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Abstract

Reaction systems is a new mathematical formalism inspired by the biological cell,
which focuses on an abstract set-based representation of chemical reactions via
facilitation and inhibition. In this article we focus on theproperty of mass con-
servation for reaction systems. We show that conservation of sets gives rise to a
relation between the species, which we capture in the concept of the conservation
dependency graph. We then describe an application of this relation to the prob-
lem of listing all conserved sets. We further give a sufficient negative polynomial
criterion which can be used in proving that a set is not conserved. Finally, we
present a simulator of reaction systems, which also includes an implementation of
the algorithm for listing the conserved sets of a given reaction system.

Keywords: Reaction system; model checking; mass conservation; conserved set;
conservation dependency graph; simulator.
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1 Introduction

Reaction systems is a framework inspired by the functioningof the living cells
which was originally introduced in [6]. This formalism focuses on reactions ex-
clusively and only considers two basic ways in which they caninteract: promotion
and inhibition. Reaction systems are based upon two fundamental principles. The
first one, referred to as the “threshold principle”, states that, whenever a resource
is available, it is available in unlimited amount. This implies in particular that
no competition for resources happens. The second principlestates that, unless a
resource is explicitly sustained by a process, it will vanish and thus it will not be
present in the next state of the system.

One of the central features of reaction systems is that they were conceived
from the very beginning as open-ended systems: the influenceof the environment
is represented as an inflow of resources (the context).

The research topics investigated in the domain of reaction systems are vari-
ous [3], but they can generally be classified along two axes. The first direction
comprises the research focusing on the mathematical properties of reaction sys-
tems: the set functions they can implement, their state sequences, connections to
Boolean functions, etc. (e.g., [5, 7, 8, 12, 13]). The other main line of research
regards reaction systems as an instrument for biological modeling (e.g., [1, 2, 4]).
Quite naturally, investigations along this line led to the study of model checking
for reaction systems. For example, in [10], the authors introduce a temporal logic
to define and subsequently verify certain properties of reaction systems. They
prove that the general model checking problem isPSPACE-complete. On the
other hand, [1] starts with defining a series of biologicallyinspired properties for
reaction systems and shows that checking some of them, whilestill intractable, is
a problem of lower computational complexity.

In this paper we conduct a detailed study of the biologicallyinspired property
of mass conservation in reaction systems, originally introduced and shown to be
coNP-complete in [1]. We get a new insight into the connection between the inter-
nal structure of the reaction system and mass conservation by revealing a relation
the latter induces between the species, and we capture this relation by defining
the conservation dependency graph. We then present an application of this graph
to the inherently difficult problem of listing the conservedsets and show that, in
certain cases, the algorithm we devise to solve this problemis capable of per-
forming better than the naive exponential approach. We continue by regarding
mass conservation from a yet another perspective and show a sufficient polyno-
mial criterion which allows one to quickly decide that a given set of species is not
conserved. Finally, we present the reaction system simulator we have developed
with the goal of automating the process of running reaction systems, and which is
also capable of building the conservation dependency graphof a reaction system
and of using it to list the conserved sets.

This paper is structured as follows. In Section 2 we remind the basic notions
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of reaction systems, as well as the notion of mass conservation. In Section 3 we
discuss the relationship between mass conservation and theinner structure of the
reaction system, and introduce the conservation dependency graph. In Section 4
we describe the algorithm for listing the conserved sets, which is based on the
conservation dependency graph. In Section 5 we provide a negative polynomial
heuristics for mass conservation, as well as for a generalized conservation prob-
lem. Finally, in Section 6 we give a short presentation of ourreaction system
simulator. We conclude the paper in Section 7 with a discussion of our work.

2 Preliminaries

In this section, we remind the notion of a reaction system as well as some related
concepts capturing the static structure and the dynamic aspects of the model. For
the original introduction the reader is referred to [6] and [5].

Definition 2.1 ([6]). Let S be a finite set. Areactiona in S is a triplet of finite
nonempty setsa = (Ra, Ia, Pa), whereRa, Ia, Pa ⊆ S andRa ∩ Ia = ∅. We
say thatRa, Ia, andPa are the sets of reactants, inhibitors, and products ofa,
respectively. The set of all reactions inS is denoted byrac(S).

A reaction system (RS)is an ordered pairA = (S,A), whereS is a finite
set of symbols (alternatively, elements or species) andA ⊆ rac(S). The setS is
called thebackground(set) ofA.

We use the following notations [1]:

R =
⋃

a∈A

Ra,P =
⋃

a∈A

Pa, andsupp(A) = R ∪P.

The setsupp(A) will be called thesupport setofA.

The following definition introduces the result of a reactionand of a reaction
system.

Definition 2.2 ([6]). LetA = (S,A) be a reaction system,W ⊆ S, anda ∈ A.
We say thata is enabledbyW , denoted byena(W ), if Ra ⊆W andIa ∩W = ∅.

(1) Theresult ofa onW is defined as follows:

resa(W ) =

{
Pa, if ena(W ),
∅, otherwise.

(2) Theresult ofA onW is defined as follows:

resA(W ) =
⋃

a∈A

resa(W ).
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We now recall the notion of mass conservation in reaction systems.

Definition 2.3 ([1]). Let A = (S,A) be a reaction system. We say that a set
M ⊆ supp(A) is conservedif for anyW ⊆ supp(A),M ∩W 6= ∅ if and only if
M ∩ resA(W ) 6= ∅.

Note that mass conservation has been defined with respect to the support set so
as to exclude elements of the background set which can only beprovided via the
context, with the intuition that such elements would inevitably hinder the satisfac-
tion of conservation properties for reaction systems. We define here a generaliza-
tion of mass conservation that allows one to consider a different set of elements
that can be reasonably excluded from the states tested for conservation.

Definition 2.4 (parameterized conservation). LetA = (S,A) be a reaction system
andT ⊆ S. A setM ⊆ T is conserved with respect toT if, for anyW ⊆ T , it
holds thatM ∩W 6= ∅ if and only ifM ∩ resA(W ) 6= ∅. We usecons(A, T ) to
refer to all sets that are conserved with respect toT .

Note that the original definition of mass conservation (Definition 2.3) corre-
sponds to parameterized conservation with respect toT = supp(A).

Furthermore, it can be shown that in order to find the conserved sets with
respect to a givenT we can, instead, find conserved sets with respect to the back-
ground set in a different RS. Indeed, consider the reaction systemA′ = (T,A′)
where:

A′ = {a′ = (Ra, Ia ∩ T, Pa ∩ T ) | a ∈ A ∧ Ra ⊆ T} .

It is straightforward to see that for anya ∈ A anda′ = (Ra, Ia ∩ T, Pa ∩ T )
we haveenA(W ) = enA′(W ), given thatW ⊆ T . Moreover, reactionsa ∈ A that
do not have a corresponding reaction inA′ are not enabled forW ⊆ T because
Ra′ 6⊆ T . Thus, we haveresA′(W ) = resA(W ) ∩ T , which leads to thatM ∩
resA′(W ) =M ∩ resA(W ), for anyM ⊆ T , so the conserved sets with respect to
T are the same in the two reaction systems, i.e.cons(A, T ) = cons(A′, T ). Since
for A′ we have thatT is actually the background set, we will consider, throughout
the rest of this paper, only the problem of finding sets that are conserved with
respect to the background set (denoted bycons(A) instead ofcons(A, S)), but
having all results implicitly applicable both for the parameterized conservation
with respect to arbitrary setsT (by using the translation presented above) as well
as for the original definition of mass conservation (by taking T = supp(A)).

It should be noted, though, that in this case the reaction systemA′ obtained as
above may include reactions with empty inhibitor or productsets, even ifA does
not have them. Therefore, in this paper we relax the usual requirement that all the
three sets defining reactions need to be non-empty [2, 3]. This is in line with the
observation that reactions that can not be inhibited by the states taken into consid-
eration (e.g. subsets of the support set) are crucial for mass conservation [1].

Finally, we recall one of the basic notations used in asymptotically estimating
the complexity of an algorithm.
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Definition 2.5. Given two real-valued functionsf andg defined on real numbers,
we writef(x) = O(g(x)) if there exists a positive constantM and a real number
x0 such that|f(x)| ≤M |g(x)|, for all x > x0.

For further details on computational complexity we refer tothe monograph [11].

3 From Mass Conservation Relations to Dependency
Graphs

In this section we aim to gain a better understanding of mass conservation in
reaction systems by relating it to the inner structure induced by reactions. We
start by first translating the reactions to a graph that completely characterizes the
behavior of the system.

Definition 3.1. LetA = (S,A) be a reaction system. Thebehavior graphof A is
defined asGb = (Vb, Eb), withVb = 2S andEb =

{(
W, resA(W )

)
| W ⊆ S

}
.

Note that the behavior graph is in fact a different representation of the result
function resA. In particular, it is possible to have different reaction systems that
translate to the same behavior graph (such systems are said to be functionally
equivalent [6]).

Consider now a conserved setM . For any stateW we have thatM either in-
tersects bothW andresA(W ) or is disjoint from both of them. A similar property
can be formulated forM with respect to the connected components of the behavior
graph. Before showing how this can be achieved, we give several graph-theoretic
definitions.

Definition 3.2. Let G = (V,E) be a directed graph. We say that a nodev is
connected with a nodeu if there is a (possibly degenerate) undirected path fromu
to v in G. Connectedness defined in this way is an equivalence relation. We refer
to its equivalence classes asconnected componentsand we useCCG(u) to denote
the connected component that containsu. Furthermore, we denote the set of all
connected components ofG byCCSG = {CCG(u) | u ∈ V }.

Note that our notion of connected components differs slightly from its standard
use in the sense that we only refer to sets of nodes instead of induced subgraphs.
For further introduction to graph theory, we refer the reader to [9].

In the following definition we introduce a formal notation for saying that a
given setM intersects all (or none) of the sets from a collectionC.

Definition 3.3. LetS be an arbitrary finite set and consider a setM ⊆ S and a
collection of setsC ⊆ 2S. We use the notationM ⊓ C = {T ∈ C | M ∩ T 6= ∅}
to refer to the collection of those sets inC which intersectM .
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We say thatM intersectsC if it intersects every element ofC, i.e.M ⊓ C = C.
We say thatM is disjoint from C if it is disjoint from every element ofC, i.e.
M ⊓ C = ∅. We say thatM is consistentwith C if it intersectsC or is disjoint
fromC.

Proposition 3.1. Let A = (S,A) be a reaction system andGb = (Vb, Eb) its
behavior graph. For any setM ⊆ S, the following two statements are equivalent:

(1) M is conserved,

(2) M is consistent with every connected componentC ∈ CCSGb
.

Proof. The implication (2)⇒ (1) follows from the fact that, for every setW ⊆ S,
we havenext(W ) ∈ CCGb

(W ).
We now prove that (1)⇒(2). LetC be a connected component of the behavior

graphGb. Assume thatM is a conserved set for which there existW1,W2 ∈ C
such thatM ∩ W1 = ∅ andM ∩ W2 6= ∅. SinceW1 andW2 are in the same
connected component, there is a path of nodes connecting them, i.e., there exist
V1, . . . , Vn such thatV1 = W1, Vn = W2 and, for alli with 1 ≤ i ≤ n − 1,
(Vi, Vi+1) ∈ E or (Vi+1, Vi) ∈ E. But then, in both cases, it must be thatM ∩Vi 6=
∅ ⇔ M ∩ Vi+1 6= ∅, so we can via transitivity conclude thatM ∩W1 6= ∅ ⇔
M ∩W2 6= ∅, which contradicts our assumption and completes the proof.

Note that, by the result presented in Proposition 3.1, the conservation of a
given setM only depends on the connected components of the behavior graph
and not on its edges or their direction. This means that even fairly different re-
action systems may end up having the same conserved sets or, in other words,
equivalence with respect to conserved sets is a lot weaker than functional equiva-
lence.

3.1 Conservation dependency graph

In what follows we aim to further investigate the propertiesof conserved sets in
relation with connected components of the behavior graph.

Proposition 3.2. Let A = (S,A) be a reaction system andGb = (Vb, Eb) its
behavior graph. Consider an arbitrary elementx ∈ S and letCx be the connected
component that contains the singleton set{x}, i.e. Cx = CCGb

({x}). Similarly,
takeC∅ = CCGb

(∅). We denote, for any collectionC, cover(C) =
⋃

T∈C T .

(1) If x ∈ cover(C∅), thenx is not contained in any conserved set ofA, i.e.
{x} ⊓ cons(A) = ∅.

(2) If cover(Cx) = S, thenx is contained in all nonempty conserved sets ofA,
i.e. {x} ⊓ cons(A) = cons(A) \ {∅}.
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(3) For everyy ∈ cover(Cx) and for every conserved setM , if x 6∈ M , then
y 6∈ M , (or, equivalently,y ∈ M impliesx ∈ M), i.e. {y} ⊓ cons(A) ⊆
{x} ⊓ cons(A).

Proof. (1) LetM be an arbitrary conserved set. Then, from Proposition 3.1, it
follows thatM must be consistent withC∅. Since∅ ∈ C∅ andM ∩ ∅ = ∅, it
must be thatM ⊓ C∅ = ∅. In particular, we must also haveM ∩ {x} = ∅, which
means thatx 6∈M .

(2) LetM be a nonempty conserved set. Then, sinceM ∩ S 6= ∅, it must
be thatM intersects at least one set fromCx. But from Proposition 3.1 we know
thatM must be consistent withCx and, thus, it must be thatM ⊓ Cx = Cx. In
particular, we must also haveM ∩ {x} 6= ∅, which is the same asx ∈M .

(3) LetM be a conserved set such thatx 6∈M . ThenM ∩{x} = ∅ and, since
M must be consistent withCx, it must be thatM ⊓ Cx = ∅, which essentially
means thatM ∩ cover(Cx) = ∅. In particular, this means thaty 6∈M .

As we have seen, the conserved sets of a given RS only depend onthe con-
nected components of the behavior graph, i.e. on the partitioin induced by the
reactions on the state space. Proposition 3.2 extracts properties of conserved sets
by examining particular states and their connected components.

For example, the first two statements give us sufficient conditions for an ele-
mentx to be in no conserved set, respectively in all of them. Note that there is
also an interesting interplay between the two statements when there exists anx
such thatcover(Cx) = S and∅ ∈ Cx. Indeed, the latter is equivalent to having
Cx = C∅, which means thatcover(C∅) = S, so no element ofS can be part of a
conserved set. On the other hand, the former property leads to x being part of all
nonempty conserved sets, which is trivially true since the only conserved set in
this case is the empty set.

The more dramatic implication of the previous remark is that, for the standard
definition of reaction systems, where empty inhibitor sets are not allowed in re-
actions, there can be no nonempty conserved set at all. Indeed, for such reaction
systems it holds thatresA(S) = ∅, which leads tocover(C∅) = S.

The third claim of Proposition 3.2 defines a dependency relation between the
elements of the reaction system with respect to mass conservation. The statement
implies that, for a pair of species(x, y) such thaty ∈ cover(Cx), a conserved
set that does not containx cannot containy or, equivalently, any conserved set
that containsy must containx as well. We can capture this dependency between
species in a directed graph.

Definition 3.4. LetA = (S,A) be a reaction system andGb = (Vb, Eb) its behav-
ior graph. Theconservation dependency graphGcd = (Vcd, Ecd) of A is given by
Vcd = S andEcd = {(x, y) | x ∈ S ∧ y ∈ cover(Cx)}.

Intuitively, every conserved set should satisfy all constraints that are encoded
by the conservation dependency graph. Alternatively, we can focus on the depen-
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dency graph alone and consider all the sets that are consistent with the aforemen-
tioned constraints.

Definition 3.5. LetG = (V,E) be a directed graph. A setS ⊆ V is a source set
ofG if E ∩ (V \ S)× S = ∅, i.e. all edges ofG that cross the cut (if any) do so
fromS to V \ S. We denote the set of all source sets ofG byσ(G).

It follows immediately from the definition that, for any graph G = (V,E),
both∅ andV are source sets ofG. The correspondence between the conserved
sets of a reaction system and the source sets of its conservation dependency graph
is given in Proposition 3.3.

Proposition 3.3. Any conserved setM is a source set of the conservation depen-
dency graph.

Proof. The result follows from claim (3) of Proposition 3.2 and the definition of
the conservation dependency graph.

3.2 Computing the source sets of a directed graph

In this subsection we are concerned with the computation of source sets for gen-
eral directed graphs. We start by investigating the interplay between source sets
and the graph structure.

Proposition 3.4. LetG = (V,E) be a directed graph and letS be an arbitrary
source set ofG.

(1) The parent of a node that is inS is also inS, i.e. for every two nodesu andv
we havev ∈ S ∧ (u, v) ∈ E ⇒ u ∈ S.

(2) The child of a node that is not inS cannot be inS either, i.e. for every two
nodesu andv we haveu 6∈ S ∧ (u, v) ∈ E ⇒ v 6∈ S.

Proof. The negation of either statement directly violates the definition of source
sets by providing an edge(u, v) that goes fromV \ S to S.

The statement of the previous proposition can be immediately generalized by
induction to ancestors and descendants of nodes (u is an ancestor ofv or, equiva-
lently, v is a descendant ofu, if is there exists a directed path fromu to v).

Corollary 3.1. Let G = (V,E) be a directed graph and letS be an arbitrary
source set ofG.

(1) The ancestor of a node that is inS is also inS.

(2) The descendant of a node that is not inS is not inS either.
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We are going to relate source sets with the strongly connected components of
the graph under consideration.

Definition 3.6. Let G = (V,E) be a directed graph. Two nodesu, v ∈ V are
said to bestrongly connectedif there exist inG a directed path fromu to v

and a directed path fromv to u. Strong connectedness defined in this way is
an equivalence relation. We refer to its equivalence classes asstrongly con-
nected components (SCC’s)and useSCCG(u) to refer to the SCC that con-
tains u. Furthermore, we denote the set of all SCC’s ofG by SCCSG, i.e.
SCCSG = {SCCG(u) | u ∈ V }.

It is not difficult to see by Corollary 3.1 that the source setscannot split the
strongly connected components of a graph.

Proposition 3.5. LetG = (V,E) be a directed graph,C ∈ SCCSG a strongly
connected component ofG and S a source set ofG. Then eitherC ⊆ S or
C ∩ S = ∅.

Proof. If C ∩ S = ∅, we have nothing to prove. So assumeC ∩ S 6= ∅ and
chooseu ∈ C ∩ S. From Corollary 3.1 it follows that all ancestors ofu must be
in S as well. In particular, this implies thatC ⊆ S.

Corollary 3.2. Any source set of a graphG is a union of strongly connected
components ofG.

Proof. Let S be an arbitrary source set ofG. For everyu ∈ S, we have by
Proposition 3.5 thatSCCG(u) ⊆ S, so we can writeS =

⋃
u∈S SCCG(u).

Thus, we have seen that all source sets are unions of SCC’s. Inorder to see
exactly which of such unions are source sets, we will refer tothe condensation of
G, the graph obtained by replacing each SCC ofG with a single node.

Definition 3.7. LetG = (V,E) be a directed graph. ThecondensationofG is the
directed graphG̃ = (Ṽ , Ẽ) whose nodes are the SCC’s ofG, i.e. Ṽ = SCCSG,
and whose edges are defined as follows:Ẽ = {(C1, C2) ∈ Ṽ × Ṽ | ∃u ∈

C1 . ∃v ∈ C2 . (u, v) ∈ E}, i.e. there is an edge(C1, C2) in G̃ iff there is an edge
in G from an element ofC1 to an element ofC2.

Proposition 3.6. LetG = (V,E) be a directed graph and̃G = (Ṽ , Ẽ) its con-
densation. A setS ⊆ V is a source set ofG iff there exists a set̃S ⊆ Ṽ such that
S = cover(S̃) andS̃ is a source set of̃G.

Proof. We start with the forward implication. We know already from Corol-
lary 3.2 that there exists̃S ⊆ Ṽ such thatS = cover(S̃). Assume that̃S is not a
source set iñG. Then there existU ∈ S̃ andW ∈ Ṽ \ S̃ such that(W,U) ∈ Ẽ,
which means that there existu ∈ U andw ∈ W such that(w, u) ∈ E. But this
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contradicts the fact thatS is a source set, sinceu ∈ S andw ∈ V \ S. Thus, it
must be that̃S is a source set of̃G.

For the reverse implication, consider a source setS̃ of the condensation graph
G̃ and letS = cover(S̃). Assume thatS is not a source set ofG. Then there
exist two nodesu ∈ S andw ∈ V \ S such that(w, u) ∈ E. Since strongly con-
nected components are either equal or disjoint, it must be thatSCCG(u) ∈ S̃ and
SCCG(w) ∈ Ṽ \S̃. Furthermore, since(w, u) ∈ E, we have(SCCG(w), SCCG(u)) ∈

Ẽ, which contradicts the fact that̃S is a source set of̃G. Thus, it must be thatS is
a source set ofG.

The practical conclusion we can draw from Proposition 3.6 isthat it suffices
to have an algorithm computing source sets for directed acyclic graphs (DAG’s)
and use it on the condensation graph.

In what follows, we will useG↓S to denote the restriction of the graphG =
(V,E) to a subset of nodesS ⊆ V , i.e. G↓S= (S,E ∩ (S × S)). We will also
use the symboldescG(S) to refer to the set containing all the nodes fromS and
all their descendants. Similarly, we will useancG(S) to refer to the set containing
all nodes fromS and all their ancestors inG.

Theorem 3.1. LetG = (V,E) be a directed graph,T ⊆ V an arbitrary set of
nodes ands ∈ V an arbitrary node fromG.

(i) Any setT can be expanded to a source setS of G by first adding toS all
ancestors ofT , and then taking the union with a source set of the rest of the
graph. Moreover, every source set that includesT can be computed in this
way:

S ∈ σ(G) ∧ T ⊆ S ⇔ S \ ancG(T ) ∈ σ(G↓V \ancG(T )) ∧ ancG(T ) ⊆ S.

(ii) A source setS does not intersect a setT if and only ifS is a source set in the
graph obtained fromG by removing all elements ofT and their descendants:

S ∈ σ(G) ∧ S ∩ T = ∅ ⇔ S ∈ σ(G↓V \descG(T )).

(iii) Given a nodes, all source sets ofG can be computed recursively by relying
on subgraphs ofG that do not contains:

σ(G) = σ(G↓V \descG({s})) ∪ {S ∪ ancG({s}) | S ∈ σ(G↓V \ancG({s}))}.

Proof. (i) We have:

S ∈ σ(G) ∧ T ⊆ S

⇔E ∩ (V \ S)× S = ∅ ∧ ancG(T ) ⊆ S

⇔E ∩ (V \ S)× (S \ ancG(T )) = ∅ ∧ ancG(T ) ⊆ S

⇔S \ ancG(T ) ∈ σ(G↓V \ancG(T )) ∧ ancG(T ) ⊆ S.
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The first equivalence follows from the definition of conserved sets and Corol-
lary 3.1. The second follows from the definition ofancG(T ), as there can be no
edges ofG going into this set. The last equivalence relies again on thedefinition
of source sets and also onA \ B = (A \ X) \ (B \ X), which holds whenever
X ⊆ B ⊆ A.

(ii) We follow a similar approach and we have:

S ∈ σ(G) ∧ S ∩ T = ∅

⇔E ∩ (V \ S)× S = ∅ ∧ S ∩ descG(T ) = ∅

⇔E ∩ ((V \ descG(T )) \ S)× S = ∅ ∧ S ∩ descG(T ) = ∅

⇔S ∈ σ(G↓V \descG(T )).

Just as before, the first equivalence follows directly from the definition of source
sets and from Corollary 3.1. The second equivalence relies on the definition of
descG(T ), as there can be no edges ofG going out of this set. Finally, we use the
definition again to get the desired result.

(iii) The result follows from (i) and (ii) by noting that we can partition the
source sets ofG into those that contains and those that do not contain it. We can
thus write:

S ∈ σ(G) ∧ s ∈ S ⇔ S \ ancG({s}) ∈ σ(G↓V \ancG({s})) ∧ ancG({s}) ⊆ S,

S ∈ σ(G) ∧ s 6∈ S ⇔ S ∈ σ(G↓V \descG({s})).

These statements lead to the desired result.

We can immediately apply the third claim of this lemma to a source node of
G (a node with no parents) and write an even simpler decomposition of the source
sets ofG into two parts.

Corollary 3.3. LetG = (V,E) be a directed graph and lets ∈ V be a source
node. Then we have:

σ(G) = σ(G↓V \descG({s})) ∪ {S ∪ {s} | S ∈ σ(G↓V \{s})}.

We can translate the previous formal result into an algorithm for computing
the source sets of a directed acyclic graph.

Algorithm 3.1 (source sets of a DAG). LetG = (V,E) be a DAG. If the graph
contains no nodes, return the empty set as the only source set. Otherwise choose
a source nodes ∈ V , compute the source sets ofG↓V \{s} andG↓V \descG({s}), then
aggregate them according to Corollary 3.3 to obtain the source sets ofG.

Note that the fact that the graph is acyclic is required for the existence of the
source nodes.
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4 Enumerating the Conserved Sets of a Reaction Sys-
tem

In this section we propose and discuss the advantages of an algorithm that relies
on the conservation dependency graph to list all the conserved sets of a given
reaction system.

4.1 An algorithm for enumerating all conserved sets

We provide here an algorithm for listing all conserved sets of a reaction system.
The actual test for conservation is based on source sets and relies on proposi-
tions 3.1 and 3.3, but also on the heuristics coming from Proposition 3.2.

Algorithm 4.1 (compute all conserved sets). LetA = (S,A) be a reaction system.

1. Compute the behavior graphGb.

2. Compute the connected components ofGb and analyze them.

(a) ComputeP = cover(C∅).
(b) ComputeQ = {x ∈ S | cover(Cx) = S}.

3. Compute the conservation dependency graphGcd ofA.

4. Compute the strongly connected components ofGcd and the condensation
graphG̃cd.

5. Adjust the condensation graph̃Gcd to account forP andQ.

(a) Remove SCC’s that contain elements fromP , together with their an-
cestors.

(b) Remove SCC’s that contain elements fromQ, together with their de-
scendants.

6. Compute the source sets of the resulting graph using Algorithm 3.1.

7. For each source setT , test whetherT ∪ Q is a conserved set by checking
that it is consistent with all connected components ofGb.

Theorem 4.1.The algorithm computes all conserved sets correctly.

Proof. We first show that steps4 − 6 and the input used for step7 translate to
computing exactly the source sets ofGcd which containQ and are disjoint from
P . In order to find all the source sets which are disjoint fromP , we can rely
on Proposition 3.6 to conclude that we also need to exclude the full SCC’s of
elements fromP , then based on Theorem 3.1 (ii) we must also exclude descendant
SCC’s. This translates to step5(a) in the algorithm. A similar justification holds
for step5(b).
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Now note that this algorithm relies on testing for conservation using Proposi-
tion 3.3, but only examines a reduced set of candidates by relying on Proposition
3.2 and Proposition 3.3.

Remark that the decision problem for conserved sets iscoNP-complete [1].
As such, we know already that we cannot test for conservationin polynomial time
unlessP = NP. On the other hand, we focus here on finding all conserved sets,
which means that we can make use of aggregate information from the original re-
action system in order to speed up the test for conservation.In particular, once we
have the connected components of the behavior graph, we can simply forget about
the reactions. Moreover, the analysis of the connected components of the empty
set and singleton sets, together with the constraints encoded in the conservation
dependency graph, enable us to reduce the actual number of candidates that we
need to verify.

To understand the benefit of the heuristics employed in the algorithm and also
the nature of the reactions systems for which it is effective, we consider some
examples. We start with a simple example to illustrate how the algorithm actually
works.

Example 4.1.Consider the following simple reaction system:

S = {x, y, z}

A = {({x}, {z}, {y, z}), ({y},∅, {x}), ({x, z},∅, {y})}

∪ {({y}, {z}, {y}), ({y, z},∅, {x})} .

The corresponding behavior graphGb can be computed by findingresA(W ) for
all W ⊆ S. We obtain the graph from Figure 1.

∅ {x} {y, z}

{y} {x, y} {x, y, z}{x, z}

{z}

Figure 1: Behavior graph for the reaction system from Example 4.1.

The relevant connected components for our algorithm are:

Cx = {{x}, {y, z}}

Cy = {{y}, {x, y}, {x, z}, {x, y, z}}

Cz = {{z},∅} = C∅

The corresponding conservation dependency graph is presented in Figure 2.

12



x y z

Figure 2: Conservation dependency graph for the reaction system from Exam-
ple 4.1.

Note that this graph has only three source sets, namely∅, {x, y} andS =
{x, y, z}. Thus, even if we are to consider the full conservation dependency graph,
we would examine only 3 out of the total number of 8 candidates.

In fact, for this case we still need to consider the constraints coming from
connected components of singleton sets and the empty set. This givesP = {z}
andQ = {y, z}. That is, all non-empty conserved sets must containx andy and
cannot containz, which means thatM = {x, y} is the only non-empty conserved
set for this reaction system. In particular, the algorithm will work on an empty
graph at step6.

While the previous example is rather simple, it still reveals the main improve-
ments that come from the heuristics. On the other hand, consider also the case
where the behavior and conservation dependency graphs do not provide any use-
ful information, i.e.P = ∅, Q = ∅ andGcd only has self-loops for each node,
meaning that all sets are source sets.

Example 4.2.Consider the reaction systemA = (S,A) given by:

S = {x1, x2, . . . , xn}

A = {({xi},∅, {xi}) | xi ∈ S}

In this case the result function satisfiesresA(W ) = W for all statesW ⊆ S,
i.e. all states are isolated and connected components contain a single state. In
particular,C∅ = {∅} andCxi

= {{xi}} for all xi ∈ S.
Thus, for this example we haveP = Q = ∅ and the conservation dependency

graph has only self-loop edgesEcd = {(xi, xi) | xi ∈ S}. This means that every
subset ofS is a source set, i.e. we need to examine all candidates. But inthis case
note that in fact all subsets ofS are conserved.

Example 4.3.Consider the reaction systemA = (S,A) given by:

S = {x1, x2, . . . , xn}

A = {({xi}, S \ {xi}, {xi}) | xi ∈ S}

∪ {({xi, xj},∅, S) | xi, xj ∈ S ∧ xi 6= xj}

The result functionresA satisfies:

resA(W ) =

{
W, if |W | ≤ 1

S, if |W | ≥ 2

13



Just as in Example 4.2, this reaction system does not give useful information
for reducing the number of candidates examined in Algorithm4.1. Instead, we
analyze the behavior graph in relation to Proposition 3.1.

Based on the result function, the behavior graph hasn+ 2 connected compo-
nents in this case:C∅ = {∅}, Cxi

= {{xi}} for eachxi ∈ S, and one connected
component containing all the other states, call itCS .

We know that any conserved setM must be consistent with all connected com-
ponents of the behavior graph. For CC’s that contain a singleset, this holds triv-
ially, so we only need to worry aboutCS. The empty set is always conserved, so
we focus onM 6= ∅. ThenM ∩ S 6= ∅, so it must be thatM ⊓ CS = CS, i.e.M
intersects all the elements ofCS .

If more than two elements ofS are missing fromM , then we can findxi, xj
such thatM ∩ {xi, xj} = ∅, soM is not conserved. If at most one element is
missing, on the other hand,M is consistent withCS and thus also conserved.

Therefore, for this reaction system, the conserved sets are

cons(A) = {∅, S} ∪ {S \ {xi} | xi ∈ S},

for a total ofn + 2 sets. However, the number of candidates we need to examine
is 2n.

Note that in Example 4.2 and Example 4.3 we end up examining all possible
states, but there is a fundamental difference between the two. While in the for-
mer we actually do need to examine all sets since all are conserved, in the latter
the number of conserved sets isn + 2 out of the2n candidates. On the other
hand, remark that the reaction system from Example 4.3 has a quadratic number
of reactions.

In the general case, one reaction(Ra, Ia, Pa) is enabled for all statesW such
thatRa ⊆ W ⊆ S \ Ia. Thus, a reaction that involves only a few species as
reactants or inhibitors will have an impact on a significant subset of the edges of
the behavior graph. Put differently, the edges ofGb are strongly interrelated and
breaking this interdependence, to decouple for example thesingleton states from
the rest of the graph, requires an increased number of reactions. Thus, we conjec-
ture that most reaction systems for which the number of reactions is linear in the
number of species will reveal enough structural information in the conservation
dependency graph to make the computation of conserved sets effective.

4.2 Flexibility of the algorithm

In developing the algorithm presented in this section we relied as a first step on
the computation of the behavior graph and we implicitly assumed that this was
feasible. Note, however, that the number of possible statesfor a reaction system is
exponential in its number of species and, as such, storing the behavior graph may
be impractical. In this subsection we discuss that our algorithm is flexible in the
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way that the full behavior graph could be replaced in the input of the algorithm
with a different, smaller graph; the consequence is of course in terms of higher
running time.

First, remark that checking whether a given set is conserveddoes not need the
behavior graph and can be performed instead by running the system on all possible
states. Of course this trades time for space, as we lose the advantage of having
cached the results in the behavior graph. On the other hand the task of checking
the conservation condition is highly parallelizable, since individual states can be
considered separately.

Second, note that the reduction in the number of candidates relies on three
elements: the setP of species that can not be part of any conserved set, the setQ

of species that are known to be part of all conserved sets, andthe conservation de-
pendency graphGcd. However, the algorithm can work also with partial versions
of these.

For example, whenever it is not practical to store the full behavior graph, we
can instead compute partial versions ofP , Q andGcd by running the RS on the
empty set, singleton sets and the background set. From these, we can extract the
following:

• any element of states that are reachable from∅ will be in P ;

• any singleton state reachable fromS will be included inQ;

• elementsy of states reachable from singletons{x} will contribute edges
(x, y) for Gcd.

Moreover, note that we can even augment the algorithm with constraints that
do not come from the RS, but from the actual problem we are interested to solve.
For example, if we are only looking for conserved sets that contain a particular
elementx, we can tune the algorithm by addingx to (either the full, or a partial
version of)Q.

5 Negative Polynomial Heuristics for Formula Cor-
respondence

In this section we give a simple polynomial (in size of the formulae and num-
ber of reactions) heuristics which can help decide whether agiven setM is not
conserved. The provided heuristics will be sufficient, butnot necessary. We will
provide two negative criteria for a more general problem first, and then show how
they can be applied to mass conservation.

Note that, since deciding whether a given set of speciesM is conserved in
a reaction system is acoNP-complete [1], we could not expect to give such a
polynomial criterion which would be both sufficientandnecessary. This section
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shows however that analysing some static properties of the reaction system may
help conclude thatM is not conserved in polynomial time, without enumerating
all subsets of species.

We recall first that aBoolean formulaϕ is said to be over an alphabetS if all
its variables names are fromS. In the following we assume all Boolean formulae
to be given in a disjunctive normal form. A subsetW ⊆ S is said tosatisfythe
Boolean formulaϕ overS if the expression forϕ contains a conjunctionx1∧ . . .∧
xn ∧ ȳ1 ∧ . . . ∧ ȳm such that

(1) {xi | 1 ≤ i ≤ n} ⊆W , and

(2) {yj | 1 ≤ i ≤ m} ∩W = ∅.

By convention, we writeϕ(W ) = 1, or simplyϕ(W ), if the subsetW satisfies
ϕ, andϕ(W ) = 0 otherwise. For more details about the relationship between
reaction systems and Boolean functions we refer to [3] and [6].

The paper [1] generalizes mass conservation in the form of two formula cor-
respondence problems. Given a reaction systemA = (S,A) and two Boolean
formulaeφ andψ overS, the formula correspondence problems consist in decid-
ing whether the following relations hold for every setW ⊆ supp(A):

φ(W ) ⇒ ψ(resA(W )),
φ(W ) ⇔ ψ(resA(W )).

It is shown in [1] that deciding either of these questions iscoNP-complete.
We can parameterize the formula correspondence problems for a subsetT of

the background set in the same way as we parameterized mass conservation in
Section 2. In such a case, we would define the formulaeφ andψ overT , and
would requireφ(W ) ⇒ ψ(resA(W )) (respectively,φ(W ) ⇔ ψ(resA(W )) for all
subsets ofT , instead of the support ofA. It turns out that, just as with parameter-
ized mass conservation, checking formula correspondence againstT ⊆ S can be
reduced to testing the same formulae against the subsets of the background set of
the reaction systemA′ = (T,A′) where:

A′ = {(Ra, Ia ∩ T, Pa ∩ T ) | a ∈ A ∧ Ra ⊆ T} .

Indeed, remember that, for any setW ⊆ T , we haveresA′(W ) = resA(W ) ∩ T .
Sinceψ is overT as well, the elements from the potentially non-emptyresA(W )\
T will have no influence upon the satisfiability ofψ, i.e. ψ(resA(W )) ⇔
ψ(resA(W ) ∩ T ). This implies that formula correspondence inA with respect
to T holds if and only if it holds inA′ with respect to its full background set.

Seeing that conventional formula correspondence can be expressed as param-
eterized correspondence overT = supp(A) is a matter of remarking thatφ andψ
in the conventional formulation can be restricted to the alphabetsupp(A), without
losing generality. Indeed, havingφ includex̄, with x ∈ S \supp(A), for example,
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is redundant since we are only checking the correspondence against the subsets of
supp(A) anyway. If howeverφ employsx in its non-negated form, then no subset
of supp(A) will satisfy φ. Similar arguments can be given forψ and the result set
resA(W ).

In view of the fact that any case of parameterized formula correspondence,
and, in particular, the conventional correspondence, is reducible to formula corre-
spondence over the full background set, we only focus on the latter problem.

Consider a conjunctionφ1 = x1 ∧ . . . ∧ xn ∧ ȳ1 ∧ . . . ∧ ȳm. We will use the
following shortcut notations:

pos(φ1) = {x1, . . . , xn},
neg(φ1) = {y1, . . . , yn}.

Suppose now that the first formulaφ overS is given in a disjunctive normal

form,φ =
n∨

i=1

φi, and consider a reactiona = (Ra, Ia, Pa) over the same alphabet

S. We would like to know the conditions fora to be enabled on at least one subset
satisfyingφ.

Lemma 5.1. For a reaction systemA = (A, S), a reactiona = (Ra, Ia, Pa) ∈ A,
and a conjunctionφi overS, the following conditions are equivalent:

(1) ∃W ⊆ S . φi(W ) ∧ ena(W ), and

(2) Ra ∩ neg(φi) = Ia ∩ pos(φi) = ∅.

Proof. (1)⇒(2): Suppose there exists a subsetW which both satisfiesφi and
enablesa. This means thatRa ⊆W andIa ∩W = ∅, but also thatpos(φi) ⊆W

andneg(φi) ∩ W = ∅. Therefore,∅ = Ia ∩ pos(φi) ⊆ Ia ∩ W = ∅, and
∅ = Ra ∩ neg(φi) ⊆W ∩ neg(φi) = ∅.

(2)⇒(1): Suppose that, for the reactiona, it is true thatRa ∩ neg(φi) =
Ia ∩ pos(φi) = ∅ and consider the setW = Ra ∪ pos(φi). Clearly,φi(W ) holds,
becausepos(φi) ⊆ W , and becauseRa ∩ neg(φi) = pos(φi) ∩ neg(φi) = ∅. On
the other hand, we also know thatRa ⊆W andIa∩Ra = Ia∩pos(φi) = ∅, so the
reactiona is enabled onRa∪pos(φi). We have therefore successfully constructed
a set satisfying the statement (1).

We will use the shorthand notationena(φi) = 1, or simplyena(φi), to refer to
the fact thata can be enabled on a subset satisfying the conjunctionφi.

It is now possible to formulate a similar statement for a general formula given
in a disjunctive normal form.

Lemma 5.2. For a reaction systemA = (A, S), a reactiona = (Ra, Ia, Pa) ∈ A,

and a Boolean formulaφ =
n∨

i=1

φi, both over the same alphabetS, the following

conditions are equivalent:
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(1) ∃W ⊆ S . φ(W ) ∧ ena(W ), and

(2) ∃i ∈ {1, . . . , n} . Ra ∩ neg(φi) = Ia ∩ pos(φi) = ∅.

As before, we will writeena(φ) = 1, or justena(φ), to refer to the fact thata
is enabled on a set satisfyingϕ.

The following two observations give negative heuristic criteria for formula
correspondence. Both cases are formulated in the setting ofa reaction system

A = (S,A) and two Boolean formulaeϕ =
n∨

i=1

φi andψ =
m∨
j=1

ψj overS.

Proposition 5.1. If A contains a reactiona such thatena(φ), butPa ∩ neg(ψj) 6=
∅, for all 1 ≤ j ≤ m, then there exists a subsetW ⊆ S for whichφ(W ) 6⇒
ψ(resA(W )).

Proof. Since we know thatena(φ), there exists such a subsetW ⊆ S thatφ(W )
andena(W ). The hypothesis that the product set ofa intersects allneg(ψj) means
thatresA(W ) intersects allneg(ψj) too, and thereforeψ(resA(W )) does not hold.

Verifying the condition of the previous proposition requires going through
bothφ andψ for every reaction ofA. The time complexity of such a procedure is
in O

(
|φ1| · |ψ| · (NR +NI +NP )

)
, where|φ| is the number of atomic terms in a

disjunctive normal ofφ, whileNR, NI , andNP are the total sizes of the reactant,
inhibitor, and product sets of the reactions inA:

NR =
∑
a∈A

|Ra|, NI =
∑
a∈A

|Ia|, NP =
∑
a∈A

|Pa|.

Proposition 5.2. Consider the setB = {b | b ∈ A, enb(φ)} and take the union
of the products of the reactions in this set:P̄ =

⋃
b∈B

Pb. If, for any conjunction

ψj , it is true thatpos(ψj) 6⊆ P , then there exists a subsetW ⊆ S for which
φ(W ) 6⇒ ψ(resA(W )).

Proof. Consider a reactionb ∈ B. Sinceenb(φ), there exists a setW such that
φ(W ) and alsoenb(W ), soresA(W ) 6= ∅. But resA(W ) ⊆ P̄ and we know that
formulaψ containsno conjunctionψj such thatpos(ψj) ⊆ P̄ . Therefore, forno
ψj it is true thatpos(ψj) ⊆ resA(W ), which means thatresA(W ) does not satisfy
ψ.

Verifying the condition of this proposition requires goingthroughφ for every
reaction in the system (O

(
|φ| · (NR+NI) steps), putting together the product sets

of certain reactions (O(NP ) steps), and then checking if the non-negated variables
of a conjunction ofψ form a subset of this union (O(|ψ| · NP ) steps). The time
complexity of such a procedure can therefore be estimated tobelong toO

(
|φ| ·

(NR +NI) + |ψ| ·NP

)
.
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To formulate a heuristic criterion for mass conservation, we will rewrite this
problem in Boolean formulae. The arguments in Section 2 allow us to consider
mass conservation over the full background set. For a setM ⊆ S, the setsW
satisfying the conditionM ∩W 6= ∅ are exactly the sets satisfying the following
Boolean formula:

φ =
∨

x∈M

x.

The property ofM being conserved can then be written as follows (cf. [1]):

∀W ⊆ S . φ(W ) ⇔ φ(resA(W )).

Applying the statement of Proposition 5.1 to this particular instance of the
formula correspondence problem is ineffective, because noconjunction inψ con-
tains negated variables. However, instantiating the statement of Proposition 5.2
(and that of Lemma 5.2) yields the following negative heuristics for mass conser-
vation.

Corollary 5.1. Consider a reaction systemA = (S,A), a subset of speciesM ⊆
S, and a subset of reactionsB =

{
b | b = (Rb, Ib, Pb) ∈ A,M \ Ib 6= ∅

}
. If it is

true thatM ∩
⋃
b∈B

Pb = ∅, thenM is notconserved inA.

6 Reaction System Simulator

Even though it is relatively easy to write out an interactiveprocess of a reaction
system given a context sequence, doing this by hand quickly becomes tedious
and error-prone. To automate the task, we developed a reaction system simula-
tor, brsim. This is a stand-alone software tool which reads the description of
a reaction system and a sequence of contexts from a file, runs the system with
the supplied contexts, and then outputs the sequence of results. The simulator
includes the option of annotating the evolution, in which case, for each evolution
step, it will show the previous result, the context added at the current step, as well
as the reactions enabled in the current state. Interactively running the reaction
system is also supported, in which case the simulator will ask for the new context
at each step.

Besides being able to run a reaction system for a given context sequence, the
simulator can also show its conservation dependency graph as well as compute
and list the conserved sets using an implementation of the algorithm shown in
Section 4.

The source code of the simulator is licensed under GPLv3 and is available
at [14]. We also provide a web interface tobrsim at [15].

The input format of the simulator is similar to the notationsconventionally
used to write reactions. For example, a reaction system containing the reactions
({a}, {b, x}, {a}) and({b}, {a, x}, {b}) would be described as follows:
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a, b x, a
b, a x, b

The context sequenceC0 = {a, b}, C1 = ∅, C2 = {a, x} would be represented in
the following way:

a b
.
a x

For further details about using the simulator as a stand-alone application or via its
web interface we refer the reader to [14, 15].

7 Conclusion

In this paper we focused on the biologically inspired property of mass conser-
vation in reaction systems and unveiled the conservation dependency relation it
induces between the species. It turned out that relying on the conservation de-
pendency graph makes it possible to design an algorithm for listing the conserved
sets which, in certain cases, performs better than the naiveapproach. Because
conserved sets can well be exponential in number (cf. [1]), we cannot expect to
build an algorithm which would always work in subexponential time. Yet, the
fact that using the conservation dependency graph allows reducing the number of
computational steps in some cases serves as an example of howobserving cer-
tain structuralproperties of a reaction system helps to relatively quicklyanswer
questions which would otherwise need an exponential amountof time.

In Section 5 we also provided a sufficient polynomial criterion which can be
used to prove that a given set of species is not conserved. Thecriterion is built
around a different series of observations revealing yet other connections between
the inner structure of the reaction system and the sets it conserves. Because de-
ciding the conservation of a set iscoNP-complete, we could not hope to have a
sufficientandnecessary criterion which would also be polynomial.

While we do show an important application of the conservation dependency
graph to listing the conserved sets of a reaction system, we expect that a number of
other properties of this graph remain to be further explored. A promising research
direction would be that of establishing in which way the conservation dependency
graph is related to other conservation properties, like invariant sets, or the formula
correspondence problems (see [1] for the definitions).

Lastly, in Section 6, we presented the simulatorbrsim which automates the
process of running a reaction system with a given sequence ofcontexts, but also
supports listing the conserved sets using an implementation of Algorithm 4.1.
Since it is possible to both run the simulator as a stand-alone application and work
with it via a web interface, we hope that it will be useful to the actively growing
community of researchers working in the domain of reaction systems.
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