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Component Reuse Metrics (CRM) is a new approach to estimating the
effort of component-based software development. A product structure
describes a software system which is made of reused components. The
history data of projects is stored in a repository. The average effort of
the components is used to calculate the baseline effort of the
forthcoming project. The characteristics of the project and human
effects are assessed and used to correct the baseline effort in the CRM-
calculations. The effect of the changes in the project takes into account
differences between the planned product and the final product. The
process effect includes the impact of process changes between the new
project and the projects in the repository. The team effect estimates the
effort which the team members spend in their mutual communication.
The expectation value of additional effort due to project risks is
calculated in the risk effect. The human effects are the skill effect and
the motivation effect. CRM equations calculate the efforts of tasks in
the project to be estimated. The assessment of the estimation method
and current practices was done using a survey and by case studies in
companies that tested CRM.

CRM is closely related to the second main contribution in this thesis,
namely new approaches to improving productivity in software
development. The criteria for reusability are understandability, ease to
find, adaptability and trustworthiness. The strategy for reusability is to
combine components that are based on generic abstractions. Separate
generalization-specialization-structures  to  both  functions and
traditional objects are used to improve adaptability. An analogy from
natural languages, a new concept, verb classes, is introduced. An
example is included to demonstrate the feasibility of this approach.
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Component Reuse Metrics (CRM) on wuusi Idhestymistapa
komponenttipohjaisen ohjelmistokehitystyon tyomddrdn arviointiin.
Tuoterakenne  kuvaa ohjelmiston,  joka on valmistettu
uudelleenkdytetyisti ~ komponenteista.  Projektien  historiatiedot
talletetaan hakemistoon. Komponenttien keskimddrdistd tyomddrdd
kiytetddn  tulevan  projektin  perustyomddrdin  laskemiseen.
Projektikohtaisten ja inhimillisten tekijoiden erityispiirteet arvioidaan
ja niitd kdytetddn CRM-laskennassa korjaamaan perustyémddrdd.
Projektin muuttumisen vaikutus huomioi suunnitellun ja lopullisen
tuotteen vilisen eron. Prosessi-vaikutus sisdltid prosessimuutosten
vaikutuksen uuden projektin ja hakemistossa olevien projektien vililld.
Tiimi-vaikutus arvioi tyomddrdn, jonka tiimin jdsenet kdyttdvit
keskindiseen kommunikointiin. Riskivaikutus laskee projektin riskeistdi
aiheutuvan  lisdtyon odotusarvon. Inhimilliset vaikutukset ovat
osaamisvaikutus ja motivaatiovaikutus. CRM  yhtdilot laskevat
arvioitavan projektin  tehtdvien tyomddrdt. Nykykdytintojen ja
arviointimenetelmdn arviointi tehtiin  kyselyilld ja tutkimuksilla
CRM:dd testanneissa yrityksissd.

CRM liittyy ldheisesti toiseen tdmdn vditéskirjan pddkontribuutioon eli
ohjelmistokehitystyon tuottavuuden parantamisen uusiin
ldhestymistapoihin. Uudelleenkdyton kriteerit ovat ymmdrrettdvyys,
loytamisen helppous, mukautettavuus ja luotettavuus. Uudelleenkdyton
strategia on yhdistdd yleisiin abstraktioihin perustuvia komponentteja.
Erillisia  erikoistamisrakenteita sekd funktioille ettd perinteisille
objekteille  kiytetddn — parantamaan — mukautettavuutta.  Uusi
luonnolliselle kielelle analoginen kdsite verbiluokat esitellddn.
Esimerkki osoittaa ldhestymistavan hyodyllisyyden.
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Preface

I saw the potential of this study in 1990 when I estimated the first
application projects which utilised an object-oriented programming
language. The proponents of the language (Object/1) argued that it was
highly productive. It was obvious that the method at that time used to
estimate the needed effort was not effective. No better methods were
available, therefore, there were no ways to validate the claims of high
productivity. The estimate of the project was accomplished by counting the
windows and controls in the windows.

The original idea of this thesis work was to evaluate the benefits of
object-oriented methods [Virtanen 1998b]. This in turn led to measuring
the development and to studying productivity. The first version of the new
estimation method was called Object Component Process Metrics [Virtanen
1998a]. The method was renamed Component Reuse Metrics because the
method counts components instead of classes and objects [Virtanen 2000b].
At the same time the calculation rules and the evaluation of human aspects
of the development have been improved.

The productivity improvements of component-based development are
based on the reuse of components. Adaptability was seen as the enabler of
reuse [Virtanen 1999b]. Verb inheritance is an architecture which creates
very adaptable components [Virtanen 1998b]. The study of verb classes
proposes an implementation of this idea [Virtanen 2000c].

My licentiate thesis contained the collected improved versions of the
above ideas [Virtanen 2000]. The practical evaluation of Component Reuse
Metrics [Virtanen 2001] depicts the results of the questionnaire with regard
to its basic assumptions. This thesis is an extended, updated and uniform
presentation of the above ideas.



1 Introduction

1.1 Topics

Measurement is important because a scale is needed to manage the efforts
required to accomplish or improve something. The main contribution of this
study is to introduce a new method, Component Reuse Metrics, CRM, for
estimating the effort of component-based software development. CRM is a
new way to combine human related effects and effects related to the size and
structure of the application to be developed. CRM also suggests a new way to
measure the size of an application. It counts the components of the future
application instead of lines of code or calculated numbers such as function
points. The total effort is the sum of the efforts of the components. In this
method effort contains the thinking work of each individual and their co-
operation during a development process. The skills and motivation of the staff
are important parts of the success of development projects.

The study compares traditional estimation methods, which are based on
standard units such as lines of code and function points, to CRM. The
solutions to problems involved in each of them are addressed in developing
Component Reuse Metrics.

The second issue in this study is the productivity of component-based
development. Reuse is important in increasing the productivity. The key
factors in reusability are understandability, ease to find, adaptability and
trustworthiness.

The foundations of reuse are studied in order to reveal the connection
between reuse and the properties of components. Several factors influencing
adaptability are discussed. The most important of them is to have good
abstractions. Object-oriented methods and programming languages have
several mechanisms to support the creation of extensions. They are analysed
in order to find improved mechanisms.

Finally, this study presents a new way of increasing reusability. In an
object-oriented approach inheritance is the main technique for reuse. In
linguistics, generalisation and word derivation are much more versatile. An
object model is at its most comprehensible when it utilises the structures of
natural languages and makes it possible to visualise these structures. This is a
way of expanding the current limits of object modelling. It has connections to
the analysis and design of frameworks and patterns.

1.2 Motivation

1.2.1 Why is estimation needed?

A measure is a standard or unit of measurement; the extent, dimensions,
capacity etc. of anything, especially as determined by a standard; a result of
measurement [Baumert 1992]. Measures are used to evaluate properties of



something being measured, such as quality, complexity or effort, in an
objective manner. In this study a metric is a synonym of a measure though in
some metrics programs measures are directly observable data and metrics are
results of combining several measures [Poulin 2001]. A measurement is an
act or process of measuring something [Baumert 1992].

In software engineering, metrics are needed to calculate the estimates of
the development cost and to decide if the proposed software should be
produced or not. A process used in making such a decision is called a
feasibility study [Kendall 1987]. The purpose of a feasibility study in the
preliminary analysis is to estimate the benefits of the software and compare
them with the costs of the development. The difficulty with the estimation is
that most of the required data are not yet available. The requirements are not
fully understood and the technical solution is obscure. As most of the costs of
the software development are related to human effort, this study focuses on
effort estimation. The cost calculations, e.g. costs of purchasing hardware, are
not considered.

At the beginning of any project, resources and the schedule of their usage
should be assigned. The estimation method should help to allocate people and
tools to the tasks. When the project is running, its progress (costs and
outcomes) should be measured. The estimation method should give the means
to do this objectively. When new features are added to the project, their
impact on the cost and schedule should be estimated.

The estimation can be used to evaluate the productivity of different
project teams, methods and tools. Using the evaluation, the methods,
processes and tools can be improved. The usage of metrics is an essential part
of the optimising level of the Capability Maturity Model (CMM), where
continuous process improvement is enabled by quantitative feedback from
processes [Paulk 1993]. The CMM models have been developed for various
purposes. Capability Maturity Model - Integrated (CMMI) harmonises them
under one framework [CMMI 2002].

1.2.2  Goals of component-based development

The goals of component-based development are, according to Brown, to
utilise the best solutions and to increase productivity [Brown 2000].
Component-based development manages complexity and improves
consistency. Supporting parallel and distributed development is included in
the component-based development environments. Increased productivity
reduces delivery time, time-to-market, and maintenance costs. The use of
components increases the controllability and visibility of the development
projects.

This study emphasises the role of visible, consistent components in
development projects. Productivity increase through reusable components is
the second topic.



1.3 Methods of the study

The research method used this study is constructive. Jérvinen defines
constructive research as research that tries to answer questions: Can we build
a certain artefact, how ought we do it and how useful is a particular artefact.
We can also ask, what type a certain artefact ought to be [Jérvinen 1999].
Programs, methods and models are examples of software engineering
artefacts.

The research question of this study is: How to measure and improve
component-based software development? The question of measuring is
handled first. A measuring method, CRM, is constructed. The method is
based on the hypothesis that certain factors are important in the software
development processes. The developed model of the cost structure of the
software development is based on practical experience. The equations for
estimating the development effort are heuristic. The study does not try to find
a decisive validation of the correctness of the method. Instead, the results of
empirical research are used to ensure that the parameters of the cost model
are reasonable and that the calculations can be accomplished. The weights of
the parameters are also obtained empirically. The method is groundwork to
construct practical tools to measure component-based software development.

Theory-testing research methods [Jérvinen 1999] are used while
assessing whether the developed estimation method is possible and useful in
practice. This part of the study includes a survey and case studies. The goal of
the survey is to look into current estimation practices and to collate the
factors involved in software development effort. Though the survey is linked
to CRM, the views of experts that have been obtained are also generally
useful. The case studies evaluate whether CRM can be used in practice.

According to the hypothesis of this study, the groups of factors are
components, process, project change, team, risks, skills and motivation.
Components are identified and counted and each group of factors is studied in
a separate estimation form, which quantifies the factors by using a 5-level
numerical scale. The effort due to each of these groups of factors should be
measured in project tracking. The set of questions used have been developed
with regard to the factors which have influence on the effort of component-
based software development.

The second part of this study is to develop methods of improving
component-based software development. It is also developed from
constructive research. The produced measurement method is used in order to
find out what kind of components are needed in improved component-based
software development, where a decrease in the effort required is emphasised.
Finally, an example program shows that such components can be built.



1.4 Definitions

1.4.1 Component-based software development

A module is a unit of software composition. It is an early example of a
software component. In the object-oriented approach, classes provide the
basic form of the module [Meyer 1997]. "A component is a high-quality type,
class or other work-product, designed, documented and packaged to be
reusable" [Jacobson 1997]. Another definition emphasises composability:

A software component is a unit of composition by third
parties and it contains only contractually specified
interfaces and explicit context dependencies. It can be
deployed independently [Szyperski 1998].

Component-based software development is an approach in which systems
are built from well-defined, independently produced pieces by combining the
pieces with self-made components [Brown 2000]. Some definitions
emphasise that components are conceptually coherent packages of useful
behaviour, while some others state that components are physical, deployable
units of software which execute within a well defined environment [Brown
2000]. There are several kinds of components and the granularity of these
components can vary [Herzum 2000]: A distributed component is a possibly
network addressable component which has the lowest granularity. It may be
implemented as an Enterprise JavaBean, as a CORBA component, or as a
DCOM component. A business component implements a single autonomous
business concept. A business component system is a group of business
components that co-operate to deliver a cohesive set of functionality and
properties required in a specific domain [Herzum 2000]. A tier is a group of
components in the same layer. The classic three-tier architecture consists of
the presentation tier (windows, reports, ...), application logic tier (business
rules of the application) and resource tier (persistent storage mechanism)
[Larman 1998]. As this study emphasises the reuse of conceptually coherent
packages of useful behaviour, the definitions of Szybersky and Jacobson are
the most relevant. The independence of the programming language and its
deployment as executable binaries is emphasised in other definitions.

The reuse requirement and the goals of developing component markets
change software development radically. One part of the effort of
programming is the effort of finding, understanding and reusing appropriate
components. On the other hand, additional effort in documenting, configuring
and releasing the component is required, if the component is made for sale.
Traditional effort estimation methods assume that applications are developed
from scratch without considerable reuse. Though reuse effects have been
added to these methods later, the paradigm has not been changed. The
meaning of the word reuse in software development is the usage of some
previously developed component in constructing new software. In other
words,



reuse is the process of adapting a generalised
component to various contexts of use [Basset 1997].

Every software product has some fixed features which determine what
the software product is. Reuse considers utilising these fixed properties
during the conmstruction time of the software product. In use developed
application calls the components at run time according to the choices made by
the person utilising the application.

A use case defines interactions (sequences of actions) between a user or
another kind of an actor and a software system [Booch 1999, page 222]. The
use cases are used in designing the components of the application [Cheesman
2001]. Adaptability is the ability of a component to adapt to different reuse
situations. Complexity measures the number of components and their
interconnections. Measures of complexity are typically based on internal
product attributes, such as cohesion and coupling [Golgberg 1995]. Coupling
is a measure of the degree of interaction and interdependence between
software components [Constantine 1995]. Cohesion measures the degree to
which a component comprises a well-defined functional whole [Constantine
1995].

This study focuses on the measurements of the component-based
software development process and the possibilities of improving reusability
of components. A4 software process is a set of activities, methods, practices,
notations and transformations that software engineers use to develop and
maintain software and associated artefacts (e.g. project plans, design
documents, code, test cases and user manuals) [Paulk 1993]. A project is an
instance of a process. It assigns the resources, such as the team, tools and
facilities to the project phases. A phase is a period during which a project
team focuses primarily on a specific kind of job, such as requirements
engineering, design, construction or release [McConnell 1998]. A task is an
element of a software project [Humphrey 1995]. Tasks are scheduling and
tracking units of a project. A method is a specific way of carrying out an
activity, a step-by-step procedure that takes you from a set of inputs to an end
result or an interim result [Goldberg 1995, page 48].

Component-based development often uses object-oriented methods, for
example, Object-Oriented Development by Booch [Booch 1991], Object-
Oriented Analysis by Coad and Yourdon [Coad 1990], Responsibility-Driven
design by Wirfs-Brook, Wilkerson and Wiener [Wirfs-Brook 1990],
Modelling the World by States by Shlaer and Mellor [Shlaer 1992] and
Object Modelling Technique by Rumbaugh, Blaha, Premerlani, Eddy and
Lorensen [Rumbaugh 1991]. Unified Modeling Language (UML), which is a
result of the co-operation of Booch, Rumbaugh and Jacobson, includes model
elements, notations and guidelines for describing object-oriented software
[Booch 1997]. The Object Management Group (OMG) is an organisation that
establishes and promotes standards of object-oriented software development
[Herzum 2000]. There is no single definition of object-orientation. It



depends on the frame of reference: programming language, user interface,
application, database or analysis or design methods. A data type oriented
definition is “Object-oriented software construction is the building of
software systems as structured collections of possibly partial abstract data
type implementations [Meyer 1997]." The general definition used in this
study is [Goldberg 1995]:

“Something is object-oriented if it can be extended by
composition of existing parts or by refinement of
behaviours. Changes in the original parts propagate, so
that compositions and refinements that reuse these
parts change appropriately.”

There are several general concepts to which object-orientation is
connected. These are discussed below. A class is an implemented abstract
data type. It serves both as a module and a type (or a type pattern if the class
is generic) [Meyer 1997]. A generic class is a class which has formal
parameters representing its types [Meyer 1997]. An attribute is a data
element of a class [Goldberg 1995]. An attribute can be an object. An
instance variable is a synonym for an attribute. An operation is an
implementation of a service that can be requested from any object of a related
class in order to affect the behaviour of the object [Booch 1999]. A method is
an implementation of an operation [Booch 1999]. In C++, the synonyms
member function and member variable are used for an attribute and a method
[Andrews 1993].

Inheritance is a way of propagating properties and behaviour. A subclass
inherits properties and behaviour from its super classes. Object-oriented
programming languages have it as a built-in property. The concept
generalisation/specialisation is semantically better than the concept
inheritance, because the child class should always represent a specific version
of the general abstraction of the parent class [Booch 1997]. In programming it
is also common to use this propagation system as a way to copy code from
one place to another without any conceptual relationship. This complicates
the maintenance of the applications, because developers cannot rely on the
"is-kind-of"-relation.

Encapsulation is a way of representing a cohesive set of properties and
behaviour as a single unit. Its background is in an idea taken from "software
integrated circuits" and uses an analogy from electronics. Thus the software
can be constructed by connecting an appropriate set of separately
manufactured software parts. Information hiding is the ability of the author of
a class to specify that a feature is available to all clients, to no client, or to
specific clients [Meyer 1997]. Usually, components are seen as packages of
classes. A contract is a set of precise conditions that establish the relations
between a component and its clients [Meyer 1997]. Components have explicit
interfaces to interfere with other components, however, they hide their
internal structure and implementation. An inferface is a collection of



operations that are used to define services of a class or a component [Booch
1999]. Interfaces are important parts of the documentation of the components.
A signature is the name and parameters of an operation [Booch 1999]. The
definition of an interface contains operations, semantics, preconditions,
postconditions, and invariants. Interfaces and their dependencies can be
expressed formally:

interface = {operation, {parameter, type, [in | out]}*}*

dependencies = {required _interfaces, offered _interfaces }

Polymorphism means that one can specify operations with the same
signature at different points in an inheritance hierarchy [Booch 1999].
Composition is a logical combining of several objects to form a new
conceptually distinct object [Goldberg 1995].

1.4.2 Reuse

The boxes of reuse is a paradigm which describes the independence of the
reused components. A reusable component can be seen as a box which
contains the code and the documentation. Though terms such as black box
and white box are used, reuse is not only black or white; there are tones of
grey too.

In black box reuse only the outside can be seen [Goldberg 1995, page
208]. The reuser sees the interface, not the implementation of the component.
The interface contains public methods, user documentation, requirements and
restrictions of the component. If a programmer were to change the code of a
black box component, compiling and linking the component would propagate
the change to the applications that reuse the component. As the users of the
component trust its interface, changes should not affect the logical behaviour
of the component. The clients will get what the contract promises only if the
postcondition is true after the changes to the internal implementation.

In glass box reuse the inside of the box can be seen as well as the outside,
but it is not possible to touch the inside [Goldberg 1995, page 208]. This
solution has an advantage when compared to black box reuse, as the reuser
can understand the box and its use better. The disadvantage is that it is
possible that the reuser will rely on a particular way of implementation or
other factors that are not in the contract. That can be hazardous when the
implementation changes.

In white box reuse it is possible to see and change the inside of the box as
well as its interface [Goldberg 1995, page 208]. A white box can share its
internal structure or implementation with another box through inheritance or
delegation. The new box can retain the reused box as such or it can change it.
It is necessary to test anything new that is created or changed.

Transformational reuse is an approach where a developer provides the
description of what is wanted and a black box program generates the



implementation details [Goldberg 1995, page 209]. Application generators
use this approach.

Cloning is easy to do. One simply copies a chunk of code and pastes it to
another place. It is not strategic reuse because the copy can change without
reflecting the change back to the original code. When the amount of code
increases, the effort in maintaining it also increases.

It is possible to reuse personnel and every software artefact such as
models, plans, designs, code, and components [Meyer 1997]. As software
artefacts are mental models, they can be reused as such. Reuse of an idea is
easy in theory but hard work is needed in the implementation.

Application reuse is a large-scale reuse. Using COTS-products instead of
producing the software is also a form of reuse. Such software typically has a
large number of parameters, which are used to adapt the software to the
varying needs of the stakeholders.

Object-oriented software has two mechanisms for adapting its
components: extensibility and inheritance [Carroll 1995, pp. 48].
Extensibility includes other kinds of flexibility than inheritance. The generic
classes, also called femplates, are the most important of these. Different kinds
of patterns are important extensibility mechanisms in higher levels of
abstractions.

A software framework is a set of related objects which provide a well-
defined set of services for the reuser. It can be seen as a frame to which a
developer can add functionality. The most important difference between a
program library and a framework is that the framework calls the added code,
but when using program libraries the code developed by the user calls the
routines in the library.

A design pattern is a description of communicating components which
are customised to solve a general design problem in a particular context
[Gamma 1995]. Each pattern solves one design problem. The problem and its
solution are described as a cognitive model, which can be adapted to solve
similar problems. Automation has been developed to support the use of
design patterns [Florijn 1997].

Typical class specification reuse includes adapting the class to another
context using specialisation. The inheriting class can have more member
variables and member functions than the super class. It is also possible to
change or modify the member functions in the inherited class.

1.5 Estimation of software development

1.5.1 Goal

The goal of estimation is to find out the costs and timing in a software
development project. Software estimation methods focus almost solely on the
effort because the effort is the major cost factor in software development.



Timing depends on the effort, available resources, and required time-to-
market.

1.5.2 Desired properties of the measures

In order to be useful, the measure must be valid, reliable, accurate, and
practical. A measure is valid if it accurately characterises the attribute it
claims to measure [Fenton 1997]. A measure is reliable if the application of
its algorithms produces consistent results. Thus a measure can be reliable but
not valid. The measure is accurate if the result is close enough to the true
value. The measure is practical if it is easy to use and requires a small effort
in real-life projects. A practical measure does not require excessive
measuring effort or data which is not available at the time of the
measurement.

The issue of objectivity against subjectivity is important. Objective
measurements are independent of the person who measures and are
repeatable and they should also cover all of the important facets of the
software development. Measures, such as lines of code, classic complexity
metrics, object-oriented metrics and component counts, can be measured
quite objectively after the implementation but many important measures, such
as human skills and motivation, always depend on the judgement of the
estimator.

Quite often the desired properties cannot be measured directly. Instead,
some other measurement is done and the target metrics are derived from this.
In this case, the validity of the reasoning must be assured very carefully. For
example, in geometry we can estimate the height of a tree by measuring the
length from the observation point to the bottom of the tree and the angle from
the observation point to the top of the tree. Now there is a function to
calculate the height of the tree. In this case the validity of the function is not
questionable. In measuring human behaviour the reliability of the
measurement is always questionable. The observations have influence on the
measurement. The observations are typically not repeatable because humans
do not always behave in the same way. There is no direct function because it
is difficult, if not impossible, to predict how humans act. As the real essence
of software [Brooks 1995] i.e. mental models, cannot be measured, the
outcomes of the development process must be measured instead. If the
mapping between mental models and outcomes is incorrect, the obtained
measure is invalid. If the calculation process is not unambiguous, the result
will be unreliable. Estimates made without knowing all the functionality of
the software to be developed are at best inaccurate, if not invalid.

We can use more and more accurate measuring units but the phenomenon
itself will limit the usefulness of the accuracy. For example, the length of a
rail changes if the temperature changes. There is no point in making the
metrics too accurate because the random fluctuations of the phenomenon can
be larger than the intended accuracy of the metrics.
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In order to be practical the collection of data should be automatic.
Without computer-supported data collection, data for metrics would not be
collected at all in practice. The needed data should be available in the early
phases of the development when important decisions are made. A method
which requires an excessive number of parameters also requires an
unnecessary amount of effort in order to accomplish the estimation. CRM is
not too laborious because only its central parameters must be actively used.

Dependencies on programming languages and development methods
should not restrict the usability of the metrics. The same applies to
dependence on the project size.

Estimates for measures are based on statistics which are collected from
previous projects and stored in a repository. They contain implicit
assumptions about the properties of projects that are to be estimated. The
problem is that new projects are not the same as old ones. New tools and
methods can be used or at the very least the staff will have learned how to
accomplish the work better. The similarity of the project to be estimated and
that of previous projects can be performed better if in-house statistics are
used instead of world-wide statistics of all available projects. However, in
this case random effects have a greater influence on the estimate because the
size of the sample of the in-house projects is smaller than samples from a
more extensive set of projects in industry.

The solution suggested in this study is to isolate the factors relating to the
effort inside the development projects and use the statistics from them in new
estimates. The quality of these measurements will naturally have a large
impact on the quality of the estimate.

1.5.3 Product metrics and process metrics

Metrics can be divided into two groups. Product metrics measure the
artefacts of the software project. Process metrics measure the features of the
development process [Donaldson 1997]. Both of these are needed in the
development of products and processes and to make good effort estimations.

The product metrics approach focuses on the end product itself, not on
how it is produced. The properties of the product are analysed from the code,
from the documentation, from the user’s external view of the product and/or
from the profits of the business. The idea is to separate the size and
complexity of the product from the productivity of the process. Though code
is used to analyse the complexity, each ramification is considered to be due to
a requirement of a stakeholder. Thus dependency on the used programming
language can be taken into account by using a language specific productivity
ratio, if needed.

A large volume of code is not an indication of good productivity. This is
especially so in component-based development where reuse is a major issue.
A product with less code may produce more user functionality with less cost
than a product with a large amount of code. In assessing different paradigms,
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it is essential to look at the product from the user’s point of view. The value
of a system for a user is not a consequence of larger program size and
complexity. The usability of the system may be better in a product which has
fewer features but where the features it does have are important, than in a
product which has a large number of unimportant features.

Product metrics are also quality metrics. They can be used to make an
analysis of the maintainability, portability, usability, and correctness, to
mention a few of its applications. These attributes are closely connected to
each other. For example, better maintainability is correlated to better
correctness because higher productivity in making corrections adds the
probability that the errors are corrected. Cost estimation is connected to
quality.

Process metrics measure the attributes of the development process. A
process model defines a set of activities which occur over a period of time.
Typical attributes of the process metrics are the number and the duration of
these activities. The time needed for analysis and the number of bugs found in
the system are examples of the attributes to be measured. Variables such as
staffing levels or effort, both as a function of time, may be used directly or
may be included in prognostic models to forecast other characteristics.
Process improvements are normally related to each other and it is difficult to
create laboratory environments to measure individual process factors. In most
cases process metrics are also connected to product metrics.

1.5.4 External and internal measures

It is important to distinguish the measures that can be detected by the users of
the application from those measures that measure the internal properties of
the products. The former properties may be called external measures and the
latter ones internal measures [Meyer 1997]. Examples of the former are the
number of windows in the user interface and the number of use cases in the
system. Examples of the latter are the number of classes, the average number
of methods in the classes and the average number of lines of code in the
methods.

Henderson-Sellers enumerates metrics for the size of the program, data
structure, control flow complexity, inter-module coupling and modular
cohesion as examples of internal factors [Henderson-Sellers 1996].
Complexity, understandability, modifiability, testability and maintainability
are his examples of external factors. Nowadays, interoperability is very
important as software is often composed of third-party components
[Szyperski 1998]. The advantage of the internal factors is that they can be
calculated objectively and compared to external factors. Internal factors can
be useful as estimators or predictors of external values if the link between
internal and external factors can be defined.

Complexity denotes the degree of mental effort required for
comprehension. The structural complexity measures the structure (for
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example, control flow structure, hierarchical structure or modular structure)
of the software [Fenton 1997]. The inherent size and complexity of the
problem to be solved is the portion of complexity which can be determined
without assigning people to the development project.

Productivity can be increased by avoiding unnecessary code and by
decreasing the effort spent on the remaining code. The latter can be
accomplished, for example, by using better tools. The selected productivity
measure can take that into account only if it is based on an external view of
the product. An internal measure, such as lines of code in an hour, suggests
bad practices such as excessive use of copying and pasting of code. The
amount of code increases rapidly but the functionality of the software does
not.

1.5.5 The unit of size

The entity of sofiware size is widely used but still obscure. One valid
definition is to define it as the size in bytes of the installed software. In this
scenario the entity is restricted to the measure space requirements of the
software. In proposed metrics software size is used to estimate the work
needed to produce the software. Here the typical unit is lines of code (LOC).
If effort estimation is the ultimate goal then a function, called productivity,
between effort and size must exist:

Equation 1.
Effort = Productivity functio n(Product_size, productivity _ parameters)

Productivity is a metric of efficiency measured by comparing the amount
of code produced with the time taken or the resources used to produce it.
Alternatively, productivity can be measured related to other factors, for
example, to profit. Additivity is a desired property of the size. If additivity
holds, the measure can be used as a progress indicator during the project. In
equation form the total effort can be calculated by either dividing the size of
the whole product by the productivity coefficient or by summing the efforts
of the tasks of the project. Formally:

Z Sizep

. rts _of _ product
Equation 2. Effort = PEpa = Effort:
q Productivity coeffiecient z

tetasks _of _ project

where

. Sizep: size of the part p of the product,
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e p=part of the product,
e Effort;= effort of the task t of the project, and

e ¢=task of the project.

If the previous equation were true, the productivity would be a linear
function of the size and combining the parts would require no effort. Here its
unit is the unit of size per time unit, for example, lines of code per hour, or
function points per hour. The equation is true only if a size unit corresponds
to a fixed effort. Using lines of code is based on that assumption. A function
point is a computational size unit in which each counted item (for example an
input or an output) is weighted by a weight proportional to the effort.

In the real world software products are composed of many different kinds
of components which each have different complexities. The proportional
amounts of the components and the productivity of reusing these various
components vary widely. For example, the productivity of generating code for
a business application is higher than the productivity required to create code
for mathematical algorithms. Therefore, it is important to know how much
difficult code is needed in each application.

An easy solution to the previous problem is to exclude the concept of size
and concentrate on calculating the sums of efforts needed to do the tasks in
the project. In this case, productivity cannot be calculated because there is no
connection to the inherent size and complexity of the problem. A solution
used in car maintenance and repair is to define a standard effort for each
standardised task that is visible to a customer, for example, to state that an oil
change will take 15 minutes, which is normally enough time for the task.

In this study the components of the applications are handled separately in
order to take the variations of the complexity and productivity into account.

1.5.6 Task assignments

The use of the person-month concept is questioned because people are not
interchangeable [Brooks 1995]. Each person has different productivity
because his/her personality, knowledge, experience and motivation differs. If
a developer writes a 1000 line program in 40 hours, 5 developers won't
necessarily be able to do the same task in 8 hours, and by logical extension 40
developers won't necessarily complete the task in an hour [McConnell 1996].
This is because it is not possible to perfectly partition a programming task
and construct the different parts simultaneously. Adding manpower adds
effort due to the need for co-operation and communication. It is not
intuitively clear whether this added effort belongs to the inherent complexity
of the task or to productivity.

In early estimates the task assignments cannot generally be known and
averages must be used. However, if the assignments are known, the use of
them increases the accuracy of the estimate.
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For example, consider two tasks, named T1 and T2, and two developers,
named D1 and D2. D1 is familiar with task T1 and D2 with task T2. The
fictitious example in Table 1 shows us that the total effort with assignment
D1 to task T1 and D2 to task T2 is 30 hours and assignment D1 to task T2
and D2 to task T1 is 250 hours. The work difference is due to the time needed
to learn the task up to the same level as the other developer. If the complexity
and the productivity are estimated separately, what are the inherent
complexities of the tasks and what is the productivity? Clearly there is the
trivial solution. The estimate of the total effort of T1 and T2 is 138 hours
because the complexity is 400 function points and average productivity is 2.9
function points per hour. Function points are used in this example, though
this study does not advocate the use of function points. The estimate of the
example is not accurate because the productivity range was from 1 FP/ h to
15 FP/ h.

Table 1. Influence of task assignments to the total effort.

Developer D1 Developer D2 Complexity
(function points :
FP)
Task T1 10FP/h 10 h 1FP/h 100 h 100 FP
Task T2 2FP/h 150 h 15FP/h 20 h 300 FP
Average 25FP/h 3.3FP/h 29FP/h

In this study project and human effects are calculated explicitly. As the
same task is easier for a developer who is familiar with it, it is not appropriate
to estimate the effort without considering task assignments. Cognitive
complexity metrics provide another solution, which is arrived at by including
the familiarity with the tasks in the calculation rules of the complexity metric
[Cant 1994].

1.6 Related work

1.6.1 Effort estimation

The measures most suited to component-based development and measures

which are used widely, are presented here briefly and compared to CRM in

chapter 4 (page 65). The discussed metrics are:

e Number of lines of code (LOC) is easy to collect and has been collected
historically, going back over the last 20 years [Poulin 1997, Conte 1986].
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e Constructive Cost Model, COCOMO, [Boehm 1981] and COCOMO 1I
[Boehm 2000] calculate the effort required for software development
using the size of the product in the LOC.

e Function point analysis, FPA, is a widely referred estimation method
[McConnell 1996, Dreger 1992]. It is a measure of program size that is
often used in the early phases of a project.

e PROxy-Based-Estimating, PROBE, method uses classes as proxies of
lines of code [Humphrey 1995].

o Complexity metrics study the psychological complexity of programs
[Henry 1981, Halstead 1977, Henderson-Sellers 1996, McCabe 1976].
Lines of code are not considered equal, some of them are more difficult to
produce, modify and understand. That difficulty is correlated to the effort
required in the development.

e Suites of object-oriented metrics comprehend the applications according
to the object paradigm [Chidamber 1991, Lorentz 1994, Putkonen 1994].

e Task based estimation is the choice of industry for software project
estimation. The project is broken down into tasks, forming a structure
called project breakdown structure or work breakdown structure [Cantor
1998, Metzger 1996, Symons 1991].

1.6.2 Effort estimation in construction business

As the construction of houses and buildings has many similarities to software
development, their estimation methods are briefly introduced. For example,
both software and buildings can be produced in projects in which humans
assemble prefabricated components. The goal is to find useful analogies in
order to improve the estimation methods of software development. The main
difference between these businesses is that a software product is abstract and
intangible and a building is tangible. Rewriting software is cheap and easy
compared to knocking down a building and constructing it again because the
cost of materials is much less than the actual construction. In the construction
business the effort is calculated component-by-component using component
specific calculation rules. Productivity is not a general coefficient that is
applied to the size of a building. General size metrics, such as square-metres
and cubic-metres, are used only to compare overall measures of similar
buildings.

Nowadays, even the most exceptional buildings are made using factory
made components. Component standardisation and usage is so widely spread
that books are published which contain catalogues of these components.
Further, they contain equations from which the amount of work required to
assemble these components can be calculated [Ojala 1989].

The equations for work effort calculation are based on the components.
As the effort is different in different project or human-related situations, it
must be adapted for the forthcoming project. For example, the effort of using



16

ready-made concrete is different in wintertime and in summertime. The unit
is hours per cubic metre because ready-made concrete is sold in cubic metres
and is delivered by a special lorry. The team needed for the assembly work,
for example, is defined as being two professional workers and one handyman.
By defining the team the cost differences can be taken into account. The
method by which the job is done is also implied, it is based on using a crane.
The estimates for making floors and walls use different units, teams and
tools.

Next, granularity of the components varies. The wall can contain only a
single wall-element, or it can consist of several wall-elements or it can be
constructed from bricks. In the feasibility study phase components of coarser
granularity are used. For example, we consider the wall to be a single
component, not wallpaper alone [Hyttinen 1987]. The wall may consist of
bricks, an outer board, a thermal insulator, a wooden skeleton, an inside
board and finally the wallpaper. Now we estimate that the whole wall costs

77 €/ m? and the amount of work is 4 hours / m2. Using varying granularities
leads to varying flexibility in design. The different combinations of the
standard components create the flexibility needed in constructing non-similar
houses.

The estimation of constructing houses and buildings has no general house
level unit (analogous to function points or lines of code). The progress of the
project is estimated by component level units. The milestones are based on
the phases of the construction; for example, groundwork ready and roof
ready. We do not say that we have now constructed 58 m? of our 300-m?
house or 3 floors of a 10 floor building because the effort involved in one unit
varies. However, saying that we have assembled 42 500 bricks into our 100
000 brick wall is meaningful. Adding bricks and windows does not make
sense. The same applies to software components. We can count (similar)
windows and (similar) database tables but a combined sum is not reasonable.
Doing a sum requires measurement or estimation of the effort. In construction
work the effort can be assigned to a component. This does not mean that
components are isolated. There are walls, floors and windows, which are
tightly coupled to each other. The effort needed in assembling a component,
say a door, is coupling it to the rest of the system, in the case of a door to a
wall in the house. The effort itself depends on the type of process in which
the work is done. For example, the work of assembling a wall-element is not
the same if a crane is used. Productivity is a combination of the effects of
tools, the team and the process.

1.6.3 Reuse taxonomy
There are two views to reuse [Tracz 1995, pages 93-94]:

e Before you can reuse something, you need to find it, know what it does,
and know how to reuse it.
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e Firstly, before you can reuse something, there has to be something to reuse
and secondly before you can reuse something, it needs to be useful.

Poulin has made a taxonomy, which classifies several approaches to
reuse metrics [Poulin 1997, page 110]. There are two main groups: empirical
methods and qualitative methods. Empirical methods depend on objective
data. An analyst can calculate them easily and cheaply, which is a very
desirable property of a metric. Empirical studies compare attributes of reused
components to attributes of components which are not reused. The attributes
of reusable software must influence reusability. For example, there are more
reused small components than large ones. Making all components small is not
good practice because the benefits obtained by using large reusable
components are greater. Qualitative methods define the attributes of reusable
software and assessors subjectively assess how the software to be studied
adheres to these attributes. The use of assessments makes qualitative methods
more expensive than empirical methods [Poulin 1997].

Reusability is related to portability and co-operativity as they both assess
the possibility of using one component with another component.
Maintainability is related to reuse because both assess the ease of adaptation
of a component. Understandability is an attribute which assesses the ease of
comprehension of a component.

1.6.4 Reusability metrics

Prieto-Diaz and Freeman's model encourages white-box reuse and evaluates
which components the programmer can modify most easily [Prieto-Diaz
1987]. Their metrics apply traditional program size and complexity metrics to
particular programming languages. Documentation is evaluated subjectively.
Reuse experience is the most important human factor in their metrics.

Selby looked at instances where reuse succeeded in the NASA
environment and tried to determine why [Selby 1989]. He found that a
reusable software module is small and its interface is simple. It has few
dependencies on other modules. Good documentation is also one of its
properties. The reuse of the low-level system and utility functions is more
common than the reuse of human interface functions. Selby validated these
results statistically.

The ESPRIT-2 project REBOOT (Reuse Based on Object-Oriented
Techniques) developed the taxonomy of reusability attributes [Poulin 1997,
page 116]. It has four reusability factors which are specified using a given
number of criteria. Each criterion has at least one metrics. Reusability is a
number from O to 1, which is calculated by normalising the metrics.
REBOOT allows an analyst to change the weights of the metrics while
calculating reusability. This is done because the importance of metrics may
change from site to site. The four reusability factors of REBOOT are
portability, flexibility, understandability, and the confidence of the reuser.
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Portability expresses the ease of reuse in another environment. The criteria of
flexibility are generality and modularity. Criteria of understandability include
code complexity, self-descriptiveness, documentation quality and component
complexity. Confidence is the probability of the error-free reuse as assessed
by the reuser.

The NATO Standard for Software Reuse Procedures is more concerned
with the statistics in the reuse process [Poulin 1997, page 123]. This metrics
is helpful in eliminating unsuitable candidates for reuse. Modules, which
have been considered many times without actual reuse, can be treated as not
being useful. The same applies to modules of high complexity that have a
large number of defects.

The Army Reuse Center inspects all software submitted to the Defense
Software Repository System [Poulin 1997, page 123-124]. The preliminary
inspection estimates the effort required to reuse the component without
modification, the effort required to develop a new component instead of
reuse, the yearly maintenance effort and the expected number of reuses. The
most important factor here is that the estimated effort required to reuse the
component, which is needed in Component Reuse Metrics, is recorded as part
of the reuse library administration.

IBM’s method stresses that the developer needs to have access to the
development project's documentation in addition to the code [Poulin 1997,
page 126].

Understandability, ease to find, adaptability and trustworthiness are
common factors in previous metrics, though the views are different. Thus, it
is considered adequate to use them as the criteria for reusability in this study.

1.7 Outline of the thesis

Chapter 1 explained the motivation for the research, the research problem and
the research methods. It introduced the measurement of software
development and the related work. The common vocabulary of this thesis was
also defined. Chapter 2 explains Component Reuse Metrics, CRM [Virtanen
2000b], which is the major contribution of this thesis. Chapter 3 gives a
calculation example of CRM. Chapter 4 contains the practical evaluation of
Component Reuse Metrics [Virtanen 2001]. It presents the results of the
questionnaire concerning its basic assumptions and case studies of practical
CRM tests. Chapter 5 compares CRM to related work in the estimation of
software development. Chapter 6 focuses on the productivity improvements
of component-based development. The paper "Adaptability -the enabler of
reuse" [Virtanen 1999b] is rewritten, and the use of CRM has been added.
Chapter 7 introduces "Verb classes", which is an architecture for creating
highly adaptable components [Virtanen 1998b], [Virtanen 1999], [Virtanen
2000c]. It is also a contribution of this thesis. Chapter 8 summarises the thesis
and gives the conclusions.
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2 Component Reuse Metrics

2.1 Outline of CRM

The presentation describes the research method used in this study. The
hypothesis is explained first and its rationalisation and validation follows.
The representation of CRM is spread across several chapters. Firstly, in
chapter 2, the general concepts of CRM are introduced. Secondly, the CRM-
equations follow. Thirdly, the details of the parameters of the equations and
the estimation process are described. Chapter 3 contains an example of the
CRM calculations in order to clarify the preceding theory. The empirical
study in chapter 4 gives a validation of the CRM method. Finally, in chapter
5, the related work is presented to create a context for CRM.

2.2 Introduction

A new method for estimating software development efforts, Component
Reuse Metrics, CRM, developed in this study, combines the estimation of
component-based technology and the analysis of human behaviour into
simple calculation rules. CRM uses the following definitions:

An effort is the amount of time that one person uses in
accomplishing a task. The unit of the effort is an hour.

An effect is a characteristic of software development
which affects the effort significantly.

A factor is a characteristic of an effect. For example, a
skill needed to use tools and teamwork skills are factors
of the skill effect.

According to the hypothesis of this study, the groups of the factors
(called effects), which have influence on the effort of component-based
software development, are components, process, project change, team, risks,
skills and motivation. This kind of hypothesis can not be validated decisively,
but empirical research can be used to ensure that it is reasonable and useful.
The hyphothesis can also be rationalised by the goal-question-metric
paradigm, which is a framework for guiding measurement efforts [Basili
1984]. According to this paradigm, the steps needed to create valid metrics
are:

e define the principal goals of interest,
e construct a comprehensive set of questions to achieve these goals, and

e define the data required to answer to these questions.

As the goal is to estimate software development effort, an appropriate
question for Goal Question Metrics is "what affects the effort of software
development?" The affecting characteristics can be found from practical
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experience. Hakkarainen et al. have studied the factors used in the estimation
of the effort of software projects in Finland [Hakkarainen 1993]. Their
factors were hardware, user interface, developers' experience, size of
application, generality of application, complexity of processing, development
environment, and project organisation. The existing estimation methods use
their own factors, which resemble the factors of CRM (see chapter 4). For
example, COCOMO 1I has 5 scale factors and 17 effort multipliers, which
characterise the product, the process, the team, the risk and the personnel
[Boehm 2000]. COCOMO 1I has separate submodels for different kinds of
products. In CRM the component effect contains all of the product related
factors, which adapts the method to different kinds of products. As
COCOMO 1I estimates the new lines of code in the forthcoming product
project change effect is not explicit. COCOMO II does not include motivation
factors though motivation is important in managing technical people
[Humphrey 1997].

Figure 1 presents the classification of effects into component, project and
human effects. The component effect includes all of the factors related to the
product to be developed. In addition to the complexity of the product, the
factors include quality attributes such as reliability, reusability and
documentation. Selecting a component implicitly defines the platform and a
number of properties related to it. The human effects of CRM are the skill
effect and the motivation effect. The skill effect takes into consideration the
required training. The motivation effect calculates the influence of the
motivation of the staff on the development effort. The project effects are risk
effect, team effect, project change effect and process effect.

Effect
Project effect Component effect Human effect
Process effect | |Project change Team effect Risk effect Skill effect Motivation
effect effect

Figure 1. Effects used in CRM.

The effort needed in sharing information is included in the team effect.
The project change effect calculates the influence of additional features
added to the project during the development. This can be revealed by looking
at the difference between the original and the final component structure. The
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process effect takes the changes in methods and tools into account. The effort
of the risk effect is the probable additional effort due to the risks within the
project.

The survey made in this study confirms that all of the effects of CRM are
significant and that these effects can be estimated (chapter 3). The number of
effects is small but each of them consists of a large number of flexible
factors. New factors can be added if they are needed. This ensures that all the
significant characteristics in the software development are taken into account.
The use of a small number of effects is adequate as additional effects would
increase the estimation effort.

The variation of complexity and productivity within a project is an
essential property of software development (see chapters 1.5.5 and 1.5.6).
CRM is based on a component structure for the complexity variation and a
project breakdown structure for the productivity variation. CRM estimates the
efforts of personal tasks.

A personal task is the share one person has of a task in
a project. The outcome of each personal task is
progress in developing the tracking set of components
connected to the personal task.

A tracking set of the product is a component, aggregate
component or a set of components, which is used to
observe the development of the product during the
project.

Figure 2 shows a small project, which contains two tasks: T1 and T2 and
three personal tasks: PT 1, PT 2 and PT 3. The personal task PT 1 produces
the tracking set TS 1 from a component T, a component C and two
occurrences of component B. PT 2 and PT 3 produce TS 2 similarly. As the
efforts of the components T, C and B are too small to be separated, the
persons assigned to the personal tasks PT 1, PT2 and PT 3 only report the
actual efforts of the personal tasks. The effort estimates of the personal tasks
are based on the realised historical efforts of the components T, C and B.
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Figure 2. Personal tasks and tracking sets.

In CRM, historical data is collected into a project repository, which is
described in chapter 2.3. The repository contains, for example, component
structures and tasks from reusing components. The average effort of reusing a
component can be used in estimating forthcoming projects because a
component has by definition a fixed contract in its reuse. The estimation
process of CRM resembles the estimation process of PROBE [Humphrey
1995], because it uses components as proxies of effort.

The first steps in the CRM estimation process are to plan the project and
define the component structure of the product to be developed. As each
personal task in the work breakdown structure of the project plan is
connected to exactly one tracking set in the component structure, the baseline
efforts of the personal tasks can be calculated by using the averages of the
efforts of the components in various tracking sets in history. A baseline effort
is the effort of the component effect only.

In the next stage of the estimation process the project manager uses
estimation forms to estimate the importance of the project and human effects
(Appendix A: Estimation forms and survey results). This can be done when a
preliminary project plan is available. A factor estimation form of an effect
contains one question about each factor of the effect. The answers to the
questions scale the influence of each factor to a small number. The weighted
averages of the answers to the estimation forms are used to estimate the
impact of the project and the human effects in the forthcoming project.

Finally, the estimates of the efforts of the personal tasks are calculated by
using the CRM equations, which will be presented later.

2.3 Project repository

A project repository is a database which stores selected data about previous,
current and estimated forthcoming projects. In addition to effort information,
the collected data contains assessments of the influence of project and human
effects to the effort. Component structures, project plans, CRM estimates and
tracking data are the main parts of the repository. The tracking data contains
the realised efforts of the personal tasks classified according to the effort
types. Figure 3 depicts the class diagram of the project repository. The large
rectangles with pointed lines depict the grouping of the classes. A bullet-
headed line denotes a one-to-many association between the classes. The
bullet-head is at the many-side. The open-triangle arrowhead denotes
generalisation, where the triangle is on the general side. The diamond
arrowhead denotes aggregation, where the diamond is on the whole side. The
attributes of the classes are described and used in the CRM equations in the
following chapter. The symbol '# designates a variable which contains a
realised value. The meanings of the variables will be explained later.
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Figure 3. Class diagram of CRM project repository.

There are two component structures, the external user's view and the
internal implementation view, which the tracking set connects tightly
together. The outside view of the product (customer view) is needed to make
estimates based on information which is available early in the project, and to
compare design solutions. If more information 1is available, the
implementation level component model (implementation view) will enable
more accurate estimates. The effort of a component (E) is the effort which is

required to add and integrate the component into new software (see details in
chapter 2.7, page 39). The estimator can use the construction effort of a
component (E*.) to estimate the implementation effort of similar

components. The attribute n; stands for the number of occurrences of the
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same/similar sub-component within the component structure. When a
component has been constructed, CRM calculations use the effort of the
constructed component.

From the project plan data about phases, tasks, persons and personal
tasks is stored into the repository. The sets of tasks depend on the method and
process model used in the development. A task can be accomplished by a
group of persons. The share of an individual person in a task is called a
personal task and the contribution coefficient (o) gives the person's
proportion of the effort of the task. The baseline efforts of the personal tasks
are calculated by using the tracking sets that are connected to the tasks. The
CRM estimate of the effort of the project (Ep) is the sum of the efforts of the

personal tasks. The phases are groups of tasks. Phase coefficients (h) show
the division of the total effort into the phases.

CRM estimates the project and human effects by utilising estimation
forms. Each question in an estimation form defines a factor of an effect. The
answers (a) to the questions are weighted (w). Answers and weights are
stored in the repository.

An answer is a small number describing the status of a
factor in the forthcoming project.

A weight is a small number describing the importance
of a factor to the effort. It is obtained from the repository
in order to calculate the weighted average of the
answers.

An effect level is the weighted average of the answers
to the questions in the estimation form of the effect. The
levels in CRM are process level (Ip), project change

level (If), risk level (I), team level (l), skill level (Ig) and
motivation level (I ;).

An effect coefficient (m, s, t, r, f, pc) is a number that is

used to calculate the effort of a personal task. It is also
called a correction coefficient because it corrects the
baseline effort according to the influence of the effects.

The equation coefficients (o's and B's) are used to
calculate the effect coefficients when the levels are
known. See Equation 4.

The levels are assessed in the CRM estimation process by using the
factor estimation forms. The levels are estimated for projects or groups of
tasks and persons only because it is not practical to assess project and human
effects at a more detailed level. If nothing or only a little has changed in the
projects, the results of previous factor estimations can be used. The effect
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coefficients (m, s, t, r, f, po) can now be calculated because the project

repository contains the equation coefficients based on the previous projects.
In tracking, the realised efforts are classified according to the type of

effort and stored in the repository. A realised effort (E¥) is a placeholder of a
small, individually tracked part of work time. There is a correlation between
the types of efforts and the types of effects. The baseline effort only contains
the efforts of the components. The skill effort contains the time needed to
study within the work. The team effort records the time needed for meetings
and other collaborations. The risks of the project cause the risk efforts. The
motivation effort is normally estimated after the project in order to correct the
tracking data. The project change effort does not appear in Figure 3 because
the project change effect illustrates the change in the component structure
during the project. Similarly, the process effect describes the influence of the
changes in the processes on the efforts of the components in the project
history.

Figure 4 presents an overview of the CRM calculation. The estimation
forms give the levels which are needed to calculate the coefficients. The
estimates are calculated from the efforts of previous components using the
coefficients.  Personal time reports give the realised efforts for the
recalculation which updates the repository.

Project Component
plan structure

Numbers and
structures of
components

Persona

L levels |Calculate coefficients

u | cocfficients

Calculate

estimate

Estimation forms
(answers, weights)

Equation &
coefficients

Efforts of
previous
components

Repository

A

Efforts of components,
Phase cokfficients,

Realised  Equation| coefficients
efforts

Personal
time reports

w| Recalculation

Figure 4. Overview of CRM estimation of personal tasks.
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2.4 Estimation equations

2.4.1 Hypothesis

Software cost models can be based on the analysis of the factors and
statistical evidence. The conclusion of the analysis is a hypothesis which can
be tested empirically. The option of deriving statistical equations was not
selected in this study, as not enough data is available. Finding the data can
take a long time, which may mean that by the time it has been collected the
changes in software development can render it obsolete. The criteria for the
equations and their parameters are that

e they give sufficiently valid, accurate and reliable estimates,

e they are sufficiently understandable and intuitive as to be used with task
based estimation, in bargaining the software contracts and in the
management of the project and its personnel,

e the estimation effort is reasonable, and

e cquations and coefficients can be updated flexibly according to
experiences learned in different projects.

In this study a survey and a small number of case studies test the
hypothesis. A more thorough analysis of the equations and the calibration of
the parameters are left for future research. Any future research should have a
large number of pilot projects and comparisons with other estimation
methods.

2.4.2 Estimation forms

First of all, the estimator fills in the estimation forms (appendix A, page 162)
in order to determine the levels of the effects. Estimation forms contain sets
of questions which analyse the affecting factors of the project and human
effects. The estimator's answers to the questions are adjusted to a small
number (1 to 5) and weighted by a number which corresponds to the
importance of the factor. Thus, the levels of the effects are weighted averages
of the answers to the questions in the estimation forms. For example

Equation 3. Is= Z(Cli -wi)/( ZW:’ ), where

ieskill _effect ieskill _effect

e [ = skill level in the forthcoming project,
e ;= answer to the question about a factor i (scaled from 1 to 5),
e w=weight of the factor (question) 7, and

e summations contain the factors of the skill effect.
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The estimator adapts the answers to the situation of the forthcoming
project. For example, the experience of a developer in relation to a given task
is assessed. The range of the values of the levels is based on the values of the
answers. The initial values of the weights were calculated from the results of
the survey by scaling the assessment of importance from 1 (very small) to 5
(very large) and counting the average (Appendix A: Estimation forms and
survey results, page 162). The use of the questions and weights, presented in
the appendix, creates an unambiguous way to get the levels, whilst retaining a
degree of flexibility. The estimator can estimate the weights of the factors and
change them to adapt the CRM method to the environment of a particular
company. As the weights are presumed to be rather static and because it is
difficult to get statistical data to confirm the correctness of the weights, it is
impractical to change the weights for every project. The estimators can also
add questions to the estimation forms or remove questions, if needed. For
practical reasons the number of questions should be reasonably low. To
decrease the effort of the estimation process, experienced estimators can also
assess the levels or effect coefficients directly and skip the estimation forms.
Old forms may also be used if the factors remain almost the same.

2.4.3 Effect coefficients

The second step is to calculate the effect coefficients using Equation 4. The
levels of the effects of the forthcoming project have been estimated. The
equation coefficients are taken from the project repository. The name
equation coefficient refers to the Equation 4.

Vm:am'lm‘l'ﬁm
S:aY'ZS+ﬂS
. l=af-lz+ﬂz
Equation 4. , where
r=o-lr+ fr
f=o-lr+p
(P, =0 b+ [

e [, =motivation level in the forthcoming project,

e [ = skill level in the forthcoming project,

e [,=team work level in the forthcoming project,

e [ =risk level in the forthcoming project,

* [,=project change level in the forthcoming project,
e [ =process level in the forthcoming project,

P
e m, s, t .1, fand p. are effect coefficients and
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e a, B, o B, o, B, o B, o, B, @, and B, are equation coefficients of
each effect from the project repository.

Simple linear equations are the most obvious choice without extensive
statistical evidence. Further, they are not as sensitive to error-prone
assessments of the levels as higher-degree formulas. A more cautious method
is to use the repository to look for the projects where the levels are almost
similar to the levels in the project to be estimated. The process coefficients,
D¢ can be determined for each component ¢ separately, but normally only

one coefficient for a project is used.

2.4.4 Baseline efforts

Thirdly, the estimator calculates the baseline efforts with the process
correction. The baseline effort of a personal task contains the component-
related part of the effort. It is the sum of efforts of the components which are
handled during the personal task. In equation form:

Ey(PT)=h-0- Y n. -E,

ceC(PT)

Eyy(PT)=h-0- Y n.-p,.-E,

ceC(PT)

Equation 5. , Where

e PT=apersonal task,

e [Ep(PT)=baseline effort of the personal task P7,

e Epuy(PT)= process ("Work-flow") corrected baseline effort of the personal
task PT,

e (C(PT) = set of components (tracking set) which are developed at least
partly during the personal task PT,

e = phase coefficient (the proportion of effort of the task of the total effort
of the components of the tracking set), and

e o0 = contribution coefficient (the proportion of the person of the total
effort of the task),

e ¢ = acomponent which belongs to C(PT),
e n,=number of components ¢ in C(PT),
e p.=process effect coefficient of component c, and

e [E = effort of the component ¢ in the project repository (hours).

Due to the fact that tasks are small the baseline effort of a personal task
can be calculated as the sum of the individual efforts of the components in its
tracking set. As CRM uses the historical information from a development
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organisation, it is assumed that the average properties of the components are
adequate in the estimates.

2.4.5 Effort estimates

Finally, the efforts of the personal tasks are obtained when the phase
coefficient, contribution coefficient and effect coefficients are substituted
into CRM equations. CRM primarily estimates the efforts of the personal
tasks because they are needed to schedule forthcoming projects and because
the effort depends strongly on persons and on components. In addition,
different project members have different costs (price, salary) which must be
taken into account in cost estimates. The timing of the tasks determines the
schedule of the project. From the estimation point of view, estimating
personal tasks gives a lot of timely feedback, which can be used in the
recalculation to adapt the coefficients of the CRM. A personal task
participates in the construction of exactly one tracking set. A tracking set can
be any component, aggregate component or set of components that is a
suitable part of the product to be developed in one task.

Several formulas of the effort of the personal task have been tried during
the evolution of CRM (see chapter 4.15, page 85). The general form of the
equation is:

Equation 6. E(PT)=F(m,s,t,r, f,Eg, (PT)), where

e FE(PT)= estimated effort of a personal task P7,

e m = personal motivation effect coefficient of the person in the personal
task PT,

e s =personal skill effect coefficient of the person in the personal task PT,

e = team effect coefficient of the personal task P7,

e r=risk effect coefficient of the personal task PT, and

e f =project change effect coefficient of the personal task PT,

e Epuy(PT)= process ("Work-flow") corrected baseline effort of the personal
task PT (see Equation 5).

Statistical evidence suggests that the relationship between the effort and
the size of the software is (almost) linear [Maxwell 2002]. In COCOMO 11
scale factors (exponent of size) account for the relative economics of scale in
software projects of different sizes [Boehm 2000]. CRM equations do not
have such factors because CRM equations estimate tasks, not large projects.
Thus, our hypothesis is that that the effort of a personal task can be obtained
from the baseline effort using coefficients.

One of the ideas within this study was to utilise time reporting to get
classified effort data. When the project and human efforts are reported as
separate numbers, it is natural to try to estimate them in the same way. The
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project managers can also estimate the relative influence of the effects.
Consequently, we relate the other effects to the baseline effort. Our first
hypothesis was that the estimated effort of a personal task is the product of
the sum of effect coefficients, and the sum of the process corrected efforts of
the components. The coefficients represent the additional effort to the
baseline effort. Their values are normally slightly above zero.

Equation 7. E(PT)=(1+ ms“+t+r'+f")- Egy (PT), where

e FE(PT) = estimated effort of a personal task P7,

e m' = personal motivation effect coefficient of the person in the personal
task PT,

e s'=personal skill effect coefficient of the person in the personal task PT,

e '=team effect coefficient of the personal task P7,

o r'=risk effect coefficient of the personal task PT,

e f'=project change effect coefficient of the personal task P7, and

o FEpy(PT)= process ("Work-flow") corrected baseline effort of the personal
task PT (see Equation 5).

In the case studies (see chapter 4.15, page 85) this equation gave
inadequate results when the project changed and risks were realised. The
team, skill and motivation efforts also changed although their corresponding
levels remained the same. Changing the equation could solve this problem.
Our second hypothesis is that the estimated effort of a personal task is the
product of effect coefficients and the sum of the process corrected efforts of
the components. In equation form

Equation8. E(PT)=m-s-t-r-f-Eg, (PT), where

e FE(PT) = estimated effort of a personal task P7,

e m = personal motivation effect coefficient of the person in the task PT,

e s =personal skill effect coefficient of the person in the task PT,

e ¢ =team effect coefficient of the task PT,

e = risk effect coefficient of the task PT, and

e f=project change effect coefficient of the task P7, and

o Eg{PT)= process ("Work-flow") corrected baseline effort of the personal
task PT (see Equation 5).

The values of the effect coefficients (also called correction coefficients)
m, s, t, r, fand p. are normally close to 1.00 (contrary to Equation 7, where

they are slightly above zero). The values are 1.00 if the baseline effort can be
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used. These coefficients are positive and their upper bound is not fixed
because the efforts corresponding to the effects are not restricted. For
example, a realised risk can double the effort. To decrease the workload
needed in the estimation, the same project effect coefficients are used in all
the tasks in the project and the same human effect coefficients are used in all
the tasks of the person. The phase coefficient (%), which describes the relative
effort of the phase in the project, can be obtained from the previous projects
in the repository. The project planning determines the contribution coefficient
(o) and the tracking set. The value range of the coefficients 4 and o is from 0
to 1. As a tracking set can contain a large number of similar construction
blocks, the number of components (7.) can be any integer, though normally it

would be quite small.
The estimated effort of a project can be calculated by summing up the
efforts of the personal tasks:

Equation9.  E(P)= Y E(PT) ,where

PTeP

e P = the forthcoming project to be estimated, and

e [E(P) = estimated effort of the new project P, where the efforts of all
personal tasks of the project have been summed, and

e E(PT) = estimated effort of a personal task PT.

2.5 Recalculation equations

2.5.1 Reported data

As a large application contains thousands of components which have
different complexities and a large project has hundreds of tasks, project
tracking gives CRM a lot of timely feedback. This information is used to
adjust the estimates of the successive phases of the project and the estimates
of other projects. The purpose of the recalculation is to correct the estimates
during a project and to provide data for future estimates after the project.
During a project actual efforts are classified (baseline, motivation, skill,
teamwork and risk) and stored in the repository. The efforts for the process
and project change effects are not reported, but they are calculatory. The
details of the effort types are described later in this subsection. New tasks for
additional tracking sets will be created when needed. The developer, who
reports his/her realised effort, distinguishes the types by the quality of the
work accomplished. Normally the effort is related to one effect only and
overlapping efforts can be separated using the ordering rules (see chapter
2.5.3). The project manager estimates the factors of the motivation effect
because the interpretation offered by the individual may be biased. If the
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efforts are not classified during the project, they must be estimated after the
project.

After the project, the data of the realised efforts is collected and stored in
the repository. Recalculation is then used to calculate the efforts of the

components (E#c), the equation coefficients and phase coefficients (h#). The

symbol '#" here designates a variable which contains a realised value. The
realised effort of a personal task is the sum of all the types of efforts related
to the personal task.

Equation 10.
E'(PT)= E}y(PT) + Ely (PT)+ EL(PT) + E} (PT) + E4(PT), where

o E# (PT) = realised total effort of a personal task PT of the project (hours),

. E#B (PT) = realised baseline effort of a personal task of the project
(hours),

. E#M(PT) = realised motivation effort of a personal task of the project
(hours),

. E#S (PT) = realised skill effort of a personal task of the project (hours),

. E#T (PT) = realised team effort of a personal task of the project (hours),
and

. E#R (PT) = realised risk effort of a personal task of the project (hours).

The realised baseline effort represents the effort of the realised product
which has been accomplished by the current process. Thus, it contains the
effort created by process and project effects.

2.5.2 Phase coefficient

In the first stage of the recalculation process, the phase coefficients,
which give the relative efforts of the phases, are calculated. As each personal
task belongs to exactly one phase of the project, the phase coefficient is the
quotient of the sum of the realised baseline efforts of a phase of a project and
of the sum of the realised baseline efforts of the whole project. In equation
form

> Ehen
Equation 11. i (Phase) = LT hase , Where

> Ehen

PTe Project

o i (Phase)= realised phase coefficient of the tasks of the phase Phase,
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. E#B (PT) = realised baseline effort of a personal task of the project
(hours),

e the numerator contains the realised baseline efforts of a phase of the
project, and

¢ the denominator contains the realised baseline efforts of the whole project
Project.

2.5.3 Efforts of the components

Secondly, the efforts of the components (E#c) are solved from a group of

linear equations in which the baseline efforts of tasks are made equal to the
efforts of the components of the corresponding tracking sets. A numerical
solution is required, because the number of equations and unknowns does not
match and because the unknown efforts are always positive. In a good
solution the difference between the effort calculated using the solved efforts
of the components and the actual baseline effort is small. Multiple linear
regression is a mathematical method of getting the solution. The equations are
a consequence of Equation 5, when we notice that the realised baseline
efforts contain the effort that belongs to the phase and the person of the
personal task. The process correction is not needed if the efforts of the
components are calculated for the only process used during the project. The
use of task level equations eliminates the contribution coefficient. The
equations are of the form

#
Equation 12. ZEB (PT) = h* (Phase(T)) - zn#c E'” where

PTeT O

. E#c = realised effort of the component ¢ (unknown),

e T=atask,

. E#B(PT) = realised baseline effort of a personal task PT of the project
(hours),

o C# (T)= realised set of components (tracking set) which are developed at
least partly during the task 7,

o i (Phase(T))= phase coefficient for the task 7" and

. n#c = realised number of the components c in the personal task.

The phase coefficients are calculated by Equation 11. The numerical non-
negative linear least square method can be used in the calculation because the
efforts of the components are always larger than zero [Lawson 1974].
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Equation 13 and Equation 17 (page 59) show examples of the previous
formulas. The equation group could be

3-Ev+2-E2=7
Equation 13. , where
5-Ei+3-E>=12

e the right sides of the equations contain the realised baseline efforts of the
tasks (in hours)

e for clarity, the phase coefficients are 1 in both of the equations,
e E and Ej on the left hand sides of the equations are the realised efforts of
the corresponding components and

e 3,5, 2 and 3 on the left hand sides of the equations are the realised
numbers of the components E| and E in the personal tasks.

The solution to the equation group is Ej= 3 hours and Ep= -1 hours,
which indicates negative effort for the component E». A more appropriate
approximate solution Ej= 1.81 hours and Eo= 0.90 hours can be obtained by
the numerical method (above), which assures a solution where E| and E- are
positive.

2.5.4 Effect coefficients

Thirdly, the correction coefficients are extracted from the totals of the
classified effort data (Equation 14). The totals are used to smooth the random
fluctuations of the software development. As the process coefficient measures
the change of effort of the components in different projects, the projects
(processes) involved must be named within the context of the coefficient. The
project change coefficient is obtained by dividing the effort of the realised
product by the effort of the planned product.

The calculated effect coefficients reveal what the coefficients should
have been while estimating the project. If we substitute the baseline efforts
and these coefficients to the product-form formula (Equation &), the total
effort is obtained (Equation 10). If the addition-form formula (Equation 7,
page 30) were used, the last four extraction formulas would contain the sum
of the baseline efforts in the denominator and quotients were not added to
one.
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Equation 14.

E*(pl)
E*.(p2)

Zn#c ‘E#c
f# (ES) — ceactual _ components

znc- E”,

ce planned _ components

ZE’}E(PT)
I’#(ES) — 1+ PTeES

ZE%(PT)

(e, pl,p2)=

PTeES
> Ej o)
t#(ES):1+ #PTEES y
ZEB(PT)+ ZER(PT)
PTeES PTeES
E& P
S#(ES)=1+ - PTEES# -
Y Ehen+ D Eken+ Y Epen
PTeES PTeES PTeES
DIWARGE
# PTeES
m" (ES) =1+
Y Ehen+ Y Ehen+ Y Eren+ Y Eben
PTeES PTeES PTeES PTeES

where

e (¢=acomponent,
e n.= the planned number of components c,

. n#c= the realised number of components c,

e actual components= the set of realised components,

e planned components= the set of planned components,

e pl=the process of the current project,

e p2= the process of the historical project to be compared,

. p#(c,pl,p2)= process coefficient of component ¢ between processes pl

and p2. The process coefficient divides the efforts of the component c,
which are calculated using the Equation 12,

e [ES= set of personal tasks in a project or a subproject where the same
human and project effect coefficients are used (="estimation set"), and
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o sHES), m*ES), fHES), HES) and r#(ES) = the realised effect
coefficients of the corresponding effects.

The previous extraction of coefficients is based on the mathematical
presentation of a sum as a product (Equation 15). Therefore, the extraction
order itself is not significant, presuming it has been fixed in each repository.
The objective of the selection is to create stable coefficients which
correspond well to the levels by placing large efforts in the denominators
first. The project effects are extracted before the human effects in order to
avoid estimating and extracting them separately for each person. The risk
effect is extracted before the team effect because realised risk efforts can be
large. The skill effect is extracted before the motivation effect because it is
less subjective. The selection of the extraction order is useful in adapting
CRM to the corporate environment and reporting practices.

Equation 15.

a+b a+b+c a+b+c+d d+b d+b+c d+b+c+a
at+b+c+d=a- . : =d- : :

a a+b at+b+c d d+b d+b+c
a2 e e — a1 2 e e ——
a a+b a+b+c d d+b d+b+c

The mutual values of the coefficients are not computationally symmetric,
but those coefficients which were extracted first are relatively larger. If the
project managers operate on the effect levels as recommended, not on the
effect coefficients, the extraction order should not influence their
assessments. The unsymmetry problem can be avoided by a symmetric
solution. In Equation 16, auxiliary variable x is solved numerically from the
upper equation and substituted to the other equations.




37

Equation 16.

PTeES 4 #
~——=(1+x- Eqreen || 14+ x- Er e |
S r B[ )

PTeES PTeES
PTeES
1+ x- ZE*;(PT) A1+ x- ZE*;(PT)
PTeES PTeES
r(ES)=1+x- Y Ehen)
PTeES
(ES)=1+x- D Efen)
PTeES
s"ES)=1+x- Y Ehen
PTeES
m"(ES)=1+x- zEﬁ/[(PT)
PTeES

where
e x= an auxiliary coefficient.

Statistical factor analysis could be used to investigate the mutual
dependencies of the project and human efforts. This could also lead to
improvements in CRM equations. This is, however, left for future work.

2.5.5 Equation coefficients

As the project and human effects may have been misjudged in the
original estimate, they can be reassessed. The recalculation uses the
estimation forms, which are answered again after the project so that the
answers correspond to the assessments of the factors of the realised project.

Effect levels and corresponding effect coefficients are added to the
repository database. If the project repository data includes several projects
and their estimates, the confidence to the equation coefficients will be better
and statistical procedures such as removing outliers can be applied. The
judgement of the estimator determines whether the new data is useful at all.
Exceptional and false data is simply discarded.

Finally, the simple least squares method is used to calculate the realised
equation coefficients (o's and B's) by using the correction coefficients and the
levels of the corresponding effects. Simple least squares is chosen because it
is widely available and because it is a simple method by which the levels and
the coefficients can be correlated.
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2.6 Effort estimation process

Initially, the CRM repository contains the efforts of the components, the
phase coefficients and equation coefficients (see Equation 4, page 27), which
have been calculated in the previous projects. In the first project an expert can
estimate these parameters.

The forthcoming application is designed in such a way that its
component structure is established. The analysis of the customer
requirements is not enough because the efforts of different design solutions
vary widely. The (estimated) numbers of internal components of each kind
can be counted from the component structure and the effort for each of them
(E¢ in Equation 5) is in the project repository database. If the process has

been changed compared to the previous projects, each component-based
effort must be multiplied by the process coefficient p (Equation 5).

The project plan is created in parallel with the application design. It has a
large influence on the quality of the estimate because it defines the personal
tasks of the project and the outcome of each of them. The tracking sets of the
product are sets of components which are used to track the progress of the
development of the product during the project. Each window in the user
interface, which gives similar accuracy about the application as function point
analysis does, is a natural tracking set. The numbers (n; in Equation 5) are

counted for each of the components belonging to the tracking set. For
example, a window may contain 5 entry fields, 3 buttons and 3 database
queries. If very complex components are reused useful tracking sets are parts
of the whole component. The baseline effort of each tracking set can be
calculated by summing the process-corrected efforts of each sub-component
(Equation 5).

As tracking sets are usually built during more than one task, the
component-based efforts must be divided into tasks. Each task has a phase
percentage which tells the part of the total effort of the tracking set which
belongs to that task. The percentage shares of phases can be found from the
project repository database. The baseline effort of a task can be calculated by
multiplying the baseline effort of the tracking set of the task by the
percentage share (h in Equation 5) of the phase of the task. The effort of the
personal task can be calculated by multiplying the baseline effort of the task
by the personal share of the person (o in Equation 5). This number is
determined in the planning of the forthcoming project.

The human and project effects are assessed and added to the calculations
when the tasks are assigned to the staff. For practical reasons the same
correction coefficients of project change, risks and teamwork (f, r and t) are
used in every task in the project. The skill and motivation of the staff is
normally estimated once for each person and the same coefficients (s and m)
are used for every personal task in the project. It is possible to estimate
separate coefficients for each personal task, but this increases the effort
needed in the estimation process.
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As the projects are not similar, the estimation forms are generally used at
the beginning of new projects. The answers to the estimation forms give a
small number from 1.00 to 5.00, which corresponds to the change of the
effort due to project change, process changes, teamwork, risks and the skill
and motivation of the staff. Equation 3 is used to calculate the level of the
effect, when the answers to the estimation forms are known. The coefficient
of each effect can be calculated using these numbers and the Equation 4.

Finally, the corrected effort of the personal task can be calculated by
multiplying the baseline effort by the correction coefficients (Equation 8).
The effort of the whole project is the sum of these personal efforts (Equation
9).

At the beginning of CRM use the project repository is empty. The results
of the survey of this study can be used as default values of the correction
coefficients (see chapter 4.4, page 70) and weights of the factors (see
Appendix A: Estimation forms and survey results, page 162). As soon as a
personal task is finished, the recalculation can be accomplished to tune the
efforts of the components and correction coefficients. This is especially
useful in incremental software development.

As the division of effort in iferative development is based on an
agreement about the contents of iterations, the phase coefficient is used in
distributing the calculated total effort to the iterations of the project. It is also
possible to use larger components in the first iterations and smaller
components in the last iterations. The tracking sets associate the different
component hierarchies in these cases. Project change coefficient can be used
in estimating the growth of the number of components. In this case the
original estimation form of project change effect must be adapted to consider
the change factors of iterative development.

The calculation can be accomplished by spreadsheets which contain
estimation forms for the estimation of the project and human effects,
calculation tables for estimating the effort and for the recalculation. The
effort of maintaining the repository can be considered reasonable, if the sizes
of the tasks and the number of assessments are appropriate (see also chapter
4.12, page 80).

2.7 Counting the components

Though components are usually designed by object-oriented methods and
they normally contain classes, CRM can be used with traditional components
such as sub-systems, modules and module-libraries, too. Components can be
counted objectively after the implementation, but in the early design the
estimator must have a good view of the outcome of the project and of the
components needed.

The effort related to a component of an application depends on the
component. There are components which provide a huge amount of
functionality and which have complicated interfaces and lots of
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dependencies. The component may be seen as a subsystem of the application.
On the other hand, there are components which have a single simple interface
and which provide a limited service.

CRM sees the contract between the component and its customer as the
most important factor in estimating the effort of the component. If a
component provides a group of services and interfaces, CRM can handle
these cases (different contracts) as separate components. If a component has
several types of usage, the classification of its reuses, for example, in the
scale difficult, normal and easy will make the estimates more accurate. The
effort related to a component can be thought of as the effort needed to create
the application A’, containing the component ¢, from an otherwise similar
application A, which does not have ¢. The effort of the component contains
any effort which is needed to add and integrate the component to the
application. The efforts for finding (from a component library), assembling,
adapting and testing the components are included. The purchase and
evaluation of the components are usually excluded and estimated separately
because this is done only once, which distorts the reuse effort.

Often at the beginning of a project only the architecture and the user's
view of the component structure is available. The user's view contains the
components of the presentation tier only. Thus the effort of these components
should also include the effort of the related components of the other tiers in
the architecture. The implementation view of the component structure
recognises the components of the separate tiers and other system interfaces of
multi-tier software architectures. It should be used as soon as the component
design is available.

The hierarchy and the order of the assembly of the components have an
influence on the personal tasks. In Equation 5 (page 28) the personal task
contains only the components which are actually handled in that particular
task.

The definition of a component in applying CRM is above all practical. A
component must be general enough to be reused several times, at best
thousands of times even in the same application. On the other hand, a small
variation of the reuse effort improves the estimates.

It is typical to assemble the same/similar component several times to the
application. With same/similar components we mean components that are
similar after adaptation and integration because they reuse the same library
component. For example, user interface windows contain several entry field
and button components. As the effort of creating the input parameters,
making the call and using the output data, must be done each time, CRM
multiplies the number of reuses by the average reuse effort to get the total
effort involved in reusing the components (Equation 5).

The effort of a single reuse decreases when the number of reuses
increases because the first finding, assessing, purchasing and studying the
component takes time. CRM places this one-time effort into the skill effect. If
the purchasing and study of a new component is more elaborate, the process
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effect calculates the process difference. The team effect and risk effects are
also included as possible places for the additional effort. Gradually, a
component becomes familiar and its average reuse effort becomes a good
estimate for the CRM calculations.

Constructing a new component must be estimated as an assembly of
lower level components, which can have reuse efforts available. If such data
does not exist, the construction effort of similar components can be useful.
Finally, a task based estimation can be used if no data exists in the repository.

The change of a component is estimated by dividing the effort into sub-
efforts, which handle their own components. As individual changes are
different, it is not useful to store their efforts in the repository. The reuse
effort of the component is often a good approximation of the effort of a
change.

The design of the application defines the component structure of the
application. The CRM estimation of a project can be done when the structure
is available. As a partial component structure is sufficient for making the
estimates of the tasks, which are related to the designed part of the
application, the CRM estimation can be done gradually.

Typical projects also have tasks which do not have a direct connection to
a certain component, but are related to the whole product or to an aggregate
component in the component structure. For example, analysis and deployment
tasks are often related to the whole product. If, for example, the design task of
a sub-component can be tracked separately, it is possible to use that as the
component of the task. In these cases, the same CRM-formulas are applied to
large tracking sets.

2.8 Process effect

In the easiest case processes, methods, tools and phases are the same in the
forthcoming project as in the projects chosen from the project repository
database. If changes are needed, the process effect in CRM is used to
calculate the influence of these changes on the effort.

Projects are divided into phases, which are defined by their input and
output. In the Rational Unified Process [Jacobson 1999] the phases are
Inception, Elaboration, Construction and Transition. The core workflows are
Requirements gathering, Analysis, Design, Implementation and Test. The
project tracking is organised according to the phases and they contain one or
more tasks. As the effort of a component is divided into several tasks, CRM
uses the proportions of the phases (h in Equation 5) to partition the effort of
the component into phases. A typical iterative project allocates 5% to the
inception phase, 20% to the elaboration phase, 65% to the construction phase
and 10% into the transition phase [Jacobson 1999, page 335]. This is one part
of handling the process effect. CRM calculates these proportions into the
repository database to help the estimator design the project. The other part is
adjusting the repository data when tools and methods are changed.
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The choice of a programming language is one of the most important
design issues, particularly in relation to productivity. The whole
programming environment usually supports the chosen programming
language. The language itself with its support libraries will become part of
the future product. There are studies about productivity using different
programming languages. One of these depicts very large differences in effort
due to the programming language [Dreger 1992]. The conclusion is that
higher level languages are very expressive. One instruction in a higher level
language has aggregated the functionality of many lower level language
instructions [Dreger 1992]. The programming language is one of the factors
in the process effect estimation form.

The tools and programming environments are handled in the same way as
programming languages. They are factors needed to correlate the efforts of
the components in different processes together. In a study by Bruckhaus
[Bruckhaus 1996], the impact of tools to the effort varied from -26 % to +108
% compared to the original situation, depending on the size of the project and
the changes in a process due to usage of tools.

As constructing components for reuse uses more rigorous processes than
constructing them for one case only, the process effect coefficient is larger in
the former case. The same applies to the process of purchasing and evaluating
a component, which is not the same as the process of reusing a component
routinely.

The process effect coefficient (p; in Equation 5) corrects the components'

baseline efforts to a level which can be achieved by the tools and methods
that are used in the forthcoming project. The process estimation form gives an
assessment of the impact of the changes (Table 28, page 162). As the
repository data of a component can be from different projects (and methods
and tools), the process effect coefficient is connected to a component. In
practice successive corrections can be multiplied and groups of components
are handled together.

2.9 Project change effect

Software products are collections of various kinds of features. CRM handles
the changes of the feature set as a property of the development, not as a risk,
because their probability is high. Project change includes both adding
features gradually and major changes. In a study by Jones [Jones 1994], 60
projects were considered and the probability of change was 70 %. The
average amount of additional features was 35 % and the maximum amount of
additional features was 200 %. The project change effect is also called the
feature creep effect [Virtanen 1998a].

It is easy to separate the original features (components) and tasks from
new ones if the history of the product model and the project model are saved.
A more difficult case is creeping complexity. A problem seems to be easy at
first sight but after learning more about the problem and its solutions, a more
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sophisticated solution is preferred. If a software configuration management
(SCM) tool or a CASE-tool is used, the change history of the configurations
is available at the implementation and/or design levels [Haikala 1998]. SCM
can handle individual files, collections of components, transactions of
changes or change requests [Kilpi 1998]. If the change requests are connected
to the personal tasks, it is possible to have a more detailed view of the project
change effect than the presented CRM equation (Equation 14, page 35)
suggests. The original information about the project is usually kept intact in
the project management tools.

Project change differs from the incremental development, which is
applied in the Rational Unified Process method, because in incremental
development taking into account new features in the project is carried out on
purpose. A planned introduction of a new feature in projects does not result
in difficult scheduling, organisational and quality problems as are found when
ad-hoc changes in a project are made . In both cases the amount of work that
is not known at the beginning should be forecast. As the goal of CRM is to
estimate the effort, rejected features must also be counted if the effort has
already been spent. The correction of errors in the original product belongs to
the baseline effort, not to the project change, if the design is not changed. The
change of a feature can be handled as a change of the components, which are
related to the feature.

The amount of project change depends on the corporate culture. In some
organisations projects are carried out nearly as originally planned and in other
organisations a large amount of additional functionality is accepted. The
most important factors that contribute to project change are the attitudes of
the project team to the stability of the feature set and the quality of the
analysis and design. The project change estimation form is used in estimating
these factors (Table 29, page 163). It gives the project change level (If in

Equation 4), which determines the project change coefficient (f in Equation
8).

2.10 Risk effect

A risk is an accident which has low probability and serious negative
consequences. As the risks in software development projects are
considerable, projects are prepared for this eventuality. Using principal
component analysis Ropponen and Lyytinen identified six software risk
components: 1) scheduling and timing risks, 2) functionality risks, 3)
subcontracting risks, 4) requirement management risks, 5) resource usage and
performance risks and 6) personnel management risks [Ropponen 2000].
According to McConnell, the most common risks are [McConnell 1996]:

e project change (CRM handles this as a separate effect, not as a risk),

e gold-plating (the users or the developers use too much time in polishing
the application),

e decreased quality,
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e overly optimistic schedules,
¢ inadequate design,
e silver-bullet syndrome (unfounded trust on new methods and tools),

e research-oriented development (the goal of the project is unknown or it is
not sure that it can be achieved or lack of market research),

e weak personnel (the skills of the project members are not adequate) ,
e contractor failure (the outsourcing of the work fails),

e friction between the developers and the customers, and

e turnover of the key personnel.

The spiral life-cycle model is a risk-oriented life-cycle model. Risk
analyses are included at the beginning of each cycle. It breaks the project up
into mini projects. Each of these addresses one or more major risks until all
the major risks have been addressed [Boehm 1988].

The risk effect coefficient (r in Equation 8) produces an expectation
value of the additional effort due to risks. It includes the effort needed to
avoid the risks and the preparation for the anticipated risks. The risk level (I,

in Equation 4) is assessed by the risk estimation form (Table 31, page 165).
The impact of some risks is very large; it may even indicate the failure of the
entire project. In these cases the use of expectation values is not enough. If
the project repository contains a large number of risk level - risk coefficient
pairs, a prediction interval of the estimate can be obtained. When the risk
coefficient of a forthcoming project is estimated, the upper limit of the
interval is the largest risk coefficient at the risk level of the forthcoming
project and the lower limit is at the lowest level of risk.

2.11 Team effect

Adding manpower to a software development project increases the effort. As
software development cannot be partitioned into separate independent tasks, a
large amount of communication is needed [Brooks 1995]. This includes
meetings, project management, documentation and continuous interpersonal
communication.

Scheduled meetings are typically included in the project plan as their own
tasks. There is also time allocation for project management. The
consideration of travel time is also essential in distributed projects. The
component to be tracked in CRM for these tasks is the whole product or a
selected tracking set, if the meetings and other collaboration only concern the
selected part of the product.

Teamwork requires more documentation than working alone. Time is
therefore needed to read and write meeting minutes, project progress reports
and so on. There are also small interruptions in work which reduce
productivity [Constantine 1995]. These include short meetings and questions
and answers between the team members. Also phone calls, faxes and e-mail
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are all examples of small-level communication. The team needs co-operation,
common understanding and a common language. Waiting times must also be
added in because waiting for somebody to accomplish a task, especially
when the tasks and division of effort are not well planned is a very common
occurrence. These communication tasks are so small that it is not reasonable
to report them individually. All these kinds of communication work should be
recorded to the component that is being done. The team effect coefficient is
an estimate of this effort.

The team structure and size are the most important factors in estimating
the effort needed for communication. The numbers of stakeholders (for
example, developers, users, managers) are one part of the equation. It is more
difficult to assess the communication culture of the project. It is influenced
by both the customer and the supplier organisations. Some organisations
require more written communication whilst others operate with more person-
to-person communication. The team effect estimation form assesses these
factors and is used in calculating the team effect coefficient (t in Equation 8)
(see Table 30, page 164).

Adding staff adds work, because more learning and instruction is needed.
Each of the developers must have the necessary skills and knowledge. Thus
the effort needed for training and familiarisation with the problem and
solution increases. CRM includes the previously mentioned efforts in the
increased skill effect.

The staff working on the project may participate, often on an
unanticipated basis, in other projects. For example, in pending projects,
which can mean that the work of the project becomes fragmented. This
means that more people and more calendar time is needed for the project.
This must be counted in the team effect of the project.

2.12 Skill effect

Software development requires many types of skills [Hohmann 1997]. The
knowledge of the application domain is especially important to analysts. The
technical skills, such as knowing programming languages and environments,
are important in the implementation. Communication, management and
leadership skills become more important in project manager positions, though
every team member needs team skills. It is also essential that some of the
project team members have a higher proficiency level at the beginning. The
skill effect has a large impact on the effort of the project. In COCOMO the
coefficients for analyst capability multiply the effort exponent by 0.74 to 1.37
[Boehm 2000].

There are two kinds of learning time: the time used to participate in
training and the time used within the productive work. Often lecturing and
participating in training are separate tasks which contribute to the whole
project. Mentoring is normally included in the team effect. Learning within
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work belongs to the skill effect. Its coefficient (s in Equation 8) is assessed
using the skill effect estimation form (Table 32, page 166).

The scale of the estimation form can be more practical if specialised
proficiency levels are used. An applicable 5-level scale of proficiency is
defined as follows [Goldberg 1995]:

e Ignorant: The person is completely ignorant of the subject.

e Conceptual: The person has a preliminary grasp of the concepts but is not
prepared for project assignments that require a working knowledge of the
subject.

e Basic: The person has a working knowledge of the subject and can work
on small assignments.

¢ Functional: The person has good working knowledge of the subject and
possesses a set of useful skills and needs minimal guidance to complete
assignments.

e Advanced: The person is an expert in the subject area. He/she is the
authority to whom others turn for advice and solutions for unusual
problems.

The time required to get to the conceptual level is a few weeks, and to
basic level from a month to a few months. The functional level is achieved in
about a year and an expert level takes from two to four years [Goldberg
1995].

Assessing the skill effect coefficient once for each person in a project is
normally enough. However, the learning time is in principle task and
developer specific. The skill level is relative to the requirements of the task. If
a person performs tasks which require different skills, the skill levels should
be calculated separately. The effort also depends on the task assignments. A
developer who is familiar with the task needs less time to learn and vice
versa. The learning time also decreases during the project. The curve in the
skill effort should resemble the learning curve because there is more learning
at the beginning of a project. This is accomplished by using different skill
coefficients in different tasks in Equation 8 (page 30).

2.13 Motivation effect

Many references emphasise the importance of the motivation of the software
developers. The most important motivation factors for programmers and
analysts are achievement, possibility of growth, work itself, personal life and
technical supervision opportunity [McConnell 1996], [Boehm 1981].
Management practices are also important. Bad management, such as
displaying a lack of respect, excessive pressure and manipulation, is one of
the most important morale killers [McConnell 1996]. The most important
management method in motivating technical people is to provide freedom and
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to be supportive of them [Humphrey 1997]. One result of bad management is
frustration, which is common if resource usage is too low or too high.

CRM has an estimation form (see Table 33, page 167) for assessing
motivation factors. Motivation is task and person specific, but one assessment
of each person in a project is normally adequate. The privacy of the
motivation estimates must be assured. The developmental discussions
between the project manager and the person are a natural place to discuss
motivation factors, problems and the corrective actions and their influence on
the productivity. As direct tracking of motivation is prone to dishonesty, the
project manager estimates the realised motivation efforts afterwards (see
Equation 10, page 32). The motivation effect coefficients and corresponding
equation coefficients are calculated in the recalculation (see Equation 14,
page 35).

2.14 Practical issues

The underlying assumptions of CRM are the existence of an acceptable
component structure, the ability to assess the project and human effects as
well as the usefulness of the historical reuse data. In its most accurate form a
considerable amount of work is needed in the estimation process. Summary
level assessments will decrease the effort of the estimation. A Microsoft
Excel-spreadsheet for CRM calculations was made in this study. It was used
to ensure that the calculations are unambiguous.

The most important problem at the beginning is the dependency on the
project repository data. Component-based development has not existed for
very long and the data about the components needed in estimating future
projects is not widely available. The lack of historical data can be
compensated for by manual estimates, or by using data about similar projects.
However, the collection of data is necessary in order to increase the quality of
the estimates. There is also a lack of data on project and human effect
assessments and their relations to the effort. The default values of the
correction coefficients are calculated in the experimental part of this study
(see chapter 5). Businesses can use similar studies to adapt the coefficients to
the corporate environment.

2.15 Summary

The CRM estimation process calculates the efforts of the personal tasks:

1. Design the application. The component structure contains the tracking
sets so that the efforts of the components can be found from the
repository.

2. Plan the project including its personal tasks and assignments of the

personnel.
. Use the estimation forms to assess the CRM effects.
Calculate the baseline efforts based on the tracking sets.
5. Calculate the effect coefficients by using the effect levels.

_.bw
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6.

Calculate the effort of each personal task.

The CRM recalculation process calculates data for future estimates:

1.
2.
3.

4.
5.
6.

Collect the effort data during the project.

Calculate the phase coefficients.

Solve the efforts of the components from the baseline efforts and
component counts.

Calculate the realised effect coefficients.

Add the data points into the repository.

Calculate the equation coefficients using regression to the data points.

The CRM calculations are straightforward substitutions for the formulas
when the design of the forthcoming application and the plan of the project are
available. The judgements of the effects are not easy but they are absolutely
necessary.
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3 Example of Component Reuse Metrics

3.1 Introduction

In the following example, Component Reuse Metrics is used to evaluate the
effort of developing a simple course administration system which records
course data. Each course has one subject and several students. Students study
several subjects, which may also have sub-subjects. A student gets a mark for
each subject (s)he passes. Figure 5 represents the class diagram of the system.

a

Student
Subject Course

Mark

Figure 5. The class diagram of the course administration system.

The CRM-calculations are shown in several spreadsheet tables and the
text gives detailed explanations. The convention in this example is to use

e white back-ground in the cells, the values of which the estimator takes
from the "real world" of the example (project plan, component structure,
repository, assessments),

e white back-ground in the cells, which are copied from previous tables,
e grey back-ground in calculated cells,

¢ bold font style to emphasise cells referenced in the text,

e italic font style in the variables of the CRM equations and

e normal font style, if the cell value is not referenced.

3.2 Estimation

3.2.1 Application design

The forthcoming product is based on a two-tier architecture and contains a
database and three simple data entry windows. Table 2 contains the original
component structure of the system in which each user interface window is a
tracking set. Each of these connects the repository efforts of the database
components and text fields together with the checking of the user entry. In
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this example, the customer view of the product is used instead of the
implementation view. The reason for this being that the exact component
structure has not yet been designed. Figure 6 represents the window showing
the entry for the marks.

Table 2. Customer view of the component structure of the course
administration system.

Tracking set Windows Data Text fields
Student window 1 3 5
Subject window 1 5 3
Mark window 1 2 4
Mark window
Student Entry field for the person id

Subject Entry field for subject id

Date of Entry field for date

approval

Mark Entry field for mark
Insert-button Delete-button

Figure 6. Mark window of the course administration system.

3.2.2 Project plan

The hypothesis here is that this project team has an experienced but busy
project manager and a novice programmer. The manager takes part in the
planning and quality assurance and the rest is assigned to the programmer.
The manager has all the skills needed for his/her tasks. The low motivation
estimate of the manager is based on the fact that (s)he is quite busy. This will
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increase the sharing of work and the need for repetition of work done
previously. The low motivation estimate of the programmer is due to
probable frustration arising from the lack of support from the manager. The
novice programmer is left to work alone. There will be delays in helping
him/her. During the project another programmer is hired and assigned to the
project.

The next stage involves creating tasks for each component and assigning
the work to the team members. In order to estimate the project and the
human effects information about the team is needed. As the project is
divided into phases, phase coefficients describing the distribution of the effort
are needed. Table 3 contains the proportions of the work in each phase of the
project. These numbers are based on the process model of the project and
obtained from the project repository data, which has used the same process
model.

Table 3. Distribution of the effort to phases.

Phase Phase (h)
Inception 0.10
Elaboration 0.30
Construction 0.50
Transition 0.10

If there is more than one person in a task, the effort must be shared by the
participants. The personal tasks must be planned and the percentages of each
share must be evaluated. In this example the manager (20%) and the
programmer (80%) share the construction of the mark window. Table 4
describes the personal tasks in the project.



52

Table 4. The project plan.

Phase Component Who
g
3
T 5
> (o
Q c
[%2) =
[0 o
=]
©
Inception Product Manager 0.10 1.00
Elaboration Product Manager 0.30 0.80
Product Programmer 0.30 0.20
Construction Student window Programmer 0.50 1.00
Subject window Programmer 0.50 1.00
Mark window Programmer 0.50 0.80
Mark window Manager 0.50 0.20
Transition Product Manager 0.10 0.60
Product Programmer 0.10 0.40

3.2.3 Assessments

The estimation forms are answered after the project planning (Appendix A:
Estimation forms and survey results Page 162). As all of the estimation forms
are similar, only the skill effect estimation form is shown here (Table 5). The
skill level (2.30) is calculated using Equation 3, where the default weights
(w;) of the skill factors have been used (Table 32, page 166).
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Table 5. Example of skill effect estimation.

What is the influence of the following Answers (a)
factors of the skill of the programmer in
this project?
> —
Q. «Q
5 'gn oY) g 8 s
=] Q =
Q Q @, 3 ) @
g | 3 = | € = Es
< |25 |s|58| 2
< — o P < S
< © c w P =
5 | & 3 3 3
Q @ > = o
@ = ~ = ~
Gl aIRC
Education 3 3.15
Courses 2 3.06
Length of experience 2 3.72
Quality of experience 2 4.31
Familiarity with the application area 1 4.22
Experience of team work 3 3.12
Familiarity with the program (to be 2 4.20
maintained)
Knowledge of methods and tools 2 4.02
Personality (intelligence, emotional 4 413
intelligence, sense of responsibility,
diligence)
Skill level Ig (Weighted average, See 2.30
Equation 3)

Equation 4 (page 27) gives the effect coefficients corresponding to the
levels. Table 6 presents the resulting skill and motivation levels and
corresponding coefficients. The skill effect coefficient is 1.50. The equation
parameters, which are shown in the last row of the table, are fetched from the
project repository. As 0g and 0Oy, are negative, the skill and motivation

coefficients are small when the corresponding levels are high. In this example
the equations are fitted to the levels and coefficients shown in the table.
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Table 6. Estimates of personal productivity.

Who Skill level Skill coefficient |Motivation level |Motivation

(s) coefficient (m)
Manager 4.10 1.10 25 1.30
Programmer 2.30 1.50 3.9 1.20
Equation s=-0.222%14+2.011 m=-0.071%/,,+1.479

The procedure for the estimation of the project effects is similar. The
estimator fills in the estimation form and gets the level of the effort, which
corresponds to the effort coefficient of the particular effect. The effect
coefficient can be obtained mathematically from the Equation 4. Table 7
contains the levels and the coefficients of process, project change, risk and
team effects. The equation coefficients are not shown. The process effect has
been included in the calculation of the baseline effort because it modifies the
efforts of the components before the other project effect corrections are
applied in the Equation 8.

Table 7. Estimation of project effects.

Level Coefficient
Process 3.2 1.10
Project change 4.2 1.50
Risks 1.4 1.10
Team 3.5 1.20

3.2.4 Calculation

The estimates for assembling these user interface components can be
obtained from a project repository database. Table 8 contains the historical
baseline efforts of the components of the system. These efforts have been
corrected using the process coefficient (1.10), which has been estimated using
the process estimation form (Table 7).
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Table 8. Baseline and process effect corrected efforts.

Baseline efforts Efforts of components [E ]

(hours)

Window Data Text fields

Baseline effort 4 3 2

Process corrected baseline effort 4.4 3.3 2.2

Table 9 shows the summary of the baseline effort calculation. The
windows for the student data and the subjects are similar to the window for
marks shown in Figure 6. This is because the mark window contains two data
components visualised by the buttons and 4 text fields, its baseline effort is
19.8 hours (1*4.4 + 2*3.3 + 4*2.2). See Table 9 and Equation 5.

Table 9. Process corrected baseline efforts of the tracking sets.

Effort Numbers of components [n]
Window Data Text fields
Student window 253 1 3 5
Subject window 27.5 1 5 3
Mark window 19.8 1 2 4
SUM 72.6 3 10 12

Table 10 contains the summary and calculation of the estimate. There is a
row for each personal task, which is collected from the project plan (Table 4),
the baseline effort (Table 9), estimate of the project effects (Table 7) and the
estimate of the human effects (Table 6). The numbers in the source tables are
shown in brackets in the column headers. For example, the estimate of the
inception phase is 20.6 hours, which is the product of the baseline effort of
the whole product (72.6), the percentage of the inception phase (0.10), the
contribution of the manager (1.00) and the correction coefficients 1.50, 1.10,
1.20, 1.10, and 1.30 (Equation 8 and Equation 5). The baseline effort of the
tasks in the inception, elaboration and transition phases is the baseline effort
of the whole product (72.6 hours), as the components are not handled
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separately during these tasks. The estimated effort of the project is the sum of
the estimates of the personal tasks, which is 236 hours (Equation 9).

Table 10. Summary of the estimate.

Phase [5] Who [4] T
) ol 3 =
o ve) lo) =
3 % g = 3 Y a' %) = m
B @ ol 2|l s|le|s|ZE| 5| 2
= n Q ~ =
=1 5 3 c S| @ 3 = | 3
2 — = S 21| X = 2 T
[%e) —_— =) «Q —_
= — | @ 2
= I
Inception Product |72.6 |Manager 0.10 (1.00 ({1.50 |1.10 (1.20 |1.10 ({1.30 |20.6
Elaboration [Product |72.6 |Manager 0.30(0.8011.50 (1.10 {1.20 |1.10 ({1.30 |49.3
Product |72.6 |Programmer |0.30|0.20 (1.50|1.10 {1.20 |{1.50 |1.20 [15.5
Construction |Student |25.3 |Programmer |0.50 |1.00 (1.50 |1.10 {1.20 {1.50 |1.20 (45.1
window
Subject |27.5 |Programmer |0.50 {1.00|1.50|1.10 |1.20 |1.50 {1.20 |49.0
window
Mark 19.8 |Programmer |0.50 (0.80 |1.50|1.10 |{1.20 |1.50 {1.20 |28.2
window
Mark 19.8 [Manager 0.50 (0.20 (1.50{1.10 |1.20 (1.10 |1.30 |5.6
window
Transition Product |72.6 |Manager 0.10 (0.60|1.50 {1.10 {1.20 |1.10 ({1.30 {12.3
Product |72.6 |Programmer |0.10|0.40 (1.50|1.10 ({1.20 {1.50 |1.20 {10.3
236

3.3 Recalculation

The purpose of the recalculation is to correct the estimates during a project
and after the project to provide data for future estimates. Recalculation is
used to calculate the efforts of the components (E,), the equation coefficients

(ov and B) and phase coefficients (h). Table 11 presents the tracking data after
the project. It contains observed and classified efforts of the personal tasks.
The developers also report the effort, which belongs to the motivation effort
as a baseline effort. The project manager estimates the actual motivation
effect and subtracts the estimate from the reported baseline effort. The total
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actual efforts of the personal tasks are calculated by summing the classified
efforts recorded for the personal task (Equation 10). The last column shows
the distribution of the baseline effort to the phases of the project.

Table 11. Summary of the tracking data.

Phase Component = o
Sl lS|2]a|8
cl=z|s |8 |2 |2 3
s O | = | = | 3 ) 5 o
s — |—= | © —_ ) @
Sl M2 M T = 2
R A2 DD i o I
Inception Product Manager 13.0 |1 2 1 0 9.0 |0.077
Elaboration [Product Manager 375 |2 35 |4 0 28.010.299
Product Programmer [9.0 (0.5 |0.5 [1 0 7.0
Construction [Student Programmer (35.0 (10 |5 2 3 15.0|0.389
window
Subject Programmer (33.0 (10 |5 3 3 12.0
window
Mark window |Programmer (18.0 (5 3 3 3 4.0
Mark window |Manager 20 |0 0 2 0 0.0
Mark window |Programmer (11.0 |2 1 1 1 6.0
2
Course Programmer (9.5 (2 1 1 1 4.5
window
Course Programmer (13.5 (5 2 1.5 1 4.0
window 2
Transition Product Manager 215 |2 2 2 0 15.5]0.235
Product Programmer |17.0 |2 1 2 0 12.0
SUM 220.0 (41.5]26.0 |23.5 (12.0 {117 |1.000

3.3.1 Phase coefficients

Table 12 gives the distribution of the effort to the phases of the project. The
phase coefficient, which is calculated from the baseline effort, is stored for
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future calculations (Equation 11). For example, the phase coefficient of the
construction  phase is  0.389,  which is obtained  from
(15.0+12.0+4.0+6.0.45+4.0)/117. The estimate column is copied from Table
3 and the actual column is calculated from the data in Table 11, but actual
efforts are used in the equation instead of baseline efforts.

Table 12. Phases of the project.

Y
o @ >
= [©] o
Phase 3 5 c
=4 ® L
® =
Inception 0.10 0.077 0.06
Elaboration 0.30 0.299 0.21
Construction 0.50 0.389 0.55
Transition 0.10 0.235 0.18
1.00 1.000 1.00

3.3.2 Efforts of the components

Table 13 shows the summary of the baseline efforts of the tasks and the
numbers of the components in the final product. During the project one
window and several additional components have been added to the planned
system. A component of type date control is added. As the effort of a
component contains parts of the effort of all the phases of the project, the
realised baseline efforts of this example must be divided by the phase
coefficient of the construction phase (0.389). For example, the construction
effort of the student window was 15.0 hours and the share of the student
window of the whole project was 38.6 hours. The numbers from the original
features are copied from Table 9.
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Table 13. The numbers of the components and the baseline effort.

Tracking set Constr. Baseline | The numbers of components (”#c)
effort
effort -
Window |Data Text Date ctrl
fields
Student window (15.0 38.6 1 4 7 1
Subject window ([12.0 30.9 1 5 4 0
Mark window 10.0 25.7 1 3 3 1
Course window |8.5 21.9 1 2 4 0
Sum 45.5 117 4 14 18 2
Original features 77.6 3 10 12 0

A row from the previous table corresponds to an equation in the equation
group (Equation 12). The tasks of the inception, elaboration and transition
phases are omitted because they are linearly dependent on the tasks of the
implementation phase. The equation group is

El+4-E2+7-E3+E4=38.6

E1+5-E2+4-E3=309
Equation 17. , where
E1+3-E2+3-E3+E4=25.7

El+2-E2+4-E3=219

e [l is the effort of the window component,
e [2 is the effort of the data component,

e [E3 is the effort of text component and

e [4 is the effort of date component.

Table 14 shows the efforts of the components as the solution of Equation
17. They are calculated by multiple linear regression from the previous
equation group. The effort of the original components (the last line of Table
13) is calculated by using the original numbers of the components and the
new component based efforts: 3*6.00+10*3.00+12*2.46=77.6 hours.



60

Table 14. Efforts of the components.

E. hours Window |Data Text Date ctrl

E1 E2 E3 E4
Component effort, now 6.00 3.00 2.46 3.32
Component effort, original 4.0 3.0 2.0

3.3.3 Effect coefficients

The recalculations of the project and human effects are based on the observed
efforts (Table 11). Table 15 is a summary of the calculations of the process
and project change effects (Equation 14). The estimated effect coefficients
are copied from Table 7 and the realised efforts from Table 11.

The process correction is used to exclude the effect of process changes
between the projects in the project repository database. The process
correction coefficients are calculated separately for each component
(Equation 14) by dividing the efforts of the components solved from Equation
12 by the original efforts of the components. For example, the process
coefficient of the window component is 1.50 (=6.0/4.0).

The effort of the project change effect is the quotient of the final baseline
effort and the original baseline effort. In this case 117 h/ 77.6 h gives f=1.51
(Equation 14).

Table 15. Project effects.

Component Estimated Actual Actual
coefficient coefficient
effort
Process [p] Window 1.10 1.50
Data 1.10 1.00
Text 1.10 1.23
Project change [f] 1.50 39.4 1.51

Table 16 shows the summary of the project and human effect calculations
(Equation 14). The realised effect coefficients are copied from Table 11.
Risks are the next correction in the CRM-calculation order. The coefficient
(1.18) for the programmer is obtained by adding one to the quotient of the
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efforts of the risks (10 hours) and efforts after project change and process
corrections (54,5 h) (Equation 14). The team effect coefficient (1.19) is
calculated by adding one to the quotient of the efforts of the team effect (12
hours) and efforts after the project change, process and risk corrections (64,5
h =54,5 h+10.0 h) (Equation 14).

The skill coefficient of the manager (1.08) is calculated by adding one to
the quotient of the effort spent in learning (5 hours) and the manager's project
corrected effort (61.5 h=52,5h+0h+9h). The motivation coefficient of the
manager (1.11) is calculated by adding one to the quotient of the effort
assessment for the motivation (7.5 h) and the manager's effort after project
and skill corrections (66.5 h = 61.5 h + 5 h). The calculations based on the
symmetric equation (Equation 16) are shown for reference.
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Table 16. Project and human effects.

What/Who R y] R y]
5| & & o
3 o N9 c
Q@ 3 3 3
@ 3 3
e e
Baseline effort (h) 52,5 54.5 10 117
Risk (E#R) (h) 0 10 2 12
Risk coefficient 1.00 1.18 1.20
- symmetric 1.00 1.13 1.14
Team (E#T) (h) 9 12 2.5 23.5
Team coefficient 1.17 1.19 1.21
- symmetric 1.15 1.16 1.18
Skill (E#S) (h) 5.0 29.5 7.0 41.5
Skill coefficient 1.08 1.39 1.48
- symmetric 1.08 1.40 1.50
Motivation E#M) (h) 7.5 15.5 3.0 26.0
Motivation coefficient 1.11 1.15 1.14
- symmetric 1.13 1.21 1.21

3.3.4 Equation coefficients

The objective of this stage is to calculate the correspondence of the effect
levels and the actual correction coefficients. Data points (level-coefficient
pairs) and the simple least square method are used to calculate the equation
coefficients. The estimation forms could be filled in again to improve the
assessments of the levels. In this example the human effects of the new
programmer and risk and team levels of all of the staff are reassessed. The
other assessments are kept as they were at the beginning of the project (Table
6 and Table 7). Table 17 also shows the equation coefficients, which are
calculated using simple regression (Equation 4). For example, the data points
for the skill effect are (4.1, 1.08), (2.3, 1.39) and (2.1, 1.48) and the
calculated equation coefficients are 0,g=-0.189 and B¢=1.892 (see Figure 7).
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As there is only one data point for the project change equation, B¢ =0. Also

op =0 because there is only one assessment of the process level. The

estimated levels are copied from Table 7.

Table 17. Equation coefficients

Component Estimated Actual Equation Equation
/Who level coefficient coefficient [o] |coefficient [B]
Process  (Window 3.2 1.50 0.000 3.200
Data 1.00
Text 1.23
Features 4.2 1.51 0.359 0.000
Risks Manager 1.1 1.00 0.7 0.24
Programmer |1.3 1.18
Programmer 2 |1.4 1.20
Team Manager 3.4 1.17 0.2 0.49
Programmer |3.5 1.19
Programmer 2 |3.6 1.21
Skill Manager 41 1.08 -0.189 1.852
Programmer (2.3 1.39
Programmer 2 (2.1 1.48
Motivation |Manager 2.5 1.1 -0.029 1.278
Programmer |3.9 1.15
Programmer 2 |3.8 1.14

Figure 7 shows the correlation of the skill coefficient and the skill level
(based on the data of Table 17). Generally, the values of the equation
parameters depend on the meaning of the scale of the answers to the
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estimation forms. They are naturally defined so that increasing the level of
skill, motivation and process will decrease the effort coefficient and the

effort. Decreasing the level of risk, project change and teamwork has the
same effect.

Equation coefficients

1,7
wNC
154 - L
P ERIERY NIRRT
13- SRR o R

124 ----- L P N L — Linear (Level-
1 1 ‘ ‘ ‘ coefficient)

Bl Level-coefficient

Coefficient

1 S SRR N
0o Y=-0,189x+1,8522 O\
0.8 % % % ‘

1 2 3 4 5

Figure 7. The equation coefficients.

The CRM calculation and recalculation can be done automatically by
assigning the planned numbers to the CRM equations.

3.4 Conclusion of the example

The CRM calculation and recalculation are straightforward substitutions
to the given formulas. Tables visualise the calculations and spreadsheets can
be used to create software for CRM-estimation. A database solution depicted
in Figure 3, page 23 is more automatic than spreadsheet-based calculations,
because adding rows for tasks and persons and fetching data from the
repository can be facilitated. Interfaces to external software engineering,
project management and time reporting software are also very useful.
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4 Empirical Study for Evaluating CRM

4.1 Introduction

This chapter presents the results of the survey and the field experiments,
which were conducted in order to validate CRM. The survey was sent to
every project manager who was a member of the Finnish Information
Processing Association. These experts assessed the importance of the project
and the human factors of CRM estimation forms (see Appendix A: Estimation
forms and survey results, page 162). The respondents estimated the influence
of the asked factor in software development using a 5-level (5 to 1) scale
corresponding to very large, large, medium, small or very small influence.
The averages of the answers establish the default values of the quantitative
parameters of CRM, though CRM itself was not presented to the respondents.
Another section of the questionnaire covered current practices and abilities to
provide the data that CRM requires. The results of the survey are useful even
though there is no explicit connection to CRM.

The data from the survey is presented in the appendices A, B and C and
the narrative descriptions and graphical illustrations are given in the text of
this chapter and in [Virtanen 2001]. The narrative presentation is ordered by
the classification and the importance of the questions in the survey. In the
text, we use combined categories {always, mostly}, {very large, large},
{never, rarely}, and {small, very small} for simplicity.

4.2 Survey

The addresses of all 955 project managers and system managers were
selected from the member database of The Finnish Information Processing
Association. The project and system managers were selected because they are
normally responsible for estimating software projects. About 60% of them
lived in the Helsinki area. In May 2000, 516 letters were sent out and in June
434 letters. 5 foreign addresses were ignored. In total 70 replies were
received, three of which were not filled in. The percentage of replies was 7.1
% (67 replies out of 950). The small proportion of respondents diminishes the
representativeness of the results among Finnish project managers as a whole.
The results of most of the individual questions are statistically significant
because the number of replies was larger than 50. However, comparisons of
the answers to different questions must be omitted and any conclusions must
be drawn carefully. The questions, which could not pass the Chi-square test
with at least 98% confidence have been omitted, the reason being that the
answers were distributed so evenly that the zero-hypothesis of randomness
could be true. Questions about ER-analysis, application frameworks, design
patterns and use cases have been omitted for the same reason. These
questions have been marked with "*" in both the figures and in the
appendices.
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A phone survey was conducted in June 2000 in order to evaluate the
differences between the obtained replies and the replies of people who did not
respond. 30 randomly selected people were called. One of them had changed
his job and had not received the survey, 14 of them would have responded in
the same way as the actual respondents, and 15 did not reply because
estimation of software development projects was not in their brief at that
time. The phone survey confirms that the results are representative of the
population of project managers.

The 67 respondents had considerable experience in estimation of
software development projects, on average 14.6 years (confidence interval 1.5
years) and only four of them (6.0%) had less than 5 years experience. Eight of
the respondents were interested in taking part in an interview. The results of 6
interviews are presented later in this chapter; two of the eight were not
interviewed due to work commitments.

4.3 Background information of the respondents

In order to obtain some background information from the respondents a few
questions were asked about their current practices in relation to software
development and software project estimation.
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B Always EMostly [Often EJRarely EJNever E1Don't know |

Iterative models

Waterfall models

Spiral model

Waterfall model

Versioned software (*
Multiphase delivery

Big Bang-model

Multiphase testing

Tests after implementation
Multiphase design

One-phase design
Prototyping for technical reasons
Prototyping for requirements

Multiphase analysis

Detailed analysis

0% 20 % 40 % 60 % 80 % 100 %

Figure 8. Current use of process models.

Figure 8 presents the current usage of process models (Table 41, page
173). Analysis, design, testing and delivery were often done in more than one
phase. If the use of one phase is classified as a waterfall model and the use of
multiple phases is classified as an iterative model, 55% of the respondents
mostly used iterative models and correspondingly 41% of the respondents
used waterfall models. Thus the estimation models must support iterative
software development. Due to the versatile use of these models it is important
that estimation methods are not restricted to one process model. Prototypes
were mostly used by 40 % of the respondents in order to ascertain customer
requirements and by 31% for technical reasons. CRM supports these current
practices by providing feedback data for the estimation of successive projects
and successive iterations of projects. The process correction of CRM
facilitates the use of different process models (see chapter 4.6 on page 72).

Figure 9 shows that the usage of design methods is low (Table 42, page
174). The use of the wall-board in analysis and design meetings was common.
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The answers relating to the use of the traditional entity-relationship model
were spread so evenly that the result was not reliable (chi-square value 21%).
29% of the respondents mostly used data flow analysis and only 19%
primarily used object-oriented methods. CRM can be adapted to traditional
analysis and design methods, although component-based and object-oriented
methods are preferred.

B Always ElMostly O Often ORarely EINever EDon't know |

Object oriented
analysis ( e.g.: UML,
Fusion, Coad )

Wall-board
techniques

Data Flow- analysis

Entity-Relationship
model (*

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100 %

Figure 9. Current use of analysis and design methods.

Figure 10 illustrates the usage of components (Table 43, page 174). As
can be seen from the survey, self-made module libraries, application
frameworks and design patterns and self-made class libraries are the most
important reusable components. Seventeen percent of the respondents mostly
used acquired class libraries and module libraries. Modern component
technologies were rarely used. Java Beans were mostly used by 12 % of the
respondents. The corresponding numbers for ActiveX, DCOM and CORBA
were 7%, 3% and 4% respectively. Software components were rarely
produced for sale. The market for them has not yet been created (see
[Szyperski 1998]).
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Frameworks & patterns (*
Components for sale
Acquired module libraries
Acquired class libraries
Self-made module libraries
Self-made class libraries
(Enterprise) Java Beans
CORBA

DCOM
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Figure 10. Current use of component technologies.

Figure 11 illustrates the current estimation methods and metrics (Table
44, page 175). Task based estimation is the most common estimation method.
The forthcoming project is compared with similar projects in 62% of the
cases. The answers that relate to the adaptation of the project to a budget
were more even. The respondents utilised the project tracking history in a
variety of different ways. In theory, it is better to calculate the budget
according to the objectives of the project but in practice the project is planned
by the budget in 40% of the cases recorded here. The Function-point method
has some active users, but 51% rarely used it. Only two percent of the
respondents mostly start a project without an estimate. Forty-six percent of
the respondents answered "don't know" to the question about COCOMO and
another forty-six percent stated that they never used it.

Numbers of windows, reports and database tables are the most common
metrics. Seventy percent of the respondents generally counted them. Numbers
of use cases, subsystems and classes were also counted but not as often. Lines
of code (LOC) were rarely counted. This was because the production of
components for sale was rare (see Figure 10,)and the number of customers for
these components was low.

The previous results suggest that the introduction of CRM is easy
because CRM can be seen as an extension of current common practices.
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CRM estimates tasks by using components which resemble the most
important current metrics, such as numbers of windows etc.

|IAIways EMostly OOften Rarely CINever ODon't know |

Use cases (*

Component's
customers

LOC

Classes

Windows etc.

Subsystems

Project tracking
history

Function Point
Analysis

cocomo

Comparision with
similar projects

Task based
estimation

The project is
planned by a budject

No estimate before
project start

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
%

Figure 11. Current use of estimation methods.

4.4 Distribution of the effort

The respondents to the survey saw the distribution of the effort of a typical
software development project as being: planning and implementation of the
components 35 %, project change 21 %, teamwork 13 %, skill 11 %, risks
11% and motivation 10 % (Figure 12, Table 35, page 169). The process effect
was not included in this question because it measures the differences between
two different processes. This result confirms that the effects which CRM
measures are import parts of the effort. This finding is based on the opinions
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expressed by the respondents and not on observations from actual projects.
The default values of the correction coefficients of the CRM method (see
Equation 8, page 30) can be calculated by substituting the previously obtained

efforts of components E#p=35 h, project change E#p=21 h, teamwork
p B proj g P~

E#T=13 h, skill E#S=11 h, risks E#R=11 h and motivation E#M=10 h into
Equation 14 (page 35):

e project change f= 1+21/35 = 1.60,

o riskr=1+11/(21+35)=1.20,

e teamt=1+13/(21+35+11)=1.19,

e skill s=1+11/(21+35+11+13) = 1.14 and

e motivation m = 1+ 10/(21+35+11+13+11) = 1.11.

The correction coefficients compare the effort of the effect in question to
the efforts of the preceding effects in the calculation order. Therefore, the
skill and risk coefficients are different though their overall proportions are the
same. The problem of distribution based coefficients are that a single change
of a coefficient will change all the coefficients.

[JMotivation

bskill

[ Teamwork

[ Risks

B Component
s / Baseline

Effort

Figure 12. Distribution of the effort by correction effects.

4.5 Counting Components

One question in the survey was used to assess whether the average effort of
reusing a component is a useful estimate for successive reuses. In the
example, the respondents estimated the effort in different reuse cases of a
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business graphics component (like Microsoft Chart Control), with the average
effort being 20 hours. The deviation from the time frame of 20 hours was less
than 2 hours in 17% of cases, 2 to 5 hours in 26% of the cases, 5 to 10 hours
in 30% of the cases, 10 to 20 hours in 17% of the cases and more than 20
hours in 9% of the cases (Figure 13, Table 36, page 169). The answers reveal
that CRM estimators, as is the case with all measurers, cannot apply the effort
averages to different cases without consideration.

20 -
N\,
" 15
2 10 % of
o 4 ~ cases
S 5
0 T T |

0 20 40 60

Figure 13. Distribution of effort by reuse cases.

4.6 Process effect

The process effect in CRM is used to calculate the influence of the process
changes to the effort. Figure 14 shows the factors in the process effect (Table
28, page 162). Software development requires many co-ordinated methods
and tools and none of them alone can dramatically improve the productivity
of a project. The effect of the development environment was large in 41% of
the answers. The impact of the tools was slightly lower. Testing tools were
the most important. The effect of the programming language was large in
38% of the answers. Configuration management tools, database tools,
analysis and design tools and documentation tools were less important. The
effect of project management tools was considered small. The most important
process factors were testing methods, special quality requirements (such as
fault tolerance in medical applications), assuring of generality and phasing
the project. Quality assurance methods, project management methods, finding
and assessing components and documentation standards were considered to
be less important.
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Figure 14. Factors of process effect.

4.7 Project change effect

The section of the survey related to the amounts of added and removed
features showed that the adding of new features is common. These numbers
are illustrated in Figure 15 (Table 38, page 170) and in Figure 16 (Table 37,
page 170). The amount of added effort is 10-20% in 43% of the cases and 20-
50% in 22% of the cases. The amount of cancelled effort is less than 10% in
46% of the cases and 10-20% in 15% of the cases. In Jones' study the average
amount of additional features was +35% [Jones 1994]. The answer to the
question reported in Figure 12 (the share of the project change of the final
total effort is 21%) differs from the answers in this chapter because the
additional and removed features are compared to the planned effort and not
the final effort.
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Figure 15. Added features.

|IAIways B Mostly OOften dRarely dNever O Don't know |

more than 50 % of planned total effort |-
20 - 50 % of planned total effort
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Figure 16. Removed features.

Figure 17 shows the factors of project change effect (Table 29, page
163). The most significant factors are end-users' views, inaccurate analysis,
requirement errors, good ideas developed during the project, and inaccurate
design. Technological surprises and the views of the project manager are also
common factors. The estimators in the case studies had some conception of
possible areas of new features (see chapter 4.15, page85). The end user
organisation normally pays for these features and this can often be done
without renegotiating the contract.
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Figure 17. Factors of project change.

4.8 Team effect

Figure 18 shows the factors needed for estimating the team effect coefficient
(Table 30, page 164). They can be classified as meetings, travel,
documentation, discussions and conflicts. The effort of discussions was large
(discussions with users, with customer's management and personal
supervision). The handling of conflicts requires a large effort (disturbances in
the information flow, disputes about objectives, disputes about working
methods and interruptions of work). The influence of meetings was also large
(ad hoc meetings, planned meetings and meeting practices). Writing and
reading email was more important than writing and reading meeting minutes
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and other documents. One of the case studies revealed that travel time is
significant in international projects, though it is a minor factor for the average
respondent in this case as they work in the Helsinki area. The organisation
and the numbers of developers and users add another view to the factors of
the team effect. Interviewee number 3 (see chapter 4.13.3, page 83) noticed
the effect of synergy, which tends to decrease the effort because it increases
the productivity in teamwork.
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Figure 18. Factors of team effect.
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4.9 Risk effect

Figure 19 shows the factors needed for estimating the risk effect coefficient
(Table 31, page 165). The questions assess the expected influence of the risk
if it becomes true. The respondents thought that personnel risks are the most
significant risks in their projects. These include changes in personnel and
sickness. The problems related to the organisation are also important
(unpunctuality of a contractor, subcontractor or customer and failures in
subcontracting and purchasing and organisational changes). The failures in
technology and unexpectedly difficult software bugs were more important
than technical disturbances and sabotage. Disputes and carelessness were
seen as being less important. Estimation errors, economic risks and juridical
risks make up a group of management related risk factors. In summary, the
risks of software development are considerable (see chapter 2.10, page 43).
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Figure 19. Factors of risk effect.

4.10 Skill effect

Figure 20 shows the survey results related to skill factors (Table 32, page
166) The quality and length of the experience, the familiarity with the
application area and with the program to be maintained, personality and
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knowledge of methods and tools were seen as being important. Education,
experience of teamwork and courses attended were considered to be less
important.
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Personality
Knowledge of
methods and tools

Familiarity with the
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Experience of team
work
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applications area

Quality of experience

Length of experience

Courses

Education

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
%

Figure 20. Factors of skill effect.

In order to assess the effect of the skill to the effort, the personnel were
classified into four categories (expert, professional, normal, novice) for the
assessment of skill. Each person was assumed to be motivated and self-
directed in learning and accomplishing given tasks. In the survey the
respondents estimated the additional effort (original 20 h) needed for learning
(including supervision) during the reuse of the example component, which
was the business graphics component Microsoft Chart. The expert does not
need additional effort. They estimated that the additional effort of a
professional is less than 25% in 81% of cases. The same effort for a normal
developer is less than 25% in 16% of cases and 25%-50% in 34% of cases.
The additional effort for a novice is much larger: more than 50% in 91% of
cases.

4.11 Motivation effect

Figure 21 shows the results of the question relating to managers' motivation
factors (Table 33, page 167). Here, the respondents assessed themselves.
Challenges, the work itself, self-development, independence, the possibility
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of achieving results and relationships within the team were all seen as
important motivators. Working conditions, salary and benefits and career
were seen as being less important. The motivation factors of the team
members are listed in the appendix A (Table 34, page 168). The Pearson
correlation between the replies of team members' motivation factors and
project managers' motivation factors was from 0.79 to 1.0, excluding the
possibility for initiative and independence (0.61) and responsibility (0.67). As
the motivation factors of the team members and leaders are approximately the
same, it is possible to use only one set of motivation factor weights in the
CRM-calculations. Table 34 (page 168) shows the weights for the team
members.

B Very large B Large @ Medium B Small £ Very small O Don't know
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Self development
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Initiative and independence
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Ambition
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Figure 21. Factors of motivation effect.

4.12 Practical issues

Figure 22 shows that the survey respondents trusted in the idea of estimating
the effects needed in CRM calculations, especially with regard to any
required recalculations after the project (Table 45, page 176). The ability to
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estimate the process effect was 28%, when the new methods and tools have
not been tested, 38%, when they have been tested in a trial and 56% when
they have been used in actual projects. The ability to estimate the project
change effect after the project was good. Naturally, the estimation was seen
as being easier after the project than beforehand.

In its most accurate form the CRM estimation process requires a
considerable number of calculations. The survey respondents considered the
amount of estimation work to be reasonable if these estimates are made for
each project or for each subproject and for each person. This was seen as
being particularly so when only estimation work that is considered necessary
is carried out. Each personal task can have its own estimation forms, if
required (see Figure 3, page 23). The case studies confirmed this assessment.

It is possible to create useful project histories because estimating and
tracking the effects of CRM separately after the project is feasible. Tracking
of the co-ordination work has also been found to be successful in another
study [Toffolon 2000]. In the case studies no historical data was available and
the project managers estimated the correction coefficients directly.
Additionally, the estimation forms supported the estimation process.



82

H Always EMostly O Often E1Rarely EINever C1Don't know |

Need to estimate each component
separately?

Is the effort needed for estimating
reasonable?

Motivation after the project

Motivation before the project

Skill after of the project

Skill before the project

Risk after the project

Risk before the start of the project

Teamwork after the project

Teamwork before the project

Project change after the project

Process used in actual projects

Process (tested)

Process (not tested)

0% 10 20 30 40 50 60 70 80 90 100
% % % % % % % % % %

Figure 22. Ability to estimate.
4.13 Interviews

4.13.1 Overview

This chapter reports the interviews conducted. They were made up of a half-
day interview and a trial of CRM in selected companies and their projects.
Two of the original eight voluntary companies did not participate in the
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interviews because of work commitments. In interviews 1, 2 and 3, a light
estimation of actual projects was conducted (see chapters and 4.14, 4.13.2
and 4.13.3 correspondingly). In the other three interviews there were no on-
going projects to assess within the session.

In all of the six interviews, the CRM method was presented to a project
manager in the company. The general opinion was that CRM is useful and it
could be applied to the applications used by the company. The problems of
component definition were addressed and the project managers thought that
the problems could be solved.

4.13.2 A large traditional application

In interview 1 the effort of a large transition project of a rather traditional
application was recalculated successfully within the session. The parts of the
application were viewed as business components as they were similar in
succeeding projects. They were good CRM components because the project
tracking history showed that the efforts of the components were equal to
within a reasonable margin. In this case, CRM was applied successfully to a
project in which a commercial-off-the-shelf product was introduced to a
branch office.

4.13.3 A HTML-application

In interview 2 the effort of an HTML application was seen as being difficult
to estimate using CRM because the structure of the software was unclear.
There were large differences in the effort of using the same user interface
component in various places because a large amount of hand coding was
needed in each case. Copy-paste-reuse increased the differences.

4.14 A small case study

In the small case study in interview 3 the effort of a small mobile application
was estimated on 29.6.2000 in two hours. Components were easy to find
because they were common user interface components included in the
development toolkit. The effort of a component was easy to assess because
the project manager had experience of similar components in a PC
environment. The baseline effort was 108 hours (= 4*8 + 4*4 + 5%4 + 3*8 +
1*16 hours; Equation 5). The original estimate given by CRM was 184 hours
(= 1.7 * 108 hours). The project manager estimated the effect coefficients
because no history data was available. The product of these coefficients was
1.7. Table 18 shows the baseline and total efforts that were initially and
finally recorded on 10.11.2000.
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Table 18. Baseline efforts of the small case study.

Component Effort Estimated amount Final amount
E. Nc n#C

Window 8 4 9

Button 4 4 9

Text field 4 5 3

Combo box 8 3 3

List 16 1 1

Time selection 8 2

Baseline effort 108 hours 176 hours
Total effort 184 hours 204 hours

The assessment of project and human effects initially looked
straightforward, but their actual influence was somewhat surprising. The first
implementation of the project was discarded after 381 hours. The
programmer was seen as not being up to the task and the project was started
again from the beginning. The risks of the second implementation were
smaller because technical problems had been solved by neighbouring
projects. The original estimate was 184 hours and the actual effort of the
second, successful, implementation was 204 hours (Table 19). The effect
levels in the second column are based on the assessments of the project
manager. The actual efforts in third and fifth column has been obtained from
the time reports. The effect coefficients are calculated by substituting the
efforts into Equation 14 (page 35).
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Table 19. Recalculation of case 1.

First implementation Second implementation

Effect Effect Effort Effect Effort Effect

level (hours) | coefficient | (hours) coefficient
Baseline (108 h) 108 h
Process Oh 1.00 Oh 1.00
Project change 2.35 Oh 1.00 68 h 1.63
Risks - 100 h 1.93 1.00
Team work 2.03 19h 1.09 10h 1.06
Person 1 skill 1.28 205 h 1.90
Person 1 motivation 1.36 57 h 1.13
Person 2 skill 3.38 9h 1.05
Person 2 motivation 3.95 9h 1.05
Sum (total 585 h) 381h 204 h

This case was a good example of the need for good assessments. The
project manager misjudged person 1, the amount of the additional features
and the risks of the project. The product of the correction coefficients was
originally 1.7 and finally 5.42 (see Equation 8. Page 30), because risks and
the skill of person 1 were assessed wrongly.

4.15 A CRM evaluation project

A-system (name changed) was a medium-size software house that produced
custom software for media and healthcare archiving and medical information
technology applications in Finland. It employed about 100 persons. The
examined projects were Web Ul and Quick UI and they were looked at in one
of A-system's branch offices. The data for the estimation was collected from
an already finished Web UI project and CRM estimation was tried in the
successor to that project, Quick UL

The estimation process differs from the CRM process described earlier
because this was the first CRM estimation. Specifically:
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e Assessments of the history data of the Web UI project were needed to
calculate the efforts of the components.

e The component structures were obscure,

e The equation coefficients and effect coefficients were both estimated
because the amount of data from the Web UI project was so small,

e The actual efforts of different effort types were estimated because the time
reporting did not separate them.

In this case study older versions of the CRM equations were used
(Equation 7, page 12). The other CRM equations differed correspondingly.
For example, the version of the Equation 14 divided the efforts of the effects
by the baseline effort. The values of the coefficients for the older equations
are often less than one. The problem with the addition based Equation 7, was
its weakness in adapting to the changes in a project. In this case study the
effort estimates changed greatly because the project changed and
unanticipated risks arose. This also influenced the team and human effects
and changed their realised coefficients, though the actual levels of these
effects did not change.

The original estimate was adjusted once and a recalculation was done
after the project. The numbers are summarised Table 20 (page 90) Table
21(page 91) and Table 22 (page 92).

4.15.1 A-System Quick-Ul-project v. 1.0 - estimation

The first evaluation of the Quick UI project was done on 4.12.2000 by using
the recalculation data from the earlier Web UI project. Its project manager
supplemented the available written data. The calculation took approximately
half a day. The requirement phase of the Quick UI project had already started
and it was planned to end on 11.12.2000. This project did not produce any
kind of user interface or a solution, which was a prerequisite of sending an
offer to the customer concerning the implementation of the Quick UL The
parameters of CRM could be found from the actual data of a very similar
Web Ul project, but the outcome of the Quick UI project was not defined.

The component-based estimate was based on the product structure and
efforts of the components of the earlier Web Ul project. During the
recalculation it was found that the accuracy of the history data was not
adequate and that the share of single components of "search results" and the
"difficult button" was very large. The effect of single components in the
history data was excessive because it was known that it was not necessary to
duplicate the work of the earlier project. The baseline effort of the
implementation was calculated to be 620 hours if the data from the earlier
project were used as such.

The project manager estimated the levels of the CRM effects using
estimation forms and also the correction coefficients because the amount of
history data was very small. The most influential project change factors were
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commercial factors, inaccurate agreement between A-System and the
customer and the views of the project members and the users. The project
manager estimated that the project change level was 3.11 and the correction
coefficient 0.30. The process change level was 2.06 and the estimate was
done without process correction. The change from Microsoft technology to
Java-technology was added to the technology risk factor. The team level was
3.19 and the team effect coefficient 0.25. Disagreement about the goal and
the methods was seen as the most important factor increasing the teamwork.
The risks related to Business Object Logic (1 to 3 person months), tools (few
person days) and the customers' inexperience in computing were estimated
separately. As adding Business Object Logic was a considerably large effort,
the total risk effect was considered to be 2 person months (300 hours).

The project manager estimated the productivity differences and the skill
and motivation levels of the team members (MK, PH, JJ, JK). The shares of
skill and motivation were estimated to be the same, so both coefficients were
(MK, PH, JJ, JK) 0.25, 0.44, 0.44 and 1.38. In this case, the correspondence
between the levels in the estimation forms and the estimated productivity was
weak because the intuitive productivity assessments of the project manager
were volatile. As the tasks had not been allocated, the calculation used the
average coefficient of 0.625 (average of 0.25, 0.44, 0.44 and 1.38) for both
the skill and motivation.

The sum of the correction coefficients was 3.28, which is the sum of one
and the correction coefficients of 0.30, 0.25, 300 hours (0.48), 0.625 and
0.625 (Equation 7). The estimated effort was 2644 hours, which included
23% for design and transition effort in addition to the implementation's 2036
hours. The phase coefficient of the implementation phase (h) was 0.77. The
estimate is based on the risks and lower productivity than in the earlier
project.

It was decided that the project should be partitioned into tasks and staff
should be assigned to the tasks. Each task should produce a tangible result,
which had countable components and the effort of a task should be less than
10 person days. The personal productivity differences could only be
estimated when the tasks had been assigned. The second estimate was done
on 15.1.2001 and the implementation effort was estimated to be 352.5 hours.
The estimate for the whole project was 458 hours (=352.5 h /0.77). The main
reasons for the decrease in the estimate were a better component structure and
better estimates of the efforts of the components.

4.15.2 A-System Quick Ul recalculation

The recalculation of Quick Ul was done on 13.2.2001 and the missing
numbers were supplemented in the following week via e-mail. The meeting
took about 3 hours. The project manager gave a view of the actual hour data
of the project. The CRM estimation forms for estimation of the corrective
factors were filled in again and the original answers were available for
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discussion. The actual recalculation was done after the meeting when all of
the data were available.

The same component structure was used in the recalculation as was used
in the making of the original estimate. "Button"-components were classified
into three types, because the effort of the server components behind the
buttons varied largely. The "search results" component only included the
reuse of the server component, not its construction as in the previous project.
Therefore the data from 5 windows and 47 components were available to use
in calculating the component-based efforts (see Table 21, page 91). The
calculation of the efforts of the components was done manually by adjusting
the solution in the calculation-sheet to minimise the difference of efforts in
the actual and recalculated tasks. In particular, the difference of the actual
effort of the project and the recalculated effort of the project was minimised.

The pure component-based effort was 275 h (=5*4+ 26*1+ 5*%30+ 2*15+
4*3 5+ 1*3+ 4*8). The addition due to skill effect was estimated to be 50%
of the baseline effort (137.5 h) and the motivation effect was estimated as
30% of the baseline effort (82.5 h). The actualised risks (technical problems)
were estimated to be 151 h (55% of the baseline effort). The effort of the
project manager was included in the team effect and this came to 107.5 h
(39% of the baseline effort). The effort of the design, integration testing and
transition was 143 h (15.8% of the total effort). Installation work on the demo
computer, 70 h, was seen as a part of the transition phase. The familiarisation
of JK was removed from this project. This concludes the sharing of the total
effort of 904 hours.

The process level in the recalculation was 3.0 and the project manager
did not see the need for process correction either. The largest change was the
change from Microsoft technology to Java technology. Its impact has been
included in risk and skill effects. The differences between the component
based efforts of the Web UI and the Quick Ul projects were considered to be
caused by random effects, inadequate consideration of the server components
and missing checks in the text fields.

The project change level in the recalculation was 2.39. The most
important factors were the views of the project members, technological
surprises and change control. The number of components changed during the
project. The baseline effort that was calculated using the original component
structure was 267.5 h, which was 7.5 h (2.7%) less than the actual baseline
effort.

The team level in the recalculation was 2.71. The most important factors
to add to communications were estimated to be the meetings and the reading
of minutes and other documents. Teamwork includes the meetings and the
work of the project manager, which comes to a total of 107.5 h (38.5% of the
baseline effort). One reason for the larger teamwork effort than estimated was
the change of the project manager, which was not specified as a risk factor.

The changes in the staffing and unexpectedly difficult programming
errors were seen as the most important risk factors. The impact of the



&9

atmosphere was included in the motivation effect. In addition, a part of the
effort of the team members was recorded to other projects. The problem of
the server component "download" was itemised as its own risk task, which
took 151 hours. The risk effect was 55% of the baseline effort calculated as
explained.

The project manager, MK, handed his notice in during the project but he
was active in the project until its final stages. A large part of JK's effort was
recorded to a separate familiarisation project. On almost every occasion a
single person implemented each task. As the new project manager could not
assess the personal productivity differences, he estimated that the skill effect
addition was 50% and the motivation effect addition was 30% for all the team
members.

4.15.3 Comparison of the actual and the estimates

The Quick Ul project was estimated twice. The first estimate was done at the
beginning, another in the middle of the project and finally it was recalculated
after the project. The first estimate, which was made based on the Web UI on
4.12.2000, was considered inaccurate as soon as it was done because the
decomposition of the components was clearly missing. A new estimation
meeting was planned for when the implementation design had progressed a
little more. It was held on 15.1.2001. The estimate of the total effort of the
project was 2644 hours on 4.12.2000 and 458 hours on 15.1.2001. Based on
the latter, originally task based estimate, the component-based estimates were
also calculated.

Table 20 summarises the calculation of the estimates. It includes the
estimates of the project manager on17.11.2000, 4.12.2000, 15.1.2001 and the
recalculation on 13.2.2001. The project manager had estimated the factors
using the CRM estimation form on 17.11.2000, 4.12.2000 and 13.2.2001 and
the level of the effect is calculated based on that judgement. The levels have
been compared to the project manager's estimate of the actual effort. The
estimate on 17.11.2000 concerns the Web UI project and the estimate on
15.2.2001 did not include estimation forms/levels. It should be noticed that
e The results are not statistically significant because the amount of data is

small.

e The estimation form was not used in risk estimation
e The same skill and motivation factors were used for each of the persons

e A large part of JK's effort has been removed to another project. This
decreases the realised effort considerably.

e Other work, such as general design and integration testing, has not been
included in the bottom line

e The older calculation rule was used. The sum of the corrections was used
instead of the product. The last column contains the values calculated by
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the newer equation, (Equation 8, page 30), which was developed as a
result of this case study.

Table 20. The change of the estimates during the project.

Earlier project | First estimate 2nd Recalculation
Correction 1711 | 1711 | 4.12 4.12 15.1 13.2 13.2 13.2
factors level | coeff. | level coeff. | coeff. | level coeff. | coeff.
Eq14 | Eq 4
Baseline (h) 620 152 275 275
Process 2.21 0.00 2.06 0.00 0.00 3.00 0.00 1.00
Project 3.61 0.50 3.1 0.30 0.05 2.39 0.03 1.03
change
Risks - 0.12 - 0.48 0.15 - 0.55 1.53
Team 249 | 0.14 3.19 0.25 0.10 2.71 0.39 1.25
Skill avg. - 0.30 - 0.625 | 0.50 - 0.50 1.25
Motivation - 0.20 - 0.625 | 0.30 - 0.30 1.12
avg.
Corrections 2.26 - 3.28 2.10 - 2.77 2.77
Phase - 0.77 - 0.77 0.77 - 0.84 0.84
Estimate 2644 | 458 904 904
(hours)

Table 21 describes the progress of the component structure. It includes
the estimates of the project manager on 4.12.2000, 15.1.2001 and 13.2.2001.
The baseline effort is calculated using a new estimate of the numbers of the
components and a new estimate of the effort of each component. As it was
known on 4.12.2000 that the server part of the search results component
would not be constructed again, certainly not several times, the 620 h does
not genuinely represent the view of the estimators. The large efforts of some
of the components should have been itemised, but it was not possible to go
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into detailed design in the estimation meeting. Due to the project being small,
a random error in a component-based effort is significant.

Table 21. The change of the estimates during the project.

Component counts
and estimated
%) m
efforts(h) o y g 5 m g 5’3 3
S e g | 3 ® 3 o | A
— c Q < . > = o
o = = >
o Jl o o g 2 3 © 2
g | 2|5 |5 | & @ 2 3
S| =18 | 8|S S | 3|2
=} = w —~ (0]
Counts 4.12.2000 12 8 3 6 5 2 1 37
Counts 15.1.2001 4 29 6 1 3 3 8 54
Counts 13.2.2001 5 26 5 2 4 1 4 47
Effort 4.12.2001 4 4 53 30 4 4 173 1620 (2644
Effort 15.1.2001 3 0.8 |13 8 2 3 2 152 |458
Effort 13.2.2001 4 1 30 15 35 |3 8 275 |904

Table 22 describes the changes of the estimates of the human effects.
Notice the influence of JK in the estimates.
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Table 22. The change of the estimates of human effects.

Earlier project | First estimate | 2nd Recalculation
Correction factors 1711 | 1711 | 4.12 412 15.1 13.2 13.2

level coeff. | level coeff. | coeff. | level coeff.
Skill avg. - 0.30 - 0.625 | 0.50 - 0.50
Motivation avg. - 0.20 - 0.625 | 0.30 - 0.30
Skill MK 4.69 0.30 3.41 0.25 - 2,97 0.50
Motivation MK 3.61 0.20 3.95 0.25 - 3.69 0.30
Skill PH 4.06 0.40 3.59 0.44 - 3.16 0.50
Motivation PH 3.64 0.20 4.02 0.44 - 4.02 0.30
Skill JK 3.34 1.38 - 3.34 0.50
Motivation JK 3.30 1.38 - 3.30 0.30
Skill JJ 3.81 0.30 3.34 0.44 - 3.34 0.50
Motivation JJ 3.68 0.10 3.80 0.44 - 3.80 0.30
Sum of human 0.50 - 1.25 0.8 - 0.8
corrections
Estimate (hours) 2644 | 458 904

In conclusion, on 4.12.2000 both the baseline effort and the correction
coefficients were overestimated whereas the estimates were too small on
15.1.2001.

4.15.4 Discussion about the CRM estimation in the test project

As at the beginning, the history data, which is the base of the CRM
estimation, was not adequate, the CRM parameters were estimated manually.
To get results in a reasonable time, small projects (Web Ul and Quick UI)
were selected with a small amount of data. Unfortunately, random effects
were significant.

The estimates could be done with reasonable effort despite the lack of
history data and stiffness at the beginning. The accuracy of the estimate was
comparable with the task based estimates, but the use of CRM reveals the risk
factors of the estimate better than direct judgement of the tasks. It was
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possible to make the CRM calculations using an Excel-sheet, but a better tool
would have made the estimation during a meeting feasible.

The project tracking was based on the phase model of analysis, design,
implementation and testing. As the tasks in the project plan only partially
matched the component structure, the numbers and efforts of the components
of the Web Ul-product were estimated after the project. The user interface
components were found easily, but it was more difficult to take the
components of the lower levels of the architecture into account. It was
obvious that the largest component ("search results") should be decomposed.
A-System uses Rational's Unified Process as its quality system. In practice
the model was more like cascading waterfalls. As the analysis was done
"purely", without a connection to the component structure, no clear
component structure was available after the end of the first phase of the
Quick UI project on 4.12.2000. The design and the implementation were done
in the same project, and on 15.1.2001 a component structure without server
components and their efforts was available. The objective of itemising the
product into small components in the project plan and time reporting was not
fully achieved because the practices of the company needed to be changed.

As the used traditional phase model left the design of the implementation
late in the project, the component structure was not available early enough to
make a bid to the customer to carry out the project. The user interface
components were found easily, but the components, which were at the lower
levels of the architecture, were taken into account by classifying the user
interface components. In addition, the splitting of the larger components
would have been very useful.

The component structure of the finished product was in the
documentation and the code but the efforts of the components were estimated
afterwards because the original records did not exist. Traditional project
plans divide the projects into phases and additionally the implementation
phase is divided into tasks that implement tracking sets. In A-System the
decomposition was worse than this and the connections between the tasks and
the components were obscure in the project tracking.

The environment of the projects was turbulent. Both the technology and
the staff were in a change process. The corporation, A-Systems, was sold on
18.12.2000. The technology risk actualised in both of the projects resulted in
a large effort being spent on a single difficult problem. The estimated skill
and motivation correction coefficients were considerably high, but they were
based on the estimate of the situation. As Quick UI did not contain similar
personal tasks, the productivity differences of the staff could not be verified.
Even the original view of the project manager was that JK's participation in
the project was not productive. As the CRM method was new to all of the
project members, reluctance in making the estimate and tracking the project
was natural. The speed at which the method was learnt was fast. The change
of the calculation rules of CRM (the use of the product of correction



94

coefficients instead of the sum) were not used because it was important to
have a unique base for the calculation during the period of the whole study.

As the total effort is the sum of the component-based efforts multiplied
by corresponding correction coefficients, using a larger correction coefficient
can compensate for a component-based effort that is too small. The
relationships between the correction coefficients and the baseline effort could
not be analysed because the amount of data was very small.

The mathematical calculation of the efforts of the components (see
Equation 12, page 33) was unsuccessful because the "least squares" method,
which calculates the best fit of the data, gave negative values even though the
component-based efforts are always non-negative. So, in the recalculation,
component-based efforts were manually solved from the actual data by using
a Microsoft Excel spreadsheet, which contained a table like Table 13 (page
59).

The correlation between the level of the effects in the estimation forms
and the separately estimated correction coefficients was weak. The questions
still produced ambiguity and they need to be developed. The weighted
average of the levels was between 2-4, though the views of the project
manager would have required more extreme numbers. The decomposition of
skill and motivation was thought to be difficult. The estimation of the risks
proved to be better if is done analogously with the other estimates.

In the case study, the older equation was used (Equation 7). As the
correction factors are overlapping, it was difficult to view each of them
separately. For example, the relative team work effort of the project manager
would remain the same, though the project would last longer due to additional
work of, e.g., risk effect, if the baseline effort were not changed. The same
also applies to the other CRM effects. Each estimation form estimates only
one effect and it would be difficult to take the other effects into account in
each of them. The multiplication of the correction coefficients solves the
problem.
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5 CRM Compared to Other Software Metrics

5.1 Introduction

In this chapter measures which are used widely and are suited to component-
based development are presented briefly and compared to CRM.

The description of each method includes a brief evaluation, which
emphasises its advantages and disadvantages. The final subsection
summarises these observations and makes more explicit comparisons with
Component Reuse Metrics.

5.2 Lines of Code (LOC)

The number of lines of code is easy to collect and they have been collected in
history over the last 20 years at least. One example would be in the US
Defence industry [Poulin 1997, page 55]. The defence connection also
connects it to research and development organisations in the USA, such as
The Software Engineering Institute (SEI).

LOC is an internal measure of a software component. As its calculation
uses produced code it is not available during the analysis phase, the time
when it would be needed the most.

The meaning of LOC is intuitively clear but it needs a clear and concise
definition. A standard line of code, SLOC is defined [Conte 1986] so that
empty lines, comments and style differences are excluded. In refined LOC
measurements of different categories of lines are counted separately. These
categories should include as a minimum reuse [Humphrey 1995] and the
application type [McConnell 1996]. The complexity of the control flow,
programming style, cohesion and coupling are still excluded. The collection
of the LOC-counts and effort estimation is not as easy today as it was in 1980
because of the emergence of integrated programming environments, visual
programming and program generators. Assessing productivity by a simple
"produced LOC per hour"-metric encourages a verbose programming style
instead of a concise and reuse oriented style. The calculation of the estimate
of the effort also requires an estimate of the productivity. As simple LOC per
hour is rarely an adequate productivity metric, more sophisticated methods,
such as COCOMO, have been developed.

5.3 COCOMO

The Constructive Cost Model, COCOMO, [Boehm 1981] calculates the effort
required for software development using the size of the product in LOC.
There are three different versions of COCOMO: basic, intermediate and
detailed. In the basic version the equation is
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Equation 18. LM =oa-| ——
1000

o M = effort in labour-months,

e o= complexity coefficient,

e 3= complexity exponent and

e LOC= initial estimate of delivered source instructions (= lines of code,
LOCQ).

The complexity coefficient and exponent depend on the difficulty of the
project. There are easy (organic), normal (semi-detached) and difficult

(embedded) systems and their equations are 2.4*(LOC/ 1000)1 05,
3.0%(LOC/1000)1-12 and 3.6*(LOC/1000)1-20 | respectively [Boehm 1981].
In the intermediate version, there are coefficients for [Boehm 1981]:

e reliability requirements,

e size of the database,

e complexity of the product,

e response time requirements,

e restrictions in memory use,

e maturity level of the development environment,

e turnover-time of the development environment,

e skills of the developers,

e familiarity with the business area,

e skills of the programmers,

e familiarity with the development environment,

e familiarity with the programming language,

e use of modern development methods,

e use of development tools and

e tightness of the schedule.

Each of the coefficients is judged according to a 6-level scale (very low,
low, normal, high, very high and extra high) giving values from 0.7 to 1.66.
The numbers are then multiplied by each other and with the result of the basic
COCOMO-equation (see Equation 18). In COCOMO II, cost drivers are used
to capture the previously mentioned characteristics of the software
development that affect the effort required to complete the project [Boehm
2000].
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E
Equation 19. LM = A(ﬁj

000 | HEM ; » where

i=1

e M = effort in labour-months,
o A=2.94 (for COCOMO I1.2000),
e EM; = effort multiplier,

e [ =scale exponent and

e LOC= initial estimate of delivered source instructions (= lines of code,
LOCQ).

The equation resembles the CRM equation (see Equation 8, page 30).
The effort multipliers are basically the same as CRM effects but in
COCOMO the efforts corresponding to the effects are not measured
individually. An exponential equation suits curve fitting well, but the impacts
of the changes of the parameters are difficult to illustrate. For example, the
effort change due to use of a more skilled developer is straightforward in
multiplication-based CRM compared to COCOMO. The scale factors are
needed because COCOMO estimates projects, not tasks as CRM does.

The COCOMO-model has been extended to take reuse into account
[Balda 1990]. In this equation the LOC of unique code developed, code
developed for reuse, reused code and code for modified components are
calculated separately. The results of an experiment state that it takes 20 times
more effort to build software for reuse than it does to reuse it. Using this
relationship the equation can be further simplified.

COCOMO was extended later [Boehm 2000] to adapt to situations that
exist in modern software development. COCOMO 1I contains variations for
application composition, phase scheduling, rapid application development,
commercial-off-the-shelf product integration, quality estimation, productivity
estimation and risk assessment. The application composition model is
interesting from CRM's point of view, because it estimates projects which are
developed using the composition of components. The lines of code have been
replaced by application points, which count and classify screens and reports
from the forthcoming application. Reuse is calculated estimating the reuse
percentage.

The disadvantage of COCOMO is its connection to lines of code. Getting
the LOC count into the equation early enough is a problem which COCOMO
II solves by supporting different equations and sizing methods (such as
function points).

The reuse variation in the effort can be taken into account by extending
the equation. Hence, there are a lot of considerable variations which have a
separate equation in COCOMO II. This makes the method quite complex.
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The model includes a number of fixed parameters that have been derived
statistically from available finished projects. The similarity of these projects
and the projects which are to be estimated is then assumed.

COCOMO illustrates the relationship between lines of code and the
effort: it is exponential rather than linear (Equation 18, page 96), though the
exponents are small. This conforms to the intuitive and experimental view of
this area: if LOC counts are equal, it is more difficult to produce one large
program than several small ones. That is true even when there is one
developer in the project. When more developers are added the effort grows
exponentially [Brooks 1995].

5.4 Function points

Function point analysis, FPA, is a widely referred estimation method. It is a
synthetic measure of a program size that is often used in the early phases of a
project. The unadjusted function point count, UAFPA, is

Equation 20. UAFPA= 2 Z wij - Fy , where

L

e UAFPA is the number of unadjusted function points,
* wj is a complexity weight and
o F ij is the number of functions ij in the system.

Functions are classified into types such as inputs, outputs, inquiries,
logical files and external files. Each function type has its own complexity
weight for low, medium, and high complexity [McConnell 1996, Dreger
1992].

After the basic calculation is done, the result is multiplied by an
adjustment multiplier, which takes into account, for example, complex
processing, reusability, performance objectives and operational easiness. A
value from 0 to 5 is given according to how much influence that factor has on
the product. The sum of these is used in adjusting the original function point
count. The adjusted function point total is

Equation 21. AFPA =UAFPA-| 0.65+ % , Where

e AFPA is the adjusted function point total and
e fis an influence factor.

The form of FPA equations resembles the CRM equation (see Equation 8§,
page 30). Though FPA uses its own functions and CRM is based on
component and work breakdown structures, the functions in FPA can have
corresponding components in CRM. The FPA weights of the functions are
fixed and in CRM the efforts of the components are measured. CRM is not
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limited to a fixed set of functions because CRM can measure all the different
kinds of components. The FPA influence factors adjust the size of the
software while CRM includes these in the estimates of the components. CRM
focuses on the productivity, which FPA ignores.

Making function point analysis is based on strict rules which guide
decisions, for example, about what is an inquiry with low complexity, output
with high complexity or a strong factor of reusability. The success of
implementing function point counting has been considered poor without the
aid of a trained function points counter. This is because counting is not easily
repeatable or independent of the estimator who interprets the rules. To make
consistent counts you should have one person who does a lot of function
points counting as opposed to trying to make each member of the team a part-
time function points counter. Computer support for function point
calculations exists [Rask 1992].

Humphrey [Humphrey 1995] does not consider function points fully
satisfactory because they cannot be measured directly from the code or
specifications and because they are not sensitive to implementation decisions.
Development costs are typically sensitive to the implementation language, the
design style and the application domain. The estimation method should take
this into account.

Function points work well with a limited class of problems. Software that
“has no user interface or database, but does some complex computations or
generates graphic output” does not lend itself well to function point counting
[Keuffel 1994]. FPA was originally developed for large mainframe MIS
applications, and it needs some adaptation before use in object-oriented
software development [Goldberg 1995, Graham 1994]. Use case points are a
way of making the adaptation of function points to object-oriented paradigm.
From preliminary applications in web-based projects, it has been conjectured
that this could in fact be more reliable than FPA. The problem here is that the
waterfall process model must be used and use cases must be available right at
the requirements gathering phase. [Nageswaran 2001]. COSMIC-FFP is a
new FPA variation, which is targeted at early estimation [Meli 2000].
Functional User Requirements are represented by a set of functional
processes, each of which is a unique and ordered set of data movement sub-
processes. The unit of measurement is 1 data movement, referred to as 1
COSMIC Functional Size Unit, e.g. 1 Cggy. The users' functional

requirements are mapped into the generic COSMIC-FFP software model,
which simplifies the functionality to entries, exits, reads and writes, which are
then counted. This model has been developed for various levels of functional
abstraction, such as software layers, functional processes and data movement
sub-processes.

The greatest value of function point metrics is in its basic view. It is
based on the external view of the product - it counts what a user gets and
sees. It can therefore be used in assessing productivity, utilising the external
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view contrary to lines of code or other internal measures. While
implementation independence is an advantage in cross-language or cross-
system comparisons, it is a disadvantage in development cost estimates
[Humphrey 1995].

5.5 PROBE

As estimates are required before the development can begin and at a time
when little is known for sure about the product itself, the estimation methods
must use data from previously developed similar products. This suggests a
generalised estimation process [Humphrey 1995]. The first step is to make the
conceptual sketch of the new product and divide the product into parts. Then
a resembling part is looked for from a database which contains historical data
about the size of the historical parts. After that the estimates for the sizes of
the parts picked from the history database are summed up. Finally, the
estimates of the total size and the total effort are calculated.

It is difficult to directly judge how many LOC it will take to meet the
requirements. The need is for a proxy which relates a known product size to
the functions that the estimator can visualise and describe. Examples of
proxies are objects, screens, files, scripts or function points. The development
effort required for the proxy must have a demonstrably close relationship to
the effort required for developing the target of the estimation. As historical
data are needed for making the estimate, it is desirable to have large amounts
of data. This means that the data needs to have the facility to be automatically
collected. This is possible if the proxy is a physical, precisely defined entity.
The proxy is used to denote the size of the new product and it should be easy
to visualise at the requirement capture phase. The proxy should be
customisable to the needs of the using organisation so that differences in
resource usage and the products can be taken into account. This also means
that the proxy is sensitive to the implementation variations.

Many potential types of proxies exist. In large scale, it is possible to use
other projects as proxies. By classifying them by size a rough estimate can be
obtained. This is called the fuzzy-logic method [Putnam 1992]. In object-
oriented analysis application entities, business objects, and the system’s main
functions and use cases are early visible. This would suggest their usefulness
in being used as proxies. For example, in automobile registration, the
entities might include automobiles, owners, registrations, titles or insurance
policies.

The PROxy-Based-Estimating (PROBE) method uses classes as proxies
of lines of code. Here a C++ class is an example of a proxy. Proxies are
named and categorised in the conceptual design. They are categorised by
reuse category and type. The reuse categories are base product, base addition,
new object and reused object. The base product is the base program which is
to be enhanced. Its size is given in LOC. Added, modified and deleted LOCs
in the base program will be estimated. New proxies (objects) and reused



101

proxies are their own categories. LOCs from reused proxies and the base
program can be taken directly from the database. These LOCs are used in a
separate procedure which evaluates the reuse effort. In estimating new
proxies, the type of proxy, judgement of its relative size and the number of
methods are needed. The type classification is application area and
implementation method dependent. The relative size categories are very
small, small, medium, large and very large. Their sizes are calculated using
normal distribution such that 6.68 % of the methods are very small, 24.17 %
of the methods are small, 38.4 % of the methods are medium, 24.17 % of the
methods are large and 6.68 % of the methods are very large.

Table 23 shows as an example a history database which contains the
method sizes in LOC according to these categories.

Table 23. C++ proxy categories in LOC per method [Humphrey 1995].

Category Very small | Small Medium Large Very large
Calculation | 2.34 5.13 11.25 24.66 54.04
Data 2.60 4.79 8.84 16.31 30.09
I/0 9.01 12.06 16.15 21.62 28.93
Logic 7.55 10.98 15.98 23.25 33.83
Set-up 3.88 5.04 6.56 8.53 11.09
Text 3.75 8.00 17.07 36.41 77.66

Notice that a method consisting of 12 lines of code is considered very
large if it is a set-up method and small if it is an [/O-method. Thus proxy
category classification gives a better match to an intuitive definition of
relative size. Now, using a table lookup, an estimate for a new medium size
data class in C++, which consists of 8 methods, is 8 * 8.84 LOC = 114.9
LOC.

The PROBE method uses linear regression in order to take into account
the fact that programs are larger when finished than when originally
estimated. Using linear regression is appropriate because the estimated LOC
and actual total program LOC are correlated [Humphrey 1995]. The
estimated new and changed LOC (N) can now be calculated [Humphrey
1995] as

Equation 22. N =0+ 1-(BPA + NO +MO), where

e N =estimated new and changed LOC,
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B0 and B1 = regression coefficients (calculated using historical data),
BPA= base product additions LOC,

NO=new LOC and

MO= modified LOC.

The use of regression also gives a measure of the accuracy of the
estimate. The regression calculation can also produce a prediction interval of
the estimate.

The development time estimate can be obtained from the historical data
by
1. regression calculation using estimated LOC and total actual development

hours in previous projects,

2. regression calculation using actual LOC and total development hours or
3. using historical productivity in LOC per hour.

The first choice is the best. If enough data is not available the second or
third choice must be used.

Previously only new and modified objects were shown in calculations. In
practice it is not easy to collect the time usage of new objects, modified
objects and reused objects separately. The effort estimate can be calculated
using multiple regression coefficients for equation [Humphrey 1995]:

Equation23.  E=f0+f1- NO+ B2-RO+ B3- MO, where

e E = estimated effort (hours),

e B0, B1, B2, B3=regression coefficients,
e RO=reused LOC

e NO=new LOC and

e MO=modified LOC.

The disadvantage of PROBE is that it is based on lines of code. Not all
lines of code require the same amount of work. That is partially taken into
account in the multiple regression formula. The advantages of using hours
directly are also admitted. The idea of object proxy is used to estimate the
number of lines of code. Objects are not seen as parts of what the user gets
from the system. The PROBE method is thus more an internal measure than
an external measure that could be used in estimating productivity.
Calculations needed, especially in multiple regression, benefit from using a
proper tool because they are so long and tedious to perform.

The advantages of PROBE are to be found in its ideas of proxies, proxy
categories and statistical calculations. Studying the prerequisites for
statistical analysis prevents using the equations blindly in situations where
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previously developed programs do not resemble the one under estimation.
PROBE does not have intrinsic weights in the method itself as function point
analysis does. Classifying tables are calculated using the data from previous
product development projects. This prevents comparing the results world-
wide but it may lead to more reliable results in the organisations using it.

5.6 Classic complexity metrics

The term complexity is typically used in studying psychological or
computational complexity of programs. Lines of code are not considered
equal, some of them are more difficult to produce, modify and understand.
That difficulty is correlated to the effort required in the development. The
goal is to develop a complexity metric that can be defined unambiguously
using properties of the developed code that has a good correlation to the
effort.

The complexity can be divided into a large number of factors. The main
division is separation of inter-module and intra-module complexity. The
intra-module metrics consist of procedural complexity and semantic
complexity. Procedural complexity consists of style metrics, size metrics,
data structure metrics, control flow metrics, and internal cohesion metrics
[Henderson-Sellers 1996]. Semantic complexity is measured by discerning
semantic cohesion. In object-oriented programming semantic cohesion
evaluates whether an individual class is really an abstract data type in the
sense of being complete [Henderson-Sellers 1996, pages 56 and 119].

A simple measure of inter-module coupling is the fan-in/fan-out metric
[Henry 1981]. Informational fan-in refers to the number of locations from
which control is passed into the module (for example, calls to the module
being studied) and the number of global data [Henderson-Sellers 1996]. Fan-
out measures the number of other modules required plus the number of data
structures that are updated by the module being studied [Henderson-Sellers
1996].

These metrics have been widely utilised and were thoroughly tested by
their developers. These metrics show directly that encapsulated modules
which have a small fan-in and fan-out are less complex than modules which
are not encapsulated.

According to Halstead’s Software Science metrics [Halstead 1977],
counts of operators and operands and their sums can be used to estimate the
size of programs or algorithms. A token is an operator or an operand in a
programming language statement. The idea behind counting tokens instead of
lines of code is that a line which contains more tokens is more complex than a
line with fewer tokens.

The use of the graph theory in module metrics for procedural complexity
has also been very popular. McCabe’s [McCabe 1976] cyclomatic complexity
metric studies a program's control flow graphs as a measure of its complexity.
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It is “a metric based on graph theory that reflects the total number of paths
through a software module” [Poulin 1997, McCabe 1976].

Empirically LOC (see page 95) has been shown to be at least as good as
Halstead’s metrics and McCabe’s cyclomatic complexity metric [Henderson-
Sellers 1996]. The usability of McCabe’s metrics is not good in object-
oriented programming because the size and cyclomatic complexity of the
methods can be rather low, even though the complexity of the class or a
product is high [Kolewe 1993]. In object-oriented programming, for example
in C++, much of the explicit branching statements, that is if, while and case
statements, have been replaced by implicit branching due to inheritance and
event-driven programming. This means that cyclomatic complexity alone
cannot explain the complexity of an object-oriented program.

The major disadvantage of these approaches is that they rely on the code,
which does not exist at the beginning of the project.

5.7 Object-oriented software metrics

The emergence of object-oriented programming led to attempts to find new

ways to comprehend the produced code. Putkonen [Putkonen 1994] presented

a suite for object-oriented software metrics as an extension to the suite

developed by Chidamber et al. [Chidamber 1991]:

4. Weighted Methods Per Class is defined as a sum of the static complexities
of each method in the class. It measures the size and the difficulty in
order to understand the methods of the class.

. Depth of Inheritance Tree is defined as a total number of ancestors of a
given class. Every ancestor class must be understood in order to use a
method in a particular class since a method may be defined (or redefined)
in many classes in an inheritance tree.

. Number of children is defined as the number of immediate subclasses of
the class.

7. Class Coupling is defined as the number of use and association
relationships with the class and other classes. It measures the number of
classes we need to understand in order to use a particular class.

. Response for a Class is defined as a sum of the number of all the methods
of the class and the number of all the methods of other classes called by
the methods of the particular class.

. Lack of Method Cohesion is defined as the number of disjoint sets formed
by the intersection of the sets of instance variables used by each method
of the class. A high value in this metric indicates possible under-
abstraction where a class should be split into a number of more cohesive
classes.

10. Weighted Attributes Per Class is defined as the number of attributes of the

class, weighted by the number of parts of aggregate attributes.

9]

)
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These metrics are targeted at evaluating the complexity of an object-
oriented program. They can be calculated objectively if the program has
already been produced. Contrary to lines of code and other classic measures,
the calculation can also begin after the design phase when the classes and
their relationships are designed. Chidamber and Kemerer admit that their
work is based on theory, not on experience, and invite the reader to validate
and expand upon their work. For the most part, the measurements they
suggest can be collected automatically. Unfortunately, they present no cause-
and-effect relationship data to tie these metrics into attributes of greater
practical interest, such as maintainability or reusability [Keuffel 1995].

Lorenz and Kidd propose another suite of object-oriented software
metrics [Lorentz 1994]. Table 24 presents the project metrics that contain
measures of application and staffing size and scheduling.

Table 24. Project metrics [Lorentz 1994].

Metric Usage

Estimating Scheduling Staffing
Number of scenario scripts Applies
Number of key classes Recommended
Number of support classes Applies Applies Applies
Number of subsystems Applies Applies
Person-days-per-class Applies Recommended
Classes per developer Applies Recommended
Number of major iterations Applies
Number of contracts completed Recommended

It is useful to look in detail at a few of their features: Firstly, project
metrics, which are used for estimating, scheduling and staffing, are process
metrics. Secondly, the data are available at the time of using the metric.
Thirdly, it takes an iterative development model into account. Keuffel writes
about the disadvantages of these metrics: “Lorenz and Kidd offer so many
measurements (they provide eight project metrics and 30 design metrics) that
you hardly know where to begin. In some regards, this represents the shotgun
approach to measurement, in which you load up as many metrics as will fit in
the gun and blast away, hoping that at least one of the measurements will hit
something interesting” [Keuffel 1995].
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5.8 Task based estimation

Project design and management tools such as Microsoft Project support a
very simple but efficient, practical and reasonable way to make estimates.
The project is broken down into tasks, forming a structure called project
breakdown structure or work breakdown structure [Cantor 1998]. All the
work in the project is included in its tasks. In the project breakdown structure
each task can have efforts and tasks can again be broken down into lower
level tasks. An effort can be a part of only one upper level task so that a
project breakdown structure is a hierarchy. The work breakdown structure is
not a product structure. If a component is used several times in the product, it
is included once in the creation task of the component. In the assembly tasks
it is included each time it is used. The resources will be assigned to each
bottom level task. Resources, which are typically people doing the job and
also equipment or any item which is necessary to accomplish the task, can be
taken into account. Resources require time, money and hardware to
accomplish the task. Several resources can be assigned to each task. For
example, several programmers can be assigned to the same programming
task. Each programmer does a certain amount of work. The sum of these is
the total effort needed for the project. Figure 23 depicts the class diagram of
simple project management.

Project

|

Resource

Figure 23. Class diagram of simple project management.
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Table 25. Task based estimation.

Level Task name Effort (h)
1 Analysis

1.1 Definition of the use cases

1.1.1 Definition of the use case: customer identification 7
1.1.2 Definition of the use cases for customer accounts 12
1.1.3 Definition of the use cases for customer addresses 8
1.1.4 Definition of the use cases for administrative information 15
1.2 Definition of the class diagram

1.2.1 Definition of the class diagram of customer identification 12
1.2.2 Definition of the class diagram of customer accounts 8
1.2.3 Definition of the class diagram of customer addresses 13
1.24 Definition of the class diagram of administrative info 15
1.3 Quality assurance 25
SUM 115

Table 25 shows a simple example of a task based estimation table. It is
used to calculate the work required in making a part of an analysis phase of a
simple customer information system. The system consists of four use cases,
customer identification, customer accounts, customer addresses and
administrative information such as user privileges. The resource level is
summed up. Project management tools can automatically sum up thousands
of tasks and evaluate several schedule and staffing alternatives.

This estimation method is subjective because it relies on the expert
estimator. There are several factors that should be taken into account
[Metzger 1996]: these include the experience of the developers and the
customers in the project area and technical difficulties such as distributed
development and distributed installations. This method is the most accurate
project estimate available from about mid-design time to the rest of the
project [Symons 1991]. There are several variations of this method.
Sometimes minimum and maximum and probable values are estimated. There
can be one or several estimators. If the developers who accomplish the task
also make the estimate, a commitment to a promised estimate and schedule
can be obtained. Discussions about the reasoning of the effort of each task are
important because they can reveal the flaws in individual estimates. Finally,
initial estimates are put together.

Theoretically, mistakes in this method are due to wrong estimates of
known tasks or to missing tasks. The errors can sometimes be avoided if the
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estimator has adequate design and knows the goal of the project very well. If
the effort of a task is smaller than 40 hours, it is easier to visualise and thus to
estimate. Missing tasks may be the result of errors during the estimation or
tasks that became desirable after some amount of work has already been
done. Controlling the emergence of new features is one of the most important
tasks of project management. It is a common practice to add dummy tasks
into the project plan for new unanticipated features, which will be added to
the outcome of the project (see Table 37, page 170).

An advantage of using this estimation method is that additional work is
not needed. Most of the work it needs must be done anyway in making the
project plan. The project plan enumerates the tasks and assigns resources and
timetables to them. Using another estimation method would require
additional, unnecessary work, for example, counting the function points.

Task based estimation is prone to an overly optimistic result. As the
schedule is shown to the customer there is pressure to bargain over it. This
easily leads to the removal of politically undesirable tasks. It is not easy to
introduce developer training, or to take risks such as sicknesses and staff
turnover into account. Similarly, budgeting work to unknown tasks is not
usually something that is carried out. There is pressure to minimise the work
in order to make the competitive position of a software supplier better or to
get the development money from upper management. This has negative
effects on the estimate because the estimation method relies on human
estimators. The quest for objective ways to make estimates is thus well
founded. A solution to the pressure to bargain is to have separate budgets,
internal ones for the project team and external ones for the customer.

As there is no explicit connection from the task to the product to be
developed, this method cannot be used to estimate productivity. In the
implementation phase it is normally implicitly done. For example, the name
of the task includes the name of the window to be programmed. In future
estimates the expert intuitively uses that window and the effort it required as
a proxy to a future similar window. The lack of product information makes
the assessments of the project difficult because reorganisations of work are
usual in software projects and tasks can change, even if the product remains
the same.

As the tasks need to be known before they can be estimated, projects are
typically divided into two sub-projects. The definition project defines the
product and the implementation project implements it. The estimate of the
implementation project is then based on an adequate design of the product.
Task based estimation can easily be used in analysis projects. Task based
estimation is also well suited to iterative and incremental development
because it is very flexible.

Task based estimation is a process metric, not a product metric. Most of
the scientific work in the software metrics area is about product metrics.
Despite its weaknesses, task based estimation is very popular in practice,
(Table 40, page 172).
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5.9 New metrics research

The trends in software metrics are related to the trends in software
engineering because metrics is needed to manage the engineering. This
chapter considers the influence of component-based development,
commercial off-the-shelf-products (COTS) and extreme programming on
software metrics.

The business, engineering, design, infrastructure, management and
technological aspects of component-based software engineering have been
developed [Heineman 2001]. Poulin's metrics for Software Components are
schedule, lines of code per component, labour hours, component
classification, costs, change requests and defects [Poulin 2001]. His primary
reuse metric is reuse percentage calculated as reused lines of code/ total lines
of code. Smith uses intensity, concurrency and fragmentation of the tasks,
component project experience, programmer project experience and team size
as parameters in effort estimation for component-based software development
[Smith 1997]. Later Smith used task assignment patterns to improve the effort
estimates [Smith 2001]. Briand and Wust showed that simple size measures,
which can be obtained from class diagrams or code, explain most of the effort
variance. More sophisticated coupling measures do not bring substantial
gains in effort estimation accuracy [Briand 2001].

Measurements are needed to choose between COTS-products for a
certain application. The requirements of the application and the study of the
candidate COTS-solutions are developed in parallel [Solberg 2001]. The
effort of constructing an application based on a COTS-product is the sum of
integration efforts of its components required in the final application. This
effort is one criterion in selecting the COTS-product. Ochs et. al. propose a
Goal-Question-Metrics (GQM) based COTS-assessment and selection
method [Ochs 2001]. Quality and risk concerns currently limit the application
of COTS-based system design to noncritical applications. Sedigh-Ali
proposes the use of software metrics to guide quality and risk management
[Sedigh-Ali 2002].

Agile methods such as extreme programming (XP) are emerging software
engineering processes which target getting the results earlier and investing
later [Beck 2000]. It has short iterations and release cycles. XP always keeps
the system in prime condition by continuous integration, writing tests early
and running them automatically. Refactoring is a process for improving the
design of existing code [Fowler 2000], which is needed to flatten the
exponential rise in the cost of changing software over time. The management
of extreme programming requires continuous measurements that control cost,
time, quality and scope.

Industrial experiences show that cost-benefit analysis and feedback
sessions are important in software process improvement programs [Solingen
2001]. There are several tools for automated support for the GQM
measurement process [Lavazza 2000], [Komi-Sirvio 2001]. Measurement
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based continuous assessment of software engineering processes is also
feasible and useful [Jarvinen 2000]. The same applies to using measurement
to optimise the software process at the individual level [Coleman 2000].

General studies on organisational behaviour can be applied to software
development processes. However, specific research is more relevant
[Robbins 1998]. There are techniques and models for understanding human
factors which are not as unpredictable as we would like to think [Oosting
2000]. Reo has used balanced IT scorecards to measure the satisfaction and
competence of an organisation's personnel [Reo 2000]. Meli has defined
formulas to take the changes in the requirements into account in effort
estimates by using functional measurements of Change Requests [Meli 2001].
The identification of risks, analysing them, using statistics to estimate them
and seeking improvement potential belong to the risk driven effort estimation
method of Schmietendorf et. al. [Schmietendorf 2001]. Toffolon proposes a
framework where each development activity is composed of two separately
tracked parts: the production task and co-ordination task [Toffolon 2000].
The previous results relating to CRM effects are specific, but do not conflict
with the results of this study either.

Fenton's foundations in software measurements are often used [Fenton
1997], but systematic capture of historical data for effort estimation is still a
common problem. Quite a lot of accurate, consistent and complete data is
needed [Shepperd 2001]. The value of the collected data may also diminish
over time due to advances in development technology or organisational
changes. It is possible to pool or reuse data across different measurement
environments, but sophisticated statistical procedures are still required for
data mining. Maxwell presents a data analysis methodology for extracting
formulas of development effort [Maxwell 2002].

5.10 Summary

Effort estimation is needed in a feasibility study, calculation of offers,
scheduling and process improvement. Lines of code, classic complexity
metrics, COCOMO and function points require information that is not
available at the time the estimation is accomplished. Their extended versions
(for example, the application point model of COCOMO II) are better. Task
based estimation, PROBE, some object-oriented metrics and CRM are able to
make use of gradual designs of the forthcoming product. This is required in
modern iterative process models. Task based estimation and CRM are suited
to iterative and incremental development. There are also variations of the
other metrics which are targeted to those methods.

Table 26 presents a qualitative comparison of CRM to the basic variants
of other software metrics. COCOMO, CRM and Task based estimation are
targeted to effort estimation and the others measure the size of software. Only
CRM and object oriented measurement suites use multidimensional size. FTP
and application points of COCOMO 1I transform the size measures into a
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one-dimensional number. The user of the estimation method (estimator)
defines the units of size (components) in CRM, PROBE and task based
estimation.

Table 26. CRM compared to other software metrics.

CRM LOC PROB FPA TASK OBJEC | COCO

E T MO

Size N 1 1 1 0/N N 1

dimensions

Size unit User Rules User Rules User Rules Rules

definition

Size Design | Impl. Design | Design [ Design | Design | Impl.

availability

Project Yes No Yes No No No No

change

Team Yes No No No Yes No No

Risk Yes No No No Yes No No

Process Yes No Yes No Yes No Yes

Skill Yes No Yes Yes Yes No Yes

Motivation Yes No No No Yes No No

Incremental Yes No No No Yes Yes No

& iterative

Parameters History | Method | History | Method | User Meth. Method

from

Task Yes No No No Yes No No

assignments

As task based estimation relies on a subjective expert estimator it is often
ignored in computer science. On the other hand, measurement systems that
use well-defined size metrics use a rough estimation of the project and human
factors. Only task based estimation and CRM explicitly handle the effect of
staffing the project. COCOMO has cost drivers for the staff, but handles them
at a high level. It is important to estimate individual tasks because
productivity and labour cost often vary from person to person. The other
methods rely on statistical averages of these factors, often using them as
constants of the method. As CRM and PROBE count physical, precisely
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defined proxies of the product, they avoid a time consuming and subjective
mapping phase, which is needed in function point analysis.

The measurement methods depend on the application. Lines of code are
not available in commercial-off-the-shelf products and reusable components
and the calculation rules of function points are targeted to applications which
contain databases and user interfaces. The extensions of the old methods take
reuse and other modern techniques (for example, component-based
development) into account, but the paradigm has not been changed. For
example, COCOMO I has extensions to commercial-off-the-shelf products,
rapid development, component-based development, phase scheduling and risk
assessment. CRM is planned for component-based development, but it can be
adapted to measure traditional development. As project tracking gives CRM a
lot of timely feedback, which is used to adjust the estimates of the successive
phases of the project, its parameters can measure the circumstances of the
project better than the parameters of other methods, which are at worst
constants of the method.

The lists of factors of the effort in the estimation methods presented in
this study resemble each other. CRM emphasises the project change and
motivation more than the others do and it places the product quality factors
into the estimates of the component, instead of in the general parameters.
CRM has flexible weights of the factors and uses extensive feedback from
actualised projects to adapt them. An expert estimator can use any relevant
factor, but statistical data is often missing.

CRM and task based estimation estimate the effort directly without a
product size metric. It is easier to measure productivity if it is calculated by
dividing the effort by product size. However, productivity is not uniformly
distributed. The effort needed to handle different types of components varies
because they require, for example, different skills and tools. Measuring the
productivity at a component level can guide process improvements more
accurately.
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6 Improving component-based development

6.1 Introduction

The research question of the forthcoming chapters is how to produce more
reusable software. At the beginning the approach is conceptual. The criteria
for reusability are found from reuse metrics. The use of metrics is necessary
because it is the way in which the reusability of the components can be
scaled. The next step is to develop a strategy for improved reusability.
Adaptability is especially important because it leads to the mechanisms by
which it becomes possible to produce highly reusable software. After the
concepts are analysed, the research continues by using the constructive
approach. The result is a set of means for the construction of reusable
components. Finally, the problems in current programming languages are
presented with the implications for their solutions.

The most important enablers of reuse are the adaptability of the
components and the organisational support of reuse. As there are a number of
studies focusing on process improvement [Jacobson 1997], the following
chapters will focus on the study of adaptability. In this chapter CRM will be
used in finding ideas that can be used to improve component-based
development. One of the ideas, adaptability, will be extended in the
successive chapters.

6.2 Criteria of reusability

6.2.1 Measuring the reuse process

In this chapter the idea of the reuse process at the developer level is used to

get a better understanding of reusability. The reuse process consists of four

major steps [Goldberg 1995, pp. 223-246]:

11.Define reuse.

12.Set up a process of populating a library of reusable assets (purchase,
construction).

13.Set up a process of sharing reusable assets.

14.Set up a process of maintaining reusable assets.

The process of sharing reusable assets is interesting because it is used in
developing applications from components. It involves three steps [Goldberg
1995, pp. 241-242]:
15.Communicate the availability of reusable assets.
16.Locate and retrieve reusable assets.
17.Understand and use reusable assets.

Though reusability includes the suitability of the components to each of
these phases, finding the components, knowing what they do, and knowing
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how to reuse them are the most frequent reuse activities [Tracz 1995, page
93]. If we choose money as the unit of reusability, the total cost benefit of
reuse is identical to reusability. In equation form

Equation 24.R=n- (cr —cf —cu— ca)— cp, where

e R=reusability,

e 1= number of reuses,

e c¢f= cost to find,

e cu= cost to understand,

e ca= cost to apply,

e cr=cost to reproduce and

e cp=.cost to produce or purchase.

Poulin represented a more detailed cost benefit analysis [Poulin 1997,
pages 77-83], which also takes indirect consequences of reuse into the
equation. The effort can be used instead of prices without producing a large
error. In the case of application frameworks, business objects and
parameterised applications the licence costs are large, but they present the
largest part of the functionality of the final application.

The cost of reuse is also a central factor in the CRM model. It can be
found from the efforts of the components, which include the efforts of
finding, understanding and applying the component (chapter 2.7). The
baseline effort is calculated by using the number of reuses and the effort of
each component (see Equation 5, page 28). The baseline effort is adjusted by
the skill effect (cost to understand) and process effect (cost to find). The risk
effect is used to assess the trustworthiness of the component.

In CRM, the productivity of reusing a component can be assessed
because the effort related to the component is calculated. Productivity in
producing an average component is useful if the composition of the products
remains the same. Using an analogy from function-points, the average
component could be called the component-point. The following study
minimises the effort, which satisfies a set of requirements. It does not
maximise the productivity of binding standard units of software together.

The CRM-equations (Equation 9 - Equation 5; pages 31 - 28) show that
there are several options for minimising the effort of a project. As a
mathematical optimisation would require actual data, this study is only a
descriptive one.

The functional requirements of an application are expressed as use cases
and the solution is a component structure. There is a group of alternative
personal tasks which lead to the required solution. The optimal choice has the
minimum effort. The effort of a personal task in accomplishing the solution
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varies because there are several construction alternatives. The minimum
effort is obtained when a small number of components, which have a small
reuse effort, satisfy the requirements. Mathematically

Equation 25. E=min( ch-mj-sj-tj-rj-fj-pc-Ec ], where

7\ cec))

e = minimum effort to satisfy the requirements,

e ;= apersonal task choice to create a component structure, which fulfils the
requirements (here the task can be quite large),

e (@ = set of components (=tracking set), which are developed at least
partly during the personal task j,

e n.=number of (sub)components c in C(j),

* m;= personal motivation effect coefficient of the person in the task j,
* s~ personal skill effect coefficient of the person in the task /,

* 1= team effect coefficient of the task /,

* 1= risk effect coefficient of the task j,

* /= project change effect coefficient of the task j,

e ¢= a component, which belongs to C(j),

e p=process effect coefficient of component ¢ and

e [E = the effort of the component ¢ from the project repository (hours).

The minimum can be found by calculating the efforts of the alternatives
and selecting the optimal one. Table 27 shows the use of Equation 25 in
finding the best choice. In this example, the requirements can be fulfilled by
reusing a group of components A and B or by constructing them again from a
group of components, C and D. As the effort of the first choice is 19.5 hours
and the latter 32.4 hours, choice 1 gives the minimum effort for the task.
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Table 27. Component selection.

Choice 1 Choice 2
Component A B (o} D
Number 2 3 5 8
Effort 2h 3h 2h 1h
Product of correction 1.5 1.5 1.8 1.8
coefficients
Sum 19.5h 32.4h

One requirement for reuse is that the reuse effort of a component is
smaller than the effort of constructing it. CRM stores the construction and the
reuse effort into the project repository. If the reuse effort is much smaller than
the construction effort, the minimum effort will be obtained when the number
of reuses is maximised. In conclusion, the components should be easily
adaptable to different situations and they should be a solution to a large
number of customer requirements.

The process effect coefficients are used to correct the efforts in the
project repository in order for them to be applicable in the forthcoming
project. Tools and methods can be used to decrease the reuse effort of a
component. If the set of components is small, specialised tools (for example
program and documentation generators) can be developed to support their
reuse. The process of finding and purchasing a reusable component is
significantly more laborious than the process of finding one from a local
object gallery.

The familiarity with the set of components of the forthcoming application
is the key to minimising the effort. The project change effect is mainly
concerned with the change of requirements, but familiar components can help
in inventing a good, stable solution that meets the requirements. Common and
familiar components decrease the risks. Components which have been reused
many times have a smaller technological risk than newly constructed
components. Thorough testing and reviews decrease risks and thus increase
trustworthiness. A smaller effort is needed for teamwork if components of the
solution and their interfaces have already been stabilised. The skill in reusing
a common set of components will increase during a project, but the
motivation is at its highest at the beginning of the project. This is because the
development of the application is at its most challenging when the application
is constructed from scratch.
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As in CRM the total effort is the product of the baseline effort and
correction coefficients, which are normally larger than one, decreasing the
baseline effort will decrease the total effort significantly.

Due to the fact that large components contain a larger number of features
and their interfaces than small components, the efforts of reusing and
reproducing them are greater but the benefits are also greater.

6.2.2 Conclusion

The criteria for reusability are understandability, ease to find, adaptability
and trustworthiness. In CRM terms, understandability increases the skill level
and adaptability. Ease to find decreases the baseline effort and decreases the
process effort. Trustworthiness decreases the risk level.

6.3 Strategy for developing reusable software

6.3.1 Ease of finding

The property "easy to find", is not primarily a property of the component
itself, but mostly the property of the reuse library and the reuse organisation.
One property of the component which has an impact on reusability is its
proper classification. A properly classified component can be found from the
place where its existence is expected. In order to assist the potential user in
searches, keywords can be attached to components. Classification was one of
the qualification criteria in the REBOOT project [Poulin 1997, pages 129-
130]. In Smalltalk type browsers, the components can be found through
inheritance references and from cross-reference lists. Integrated development
environments and configuration management tools contain facilities that
assist the component search. They all require a component to contain proper
keywords or to be located in a logical place. Search engines can perform a
search of commercial components from the Internet. A search engine finds
the seller’s web site using the keywords which the potential buyer gives to the
engine.

6.3.2 Trustworthiness

The confidence factor describes the developer’s confidence in successful
reuse. If the source code is available and the developer understands it readily,
this can bring enough confidence for reuse. Without the source code the
developer will assess the documentation and its understandability. The user
can use the data about previous cases of reusing the component to get a view
of the component. Poor error tolerance and errors shown in the first tests will
decrease confidence. Before large-scale reuse, the components should be
tested in pilot projects. This will increase observed reliability. Commercial
component manufacturers will tend to use their reputation as a means of
increasing confidence in their components.
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6.3.3  Understandability

Understandability measures the ability of a developer to understand the
syntax and semantics of the component. It is a property of a component but it
depends largely on the individual who is assumed to be able to understand it.
When we consider the understandability of a component, increasing
familiarity is the best way to increase understandability. A component is
familiar if the developer has used it one or more times. The Cognitive
Complexity model estimates that the effort of reusing the component will be
two-thirds of the effort of its previous reuse [Cant 1994], which means that
using the same components repeatedly will be effective. Familiarity is a
factor of the skill effect in CRM.

The effort of understanding is basically done by studying the semantics
and the documentation. The understanding of a chunk is based on the mental
models which the reuser, studying the component, already has. If the
abstraction of the component is already known, it can be understood readily.
If this is not the case, all unknown concepts must be studied. This includes
tracing them to their origins. Here the reuser is studying and tracing back and
forth until every necessary part of the component is understood. The
properties of the component which decrease the effort are thorough
documentation, including self-documenting code and in-line comments. A
component with a smaller size, simple interfaces, fewer parameters, high
cohesion and low coupling is likely to be easier to understand.

One part of understandability is the pure volume of diagrams, methods
and processes which are required in the documentation of the component.
Thus, it is important to avoid overlapping information and too many details.
Analysis paralysis is a situation in which a development project cannot end
the analysis phase because there are always inconsistencies to correct and
new ideas to include [Basset 1997, page 207].

6.3.4 Adaptability

Adaptability is the ability of the component to adapt to different reuse
situations. Basically the question of code reuse and adaptability centres on
how to use the functionality of a chunk of code without copying and changing
it slightly. The copy and change strategy will lead to large programs that
mostly contain the same code. It is very difficult to maintain the integrity of
the copy and the original code.

Several aspects of adaptability must be considered. Firstly, a component
must be portable enough to be used in its new environment. Reuse of a
component is more likely if it is independent of the environment and it is
written using the same programming language as the reusing application.
Modularity is also a very important property. The component which has a
large number of connections cannot be reused because it cannot be
disconnected from its current use. Generality is the property of object-
orientation which has almost made it a synonym of reuse. Increased
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generality means that a component can be used (without change) in more
varying situations than before. For example, consider reusing a sorting
algorithm which can only handle arrays of integers. A more general sorting
algorithm, which can handle any kinds of collections, is preferable.

Modularity is a very important property. Fan-out and fan-in-metrics can
be used to measure it by counting the dependencies between the modules.
The called modules and their callers and common variables create
dependencies between the modules. A package contains several components
which are deployed together. Packaging is essential for successful reuse
because proper packages will generate confidence in the reuse of the
component. The package includes good documentation and it is easy to locate
reusable assets in it. The packages of multiple components can be organised
as component libraries or frameworks.

In the next example, one typical chunk of code is presented (Figure 24)
and its reusability is evaluated with reference to both black box reuse and
white box reuse. The programming language is Java, though the syntax is not
important here. The method used in the example could have been taken
directly from an application where such functionality is needed. The semantic
mismatch of abstractions is in special focus.

public class AddressBook {
// member variable m_addressBook is a collection of bookItems
// each bookItem contains a Full Name and an address

BookItemCollection m_ addressBook;

public Address getAddress ( FullName parameterName)
//get the address of a person whose fullname is given as a
parameter.

//However only surname is used in the search

BookItem auxItem;

do {
auxItem = this.getNextItem () ;
if ( auxItem.compare (parameterName.surnameOf ()))
{ break; }
} ( while ! this.endOfItems() );

return auxItem.addressOf () ;

}

Figure 24. Question of adaptability.

Here the reusability of the method getAddress in Figure 24 is considered.
Suppose that the customers’ addresses are available using the business object
class Customer and that the customer’s names can be taken from a user
interface class. The number of customers is assumed to be small to keep the
reuse of the inefficient search algorithm appropriate. In white-box reuse all
the code is available and changing the code is permitted. What prevents us
from making a copy of it and pasting the chunk into another place? Clearly,
there is not enough information to make precise conclusions. The purpose of
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this method is to perform a search from an address book using a surname and
return the address. In black box reuse only the interface is used. The call is of
the form address=getAddress (parameterName). There are several problems
in the reuse:

The method getAddress is a method of an address book object. That
object must be within the scope of a possible user. The same also applies
to the class of the parameter, FullName, and to the class of the return
value, Address. As an object-oriented programming language is used, their
descendants can also be used. It is possible to construct the parameter
object parameterName and set a value to it because the class FullName is
available. The values in the address book object must be stored
somewhere before the making a search becomes reasonable.

The knowledge of member variable m_addressBook and its item class
Bookltem can be obtained by tracing them to their class definitions. The
member functions of these classes can also be read from their class
definitions. This knowledge is not necessarily public if it does not belong
to the interface, which is available in a black box reuse.

Without looking at the source code or documentation it is not clear that
the method in question uses getNextltem and endOfltems methods.

If the reuse is put into practice using a descendant class, it is essential that
these methods are used for the same purpose.

The member functions from Bookltem class, compare and addressOf that
are used here, should also be known if this class has been overridden.
Fortunately, compile time errors are prevented if it is not possible to
remove member functions in an inheritance.

The member function surnameOf in parameter class FullName is also
interesting because then its name, surnameOf, reveals that only surname is
used as a parameter to function Compare.

The loop in the method assumes that the collection is not empty.

Nothing in the code reveals whether any side effects exist. It is not good
practice to change the value of the object referenced by parameterName
during such a call. Keyword final, const in C++, should be used to make
sure that it is the case. Confidence is a substantial promoter of reuse as
was deduced earlier.

If effective code is needed and the address book has a large number of
items, the search algorithm is an essential property of the method. If the
only search function is getNextltem, it is clear that black box reuse is not
reasonable if the address book is large. If a hash algorithm is also available
it is not clear that it is also used in the member function getAddress.

In a black box reuse, it is not possible to find out what the developer of
this code had in his/her mind. The cues from variable names and the
substantial amount of tracing and studying are used yet the cues are still
not necessarily valid.
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e It is not clear that the cost of reuse is smaller than that of rewrite. Reuse
based on scavenging old code is typically possible only for the original
developer [Carroll 1995, page 2].

e The addressBook class has no conceptual connection to the customer class
though they both contain names and addresses. A customer is not a special
case of an address Book. As the class AddressBook is a singleton class
[Gamma 1995, pp. 127-134], it is not a good idea to attach it to the
customer class as a member variable. The name of the member function
SurnameOf should also be changed to the new use. Depending on the
solution, the BookItem class must be rewritten. It could be connected to
class Customer.

e The customer object already contains a customer name and address.

e The architecture creates another complication in the problem. The
previous Java-application could be distributed to a browser client, a www-
server and a database server. Then the architectural mismatch [Garlan
1995] would make the reuse even more difficult.

The lesson to be learnt from the reuse example is that it is difficult to get
anything useful from the old code if the context changes considerably, even
though the general purpose of the code remains the same. It is important to
notice the objections against possible reuse. Firstly, taxonomy problems,
which are implemented by inheritance, prevent reuse. Secondly, the misuse of
concepts is a considerable reuse inhibitor. Even if multiple inheritance were
used, a reasonable class diagram would not result. If the rewrite were not as
easy as in this example, various kinds of implementation inheritance solutions
would be introduced. A common factor in these solutions is that the pureness
of object taxonomy is sacrificed. This will lead to problems later because
there is no longer any justification for placing trust in conformance between
business concepts and concepts used in the application.

It is difficult to achieve a fully generic solution to the problem. One
component-based solution might be to create a component which separates
peculiarities of the address book handling from the other parts of the
application (see Figure 25). The component would contain the classes
StorageCollection, AddressBook, Bookltem, BookItemCollection, FullName
and Address. The public interfaces of the package would provide higher-level
support for address book handling and nothing more. The search algorithm
belongs to utility packages such as java.util, which already have support for
handling collections of objects and their enumeration [Borland 1999]. In a
pure component-based solution the contract signature would provide more
information about the preconditions, post-conditions, invariants and
parameters. However, they are restrictive, which decreases adaptability and
increases trustworthiness. Notice also that Java supports assertions only for
this purpose.
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public class StorageCollection {
// member variable m_collection is a collection of generic items

Vector m _collection;

Public Address searchlItem (String parameter) {

// get the first object from the collection in which

// the compare method of the item object returns true when
// the parameters match

Address auxItem; // temporary storage for an item

For (int i=0; i1 < m_collection.size() ;i++)
{ auxItem = this.m collection.elementAt (i) ;
if ( auxItem.compare (parameter))
{ break; }

}i

return auxItem; }

public class AddressBook extends StorageCollection ({

// note! The pecularities of AddressBook handling are placed
here

public Address getAddress (FullName parameterName)

{

Address auxAddress=super.searchItem(parameterName.surnameOf () ;
return auxAddress.addressOf () ;

}

Figure 25. A more adaptable code.

The conclusion is not that reuse is impossible. On the contrary, these
problems can be avoided by changing semantically mismatched abstractions.
A generic algorithm for a search from a collection was needed. It was placed
in a separate base class, which had semantically fewer connections to the
possible reuse clients. A large re-engineering of the class structure was done.
The lesson remains the same: a considerable additional effort is needed to
produce reusable components.

6.3.5 Combinations

The ability to establish combinations is a very important property of a
reusable component. Let us consider why a list box component is so useful. A
list box component is a chunk of code that draws a list box in a window. This
kind of component is available in all popular GUI programming
environments.

The application program adds text items to a list box. The list box is
shown in a window and a user selects one or more items from the list box.
The application program acts based on the selection event of the user. Code
can be attached to list box events, such as event "got-focus", thereby making
the code available in the other parts of the application program. The outlook
of the list box can also be modified at run time.
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A list box is highly reusable because it is generic. It can be used in any
application. It produces a well-defined contribution to the application yet it is
dependent on few other components.

A generic component can be coupled with many other components.

Figure 26 shows an example of a component: a list box. The lines
describe the data flow. The projects are fetched using a query of projects, and
their names are added to the list box in a project maintenance window. In a
window for handling tasks a list box is filled with task names using a query of
tasks of a selected project. In the person window, the names of the staff are
fetched using a query of persons and inserted to the list box of persons. It is
important to notice the ability of a list box to connect to a very large number
of other components.

Project Controller Project
window programs —

Person List box Person
window -

Task Task
window

VIEW CONTROLLER MODEL

(Data source)

Figure 26. List box in a project management application.

Part of the reusability of a list box comes from generic interfaces. The
message parameters are strings and integers which do not restrict the
usability. Any component can send a message of a type myListBox.addItem (
textStringToAdd ). If the interface were in the form myListBox.addItem (
queryToGiveTheltem), the list box could only be used with specific queries.
In the same way it is essential that a window is a container which can hold
any types of objects. It is not restricted to just list boxes, combo boxes and
grids can also be used. The only restriction is that the objects in a window
must be able to support the responsibilities of a window control. In practice
they are inherited from the control class.

Generic interfaces make the combining of components easier. The list
box can be used with any data source and in any window. Though the
component itself is a standard component, there are millions of ways of using
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it. In some environments it is possible to make specialised list boxes: a
project list box, a task list box and a person name list box. This could be
useful if each of them can be used on many occasions and there is a large
amount of new code in each specialisation. It should also be noticed that the
specialisation should make a special kind of list box. It is not appropriate to
place the code to fetch task data in the list box class. Applying inheritance
when no new code is introduced is known as taxomania [Meyer 1997, pp.
820-821].

In a three-tiered architecture the business objects are used to couple the
user interfaces, business logic and the data storage. They fix the combinations
used in a specific business case. It should be possible to change the user
interface classes and data storage classes without major maintenance work in
the business classes. It is possible if the details of the user interface and
storage management are properly hidden from the business objects.

In some cases using static combinations does not produce the required
degree of flexibility. The requirement of recompilation each time means that
any combination changes will result in too much maintenance and installation
work. In distributed object environments it is possible to make the matching
of components together at run time. The performance overhead can
sometimes be tolerated.

The encapsulation of the code only within abstract data types (and their
classes) can lead to an explosion in the number of classes and methods.
Suppose, for example, that in an electronic data interchange (EDI) application
a supplier’s customers had different product ordering formats though only the
supplier’s generic order processes should have been adapted to each format.
There were, for example, 100 data formats and 10 processes. The traditional
object-oriented solution would be 100 classes which contain a method for
each process. The total number of methods is 1000. Any change in the
process must be made in all of these 100 classes. 10 classes for each process
or one class which contains methods for all 10 processes would be a better
solution. Each method must be capable of handling every data format. If
there is a method for adapting the customer’s ordering format to the
supplier’s generic format, only 100 format-specific methods and 10 methods
to support the processes are required, therefore only 110 methods are
required. A solution, which is based on a similar idea, has been successfully
implemented in Noma Industries [Bassett 1997, pp. 188-195].

6.3.6 Conclusions

In summary, the strategy for increasing reuse is to use clear and generic
abstractions to develop cohesive components which easily form a large
number of useful combinations when software products are assembled.
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6.4 Means for reuse

6.4.1 Architectures and patterns

The architecture of an application describes the most important
components within the application. Interfaces are used to reduce
dependencies between the components. The overall view of the architecture
can be seen, for example, as layered [Jacobson 1997, pp. 170-212]. Three-
tiered and four-tiered architectures are common, though other kinds of
architectures exist. A well-defined object-oriented architecture consists of
[Booch 1996, page 43] a set of classes, typically organised into multiple
hierarchies and a set of collaborations between those classes. Compliance
with the common architectures increases reusability because the possibilities
of architectural mismatch decreases.

Patterns are solutions to common design problems [Gamma 1995]. As the
use of some of them increases reusability of the created components, a few
patterns are described in this chapter.

The use of architectures and patterns increases the understandability of
the components because the developers are familiar with the common
solutions that they promote.

6.4.2 Interfaces

Interfaces are used to reduce complexity. The goal is to reduce coupling and
increase cohesion. In reuse, it is essential that a component can be removed
from its original context and used in another.

Client clpsses
SV Ay =

\ /

Internal implementation

Figure 27. A facade design pattern [Gamma 1995, pp. 185-193].

A facade design pattern is a simple interface. Figure 27 is an example of
the use of the facade where the coupling between the client classes and the
component classes has decreased. The application programmer needs less
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tracing to find the services of the subsystem. He/she does not need to
understand the implementation issues. This is another advantage because the
implementation can be changed when the interface remains the same. UML
has new diagrams for supporting the use of interfaces, packages and
components. Jacobson proposes using a facade and a package in reusable
software components [Jacobson 1997, page 93]. A distributed component
separation layer can be partly based on the fagade pattern [Herzum 2000]

An interface introduces one additional level of indirection between the
components. Adding levels of indirection gives flexibility but it has a
performance penalty. Orfali has presented two quotations of generalisations
related to this area [Orfali 1996, page 505]:

Maurice Wilkes: There is no problem in computer
programming that cannot be solved by an added level
of indirection.

Jim Gray: There is no performance problem that cannot
be solved by eliminating a level of indirection.

The interfaces of the components remain more separated from the
implementation than object-oriented interfaces. A special modelling language
defines the interface and the execution environment provides a number of
services, such as security and distribution to the applications [Orfali 1996].
The interface defines contracts, interface definitions (called, offered,
hardware, database), preconditions, postconditions and invariants.

6.4.3 Inheritance

Inheritance, aggregation and message sending are the only original object-
oriented ways of adapting code to a new context [Rumbaugh 1991]. In
inheritance the new context should conceptually specialise the original
context. For example, an address book is a special case of a collection
because it contains only names and addresses. Specialisation is an additive
process where new data members and member functions can be added. It is
also possible to change the member functions of the original by overriding
them.

It is possible to use member functions which have the same names in
different classes. The decision relating to which of them is to be used can be
deferred to run-time. It is also possible to create a class which is a
specialisation of two or more classes.

The advantages of inheritance are quite well known. Code and data from
the parent class can be reused in the descendant class. Only the changes need
to be handled. Inheritance hierarchies using business concepts will ease
understanding of application concepts. The use of abstract data types will
increase the level of abstraction. The ease of understanding and reuse will
increase the productivity.

The problems of inheritance are:
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Dynamic binding is “the guarantee that every execution of an operation
will select the correct version of the operation, based on the type of the
operation’s target” [Meyer 1997,page 1195]. Dynamic typing has a
serious drawback in that it is not known before a particular run if every
method invocation will be solved at all. If there is not a method that
corresponds to the invocation, an error message “message not understood”
is given. That is unacceptable in mission critical applications.

The second problem comes from the generalisation and specialisation
structures. Reality cannot be modelled using a single inheritance
taxonomy. A bird is a flying animal. An ostrich is a bird, but ostriches do
not fly. For example, if a customer is an external agent and an employee is
an internal agent, an object, which is both the customer and the employee,
cannot be defined in a single inheritance taxonomy [Bassett 1997, page
144]. One solution to the latter would be to duplicate the properties of the
classes or to fragment them into clusters of smaller classes. The multiple
inheritance solution requires that conflicts between the duplicate
properties are solved. Both the customer and the employee might have a
name and address. Having two copies of these, as object attributes, would
not be a good solution because it reduces cohesion and manageability.

A problem previously mentioned was the inability to remove member
variables and member functions from the inherited classes. That inability
guarantees that the invocations of member functions will succeed. In other
words, it prevents the removal of the ostrich's ability to fly. Aggregating
all member variables will also result in unnecessary variables. Their
existence will lead to more error prone code and added difficulty in
understanding and maintaining the code.

The fragmentation of member functions is also a property of object-
oriented code. Small method size is a desired property [Lorentz 1994, page
43] because reusing such methods by inheritance is easier than reusing
larger methods. A part of the code of the method cannot be overridden
without first splitting the method. In object-oriented programming a new
class must be created. The resulting web of calls between layers of code is
sometimes called lasagne code [Bassett 1997, page 153].

Another problem is that the adaptation of a method for reuse often
requires a definition of a new class where the method can be overridden.
However, every reuse is not due to a new specialised concept. For
example, where a new context of invocation is found and the adaptation is
better suited to the class in question. In C++ and Java member function
overloading can be used for that purpose. Overloaded member functions
have the same name but their parameter lists are different. However, there
may be a new context which would like to use the earlier parameter list
but would also want to adapt the code. Scattered fragments of code add to
the tracing time needed to understand and change the code and thus
reduces productivity.
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e The implementation of a polymorphic call in different classes is also a
problem. Their interface is the same but the implementation can evolve in
different directions, which can lead to inconsistent behaviour later. Some
of these problems can be avoided by status checking at run time. For
example, we have methods A and A' to get the time. At first both of them
use the system time. If we change A' to use time of a different computer,
the successive calls to A and A' can show inconsistent time values.

e The problem of the safe modification of base classes in the presence of
independent extensions is called Fragile Base Class Problem [Mikhajlov
1997].

¢ Inheritance creates dependencies between classes.

6.4.4 Extensibility by templates

Templates are a way of increasing flexibility in object-oriented class
hierarchies. Templates are used to define parameterised (generic) classes. For
example, it would not be reasonable to define an individual class for each
type of item in a collection. Figure 28 describes the flexibility of horizontal
and vertical generalisation.

Generalisation

Type parameterisation

List_Of
Airplanes

Type parameterisation

List_of
Cars

Linked_list_of
Cars

Specialisation

Figure 28. Horizontal and vertical generalisation [adapted from Meyer 1997,
pp. 317-318].

Parameterised classes are also added to Unified Modelling Language
[Booch 1997, pp. 26-27] to be used in static structure diagrams. UML also
includes another mechanism for the classification of types and use cases:
stereotypes. A stereotype is a classifier marked by <<stereotype name >>
near the name it is classifying. For example, the type parameters in the
previous example can be classified by a stereotype <<vehicle>>.

The previously described problem in the getAddress-function can be
solved using C++ templates (see Figure 24, page 119). A generic find
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algorithm is needed [Koenig 1996]. In a template the class to be used is
parameterised. The requirement that the used classes implement a compare-
operation still remains. The support of operation ++ corresponds to the
support of the function GetNextltem.

Templates are useful in producing collections which contain many types
of items. These items are iterated and polymorphic calls are done during the
iterations.

The benefits derived from templates are their versatile use in classifying
abstractions and in producing generic reusable components. Templates add a
second way of producing reusable components other than traditional
inheritance.

6.4.5 Bassett Frames

Frames are a specific way of implementing reuse [Bassett 1997, pp. 70-195].
They are based on a frame processor, which modifies source code using
specific directives. These directives direct normal copy-paste and find-replace
modifications, which the programmers usually make in white-box reuse.

Bassett’s frames are a variation of a macro language. Many current
programming languages include a macro language but this remains in the
background. Copying code is familiar from COBOL copy-statements and C 's
#include directives. Variables can be assigned by #define directives and they
can be tested by #ifdef and #ifndef directives. Macros are mechanisms for
reuse which have already been used for some time.

The first lesson to be learnt from Basset comes from the better utilisation
of the typical features of a macro. Adding a programming language level
support to direct the generation of the source code adds flexibility to it. In
macros there were multiple level copies but the intelligent steering was
usually missing. Macros are also viewed as tools used by experts which are
difficult to understand because the outcome of realising the macro was
typically left inside the compilation process. The code construction process
only contains recompilation. Very simple directives typically direct code
generators. Typically the outcome of a generation is hard-coded inside the
generator.

The second lesson comes from seeing reuse as a construction time
process ruled by the same-as-except principle. It is stressed that in
construction the properties of reuse such as generality and adaptability are
very important. In use it is important that the component’s functionality,
efficiency and ease of use are appropriate.

The traditional way of programming, taking a chunk of code and pasting
it into a new place and doing a little editing, is extremely effective in a settled
environment. Maintenance is the problem because keeping copies consistent
remains the programmer’s responsibility.

The third lesson comes from the principle of maximum diversity with the
minimum number of components. Frames capture processes in a way that
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makes it possible to reuse the process implementation with the objects
needed.

6.4.6 Viewpoints on typing in current programming languages

The basic construct of type checking is the execution of sending a message
x.f ( arg ), which executes the operation f on the object attached to x using
argument arg [Meyer 1997, page 611]. It is also possible to have no
arguments or more than one argument. A type violation occurs if there is no
function f in the class of the object attached to x or in its ancestor classes or
arg is not an acceptable type of argument of function f.

In dynamic typing the checking of type violations is done at run time
during the execution of the function call. Static typing uses rules that
determine that type violations will not occur. These are checked at compile
time. Statically typed languages require that each variable is declared to be of
a certain type. They check every assignment and function call and assure that
no type violations occur.

In an inheritance tree, there can be more than one function which realises
the typing rules. The difference between typing and binding is that typing
considers whether there is at least one applicable function. Binding considers
which one of these should be used. So it is possible, even desirable, to use
static typing and dynamic binding.

The benefits of static typing come from better reliability, readability and
efficiency. Static typing is used to detect type violation errors at a compile
time. Dynamic typing could only detect violation errors at run time and in
certain runs. If high reliability is required, for example, in patient monitoring
programs, dynamic typing is not appropriate at all. Type definitions make
programs more readable because the programmer can find out the types of
variables from the definitions. Variables, which change type during the
program run, are especially difficult to trace. Better efficiency is due to better
binding algorithms. It is quite normal for the name of a function to be
ambiguous. In the context of static typing the algorithm only searches for the
polymorphic functions rather than all the functions in the application [Meyer
1997, pages 615-616].

The drawback of static typing comes from its restrictions in reuse. It is
restrictive in that the code of function f can be reused only when the types of
x and arg are within their own inheritance trees. Programmers who are used
to programming using Smalltalk state that this is their main reason for
choosing this particular programming language. In some applications it is
even desirable to be able to add new functions and attributes to a class at run
time.

Static typing also has problems if it is needed to override a function.
These are related to properties called covariance and descendant hiding
[Meyer 1997, pages 621-628]. Covariance allows for changing the argument
types of a method when the class is redefined, if the types conform to the
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original argument types. In descendant hiding, the method does not exist in
the descendant class. Both of these features are very desirable [Bassett 1997,
page 141]. Fortunately, it is possible to check both of them in compile time
[Meyer 1997 pages 621-628]. The solution is in checking all the assignments
and function calls and rejecting those which could result in a type error. The
fact that it also prevents some possible solutions, which would not result in a
type error in any practical program run, is not a serious problem.

The possibilities offered by added reuse can be improved if the static
check is based on checking valid calls. The purpose of type checking is to
prevent invalid function calls. It is sufficient that the arg is attached to an
object that supports all the function calls of arg within f. It is worth looking
back at the previous example of getAddress function (see page 118). Its
parameter parameterName is of the type FullName. The parameter is used in
making a function call parameterName.SurnameOf(). It is not necessary for
parameterName to be of the type FullName or some of its descendants.
Syntactically, it would suffice that its type contains the function SurnameOf.
That would increase reusability at the cost of decreased readability. The
semantics of SurnameOf must also be assured.
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7 Verb Classes - Design for Reuse

7.1 Introduction

The aim of this chapter is to introduce an architectural design that can be used
as a means of applying the reuse strategy presented in chapter 6.3. The
question here is how to organize the software components to achieve the
clearest and the most cohesive abstractions, whilst making the combination
straightforward.

The combination of functional and object-oriented programming
languages is useful because most nontrivial designs need the properties of
both in order to meet needs of business [Coplien 1999]. This approach, 'verb
classes', is one in which the combining of components is easily done because
the expressions occurring in natural languages can be adapted to a
programming language [Virtanen 1999]. This approach has both object-
oriented and functional features.

7.2 Related work

In object-oriented programming, the location of methods in class hierarchies
is a problem because of the large number of objects and methods. Another
problem is that it may not always be easy to determine which of two or three
classes should contain a given method. For example, in a library information
system a method which implements the loan of a book can be placed in class
Book, LibraryUser or Library [Wilde 1992]. In the class Book the method
emphasises the movements of the book and in class LibraryUser it focuses on
the library user. The class Library contains the view of the services of the
library. To gain the reuse benefits it must be possible to locate the code to be
reused fairly efficiently and unambiguously.

The problem studied by Krishnamurthi et al. is that many problems
require recursively-specified types and a collection of tools that operate on
those data [Krishnamurthi 1998]. In anticipation of future extensions and
reuse, the data and the tools should be implemented in such a way that it is
easy to add a new variant of data and adjust the existing tools accordingly and
extend the collection of tools. As the source code may not be available and
because changing the code is cumbersome and error-prone, these extensions
should not require any code changes.

As a solution to these problems, Krishnamurthi proposed a synthesis of
object-oriented and functional design to promote reuse [Krishnamurthi 1998].
The recursive data types can be implemented as classes and the tools are
methods in those classes. The first solution was implemented as an extensible
visitor pattern (Figure 29.) and the final solution will be to create a new
programming language, called Zodiac, which contains these features as a
language extension. The example application specifies a set of data (Shape)
partitioned into three subsets: squares, circles and translated shapes and a tool
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that determines whether the point is inside the shape (ContainsPt). The set of
shapes is then extended to the union of the square and the circle and a new
tool, which can shrink a given shape, is added. The form of the system after
extensions is shown in Figure 29. The thick rectangles represent concrete
classes, the rhomb (Shape) an abstract class, and the thin rectangle
(ShapeProcessor and UnionShapeProcessor) interfaces. Solid lines with an
arrowhead show inheritance, while those without an arrowhead indicate that a
class implements an interface. Dashed lines connect classes and interfaces.
The label on a dashed line names a method in the class that accepts an
argument whose type is the interface. The boxed portion is the extended data
type and its corresponding processor. For a processor and data type extension
all code outside the box can be reused without any change.

ShapeProcessor

process

i Shape ;
UnionShapeProcessor
A
| process
:Cir:lcle ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| ContainsPtUnion ContainsPt

Figure 29. Extensible visitor [Krisnamurthi 1998].

Holzmiiller proposed another way of synthesis which uses polymorphic
sets of types and subprograms to create an experimental language called
'HOOPLA'. [Holzmiiller 1998]. In HOOPLA, the dispatching is decided
partly statically, partly at run time based on the types of the arguments and
the result type.

The Semantic Object Modelling Approach (SOMA) has some interesting
issues that should be examined when considering a new approach to object
modelling [Graham 1994]. Like many other methods, it uses text analysis as a
means of making the analysis. The text that is analysed is task scripts, but
other documentation is used as well. At the beginning a list of possible
objects and operations is constructed using the principle that nouns are
candidate objects and verbs are candidate operations. In discussions with the
users the analysts aim to eliminate duplicates and objects which are not
significant to the area of the system. There may be objects, which should be
attributes and vice versa as well as nouns, which are used as stand-ins for
verbs. It is also difficult to decide whether operations should be placed in a
general class or whether they should be distributed among specialised classes.
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As the previously described development steps include properties that are
common in natural languages, it is useful to have a brief look at them.

7.3 Natural languages

There are differences between natural languages and programming languages
[Naur 1975]. Natural languages are mostly used in their spoken form and
programming languages are written using a very exact and formal syntax and
semantics. Natural languages are intentionally fuzzy, which is vital to the
ability of the language to develop and extend itself to cover new ground.

In his study of natural languages, artificial auxiliary languages such as
Esperanto and programming languages, Naur defines the quality of a
language by stating that the language which is able to express the greatest
amount of meaning with the simplest mechanism ranks the highest [Naur
1975]. In their evolution over many centuries irregularities, such as the
number of conjugations, in the natural languages have decreased and the
forms of the languages, such as the word order, have been standardised. The
increase in the abstraction level of natural languages facilitates a larger
variety of combinations than that which was possible earlier. The study by
Naur, who is best known as co-originator of the Backus-Naur notation,
supports the idea that programming languages should preferably be built from
a few, very general, very abstract concepts that can be applied in many
combinations, thereby yielding the desired flexibility of expression. The
desired freedom of combinations implies that every combination of operands
and operators should have a meaning. Type restrictions in some programming
languages should, according to that principle, be replaced by the rapid check
of correctness in the combinations.

The basic elements of natural languages are words and sentences, which
are structured collections of words. There are abstraction hierarchies of
words, which facilitate the ways in which a language can be extended. For
example, a car is a special case of a vehicle, which means that it inherits the
general properties of the vehicles and has some specific properties of its own.

Figure 30 is an example of a hierarchy based on verbs, these being parts
of speech that are common in natural languages. The example is based on
MOO, a special language for virtual reality games, in which these kinds of
structures are common [Curtis 1997].
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JUMP || WALK RUN RIDE SWIM SAIL

Figure 30. The specialisation hierarchy of the verb "move".

Classification of data, sorting data in ascending order and sorting data in
descending order are examples of specialised arrangements of data structures
(for example collection, array, matrix, queue, cube, database table, user
interface control) . The algorithms are easier to reuse if they are not tightly
coupled to the data types.

In addition to this, new verbs can be derived from existing ones and it is
also common to construct a noun from a verb [Fromkin 1993]. The use of the
form 'moving' or 'movement' instead of the verb does not change the argument
that natural languages have separate hierarchies for these actions.

7.4 New ideas for extended reuse

The new design architecture for extended reusability is based on the analogy
with natural languages. The concept verb class is an original contribution of
this study.

We suggest that the class hierarchies of user-defined nouns and verbs
imply the structure of the software. The nouns correspond to objects in the
object-oriented approach and the verbs correspond to functions in the
functional approach. Both nouns and verbs are part of their own class
hierarchies, which contain generalisation-specialisation, aggregation and
association relations in the same way as in object-oriented programming. This
separates the verb classes from the functional paradigm.

The program consists of statements that combine nouns and verbs. The
use of combinations of separately derived words leads to extremely versatile
program code. The grammar of the statements is very regular. The basic form
of a statement is one verb, which defines the action, and a noun which
corresponds to the object of the action in that order. A statement typically
contains more than one noun. Imperative statements can be used and the
implicitly defined subject can be omitted. Explicit actors can be implemented
by their own objects. Of course, the grammar must have a statement which
creates the objects. Statements which combine a large number of objects to a
verb are more expressive than those of the current programming languages.
They are also easier to understand because the narrative descriptions of the
use cases created in the system analysis can be utilised straightforwardly (see
an example in page 140). Technically, the methods of the verb classes are
overridden to allow a variety of numbers and types of the parameters.
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The guidelines for placing the code to the classes are quite
straightforward, though developing software still requires the judgement of a
developer as would be expected:

e Verb classes contain methods that implement the functionality.

o Child classes in verb hierarchies reuse the code of their ancestor classes by
"super"-calls.

e The parent classes in verb hierarchies have a functionality that specialises
itself by invoking the code of the child classes (a "this" call).

e Noun classes are abstract data types that contain the attributes that
implement the data and simple methods (such as get and set-methods)
used to handle these attributes.

e Generic and abstract noun classes are used as types of the parameters of
the methods of the verb classes.

e The methods of the verbs support a variety of noun classes (typically by
overloading and overriding the methods).

7.5 The implementation

7.5.1 Multi-paradigm programming

Multi-paradigm languages are a way of developing a practical
implementation of the suggested 'verb-class'-concept. A programming
paradigm is a way of conceptualising what it means to perform computation,
and also of structuring and organising how tasks are to be carried out on a
computer [Budd 1995]. The goal of multi-paradigm computing is to provide
the programmer with a rich set of tools for the selection of the solution
technique which matches the best the characteristics of the problem. In
imperative programming the computation is viewed as a task in which the
processor manipulates a memory. This is very close to the hardware view of
the actual computing. In object-oriented programming there are several
computing units, objects, which have their own processing units and
memories which communicate by sending messages to each other. The
capability of extending the system incrementally by inheriting the properties
of the existing system to new computing units is a characteristic property of
object-orientation. Functional programming sees the computation as a series
of mathematical functions, which are applied to the original values to get the
results. In logic programming the programmer writes a set of logical facts and
a question and lets the computer work out the solution by using logical
transformations.

Leda is a multi-paradigm programming language which contains the
properties of object-oriented, functional and logic programming [Budd 1995].
Technically this has been implemented by adding types for functions and
relations to an object-oriented skeleton. Variables can then hold and transfer
functions and relations as values. The BETA language unifies the abstraction
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mechanisms of class, procedure, function, co-routine, process and exception
to an ultimate mechanism called pattern [Knudsen 1993].

Templates are a way of introducing a parameterized group of classes
[Koenig 1996, Booch 1997]. As they are especially useful in the context of
algorithms, it is natural to use them with verb classes. As there is a need to
prevent invalid function calls, the compiler or a checker program should
prevent this by making a static analysis of the possible calls. This solution
sees some impossible program flows become valid, but it is, nevertheless, a
better solution than run time checking. Meyer has used a similar approach to
the descendant hiding problem of inheritance trees [Meyer 1997].

The popularity of a language depends on the support around the
language, not on a language itself [Naur 1975]. This means that the languages
in general use are more important than the academic languages. C++ is an
important and generally used language which supports techniques for
multiple paradigms: classes, overloaded functions, templates, modules and
procedural programming [Coplien 1999].

7.5.2 Precompiler solution

Multi-paradigm and object-oriented programming can be used to solve the
problem of implementation in the presented design for extended reuse.
However, a solution, which uses formal pseudo-code and a pre-compiler
creates a better connection between the real world abstractions and the realm
of the programmer.

The implementation of nouns is recognizable from object-oriented
programming. The nouns are objects, which are instances of their
corresponding classes. The derivation tree of verbs can also be implemented
using an object-oriented language. Instances of verbs can be used to record
the run-time data of the event of the verb. At least one instance of each verb
is needed. Verb classes are usually singleton classes [Gamma 1995]. In
hybrid languages, such as C++, there is no need to express functions as
member functions of classes. If the functions are used directly, the derivation
trees of functions must be coded explicitly. The parameters of the functions
are nouns, which are implemented as objects. Verb parameters are not
allowed in order to keep the syntax simple. The member functions within the
data types should be specialized to manipulate that data type. A function in a
verb class typically contains statements, which call other functions in other
verb classes and noun classes.

Combining nouns and verbs produces statements. These can be extremely
versatile because the number of combinations is very large. It is true that not
all of the combinations are allowed or useful. There are also differences in
the methods which implement the same functionality for different objects.
This does not imply that it would be necessary to include all the functionality
within data types. The components can be of any logical size; there should be
higher and lower level verbs and nouns. A more detailed presentation of the
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pre-compiler solution is presented in [Virtanen 2000c]. Finally, the pseudo-
code written in natural-like language is pre-compiled to the code of an object-
oriented language.

7.6 Example

The example of the use of verb classes below illustrates how they are used to
control and monitor a chemical factory which produces alcohol from sugar,
malt, yeast and water. The factory handles processes, containers and
chemicals. The support software is organized in such a way as to mirror the
processes in the factory [Fayed 1997]. Fayed argued for modeling the process
instead of objects because generally the duration of the processes is longer.
The target was to develop systems which could live longer than the current
systems.

Figure 31 depicts the specialization of the process. A recipe contains the
specialized processes in the application.

Recipe

4

Process

T
| | | |

Transfer Change Separate Ferment
temperature
Conduct Move Heat Refrigerate Distill Filter

Figure 31. The specialisation of a process.

The benefit of this classification is that the most important and permanent
recurring processes in the factory system are modelled. The traditional choice
would be to model the equipment or the chemicals that are needed in the
process. The immediate problems presented by this approach are the need to
spread the code for processes to more than one derivation tree and the need to
apply a process to more than one object. Normally, the methods of a class
should operate on the attributes of the class. When a collaboration of several
objects is necessary, it is difficult to decide to which of the classes the
method should be placed. The suggested class hierarchy is useful because the
child classes use inheritance to reuse the code of the parent classes. Figure 32
depicts the class hierarchy of the chemicals and Figure 33 that of the
containers.
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Figure 32. The class hierarchy of chemicals.
Container
[’l
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Bottle Table Glass Tube Tub
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Boiling Storage Duct Valve
flask bottle

Figure 33.The class hierarchy of containers.

The use case of alcohol production can be written as pseudo-code in
which statements begin with a verb:

18.Move 10 kg sugar and 5 kg malt and 20 litres water to the tub.

19.Move 20 g yeast and 2 dl water to the small bottle.

20.Heat the small bottle to 37 OC.

21.Move the tub chemicals and the small bottle chemicals to the large bottle.
22.Heat the large bottle to 28 OC for 2 weeks.

23.Ferment the large bottle for 2 weeks.

24 Filter the large bottle chemicals into the boiling flask.
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25.Distil the boiling flask chemicals the into the storage bottle.

The purpose of the use case is to control the duration, temperature and
power consumption of the chemical process. The code of the example is in
Appendix E: Verb class - example, page 178. Figure 34 shows its user
interface.

E&fﬁ Chemical process control

Temperature

Powver -Kith [3807.4 |
Duration [1z09800.2 |
Process trace

Mowe 10 kg sugar to the tub

Mowve § kg malt to the tub

Mowe 20 1 water to the tub

Mowe 4 g yeast to the small hottle

Mowe 2 dl water to the small bottle

Heat the small bottle to 37

Mowe the contents of the tube to the large bottle
Mowe the contents of the small bottle to the large bhottle
Heat the large bottle to 28

Ferment the large bottle 2 weeks

Filter the large bottle to the boiling flask
Distill the boiling flask to the storage bottle

Figure 34. User interface of the example.

The classes Conduct, Refrigerate, Tube, Duct, Valve, Gas, Water vapor,
Mixing and subclasses of Solid, Liquid and Gas have been left out to make
the example simpler.

The pseudo-code is manually pre-compiled into Java-code, which creates
the process when the user presses the file-open button. One process step is
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run with the button "Run process" and the result of the process is shown in
the window.

The verb classes have constructors, which connect the verb with the
nouns and a run-method, which is performed by the "Run process"-button.
For example the sentence "Move 10 kg sugar to the tub" is translated to

Tub theTub=new Tub /() ;
Move stepla=new Move ("Move 10 kg sugar to the tub",new
Solid ("sugar",10),theTub) ;

The three class hierarchies of the application are cohesive and have a
limited number of connections to each other, though type checking has
caused a few restricting type casts to the code. Adding a chemical, container
or a process can be done without changes to the existing code. For example,
adding classes Glass, Ice and Refrigerate can extend the functionality of the
example application. The classes are semantically pure: the process classes
extend the functional properties of the application, the containers are versatile
containers with their support operations and the knowledge of chemicals is
placed to the chemical classes.

As the processes, containers and chemicals can be combined flexibly, the
number of possible recipes that can be controlled by this application is very
large.

7.7 Benefits

It is important to re-iterate that the criteria for reusability of software
components are understandability, ease to find, adaptability and
trustworthiness. The strategy for the creation of such components is to have
clear and generic abstractions which are easy to combine.

Natural languages are the way humans think and create abstraction
[Fromkin 1993]. As the presented architecture uses the same way of
organizing the abstractions and expressing the statements that natural
languages uses, it is easier to understand. The programmer does not need to
do as large a mental conversion from the application domain to the
programming realm as was the case previously. The abstractions are clearer
and more cohesive if the verb classes are used in certain types of applications.
This is because they are closer to the abstractions used in human thinking.
Humans specialize and generalize algorithms in their thoughts and languages.
Placing the variations in the actions into different classes to the variations in
the data types adds cohesion in both of these classes.

The reusing work involves tracing the code, grouping the code in order to
understand it and finally making the modifications. The new approach in this
study reduces the need to trace large areas of the code because the code is
normally placed within the derivation hierarchies of the verbs and the data
types are handled separately. Dictionaries of words can be generated to assist
the search of the classes. As the polymorphic functions are found within the
verb classes in the normal cases, the components can be found more easily.
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Words are context sensitive and phrases connect several words to new
meanings. These are also included in dictionaries used in natural languages.

The most important advantage of the proposed solution is its adaptability.
The versatility of the expressions, which can be measured as the number of
useful combinations of nouns and verbs, is larger than has been the case
traditionally. The possibility of easily adding new nouns and new verbs
solves the problems posed by Krishnamurthi and Holzmiiller. The best
feature of verb classes is their versatility in expressions. The combinations of
verbs and nouns create a rich and extensible set of useful expressions. Adding
new nouns and verbs is easy because data types and functions are not too
tightly coupled together.

In this study the functions are assumed to be so specialized that the trivial
solution of placing all the verbs as member functions of the base class is out
of the question. If the inheritance tree of the process in the previous example
cannot be flattened into a one-level solution, it is impossible to add the verbs
to the tree of the containers without sacrifices. Another problem to be solved
would be to decide whether to include the abstractions of the actions in the
tree of containers or in the tree of chemicals. Neither of them is conceptually
in the right place because the tree of the process is concerned with the action,
which has connections to both the containers and the chemicals. If the actions
are placed near the root classes of the data type hierarchy, these classes
become large, containing a very large number of methods which are loosely
coupled to the data type itself [Microsoft 1993].

The drawback to the proposed solution is its weaker trustworthiness. This
is because relief in type checking is implied. The functions in the verb
classes will accept parameters which do not have strict type restrictions. In
Java the use of the class Object as the type of parameter guarantees that any
object can be used in that place. Compile time checking of the precompiler
can be used to assist the programmer in avoiding the illegal function calls.

7.8 Applicability

The applicability of the presented new ideas depends on the situation. The
application must contain a versatile functionality. Verb derivation trees are
clearly useful when there is a need to organize functionality which has
common parts and which makes up a taxonomy of abstractions. The
application area is not restricted. General business applications can also
contain versatile functionality. For example, a payroll system contains several
ways of calculating the wages. The implementations of data communication
protocols vary mainly on the procedure side and use high-level abstractions
for the data. Typically, a packet or part of the packet does not change in the
program implementing the protocol. This implementation uses only a minor
part of the packet, called the header, to direct the operation.

Many basic algorithms are not data type specific. For example, sorting
algorithms can be organized according to the class hierarchy of the algorithms
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(see Figure 35). Each method should be as data type independent as possible.
The method must contain a collection specific method invocation for the
enumeration of the members of the collection. The class of the item type of
the collection must also contain a 'greater than' method.

Heap

Sort
Bubble Insertion Selection
sort sort sort sort

Figure 35. Sort algorithms.

The principles of 'verb classes' can be used as a design pattern, but only
the use of an extended programming language or the use of a programming

language extension provides tools that can implement it properly.
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8 Conclusions and future work

The purpose of this study was to improve component-based software
development by employing a better method of estimating the development
effort and by eliciting the means to produce more reusable software
components.

The most important steps where effort estimation is needed are in
feasibility studies, scheduling and process improvement. A new general-
purpose method, Component Reuse Metrics, CRM, developed in this study,
combines component technology and human behaviour into simple
calculation rules. CRM uses the component structures of the products, which
can be obtained from a CASE-tool or from a configuration management
system. CRM describes the software size by reference to the numbers of
different kinds of components. There are two component structures, the
external user's view and the internal implementation view, which are closely
connected. Each component is assembled to a product using one or more
human tasks. As this project work breakdown structure is tightly connected to
the component structure, the effort of a component can be calculated. The
development process defines the tasks required to produce a certain
component. However, the effort of a task depends heavily on the project and
human factors. CRM classifies them as skill effect, motivation effect, team
effect and risk effect and estimates the efforts for each of them. The skill
effect puts the required training into the calculations and the motivation effect
assesses the effect of the motivation of the staff on the development effort.
The effort needed in sharing information is included in the team effect. The
most important risk, the additional features added to the product during the
development, is taken out of the risk effect, which is otherwise calculated as
an effort factor of a task. The project change effect can be revealed from the
differences between the original and final component structure.

The CRM calculations require a computer and as a minimum requirement
a spreadsheet in order to support the method. Accurate calculations require
accurate historical data. That data should contain information about the
product, the project, the process and the people in the project. Information
can be collected by using CASE tools and project management tools. A
project can be calculated any time before, during and after the project. The
recalculations can be used to validate the method and its parameters, and in
project management to adjust the effort estimates of the project and the
product. At the beginning of the project, the requirements of the components
are less well defined and their accuracy will increase during the project. It is
useful to record this change history. The counting of components can be
automated in CRM. However, humans always make the necessary judgements
related to the project and human factors.

Task based estimation is the most commonly used effort estimation
method in industry. The most important metric is the number of windows and
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database tables. CRM can be seen as an extension of that method. CRM is
planned for component-based development, but it can be adapted to measure
traditional development, too. As project tracking gives CRM a lot of timely
feedback, which is used to adjust the estimates of the successive phases of the
project, CRM is suitable for modern iterative software processes.

A survey performed in this study confirmed that tenets of CRM conform
to the experts' view of the tenets of estimation of software development. In
practical evaluations CRM created useful estimates without an excessive
estimation effort. The case studies supported the idea that component-based
development creates an acceptable component structure for CRM
calculations. This can also be true in traditional applications. The weights of
factors in the project and human effects were estimated in the survey and
there was confidence in the possibility of assessing these effects. This
information can also be used without CRM. The case studies, where actual
projects were estimated and accomplished, showed that the accuracy of CRM
relies on the accuracy of the assessments. The assessment of project and
human effects proved to be difficult, at least without experience and any
historical data. More case studies are needed to verify the results of this study
in different, larger projects.

Due to the importance of the productivity part of the effort estimates,
there is a need to focus on a more thorough analysis of the factors relating to
productivity. CRM creates a framework for this. In its simplest form CRM
attaches the historical effort to each component. The total baseline effort is
the sum of the efforts of the components. CRM estimates the effort for
training, motivation, risks, process, teamwork and product changes in order to
make a better estimate. The new estimates are calculated using the human
factors in the new project. Estimates of project and human effects are
subjective and inaccurate. There are also ethical and legal restrictions in
storing detailed personal information. However, project estimates which do
not take these effects into account cannot be accurate.

CRM was compared to existing estimation methods. CRM emphasises
the change of the project and the motivation of the staff more than traditional
methods do and it applies productivity coefficients at a task level, which
means that the distribution of the project and human factors is better
accounted for.

CRM has several advantages. It is suitable for component-based
development and iterative processes and it is usable for feasibility studies,
scheduling and process improvement. CRM utilises a large amount of timely
feedback and. measures the important parts of the development because it
focuses on both project and human factors. The effort estimation is a by-
product of the development process and the estimates are available as and
when they are needed. The survey respondents considered the effort that was
needed for the estimation to be worthwhile. It is also easy to change from
current practices in industry to CRM.
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In this study a survey and a small number of case studies test the CRM
hypothesis. A more thorough analysis of the equations and the calibration of
the parameters are left for future research, which should have a large number
of pilot projects and make comparisons with other estimation methods. In any
future research statistical factor analysis could be used to analyse the
dependencies of the project and human efforts. This could also lead to
improvements in the CRM equations.

The second issuein this study was ways of improving the possibilities of
enhancing the reusability of component-based programming. The study
started from reuse metrics, which revealed that the basic criteria of reusability
are understandability, ease to find, adaptability and trustworthiness.
Adaptability was chosen for deeper analysis and this analysis revealed that
the best strategy for producing reusable software is to use clear and generic
abstractions to develop cohesive components which easily form a large
number of useful combinations when software products are assembled.
Several extension mechanisms were studied and finally the restrictions of the
programming languages were examined.

Reusable software components are not a by-product of normal
development because typical software consists of specific parts which have a
large number of specific dependencies. The means to accomplish the strategy
are to use generic code, which can handle a large number of situations, and to
add interfaces to decrease the dependencies between the components because
in addition to increasing cohesion, decreasing coupling is also necessary. A
component must have proper documentation to assist the understanding of its
intended use.

It is possible to extend the traditional methods of programming to
increase reuse. There is a trade-off between adaptability and type safety.
More research is needed in producing programming languages which are
more expressive than current languages, but which are still safe to use.

Verb inheritance is a new concept which combines features of object -
oriented and functional programming. If both verbs and nouns have separate
class hierarchies, the components will be more cohesive and the abstractions
will be clearer. This makes it possible to more easily add new operations and
objects to a program. The best feature of verb classes is their versatility in
expressions. The combinations of verbs and nouns create a rich and
extensible set of useful expressions.

Human thinking in natural languages also has separate class hierarchies
for nouns and verbs. This resemblance makes the suggested solution easier to
understand. Verbs can have the same kind of generalization and
specialization hierarchies as nouns. For example, walking is a special kind of
a movement. New classes of objects can be defined, each of which can be
movable without a need to place the classes in the class hierarchy of
"movable objects". When the nouns and verbs have separate derivation trees,
the definition of a data type or a function can be found more easily because
polymorphic functions are not so spread out along the classes. The
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polymorphic functions are also easier to clarify because they are typically
defined in one place and because the taxonomy of the data types does not
include taxonomies of the verbs.

It is possible to implement the presented solution by using special multi-
paradigm languages or by using commercial object-oriented languages in a
particular way. This study suggests a pre-compiler, which facilitates the
conversion of the pseudo-code and resembles natural language into a normal
object-oriented programming language.

Finally, the new approach is easier to adapt for reuse. As the nouns and
verbs can be mixed in millions of ways, even in a relatively small vocabulary,
the approach is extremely adaptable. The current study of natural languages
has focused on speech recognition and computer-aided translation. In addition
to verb inheritance the natural language paradigm can inspire other solutions
in application design.
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Appendix A: Estimation forms and survey results

The tables in the appendices A, B and C gather the results of the survey of the
empirical study of CRM (see chapter 3, page 49). The survey was sent to all
of the project managers who were members of the Finnish Information
Processing Association. Appendix A contains the survey results about the
questionnaires of CRM. The questions of CRM-estimation forms are also the
same (Table 28 - Table 33) but in estimation forms only the forthcoming
project is considered. In the survey the respondents estimated the usual
importance of the factor. The answers are classified by a small number (Very
large =5, large = 4, medium=3, small = 2, very small = 1). The weight is the
average of the answers. The results of the survey can be used as default
weights in Equation 3, page 26.

Table 28. Process effect questionnaire; factors of the process effect.

Estimate the effect of the following

coomamstonoo” 3|5 |E|9|8|E |88
218 |5|2|8|5]5| 2
¢ 3 21218 =
Programming language 7 31 |34 (22 |3 0 1 4.13
Development environment 10 |31 |37 |10 |1 0 9 4.45
Database management tools 9 18 |43 |22 |3 0 4 4.06
Tools for analysis and design 4 28 |37 |22 |4 0 3 4.03
z Project management tools 1 13 |33 |37 |10 |3 1 3.55
f Configuration management tools |3 25 127 |25 |4 4 10 |4.07
O | Documentation tools 4 16 |37 |34 |7 0 0 3.71
; Tools for testing 7 36 |28 (19 |4 1 3 4.22
Method of quality assurance 10 |24 |43 |16 |3 0 3 4.20
Special quality requirements 15 |36 |30 |13 |3 0 3 4.44
Project management methods 9 30 |36 (21 |3 1 0 4.16
Testing methods 10 (45 |34 |9 1 0 0 4.47
Documentation standards 3 21 |37 |36 |3 0 0 3.79
Partitioning of the project 7 40 |27 (24 |1 0 0 4.22
Finding and assessing 3 12 |34 |30 |4 6 10 |3.88
components
Assuring of generality 7 27 |34 (18 |3 3 7 4.25




Table 29. Factors of project change effect.
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Factors influencing new unexpected
features during a project (%) 5
SI<] 3] <] %] 3 =y
=
Error in requirement specification 6 42 |33 |15 |3 1 3.33
Inaccuracy of analysis 7 43 |42 |7 0 0 3.51
Inaccuracy of design 3 22 |57 |16 |0 1 3.12
Partition of the project 0 6 31 |54 |6 3 2.38
Views of the customer's management 0 16 |42 |34 |6 1 2.70
Views of the IT-management 0 6 27 |58 |6 3 2.34
End user views 9 46 |36 |4 4 0 3.51
Programmers' views 4 12 |43 |36 |4 0 2.76
Views of the project manager 4 15 |40 |40 |0 0 2.84
Good idea invented during the project 3 24 55 |16 |0 1 3.14
Technological surprises 3 19 (40 |34 |3 0 2.85
Change control 6 19 |24 |45 4 1 2.77
Commercial factors 3 12 |22 |49 |10 |3 2.46
Inaccurate contract 0 25 |33 |24 |12 |6 2.76
Invoicing method (by hours, contract price) |1 7 24 |30 |30 |7 215
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Table 30. Factors of the team effect.

What is the influence of the following factors
of team work in your projects (%)?

@ =| =
Team structure and size *
Synergy *
Meetings included in the project plan 18 (36 |27 |13 |3 3 3.54
Ad hoc meetings 21 |52 |21 |3 0 3 3.94
Unnecessary meetings 4 9 25 |36 (15 |10 |2.47
Meeting practice ( being punctual, 7 46 |30 |13 |0 3 3.49
preparation, ... )
Travel time 0 1 36 |42 |16 |4 2.23
Slack time due to travelling 0 4 24 |46 |19 |6 214
Phone calls and faxes 3 19 (30 (33 |10 |4 2.70
Writing email 12 |27 |34 [19 |4 3 3.23
Reading email 12 |31 |36 [13 |4 3 3.34
Personal supervision of work 18 |37 (33 |7 1 3 3.65
Discussions with the users 28 |46 |13 |7 0 4 4.00
Discussions with customer's management |27 (40 |24 |6 0 3 3.91
Writing minutes and other documents 10 |25 (42 |16 |3 3 3.25
Reading minutes and other documents 7 34 |33 (21 |1 3 3.26
Disputes about the objectives 24 43 |18 (10 |0 4 3.84
Disputes about the working methods 22 (39 |22 (12 |0 4 3.75
Interruptions of work 19 (37 |27 |12 1 3 3.63
Disturbances in the information flow 34 (37 |16 |7 0 4 4.03

* Not included in the survey results and analysis but should be used in

CRM.




Table 31. Factors of the risk effect.
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A risk is an incident, which has a probability

of influencing a project. If a following risk < <| O
comes true, how large is its expected 3 o Sl o 3 S (%
influence (%)? 5| g 2 ?_, ¢ % @
«Q 3 - o Q -~
D = s
Changes in personnel 34 (48 |16 |0 0 1 4.18
Sickness 12 |37 |34 |13 A1 1 3.45
Technical disturbances (black outs, 4 12 |30 (34 |18 1 2.50
equipment failures ...)
Failures in technology 24 (39 |16 (16 |3 1 3.65
Unexpectedly difficult software bugs 10 |49 |24 |12 |3 1 3.53
Errors due to carelessness 7 25 |46 (13 |4 3 3.18
Sabotage (viruses, hacking ...) 13 |9 13 24 (31 |9 2.44
Unpunctuality of the contractor, 24 (43 |22 |9 0 1 3.83
subcontractor or customer
Organisational changes 1 30 (43 |19 |4 1 3.05
Failures in subcontracting and purchasing |15 (43 |18 (13 |4 6 3.54
Disputes 10 (25 |25 |33 |4 1 3.05
Estimation errors 19 |46 |27 |6 0 1 3.80
Economic risks 3 27 |39 (30 |0 1 3.03
Juridical risks 3 6 21 |43 |21 |6 2.22

Preparation for the risks *

* Not included in the survey results and analysis but should be used in

CRM.
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Table 32. Factors of the skill effect.

What is the influence of the following

factors of the skill of software < <| O
development (%)? % 5 g ® S % CE
Education 12 121 |42 |21 |4 0 3.15
Courses 7 16 |52 |22 1 0 3.06
Length of experience 15 (|42 |43 |0 0 0 3.72
Quality of experience 46 |39 (15 |0 0 0 4.31
Familiarity with the application area 39 |45 |16 |0 0 0 4.22
Experience of team work 4 27 |46 |18 |3 1 3.12
Familiarity with the program (to be 43 33 |21 1 0 1 4.20
maintained )

Knowledge of methods and tools 27 |51 |16 |4 0 1 4.02
Personality (intelligence, emotional 42 134 121 |1 1 0 413

intelligence, sense of responsibility,
diligence)




Table 33. Factors of the motivation effect.
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Estimate the influence of the following 3 s
motivation factors on increasing or ] 2
decreasing the productivity of software S = S| 9 & =3
development. Assess your own > 5 @ %’ 2| %] &3
motivation factors. s|le|c|2|3]| 3 .t
«Q 3 - o o =
[¢) = s 9,
[0
Q
Challenge or lack of it 24 |67 |6 1 0 1 4.15
Ambition 9 39 |36 |15 |1 0 3.39
Possibility to accomplish something, 22 149 |25 |3 0 0 391
achieve results
Possibility for initiative and independence |18 (58 |22 |1 0 0 3.93
Good/bad leadership 25 125 |37 |9 1 1 3.65
Too large, appropriate, too small pressure 3 40 |40 (15 |0 1 3.32
Possibility for career 3 22 148 |24 |3 0 2.99
Good/bad relationships especially within (27 143 |24 |[4 1 0 3.90
the team
Appreciation, respect 16 |46 |28 (9 0 0 3.70
Salary and benefits 9 24 |49 |15 |3 0 3.21
Responsibility 19 |46 |28 |6 0 0 3.79
Being noticed or lack of it 13 |37 |37 |9 1 1 3.53
Possibility to develop oneself , to learn 25 148 (25 [1 0 0 3.97
new things
Working conditions 7 31 (43 |16 |0 1 3.30
Interesting work, the work itself 28 |58 (13 |0 0 0 4.15
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Table 34. Factors of motivation effect of the team.

Estimate the influence of the following

motivation factors on increasing or C%
decreasing the productivity of software § ~| = cf 8 CBD cg_'
development. Assess the motivation factors| < | o o (30 < x| 3 =
of your team(%) s|le|c| 2|3 353|8¢
«Q 3 Q (] b
) = s * 8
3
Challenge or lack of it 16 |55 |22 |3 3 3.88
Ambition 9 36 |40 |12 3 3.43
Possibility to accomplish something, 9 43 |40 |4 3 3.58
achieve results
Possibility for initiative and independence |9 31 |48 |9 3 3.42
Good/bad leadership 33 (37 |24 |1 3 4.02
Too large, appropriate, too small pressure |12 |43 |33 |7 4 3.63
Possibility for career 12 |24 |40 |19 3 3.26
Good/bad relationships especially within 27 |42 |24 |1 4 3.95
the team
Appreciation, respect 22 (37 |31 |6 3 3.78
Salary and benefits 13 (31 |40 |12 3 3.48
Responsibility 9 27 |46 |13 3 3.29
Being noticed or lack of it 19 |42 |30 |4 3 3.75
Possibility to develop oneself, to learn new |21 |46 |27 |3 3 3.88
things
Working conditions 10 |34 |36 |15 4 3.42
Interesting work, the work itself 18 |55 |16 |4 6 3.92




Table 35. Distribution of effort.

What is the distribution of software development |Avg Conf.
effort in a typical project?

Design and assembly of the components 34.54 3.54

Additional effort due to added features 20.62 2.00

Training and study during the work 10.53 1.07

Slack due to lack of motivation 10.13 1.53

Team work 13.01 1.85

Risks 11.17 1.32

100.00

Table 36. Distribution of effort because of component itself.

How large is the distribution of effort due to the

component according to your experience? > Q

5| 3

«Q o

o g
less than 2 h (effortis 18 - 22 h ) 16.55 3.74
2-5h(effortis 15-25h) 26.22 3.58
5-10h (effortis 10-30h) 30.34 3.84
10 - 20 h (effortis 0-40h) 17.33 2.56
more than 20 h ( effort is more than 40 h ) 9.56 2.76
Total 100.00
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Table 37. Amount of additional features.

The amount of new features added during the

o @]
project is (%) > 2 o0 3 z S
s 32 22 0 =
s £ 35 &2 3
=
less than 10 % final total effort 1 34 22 30 10
10 - 20 % final total effort 1 42 34 19 1
20 - 50 % final total effort 1 21 21 40 13
more than 50 % final total effort o 1 7 37 51
Table 38. Amount of cancelled features.
The amount of cancelled features during a
project (%) @)
> o
598 % =
8 2 2@ 3 3 =
% < 2 < 5 3
=
less than 10 % of planned total effort 9 37 36 12 1
10 - 20 % of planned total effort 0 15 27 28 27
20 - 50 % of planned total effort 0O 0 9 36 51
more than 50 % of planned total effort o 0 1 13 81




Table 39. Distribution of effort due to skill differences.

1. The person has experience in comparable
tasks, but needs a small amount of advice in

accomplishing the task e.g. An experienced o
analyst who has just been moved to the project. Ié_> § o F z S
= 2 @ <
228235 3
=
less than 2 h 9 33 19 24 7 7
2-5h 3 36 39 13 4 4
5-10h 0 13 30 31 19 6
more than 10 h 0 4 3 37 46 9
2. The person has the necessary education and
is able to accomplish simple tasks e.g. An o
analyst, who has few years of experience and >z o0 X zZ S
has just started in the corporation. S 0 % & @ =
g 2 o 0 5 =
S < 5 < % 3
=
less than 5 h 3 13 25 30 21 7
5-10h 6 28 45 10 6 4
10-20h 3 36 33 18 4 6
more than 20 h 0 9 25 31 25 9
3. The person knows the basics of the area and o
has been in a short course before startinge.g. A| » = n = S
Computer Science-student in his/her first job. g 2 8 g o =
5 £ 35 &2 3
=
less than 10 h 3 6 31 24 28 7
10-20h 3 30 31 24 7 4
20-40h 4 39 31 13 7 4
more than 40 h 3 13 13 36 25 9
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Appendix B. Background information

The tables in this appendix contain the results of background questions of the
survey of the empirical study of CRM (see chapter 3, page 49).

Table 40. Estimation methods and metrics.

| use the following methods and metrics
estimating software development effort(%) 9
> = @) Py z =]
52|58 |/3|2|5
S| S|35|&] 2| 3
=
No estimate before the project start 1 1 10 |19 |66 |1
Project is adapted to the budget 12 |27 (22 |33 |6 0
Task based estimation 25 |63 (12 |0 0 0
Comparison with similar projects 13 (49 (31 |6 0 0
COCOMO 0 0 3 4 46 |46
Function-point Analysis 4 6 28 |18 |33 |10
Comparison with project tracking history 6 22 |37 |27 |6 1
Number of subsystems 4 30 22 |19 (156 |9
Number of windows, reports and database 12 |58 |18 |7 1 3
tables etc.
Number of classes 4 13 [13 |27 |31 |10
Lines of code 0 0 27 19 |49 |4
Number of customers of the component 1 1 6 18 |57 |16




Table 41. Process models.
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Phase model used ( % )

>l =zl ol 7| 2 _90,_ z

5128 |a|d|5| =

1< 3<% 3 Q

2

Detailed analysis before implementation 9 33 (256 |22 |10 3.07
Multiphase analysis 7 57 |13 |19 |0 3.54
Prototyping for customer requirements 3 37 (33 |18 |7 3.1
Prototyping for technical reasons 3 28 (37 121 |9 2.95
One-phase design 3 33 (25 |34 |4 2.96
Multiphase design 6 49 |22 19 |3 3.36
Testing mainly after implementation 9 42 |18 |25 |6 3.22
Multiphase testing 18 148 (22 (12 |0 3.72
One-phase delivery ( Big Bang-model) 1 36 (25 |28 |7 2.95
Multiphase delivery 4 45 |25 |22 |0 3.32
Waterfall model 1 34 |27 (16 |18 2.85
Spiral model 6 37 134 21 1 3.25
Production of versioned software (* omitted |12 |27 (24 |22 |13 3.02
question)
Total of waterfall models 5 36 (24 (25 |9 2.99
Total of iterative models 8 47 124 19 1 3.40
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Table 42. Design methods.

Design methods used (%) > 9 »
s 518|882
s|E|3|&12|3)|¢8

=

Data Flow- analysis 4 25 |34 |24 |6 6 2.98

Wall board techniques 10 (34 (36 (15 |4 0 3.31

Object-oriented analysis (e. g.: UML, Fusion, 3 16 (12 |19 |40 |9 2.15

Coad)

Entity-Relationship model (* omitted question) [18 |24 |25 |19 (9 4 3.23

Table 43. Component technologies.

Component technologies used (%) o
> o >
= 5|13 8|8|2|s
IR R ERR:

=

ActiveX 0 7 21 |6 51 |15 |1.82

DCOM 0 3 15 |12 |55 |15 [1.60

CORBA 0 4 7 15 |63 |10 |[1.48

(Enterprise) Java Beans 0 12 13 |12 |51 |12 (1.85

Self-made class libraries 4 30 |15 |18 [25 |7 2.68

Self-made module libraries 9 28 |31 |6 18 |7 3.05

Acquired class libraries 4 13 124 (21 |27 |10 |[2.42

Acquired module libraries 1 16 |27 (19 |27 |9 2.41

| produce software components for sale 0 6 6 7 72 |9 1.41

Application frameworks and design patterns (* |9 22 19 M0 |19 (19 (2.89

omitted question)




Table 44. Estimation methods and metrics.

| use the following methods and metrics
estimating software development

O
effort(%) z|l 2| ol @] =z S z
51 8lc|l3|3|5|3
SIS <| %] 3¢
=

No estimate before project start 1 1 10 |19 [66 |1 1.52
Project is adapted to the budget 12 |27 |22 (33 |6 0 3.06
Task based estimation 25 |63 |12 [0 0 0 4.13
Comparison with similar projects 13 (49 (31 |6 0 0 3.70
COCOMO 0 0 3 4 46 |46 |1.19
Function Point Analysis 4 6 28 |18 |33 (10 |2.23
Comparison with project tracking history |6 22 |37 |27 |6 1 2.95
Number of subsystems 4 30 (22 |19 [15 (9 2.89
Number of windows, reports and 12 (58 |18 |7 1 3 3.74
database tables etc.

Number of classes 4 13 (13 |27 |31 |10 ([2.25
LOC 0 0 27 19 |49 |4 1.77
Number of customers of a component on |1 1 6 18 |57 |16 [1.48
sale

Number of use cases (* omitted) 9 30 |19 |19 [16 |6 2.95
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Appendix C. Practical issues of CRM

The tables in this appendix contain the results of questions about practical
issues in the survey of the empirical study of CRM (see chapter 3, page 49).

Table 45. Capability of the project manager to estimate the effects.

The project manager can estimate the influence g

of the effect in a software development project ;-’ § Q g? Z| 3

(%)? ) Q| @ | @ S Py
S| <] 2| <| 3|3

=

Process when new methods and tools have not |4 24 |31 |24 |6 10

been tested?

Process when new methods and tools have 4 34 (39 (15 |0 7

been tested

Process when also new methods and tools have (16 |40 (24 (12 |0 7
been used in actual projects

Project change after the project 24 61 |10 |3 0 1
Teamwork before the start of the project 3 27 |49 (13 |3 4
Teamwork after the end of the project 13 |54 (22 |3 1 6
Risk before the start of the project 3 33 (43 |15 |4 1
Risk after the end of the project 12 161 |21 |3 0 3
Skill before the start of the project 6 43 |37 (10 |3 0
Skill after the end of the project 24 58 |16 |0 1 0
Motivation before the start of the project 4 31 |42 |15 1 6
Motivation after the end of the project 18 |51 |22 |1 1 6
Is the effort needed for estimating reasonable? |7 63 (18 |9 0 3

When must human effects be estimated for each|4 16 (36 (28 |1 13
component separately?




Table 46. Estimation of project change effect.
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Is it possible to classify added features from the original
ones after the project (%)? @)
>lz|lol@|lz| S
5|12|8|s|s| &
s|S(5(S(2| 3
=
How often is it possible 24 161 |10 0o N
How often is the customer/ end user organisation 25 (48 |13 4 |4
invoiced for additional features
How often is the contract changed due to additional 3 (18 |30 |39 |6 (4
features?
Table 47. Effort of CRM-calculations.
Suppose that these estimates are made for each
project or subproject and for each person.
@)
> o
HHEEHE
s||15(&(2|3
=
The effort needed for estimating is reasonable (%)? 7 |63 |18 19 |0 3
4 |16 |36 (28 (1 |13
When must human effects be estimated for each
component separately (%)?
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Appendix D. Abbreviations

Abbreviation Description
BETA A programming language
CRM Component Reuse Metrics
ul, GUI User Interfaces, Graphical User Interface
LOC, SLOC Lines Of Code, Standard Lines Of Code
COCOMO Constructive Cost Model
COTS Commercial off the shelf
PROBE PROxy-Based-Estimating
FPA, FP, FTP | Function Point Analysis
Cosmic-FFP A new variant of Function Point Analysis
CBD Component-Based Development
CORBA Common Object Request Broker Architecture
DCOM Distributed Common Object Model
UML Unified Modelling Language
SQL Structured Query Language
COBOL Common Business Oriented Language
NASA National Aeronautics and Space Administration
NATO North Atlantic Treaty Organisation
US, USA United States, United States of America
ESPRIT-2 Envoi Sélectif
en Psychologie de Références et d'Informations
Thématiques
REBOOT Reuse Based on Object-Oriented Techniques
IBM International Business Machines corp.
MS Mi
SCM Software Configuration Management
CASE Computer Aided Software Engineering
ER Entity Relationship
PC Personal Computer
HTML Hypertext Mark-up Language
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SEI Software Engineering Institute

MIS Management Information System
HOOPLA A special programming language
SOMA Semantic Object Modelling Approach
MOO A special programming language

IT Information Technology
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Appendix E: Verb class - example

// An excerpt from class Framel, which implements the user
interface // of this demo

// send information from the process to UI using static
variables

public static Vector recipe = new Vector (20,5);
public static double power;

public static double temperature;

public static double duration;

public static int stepNbr=0;

void jButtonl actionPerformed(ActionEvent e) {
// Entry of the Process by File Open-button from the user
interface

//define containers;

Tub theTub=new Tub/() ;

Bottle theSmallBottle=new Bottle("Small",0.5);

Bottle theLargeBottle=new Bottle ("Large",40) ;

BoilingFlask theBoilingFlask=new BoilingFlask ("Boiling
flask",30,200) ;

Bottle theStorageBottle=new StorageBottle ("Storage",40,12306) ;

// Define the process here (see Figure 34, page 141)

Move stepla=new Move ("Move 10 kg sugar to the tub",new
Solid("sugar",10),theTub) ;

Move steplb=new Move ("Move 5 kg malt to the tub",new
Solid("malt",5),theTub) ;

Move steplc=new Move ("Move 20 1 water to the tub", new
Liquid("water",20),theTub) ;

Move step2a=new Move ("Move 4 g yeast to the small bottle", new
Solid("yeast",0.004),theSmallBottle) ;

Move step2b=new Move ("Move 2 dl water to the small bottle",new
Liquid("water",0.2),theSmallBottle) ;

Heat step3=new Heat ("Heat the small bottle to
37", theSmallBottle,37) ;

Move step4a=new Move ("Move the contents of the tube to the
large bottle",theTub, theLargeBottle) ;

Move step4b=new Move ("Move the contents of the small bottle to
the large bottle",theSmallBottle, theLargeBottle) ;

Heat stepSa=new Heat ("Heat the large bottle to
28", theLargeBottle, 28) ;

Ferment stepSb=new Ferment ("Ferment the large bottle 2
weeks", theLargeBottle, 14) ;

Filter stepé6=new Filter ("Filter the large bottle to the
boiling flask",theLargeBottle, theBoilingFlask) ;

Distill step7=new Distill ("Distill the boiling flask to the
storage bottle",theBoilingFlask,theStorageBottle, 78) ;

}
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void jButton4 actionPerformed(ActionEvent e) {
// run the process by Run process button in the user interface
Process step n;
String power str = "';
String temperature str="";
String duration_ str="";

if (recipe.size() > stepNbr)
step n=(Process) recipe.elementAt (stepNbr) ;
jTextAreal.append ("\n"+step n.processDescription) ;

// System.out.println (power) ;
step n.run() ;

temperature_str= temperature_str.valueOf (temperature) ;
power str= power str.valueOf (power) ;
duration_str= duration_ str.valueOf (duration) ;

jTextFieldl.setText (temperature str) ;
jTextField2.setText (power str) ;
jTextField3.setText (duration str) ;

stepNbr=stepNbr+1;

else stepNbr=0;

public class Process {

// implements the base class of all processes

// a verb class example - communication to the UI is common to
all

// processes. The child classes reuse this by inheritance
String processDescription;

double powerUse;

double durationOfStep;

public Process (String desc)
this.processDescription= desc;
Framel.recipe.addElement (this) ; }

public Process() {}

public void run()

{

powerUse=needOfPower () ;
powerUse=Math.round (powerUse) ;

// send information to the UI by its static class variables
Framel.power=Framel.power+powerUse;
Framel.duration=Framel.duration+durationOfStep;

public double needOfPower () {

return 0.0;}

}
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public class Transfer extends Process {

// an example of a specialisation of the process

// a verb class example -

// reuse of the code of class process and extending it by
duration

Object theMovableObject;
Object whereToMove;

public Transfer (String desc) {
super (desc) ;
durationOfStep=10;

public Transfer() {}
public void run() {
super.run() ;

}

import java.util.*;

public class Move extends Transfer {

// an example of a specialisation of the transfer

// a verb class example

// notice two Move methods for different kind of nouns
boolean moveWholeContents;
public Move() {

public Move (String desc,Chemical chem, Container cont){
super (desc) ;
whereToMove=cont ;
theMovableObject=chem;
moveWholeContents=false;

public Move (String desc,Container p contents, Container cont) {
super (desc) ;
whereToMove=cont ;
theMovableObject=p contents;
moveWholeContents=true;

}

public void run() {
super.run() ;
Container cont=(Container) whereToMove;
// cont.showContents () ;
if (moveWholeContents) ({
Container contents=(Container) theMovableObject;
cont .addContents (contents) ;

else
Chemical chem=(Chemical) theMovableObject;
cont .addChemical (chem) ;

}

cont .showContents () ;

}

public double needOfPower () {
if (moveWholeContents)
return 525; /* arbitrary number for demo purposes */
else {



Chemical chem=(Chemical) theMovableObject;

return 1.2*chem.getWeight ()+10.8; }

public class ChangeTemperature extends Process {

// an example of a specialisation of the process
// verb class example
// adding temperature handling to the process

Container theObjectToHandle;
double temperatureTarget;
double tempBefore;
public ChangeTemperature () {

public ChangeTemperature (String desc, Container
p_theObjectToHandle,double p temperatureTarget)

super (desc) ;

tempBefore=Framel.temperature;

temperatureTarget=p temperatureTarget;

theObjectToHandle=p theObjectToHandle;

}

public void run()

super.run() ;
Framel.temperature=temperatureTarget;

}

public class Heat extends ChangeTemperature {

// an example of a specialisation of the change temperature

// verb class example

public Heat () {

}

183

public Heat (String p desc,Container p theObjectToHandle, double

p_temperatureTarget) {

super (p_desc,p_theObjectToHandle,p temperatureTarget) ;

public double needOfPower ()
return 15.8* (temperatureTarget-tempBefore) ; }

}

import java.util.*;
public class Separate extends Process {

// an example of a specialisation of the process

// verb class example

// notice the connection to the containers
Container fromContainer;
Container toContainer;
public Separate() {

public Separate(String desc) ({
super (desc) ;
durationOfStep=15.00; }

public Separate (String p desc,Container p fromContainer,

Container p toContainer) {
super (p_desc) ;
fromContainer=p fromContainer;
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toContainer=p toContainer;
durationOfStep=15.00;

}

public void run() {

super.run() ;

System.out.println ("Separating") ;

Container contents= fromContainer;

int itemNbr=0;
for (itemNbr=0;contents.size()>itemNbr;itemNbr++)

{
Chemical chem=(Chemical) contents.elementAt (itemNbr) ;
if (!this.isSeparating(chem)) {
toContainer.addChemical (chem) ;
!

}

toContainer.showContents () ;

public boolean isSeparating(Chemical p chem)

{

return false;

}

public class Filter extends Separate {
// an example of a specialisation of the separate
// a verb class example

public Filter() {
}
public Filter(String p desc,Container p fromContainer,
Container p toContainer) {
super (p_desc,p_fromContainer,p toContainer) ;

public boolean isSeparating(Chemical p chem)
{
if ( p_chem.isFiltering())

return true;

else return false;

public double needOfPower () {
Bottle bottle=(Bottle) fromContainer;
return 2*bottle.getMaxVolume () ;

}

public class Distill extends Separate {
// an example of a specialisation of the separate
// a verb class example

double temperatureTarget;
public Distill() {

public Distill (String p_desc,Container p fromContainer,
Container p_toContainer,double p temperatureTarget) {

super (p_desc,p_fromContainer,p toContainer) ;

temperatureTarget=p temperatureTarget;
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public boolean isSeparating(Chemical p chem)

if ( p_chem.isDistilling())
return false;
else return true;

}

public void run()
super.run() ;
Framel.temperature=temperatureTarget;

}

public double needOfPower () {
Bottle bottle=(Bottle) fromContainer;
return 50*bottle.getMaxVolume () ;

public class Liquid extends Chemical {

// an example of a specialisation of the chemical
// a noun class example

// notice focus on attributes

}

double volume;

public Liquid() {

}

public Ligquid(String p_name,double p_ volume) {
volume= p volume;

double calc_weight;

calc_weight=p volume;

setWeight (calc_weight) ;

setName (p_name) ;

import java.util.*;
public class Container ({
// a noun class example
// a base class

Vector contents= new Vector (5,2);

public Container() {

public Container (Chemical content) {
contents.add (content) ; }

public void addChemical (Chemical p chemical) {
contents.add (p_chemical) ;}

public void addContents (Container p_ contents)

int itemNbr=0;
for (itemNbr=0;p contents.size()>itemNbr;itemNbr++)

{

contents.add (p_contents.elementAt (itemNbr)) ;}
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public void emptyContents () {

contents.removeAllElements () ;

}

public void showContents ()
System.out.println("Contents:" );

int itemNbr=0;

for (itemNbr=0;contents.size()>itemNbr;itemNbr++)

Chemical chem= (Chemical) contents.elementAt (itemNbr) ;
System.out.println (chem.getName () ) ;

}

}

public int size()

return contents.size() ;

public Chemical elementAt (int itemNbr) {

if (contents.size()>itemNbr & itemNbr > -1)

{
Chemical chem= (Chemical) contents.elementAt (itemNbr) ;
return chem;

}

else return null;

}

public class Bottle extends Container {

// an example of a specialisation of the container
// a noun class example

// notice focus on attributes

String title;

double maxVolume;

public Bottle() {

}

public Bottle(String p_title, double p maxVolume) {
title=p title;

maxVolume=p_maxVolume;}

public String getTitle()
return title;

public void showContents () {
System.out.println("Contents:"+this.getTitle() );
super.showContents () ;
}

public double getMaxVolume () {

return maxVolume;

}

public class BoilingFlask extends Bottle {

// an example of a specialisation of the bottle
// a noun class example

// notice focus on attributes

double maxTemperature;
public BoilingFlask()
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public BoilingFlask (String p title, double p maxVolume, double
p_maxTemperature){
super (p_title,p maxVolume) ;
maxTemperature=p maxTemperature;
}
}
package ChemicalProcess;
public class Tub extends Container ({

double maxCapacity;
public Tub()

public Tub( double p maxCapacity) {
super () ;
maxCapacity=p maxCapacity;
}
}

public class Chemical {
// an example of a noun base class

double weight;

String name;

public Chemical() {

}

public Chemical (String namex, double weightl) {
name=namex;

weight=weightl;

}

public void setWeight (double g) {
weight = g;

}

public double getWeight () {

return weight;

}

public void setName (String p_name) {
name= p_name;

public String getName () {
return name;

}

public void ferments ()
{
if (this.getName() == "sugar" ) ({
this.setName ("alcohol") ;
this.setWeight (this.getWeight () *0.52) ;

}

public boolean isFiltering()

{
if ( this.getName()=="yeast" || this.getName()=="malt")
return true; }
else { return false; }

public boolean isDistilling()

{
if ( this.getName()=="alcohol") ({
return true; }
else { return false; }
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}

public class Solid extends Chemical {

// an example of a specialisation of the chemical
// a noun class example
// notice focus on attributes

public Solid()

public Solid(String namex,double g) {
super (namex, g) ;

}

public class Liquid extends Chemical {

// an example of a specialisation of the chemical
// a noun class example

// notice focus on attributes

double volume;

public Ligquid() {

}

public Ligquid(String p_name,double p volume) {
volume= p volume;

double calc weight;

calc _weight=p volume;

setWeight (calc_weight) ;

setName (p_name) ;
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