rather be on parsimony and gen-
eralization than on fitting models to all non-linearities and complexities in data.
Another common concern is the extent of data dredging when conducting data-
driven analysis. To this end, I build an ANN-based early-warning model using two
objective training, or early stopping, schemes:

i) Scheme 1: Training is performed until in-sample performance of a conven-
tional benchmark model has been reached.

it) Scheme 2: In-sample data are divided into two datasets: train and validation
sets. Models are trained on the train set and the one with optimal perfor-
mance on the validation set is chosen.

As in Section 8.4, the in-sample dataset is used for estimating a logit model. The
estimates of the model are then used to solicit the probability of a crisis and the
threshold chosen as to maximize Usefulness for policy action. In training scheme
1, the in-sample Usefulness of the logit model for policy action, U.(u) = 0.5, is
used as a stopping criterion when training the ANNs. The rationale behind this
is twofold: it attempts to prevent overfitting and enables testing whether an ANN
that is equally good on the in-sample performs better on out-of-sample data. The
performance of ANN configurations is tested over a wide set of possibilities as well
as of the automated NG model. In training scheme 2, the in-sample dataset is
randomly split as follows: 80% train set and 20% validation set. This gives us
three datasets: train (in-sample, 80%), validation (in-sample, 20%) and test (out-
of-sample) sets. Then, I train ANN and NG models by optimizing Usefulness for
policymakers on the validation set. In practice, I train models for 200 epochs,
evaluate them at each epoch and choose the one that maximizes Usefulness on
the validation set. This allows testing how much better, if at all, the ANN-based
models perform when attempting an optimal model. As ANNs are sensitive to
initial conditions of the weights, the training of ANN and NG models is repeated
ten times with randomized starting weights and biases, and then the one with the
fastest convergence (least epochs) is chosen.

As for the SOFSM, a benchmark policymaker is assumed to be substantially more
concerned about missing crises than issuing false alarms (u = 0.8), whereas model
performance is also shown for a slight variation in preferences (¢ = 0.7,0.9). For
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all models using training scheme 1 (in-sample U, (¢ = 0.8) = 0.5), the final ANN
elements and GA parameters, as well as their out-of-sample Usefulness for policy-
makers, are shown in Table 9.3. While models ANN1-9 represent manual config-
urations, the model A-ANN represents an average of all different manually chosen
ANN configurations. When manually parametrizing the ANNs, I have followed
common practices and rules of thumb in the literature, as well as tested variations
to the most common choices. The results clearly depict differences in model per-
formance (best models per p are bolded). The ANN-based models, while having
similar in-sample performance by definition, show consistently better out-of-sample
performance than the benchmark logit model. Table 9.3 shows that ANNs outper-
form the logit model not only in specific cases, but also on average (A-ANN).
The best ANN model (ANN1) follows parametrization practices common in the
early-warning literature, in particular by having 2 hidden nodes and a learning
rate « = 0.9 (see, e.g., Peltonen (2006) and Fioramanti (2008)). However, best
overall performance is shown by the NG model. Most notably, the optimal GA
configuration for the ANN uses only 9 indicators, rather than all 14. From an
economic point of view, dropping credit growth and current account deficit, as well
as global real GDP growth, real credit growth and leverage (see Table 8.1), contra-
dicts the results of a recent study based upon the signaling approach (Alessi and
Detken, 2011). In contrast to the present analysis, they do not, however, attempt
to identify optimal indicators in a multivariate framework, but rather conduct it
in a univariate manner.

Further, key parameters describing the NG model are a learning rate o = 0.97
and 4 hidden nodes. When examining differences in performance for different pol-
icymakers’ preferences, one can observe that the logit model fails for those more
averse to giving false alarms (U, (u) = 0.08), the ANN results are somewhat mixed,
with ANN1 performing particularly well for a policymaker more concerned with
false alarms (U, (u) = 0.16), and the NG model yields Usefulness for all three types
of policymakers (U,(u) = 0.20,0.38,0.16 for 4 = 0.7,0.8,0.9). For the benchmark
preferences 1 = 0.8, the NG model performs 11, 2 and 6 percentage points better
than the logit, ANN1 and A-ANN models, respectively. While ANNs are heuristic
in nature, the consistency in the slight superiority is likely to be a result of the
highly parsimonious training scheme.

Training scheme 2 attempts a better generalization by being less restrictive in terms
of parsimonity but still attempting to prevent overfitting. Table 9.4 summarizes
in-sample (includes both train and validation sets), validation and out-of-sample
performance of the logit model, the best-performing ANN model (ANN1) and the
NG model, all using training scheme 2. The table shows that, in principle, when
allowing for longer training and thus also a better fit to data, model performance
improves on all datasets (best performing model per p and dataset is bolded). This
is obvious when it comes to in-sample data, but the validation as well as out-of-
sample data still need sufficient parsimonity for decent performance. Compared to
training scheme 1, while there is only a minor increase in out-of-sample Usefulness
of ANN1 (2 percentage points), the NG model experiences a performance increase
of 6 percentage points. Out-of-sample Usefulness of the NG model is 17 percentage
points better than that of the logit model and 6 points better than that of the
ANN1 model. This also depicts superior performance of the NG model.
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Table 9.3: Specifications of the neural network and neuro-genetic models.

Logit ANNI1 ANN2 ANN3 ANN4 ANNS ANNG6 ANN7  ANN8 ANN9  A-ANN NG

NN configuration
No. of input indicators - 14 14 14 14 14 14 14 14 14 14 9
No. of nodes in the output layer: - 1 1 1 1 1 1 1 1 1 1 1
Number of hidden layers: - 1 1 1 2 2 1 1 1 2 1 1
No. of nodes in layer 1: - 2 2 8 2 8 2 2 2 20 5 4
No. of nodes in layer 2: - 0 0 0 2 8 0 0 0 20 [ 0
Activation function: - Sigmoid ~ Sigmoid Sigmoid Sigmoid Sigmoid Gaussian Hyperbolic Linear  Sigmoid Sigmoid Sigmoid
No. of training epochs: - 15 11 9 22 11 21 13 12 5 19 6
Learning rate o : - 0.9 0.8 0.95 0.9 0.9 0.9 0.9 0.9 0.9 0.83 0.97
Momentum m : - 0.9 0.2 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.63 0.15
Input noise &: - 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
GA configuration
Generation count: - - - - - - - - - - - 10
Population size Q: - - - - - - - - - - - 3
No. of crossovers: - - - - - - - - - - - 1
Mutation rate: - - - - - - - - - - - 0.10
Fitness criterion: - - - - - - - - - - - train error
Out-of-sample usefulness U
1=0.7 0.08 0.16 0.12 0.14 0.12 0.16 0.12 0.14 0.16 0.16 0.14 0.20
1=0.8 0.27 0.36 0.30 0.32 0.32 0.32 0.28 0.28 0.34 0.32 0.32 0.38
1=0.9 0.13 0.16 0.08 0.10 0.12 0.08 0.04 0.02 0.14 0.10 0.09 0.16

Notes: A-ANN refers to the mean or mode, as applicable, of all ANN configurations and their per-
formances. The A-ANN configuration is rounded so that each entry is meaningful (e.g., the second
layer has no nodes as on average there is only one layer). The bold evaluation entries represent the
best-performing model per p-value.

Table 9.4: Predictive performance of the neuro-genetic model.

Model Epochs In-sample Validation set Out-of-sample
u=0.7 pn=0.8 pn=0.9 u=0.7 u=0.8 4n=0.9 u=0.7 4=0.8 4=0.9
Logit - 0.39 0.50 0.30 0.08 0.27 0.13
ANNI 36 0.38 0.58 0.38 0.18 0.38 0.20 0.18 0.38 0.18
NG 17 0.40 0.60 0.42 0.26 0.44 0.24 0.26 0.44 0.22

Notes: Except for the epochs, which stand for the number of training iterations, the entries represent
U, (p) for different policymaker’s preferences pu.
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Generally, outputs of early-warning models are time-series of country-specific crisis
probabilities and can be visualized as line graphs. The line graphs in Figures 9.14
and 9.15 show the probability of a crisis in the US and the euro area within 18
months as an output of the NG model. The vertical lines represent occurred events,
where red lines are pre-crisis periods and black crisis periods. Figure 9.14 illustrates
that the model correctly called at an early stage the dot-com bubble in 2001 and
the recent financial crisis in 2007-2008 — both with a longer horizon than 18 months
as was the definition of the predicted variable. Thus, this model would already in
2006Q1 have signaled the global financial crisis that commenced in the US in 2007.
The prediction in Figure 9.15 shows model performance for the euro area. The
early crises stemming from the Russian collapse in 1998 and the dot-com bubble
in 2001 are both correctly called. In fact, the recent financial crisis was already
signaled in 2004Q2 (even when accounting for publication lags). Yet, it is worth
noting that while model performance in these two cases is appropriate, many of
the early-warning signals are actually given before the ideal leading indicator or
during a crisis period, which both in fact are false alarms. These types of errors,
while not having large adverse effects in terms of policy actions, lead to imperfect
accuracies.

A partly valid limitation of these conclusions is, however, that the models were
built ex post, and hence the design of the early-warning model might have benefited
from hindsight bias. However, the inputs used in this study were commonly used
in the macroprudential literature already before the crisis (see for instance the
work by Borio and Lowe (2002, 2004)) and the definition of a crisis, while still
being somewhat subjective, is validated by being highly correlated with financial
crises over the entire sample period. Hence, a policymaker could, in principle,
have used similar specifications to derive a model for predicting crises at the turn
of the century. Interestingly, the real ex ante predictions, i.e., the final points in
Figures 9.14 and 9.15, show that vulnerabilities in the US and the euro area have
increased in 2011. In fact, it signals for the second consecutive quarter a crisis in
Europe within 18 months. As this model was derived in the final quarter of 2011
(for Paper 11), we may based upon today’s experiences judge whether or not the
prediction was correct.

9.9 Concluding summary

This chapter has utilized the SOFSM for tasks of interest in macroprudential over-
sight, particularly for risk identification and assessment, with the ultimate aim of
risk communication. Risk identification relates to early-warning models, whereas
risk assessment relates to macro stress-test models and contagion and spillover
models. Yet, in relation to previous literature, the approaches herein stress risk
communication by focusing on performing the tasks on a visual two-dimensional
display of a high-dimensional financial stability space. In particular, the SOFSM
has been exploited by the means of the following eight approaches (where the
parenthesis represents the addressed systemic risk):

i) Assessing distributions of the macro-financial indicators and all class variables
with the help of the feature planes of the SOFSM (imbalances).
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Figure 9.14: Probabilities of a financial crisis in the US.
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Figure 9.15: Probabilities of a financial crisis in the euro area.
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i1) Mapping the state of financial stability for individual data and aggregates by
the means of labels and trajectories on the SOFSM (imbalances).

117) Fuzzification of the SOFSM for visualizing temporal belongingness to finan-
cial stability states of individual data and class distance structures on the
map (imbalances).

iv) Probabilistic modeling of state transitions on the SOFSM for visualizing prob-
abilities of transition to financial stability states of individual data and for
assessing the cyclical and temporal structure of the financial stability cycle
(imbalances).

v) Scenario analysis for economies on the SOFSM by assessing the effects of pos-
itive and negative shocks, both domestically and globally (aggregate shocks).

vi) Using superimposed portfolio network topologies and neighborhoods on the
SOFSM to assess the spread of financial distress and shock propagation (con-
tagion and spillover).

vii) Computing distances between data and their mean profiles on the SOFSM to
find extreme events and imbalances in economies’ macro-financial conditions
(imbalances).

viit) Complementing the SOFSM with a solely predictive model that uses geneti-
cally optimized neural networks for the identification of risks (imbalances).

One task, obviously among many other tasks of importance, that this chapter has

overlooked is the identification of the build-up of widespread imbalances in the
entire cross section. This is the focus of the SOTM in the following chapter.
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10 Decomposing Financial Crises with SOTMs

The provided models for macroprudential oversight have thus far concerned assess-
ing the cross-sectional or temporal dimensions in close to isolation. In this chapter,
we turn the focus to exploring cross-sectional dynamics. The Self-Organizing Time
Map (SOTM) provides means for visual dynamic clustering and thus also for illus-
trating dynamics in cross sections of multivariate macro-financial indicators. This
is one of the very key tasks in risk identification, when the focus is on build-up
phases of imbalances in the entire cross section, such as the global dimension in
country-level risks and a system-wide focus on data concerning individual financial
intermediaries. With respect to the visual analytics mantra, the SOTM can be
positioned similarly as the previously discussed Self-Organizing Financial Stability
Map (SOFSM).

The SOTM performs visual dynamic clustering through temporal data and dimen-
sion reduction. The approach differs from traditional static exploratory analyses
in that the SOTM dynamically adapts to structural changes in cross-sectional data
over time, as well as visualizes the temporal cluster structures. In short, the de-
composition is enabled by data compression into clusters and twofold topology
preservation, where one direction preserves time and the other data topology. The
first decomposition applies the standard SOTM to describing the global financial
crisis that started in 2007 in a manner that would be applicable for real-time
surveillance. The second section uses a SOTM on time-to-event data to generalize
patterns before, during and after financial crises. The following two sections draw
upon Papers 9 and 10, respectively.

10.1 A decomposition of the global financial crisis

In this section, I apply the SOTM for decomposing the global financial crisis that
started in 2007 in order to identify temporal structural changes and their location
in the cross section. I illustrate the use of the SOTM with an abstraction of all
the data z; € R'® before, during and after the global financial crisis of 2007-2009.
We first discuss the parametrization of the SOTM, and then focus on univariate
and multivariate properties of the SOTM, including a second-level clustering of the
SOTM units.

10.1.1 Parametrizing the SOTM

Similarly as an unsupervised Self-Organizing Map (SOM), the SOTM may use parts
of the data in training and only associate parts. The indicator vector () € R4
is used to train the SOTM and the spread of the class vectors z;) € R* is
only associated to the model. The association is done by computing for each
unit an average of class variables for the data attracted by that unit. The model
architecture is set to 8x22 units, where 22 units represent the time dimension and 8
units represent the cross-sectional structures. The units on the time dimension are
set as to span periods before, during and after the crisis that started in 2007 (i.e.,
2005Q2-2010Q3), while the number of units at each point in time is determined
based upon its descriptive value. It is worth noting that the SOTM, likewise
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Figure 10.1: Quality measures of the SOTM.

the SOM, is not restricted to treat each unit as an individual cluster. Due to
the property of approximating probability density functions p(z,t), only the dense
locations in the data tend to attract units. A further motivation of the number of
units on the vertical axis to exceed the number of expected clusters is the second-
level clustering of the SOTM.

When choosing the final specification of the SOTM, three quality measures intro-
duced in Subsection 7.3.2 (g4e, €1e and €4.) are used. For a SOTM with 8x22 units,
I chose a neighborhood radius o = 2.4, as it has the highest quantization accuracies
and no topographic errors (see dashed vertical line in Figure 10.1). Topographic
error is stressed as the interpretation of a SOTM relies heavily on topology preser-
vation, not least the time dimension.

10.1.2 A univariate view of the crisis

The output of the SOTM, while being a two-dimensional grid, is a set of mul-
tidimensional reference vectors. For a better understanding of the above trained
SOTM, and its characteristics, we begin by an illustration of the feature planes
for individual inputs. Feature planes are layers of the two-dimensional SOTM in
Figure 10.3 and show the spread of individual inputs using a constant blue hue and
variations in luminance. Again, each feature plane has its individual scale on the
left and a timeline below. With a focus on univariate structures, feature planes are
particularly useful for monitoring the evolution of individual inputs on the SOTM,
especially for discovering the spread of values in the cross-section and their varia-
tion over time. The last four feature planes represent the class variables x ;. € R4,
while the rest represent the macro-financial indicators z ;) € R, including both
domestic and global measures. The distribution of the class variables, in particu-
lar pre-crisis periods, illustrates that during the early pre-crisis periods vulnerable
economies were mainly located in the lower part of the SOTM, whereas the crises
occur throughout the cross-section in 2008-2009. The spread of the input variables
also indicates larger vulnerabilities in the lower part of the SOTM. For instance,
real credit growth, leverage and current account deficit generally take higher val-
ues in the lower part and government deficit lower values, which all can be seen as
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Figure 10.2: Feature planes for the SOTM.
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The Global Financial Crisis of 2007-2009
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Notes: The figure represents a SOTM of the global financial crisis, where the cluster coloring shows
changes in multivariate cluster structures. Labels above the figure define the classes in data, i.e., the
stages of the financial stability cycle, and the trajectory on the SOTM represents the evolution of
macro-financial conditions in the United States (US) .

Figure 10.3: A SOTM of the global financial crisis.

build-ups of risks, vulnerabilities and imbalances. Moreover, the feature planes of
the input variables also illustrate a number of temporal changes. For instance, one
can observe a loss in equity growth in 2008Q3 across the entire cross-section, an
increase in 2010Q1-2 and somewhat decrease in 2010Q2-3. Losses in gross domes-
tic product (GDP), while also occurring throughout the entire cross-section, react
only in 2009Q2. Credit growth may be seen as an imbalance that decreased during
the crisis period, and has not experienced any significant increases after the crisis.
Government deficits are shown to have widely increased in the latter part of the
analyzed period, as could be expected. This highlights the importance of the use
of the SOTM for assessing events of changing nature, as government deficits were
clearly not a signal of the first wave of distress. Yet, the deficits may obviously be
related to increases in government debt, and thus also to the current sovereign debt
problems. Interestingly, leverage is shown to increase during the sample period, but
does not show significant decreases during or after the financial crisis, rather the
opposite. Globally, we can see similar patterns to the domestic ones, but with a
surprisingly strong slowdown in credit and equity growth, as well as an even higher
level of leverage.

10.1.3 A multivariate view of the crisis

Now, as we have an understanding of the components of the SOTM, we can assess
its multivariate structures. This is done with three approaches. First, Figure 10.3
illustrates the two-dimensional SOTM, where the timeline below the figure repre-
sents the time dimension in data (as for the feature planes) and the labels above
represent occurrences of the events in the cross section. The labels simply refer to
averages of the classes at each point in time. The coloring of the SOTM in Figure
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Figure 10.4: A Sammon’s mapping of the SOTM.

10.3 illustrates the proximity of units as approximated by the Sammon’s mapping
in Figure 10.4. Thus, in Figures 10.3 and 10.4, differences between units along
the vertical direction show differences in cross-sections and differences along the
horizontal direction show differences over time, where the former figure illustrates
differences with color coding on the SOTM grid and the latter with a standard
plot of the Sammon’s topology. The trajectory on the SOTM represents the evo-
lution of macro-financial conditions in the US, which clearly illustrates that the
US were characterized by relatively large risks and vulnerabilities throughout the
period. Figures 10.3 and 10.4 illustrate one key phenomenon. Shifts in the color
scale towards yellow indicate a start of structural changes during the early phases
of the crisis in 2008, whereas the structural changes reach their peak in 2009 and
the structures move back in mid-2010. The interpretation of the backward shift in
2010 is, however, somewhat ambiguous. The shift, while being an indication of de-
creased financial stress, may also be an indication of future risks, as the structures
clearly resemble those during the pre-crisis peak.

To further assess the evolution of the multivariate structures, a second approach
applies a second-level clustering to the units of the trained SOTM (as proposed in
Paper 5). With no predefined number of groups and with the aim of examining the
structures in these data, I explore clustering solutions with different K. This is a
common exercise with hierarchical clustering methods as the agglomeration process
provides insights about the structures. Thus, I do not use the cluster validation
for choosing one optimal clustering solution, but rather to identify which solutions
have the largest explanatory power. Figure 10.5 shows the Silhouette coefficient for
K =3,4,...,10. While it indicates that K = 3 is optimal, the Silhouette coefficient
shows only minor differences for larger K. The optimality of the 3-cluster solution,
as it splits data as per only the time dimension, is a clear indication of significant
inherent temporal differences.

To further assess structure information within these three temporal clusters, Figure
10.6 illustrates the agglomeration process for K = 3,4, ...,8. Interpretation of the
agglomeration process when increasing K is facilitated, by defining the color cod-
ing from the ColorBrewer scheme to be constant for all clusters except for the split

203



035 7 4
c \
[} N
3 030 \
= .
@ \\
S 025 S
Q N
® 020 N [ S Y PSR °
3 \ JENUEEC S
£ 015 R -
»
0.10
3 4 5 6 7 8 9 10
Number of clusters K
Notes: The figure shows the Silhouette coefficient for K = 3,4,...,10, where large values indicate a

good cluster compactness.

Figure 10.5: Cluster validation of the clustering of the SOTM.
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Figure 10.6: Cluster memberships on the SOTM.

one, for which a new color is introduced. The agglomeration process is summarized
from low to high K for illustrational purposes, although agglomeration proceeds
in a top-down manner. While the 3-cluster solution mainly shows temporal differ-
ences in data (cluster 1, red; cluster 2, blue; cluster 3, green), the 4-cluster solution
introduces a cluster (4, purple) which broadly speaking coincides with the largest
structural changes identified in Figures 10.3 and 10.4 and the vulnerabilities prior
to crises in Figure 10.2. Second, whereas the 5-cluster solution only adds a small
cluster (5, orange) representing temporal differences in the beginning of the ana-
lyzed period, the 6-cluster solution derives from cluster 4 a cluster (6, ) that
covers in broad terms the entire cross section during the end of pre-crisis times.
In addition to the 7-cluster solution introducing a separate cluster of the two last
quarters (7, brown), the 8-cluster solution derives from cluster 1, the less vulnerable
pre-crisis cluster, one cluster in between the most and least vulnerable economies
(8, ). The second-level clustering of the SOTM illustrates two key messages:
1) temporal trends are strong in these data, and i) the increases in univariate
vulnerabilities and risks prior to the crisis observed in the previous subsection are
illustrated with a cluster (4, purple) that increases in size from 2006Q1 to 2008Q4
in Figure 10.6.

Property measures for each A(t) provide a third view of the multivariate structures.
By exploiting properties of the SOTM, we can observe quantitative characteristics
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Figure 10.7: Property measures of the SOTM.

of it. Figure 10.7 shows the temporal variation of the property measures (g4¢(t),
ete(t) and e€4.(t)). The quantization errors eq.(t) and topographic errors e (t) re-
late more to qualities across the SOTM, while the structural change es.(t) shows
properties in terms of distances between A(t — 1) and A(t). The qualities indicate,
as expected, no topographic errors and stable quantization errors over time. Inter-
estingly, the largest structural changes are found in the late-crisis and post-crisis
periods, and even more interestingly the largest single change occurs in 2010Q2,
when the structures move from the crisis structures towards those during pre-crisis
periods. The location of structural changes in Figure 10.7, while to some extent
being illustrated by the SOTM in Figures 10.3 and 10.4 through bilateral verti-
cal and horizontal differences in colors and Sammon’s topology, are not obvious
without an objective quantification of the column-wise distances.

10.2 A decomposition of modern financial crises

In the previous section, the SOTM was used for visual dynamic clustering over
time. In this section, the SOTM is applied to time-to-event data. The SOTM for
time-to-event data has a different interpretation for the time dimension ¢. Rather
than representing the time span in data, it represents the time to a specific event.
Hence, it takes, for instance, the following form: ¢t = -7, -T +1,..., 7 — 1,T,
where T sets the range of time units before and after the event. Whereas the
experiments in this chapter use symmetric pre- and post-event spans, the SOTM
obviously sets no such restriction. Given an interchanged time dimension, the rest
of the functioning of the SOTM follows the standard specifications.

In this section, I apply the time-to-event SOTM for decomposing patterns before,
during and after global financial crises from 1990-2011. The standard SOTM
in Section 10.1 provided an abstraction of patterns in macro-financial indicators
before, during and after the global financial crisis of 2007-2008. The time-to-
event SOTM herein differs from, or goes beyond, the one above by generalizing the
patterns prior, during and after modern systemic financial crises.

Over the period 1990-2011 for the 28 countries in the sample, the approach based
upon the Financial Distress Index (FDI) identifies a set of 94 systemic financial
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crises, of which some crises may last for multiple quarters. These function as
the events in our dataset. The time dimension is transformed into time-to-event
format by locating all observations from ¢ — 8 to ¢t + 8, where ¢t — 0 are the crisis
dates defined using the FDI. In contrast to firm-level failures, countries are bound
to experience recurring events. To decrease noise and increase reliability in the
data, I only include observations with one time-to-event stamp. For instance, an
observation is disregarded if it is a post-crisis period to one event and at the same
time a pre-crisis period to a following event, and vice versa. It is still worth noting
that crises may last for several quarters.

10.2.1 Parametrizing the time-to-event SOTM

The architecture of the time-to-event SOTM is set to 6x17 units, where 6 units
represent the cross-sectional structures and 17 units represent quarters ranging from
t — 8 to t + 8. The units representing the time dimension is set as to span periods
before (8 quarters), during (1 quarter) and after (8 quarters) crises. The number of
units representing cross-sectional structures at one period is determined based upon
its descriptive value. Again, it is worth noting that the SOTM is not restricted to
treat each unit as an individual cluster. Yet, the number of units on the vertical
dimension is kept low, as no second-level clustering is applied here. The training
phase uses the macro-financial indicators as inputs, while the class variable is only
needed for creating the time-to-event data. The final specification of the SOTM
is chosen based upon the quality measures (g4, € and €5.). The neighborhood
radius o takes the value 2.8, as it has the highest quantization accuracy, given no
topographic errors.

10.2.2 A univariate view of crises

The output of the SOTM is a grid of 6x17 multidimensional reference vectors,
where the timeline below the figure represents the time-to-event dimension in data
(see Figure 10.9). For an understanding of the univariate patterns behind the
multivariate structures, we start by assessing feature planes for individual inputs
in Figure 10.8. The analysis of patterns is divided into three parts: pre-crisis, crisis
and post-crisis patterns.

During the pre-crisis periods, the lower and the upper part of the grid show different
paths to a crisis. The lower part shows high values in inflation, real credit growth,
leverage, equity valuation, global inflation, global real credit growth and global
leverage. The upper part, on the other hand, shows high values for real equity
growth, current account deficit, government deficit, global real GDP growth, global
real equity growth and global equity valuation. The crisis periods show a decrease
in all variables, except for leverage, government deficit and global leverage, as well
as a contraction of most variables towards similar values (i.e., a small range). The
patterns of post-crisis periods can in most cases be divided into early and late
patterns, whereas some measures take low values for the entire period. Indicators
that take low values from t+1 to ¢t+8 are domestic measures of inflation, real credit
growth, equity valuation and current account deficit, as well as global measures of
inflation, real credit growth and equity valuation. The pattern of a decrease and
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Figure 10.8: Feature planes for the time-to-event SOTM.

a subsequent increase in values illustrates the behavior of many indicators, such
as real GDP growth and equity growth, both domestically and globally. Leverage,
on the other hand, shows a slow gradual decrease during early periods and a more
significant decrease only in the latter part. In addition, government deficits increase
significantly in early and late periods, which points to sovereigns being fiscally
strained after systemic financial crises.

10.2.3 A multivariate view of crises

The two-dimensional SOTM representing the multivariate structures is shown in
Figure 10.9. To assess the multivariate structures of the SOTM, I again use the
coloring based upon a Sammon’s mapping for illustrating proximity of units. Figure
10.9 illustrates a number of phenomena. Whereas changes from ¢t — 8 to t — 1, i.e.,
pre-crisis periods, are gradual, the crisis, i.e., t — 0, illustrates a structural break in
terms of a shift and contraction in structures. The post-crisis periods from ¢t + 1
to t + 3, likewise, illustrate the occurrence of large structural changes. Yet, t 44
and t 4+ 8 show a contraction of the data and only minor cross-sectional variation
and changes over time-to-events. It is worth to note that the orientation of the
SOTM is interchanged after the crisis. This is due to the strong contraction that
suppresses the values into one, dense cluster. When the SOTM moves to t+ 1, the
initialization based upon ¢ does not guide it enough.

Finally, Figure 10.10 illustrates changes in property measures (eq4¢(t), €te(t) and
gsc(t)) of the SOTM over time. The key message of the figure is that the largest
structural change occurs between the ¢ — 1 and ¢ — 0, i.e., the transition from
a pre-crisis to the crisis period. This indicates that the crisis periods are very
different from the rest of the data. Another interesting pattern of the structural
changes occur in the final period t + 8, to which there is no direct explanation. In
general, structural changes are larger after crises than before them. The zero level
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Figure 10.9: A time-to-event SOTM of global financial crises.
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Figure 10.10: Property measures of the time-to-event SOTM.

of topographic errors confirms the quality of the topology preservation, as was also
previously emphasized.

10.3 Concluding summary

This section has performed two types of visual dynamic clustering to assess cross-
sectional dynamics in multivariate macro-financial indicators. The first decom-
position applied the standard SOTM to describing the global financial crisis that
started in 2007, whereas the second section applied the SOTM to time-to-event
data in order to generalize patterns before, during and after financial crises.

From the viewpoint of macroprudential oversight, this aids in the very key task
of identifying build-up phases of risks, vulnerabilities and imbalances in the entire
cross section. Hence, out of the three types of systemic risks, this is an approach
that truly holds promise for addressing the identification of the endogenous build-
up of widespread imbalances. Whereas the application herein focused on the global
dimension in country-level macro-financial data, the SOTM also provides means
for assessing a wide scope of applications for similar purposes, not the least a
system-wide focus in data on individual financial intermediaries.
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7All models are wrong.
Some models are useful.”

— George E.P. Box

11 Conclusions, Limitations and the Future

Early identification of financial instabilities is of interest for a wide spectrum of
decision-makers for a wide range of reasons: policymakers want to avoid economic
fluctuations, financial market participants want to earn returns, businesses want to
set production to optimize profits, and politicians want to be re-elected. However,
this boils down to the challenge that the Swedish Minister of Finance Kjell-Olof
Feldt hinted already in the 1980s: “Challenging decisions are politically too early
until they are financially too late”. As noted by Korkman (2012), the problem of
political populism motivates promoting knowledge and understanding among our
fellow citizens, who alas most often are laymen in the field.

It is needless to say that the recent occurrences of instability have stimulated efforts
in understanding and predicting financial stress. This thesis has provided a wide
range of tools for macroprudential oversight, whose common denominator is a visual
representation. The tools focus on risk identification and assessment, with an
ultimate aim to aid in risk communication. It is worth noting that the relevance
of visual representations of tools for safeguarding financial stability lies not only
in external risk communication, but also in generating insights in internal use to
support risk identification and assessment.

This chapter summarizes the key findings of the thesis, discusses the limitations of
the findings, and presents ideas for future research.

11.1 Conclusions, findings and implications

This thesis has put forward visual means for risk identification and assessment.
Throughout, the overall task has been to represent high-dimensional data concern-
ing financial entities, be they countries, markets or institutions, on low-dimensional
displays to facilitate the identification, assessment and communication of vulnera-
bilities and risks. In the introduction to this thesis, the research objectives (ROs)
were said to be two:

i) RO1: to choose and extend data and dimension reduction methods such that
they meet the needs set by macroprudential oversight and data, and

i1) : to apply data and dimension reduction methods in macroprudential
oversight to be used by and introduced to the policymaking community.

In order to achieve these two ROs, I introduced three research themes (RTs) and five
research questions (RQs). Thus, a discussion of how the RQs have been answered
precedes a discussion of how well the ROs have been met. To refresh memory,
Figure 11.1 presents the RQs in a process format, where the RTs are shown by red,
blue and blocks. Below, we first discuss answers to all five RQs, whereafter
we turn to the ROs in the two following subsections.
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Notes: The coloring of the blocks divides the RQs into RTs. The red blocks relate to an understanding
of the macroprudential domain and data, the blue blocks relate to deriving optimal methods and their
extensions, and the green block relates to applications of the methods to the task at hand.

Figure 11.1: The process of RQs.

RQ1: What are the needs for macroprudential oversight? The key aim
of Chapter 3 was to give a broad overview of financial systems, financial instability
and systemic risks, as well as the reasons for financial systems being fragile. While
we discussed the complexity of factors affecting financial systems, how fragilities
may build up and what form systemic risks may take, as well as empirical and
theoretical underpinnings, an obvious focus of this chapter was on tools and models
for macroprudential oversight. Given the mandate of multiple macroprudential
supervisory bodies, the starting point ought to be timely and accurate measurement
of systemic risks. This resulted in three key systemic risks (and tools for addressing
them):

i) endogenous build-up of widespread imbalances (early-warning models);
i) exogenous aggregate shocks (macro stress-testing models); and

i11) contagion and spillover (contagion and spillover models).

These set an inherent need for a broad basis of tools for the identification and assess-
ment of the potential risks, vulnerabilities and imbalances. The chapter concludes
by relating the fragilities, risks and tools to an overall macroprudential oversight
process. The process clearly illustrates the lack of integration of a third component,
risk communication, with risk identification and assessment tools, particularly in
the case of macro stress-tests and early-warning models. For contagion models,
visualizations based upon network models and graph theory have been and are still
gaining further interest within the policymaking community. Yet, the task of rep-
resenting high-dimensional early-warning indicators on a low-dimensional display
has not been addressed in a sufficient manner.

RQ2: What form do macroprudential data take? In all above discussed
tasks, the quality of a model is highly dependent on the quality of the underlying
data. Chapter 4 discussed data needs and demands for macroprudential over-
sight, with a particular focus on early-warning models. The chapter identified that
country-level data commonly used in early-warning models to represent indicators
of risks, vulnerabilities and imbalances are of three types: i) macroeconomic, i)
banking system, and i) market-based. The broad notion of macroprudential data
was untangled into a four-dimensional cube representation, where the dimensions
represent time, countries, variables and linkages. The data, while being easy to
identify, are not unproblematic. In this vein, the chapter also discussed stylized
challenges related to macroprudential data. One obvious conclusion is that today
large amounts of data representing risks and vulnerabilities are widely available.
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A task of central importance is, however, to acknowledge and account for their
challenging characteristics, such as missing values, skewed distributions, revisions
and publication lags and the general issues of provision and integration of various
sources. More importantly, rather than aggregating data into composite indices,
the chapter further motivates visualizing these complex data in easily understand-
able formats to support disciplined and structured judgmental analysis based upon
policymakers’ experience.

RQ3: Which data and dimension reduction methods hold most promise
for the task? The answers to the previous questions, in addition to the general
task of this thesis, set forth a definition of the task at hand: to provide low-
dimensional representations of high-dimensional indicators of risks, vulnerabilities
and imbalances. A starting point for judging the most suitable methods for the
task was put forward in Chapter 5 by providing an overview of data and dimen-
sion reduction methods. First, the methods were related to knowledge discovery,
data mining, information visualization and visual analytics. Then, the chapter re-
viewed the basics of classical data and dimension reduction methods and related a
comprehensive set of methods in a taxonomy.

Chapter 6 discussed the particular needs for and properties of macroprudential
oversight and data in relation to the characteristics of data and dimension re-
ductions, and their combinations. The suitability of three classical, or so-called
first-generation, dimension reduction methods for the task at hand was illustrated
with qualitative comparisons and illustrative experiments. A key implication of the
chapter is that the family of topology-preserving methods with a regular grid shape
in general and the Self-Organizing Map (SOM) in particular hold most promise for
the task at hand.

RQ4: How should the methods be extended and enhanced for the task?
The discussion in Chapters 5 and 6 concluded that the method of preference for
the purposes in this thesis is the SOM. However, the standard SOM, while holding
promise for the task at hand, may be extended in multiple directions. Chapters 3
and 4 spell out the needs and demands for the task at hand. A particular focus
of the extensions is related to two tasks that not only answer the demands of
macroprudential oversight and data, but have also been stated to be in need of
future research in the fields of information visualization and dimension reduction.
First, Chaomei (2005) and Wong et al. (2012) highlight a paradigm shift from only
visualizing structures to visualizing dynamics. An even further step is to assess
dynamics of structures. Second, to be aware of the quality and distortions of
dimension reductions, Wismiiller et al. (2010) and Wong et al. (2012) stress that
they are not an end, but provide only a means to display useful information on top
of them, such as evidence, uncertainty and individual data.

To this end, with a key focus on temporality, Chapter 7 first discussed the literature
on time in SOMs. The discussion, and subsequent extensions to the SOM paradigm,
relate to processing data from the cube representation, i.e., along multivariate,
temporal and cross-sectional dimensions, where a key focus is on better processing
and visualizing time. The enhancements not only aid in analyzing and visualizing
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individual cross-sectional and/or time-series data on the SOM, but also contribute
to the assessment of overall properties and qualities of the SOM. Extensions to
be used with a standard SOM comprise approaches for fuzzification, transition
probabilities and assessing shock propagation. The chapter also presented the
stand-alone Self-Organizing Time Map (SOTM) for assessing how cluster structures
evolve over time (i.e., visual dynamic clustering). The motivation and functioning
of the extensions is demonstrated with a number of illustrative examples.

: How should the methods and their extensions be applied to the
task? The core of this thesis lies in rather technical applications. Still, an es-
sential part is an adequate understanding of the domain and underlying data,
including highly practical issues. Even more important is to make use of methods
suitable for the aims of the task at hand. A large share of this thesis focuses on
practical applications of data and dimension reduction methods to macropruden-
tial oversight. First, I put forward a framework for building the Self-Organizing
Financial Stability Map (SOFSM). Second, I illustrated a number of extensions to
the standard SOM-based model. Third, I illustrate applications of the SOTM and
the time-to-event SOTM to risk identification.

Chapter 8 described the construction of the SOFSM. The framework consists of
five building blocks: ¢) data and dimension reduction based upon the SOM, ii)
identification of systemic financial crises, i) choice of macro-financial indicators
of vulnerabilities and risks, ) a model evaluation framework for assessing per-
formance, and v) a model training framework for creating parsimonious, objective
and interpretable models. Then, the chapter illustrated how the training and eval-
uation frameworks are applied for constructing the SOFSM, including a range of
performance and robustness tests. Finally, the SOFSM provides means to monitor
macro-financial vulnerabilities by locating a country in the financial stability cycle
on a two-dimensional display.

Turning from model construction to more practical applications, Chapter 9 used
the SOFSM for an approach that combines risk identification, assessment and com-
munication. Thus, extensions to the standard SOM are applied in macroprudential
oversight, including a fuzzification, transition probabilities and shock-propagation
analysis. I also showed how the SOFSM can be used for illustrating results of stress
tests and detecting outliers. In addition, the SOFSM is paired with a stand-alone
predictive model to illustrate the complementary role of such approaches. Hence,
the SOFSM not only provides means for visual early-warning exercises, but also
enable superimposed visualizations of stress test results and potential for contagion.

In Chapter 10, the SOTM was applied in macroprudential oversight in general and
risk identification in particular. The SOTM performs visual dynamic clustering for
decomposing global financial crises from two viewpoints. The first decomposition
applied a standard SOTM to describe how risks and imbalances evolved before,
during and after the global financial crisis of 2007-2008. The second decomposition
used a time-to-event SOTM to generalize patterns before, during and after modern
financial crises from 1990-2011.

The answers to the RQs take us to a discussion of how well the ROs have been
met.
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11.1.1 Implications for dimension reduction

The first objective relates to the choice and extensions of data and dimension
reduction methods with respect to the needs for the task in this thesis. While this
has implications for both data and dimension reduction, the key conclusions relate
to visualizing data.

In this thesis, I have shown that the family of topology-preserving methods with
a regular grid shape in general and the SOM in particular holds most promise for
the task at hand. This relates to four key properties: i) trustworthy neighbors,
it) low computational cost, 4ii) flexibility for problematic data, and iv) a regularly
shaped grid. Obviously, independent of the topic and field, this conclusion is also
applicable to tasks with similar needs and properties. Yet, while the stand-alone
SOM holds promise for the task, it has also been extended along multiple directions.

The extensions have been approached from the viewpoint of the task and data at
hand. In addition to their high dimensionality, macroprudential data consist of two
central components: the cross-sectional and the temporal dimension. Whereas a
key focus herein has been on better processing and visualizing time in SOMs, the
cross-sectional dimension has throughout also been of importance. In addition, the
enhancements not only aid in analyzing and visualizing cross-sectional and/or time-
series data on the SOM, but also contribute to the assessment of overall properties
and qualities of the SOM. The most central extensions to the standard SOM are
three:

i) Fuzzifications aid in visualizing temporal belongingness to clusters of indi-
vidual data and cluster distance structures on the SOM.

i1) Transition probabilities aid in visualizing probabilities of transition of
individual data and for assessing the cyclical and temporal structure on the
SOM.

111) Network topologies aid in understanding links between data by illustrating
a network topology on the data topology of a SOM.

In addition, I have illustrated how the SOM enables contagion analysis through
neighborhood relations on the grid structure, scenario analysis by visualizing
transitions in the case of changes in data, and outlier analysis in the form of
distances of data to the SOM grid.

A concept of its own is the Self-Organizing Time Map (SOTM) that goes
beyond the standard SOM representation for visual dynamic clustering. It enables
thus a visualization of how multivariate cross-sectional cluster structures evolve
over time. The temporal changes can be assessed univariately and multivariately.
The time-to-event SOTM and the second-level clustering of the SOTM enhance it
by enabling assessment of patterns before, during and after specified events and by
providing an objective means for assessing temporal changes in cluster structures.

11.1.2 Implications for policy use

The second objective concerns applications of data and dimension reduction meth-
ods for policy use. This thesis has created the SOFSM, which uses data and dimen-
sion reduction methods for mapping the state of financial stability, as well as the

213



above discussed extensions to the SOFSM. The SOFSM is a two-dimensional rep-
resentation of a multidimensional financial stability space that allows disentangling
the individual sources of vulnerabilities impacting on systemic risks and can be used
to monitor macro-financial vulnerabilities by locating a country in the financial sta-
bility cycle, being it either in the pre-crisis, crisis, post-crisis or tranquil state. The
technical qualities and robustness of the SOFSM have been tested by varying the
SOM parameters, thresholds of the models, the policymakers’ preferences and the
forecast horizon. In addition, the model would not only have correctly called the fi-
nancial crisis of 2007-2008 in the United States (US) and the euro area in mid-2005
(even when accounting for publication lags in data), but also communicated the
results in an easily interpretable format. Hence, the SOFSM provides a framework
for future works to follow in order to create financial stability maps. Moreover,
the SOTM provided a means to observe how risks build up over time in the cross
section. From the viewpoint of systemic risk, this is a highly relevant concept as it
enables a perspective beyond individual data. Likewise, the time-to-event SOTM
provides an overview of alternative roads to and from a crisis.

The use and acceptance of the SOFSM in policy use has been indicated by practical
implementations, as well as communication to academics and practitioners. In
addition to the academic communication in terms of published papers, the works
in this thesis have been widely communicated to practitioners. The SOFSM has
been published as a working and discussion paper both at the European Central
Bank (ECB) and the Bank of Finland, has been included as a special feature in the
Financial Stability Review of the ECB (see ECB (2011)), and has been highlighted
by the ECB’s vice president as a promising approach.?? In addition, the SOFSM is a
project in the Macro-prudential Research Network (MaRs) (ECB, 2012b). It is also
currently being implemented at multiple central banks and financial institutions
for a map to be used for external and internal communication, as well as being
implemented in a widely used software for financial regulators, Financial Network
Analytics (www.fna.fi).

11.2 Limitations

It is needless to say that this thesis has its limitations. On the one hand, these
may be related to simplifications due to various challenges in modeling, such as
data provision and availability, or other simplifications related to the context of
today’s world, such as available computing power. On the other hand, these provide
opportunities for further research, such as extensions to methods and evaluations
of models. Again, I separate the discussion according to the two ROs: methods
and applications.

11.2.1 Limitations of methods

The method extensions presented in this thesis are obviously restricted to apply to
only specific application domains and data, particularly those resembling that of
this thesis. In addition, the connection to information visualization of this thesis

22The speech can be found here: http://www.bis.org/review/r120619a.pdf
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also needs to be limited, such as whether and to what extent it provides means for
interactive visualizations.

One major concern of the SOTM, and the SOM in general, is that instances are
most often treated as being of uniform importance. The significance of such an
approach can be easily shown with an example from the topic of this thesis. Think
about the SOFSM, which uses data from 28 economies. It is indeed important to
have a cross-sectional perspective, as the number of crises in individual countries
is rather small and capturing a wide variety of crises is often strived for. Yet, the
importance of, for instance, Sweden and the US for such a model is most likely not
equal. Likewise, one could assume that the importance of an economy varies over
time due to numerous reasons, such as size of the banking sector, structures of the
banks and other measures of interdependence. In the case of the standard SOM,
this motivates a weighted approach that learns from data based upon instance-
specific importance values. Likewise, this also applies to the SOTM, but from
another perspective. A key use of the SOTM is for the understanding of vulner-
abilities and risks that are building up in the cross section. Here, however, it is
of central importance whether or not the imbalances are growing in systemically
important economies, which indeed varies over time and across countries.

Another line of limitations relate to information visualization. An essential part
of information visualization is the use of a manipulable medium, which allows
users to vary parameter values to interactively explore properties of data. As this
thesis provides models, or constructs, the inclusion of interaction techniques is
discussable in that they are planned to be included at the level of instantiations.
While T acknowledge that all products of this thesis are not ready-to-use tools with
user interfaces and interaction mediums, most of the applied and derived methods
could still be easily combined with a user interface and a range of parameters for
interactively exploring properties of data. In fact, this is an essential part of the
above discussed implementations, not the least in the case of Financial Network
Analytics.

11.2.2 Limitations of applications

The applications in this thesis come with a number of limitations. First and fore-
most, the usefulness of all models for policy use need to be related to the so-called
Lucas critique. The rest of the limitations are partly related to the underlying data
and the evaluations of the results.

The Lucas critique discusses how model accuracy is dependent upon potential feed-
back effects of changes in expectations and human behavior. I do acknowledge the
reasoning behind the Lucas critique (Lucas, 1976): “any change in policy will sys-
tematically alter the structure of econometric models”. Yet, as also discussed by
Bisias et al. (2012), the aim of more accurate early-warning signals relates to few
undesirable effects in terms of changes in behavior and expectations. First, inde-
pendent of the fact that changes in behavior might discount the impact of policies,
the more accurate the risk measures are the more accurate are the inputs to pol-
icy. Second, the key intent of early-warning signals is encouraging individuals and
institutions to take actions on their own, rather than only relying on actions of
governments. Yet, it is also of importance to be cautious in the use and commu-
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nication of early-warning signals, such as the risk of self-fulfilling prophecies. In
order to have indications of gradual changes in the state of financial stability, and
allow for individuals to take own corrective actions, this further motivates the use
of timely and frequent data.

Measuring financial instability is indeed a challenging task, especially when the
aim is a global approach. Accordingly, the data are limited by multiple chal-
lenges. First, the dataset is entirely missing indicators measuring aggregate risks
in country-level banking sectors. This is a result of having a global approach, as
all emerging market economies do not report these types of data. Second, the euro
area is included as an aggregate. While the focus in this thesis was to have a global
approach, it is obvious that it would be of interest to analyze individual euro-area
countries as well. Likewise, any other excluded country could be of interest. Third,
the class variable is discretized from the Financial Distress Index (FDI). While I
acknowledge that discretization leads to some loss of information, the fundamental
idea of predicting vulnerabilities prior to financial crisis, i.e. pre-crisis periods, does
not allow modeling a continuous index measuring contemporaneous stress. Further,
one could also claim that the results are dependent on the time and country frame
and thus not generalizable. Indeed, the results are only restricted to the used data,
yet the dataset covers a global set of economies from 1990 onwards. Thus, the
results may be said to apply to modern financial crises.

The second set of limitations relate to the qualities and validity of the models. As
I have not tested user satisfaction and perceived usefulness of the models, I cannot
claim how good the proposed models are in terms of applicability for visualizing
data. This relates to the question of internal and external evaluations. While a
wide range of internal measures have been used to assess and calibrate qualities of
the models, this thesis has not thoroughly evaluated the models in terms of external
measures. Yet, the communication to, interaction with and acceptance by domain
experts provides an indication of external quality.

11.3 Future research

Future research is to a large extent, yet obviously not entirely, directed by the above
discussed limitations. While this thesis already includes a large share of material
on the SOTM, I still see large potential in both extending it to many directions
and applying it to a wide range of tasks, particularly in macroprudential oversight.

11.3.1 Future methods

One idea for future research is the above discussed weighting scheme for the SOM.
A starting point to this can be found in Sarlin (2013), which may be extended
in a number of directions. In particular, the weighting could be applied, as again
discussed above, to the SOTM. Additionally, while the z axis of the SOTM has
represented time and time-to-event dimensions, it should not be restricted to any
specific variable. Depending upon the task at hand, the SOTM can be performed
over a wide variety of dimensions, such as age of customers in customer segmenta-
tion and steps of a process in industrial process monitoring. Moreover, whereas the
standard SOTM reduces both data and dimensionality by projecting data onto a
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two-dimensional grid of units, the reduction of the dataset could still be enhanced
by also reducing the time dimension. This enables a focus on only temporally rel-
evant parts of the time dimension. Obviously, the SOTM could also be extended
to a three-dimensional case, but this would involve strong interaction techniques
to be able to exploit the details provided in a three-dimensional cube. Indeed, the
simple, two-dimensional representation of the SOTM is a merit.

Another line of research could be to combine the approaches in this thesis. For
instance, the SOTM representation shows currently only changes in cluster struc-
tures, but neglects the transition patterns. Transition probabilities would be a
straightforward approach for understanding patterns of who is changing, in addi-
tion to only knowing the occurrence of changes.

The two-dimensional SOFSM is mainly illustrated with four crisp clusters (i.e., the
financial stability states), yet structures in real-world data are seldom crisp. One
promising approach is the projection-based coloring scheme for revealing cluster
structures provided by Kaski et al. (2001). The approach has, however, a number
of limitations: ¢) the objective function takes a complex form and involves a number
of parameters to be specified, i) the coloring method is not flexible for different
types of projection methods, and #4) most variation is restricted to occur in two
dimensions of hue, which implies a slight distortion to the mapping. In this vein,
it is of interest to explore possibilities of finding a general, yet simple, solution
to cluster coloring. Along these lines, an interesting approach would also be to
better integrate the elements of information visualization with dimension reduction
methods. In practice, this not only relates to the tasks of accounting for perception
and cognition in data graphics, as has briefly been discussed herein, but also, and
in particular, the task of interaction techniques. As noted by Wismiiller et al.
(2010), and illustrated in this thesis, dimension reductions should only be treated
as a starting point for the general visualization process and visual analytics in
particular.

11.3.2 Future applications

While the scope of future applications is qualitatively unlimited, and mainly de-
pendent upon the aims of the modeling task, there exists a range of interesting
directions in applications that I judge to be worth pursuing. To start with, when
data provision and availability become better in the future, as they are expected
to do, the above discussed limitations related to challenges in macroprudential
data can be improved. In particular, banking sector data should be collected to
also include imbalances in country-level banking sectors. Another improvement is
to include individual euro-area countries. One direction related to early-warning
models and indicators is related to a comprehensive comparison of approaches. The
literature is missing an objective evaluation of the relative performance of different
methods, given the same indicators, split of in- and out-of-sample data, evaluation
measures and model-building schemes.

In general, I see the SOM as a promising approach to communicating any types of
multivariate panel data, where entities may be firms, countries, assets, individuals,

etc. In particular, it provides means for building a low-dimensional display on top
of which individual data may be visualized. Hence, the SOM, as well as the SOTM,
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could equally well be used by, for instance, the European Banking Authority at the
level of financial intermediaries and the European Securities and Markets Authority
at the level of financial markets and securities.

In this vein, an interesting application of the SOTM would be to assess how risks
and vulnerabilities have built up in the cross section over recent years, as is done
in this thesis, but from more granular perspectives. In contrast to macro-level
applications, which provide a global view in the cross section, micro-level data
would enable more detailed information related to accumulated risks and their
changes over time. If one wants to focus on even more granular data, one could
move from firms to individual securities or assets, whose structures might be of
interest. One task could be to assess how asset correlation structures have evolved
over time, with a focus on illustrating dynamics during recent shocks, such as
market reactions to the flash crash and the failure of Lehman Brothers, where
significant contractions in correlation structures are to be expected. Likewise, the
SOTM could be applied to a wide range of other tasks. Related to the visual models
in this thesis, a common task missing is a user evaluation to measure the perceived
usefulness of the models. This would obviously be of interest in the context of
policymakers involved in macroprudential oversight.

Still, given methods for identifying risks and vulnerabilities, the key question for
future research to answer is: how should policymakers be persuaded to take cor-
rect(ive) actions? This boils down to the fact that behind policy lies a mishmash
of politics and economics, not the least in the recent European decisions. Some of
these challenges are exemplified by the below quotes.

“Often, public officials have two unfortunate incentives: to give undue attention to
worst-case scenarios and to pay no attention to them at all. Sometimes their electoral
prospects, or their overall popularity, depend on one or the other. Before the attacks
of 9/11, almost all American officials neglected the need for better security at airports,
not least because the public would have strongly resisted significant additional burdens
on air travel.”

— Cass R. Sunstein, Worst-Case Scenarios

“We all know what to do, we just don’t know how to get re-elected after we’ve done
it.”

— Jean-Claude Juncker, President of the Euro Group and Prime Minister of Luxem-
bourg, Le Soir, 2 July 2007

This being said, one could argue that means for better risk communication, such as
some of the visuals put forward in this thesis, promote the knowledge and under-
standing among our fellow citizens. This implies that a soar in research on external
risk communication could provide an improved basis for persuading policymakers
to early enough corrective actions.
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