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Abstract

The paper considers a family of formal grammars that extends linear context-
free grammars with an operator for referring to the left context of a substring
being defined, as well as with a conjunction operation (as in linear conjunc-
tive grammars). These grammars are proved to be computationally equiv-
alent to an extension of one-way real-time cellular automata with an extra
data channel. The main result is the undecidability of the emptiness prob-
lem for grammars restricted to a one-symbol alphabet, which is proved by
simulating a Turing machine by a cellular automaton with feedback. The
same construction proves the Σ0

2-completeness of the finiteness problem for
these grammars and automata.

Keywords: Context-free grammars, conjunctive grammars, context-
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1 Introduction

The idea of defining context-free rules applicable only in certain contexts
dates back to the early work of Chomsky. However, the mathematical model
improvised by Chomsky, which he named a “context-sensitive grammar”,
turned out to be too powerful for its intended application, as it could simulate
a space-bounded Turing machine. Recently, the authors [3] made a fresh
attempt on implementing the same idea. Instead of the string-rewriting
approach from the late 1950s, which never quite worked out for this task, the
authors relied upon the modern understanding of formal grammars as a first-
order logic over positions in a string, discovered by Rounds [16]. This led to
a family of grammars that allows such rules as A → BC &�D, which asserts
that all strings representable as a concatenation BC and preceded by a left
context of the form D have the property A. The semantics of such grammars
are defined through logical deduction of items of the form “a substring v
written in left context u has a property A” [3], and the resulting formal model
inherits some of the key properties of formal grammars, including parse trees,
an extension of the Chomsky normal form [3, 4], a form of recursive descent
parsing [2] and a variant of the Cocke–Kasami–Younger parsing algorithm
that works in time O

(
n3

logn

)
[14].

This paper aims to investigate the linear subclass of grammars with one-
sided contexts, where linearity is understood in the sense of Chomsky and
Schützenberger, that is, as a restriction to concatenate nonterminal symbols
only to terminal strings. An intermediate family of linear conjunctive gram-
mars, which allows using the conjunction operation, but no context specifi-
cations, was earlier studied by the second author [12, 13]. Those grammars
were found to be computationally equivalent to one-way real-time cellular
automata [6, 17], also known under a proper name of trellis automata [5, 7].

This paper sets off by developing an analogous automaton representation
for linear grammars with one-sided contexts. The proposed trellis automata
with feedback, defined in Section 4, augment the original cellular automaton
model by an extra communication channel, which adds exactly the same
power as context specifications do in grammars. This representation implies
the closure of this language family under complementation, which, using
grammars alone, would require a complicated construction.

The main contribution of the paper is a method for simulating a Turing
machine by a trellis automaton with feedback processing an input string over
a one-symbol alphabet. This method subsequently allows uniform undecid-
ability proofs for linear grammars with contexts, which parallels the recent re-
sults for conjunctive grammars due to Jeż [8] and Jeż and Okhotin [9, 10, 11],
but is based upon an entirely different underlying construction.

The new construction developed in this paper begins in Section 6 with
a simple example of a 3-state trellis automaton with feedback, which recog-
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nizes the language { a2k−2 | k > 2 }. To compare, ordinary trellis automata
over a one-symbol alphabet recognize only regular languages [5]. The next
Section 7 presents a simulation of a Turing machine by a trellis automaton
with feedback, so that the latter automaton, given an input an, simulates
O(n) first steps of the Turing machine’s computation on an empty input,
and accordingly can accept or reject the input an depending on the current
state of the Turing machine.

This construction is used in the last Section 8 to prove the undecidability
of the emptiness problem for linear grammars with one-sided contexts over a
one-symbol alphabet. The finiteness problem for these grammars is proved
to be complete for the second level of the arithmetical hierarchy.

2 Grammars with one-sided contexts

Grammars with contexts were introduced by the authors [3, 4] as a model
capable of defining context-free rules applicable only in contexts of a certain
form.

Definition 1 ([3]). A grammar with left contexts is a quadruple G =
(Σ, N,R, S), where

• Σ is the alphabet of the language being defined;

• N is a finite set of auxiliary symbols (“nonterminal symbols” in Chom-
sky’s terminology), disjoint with Σ, which denote the properties of
strings defined in the grammar;

• R is a finite set of grammar rules, each of the form

A → α1 & . . . &αk &�β1& . . . &�βm&Pγ1 & . . . &Pγn, (1)

with A ∈ N , k > 1, m,n > 0 and αi, βi, γi ∈ (Σ ∪N)∗;

• S ∈ N represents syntactically well-formed sentences of the language.

Every rule (1) is comprised of conjuncts of three kinds. Each conjunct αi

specifies the form of the substring being defined, a conjunct �βi describes
the form of its left context, while a conjunct Pγi refers to the form of the left
context concatenated with the current substring. To be precise, let w = uvx
with u, v, x ∈ Σ∗ be a string, and consider defining the substring v by a rule
(1). Then, each conjunct αi describes the form of v, each left context �βi

describes the form of u, and each extended left context Pγi, describes the
form of uv. The conjunction means that all these conditions must hold at
the same time for this rule to be applicable.
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If no context specifications are used in the grammar, that is, if m = n = 0
in each rule (1), then this is a conjunctive grammar [12]. If, furthermore, only
one conjunct is allowed in each rule (k = 1), this is an ordinary context-free
grammar. A grammar is called linear, if every conjunct refers to at most one
nonterminal symbol, that is, α1, . . . , αk, β1, . . . , βm, γ1, . . . , γn ∈ Σ∗NΣ∗∪Σ∗.

The language generated by a grammar with left contexts is defined by
deduction of elementary statements of the form “a substring v ∈ Σ∗ in the
left context u ∈ Σ∗ has the property X ∈ Σ ∪ N”, denoted by X(u⟨v⟩). A
full definition applicable to every grammar with left contexts is presented in
the authors’ previous paper [3, 4]; this paper gives a definition specialized
for linear grammars.

Definition 2. Let G = (Σ, N,R, S) be a linear grammar with left contexts,
and consider deduction of items of the form X(u⟨v⟩), with u, v ∈ Σ∗ and
X ∈ N . Each rule A → w defines an axiom scheme

⊢G A(x⟨w⟩),

for all x ∈ Σ∗. Each rule of the form

A → x1B1y1 & . . . &xkBkyk &�x′
1D1y

′
1 & . . . &�x′

mDmy
′
m &Px′′

1E1y
′′
1 & . . . &Px′′

nEny
′′
n

defines the following scheme for deduction rules for all u, v ∈ Σ∗:{
Bi(uxi⟨vi⟩)

}
i∈{1,...,k},

{
Di(x

′
i⟨ui⟩)

}
i∈{1,...,m},

{
Ei(x

′′
i ⟨wi⟩)

}
i∈{1,...,n} ⊢G A(u⟨v⟩),

where xiviyi = v, x′
iuiy

′
i = u and x′′

iwiy
′′
i = uv. Then the language defined by

a nonterminal symbol A is

LG(A) = {u⟨v⟩ | u, v ∈ Σ∗, ⊢G A(u⟨v⟩) }.

The language defined by the grammar G is the set of all strings with an empty
left context defined by S:

L(G) = {w | w ∈ Σ∗, ⊢G S(ε⟨w⟩) }.

This definition is illustrated in the grammar below.

Example 1. The following grammar defines the singleton language {abac}:

S → aBc

B → bA&�A

A → a
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The string abac is generated as follows:

⊢ A(ε⟨a⟩) (A → a)

⊢ A(ab⟨a⟩) (A → a)

A(ab⟨a⟩), A(ε⟨a⟩) ⊢ B(a⟨ba⟩) (B → bA&�A)

B(a⟨ba⟩) ⊢ S(ε⟨abac⟩) (S → aBc)

The next example defines a language that is known to have no linear
conjunctive grammar [19].

Example 2 (Törmä [18]). The following linear grammar with contexts de-
fines the language { anbin | i, n > 1 }:

S → aSb | B&PS | ε
B → bB | ε

The rule S → B&PS appends as many symbols b as there are as in the
beginning of the string.

3 Linear grammars and normal form

It is known [3, 4, 14], that every grammar with contexts can be transformed to
a certain normal form, which extends the Chomsky normal form for ordinary
context-free grammars. While the original Chomsky normal form has all
rules of the form A → BC and A → a, this extension allows using multiple
conjuncts BC and context specifications �D.

A similar normal form shall now be established for the linear subclass of
grammars. The transformation is carried out along the same lines as in the
general case [3]. The first step is elimination of null conjuncts, that is, any
rules of the form A → ε& . . .. This is followed by elimination of null contexts
�ε, and of unit conjuncts, as in the rules A → B& . . .. The final step is
elimination of extended left contexts PE, which are all expressed through
proper left contexts �D [14]. Each step applies to linear grammars with
contexts and preserves their linearity.

Theorem 1. For every linear grammar with left contexts, there exists an-
other linear grammar with left contexts that defines the same language and
has all rules of the form

A → bB1& . . . & bBℓ &C1c& . . . &Ckc (2a)

A → a&�D1& . . . &�Dm, (2b)

where A,Bi, Ci, Di ∈ N , a, b, c ∈ Σ, ℓ+ k > 1 and m > 0.
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Let G = (Σ, N,R, S) be an arbitrary linear grammar with contexts. Sim-
ilarly to the general case of the grammars with contexts, its transformation
to the normal form starts with a preprocessing phase: long conjuncts are cut
until all of them are of the form bB, Cc or a, and every context specification
�γ or Pγ with γ ∈ Σ or |γ| > 1 is restated as �Xγ or PXγ, respectively,
where Xγ is a new nonterminal with a unique rule Xγ → γ.

This results in a grammar G1 = (Σ, N1, R1, S) with the rules of the fol-
lowing kind:

A → bB (3a)

A → Cc (3b)

A → a (3c)

A → B1 & . . . &Bk &�D1& . . . &�Dm&PE1& . . . &PEn (3d)

A → ε, (3e)

where a, b, c ∈ Σ and A,Bi, Di, Ei ∈ N .
Then, null conjuncts in rules of the form A → ε& . . . are eliminated

using the method of Barash and Okhotin [3, 4]. First, one has to determine,
which nonterminals generate the empty string, and in which contexts they
generate it. This is done by constructing a set Nullable(G) ⊆ 2N×N [3, 4]
of nonterminals capable of generating the empty string in certain contexts.
Intuitively, a pair ({K1, . . . , Kt}, A) ∈ Nullable(G) with A,K1, . . . , Kt ∈
N means that the nonterminal A generates the empty string in the context
u (that is, u⟨ε⟩), and u can be described by every nonterminal Ki (that is,
ε⟨u⟩ ∈ LG(Ki)).

Using the setNullable(G), a new grammar G2 = (Σ, N1, R2, S) without
null conjuncts can be constructed as follows.

1. The rules of the form (3a)–(3d) are copied to the new grammar.

2. For every rule of the form (3a) and for every pair (B, {K1, . . . , Kt}) ∈
Nullable(G), a rule A → b&PK1 & . . . &PKt is added to the new
grammar.

3. For every rule of the form (3b) and for every pair
(C, {K1, . . . , Kt}) ∈ Nullable(G), the new grammar has the
rule A → c&�K1 & . . . &�Kt. Moreover, if ε⟨ε⟩ ∈ LG(Ki) for all
i ∈ {1, . . . , t}, then a rule A → c&�ε should be added.

4. For every rule of the form (3d), a rule A →
B1& . . . &Bk &E1 & . . . &En&�ε shall be added to the new
grammar, if ε⟨ε⟩ ∈ LG(Di) for all i ∈ {1, . . . ,m}.

Correctness Claim 1. Let A ∈ N , u, v ∈ Σ∗. Then a string u⟨v⟩ is in
LG2(A) if and only if v ̸= ε and u⟨v⟩ ∈ LG1(A).
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After this step, the rules of the grammar can be of the following form:

A → a (4a)

A → bB (4b)

A → Cc (4c)

A → B1 & . . . &Bk &�D1& . . . &�Dm&PE1& . . . &PEn (4d)

A → B1 & . . . Bk &�ε (4e)

A → b&PK1 & . . . &PKt (4f)

A → c&�K1 & . . . &�Kt (4g)

A → c&�ε (4h)

Null contexts �ε, added to the grammar by the above construction, can
be removed by the method of Barash and Okhotin [4]. Construct a new

grammar G3 = (Σ, N3, R3, S3), with N3 = N1 ∪ { Ã | A ∈ N1 } and S3 = S̃.
Every nonterminal A has two copies, one with a non-empty left context,
denoted by A, and the other with the empty left context, called Ã.

1. Each rule of the form (4a) is added to the new grammar along with an

extra rule Ã → a.

2. Each rule of the form (4b) is added to the new grammar. Moreover,

the new grammar contains a rule Ã → bB.

3. For each rule (4c) of the original grammar, the new grammar has the

rules A → Cc and Ã → C̃c.

4. For each rule (4d), the new grammar has a rule A → B1& . . . &Bk &

�D̃1 & . . . &�D̃m& PẼ1& . . . &PẼn, and, if m = 0, a rule Ã →
B̃1& . . . & B̃k & Ẽ1 & . . . & Ẽn.

5. For each rule (4e) in the original grammar, the new grammar has a rule

Ã → B̃1 & . . . & B̃k.

6. For every rule (4f), the new grammar has a rule Ã →
b&PK̃1 & . . . &PK̃t.

7. For each rule (4g), the corresponding rule of the new grammar is Ã →
c&�K̃1 & . . . &�K̃t.

8. For every rule (4h), the new grammar has a rule Ã → c.

Correctness Claim 2. For all A ∈ N and u, v ∈ Σ+:

• u⟨v⟩ ∈ LG3(A) if and only if u⟨v⟩ ∈ LG2(A);
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• ε⟨v⟩ ∈ LG3(Ã) if and only if ε⟨v⟩ ∈ LG2(A).

The next step of the transformation is elimination of unit conjuncts in
rules of the form A → B& . . .. The construction of a new grammar G4 =
(Σ, N3, R4, S3) free of unit conjuncts can be done similarly to the cases of
conjunctive grammars and grammars with contexts [12, 3, 4], by substituting
all rules for the nonterminal B into each rule containing this unit conjunct.

The next step is to transform the grammar in such a way, that
quantified conjuncts are only allowed in the rules of the form A →
a&PE1& . . . &PEn, with a ∈ Σ [14]. For a linear grammar with con-
texts G4, this method produces a grammar G5 = (Σ, N5, R5, S3) with the
set of nonterminals N5 = N3 ∪ {A′ | A ∈ N3 } ∪ {A′′ | A ∈ N3 } ∪
{Aa | A ∈ N3, a ∈ Σ }. Every symbol D′ (E ′′) should define all possible
strings with the left context D (extended left context E, respectively), as it
would be done by the context operator �D (PE, respectively). The rules for
every nonterminal D′ and E ′′ reduce the length of the current substring to
a single symbol, to which one can apply the extended left context operator.
The construction itself is as follows:

1. For every rule of the form A → bB1 & . . . & bBℓ & C1c& . . . Ckc &
�D1 & . . . &�Dm & PE1 & . . . &PEn, the new grammar has the rule

A → bB1& . . . & bBℓ&C1c& . . . Ckc&D′
1 & . . . &D′

m&E ′′
1 & . . . &E ′′

n

2. For every rule of the form A → a& �D1& . . . &�Dm &PE1& . . . &PEn, the new grammar has the rule

A → a&D′
1 & . . . &D′

m&E ′′
1 & . . . &E ′′

n

3. For every conjunct �D, with D ∈ N in the right-hand sides of the rules
of the original grammar, R5 has the following rules:

D′ → D′a (for all a ∈ Σ)

D′ → a&PDa (for all a ∈ Σ)

Da → Da (for all a ∈ Σ)

4. For every conjunct PE, with E ∈ N in the right-hand sides of the rules
of the original grammar, the following rules are added to R5:

E ′′ → aE ′′ (for all a ∈ Σ)

E ′′ → a&PE (for all a ∈ Σ)

Thus far, the grammar has rules of the following kind:

A → a&PE1& . . . &PEn (5a)

A → bB1& . . . & bBℓ &C1c& . . . &Ckc (5b)
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Correctness Claim 3. In the grammar G5,

LG5(D
′) = {u⟨v⟩ | ε⟨u⟩ ∈ LG4(D), v ∈ Σ+ },

LG5(E
′′) = {u⟨v⟩ | ε⟨uv⟩ ∈ LG4(E) },

LG5(Aa) = {u⟨va⟩ | u⟨v⟩ ∈ LG4(A) }.

Furthermore, Okhotin has shown [14] that all extended left contexts can
be effectively converted to left ones.

Given a grammar G5, the construction of the new grammar G6 =
(Σ, N6, R6, S6) with N6 = N5 ∪ {Aa,X | A ∈ N5, a ∈ Σ, X ⊆ N } is as
follows.

1. For every rule of the form (5a) in the original grammar the new gram-
mar has a rule

A → a&�Da,X1

1 & . . . &�Da,Xn
n , (6a)

where each Xi is a set of direct descendants of the corresponding Di in
a connected directed acyclic graph with a set of nodes {D1, . . . , Dn} ⊇
{E1, . . . , Em} with the set of sources {E1, . . . , Em}. Moreover, the new
grammar has a rule of the form

Aa,{E1,...,En} → ε. (6b)

2. For every rule (5b) in the original grammar, the new grammar has a
copy of it, as well as extra rules of the form:

Aa,X1∪...∪Xk → bBa,X1

1 & . . . & bBa,Xℓ

ℓ &C1c& . . . &Ckc, (6c)

with a ∈ Σ, X1, . . . , Xk ⊆ N .

Correctness Claim 4. As a result of this construction, LG6(A) = LG5(A),
for all A ∈ N . Every language LG6(A

a,X) contains all such strings u⟨v⟩, that
the item A(u⟨va⟩) can be deduced in the grammar G5 out of the premises
F (ε⟨uva⟩) (for all F ∈ X), and no items K(ε⟨uva⟩) (with K ∈ N) can be
inferred during such deduction.

Now all context operators in rules of the grammar G6 are of the form �β.
The constructed grammar G6 has null rules of the form (6b), which have

to be eliminated by the procedure of null conjuncts elimination described
above. Since none of such rules have contexts, the elimination shall not
introduce any new contexts in the grammar. However, as a result of such
elimination, some of the rules (6a) may get null contexts and some of the
rules (6c) may get unit conjuncts, which can be again eliminated by the
corresponding procedures. Neither of these procedures appends any new
extended left contexts (Pγ) to the grammar.

Thus, all rules of the grammar are of the form (2a)–(2b), as desired.
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4 Automaton representation

Linear conjunctive grammars are known to be computationally equivalent to
one of the simplest types of cellular automata: the one-way real-time cellular
automata, also known under the proper name of trellis automata. This section
presents a generalization of trellis automata, which similarly corresponds to
linear grammars with one-sided contexts.

An ordinary trellis automaton processes an input string of length n > 1
using a uniform array of n(n+1)

2
nodes, as presented in Figure 1(left). Each

node computes a value from a fixed finite set Q. The nodes in the bottom
row obtain their values directly from the input symbols using a function
I : Σ → Q. The rest of the nodes compute the function δ : Q×Q → Q of the
values in their predecessors. The string is accepted if and only if the value
computed by the topmost node belongs to the set of accepting states F ⊆ Q.

Theorem A (Okhotin [13]). A language L ⊆ Σ+ is defined by a linear
conjunctive grammar if and only if L is recognized by a trellis automaton.

Figure 1: Trellis automata (left) and trellis automata with feedback (right).

In terms of cellular automata, every horizontal row of states in Fig-
ure 1(left) represents an automaton’s configuration at a certain moment of
time. An alternative motivation developed in the literature on trellis au-
tomata [5, 6, 7] is to consider the entire grid as a digital circuit with uniform
structure of connections. In order to obtain a similar representation of linear
grammars with left contexts, the trellis automaton model is extended with
another type of connections, illustrated in Figure 1(right).

Definition 3. A trellis automaton with feedback is a sextuple M =
(Σ, Q, I, J, δ, F ), in which:

• Σ is the input alphabet,

• Q is a finite non-empty set of states,
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• I : Σ → Q is a function that sets the initial state for the first symbol,

• J : Q×Σ → Q sets the initial state for every subsequent symbol, using
the state computed on the preceding substring as a feedback;

• δ : Q×Q → Q is the transition function, and

• F ⊆ Q is the set of accepting states.

The behaviour of the automaton is described by a function ∆: Σ∗×Σ+ → Q,
which defines the state ∆(u⟨v⟩) computed on each string with a context u⟨v⟩
by

∆(ε⟨a⟩) = I(a),

∆(w⟨a⟩) = J
(
∆(ε⟨w⟩), a

)
,

∆(u⟨bvc⟩) = δ
(
∆(u⟨bv⟩),∆(ub⟨vc⟩)

)
.

The language recognized by the automaton is L(M) = {w ∈ Σ+ | ∆(ε⟨w⟩) ∈
F }.

Theorem 2. A language L ⊆ Σ+ is defined by a linear grammar with left
contexts if and only if L is recognized by a trellis automaton with feedback.

The proof is by effective constructions in both directions.

Lemma 1. Let G = (Σ, N,R, S) be a linear grammar with left contexts, in
which every rule is of the form

A → bB1& . . . & bBℓ &C1c& . . . &Ckc (b, c ∈ Σ, Bi, Ci ∈ N), (7a)

A → a&�D1 & . . . &�Dm (a ∈ Σ, m > 0, Di ∈ N), (7b)

and define a trellis automaton with feedback M = (Σ, Q, I, J, δ, F ) by setting
Q = Σ× 2N × Σ,

I(a) = (a, {A | A → a ∈ R }, a)
J
(
(b,X, c), a

)
=

(
a, {A | ∃ rule (7b) with D1, . . . , Dm ∈ X }, a

)
δ
(
(b,X, c′), (b′, Y, c)

)
=

(
b, {A | ∃ rule (7a) with Bi ∈ X and Ci ∈ Y }, c

)
F =

{
(b,X, c)

∣∣ S ∈ X
}
.

For every string with context u⟨v⟩, let b be the first symbol of v, let c be the
last symbol of v, and let Z = {A | u⟨v⟩ ∈ LG(A) }. Then ∆(u⟨v⟩) = (b, Z, c).

In particular, L(M) = {w | ε⟨w⟩ ∈ LG(S) } = L(G).
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Proof. Induction on pairs (|uv|, |v|), ordered lexicographically.

Basis: ε⟨a⟩ with a ∈ Σ. The state computed on this string is ∆(ε⟨a⟩) =
I(a) = (a, Z, a) with Z = {A | A → a ∈ R }. The latter set Z is the set of
all symbols A ∈ N with ε⟨a⟩ ∈ LG(A).

Induction step I: u⟨a⟩ with u ∈ Σ∗ and a ∈ Σ. The state computed by
the automaton on the string u⟨a⟩ is defined as ∆(u⟨a⟩)) = J(∆(ε⟨u⟩), a). By
the induction hypothesis, the state reached on the string ε⟨u⟩ is ∆(ε⟨u⟩) =
(a,X, a), where a is the first symbol of u and X ⊆ N is the set of symbols
that generate ε⟨u⟩. Substituting this value into the expression for the state
reached on u⟨a⟩ yields ∆(u⟨a⟩) = J((a,X, a), a) = (a, Z, a), where

Z = {A | there exists a rule (7b) with D1, . . ., Dm ∈ X } =

= {A | there exists a rule (7b) with ε⟨u⟩ ∈ LG(Di) for all i }.

The latter condition means that Z is the set of all symbols A ∈ N that
generate the string u⟨a⟩ using a rule of the form (7b). Since this string can
only be generated by rules of that form, this is equivalent to Z = {A | u⟨a⟩ ∈
LG(A) }, as claimed.

Induction step II: u⟨bvc⟩ with u, v ∈ Σ∗ and b, c ∈ Σ. The state
computed on such a string is ∆(u⟨bvc⟩) = δ(∆(u⟨bv⟩),∆(ub⟨vc⟩)). By the
induction hypothesis, the states reached by the automaton on the strings
u⟨bv⟩ and ub⟨vc⟩ are respectively ∆(u⟨bv⟩) = (b,X, b′) and ∆(ub⟨vc⟩) =
(c′, Y, c), where b is the last symbol of bv, c′ is the first symbol of vc, X ⊆ N
is the set of nonterminal symbols generating u⟨bv⟩ and Y ⊆ N contains all
such nonterminals that generate the string ub⟨vc⟩.

Substituting the states reached on these shorter strings into the expression
for the state computed on u⟨bvc⟩ gives ∆(u⟨bvc⟩) = δ

(
(b,X, b′), (c′, Y, c)

)
=

(b, Z, c), where

Z =
{
A | there exists a rule (7a) with Bi ∈ X and Ci ∈ Y } =

=
{
A | there exists a rule (7a) with u⟨bv⟩ ∈ LG(Bi) and

ub⟨vc⟩ ∈ LG(Cj), for all i, j }.

That is, Z is exactly the set of nonterminals that generate the string
ub⟨vc⟩ by a rule of the form (7a). The string u⟨bvc⟩ can only be generated
by a rule of such a form, and, thus, Z = {A | u⟨bvc⟩ ∈ LG(A) }, as desired.

Lemma 2. Let M = (Σ, Q, I, J, δ, F ) be a trellis automaton with feedback
and define the grammar with left contexts G = (Σ, N,R, S), where N =
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{Aq | q ∈ Q } ∪ {S}, and the set R contains the following rules:

AI(a) → a&�ε (a ∈ Σ) (8a)

AJ(q,a) → a&�Aq (q ∈ Q, a ∈ Σ) (8b)

Aδ(p,q) → bAq &Apc (p, q ∈ Q, b, c ∈ Σ) (8c)

S → Aq (q ∈ F ) (8d)

Then, for every string with context u⟨v⟩, ∆(u⟨v⟩) = r if and only if u⟨v⟩ ∈
LG(Ar). In particular, L(G) = {w | ∆(ε⟨w⟩) ∈ F } = L(M).

Proof. Induction on lexicographically ordered pairs (|uv|, |v|).
Basis: ε⟨a⟩ with a ∈ Σ. Then ∆(ε⟨a⟩) = I(a). At the same time, ε⟨a⟩

may only be generated by the rule of the form (8a), and such a rule for Ar

exists if and only if I(a) = r.

Induction step I: u⟨a⟩ with u ∈ Σ+ and a ∈ Σ.

⇒⃝ Let ∆(u⟨a⟩) = r. Then, r = J(∆(ε⟨u⟩), a). Let q = ∆(ε⟨u⟩). By
the induction hypothesis, ε⟨u⟩ ∈ LG(Aq). Since J(q, a) = r, the grammar
contains a corresponding rule of the form (8b), which can be used to deduce
the membership of u⟨a⟩ in LG(Ar) as follows:

Aq(ε⟨u⟩) ⊢G Ar(u⟨a⟩) (Ar → a&�Aq). (9)

⇐⃝ Conversely, assume that u⟨a⟩ ∈ LG(Ar). Then its deduction must end
with an application of a rule of the form (8b), as in (9). By construction,
the existence of such a rule implies r = J(q, a). Applying the induction
hypothesis to Aq(ε⟨u⟩) yields ∆(ε⟨u⟩) = q. Then the automaton calculates
as follows: ∆(u⟨a⟩) = J(∆(ε⟨u⟩), a) = J(q, a) = r, as desired.

Induction step II: u⟨bvc⟩ with u, v ∈ Σ∗ and b, c ∈ Σ.

⇒⃝ Assume first that ∆(u⟨bvc⟩) = r. Then r = δ(p, q), where p =
∆(u⟨bv⟩) and q = ∆(ub⟨vc⟩). By the induction hypothesis, u⟨bv⟩ ∈ LG(Ap)
and ub⟨vc⟩ ∈ LG(Aq). From this, using a rule of the form (8c), one can
deduce

Ap(u⟨bv⟩), Aq(ub⟨vc⟩) ⊢G Ar(u⟨bvc⟩) (Ar → bAq &Apc), (10)

that is, u⟨bvc⟩ ∈ LG(Ar), as claimed.

⇐⃝ Conversely, if u⟨bvc⟩ ∈ LG(Ar), then the deduction establishing
Ar(u⟨bvc⟩) must end as (10), using a rule of the form (8c). Then, by the
construction, r = δ(p, q). Since the items Ap(u⟨bv⟩) and Aq(ub⟨vc⟩) are
deduced in the grammar, by the induction hypothesis, ∆(u⟨bv⟩) = p and
∆(ub⟨vc⟩) = q. Then ∆(u⟨bvc⟩) = δ(p, q) = r.
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5 Closure properties

The automaton representation devised in previous section is useful for es-
tablishing some basic properties of linear grammars with contexts, which
would be more difficult to obtain using grammars alone. For instance, one
can prove their closure under complementation by taking a trellis automaton
with feedback and inverting its set of accepting states.

Another closure result is the closure under concatenating a linear con-
junctive language from the right.

Lemma 3. Let L ⊆ Σ∗ be defined by a linear grammar with contexts, and
let K ⊆ Σ∗ be a linear conjunctive language. Then the language L ·K can be
defined by a linear grammar with contexts.

Proof. Let G1 = (Σ, N1, R1, S1) and G2 = (Σ, N2, R2, S2) be the grammars
generating the languages L and K, respectively. Construct a linear conjunc-
tive grammar with contexts G = (Σ, N1 ∪N2 ∪ {S}, R1 ∪ R2 ∪ R,S), where
R contains the rules S → aS (for all a ∈ Σ) and S → S2 &�S1.

This, in particular, implies that the language

L = { ai1bj1 . . . aimbjm | m > 2, it, jt > 1, ∃ℓ : i1 = jℓ ∧ iℓ+1 = jm },

used by Terrier [17] to show that linear conjunctive languages are not closed
under concatenation, can be defined by a linear grammar with contexts.

By the same method as in Lemma 3, one can show that the Kleene star
of any linear conjunctive language can be represented by a linear grammar
with contexts.

Lemma 4. Let L be a linear conjunctive language. Then the language L∗

can be defined by a linear grammar with contexts.

Proof. Let G = (Σ, N,R, S) be a linear conjunctive grammar that defines L.
Construct a linear grammar with contexts G′ = (Σ, N ∪ {S ′, X, Y, Z}, R ∪
R′, S ′), with the following rules in R′.

S ′ → aX (for all a ∈ Σ)
S ′ → ε
X → S&�Y
Y → aZ (for all a ∈ Σ)
Z → S&�S ′

Then L(G′) = L(G)∗.
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6 Defining a non-regular unary language

Ordinary context-free grammars over a unary alphabet Σ = {a} define only
regular languages. Unary linear conjunctive languages are also regular, be-
cause a trellis automaton operates on an input an as a deterministic finite
automaton [5]. The non-triviality of unary conjunctive grammars was discov-
ered by Jeż [8], who constructed a grammar for the language { a4k | k > 0 }
using iterated conjunction and concatenation of languages.

This paper introduces a new method for constructing formal grammars
for non-regular languages over a unary alphabet, which makes use of a left
context operator, but does not rely upon non-linear concatenation. The
simplest case of the new method is demonstrated by the following automaton,
which can be transformed to a grammar by Lemma 2.

Example 3. Consider a trellis automaton with feedback M =
(Σ, Q, I, J, δ, F ) over the alphabet Σ = {a} and with the set of states
Q = {p, q, r}, where I(a) = p is the initial state, the feedback function
gives states J(p, a) = q and J(r, a) = p, and the transition function is de-
fined by δ(s, p) = p for all s ∈ Q, δ(q, q) = δ(r, q) = q, δ(p, q) = r and
δ(p, r) = p. The only accepting state is r. Then M recognizes the language
{ a2k−2 | k > 2 }.

The computation of this automaton is illustrated in Figure 2. The state
computed on each one-symbol substring aℓ⟨a⟩ is determined by the state
computed on ε⟨aℓ⟩ according to the function J . Most of the time, ∆(ε⟨aℓ⟩) =
p and hence ∆(aℓ⟨a⟩) = q, and the latter continues into a triangle of states
q. Once for every power of two, the automaton computes the state r on
ε⟨a2k−2⟩, which sends a signal through the feedback channel, so that J sets
∆(a2

k−2⟨a⟩) = p. This in turn produces the triangle of states p and the next
column of states r.

The following lemma states that the automaton in Example 3 indeed
works as described.

Lemma 5. Consider the automaton M from Example 3. Denote M [i, j] =
∆(ai−1⟨aj−i+1⟩). Then:

(U1). For all i ∈ {1, . . . , 2k} and j ∈ {1, . . . , 2k} satisfying i+ j = 2k − 1 and
i 6 j, M [i, j] = r.

(U2). For all i ∈ {2, . . . , 2k − 2} and j ∈ {2k−1, . . . , 2k − 2} with 2k 6 i+ j 6
2k+1 − 4 and i 6 j, M [i, j] = q.

(U3). For all i ∈ {1, . . . , 2k − 1} and j ∈ {2k − 1, . . . , 2k+1 − 3}, such that
2k 6 i+ j 6 2k+1 − 2, M [i, j] = p.
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Figure 2: How the automaton in Example 3 recognizes { a2k−2 | k > 2 }.

It is now known that linear grammars with contexts over a one-symbol
alphabet are non-trivial. How far does their expressive power go? For con-
junctive grammars (which allow non-linear concatenation, but no context
specifications), Jeż and Okhotin [9, 10, 11] developed a method for ma-
nipulating base-k notation of the length of a string in a grammar, which
allowed representing the following language: for every trellis automaton M
over an alphabet {0, 1, . . . , k−1}, there is a conjunctive grammar generating
LM = { aℓ | the base-k notation of ℓ is in L(M) } [9]. This led to the follow-
ing undecidability method: given a Turing machine T , one first constructs
a trellis automaton M for the language VALC(T ) ⊆ Σ∗ of computation his-
tories of T ; then, assuming that the symbols in Σ are digits in some base-k
notation, one can define the unary version of VALC(T ) by a conjunctive
grammar.

Linear grammars with contexts are an entirely different model, and the
automaton in Example 3 has nothing in common with the basic unary con-
junctive grammar discovered by Jeż [8], in spite of defining almost the same
language. The new model seems to be unsuited for manipulating base-k dig-
its, and the authors took another route to undecidability results, which is
explained below.
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7 Simulating a Turing machine

The overall idea is to augment the automaton in Example 3 to calculate
some additional data, so that its computation on a unary string simulates
any fixed Turing machine running on the empty input. Each individual cell
∆(ak⟨aℓ⟩) computed by the automaton should hold some information about
the computation of the Turing machine, such as the contents of a certain
tape square at a certain time. Then the automaton can accept its input an

depending on the state of the computation of the Turing machine at time
f(n).

Consider the computation in Figure 2, which is split into regions by verti-
cal r-columns. The bottom line of states q in each region shall hold the tape
contents of the Turing machine. The new automaton should simulate several
steps of the Turing machine, and then transfer its resulting tape contents to
the top diagonal border of this region. The transfer of each letter is achieved
by sending a signal to the right, reflecting it off the vertical r-column, so
that it arrives at the appropriate cell in the top border. From there, the
tape contents shall be moved to the bottom line of the next region through
the feedback data channel. Because of the reflection, the tape symbols shall
arrive at the next region in the reverse order.

In order to simulate a Turing machine using this method, it is useful to
assume a machine of the following special kind. This machine operates on
an initially blank two-way infinite tape, and proceeds by making left-to-right
and right-to-left sweeps over this tape, travelling a longer distance at every
sweep. At the first sweep, the machine makes one step to the left, then, at
the second sweep, it makes 3 steps to the right, then 7 steps to the left, 15
steps to the right, etc. In order to simplify the notation, assume that the
machine always travels from right to left and flips the tape after completing
each sweep.

Definition 4. A sweeping Turing machine is a quintuple T =
(Γ,Q, q0,∇,F), where

• Γ is a finite tape alphabet containing a blank symbol � ∈ Γ;

• Q is a finite set of states,

• q0 ∈ Q is the initial state and F ⊆ Q is the set of accepting states;

• ∇ : Q× Γ → Q× Γ is a transition function;

• F is a finite set of flickering states.

A configuration of T is a string of the form JkKuqav, where k > 1 is the
number of the sweep, and uqav with u, v ∈ Γ∗, a ∈ Γ and q ∈ Q represents
the tape contents uav with the head scanning the symbol a in the state q.
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The initial configuration of the machine is J1K�q0�. Each k-th sweep
deals with a tape with 2k symbols, and consists of 2k−1 steps of the following
form:

JkKubqcv ⊢T JkKuq′bc′v (∇(q, c) = (q′, c′)).

Once the machine reaches the last symbol, it flips the tape, appends 2k blank
symbols and proceeds with the next sweep:

JkKqcw ⊢T Jk + 1K�2kwRqc

A sweeping Turing machine never halts; at the end of each sweep, it may
flicker by entering a state from F . Define the set of numbers accepted by T
as S(T ) = { k | J1K�q0� ⊢∗

T JkKqfcw for qf ∈ F }.

A sweeping Turing machine is simulated by the following trellis automa-
ton with feedback over a one-symbol alphabet.

Construction 1. Let T = (Γ,Q, q0,∇,F) be a sweeping Turing machine.
Construct a trellis automaton with feedback M = ({a}, Q, I, J, δ, F ) as fol-
lows. Its set of states is Q =

{
Zpx

y

∣∣ x, y ∈ Γ ∪ QΓ, Z ∈ {◦, •}
}

∪{
Zqx

∣∣ x ∈ Γ ∪ QΓ, Z ∈ {◦, •}
}

∪ {r}. Each superscript x represents a
tape symbol at the current position, which is augmented with a state, if the
head is in this position. Each subscript y similarly contains a symbol and
possibly a state, representing the contents of some other tape square, which
is being sent as a signal to the left. A bullet marker “•” marks the beginning
of the tape, whereas each state Zpx

y or Zqx with Z = ◦ shall be denoted by
px
y and qx, respectively.
Let I(a) = p��q0 , J(r, a) = p��, and J(Zpx

y , a) =
Zqy. For all x, y, x′, y′ ∈

Γ ∪QΓ and Z,Z ′ ∈ {◦, •}, the following transitions are defined in δ:

δ
(
Zqx, Z′

qx′
)
= Zqx (propagation; x, x′ ∈ Γ,

and x ∈ QΓ with Z = •)

δ
(
Zqx, Z′

px′

y′

)
= Z′

px
y′ (propagation)

δ
(
px
y ,

Z′
qx′

)
= r (r-column)

δ
(
Zpx

y , r
)
= p�

x (reflection)

δ
(
Zpx

y ,
Z′
px′

y′

)
= Z′

px
y′ (propagation)

δ
(
r, Z′

px′

y′

)
= •px′

y′ (new region in top diagonal)

δ
(
r, Z′

qx′
)
= q� (first q-column after r-column)
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A transition ∇(q, c) = (q′, c) of the Turing machine is simulated as follows:

δ (qcq, qy) = qc′ (rewriting the symbol; y ∈ Γ)

δ (qx, qcq) = qxq′ (moving the head; x ∈ Γ)

The set of accepting states is F = {p�
cqf

| c ∈ Γ, qf ∈ F }.

The first thing to note about this construction is that if all attributes
attached to the letters p, q, r are discarded, then the resulting automaton is
exactly the one from Example 3. This ensures the overall partition of the
computation into regions illustrated in Figure 2.

qc0

po

cq

po

cq

po

cq

qcq

pcq
o

l

l

o

cq
q

Figure 3: How a trellis automaton given by Construction 1 simulates a step
of a Turing machine.

Each region corresponds to a sweep of the Turing machine. The bottom
row of states contains the machine’s configuration in the beginning of the
sweep, where each state qx holds the symbol in one square of the tape. The
rightmost cell is qxq, and it contains the state of the Turing machine, while
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the leftmost cell is marked by a bullet (•qx). Each of the several rows above
holds the tape contents after another step of computation. After 2k−1 steps
of simulation the head reaches the leftmost square, which marks the end of
the current sweep.

Then, each tape symbol is propagated by a signal to the right using the
states px

y . Every such state holds two symbols: x is carried to the right, to
be reflected off the right border, and y is a leftbound symbol that has already
been reflected. As a result, the top diagonal border is filled with the states of
the form px

y , and their subscripts y form the resulting contents of the tape,
reversed. These symbols are sent to the next region by the function J .

With this simulation running, the last state q ∈ Q reached by the Turing
machine upon completing each k-th sweep shall always end up in a pre-
defined position exactly in the middle of the top diagonal border. It will be
∆(ε⟨a2k+2+2k+1−2⟩) = p�

cq, and the trellis automaton with feedback accepts
this string if and only if q ∈ F .

Example 4. Consider a sweeping Turing machine T = (Γ,Q, q0,∇,F), with
Γ = {c,�}, Q = {q0, q1} and F = {q1}. The transition function ∇ is defined
as follows:

∇(q0,�) = (q0, c)

∇(q1,�) = (q1, c)

∇(q0, c) = (q1, c)

∇(q1, c) = (q0, c)

The machine is started on a blank tape in the state q0, that is, its initial
configuration is J1K�q0�. After the first move the configuration is

J1K�q0� ⊢T J1Kq0�c.

After this step the machine flips its tape and makes three moves as follows:

J2K��cq0� ⊢TJ2K��q0cc ⊢TJ2K�q1�cc ⊢TJ2Kq1�ccc.
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Then the machine again flips its tape and makes 7 steps:J3K����cccq1� ⊢TJ3K����ccq1c ⊢TJ3K����cq0ccc ⊢TJ3K����q1cccc ⊢TJ3K���q0�cccc ⊢TJ3K��q0�ccccc ⊢TJ3K�q0�cccccc ⊢TJ3Kq0�ccccccc.

Thus, while traversing the tape, if the machine is scanning a blank, it
rewrites it with a symbol c; and if it is scanning a symbol c, it switches its
state (that is, changes from q0 to q1 and vice versa).

After every k-th sweep, that is, after each step with a number 2n− 1, the
tape contains k symbols c and the head of the machine is scanning a blank
symbol. If n is even, the machine is in the state q0; otherwise the state is q1.
That is, the machine “flickers” after every second sweep.

Consider the trellis automaton with feedback, obtained by Construction 1
for the machine T .

The initial state of the automaton is p��q0 , which allows assigning the
value q�q0 to the second element in the bottom row of the trellis. This value
represents the contents of the tape of T , which is being processed by the
automaton.

In the first region, the entire configuration is q0�, that is, it consists of
a unique square. Thus, the automaton cannot yet simulate a step of the
machine, and all it has to do is to copy this one-square tape to the top
diagonal border of the first region. The contents of this square are put in
the state p�q0� and then reflected off the vertical r-column in the state p��q0 ,
which is copied to the top border. This state is surrounded by two other
states, •p�� and p��, which represent blank squares.

The final tape contents in the first region are then transferred to the
second region through the feedback channel: the information from the state
p��q0 in position (1, 4) is copied to the state q�q0 in position (5, 5), while
another state •p�� in position (1, 3) produces the state •q� in position (4, 4).

Now the trellis automaton can simulate a transition ∇(q0,�) = (q0, c) of
T and the new contents of the tape are represented by the nodes •q�q0 and
qc in positions (4, 5) and (5, 6), respectively. The former state has Z = •,
marking the left end of the tape, and hence no further steps of the Turing
machine shall be simulated in this region (as all the transitions of the trellis
automaton simulating the Turing machine require Z = ◦).

The data in the nodes in positions (4, 5) and (5, 6) are propagated first to
the right, and, after reflecting off r, to the left. The subsequent simulation
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Figure 4: Computation of a trellis automaton M with feedback simulating
the Turing machine T . The input string of M is a2

4−2.

of the next sweep of the Turing machine in the third region is illustrated in
the figure.

The correctness of Construction 1 is established in the following lemma,
which describes the contents of each individual cell.

Lemma 6. Let T = (Γ,Q, q0,∇,F) be a sweeping Turing machine, and
let M = ({a}, Q, I, J, δ, F ) be a trellis automaton with feedback obtained in
Construction 1.

Consider some k-th sweep of M and denote Xℓ
1 . . . X

ℓ
2k−2 the tape contents

after each ℓ ∈ {1, . . . , 2k−2−1} step in the sweep. Each symbol Xℓ
i is either a

symbol of the tape alphabet, or a pair (b, q), where b ∈ Γ and q ∈ Q, meaning
that the head of the machine is scanning symbol b in state q.

Then:

• For all (i, j) ∈ U1, M [i, j] = r.

• For all (i, j) ∈ U2, M [i, j] = Zqs, where s = � if i ∈ {2k−1, . . . , 3 ·
2k−2 − 1}, j ∈ {2k−1, . . . , 2k − 2} and i 6 j. Otherwise, s = X t

i−2k−1+1
,
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with t = j−i+1 if j−i < 2k−1, and t = 2k−1 if j−i > 2k−1. Moreover,
Z = • when i = 2k−1.

• For all (i, j) ∈ U3, M [i, j] = Zps
s′, where s = s′ = � for i ∈

{1, . . . , 2k−1− 1} and j ∈ {3 · 2k−1− 2, . . . , 2k+1− 4}, and s = X2k−2−2
i−2k+1

,

s′ = X2k−2−2
j−5·2k−2+2

for the rest of pairs. Moreover, Z = • if i = 1 and

j = 2k − 1.

Lemma 6 can be proved by a straightforward induction, inferring the state
in each cell from the previously determined values of the neighbouring cells.

Theorem 3. Let T = (Γ,Q, q0,∇,F) be a sweeping Turing machine and
let M = ({a}, Q, I, J, δ, F ) be a trellis automaton with feedback obtained in
Construction 1. Then L(M) = { a2k+2+2k+1−2 | k ∈ S(T ) }.

8 Implications

The simulation of Turing machines by a trellis automaton with feedback over
a one-symbol alphabet is useful for proving undecidability of basic decision
problems for these automata. Due to Theorem 2, the same undecidability
results equally hold for linear grammars with contexts.

The first decision problem is testing whether the language recognized by
an automaton (or defined by a grammar) is empty. The undecidability of
the emptiness problem follows from Theorem 3. To be precise, the problem
is complete for the complements of the r.e. sets.

Theorem 4. The emptiness problem for linear grammars with left contexts
over a one-symbol alphabet is Π0

1-complete. It remains in Π0
1 for any alpha-

bets.

Proof. The non-emptiness problem is clearly recursively enumerable. because
one can simulate a trellis automaton with feedback on all inputs, accepting
if it ever accepts. If the automaton accepts no strings, the algorithm does
not halt.

The Π0
1-hardness is proved by reduction from the Turing machine halting

problem. Given a machine T and an input w, construct a sweeping Turing
machine Tw, which first prints w on the tape (over 1 + log |w| sweeps, using
around |w| states), and then proceeds by simulating T , using one sweep for
each step of T . If the simulated machine T ever halts, then Tw changes into
a special state qf and continues moving its head until the end of the current
sweep.

Construct a trellis automaton with feedback M simulating the machine
Tw according to Theorem 3, and define its set of accepting states as F =
{p�

cqf
| c ∈ Σ }. Then, by the theorem, M accepts some string aℓ if and only
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if Tw ever enters the state qf , which is in turn equivalent to T ’s halting on
w.

The second slightly more difficult undecidability result asserts that testing
the finiteness of a language generated by a given grammar is complete for
the second level of the arithmetical hierarchy.

Theorem 5. The finiteness problem for linear grammars with left contexts
over a one-symbol alphabet is Σ0

2-complete. It remains Σ0
2-complete for any

alphabet.

Proof (a sketch). Reduction from the finiteness problem for a Turing ma-
chine, which is Σ0

2-complete, see Rogers [15, §14.8]. Given a Turing machine
T , construct a sweeping Turing machine T ′, which simulates T running on
all inputs, with each simulation using a segment of the tape. Initially, T ′ sets
up to simulate T running on ε, and then it regularly begins new simulations.
Every time one of the simulated instances of T accepts, the constructed ma-
chine “flickers” by entering an accepting state in the end of one of its sweeps.
Construct a trellis automaton with feedback M corresponding to this ma-
chine. Then L(M) is finite if and only if L(T ) is finite.

9 Conclusion

At the first glance, linear grammars with contexts seem like a strange model.
However, they are motivated by the venerable idea of a rule applicable in
a context, which is worth being investigated. Also, trellis automata with
feedback at the first glance seem like a far-fetched extension of cellular au-
tomata. Its motivation comes from the understanding of a trellis automaton
as a circuit with uniform connections [5], to which one can add a new type of
connections. Both models are particularly interesting for being equivalent.

A suggested topic for future research is to investigate the main ideas in
the literature on trellis automata [5, 6, 7, 17] and see whether they can be
extended to trellis automata with feedback, and hence to linear grammars
with contexts.
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public, 26-31 January, 2013), Local Proceedings II, 10–21, Institute of
Computer Science AS CR, 2013.

[3] M. Barash, A. Okhotin, “Defining contexts in context-free grammars”,
Language and Automata Theory and Applications (LATA 2012, A
Coruña, Spain, 5–9 March 2012), LNCS 7183, 106–118.

[4] M. Barash, A. Okhotin, “An extension of context-free grammars with
one-sided context specifications”, submitted (September 2013).
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[10] A. Jeż, A. Okhotin, “Complexity of equations over sets of natural num-
bers”, Theory of Computing Systems, 48:2 (2011), 319–342.
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