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Abstract

Reaction systems is a new mathematical formalism inspiyeldébiological cell,

which focuses on an abstract set-based representatioreofichl reactions via
facilitation and inhibition. In this article we focus on tipeoperty of mass con-
servation for reaction systems. We show that conservafigets gives rise to a
relation between the species, which we capture in the coéeipe conservation
dependency graph. We then describe an application of tlasae to the prob-

lem of listing all conserved sets. We further give a suffitieegative polynomial
criterion which can be used in proving that a set is not caegker Finally, we

present a simulator of reaction systems, which also indatiemplementation of
the algorithm for listing the conserved sets of a given ieactystem.

Keywords: Reaction system; model checking; mass conservation; oeetsset;
conservation dependency graph; simulator.
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1 Introduction

Reaction systems is a framework inspired by the functiomhthe living cells
which was originally introduced in_[6]. This formalism foges on reactions ex-
clusively and only considers two basic ways in which theyiogeract: promotion
and inhibition. Reaction systems are based upon two fundthegrinciples. The
first one, referred to as the “threshold principle”, statedt,twhenever a resource
is available, it is available in unlimited amount. This ingsl in particular that
no competition for resources happens. The second prinsiptes that, unless a
resource is explicitly sustained by a process, it will varasd thus it will not be
present in the next state of the system.

One of the central features of reaction systems is that thexg wonceived
from the very beginning as open-ended systems: the influgiitbe environment
is represented as an inflow of resources (the context).

The research topics investigated in the domain of reactystems are vari-
ous [3], but they can generally be classified along two axde® first direction
comprises the research focusing on the mathematical grepef reaction sys-
tems: the set functions they can implement, their stateesezs, connections to
Boolean functions, etc. (e.g..![5,/7,[8, 12] 13]). The otharmiine of research
regards reaction systems as an instrument for biologicdety (e.g.,[[1, 2, 4]).
Quite naturally, investigations along this line led to tiwdy of model checking
for reaction systems. For example,lin|[10], the author®dhice a temporal logic
to define and subsequently verify certain properties oftr@acsystems. They
prove that the general model checking problenP$>ACE-complete. On the
other hand,[[1] starts with defining a series of biologicallypired properties for
reaction systems and shows that checking some of them, stfliimtractable, is
a problem of lower computational complexity.

In this paper we conduct a detailed study of the biologicalbpired property
of mass conservation in reaction systems, originally ohiced and shown to be
coNP-complete inl[1]. We get a new insight into the connectiomigein the inter-
nal structure of the reaction system and mass conservaticevbaling a relation
the latter induces between the species, and we captureethtson by defining
the conservation dependency graph. We then present amcaiomti of this graph
to the inherently difficult problem of listing the conserveets and show that, in
certain cases, the algorithm we devise to solve this proli¢eoapable of per-
forming better than the naive exponential approach. Weiroatby regarding
mass conservation from a yet another perspective and shofficent polyno-
mial criterion which allows one to quickly decide that a givaet of species is not
conserved. Finally, we present the reaction system simues have developed
with the goal of automating the process of running reacty@tesns, and which is
also capable of building the conservation dependency gsaphreaction system
and of using it to list the conserved sets.

This paper is structured as follows. In Sectidn 2 we remirdasic notions
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of reaction systems, as well as the notion of mass conservaiti Section B we
discuss the relationship between mass conservation andrtbestructure of the
reaction system, and introduce the conservation depepdgaph. In Sectiohl4
we describe the algorithm for listing the conserved setdchvis based on the
conservation dependency graph. In Sectibn 5 we provide atinegpolynomial

heuristics for mass conservation, as well as for a genexhipnservation prob-
lem. Finally, in Sectionl6 we give a short presentation of @action system
simulator. We conclude the paper in Secfibn 7 with a disoussf our work.

2 Preliminaries

In this section, we remind the notion of a reaction systemelsas some related
concepts capturing the static structure and the dynamicéspf the model. For
the original introduction the reader is referred|[tb [6] abH [

Definition 2.1 ([6]). Let.S be a finite set. Aeactiona in S is a triplet of finite
nonempty sets = (R,, I,, P,), whereR,,I,,P, C SandR, NI, = @. We
say thatR,, I,, and P, are the sets of reactants, inhibitors, and products:of
respectively. The set of all reactionsShs denoted byac(S).

A reaction system (RS} an ordered paird = (S, A), whereS is a finite
set of symbols (alternatively, elements or species).And rac(S). The setS is
called thebackgroundset) ofA.

We use the following notations [1]:

R =|J Ra.P = | P.,andsupp(A) = RUP.

acA acA
The setupp(.A) will be called thesupport sebf A.

The following definition introduces the result of a reactenmd of a reaction
system.

Definition 2.2 ([6]). Let. A = (S, A) be a reaction system} C S, anda € A.
We say that is enabledoy W, denoted byn, (W), if R, C W andl,NW = &.

(1) Theresult ofa on WV is defined as follows:

- Pa’ if ena(W)>
resq(W) = { @,  otherwise.

(2) Theresult of. A onW is defined as follows:

res4(W) = U res, (W).
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We now recall the notion of mass conservation in reactiotesys.

Definition 2.3 ([1]). Let. A = (S, A) be a reaction system. We say that a set
M C supp(.A) is conservedf for any W C supp(A), M N W # & if and only if
M Nresy(W) # .

Note that mass conservation has been defined with respéet sopport set so
as to exclude elements of the background set which can onpydweded via the
context, with the intuition that such elements would inably hinder the satisfac-
tion of conservation properties for reaction systems. Wimddnere a generaliza-
tion of mass conservation that allows one to consider aréifteset of elements
that can be reasonably excluded from the states testedrisengtion.

Definition 2.4 (parameterized conservatioet.4 = (S5, A) be a reaction system
andT C S. AsetM C T is conserved with respect @6 if, foranyW C T, it
holds thatM N W # @ if and only if M Nres4 (W) # @. We useons(A,T) to
refer to all sets that are conserved with respectto

Note that the original definition of mass conservation (O&éin [2.3) corre-
sponds to parameterized conservation with respefttosupp(.A).

Furthermore, it can be shown that in order to find the conseseats with
respect to a givefl’ we can, instead, find conserved sets with respect to the back-
ground set in a different RS. Indeed, consider the reactistem.A’ = (7', A)
where:

A'={d = (R, ,NT,P,NT)|a€e ANR, CT}.

It is straightforward to see that for amyc A andd’ = (R,, I, NT,P,NT)
we haveen 4(IW) = eny (W), given thatil” C T'. Moreover, reactions € A that
do not have a corresponding reactiondhare not enabled forl” C T because
R, « T. Thus, we havees (W) = res4(W) N T, which leads to thafi/ N
res o (W) = M Nres(W), foranyM C T, so the conserved sets with respect to
T are the same in the two reaction systemsoes(A, T) = cons(A’, T). Since
for A’ we have thaf is actually the background set, we will consider, throughou
the rest of this paper, only the problem of finding sets that@mserved with
respect to the background set (denoted-bys(.A) instead ofcons(A, S)), but
having all results implicitly applicable both for the paret@rized conservation
with respect to arbitrary sefs (by using the translation presented above) as well
as for the original definition of mass conservation (by tgkih= supp(.A)).

It should be noted, though, that in this case the reactioesyd’ obtained as
above may include reactions with empty inhibitor or prockets, even ifA does
not have them. Therefore, in this paper we relax the usuair@ment that all the
three sets defining reactions need to be non-empty [2, 3k iShn line with the
observation that reactions that can not be inhibited bytdtes taken into consid-
eration (e.g. subsets of the support set) are crucial fosm@asservatiori [1].

Finally, we recall one of the basic notations used in asygatly estimating
the complexity of an algorithm.



Definition 2.5. Given two real-valued functiongand g defined on real numbers,
we write f(x) = O(g(x)) if there exists a positive constaif and a real number
xg such that f(x)| < M|g(x)|, for all x > .

For further details on computational complexity we refetite monograph [11].

3 From Mass Conservation Relations to Dependency
Graphs

In this section we aim to gain a better understanding of masservation in
reaction systems by relating it to the inner structure irduby reactions. We
start by first translating the reactions to a graph that cetefyl characterizes the
behavior of the system.

Definition 3.1. Let A = (S, A) be a reaction system. Theehavior graplof A4 is
defined as7, = (V;, E3), with V, = 2% and E, = { (W, res4(W)) | W C S}.

Note that the behavior graph is in fact a different represt@ of the result
functionres 4. In particular, it is possible to have different reactiorstgyns that
translate to the same behavior graph (such systems arecshgl functionally
equivalent([6]).

Consider now a conserved set. For any statél” we have that\/ either in-
tersects bothl” andres 4(1V) or is disjoint from both of them. A similar property
can be formulated fak/ with respect to the connected components of the behavior
graph. Before showing how this can be achieved, we give akgeaph-theoretic
definitions.

Definition 3.2. Let G = (V, F) be a directed graph. We say that a nodés
connected with a nodeif there is a (possibly degenerate) undirected path from
to v in G. Connectedness defined in this way is an equivalence relatie refer
to its equivalence classes esnnected componerasid we us€'C(u) to denote
the connected component that contains-urthermore, we denote the set of all
connected components@fby CC'Sg = {CCq(u) | u € V'}.

Note that our notion of connected components differs diygham its standard
use in the sense that we only refer to sets of nodes insteado¢ed subgraphs.
For further introduction to graph theory, we refer the readg9].

In the following definition we introduce a formal notatiorr feaying that a
given set)M intersects all (or none) of the sets from a collection

Definition 3.3. Let .S be an arbitrary finite set and consider a set C S and a
collection of set€ C 2°. We use the notatioh/ NC = {T € C| M NT # &}
to refer to the collection of those setsdrwhich intersect\/.
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We say thai\/ intersect<’ if it intersects every element6fi.e. M M C = C.
We say thatM/ is disjoint from C if it is disjoint from every element df, i.e.
M M C = @. We say that\/ is consistenwith C if it intersectsC or is disjoint
fromC.

Proposition 3.1. Let A = (S, A) be a reaction system and, = (V}, E}) its
behavior graph. For any set/ C S, the following two statements are equivalent:

(1) M is conserved,
(2) M is consistent with every connected compoiteatC'C'Sg, .

Proof. The implication[(2)= (1) follows from the fact that, for every sét C S,
we havenext(W) € CCq,(W).

We now prove thal{{5-(2). LetC be a connected component of the behavior
graphG,. Assume thatl/ is a conserved set for which there exit, W, € C
such thatM N W; = @ andM N W, # @. SincelWW; andWW, are in the same
connected component, there is a path of nodes connecting ttee, there exist
Vi, ..., V, such thatv; = Wy, V,, = Wy and, foralliwith1 < i <n—1,
(Vi,Vis1) € Eor(Viy1,V;) € E. Butthen, in both cases, it must be tAdn V; #

g < M NV, # @, sowe can via transitivity conclude thaf N W, # @ <
M N Wy # @, which contradicts our assumption and completes the proofl]

Note that, by the result presented in Proposifion 3.1, thesewation of a
given setM only depends on the connected components of the behaviph gra
and not on its edges or their direction. This means that exely fifferent re-
action systems may end up having the same conserved setsather words,
equivalence with respect to conserved sets is a lot weaarftinctional equiva-
lence.

3.1 Conservation dependency graph

In what follows we aim to further investigate the propertidésonserved sets in
relation with connected components of the behavior graph.

Proposition 3.2. Let A = (S, A) be a reaction system and, = (V}, E) its
behavior graph. Consider an arbitrary element S and letC, be the connected
component that contains the singleton &et, i.e. C, = CCg,({z}). Similarly,
takeC, = CCg, (@). We denote, for any collectiah cover(C) = Jeo T

(1) If x € cover(Cy), thenz is not contained in any conserved set4f i.e.
{z} Mcons(A) = 2.

(2) If cover(C,) = S, thenz is contained in all nonempty conserved setsof
i.e. {z} Mcons(A) = cons(A) \ {@}.
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(3) For everyy € cover(C,) and for every conserved séf, if z ¢ M, then
y & M, (or, equivalentlyy € M impliesz € M), i.e. {y} Mcons(A) C
{z} Mcons(A).

Proof. (1) Let M be an arbitrary conserved set. Then, from Propositioh 8.1, i
follows that A/ must be consistent wit,. Sinceo € C;, andM N @ = &, it
must be thaf\/ M C, = @. In particular, we must also hawe N {z} = @, which
means that ¢ M.

(2) Let M be a nonempty conserved set. Then, siife) S # @, it must
be thatM intersects at least one set frain. But from Propositiof 3]1 we know
that M/ must be consistent withi, and, thus, it must be that’ 1 C, = C,. In
particular, we must also have N {z} # &, which is the same as€ M.

(3) Let M be a conserved set such tha¢ M. ThenM N{z} = @ and, since
M must be consistent witdi,, it must be thatM/ M C, = @, which essentially
means thafl/ N cover(C,) = @. In particular, this means thatg M. O

As we have seen, the conserved sets of a given RS only depethe acon-
nected components of the behavior graph, i.e. on the mamtithduced by the
reactions on the state space. Proposi(tioh 3.2 extractepiep of conserved sets
by examining particular states and their connected commene

For example, the first two statements give us sufficient cavdi for an ele-
mentx to be in no conserved set, respectively in all of them. No#&t there is
also an interesting interplay between the two statemenenwihere exists am
such thatcover(C,) = S and@ € C,. Indeed, the latter is equivalent to having
C. = Cg, Which means thatover(Cy) = S, so no element of can be part of a
conserved set. On the other hand, the former property leadbeing part of all
nonempty conserved sets, which is trivially true since thly conserved set in
this case is the empty set.

The more dramatic implication of the previous remark is,tfatthe standard
definition of reaction systems, where empty inhibitor seésrat allowed in re-
actions, there can be no nonempty conserved set at all. dnf@esuch reaction
systems it holds thats 4(S5) = @, which leads taover(Cy) = S.

The third claim of Proposition_3.2 defines a dependencyicgldietween the
elements of the reaction system with respect to mass caigary The statement
implies that, for a pair of specids, y) such thaty € cover(C,), a conserved
set that does not containcannot contairy or, equivalently, any conserved set
that containg; must contain: as well. We can capture this dependency between
species in a directed graph.

Definition 3.4. Let.A = (5, A) be areaction system arte, = (V}, E;) its behav-
ior graph. Theconservation dependency graph; = (V.q, E.q) Of A is given by
Vea=SandE, = {(z,y) |z € S N y € cover(C,)}.

Intuitively, every conserved set should satisfy all coasiis that are encoded
by the conservation dependency graph. Alternatively, wefgeus on the depen-
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dency graph alone and consider all the sets that are camsigite the aforemen-
tioned constraints.

Definition 3.5. LetG = (V, E) be a directed graph. A sét C V is asource set
of Gif EN(V\S) xS =g,ie. all edges o that cross the cut (if any) do so
fromStoV \ S. We denote the set of all source set&diy o(G).

It follows immediately from the definition that, for any gtag: = (V, F),
both @ andV are source sets @. The correspondence between the conserved
sets of a reaction system and the source sets of its conserdapendency graph
is given in Proposition 313.

Proposition 3.3. Any conserved sél/ is a source set of the conservation depen-
dency graph.

Proof. The result follows from claim{3) of Propositién 8.2 and trefidition of
the conservation dependency graph. O

3.2 Computing the source sets of a directed graph

In this subsection we are concerned with the computationwfcg sets for gen-
eral directed graphs. We start by investigating the inggrletween source sets
and the graph structure.

Proposition 3.4. Let G = (V, E)) be a directed graph and I&f be an arbitrary
source set of5.

(1) The parent of a node that is iiis also inS, i.e. for every two nodesandv
we havey € S A (u,v) € E=ueS.

(2) The child of a node that is not ifi cannot be inS either, i.e. for every two
nodesu andv we haveu ¢ S A (u,v) € E=v & S.

Proof. The negation of either statement directly violates the defimof source
sets by providing an edde, v) that goes fromi/ \ S to S. O

The statement of the previous proposition can be immedgigtteralized by
induction to ancestors and descendants of nodéesgn ancestor of or, equiva-
lently, v is a descendant of, if is there exists a directed path fromto v).

Corollary 3.1. LetG = (V, E) be a directed graph and let be an arbitrary
source set of5.

(1) The ancestor of a node that is this also inS.

(2) The descendant of a node that is nofirs not in S either.



We are going to relate source sets with the strongly condeximponents of
the graph under consideration.

Definition 3.6. Let G = (V, E)) be a directed graph. Two nodesv € V are
said to bestrongly connectedf there exist inG a directed path fromu to v
and a directed path fromv to u. Strong connectedness defined in this way is
an equivalence relation. We refer to its equivalence classestrongly con-
nected components (SCC'and useSCCg(u) to refer to the SCC that con-
tains u. Furthermore, we denote the set of all SCC's(otby SCCSg, i.e.
SCCSq ={SCCs(u) | ueV}.

It is not difficult to see by Corollary 311 that the source setanot split the
strongly connected components of a graph.

Proposition 3.5. LetG = (V, E) be a directed graph' € SCCS a strongly
connected component 6f and S a source set ofs. Then eitherC C S or
cns=a.

Proof. If C' NS = @, we have nothing to prove. So assufie) S # @ and
chooseu € C'N S. From Corollary 3.1 it follows that all ancestors@imust be
in S as well. In particular, this implies that C S. O

Corollary 3.2. Any source set of a grap8f is a union of strongly connected
components aofr.

Proof. Let S be an arbitrary source set 6f. For everyu € S, we have by
Proposition 3.6 thatCCs(u) C S, sowe can writes = |, . SCCq(u). O

uesS

Thus, we have seen that all source sets are unions of SCCrdém to see
exactly which of such unions are source sets, we will reféhéocondensation of
G, the graph obtained by replacing each SCCrafith a single node.

Definition 3.7. Let G = (V, E) be a directed graph. Theondensatioof G is the
directed graphz = (V, E') whose nodes are the SCC's@fi.e. V = SCCSg,
and whose edges are defined as follows:= {(C1,C2) € V x V | Ju €

Cy.3JveCy. (u,v) € E},i.e. thereis an edgé’y, Cy) in G iff there is an edge
in G from an element of; to an element of’,.

Proposition 3.6. Let G = (V, E) be a directed graph and: :N(V,E) its con-
densation. A sef C V is a source set ofr iff there exists a sef C V' such that
S = cover(S) and S is a source set ofr.

Proof. We start with the forward implication. We know already fronorGl-
lary[3.2 that there existS C V such thatS = cover(S). Assume that is not a
source set if;. Then there exist/ € S andW € V \ S such thai{W,U) € E,
which means that there exigte U andw € W such thatw, v) € E. But this
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contradicts the fact thaf is a source set, sincec S andw € V' \ S. Thus, it
must be thaf is a source set af..

For the reverse implication, consider a sourceSsef the condensation graph
G and letS = cover(S). Assume thafS is not a source set af. Then there
exist two nodes, € S andw € V' \ S such tha{w, u) € E. Since strongly con-
nected components are either equal or disjoint, it must&eSthC (u) € S and
SCCq(w) € V\S. Furthermore, sincew, u) € E, we havg SCCgq(w), SCCq(u)) €
E, which contradicts the fact thatis a source set af. Thus, it must be thas is
a source set ofr. O

The practical conclusion we can draw from Proposition 3. it suffices
to have an algorithm computing source sets for directedli@cgaphs (DAG'’s)
and use it on the condensation graph.

In what follows, we will use7| s to denote the restriction of the graph=
(V, E) to a subset of nodeS C V, i.e. Gls= (S,EN (S x S)). We will also
use the symbalescq(.S) to refer to the set containing all the nodes fréhand
all their descendants. Similarly, we will ugecq(.S) to refer to the set containing
all nodes fromS and all their ancestors i@.

Theorem 3.1.Let G = (V, E) be a directed graph]” C V' an arbitrary set of
nodes and € V' an arbitrary node frontG.

(i) Any setT" can be expanded to a source $ebof GG by first adding toS all
ancestors of", and then taking the union with a source set of the rest of the
graph. Moreover, every source set that includesan be computed in this
way:

Seco(G)NT CS & S\ ancg(T) € o(Glv\ancer)) N ancg(T) € S.

(i) A source sefS does not intersect a sétif and only if S is a source set in the
graph obtained fronds by removing all elements @fand their descendants:

S e O'(G) ANSNT=o<S5¢€ U(G\LV\descG(T))-

(i) Given a nodes, all source sets aof;f can be computed recursively by relying
on subgraphs of/ that do not contairs:

O’(G) = U(G\LV\descg({s})) U {S U (mcG({s}) | S e U(G\LV\ancg({s}))}'

Proof. () We have:

Seo(GY)NT C S
SEN(V\S)xS=aANancg(T) C S
SEN(V\S) x (S\ancg(T)) =2 ANancg(T) C S
&85\ ancg(T) € o(Glv\ance () N ancg(T) € S.
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The first equivalence follows from the definition of consehaets and Corol-
lary[3.1. The second follows from the definition @ic. (7)), as there can be no
edges of7 going into this set. The last equivalence relies again ord#imition
of source sets and also oh\ B = (A \ X) \ (B \ X), which holds whenever
X C B CA.

(i) We follow a similar approach and we have:

Sea@ASNT =
SEN(V\S)xS=aANSNdescg(T) =&
SEN((V\descg(T))\S) x S=2ANSNdescg(T) =@
&8 € 0(Glv\desca (1))

Just as before, the first equivalence follows directly fréwa definition of source
sets and from Corollary 3.1. The second equivalence relieth® definition of
descg(T), as there can be no edges(ofjoing out of this set. Finally, we use the
definition again to get the desired result.

(i) The result follows from [(i) and[({li) by noting that we ngpartition the
source sets aff into those that contaimand those that do not contain it. We can
thus write:

Seco(G)Nse S 8\ ancg({s}) € 0(Glvvanea(fs})) N anca({s}) € S,
S e O'(G) AN} € S& S e U(Gi/V\descG({s}))'

These statements lead to the desired resuilt. O

We can immediately apply the third claim of this lemma to arsewnode of
G (a node with no parents) and write an even simpler decomeosit the source
sets ofG into two parts.

Corollary 3.3. LetG = (V, E) be a directed graph and let € V' be a source
node. Then we have:

O‘(G) = U(G\LV\descg({s})) U {S U {S} | S e U(G\LV\{s})}-

We can translate the previous formal result into an algoritor computing
the source sets of a directed acyclic graph.

Algorithm 3.1 (source sets of a DAG)Let G = (V, E') be a DAG. If the graph
contains no nodes, return the empty set as the only sourc®©satrwise choose
a source node < V', compute the source sets@fy (s} aNd Gl gescq ({s3), then
aggregate them according to Corolldry B.3 to obtain the sewets of-.

Note that the fact that the graph is acyclic is required fereRistence of the
source node.
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4 Enumerating the Conserved Sets of a Reaction Sys-
tem

In this section we propose and discuss the advantages ofjanthin that relies
on the conservation dependency graph to list all the cordesets of a given
reaction system.

4.1 An algorithm for enumerating all conserved sets

We provide here an algorithm for listing all conserved séta peaction system.
The actual test for conservation is based on source setsedind on proposi-
tions[3.1 and3]3, but also on the heuristics coming from &sibipn[3.2.

Algorithm 4.1 (compute all conserved sett)et.A = (.S, A) be areaction system.

1. Compute the behavior grah,.
2. Compute the connected component§;pand analyze them.

(a) ComputeP = cover(Cy).
(b) Compute) = {z € S | cover(C,) = S}.
3. Compute the conservation dependency gr@phof A.
4. Compute the strongly connected components gfand the condensation
graphG ..
5. Adjust the condensation graﬁhd to account forP and Q.

(a) Remove SCC's that contain elements fiBitogether with their an-
cestors.

(b) Remove SCC'’s that contain elements fi@ntogether with their de-
scendants.

6. Compute the source sets of the resulting graph using Algoi3.1.

7. For each source séf, test whethefl” U () is a conserved set by checking
that it is consistent with all connected component& pf

Theorem 4.1. The algorithm computes all conserved sets correctly.

Proof. We first show that step$ — 6 and the input used for stéptranslate to
computing exactly the source sets@f; which contain and are disjoint from

P. In order to find all the source sets which are disjoint frémwe can rely

on Proposition_3]6 to conclude that we also need to excludduth SCC'’s of
elements fronP, then based on TheorémBL.1 (ii) we must also exclude desoenda
SCC's. This translates to st&pa) in the algorithm. A similar justification holds
for step5(b).
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Now note that this algorithm relies on testing for conseoratising Proposi-
tion[3.3, but only examines a reduced set of candidates bingebn Proposition
[3.2 and Proposition 3.3. O

Remark that the decision problem for conserved sete§>-complete [[1].
As such, we know already that we cannot test for conservatipalynomial time
unlessP = NP. On the other hand, we focus here on finding all conserved sets
which means that we can make use of aggregate informationtfre original re-
action system in order to speed up the test for conservdtigrarticular, once we
have the connected components of the behavior graph, wemply$orget about
the reactions. Moreover, the analysis of the connected oosmgs of the empty
set and singleton sets, together with the constraints excodthe conservation
dependency graph, enable us to reduce the actual numbendifiates that we
need to verify.

To understand the benefit of the heuristics employed in therdhm and also
the nature of the reactions systems for which it is effectve consider some
examples. We start with a simple example to illustrate hanatigorithm actually
works.

Example 4.1. Consider the following simple reaction system:

S=A{ry,z2}
A=A{{z},{z}{y, 2}), {u}, 2, {=}). {z, 2}, 2. {y})}
Uiy} {21 {y}), (. 21, 9, {=}) )

The corresponding behavior graph, can be computed by findings 4() for
all W C S. We obtain the graph from Figuke 1.

@—O
ORI

Figure 1: Behavior graph for the reaction system from Exadp] .

The relevant connected components for our algorithm are:

Co = {{z}, {v, 2}}
Cy = Hyt Az v} {e, 21 {z,y, 23}
C.={{z}, 9} =0Co

The corresponding conservation dependency graph is piredém Figure 2.

12
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Figure 2: Conservation dependency graph for the reactistesy from Exam-
ple4.].

Note that this graph has only three source sets, namglyz,y} and S =
{z,y, z}. Thus, even if we are to consider the full conservation déeeay graph,
we would examine only 3 out of the total number of 8 candidates

In fact, for this case we still need to consider the constsazoming from
connected components of singleton sets and the empty detgiVesP = {z}
and@ = {y, z}. That s, all non-empty conserved sets must contandy and
cannot contaire, which means that/ = {z, y} is the only non-empty conserved
set for this reaction system. In particular, the algorithmlwork on an empty
graph at step.

While the previous example is rather simple, it still regghle main improve-
ments that come from the heuristics. On the other hand, densiso the case
where the behavior and conservation dependency graphstgwoavide any use-
ful information, i.e.P = @, Q = @ andG.4 only has self-loops for each node,
meaning that all sets are source sets.

Example 4.2. Consider the reaction systesh = (S, A) given by:

S = {SCl,.TQ,. .. ,SCn}
A={({z:}, 2 {i}) | z; € 5}

In this case the result function satisfies 4 (W) = W for all statesiW C S,
i.e. all states are isolated and connected components goataingle state. In
particular,Cy; = {@} andC,, = {{z;}} forall z; € S.

Thus, for this example we haye= () = @ and the conservation dependency
graph has only self-loop edgés,; = {(x;,z;) | z; € S}. This means that every
subset of5 is a source set, i.e. we need to examine all candidates. Bhisrcase
note that in fact all subsets 6f are conserved.

Example 4.3. Consider the reaction systerh = (S, A) given by:

S:{SCl,.I'Q,...,SCn}

A={({z:}, S\ {z:}, {z:}) [ w; € 5}
U{({zi,z;},9,95) | zi,z; € SNx; # x5}

The result functiomes 4 satisfies:

W, if W] < 1

res (W) = {57 7] > 2

13



Just as in Examplie_4.2, this reaction system does not givielusormation
for reducing the number of candidates examined in Algorithih Instead, we
analyze the behavior graph in relation to Proposition| 3.1.

Based on the result function, the behavior graph has 2 connected compo-
nents in this caseC, = {@}, C,, = {{z;}} for eachz; € S, and one connected
component containing all the other states, call it

We know that any conserved détmust be consistent with all connected com-
ponents of the behavior graph. For CC’s that contain a sirggle this holds triv-
ially, so we only need to worry abodt. The empty set is always conserved, so
we focus onV/ # @. ThenM NS # &, so it must be that/ M Cs = Cg, i.e. M
intersects all the elements 6§.

If more than two elements of are missing fromV/, then we can find;, z;
such thatM N {z;,z;} = @, soM is not conserved. If at most one element is
missing, on the other hand/ is consistent witls and thus also conserved.

Therefore, for this reaction system, the conserved sets are

cons(A) = {2, STU{S\ {z;} | z; € S},

for a total ofn 4+ 2 sets. However, the number of candidates we need to examine
is 2",

Note that in Example 412 and Examplel4.3 we end up examininmpakible
states, but there is a fundamental difference between tbe While in the for-
mer we actually do need to examine all sets since all are coedein the latter
the number of conserved setsrist+ 2 out of the2” candidates. On the other
hand, remark that the reaction system from Exarnple 4.3 hasdrgtic number
of reactions.

In the general case, one reactid®,, /,, P,) is enabled for all stated” such
that R, € W C S\ I,. Thus, a reaction that involves only a few species as
reactants or inhibitors will have an impact on a significariset of the edges of
the behavior graph. Put differently, the edges-gfare strongly interrelated and
breaking this interdependence, to decouple for examplsitiggeton states from
the rest of the graph, requires an increased number of oeactl hus, we conjec-
ture that most reaction systems for which the number of i@agis linear in the
number of species will reveal enough structural informaiio the conservation
dependency graph to make the computation of conservedftetsve.

4.2 Flexibility of the algorithm

In developing the algorithm presented in this section wiredehs a first step on
the computation of the behavior graph and we implicitly assd that this was
feasible. Note, however, that the number of possible statesreaction system is
exponential in its number of species and, as such, stormmgehavior graph may
be impractical. In this subsection we discuss that our &lyaris flexible in the
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way that the full behavior graph could be replaced in the irgfuhe algorithm
with a different, smaller graph; the consequence is of eurderms of higher
running time.

First, remark that checking whether a given set is consetteed not need the
behavior graph and can be performed instead by running gtersyon all possible
states. Of course this trades time for space, as we lose tfamiage of having
cached the results in the behavior graph. On the other hanthsk of checking
the conservation condition is highly parallelizable, simedividual states can be
considered separately.

Second, note that the reduction in the number of candidetessron three
elements: the sd? of species that can not be part of any conserved set, thg set
of species that are known to be part of all conserved setdh@wbnservation de-
pendency grapkr.;. However, the algorithm can work also with partial versions
of these.

For example, whenever it is not practical to store the fuldaor graph, we
can instead compute partial versionsfaf@ andG,., by running the RS on the
empty set, singleton sets and the background set. From, tiwesean extract the
following:

e any element of states that are reachable fromill be in P;
e any singleton state reachable frafiwill be included inQ);

e elementsy of states reachable from singletofis} will contribute edges
(x,y) for Gq.

Moreover, note that we can even augment the algorithm witistcaints that
do not come from the RS, but from the actual problem we aredsted to solve.
For example, if we are only looking for conserved sets thataio a particular
elementz, we can tune the algorithm by addingo (either the full, or a partial
version of)Q.

5 Negative Polynomial Heuristics for Formula Cor-
respondence

In this section we give a simple polynomial (in size of thenfiofae and num-
ber of reactions) heuristics which can help decide whetlgiven set)M is not
conserved. The provided heuristics will be sufficient, botnecessary. We will
provide two negative criteria for a more general problent,fasd then show how
they can be applied to mass conservation.

Note that, since deciding whether a given set of speties conserved in
a reaction system is eoNP-complete [[1], we could not expect to give such a
polynomial criterion which would be both sufficieabhd necessary. This section
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shows however that analysing some static properties ofghetion system may
help conclude thad/ is not conserved in polynomial time, without enumerating
all subsets of species.

We recall first that @8oolean formulay is said to be over an alphabgtf all
its variables names are frofh In the following we assume all Boolean formulae
to be given in a disjunctive normal form. A subs&t C S is said tosatisfythe
Boolean formulap overS if the expression fop contains a conjunction; A. .. A
Ty A1 A ... Ay, Such that

D) {z|1<i<n}CW,and
@ {y; |1 <i<m}nW =2.

By convention, we writep(1W) = 1, or simply (W), if the subsetl” satisfies
v, andp(W) = 0 otherwise. For more details about the relationship between
reaction systems and Boolean functions we referlto [3] ahd [6

The paper[1] generalizes mass conservation in the form oféwnula cor-
respondence problemsGiven a reaction systerd = (S5, A) and two Boolean
formulae¢ andy over.S, the formula correspondence problems consist in decid-
ing whether the following relations hold for every $&t C supp(A):

o(W) = (resa(W)),
o(W) & d(resa(W)).

It is shown in [1] that deciding either of these questionsi$P-complete.

We can parameterize the formula correspondence problemassiobsefl” of
the background set in the same way as we parameterized massreation in
Section 2. In such a case, we would define the formglamd« over T, and
would requirep(W) = 1h(res,(W)) (respectivelyp(W) < (res,(W)) for all
subsets of’, instead of the support o4. It turns out that, just as with parameter-
ized mass conservation, checking formula correspondeyaiest’” C S can be
reduced to testing the same formulae against the subsdts batkground set of
the reaction systemd’ = (7', A’) where:

A ={(Ry,I,NT,P,NT)|a€ ANR, C T}.

Indeed, remember that, for any $&t C 7', we haveres o (W) = res4(W)NT.
Sincey is overT as well, the elements from the potentially non-emyty, (1) \

T will have no influence upon the satisfiability af, i.e. (resy(W)) <
Y(resa(W) NT). This implies that formula correspondence.dnwith respect
to 7" holds if and only if it holds inA’ with respect to its full background set.

Seeing that conventional formula correspondence can bessgd as param-

eterized correspondence over= supp(.4) is a matter of remarking thatand

in the conventional formulation can be restricted to théahetsupp(.A), without
losing generality. Indeed, havirgincludez, with z € S\ supp(.A), for example,
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is redundant since we are only checking the correspondeyaiest the subsets of
supp(A) anyway. If however) employsz in its non-negated form, then no subset
of supp(A) will satisfy ¢. Similar arguments can be given forand the result set
res 4 (V).

In view of the fact that any case of parameterized formulaesmondence,
and, in particular, the conventional correspondencegdsaidle to formula corre-
spondence over the full background set, we only focus orettteriproblem.

Consider a conjunction; = 3 A ... Az, Ay A ... A yn. We will use the
following shortcut notations:

pos(¢1) = {z1,...,an},
neg(d)l) = {y17"'7yn}'

Suppose now that the first formufaover S is given in a disjunctive normal
form, ¢ = \/ ¢;, and consider a reactian= (R,, I,, P,) over the same alphabet

=1
S. We would like to know the conditions farto be enabled on at least one subset
satisfyinge.

Lemma 5.1. For a reaction systemll = (A, S), areactiona = (R,, 1., P,) € A,
and a conjunctionp; over S, the following conditions are equivalent:

(1) IW C S.¢;(W) A eny(W), and
(2) Ra N neg(¢z) = Ia N pOS((Z)Z-) = 4.

Proof. (1)=(2): Suppose there exists a subggtwhich both satisfieg; and
enables:. This means thak, C W and/, N W = &, but also thapos(¢;) C W
andneg(¢;) N W = @. Therefore,& = I, Npos(¢;) C I, N W = @, and
@ = R, Nneg(¢;) €W Nneg(¢;) = 2.

@)=(): Suppose that, for the reactian it is true thatR, N neg(¢;) =
I, Npos(¢;) = @ and consider the sét’ = R, U pos(¢;). Clearly,¢;(1¥) holds,
becauseos(¢;) C W, and becaus&, Nneg(¢;) = pos(¢;) Nneg(¢p;) = &. On
the other hand, we also know thaf C W and/,NR, = I,Npos(¢;) = <, so the
reactiona is enabled orRR, Upos(¢;). We have therefore successfully constructed
a set satisfying the statement (1). O

We will use the shorthand notatien, (¢;) = 1, or simplyen,(¢;), to refer to
the fact thatz can be enabled on a subset satisfying the conjungtion

It is now possible to formulate a similar statement for a ganfermula given
in a disjunctive normal form.

Lemma 5.2. For a reaction systemll = (A, S), areactiona = (R,, 1., P,) € A,
and a Boolean formula = \/ ¢;, both over the same alphabgt the following

=1
conditions are equivalent:
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(1) IV C S.p(W) A en,(W), and
(2) Je{1,...,n}. R, Nneg(¢;) = I, Npos(¢;) = .

As before, we will writeen, (¢) = 1, or justen,(¢), to refer to the fact that
is enabled on a set satisfying

The following two observations give negative heuristidasia for formula
correspondence. Both cases are formulated in the settilegrection system

A = (S, A) and two Boolean formulag = \n/ ¢; andy = \7 Y; overs.
=1 1

7=

Proposition 5.1. If A contains a reactiom such thaen,(¢), but P, Nneg(v;) #
o, forall 1 < j < m, then there exists a subs@gt C S for which (W)

P(resa(W)).

Proof. Since we know thatn,(¢), there exists such a subgét C S that¢(1V)

anden, (). The hypothesis that the product setoftersects alheg(v;) means

thatres 4(W) intersects alheg(1);) too, and therefore (res 4 (7)) does not hold.
U

Verifying the condition of the previous proposition reqsgrgoing through
both¢ andv for every reaction of4. The time complexity of such a procedure is
in O(|¢1] - [¢| - (Ng + N; + Np)), where|¢| is the number of atomic terms in a
disjunctive normal ofp, while Nr, N;, andNp are the total sizes of the reactant,
inhibitor, and product sets of the reactions4n

Ng= ) [Ral, Ni= 30 |lal, Np= ) [Pl

a€A acA acA

Proposition 5.2. Consider the seB = {b | b € A, en;(¢)} and take the union

of the products of the reactions in this sd: = |J F,. If, for any conjunction
beB
1, it is true thatpos(vy;) € P, then there exists a subsBt C S for which

P(W) 7 h(resa(W)).

Proof. Consider a reactioh € B. Sinceen,(¢), there exists a sét’ such that
#(W) and alsaen, (W), sores4(W) # @. Butress (W) C P and we know that
formulay containsno conjunctiomy; such thapos(¢;) C P. Therefore, fono

1, itis true thatpos(v;) C res (W), which means thates 4(1/') does not satisfy

. O

Verifying the condition of this proposition requires goitigoughe for every
reaction in the systena(|¢>| - (Ng + Np) steps), putting together the product sets
of certain reactiong{(Np) steps), and then checking if the non-negated variables
of a conjunction ofy form a subset of this uniorX(|¢)| - Np) steps). The time
complexity of such a procedure can therefore be estimatéelting toO(\¢\ .

(Nr + Np) + [¢] - Np).
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To formulate a heuristic criterion for mass conservatioa,will rewrite this
problem in Boolean formulae. The arguments in Sediion 2alle to consider
mass conservation over the full background set. For dset S, the setdl/
satisfying the conditiod/ N W # & are exactly the sets satisfying the following
Boolean formula:

¢ = \/ x.

zeM

The property ofM being conserved can then be written as follows (df. [1]):
VYW CS.op(W) & ¢(resa(W)).

Applying the statement of Proposition 5.1 to this particutestance of the
formula correspondence problem is ineffective, becaussonpnction iny con-
tains negated variables. However, instantiating the rstae of Proposition 512
(and that of LemmB.512) yields the following negative heigssfor mass conser-
vation.

Corollary 5.1. Consider a reaction system = (.S, A), a subset of specied C
S, and a subset of reactiond = {b | b= (Rp, Iy, Py) € A, M\ I, # @}. Ifitis

true thatM N |J P, = @, thenM is notconserved inA.
beB

6 Reaction System Simulator

Even though it is relatively easy to write out an interacfiwvecess of a reaction
system given a context sequence, doing this by hand quicdpres tedious
and error-prone. To automate the task, we developed a saagystem simula-
tor, br si m This is a stand-alone software tool which reads the desmnif
a reaction system and a sequence of contexts from a file, hensystem with
the supplied contexts, and then outputs the sequence dfsiedihe simulator
includes the option of annotating the evolution, in whickesgor each evolution
step, it will show the previous result, the context addethatcurrent step, as well
as the reactions enabled in the current state. Interagtiveining the reaction
system is also supported, in which case the simulator wklfasthe new context
at each step.

Besides being able to run a reaction system for a given cobssguence, the
simulator can also show its conservation dependency graptell as compute
and list the conserved sets using an implementation of perithm shown in
Sectior 4.

The source code of the simulator is licensed under GPLv3 siravailable
at [14]. We also provide a web interfaceliosi mat [15].

The input format of the simulator is similar to the notatiamventionally
used to write reactions. For example, a reaction systenagong the reactions
({a},{b,x},{a}) and({b}, {a, z}, {b}) would be described as follows:
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a, b x, a
b, ax, b

The context sequene&, = {a, b}, C; = &, Cy = {a, x} would be represented in
the following way:

ab

a X
For further details about using the simulator as a standesdpplication or via its
web interface we refer the reader tol[14} 15].

7 Conclusion

In this paper we focused on the biologically inspired propef mass conser-
vation in reaction systems and unveiled the conservatipemgency relation it
induces between the species. It turned out that relying erctimservation de-
pendency graph makes it possible to design an algorithnistond the conserved
sets which, in certain cases, performs better than the rgupeoach. Because
conserved sets can well be exponential in number/((cf. [1¢) cannot expect to
build an algorithm which would always work in subexponeltiime. Yet, the
fact that using the conservation dependency graph allosgcieg the number of
computational steps in some cases serves as an example afldsamwing cer-
tain structural properties of a reaction system helps to relatively quicdgwer
guestions which would otherwise need an exponential amafuiimhe.

In Sectior’b we also provided a sufficient polynomial criterivhich can be
used to prove that a given set of species is not conserved criteeon is built
around a different series of observations revealing yetratbnnections between
the inner structure of the reaction system and the sets getoas. Because de-
ciding the conservation of a setéisNP-complete, we could not hope to have a
sufficientand necessary criterion which would also be polynomial.

While we do show an important application of the conservatdependency
graph to listing the conserved sets of a reaction systemxp&ocethat a number of
other properties of this graph remain to be further explofedromising research
direction would be that of establishing in which way the aawation dependency
graph is related to other conservation properties, likariawnt sets, or the formula
correspondence problems (see [1] for the definitions).

Lastly, in Sectiorh 6, we presented the simuldiosi mwhich automates the
process of running a reaction system with a given sequenceraéxts, but also
supports listing the conserved sets using an implementaticAlgorithm[4.].
Since itis possible to both run the simulator as a standesdplication and work
with it via a web interface, we hope that it will be useful te thctively growing
community of researchers working in the domain of reactimstens.
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