
Mikhail Barash | Alexander Okhotin

Grammars with two-sided contexts

TUCS Technical Report
No 1090, October 2013

Grammars with two-sided contexts

Mikhail Barash
mikbar@utu.fi

Department of Mathematics and Statistics, University of Turku, and
Turku Centre for Computer Science
Turku FI–20014, Finland

Alexander Okhotin
alexander.okhotin@utu.fi

Department of Mathematics and Statistics, University of Turku, and
Turku Centre for Computer Science
Turku FI–20014, Finland

TUCS Technical Report

No 1090, October 2013

Abstract

In a recent paper (M. Barash, A. Okhotin, “Defining contexts in context-
free grammars”, LATA 2012), the authors introduced an extension of the
context-free grammars equipped with an operator for referring to the left
context of the substring being defined. This paper proposes a more general
model, in which context specifications may be two-sided, that is, both the left
and the right contexts can be specified by the corresponding operators. The
paper gives the definitions and establishes the basic theory of such grammars,
leading to a parsing algorithm working in timeO(nω+1), where n is the length
of the input string and ω is the exponent of matrix multiplication complexity.

Keywords: Context-free grammars, conjunctive grammars, contexts,
context-sensitive grammars, parsing.

TUCS Laboratory
FUNDIM, Fundamentals of Computing and Discrete Mathematics

1 Introduction

The context-free grammars are a logic for representing the syntax of lan-
guages, in which the properties of longer strings are defined by concatenat-
ing shorter strings with known properties. Disjunction of syntactic conditions
can be represented in this logic as multiple alternative concatenations defin-
ing a single symbol. One can further augment this logic with conjunction and
negation operations, leading to conjunctive grammars [8] and Boolean gram-
mars [10]. These grammars are context-free in the general sense of the word,
as they define the properties of each substring independently of the context,
in which it occurs. Furthermore, most of the practically important features of
ordinary context-free grammars, such as efficient parsing algorithms, are pre-
served in their conjunctive and Boolean variants [10, 11, 13]. These grammars
models have been a subject of recent theoretical studies [1, 4, 6, 7, 16, 21].

Recently, the authors [2] proposed an extension of the context-free gram-
mars with special operators for expressing the form of the left context, in
which the substring occurs. For example, a rule A → BC &�D asserts that
every string representable in the form BC in a left context of the form de-
scribed by D therefore has the property A. These grammars were motivated
by the well-known Chomsky’s [3] idea of a phrase-structure rule applicable
only in some particular contexts [3, p. 142]. Chomsky’s own attempt to
implement this idea by string rewriting resulted in a model equivalent to
linear-space Turing machines, which had nothing to do with the syntax of
languages. In contrast, the model proposed by the authors [2] is defined
using deduction systems, and properly maintains the underlying logic of the
context-free grammars. It was found to have a cubic-time parsing algo-
rithm [2]. However, the model allowed specifying contexts only on one side,
and thus it implemented, so to say, one half of Chomsky’s idea.

This paper continues the development of formal grammars with con-
text specifications by allowing contexts in both directions. The pro-
posed grammars with two-sided contexts may contain such rules as A →
BC &�D&�H, which define any substring of the form BC preceded by a
substring of the form D and followed by a substring of the form H. If the
grammar contains additional rules B → b, C → c, D → d and H → h,
then the above rule for A asserts that a substring bc of a string w = dbch
has the property A. However, this rule will not produce the same substring
bc occurring in another string w′ = dbcd, because its right context does not
satisfy the conjunct �H. Furthermore, the grammars allow expressing the
so-called extended right context (Qα), which defines the form of the current
substring concatenated with its right context, as well as the symmetrically
defined extended left context (Pα).

The intuitive definition is formalized by deduction of propositions of the
form A

(
u⟨w⟩v

)
, which states that the substring w occurring in the context

1

u⟨w⟩v has the property A, where A is a syntactic category defined by the
grammar (“nonterminal symbol” in Chomsky’s terminology). Then, each
rule of the grammar becomes a schema for deduction rules, and a string w is
generated by the grammar, if there is a proof of the proposition S

(
ε⟨w⟩ε

)
.

This paper gives the definition and basic examples of grammars with
two-sided contexts, and then proceeds with developing a generalization of
the Chomsky normal form for these grammars. Once the normal form is
established, it is easy to obtain a parsing algorithm with the running time
O(n4), which can be improved by employing fast matrix multiplication using
the method of Valiant [20].

2 Definition

Ordinary context-free grammars allow using the concatenation operation to
express the form of a string, and disjunction to define alternative forms.
In conjunctive grammars, the conjunction operation may be used to assert
that a substring being defined must conform to several conditions at the
same time. The grammars studied in this paper further allow operators for
expressing the form of the left context (�, P) and the right context (�, Q)
of a substring being defined.

Definition 1. A grammar with two-sided contexts is a quadruple G =
(Σ, N,R, S), where

• Σ is the alphabet of the language being defined;

• N is a finite set of auxiliary symbols (“nonterminal symbols” in Chom-
sky’s terminology), which denote the properties of strings defined in the
grammar;

• R is a finite set of grammar rules, each of the form

A → α1 & . . .&αk &�β1 & . . .&�βm&Pγ1 & . . .&Pγn&

&Qκ1 & . . .&Qκm′ &�δ1& . . .&�δn′ ,
(1)

with A ∈ N , k > 1, m,n,m′, n′ > 0 and αi, βi, γi, κi, δi ∈ (Σ ∪N)∗;

• S ∈ N is a symbol representing well-formed sentences of the language.

If all rules in a grammar have only left contexts (that is, if m′ = n′ = 0),
then this is a grammar with one-sided contexts [2]. If no context operators
are ever used (m = n = m′ = n′ = 0), this is a conjunctive grammar, and if
the conjunction is also never used (k = 1), this is an ordinary context-free
grammar.

2

Figure 1: A substring w of a string uwv: four types of contexts.

For each rule (1), each term αi, �βi, Pγi, Qκi and �δi is called a conjunct.
Denote by u⟨w⟩v a substring w ∈ Σ∗, which is preceded by u ∈ Σ∗ and
followed by v ∈ Σ∗, as illustrated in Figure 1. Intuitively, such a substring is
generated by a rule (1), if

• each direct conjunct αi = X1 . . . Xℓ gives a representation of w as a con-
catenation of shorter substrings described by X1, . . . , Xℓ, as in context-
free grammars;

• each conjunct �βi similarly describes the form of the left context u;

• each conjunct Pγi describes the form of the extended left context uw;

• each conjunct Qκi describes the extended right context wv;

• each conjunct �δi describes the right context v.

The semantics of grammars with two-sided contexts are defined by a
deduction system of elementary propositions (items) of the form “a string
w ∈ Σ∗ written in a left context u ∈ Σ∗ and in a right context v ∈ Σ∗ has
the property X ∈ Σ ∪ N”, denoted by X

(
u⟨w⟩v

)
. The deduction begins

with axioms: any symbol a ∈ Σ written in any context has the property a,
denoted by a

(
u⟨a⟩v

)
for all u, v ∈ Σ∗. Each rule in R is then regarded as

a schema for deduction rules. For example, a rule A → BC allows making
deductions of the form

B
(
u⟨w⟩w′v

)
, C

(
uw⟨w′⟩v

)
⊢G A

(
u⟨ww′⟩v

)
(for all u,w,w′, v ∈ Σ∗),

which is essentially a concatenation of w and w′ that respects the contexts.
If the rule is of the form A → BC &�D, this deduction requires an extra
premise:

B
(
u⟨w⟩w′v

)
, C

(
uw⟨w′⟩v

)
, D

(
ε⟨u⟩ww′v

)
⊢G A

(
u⟨ww′⟩v

)
.

And if the rule is A → BC &QF , the deduction proceeds as follows:

B
(
u⟨w⟩w′v

)
, C

(
uw⟨w′⟩v

)
, F

(
u⟨ww′v⟩ε

)
⊢G A

(
u⟨ww′⟩v

)
.

3

The general form of deduction schemata induced by a rule in R is defined
below.

Definition 2. Let G = (Σ, N,R, S) be a grammar with two-sided contexts,
and define the following deduction system of items of the form X

(
u⟨w⟩v

)
,

with X ∈ Σ ∪N and u,w, v ∈ Σ∗. There is a single axiom scheme:

⊢G a
(
x⟨a⟩y

)
(for all a ∈ Σ and x, y ∈ Σ∗).

Each rule (1) in R defines the following scheme for deduction rules:

I ⊢G A
(
u⟨w⟩v

)
,

for all u,w, v ∈ Σ∗ and for every set of items I satisfying the below properties:

• For every direct conjunct αi = X1 . . . Xℓ, with ℓ > 0 and
Xj ∈ Σ ∪ N , there should exist a partition w = w1 . . . wℓ with
Xj

(
uw1 . . . wj−1⟨wj⟩wj+1 . . . wℓv

)
∈ I for all j ∈ {1, . . . , ℓ}.

• For every conjunct �βi = �X1 . . . Xℓ there should be such a parti-
tion u = u1 . . . uℓ, that Xj

(
u1 . . . uj−1⟨uj⟩uj+1 . . . uℓwv

)
∈ I for all

j ∈ {1, . . . , ℓ}.

• Every conjunct Pγi = PX1 . . . Xℓ should have a corresponding partition
uw = x1 . . . xℓ with Xj

(
x1 . . . xj−1⟨xj⟩xj+1 . . . xℓv

)
∈ I for all j.

• For every conjunct �δi and Qκi, the condition is defined symmetrically.

Then the language generated by a symbol A ∈ N is defined as

LG(A) = {u⟨w⟩v | u,w, v ∈ Σ∗, ⊢G A
(
u⟨w⟩v

)
}.

The language generated by the grammar G is the set of all strings with left
and right contexts ε generated by S: L(G) = {w | w ∈ Σ∗, ⊢G S

(
ε⟨w⟩ε

)
}.

Consider the following grammar, which defines the language of all strings
of the form anbncndn (n > 0), possibly with a symbol e inserted anywhere in
dn.

Example 1 (cf. example with one-sided contexts [2, Ex. 1]). The following
grammar generates the language { anbncndn | n > 0 }∪ { anbncndℓedn−ℓ | n >
ℓ > 0 }:

S → aSd | bSc | ε&�A | Se&�D

A → aAb | ε
D → Dd | ε

4

The rules S → aSd and S → bSc match each symbol a or b in the first
part of the string to the corresponding d or c in its second part. In the middle
of the string, the rule S → ε&�A ensures that the first half of the string is
anbn. These symbols must have matching symbols cndn in the second half.
Furthermore, the rule S → Se&�D allows inserting the symbol e only in a
right context of the form d∗.

The following deduction proves that the string abced has the property S.

⊢ a
(
ε⟨a⟩bced

)
(axiom)

⊢ b
(
a⟨b⟩ced

)
(axiom)

⊢ c
(
ab⟨c⟩ed

)
(axiom)

⊢ e
(
abc⟨e⟩d

)
(axiom)

⊢ d
(
abce⟨d⟩ε

)
(axiom)

⊢ A
(
a⟨ε⟩bced

)
(A → ε)

a
(
ε⟨a⟩bced

)
, A

(
a⟨ε⟩bced

)
, b
(
a⟨b⟩ced

)
⊢ A

(
ε⟨ab⟩ced

)
(A → aAb)

A
(
ε⟨ab⟩ced

)
⊢ S

(
ab⟨ε⟩ced

)
(S → ε&�A)

b
(
a⟨b⟩ced

)
, S

(
ab⟨ε⟩ced

)
, c
(
ab⟨c⟩ed

)
⊢ S

(
a⟨bc⟩ed

)
(S → bSc)

⊢ D
(
abce⟨ε⟩d

)
(D → ε)

D
(
abce⟨ε⟩d

)
, d
(
abce⟨d⟩ε

)
⊢ D

(
abce⟨d⟩ε

)
(D → Dd)

S
(
a⟨bc⟩ed

)
, e
(
abc⟨e⟩d

)
, D

(
abce⟨d⟩ε

)
⊢ S

(
a⟨bce⟩d

)
(S → Se&�D)

a
(
ε⟨a⟩bced

)
, S

(
a⟨bce⟩d

)
, d
(
abce⟨d⟩ε

)
⊢ S

(
ε⟨abced⟩ε

)
(S → aSd)

This deduction can be represented as the tree in Figure 2.

Consider the problem of checking declaration of identifiers before their
use, which can be expressed by a conjunctive grammar. However, if the
identifiers may be declared before or after their use, then no Boolean gram-
mar for such a language is known. A grammar with one sided contexts for
declarations before or after use has recently been constructed by the authors.
Using two-sided contexts, the same language can be defined in a much more
natural way.

Example 2 (cf. grammar with one-sided contexts [2]). Consider the language

{u1 . . . un | for every i, ui ∈ a∗c, or there exist j, k with ui = bkc and uj = akc }
(2)

Substrings of the form akc represent declarations, while every substring of
the form bkc is a reference to a declaration of the form akc.

5

Figure 2: A parse tree of the string abced according to the grammar in
Example 1.

This language is generated by the following grammar:

S → AS | CS | DS | ε
A → aA | c
B → bB | c
C → B&PEFc

D → B&QHcE

E → AE | BE | ε
F → aFb | cE
H → bHa | cE

The idea of the grammar is that S should generate a string
u1 . . . uℓ⟨uℓ+1 . . . uℓ′⟩uℓ′+1 . . . un, with ui ∈ a∗c ∪ b∗c, if every reference in
uℓ+1 . . . uℓ′ has a corresponding declaration somewhere in the whole string
u1 . . . un. This condition is defined inductively, and the rule S → ε defines
the base case: the string u1 . . . un⟨ε⟩ε has the desired property. The rule
S → CS appends a reference of the form (b∗c&PEFc), where the context
specification ensures that this reference has a matching earlier declaration;
here E represents the prefix of the string up to that earlier declaration, while
F matches the symbols a in the declaration to the symbols b in the reference.
The possibility of a later declaration is checked by another rule S → DS,
which adds a reference of the form (b∗c&QHcE), where H is used to match

6

the bs forming this reference to the as in the later declaration.

The next example gives a grammar with contexts that defines reachability
on graphs. Whereas Sudborough [19] defined a linear context-free grammar
for a special encoding of the graph reachability problem on acyclic graphs
with numbered nodes, the grammar presented below allows any graphs and
uses a direct encoding. This example illustrates the ability of grammars with
contexts to define various kinds of cross-references.

Example 3. Consider encodings of directed graphs as strings of the form

bs ai1bj1 ai2bj2 . . . ainbjn at, with s, t > 1, n > 0, ik, jk > 1,

where each block aibj denotes an arc from vertex number i to vertex number
j, while the prefix bs and the suffix at mark s as the source vertex and t as
the target. Then the following grammar defines all graphs with a path from
s to t.

S → FDCA | F
A → aA | a
B → bB | b
C → ABC | ε
D → B&QS | B&PBCE

E → aEb | DCA

F → bFa | bCa

The rule S → F handles the case of s and t being the same node. The
other alternative S → FDCA uses F to match as to the tail of an arc asbs

′
,

and then uses D to generate its head bs
′
. The contexts in the rules for D

ensure that there is a path from s′ to t as follows: QS handles the case of the
next arc located to the right of this point in the string, while PBCE uses E
to continue the path by an arc earlier in the list.

For example, consider a directed graph
with five vertices 1, . . . , 5, and the arcs 3—
5, 1—4, 4—3, 1—3, and 5—2, where the
path from vertex 1 to vertex 2 is sought, and
an encoding for this instance of the problem
as a string b1 a3b5 a1b4 a4b3 a1b3 a5b2 a2.
One of the paths from 1 to 2 is 1, 4, 3, 5, 2, and Figure 3 informally illustrates
the parse of this string according to the grammar, which follows that path.

3 Definition by language equations

Ordinary context-free grammars have an equivalent definition by language
equations, due to Ginsburg and Rice [5]. This definition is inherited by

7

Figure 3: An informal diagram representing a parse of the string
b1 a3b5 a1b4 a4b3 a1b3 a5b2 a2 according to the grammar in Example 3. High-
lighted blocks correspond to the substrings constituting the path 1–4–3–5–2.

8

conjunctive grammars [9], as well as by grammars with one-sided contexts [2].
This representation is extended to grammars with two-sided contexts by

replacing ordinary formal languages with sets of triples of the form u⟨w⟩v,
that is, to languages of triples L ⊆ Σ∗ × Σ∗ × Σ∗. All usual operations on
languages used in equations are extended to languages of triples as follows:
for all K,L ⊆ Σ∗ × Σ∗ × Σ∗, consider their

• union K ∪ L = {u⟨w⟩v | u⟨w⟩v ∈ K or u⟨w⟩v ∈ L };

• intersection K ∩ L = {u⟨w⟩v | u⟨w⟩v ∈ K, u⟨w⟩v ∈ L };

• concatenation K · L = {u⟨ww′⟩v | u⟨w⟩w′v ∈ K, uw⟨w′⟩v ∈ L };

• left context �L = {u⟨w⟩v | ε⟨u⟩wv ∈ L };

• extended left context, PL = {u⟨w⟩v | ε⟨uw⟩v ∈ L }.

• right context �L = {u⟨w⟩v | uw⟨v⟩ε ∈ L };

• extended right context, QL = {u⟨w⟩v | u⟨wv⟩ε ∈ L }.

Definition 3. For every grammar with contexts G = (Σ, N,R, S), the associ-
ated system of language equations is a system of equations in variables N , in
which each variable assumes a value of a language of triples L ⊆ Σ∗×Σ∗×Σ∗,
and which contains the following equations for every variable A:

A =
∪

A→α1 &...&αk &
&�β1 &...&�βm &
&Pγ1 &...&Pγn &
&Qκ1 &...&Qκm′ &
&�δ1 &...&�δn′∈R

(k∩
i=1

αi ∩
m∩
i=1

�βi ∩
n∩

i=1

Pγi ∩
m′∩
i=1

Qκi ∩
n′∩
i=1

�δi

)
.

Each instance of a symbol a ∈ Σ in such a system denotes the lan-
guage {x⟨a⟩y | x, y ∈ Σ∗ }, and each empty string denotes the language
{x⟨ε⟩y | x, y ∈ Σ∗ }. A solution of such a system is a vector of languages
(. . . , LA, . . .)A∈N , such that the substitution of LA for A, for all A ∈ N , turns
each equation into an equality.

This system always has solutions, and among them the least solution
with respect to the partial order ⊑ of componentwise inclusion on the set
(2Σ

∗×Σ∗×Σ∗
)n.

For any two n-tuples of languages of triples, let (K1, . . . , Kn) ⊑
(L1, . . . , Ln) if and only if Ki ⊆ Li. Its least element is ⊥= (∅, . . . ,∅).

Consider a system of language equations of the form

Xi = φi(X1, . . . , Xn) (1 6 i 6 n),

9

where φi : (2
Σ∗×Σ∗×Σ∗

)n → 2Σ
∗×Σ∗×Σ∗

are functions of X1, . . . , Xn, defined
using the operations of concatenation, union, intersection, and any of the
four context operators.

The right-hand sides of such a system can be represented as a vector
function φ = (φ1, . . . , φn), which has the following properties:

Lemma 1. For every grammar with contexts, the vector function φ =
(φ1, . . . , φn) in the associated system of language equations is monotone, in
the sense that for any two vectors K and L, the inequality K ⊑ L implies
φ(K) ⊑ φ(L).

Lemma 2. For every grammar with contexts, the vector function φ =
(φ1, . . . , φn) in the associated system of language equations is continuous, in
the sense that for every sequence of vectors of languages of triples {L(i)}∞i=1,
it holds that

∞⊔
i=1

φ(L(i)) = φ
(∞⊔

i=1

L(i)
)
.

The next result follows by the standard method of least fixed points.

Lemma 3. If φ is monotone and continuous, then the system X = φ(X)
has a least solution, which is given by

∞⊔
k=0

φk(⊥).

Therefore, every system of equations corresponding to a grammar with
contexts has a least solution, which shall be used to give an equivalent defi-
nition of the language generated by a grammar.

Definition 4. Let G = (Σ, N,R, S) be a grammar with two-sided con-
texts, let X = φ(X) be the associated system of language equations, and
let (LA1 , . . . , LAn) with LAi

⊆ Σ∗ × Σ∗ × Σ∗, where N = {A1, . . . , An}, be
its least solution. Define the language generated by each nonterminal symbol
A ∈ N as the corresponding component of this solution: LG(A) = LA. Let
L(G) = {w | ε⟨w⟩ε ∈ LS }.

Definitions 2 and 4 are proved equivalent as follows. For every vector
function φ = (φ1, . . . , φn), denote the i-th component of the vector φ by [φ]i.

Theorem 1. Let G = (Σ, N,R, S) be a grammar with two-sided contexts, and
let X = φ(X) be the associated system of language equations. Let u⟨w⟩v ∈
Σ∗ × Σ∗ × Σ∗ be a string with contexts. Then, for every A ∈ N ,

u⟨w⟩v ∈
[⊔
t>0

φt(∅, . . . ,∅)
]
A

if and only if ⊢G A
(
u⟨w⟩v

)
.

10

4 Normal form

An ordinary context-free grammar can be transformed to the Chomsky nor-
mal form, with the rules restricted to A → BC and A → a, with B,C ∈ N
and a ∈ Σ. This form has the following generalization to grammars with
contexts.

Definition 5. A grammar with two-sided contexts G = (Σ, N,R, S) is said
to be in the binary normal form, if each rule in R is of one of the forms

A → B1C1& . . .&BkCk &�D1 & . . .&�Dm&PE1 & . . .&PEn&

&QF1 & . . .&QFn′ &�H1& . . .&�Hm′ , (3a)

A → a&�D1& . . .&�Dm&PE1& . . .&PEn&

&QF1& . . .&QFn′ &�H1 & . . .&�Hm′ , (3b)

where k > 1, m,n, n′,m′ > 0, Bi, Ci, Di, Ei, Fi, Hi ∈ N , a ∈ Σ.

The transformation to the normal form consists of three stages: first,
removing all direct empty conjuncts ε; secondly, eliminating empty contexts
(�ε, �ε); finally, getting rid of unit conjuncts of the form B, with B ∈ N .

4.1 Null conjuncts

The first step is the removal of all rules A → ε& . . ., so that no symbols
generate ε, while all non-empty strings are generated as before. As generation
of longer strings may depend on the generation of ε, already for ordinary
context-free grammars, such a transformation requires adding extra rules
that simulate the same dependence without actually generating any empty
strings.

Example 4. Consider the following context-free grammar, which defines the
language {abc, ab, ac, a, bcd, bd, cd, d}.

S → aA | Ad
A → BC

B → ε | b
C → ε | c

Since B generates the empty string, the rule A → BC can be used to generate
just C; therefore, once the rule B → ε is removed, one should add a new rule
A → C, in which B is omitted. Similarly one can remove the rule C → ε
and add a “compensatory” rule A → B. Since both B and C generate ε, so
does A, by the rule A → BC. Hence, extra rules S → a and S → d, where
A is omitted, have to be added.

11

An algorithm for carrying out such a transformation first calculates the
set of nonterminals that generate ε, known as Nullable(G) ⊆ N , and
then uses it to reconstruct the rules of the grammar. For the grammar in
Example 4, Nullable(G) = {A,B,C}.

The same idea works for conjunctive grammars as well [8].
For grammars with contexts, this kind of transformation gets more com-

plicated, because the generation of ε in the original grammar may depend on
the contexts, and the same logical dependence must be ensured in the new
grammar [2].

Example 5. Consider the following grammar with left contexts, which de-
fines the language L = {abc, ab, ac, a, bcd, bd}:

S → aA | Ad
A → BC

B → ε&�D | b
C → ε | c
D → a

The context specification �D in the rule B → ε&�D limits the generation
of the empty string to left contexts of the form D, that is, to the left context
a only. Then, in order to omit B in the rule A → BC, one should add
an extra rule A → C &PD, in which the context operator ensures that B
generates ε in this context. Since C generates ε in all contexts, a rule A → B
is added as before. Furthermore, A generates the empty string only in the
left context D, and hence A has to be omitted in the rules for S, as long as
the context is of that form. This is done by two extra rules A → a&PD
and S → d&�D.

In this paper, the known method illustrated in Example 5 is further ex-
tended to grammars with two-sided contexts, where one has to consider both
left and right contexts, in which a given nonterminal generates ε.

Example 6. Consider the following grammar with two-sided contexts, defin-
ing the language L = {abc, ac, bcd, bd, d}:

S → aA | Ad
A → BC

B → ε&�D | b
C → ε&�E | c
D → a | ε&�F

E → d

F → d

12

In this grammar, the nonterminal B generates the empty string only in a left
context of the form defined by D, while C defines ε only in a right context
of the form E. Because of this, both B and C can be omitted in the rule
A → BC, giving two rules A → C &�D and A → B&�E. Each of these
rules ensures that B (or C) defines ε in this context. In those contexts
where both B and C generate ε, so can A, by the rule A → BC. Hence, in
the rules for S, nonterminal A can be accordingly omitted by having rules
S → a&PD&�E and S → d&�D&QE.

By the combination of the rules B → ε&�D and D → ε&�F , the
grammar allows B to generate ε, but only in the left context ε and in any right
context defined by F . When B is omitted in the rule A → BC, this condition
is simulated by a rule A → C &�ε&QF . In a similar way, when omitting A
in the rule S → Ad, one has to have an extra rule S → d&�ε&QE&QF ,
which contains the information about the right contexts, in which A defines
the empty string in the empty left context.

After all null conjuncts have been eliminated from the grammar, its rules
are as follows:

S → aA | a&PD&�E | Ad | d&�D&QE | d&�ε&QE&QF

A → BC | B&�E | C &�D | C &�ε&QF

B → b

C → c

D → a

E → d

F → d

It order to define such a transformation for any given grammar with two-
sided contexts, it is convenient to assume that in each rule of the grammar,
the context operators are applied only to single nonterminal symbols rather
than concatenations, that is, every rule is of the form

A → α1& . . .&αk &�D1 & . . .&�Dm&PE1 & . . .&PEn&

&QF1 & . . .&QFm′ &�H1 & . . .&�Hn′ ,
(4)

with A ∈ N , k > 1, m,n,m′, n′ > 0, αi ∈ (Σ ∪N)∗ and Di, Ei, Fi, Hi ∈ N .

Definition 6. Let G = (Σ, N,R, S) be a grammar with two-sided contexts
with all rules of the form (4). For any set S ⊆ 2N ×N × 2N , denote by S∗

the set of all pairs (U1 ∪ . . . ∪ Uℓ, A1 . . . Aℓ, V1 ∪ . . . ∪ Vℓ) with ℓ > 0 and
(Ui, Ai, Vi) ∈ S.

Construct the sequence of sets Nullablei(G) ⊆ 2N×N×2N , for i > 0, as
follows. Let Nullable0(G) = ∅. Every next set Nullablei+1(G) contains
all triples(
{D1, . . . , Dm}∪{E1, . . . , En}∪

∪
i

Ui, A, {F1, . . . , Fm′}∪{H1, . . . , Hn′}∪
∪
i

Vi

)
13

for which there is exist a rule (4) and triples (U1, α1, V1), . . . , (Uk, αk, Vk) ∈
Nullable∗

i (G).
Finally, let Nullable(G) =

∪
i>0 Nullablei(G).

In the definition of S∗, note that ∅∗ = {(∅, ε,∅)}. This value of
Nullable∗

0(G) is used in the construction of Nullable1(G).
An element (U,A, V) of the set Nullable represents the intuitive idea

that the nonterminal A generates ε in a left context of the form described by
each nonterminal in the set U , and in a right context of the form given by
nonterminals in V .

Example 7. For the grammar in Example 6, the set Nullable(G) can be
constructed according to this definition as follows:

Nullable0(G) = ∅,

Nullable1(G) =
{
({D}, B,∅), (∅, C, {E}), (∅, D, {F})

}
,

Nullable2(G) =
{
({D}, B,∅), (∅, C, {E}), (∅, D, {F}), ({D}, A, {E})

}
and Nullable(G) = Nullable2(G).

The elements ({D}, B,∅) and (∅, C, {E}) are obtained directly from the
rules of the grammar, and the element ({D}, A, {E}) represents the “con-
catenation” BC in the rule for A.

The set Nullable(G) represents the generation of ε by different nonter-
minals in different contexts as follows.

Lemma 4. Let G = (Σ, N, P, S) be a grammar with contexts, let A ∈
N and u, v ∈ Σ∗. Then, u⟨ε⟩v ∈ LG(A) if and only if there ex-
ists such a triple ({J1, . . . , Jℓ}, A, {K1, . . . , Kt}) in Nullable(G), with
J1, . . . , Jℓ, K1, . . . , Kt ∈ N , for which ε⟨u⟩v ∈ LG(Ji) for all i and u⟨v⟩ε ∈
LG(Kj) for all j.

Proof. ⇒⃝ The proof is an induction on p, the number of steps in the deduction
of an item A

(
u⟨ε⟩v

)
.

Basis. Let p = 1. Then, the item A
(
u⟨ε⟩v

)
is deduced by the rule A → ε,

and since such a rule exists, the triple (∅, A,∅) is in Nullable1(G).
Induction step. Assume that A

(
u⟨ε⟩v

)
is deduced in p > 2 steps, and

consider the rule (4) used at the last step of the deduction. For each direct
conjunct αi in this rule, let αi = Xi,1 . . . Xi,ℓ with Xi,j ∈ Σ ∪ N . Then the
last step of the deduction is

Xi,j

(
u⟨ε⟩v

)
, Di

(
ε⟨u⟩v

)
, Ei

(
ε⟨u⟩v

)
, Fi

(
u⟨v⟩ε

)
, Hi

(
u⟨v⟩ε

)
⊢G A

(
u⟨ε⟩v

)
.

By the induction hypothesis, for each symbol Xi,j, there exists a triple
(Ui,j, Xi,j, Vi,j) ∈ Nullable(G), in which Ui,j, Vi,j ⊆ N , and ε⟨u⟩v ∈ LG(J)

14

for all J ∈ Ui,j, and u⟨v⟩ε ∈ LG(K) for all K ∈ Vi,j. Then, for each i, the
pair (Ui, αi, Vi) is in the set Nullable∗(G), where Ui = Ui,1 ∪ . . . ∪ Ui,ℓ,
Vi = Vi,1 ∪ . . . ∪ Vi,ℓ. Denote U =

∪
i Ui ∪ {D1, . . . , Dm} ∪ {F1, . . . , Fn} and

V =
∪

i Vi ∪ {F1, . . . , Fm′} ∪ {H1, . . . , Hn′}. Then the triple (U,A, V) is in
Nullable(G).

⇐⃝ Consider nonterminals J1, . . . , Jℓ and K1, . . . , Kt ∈ N , such that
({J1, . . . , Jℓ}, A, {K1, . . . , Kt}) ∈ Nullable(G). Then, by Definition 6,
({J1, . . . , Jℓ}, A, {K1, . . . , Kt}) ∈ Nullableh(G) for some h > 0. The proof
goes by induction on h.

Basis. Let h = 0. In this case, Nullable(G) is an empty set and no
nonterminals A ∈ N satisfy the assumptions of the lemma.

Induction step. Let now ({J1, . . . , Jℓ}, A, {K1, . . . , Kt}) ∈
Nullableh(G) and ε⟨u⟩v ∈ LG(Ji), u⟨v⟩ε ∈ LG(Kj), for all i ∈ {1, . . . , ℓ},
j ∈ {1, . . . , t}. Then, by Definition 6, the grammar has a rule of
the form (4), such that for every direct conjunct αi, the element
(Ui, αi, Vi) ∈ Nullable∗

h−1(G), and

U1 ∪ . . . ∪ Uk ∪ {D1, . . . , Dm} ∪ {E1, . . . , En} = {J1, . . . , Jℓ},
V1 ∪ . . . ∪ Vk ∪ {F1, . . . , Fm′} ∪ {H1, . . . , Hn′} = {K1, . . . , Kt}.

For each conjunct αi, let αi = Xi,1 . . . Xi,p with p > 0 and Xi,1, . . . ,
Xi,p ∈ Σ∪N . Then, by the definition of a “star” of Nullableh−1(G), there
exist sets Ui,1, . . . , Ui,p ⊆ N , Vi,1, . . . , Vi,p ⊆ N , such that Ui,1 ∪ . . . ∪ Ui,p =
Ui, Vi,1 ∪ . . . ∪ Vi,p = Vi and (Ui,j, Xi,j, Vi,j) ∈ Nullableh−1(G), for all j.
By the induction hypothesis, applied to every symbol Xi,j, one gets that
u⟨ε⟩v ∈ LG(Xi,j), for each j.

Repeating the same procedure for every element (Ui, αi, Vi) of the set
Nullable∗

h−1(G), gives that ⊢G Xi,1

(
u⟨ε⟩v

)
, . . . , Xi,p

(
u⟨ε⟩v

)
.

Now the item A
(
u⟨ε⟩v

)
can be deduced in the grammar G using the

rule (4) as follows:

X1,1

(
u⟨ε⟩v

)
, . . . , Xk,p

(
u⟨ε⟩v

)
, D1

(
ε⟨u⟩v

)
, . . . , Dm

(
ε⟨u⟩v

)
,

E1

(
ε⟨u⟩v

)
, . . . , En

(
ε⟨u⟩v

)
, F1

(
u⟨v⟩ε

)
, . . . , Fm′

(
u⟨v⟩ε

)
,

H1

(
u⟨v⟩ε

)
, . . . , Hn′

(
u⟨v⟩ε

)
⊢G A

(
u⟨ε⟩v

)
.

Consider the second case described in Example 6, where a nonterminal
(B) defines the empty string in the empty left context (�D), and there are
restrictions on the right contexts (�F), in which it does so. This case has
to be treated in a special way, using a variant of the set Nullable(G) that
assumes empty left contexts.

15

Definition 7. Let G = (Σ, N,R, S) be a grammar with two-sided contexts.
Construct a sequence of sets �ε-Nullablei(G) ⊆ N × 2N , with i > 0,
by setting �ε-Nullable0(G) = { (A, V) | (∅, A, V) ∈ Nullable(G) },
and �ε-Nullablei+1(G) =

{
(A, V ∪ V1 ∪ . . . ∪ Vℓ)

∣∣ ({J1, . . . , Jℓ}, A, V) ∈
Nullable(G), ∃ V1, . . . , Vℓ ⊆ N : (Ji, Vi) ∈ �ε-Nullablei(G)

}
. Define

�ε-Nullable(G) =
∪

i>0�ε-Nullablei(G).

Example 8. For the grammar in Example 6,

�ε-Nullable0(G) =
{
(C, {E}), (D, {F})

}
,

�ε-Nullable1(G) =
{
(C, {E}), (D, {F}), (B, {F}), (A, {E,F})

}
,

and �ε-Nullable(G) = �ε-Nullable1(G).
The element (B, {F}) means that every time B defines ε in the left con-

text ε, its right context is of the form F . For (A, {E,F}), the right contexts
come from the elements (B, {F}) and (C, {E}), corresponding to a concate-
nation BC in the rule for A.

Lemma 5. Let G = (Σ, N,R, S) be a grammar with contexts, let A ∈ N and
v ∈ Σ∗. Then ε⟨ε⟩v ∈ LG(A) if and only if there exist K1, . . . , Kt such that
(A, {K1, . . . , Kt}) ∈ �ε-Nullable(G), and for all i ∈ {1, . . . , t} the string
ε⟨v⟩ε ∈ LG(Ki).

Proof. ⇐⃝ Let K1, . . . , Kt ∈ N and (A, {K1, . . . , Kt}) ∈ �ε-Nullable(G).
Then, by Definition 6, (A, {K1, . . . , Kt}) ∈ �ε-Nullableh(G) for some h >
0. The proof is an induction on h.

Basis. Let h = 0. Then, by Definition 6, �ε-Nullable(G) =
{ (A, {K1, . . . , Kt}) | (∅, A, {K1, . . . , Kt}) ∈ Nullable(G) }. Since ε⟨v⟩ε ∈
LG(Ki) by the assumption and (∅, A, {K1, . . . , Kt}) is in Nullable(G),
applying Lemma 4 gives that u⟨ε⟩v ∈ LG(A) where u ∈ Σ∗. Thus,
ε⟨ε⟩v ∈ LG(A), as desired.

Induction step. Let h > 0. By Definition 7, the element (A, V ∪V1∪ . . .∪
Vℓ) is in �ε-Nullableh(G) if there exist such nonterminals J1, . . . , Jℓ ∈ N
that ({J1, . . . , Jℓ}, A, V ∪ V1 ∪ . . . ∪ Vℓ) is in Nullable(G) and every pair
(Ji, Vi) is in �ε-Nullableh−1(G).

Consider a pair (Ji, Vi) ∈ �ε-Nullableh−1(G), for all i ∈ {1, . . . , ℓ}. By
the induction hypothesis, ε⟨ε⟩v ∈ LG(Ji). Then ε⟨ε⟩v ∈ LG(A) by Lemma 4,
as desired.

⇒⃝ The proof goes by induction on p, the number of steps used in deduc-
tion of the item A

(
ε⟨ε⟩v

)
.

Basis. Let p = 2 and consider the two rules A → ε&�D, D → ε. The
item A

(
ε⟨ε⟩v

)
can be deduced as D

(
ε⟨ε⟩v

)
⊢G A

(
ε⟨ε⟩v

)
. By Definition 6,

({D}, A,∅), (∅, D,∅) ∈ Nullable(G). Hence, (A,∅) ∈ �ε-Nullable(G)
by Definition 7 and the statement of the lemma is thus satisfied.

16

Induction step. One has to prove that there exists a set V ⊆ N , such that
(A, V) ∈ �ε-Nullable(G) and ε⟨v⟩ε belongs to the language of each ele-
ment of V . Let the item A

(
ε⟨ε⟩v

)
be deduced in p steps and let the last step of

its deduction use a rule of the form (4), with {F1, . . . , Fm′ , H1, . . . , Hn′} ⊆ V .
By Definition 7, (A, V) ∈ �ε-Nullable(G) means that there ex-

ist nonterminals J1, . . . , Jℓ ∈ N and sets V1, . . . , Vℓ ⊆ N , such
that ({J1, . . . , Jℓ}, A, V ∪ V1 ∪ . . . ∪ Vℓ) ∈ Nullable(G) and (Ji, Vi) ∈
�ε-Nullable(G).

By the induction hypothesis, ε⟨v⟩ε is in LG(K), for all K ∈ Vi and
i ∈ {1, . . . , ℓ}. Thus, ε⟨v⟩ε ∈ LG(K) (for all K ∈ V ∪ V1 ∪ . . . ∪ Vℓ).

Similarly to the set �ε-Nullable(G), define the set �ε-Nullable(G)
as follows.

Definition 8. Let G = (Σ, N,R, S) be a grammar with two-sided con-
texts. Define symmetrically to Definition 7 the set �ε-Nullable(G) ⊆
2N × N , by setting �ε-Nullable(G) =

∪
i>0 �ε-Nullablei(G), with

�ε-Nullable0(G) = { (U,A) | (U,A,∅) ∈ Nullable(G) }, and
�ε-Nullablei+1(G) =

{
(U ∪ U1 ∪ . . . ∪ Uℓ, A)

∣∣ (U,A, {K1, . . . , Kt}) ∈
Nullable(G), ∃ U1, . . . , Ut ⊆ N : (Ui, Ki) ∈ �ε-Nullablei(G)

}
.

Again, the following characterization for this set is established.

Lemma 6. Let G = (Σ, N,R, S) be a grammar with contexts, let A ∈ N and
u ∈ Σ∗. Then u⟨ε⟩ε ∈ LG(A) if and only if there exist J1, . . . , Jℓ such that
({J1, . . . , Jℓ}, A) ∈ �ε-Nullable(G), and for all i ∈ {1, . . . , t} the string
ε⟨u⟩ε ∈ LG(Ji).

Now a general transformation to the normal form can be given.

Construction 1. Let G = (Σ, N,R, S) be a grammar with two-sided con-
texts, with all rules of the form

A → a (5a)

A → B1 & . . .&Bk &�D1& . . .&�Dm&PE1& . . .&PEn& (5b)

&QF1& . . .&QFm′ &�H1 & . . .&�Hn′

A → BC (5c)

A → ε, (5d)

where a ∈ Σ and A,B,C,Di, Ei, Fi, Hi ∈ N . Construct another grammar
with two-sided contexts G′ = (Σ, N,R′, S), with the following rules.

1. All rules of the form (5a) in R are added to R′:

A → a ∈ R. (6)

17

2. For every “long” rule of the form (5b) in R, the set R′ shall contain
this rule:

A → B1 & . . .&Bk &�D1 & . . .&�Dm &PE1& . . .&PEn&

&QF1& . . .&QFm′ &�H1 & . . .&�Hn′ ,
(7)

as well as the following additional ones.

If m > 1, then, for any collection of m pairs (D1, V1), . . . , (Dm, Vm) ∈
�ε-Nullable(G), let

∪m
i=1 Vi = {K1, . . . , Kt} and add the rule

A → B1& . . .&Bk &E1& . . .&En&�ε&QK1 & . . .&QKt&

&QF1& . . .&QFm′ &�H1& . . .&�Hn′ .
(8a)

Symmetrically, if (U1, H1), . . . , (Un′ , Hn′) ∈ �ε-Nullable(G) (with

n′ > 1) and
∪n′

i=1 Ui = {K1, . . . , Kt}, then there is a rule

A → B1& . . .&Bk &F1 & . . .&Fm′ &�D1 & . . .&�Dm&

&PE1 & . . .&PEn&PK1 & . . .&PKt&�ε.
(8b)

Finally, if (D1, V1), . . . , (Dm, Vm) ∈ �ε-Nullable(G), (U1, H1),
. . . , (Un′ , Hn′) ∈ �ε-Nullable(G) (with m, n′ > 1) and

∪m
i=1 Vi ∪∪n′

j=1 Uj = {K1, . . . , Kt}, then the set R′ contains a rule

A → B1& . . .&Bk &E1& . . .&En&F1& . . .&Fm′ &

&K1& . . .&Kt&�ε&�ε.
(8c)

3. Every rule of the form (5c) in R is added to R′:

A → BC, (9)

along with the following extra rules:

A → B&PJ1& . . .&PJℓ &�K1 & . . .&�Kt, (10a)

for all ({J1, . . . , Jℓ}, C, {K1, . . . , Kt}) ∈ Nullable(G);

A → B&PJ1 & . . .&PJℓ &�ε, (10b)

for all ({J1, . . . , Jℓ}, C) ∈ �ε-Nullable(G) with ℓ > 1;

A → C &�J1& . . .&�Jℓ &QK1 & . . .&QKt, (10c)

for all ({J1, . . . , Jℓ}, B, {K1, . . . , Kt}) ∈ Nullable(G);

A → C &�ε&QK1& . . .&QKt, (10d)

for all (B, {K1, . . . , Kt}) ∈ �ε-Nullable(G) with t > 1.

18

Lemma 7. Let G = (Σ, N,R, S) be a grammar with two-sided contexts.
Then the grammar G′ = (Σ, N ′, R′, S) obtained by Construction 1 generates
the language L(G′) = L(G) \ {ε}.

Proof. ⊆⃝ It is claimed that whenever an item A
(
u⟨w⟩v

)
(with A ∈ N ,

u, v ∈ Σ∗ and w ∈ Σ+) can be deduced in the grammar G, it can also
be deduced in the new grammar G′. The proof is by induction on p, the
number of steps in the deduction of A

(
u⟨w⟩v

)
in G.

Basis. Let p = 1. Consider an item A
(
u⟨w⟩v

)
deduced in G by a rule of

the form A → a. Then w = a ∈ Σ and the last step of the deduction takes
form a

(
u⟨a⟩v

)
⊢G A

(
u⟨a⟩v

)
. The same rule A → a is also contained in the

new grammar G′, and one can deduce the item A
(
u⟨a⟩v

)
in G′ by this rule:

a
(
u⟨a⟩v

)
⊢G′ A

(
u⟨a⟩v

)
.

Induction step. Let the item A
(
u⟨w⟩v

)
be deduced in G by some rule of

the form (5b) or (5c).
If this is a rule A → BC, then the last step of the deduction is

B
(
u⟨w1⟩w2v

)
, C

(
uw1⟨w2⟩v

)
⊢G A

(
u⟨w1w2⟩v

)
, for some partition w = w1w2.

Each of the premises is deduced in fewer than p steps. Though the string w
is non-empty, one of w1, w2 may be empty, and the proof splits into three
cases, depending on whether any of these strings is empty, and if so, then
which of them.

• If both w1 and w2 are non-empty, then both items B
(
u⟨w1⟩w2v

)
and

C
(
uw1⟨w2⟩v

)
can be deduced in the grammar G′ by the induction hy-

pothesis. Since G′ has the same rule A → BC, it can be used to deduce
the item A

(
u⟨w⟩v

)
in G′ in the same way: B

(
u⟨w1⟩w2v

)
, C

(
uw1⟨w2⟩v

)
⊢G′ A

(
u⟨w1w2⟩v

)
.

• Let w1 = w and w2 = ε. Then the last step of the deduction is
B
(
u⟨w⟩v

)
, C

(
uw⟨ε⟩v

)
⊢G A

(
u⟨w⟩v

)
. By the induction hypothesis,

the item B
(
u⟨w⟩v

)
can be deduced in G′. Though the other item

C
(
uw⟨ε⟩v

)
can be deduced only in G, it is reflected by other items in

G′. The proof splits into two cases, depending on whether v is empty
or not.

First consider the case of v ̸= ε. Then, since the item C
(
uw⟨ε⟩v

)
can

be deduced in G, by Lemma 4, there exist such nonterminals J1, . . . , Jℓ,
K1, . . . , Kt ∈ N , that ({J1, . . . , Jℓ}, C, {K1, . . . , Kt}) ∈ Nullable(G)
and all items Ji

(
ε⟨uw⟩v

)
and Kj

(
uw⟨v⟩ε

)
, for all applicable i and

j, can be deduced in the grammar G. By the induction hypoth-
esis, each of these items can be deduced in the new grammar G′.
From these premises, using the rule (10a), the desired item A

(
u⟨w⟩v

)
can be deduced as follows: B

(
u⟨w⟩v

)
, J1

(
ε⟨uw⟩v

)
, . . . , Jℓ

(
ε⟨uw⟩v

)
,

K1

(
uw⟨v⟩ε

)
, . . . , Kt

(
uw⟨v⟩ε

)
⊢G′ A

(
u⟨w⟩v

)
.

19

Let now v = ε. In this case, the last step of the deduction of A
(
u⟨w⟩ε

)
is as follows: B

(
u⟨w⟩ε

)
, C

(
uw⟨ε⟩ε

)
⊢G A

(
u⟨w⟩ε

)
. By the induction

hypothesis, the item B
(
u⟨w⟩ε

)
can be deduced in the new grammar G′.

Since uw⟨ε⟩ε ∈ LG(C), by Lemma 6, there exist J1, . . . , Jℓ ∈ N , such
that ({J1, . . . , Jℓ}, C) ∈ �ε-Nullable(G), and the items J1

(
ε⟨uw⟩ε

)
,

. . . , Jℓ
(
ε⟨uw⟩ε

)
can be deduced in the grammar G. By the induction

hypothesis, all these items can also be deduced in the grammarG. From
these premises, using the rule (10b), one can deduce the desired item in
G′ as follows: B

(
u⟨w⟩ε

)
, J1

(
ε⟨uw⟩ε

)
, . . . , Jℓ

(
ε⟨uw⟩ε

)
⊢G′ A

(
u⟨w⟩ε

)
.

• The case of w1 = ε and w2 = w, where the last step of deduction
of A

(
u⟨w⟩v

)
in G is B

(
u⟨ε⟩wv

)
, C

(
u⟨w⟩v

)
⊢G A

(
u⟨w⟩v

)
, is handled

symmetrically to the above case.

If u ̸= ε, then Lemma 4 gives a triple ({J1, . . . , Jℓ}, B, {K1, . . . , Kt}) ∈
Nullable(G), for which ⊢G′ C

(
u⟨w⟩v

)
and ⊢G′ J1

(
ε⟨u⟩wv

)
, . . . ,

Jℓ
(
ε⟨u⟩wv

)
, K1

(
u⟨wv⟩ε

)
, . . . , Kt

(
u⟨wv⟩ε

)
. From these premises, one

can then deduce A
(
u⟨w⟩v

)
in G′ by the rule (10c).

If u = ε, then the last step of the deduction of A
(
u⟨w⟩ε

)
took the

form B
(
ε⟨ε⟩wv

)
, C

(
ε⟨w⟩v

)
⊢G A

(
ε⟨w⟩v

)
. Then, by Lemma 5, there

is a pair (B, {K1, . . . , Kt}) ∈ �ε-Nullable(G), for which all items
K1

(
ε⟨wv⟩ε

)
, . . . , Kt

(
ε⟨wv⟩ε

)
are deducible in G′. These items, to-

gether with the item C
(
ε⟨w⟩v

)
are the premises for the deduction of

A
(
ε⟨w⟩v

)
by the rule (10d).

Consider now the other case, when the last step of the deduction of
A
(
u⟨w⟩v

)
is by some rule (5b), and is accordingly of the form

B1

(
u⟨w⟩v

)
, . . . , Bk

(
u⟨w⟩v

)
, (11a)

D1

(
ε⟨u⟩wv

)
, . . . , Dm

(
ε⟨u⟩wv

)
, (11b)

E1

(
ε⟨uw⟩v

)
, . . . , En

(
ε⟨uw⟩v

)
, (11c)

F1

(
u⟨wv⟩ε

)
, . . . , Fm′

(
u⟨wv⟩ε

)
, (11d)

H1

(
uw⟨v⟩ε

)
, . . . , Hn′

(
uw⟨v⟩ε

)
(11e)

⊢G A
(
u⟨w⟩v

)
.

• If u ̸= ε and v ̸= ε, then, by the induction hypothesis, each of the
premises can be deduced in the grammar G′, and thus A

(
u⟨w⟩v

)
can be

deduced in G′ by the same rule (5b), which is in R′ by the construction.

• Let in the rule (5b) m > 1 and let u = ε and v ̸= ε. The items (11a),
(11c)–(11e) can still be deduced in G′ by the induction hypothesis.

Since ε⟨u⟩wv ∈ LG(Di) for all i ∈ {1, . . . ,m}, then, by Lemma 5, there
exist Vi ⊆ N such that (Di, Vi) ∈ �ε-Nullable(G), and

⊢G J
(
ε⟨v⟩ε

)
(for every J ∈ Vi). (12)

20

By the induction hypothesis, such an item can be deduced in the gram-
mar G′, as well. Now the item A

(
u⟨w⟩v

)
can be deduced in G′ out of

the premises (11a), (12), and (11c)–(11e) by the rule (8a), which is
added to R′ by Construction 1.

• Let in the rule (5b) n′ > 1 and let u ̸= ε and v = ε. The items (11a),
(11b)–(11d) can be deduced in G′ by the induction hypothesis.

Since the items Hi

(
uw⟨v⟩ε

)
are deducible in G, by Construction 1, the

grammar G′ has a rule of the form (8b). Similarly to the previous case,
by Lemma 6, the item

Ki

(
ε⟨u⟩ε

)
, (13)

for all i ∈ {1, . . . , t}, is deducible in G. By the induction hypothesis,
one can deduce each of them in the grammar G′, as well. The deduction
of the desired item A

(
u⟨w⟩v

)
in G′ out of the premises (11a), (11b)–

(11d) and (13) can be done by the rule (8b), which is in R′ by the
construction.

• Let now u = v = ε. By the induction hypothesis, the items (11a), (11c)
and (11d) are deducible in G′.

Similarly to the previous cases, one can show that

⊢G Ji
(
ε⟨u⟩ε

)
,⊢G Ki

(
ε⟨v⟩ε

)
. (14)

The deduction of A
(
u⟨w⟩v

)
can now be carried out by a rule (8c),

which is in G′ by the construction, using the premises (11a), (11c)–
(11d), and (14).

⊇⃝ Conversely, it has to be proved that ⊢G′ A
(
u⟨w⟩v

)
implies that ⊢G

A
(
u⟨w⟩v

)
and w ̸= ε. The proof is by induction on p, the number of steps

in deduction of the item A
(
u⟨w⟩v

)
in G′.

Basis. Let p = 1, and let an item A
(
u⟨w⟩v

)
be deduced in G′ by a

rule A → a. Then w = a ∈ Σ and the deduction takes the form a
(
u⟨a⟩v

)
⊢G A

(
u⟨a⟩w

)
. The deduction of A

(
u⟨w⟩v

)
in the old grammar G is exactly

the same and uses a rule A → a, which is in R by virtue of Construction 1.
Induction step. Let an item A

(
u⟨w⟩v

)
be deduced in G′, and the last

step of this deduction use a rule of the form r′. Then the following cases are
possible.

• Let the rule r′ be of the form (7). That is, the last step of deduction
of A

(
u⟨w⟩v

)
in G′ uses the premises (11a)–(11e). By the induction

hypothesis, each of these premises can also be deduced in the grammar
G. The item A

(
u⟨w⟩v

)
can be deduced in G out of these premises

using the same rule r′, which is in R by the construction.

21

• Let the rule r′ be of the form (8a). That is, u = ε and the last
step of deduction of A

(
ε⟨w⟩v

)
takes form B1

(
ε⟨w⟩v

)
, . . . , Bk

(
ε⟨w⟩v

)
,

E1

(
ε⟨w⟩v

)
, . . . , En

(
ε⟨w⟩v

)
, K1

(
ε⟨wv⟩ε

)
, . . . , Kt

(
ε⟨wv⟩ε

)
, F1

(
ε⟨wv⟩ε

)
,

. . . , Fm′
(
ε⟨wv⟩ε

)
, H1

(
w⟨v⟩ε

)
, . . . , Hn′

(
w⟨v⟩ε

)
⊢G′ A

(
ε⟨w⟩v

)
.

By the induction hypothesis, all of the premises can be deduced in
the grammar G. Construction 1 only adds the rule (8a) to R′, when
R contains a rule (7) (with m > 1) and there exist (D1, V1), . . . ,
(Dm, Vm) ∈ �ε-Nullable(G), such that

∪m
i=1 Vi = {K1, . . . , Kt}. Ap-

plying Lemma 5 to every pair (Di, Vi), one can obtain that ε⟨ε⟩v ∈
LG(Di). Thus, the item A

(
ε⟨w⟩v

)
can be deduced in G out of the

premises Bi

(
ε⟨w⟩v

)
, Di

(
ε⟨ε⟩v

)
, Ei

(
ε⟨w⟩v

)
, Fi

(
ε⟨wv⟩ε

)
, andHi

(
w⟨v⟩ε

)
by the rule (7).

• Let r′ be of the form (8b). Symmetrically to the previous case, this rule
requires v = ε, and the last step of deduction of A

(
u⟨w⟩ε

)
is Bi

(
u⟨w⟩ε

)
,

Fi

(
u⟨w⟩ε

)
, Di

(
ε⟨u⟩w

)
, Ei

(
ε⟨uw⟩ε

)
, Ki

(
ε⟨uw⟩ε

)
⊢G′ A

(
u⟨w⟩ε

)
. All of

the premises can be deduced in G by the induction hypothesis.

The rule (8b) is only added to G′, when G has a rule (7) (with n′ > 1)
and there exist (U1, H1), . . . , (Un′ , Hn′) ∈ �ε-Nullable(G), such that∪m

i=1 Ui = {K1, . . . , Kt}. Similarly to the previous case, one can obtain
by Lemma 6, that u⟨ε⟩ε ∈ LG(Hi) and deduce the item A

(
u⟨w⟩ε

)
out of

the premises Bi

(
u⟨w⟩ε

)
, Di

(
ε⟨u⟩w

)
, Hi

(
u⟨ε⟩ε

)
, Fi

(
u⟨w⟩ε

)
, Ei

(
ε⟨uw⟩ε

)
by the rule (7).

• Let r′ be of the form (8c). In this case u = v = ε and the last step
of deduction of A

(
ε⟨w⟩ε

)
in G is Bi

(
ε⟨w⟩ε

)
, Ei

(
ε⟨w⟩ε

)
, Fi

(
ε⟨w⟩ε

)
,

Ki

(
ε⟨w⟩ε

)
⊢G′ A

(
ε⟨w⟩ε

)
.

Similarly to the two previous cases, one can conclude that the items
Di

(
ε⟨ε⟩v

)
and Hi

(
u⟨ε⟩ε

)
can be deduced in G.

Finally, the deduction of the item A
(
ε⟨w⟩ε

)
in G can be carried out

using the rule (7) (which is in R by the construction) as follows:
Bi

(
ε⟨w⟩ε

)
, Di

(
ε⟨ε⟩v

)
Ei

(
ε⟨w⟩ε

)
, Fi

(
ε⟨w⟩ε

)
, Hi

(
u⟨ε⟩ε

)
⊢G A

(
ε⟨w⟩ε

)
.

• Let r′ be of the form (9). In the grammar G′, the last step of deduction
of A

(
u⟨w⟩v

)
takes the formB

(
u⟨w1⟩w2v

)
, C

(
uw1⟨w2⟩v

)
⊢G′ A

(
u⟨w⟩v

)
,

for some partition w1w2 = w. By the induction hypothesis, both of the
premises can be deduced in the grammar G. Then, the item A

(
u⟨w⟩v

)
can be deduced out these premises in the grammar G using a rule A →
BC, which is in G by the construction: B

(
u⟨w1⟩w2v

)
, C

(
uw1⟨w2⟩v

)
⊢G A

(
u⟨w⟩v

)
.

• Let r′ be of the form (10a). Then ({J1, . . . , Jℓ}, C, {K1, . . . , Kt}) ∈
Nullable(G), and the item A

(
u⟨w⟩v

)
is deduced in G′ out of the

22

premises B
(
u⟨w⟩v

)
, J1

(
ε⟨uw⟩v

)
, . . . , Jℓ

(
ε⟨uw⟩v

)
, K1

(
u⟨wv⟩ε

)
, . . . ,

Kt

(
u⟨wv⟩ε

)
. By the induction hypothesis, the item B

(
u⟨w⟩v

)
can be

deduced in G. By Lemma 4, the item C
(
uw⟨ε⟩v

)
can be deduced in G,

as well. Then, using these two premises, one can carry out the deduc-
tion of A

(
u⟨w⟩v

)
in the grammar G by the rule A → BC: B

(
u⟨w⟩v

)
,

C
(
uw⟨ε⟩v

)
⊢G A

(
u⟨w⟩v

)
.

• Let r′ be of the form (10b). In order to deduce A
(
u⟨w⟩v

)
by this rule,

v must be empty, and the last step of deduction of A
(
u⟨w⟩ε

)
is thus

B
(
u⟨w⟩ε

)
, J1

(
ε⟨uw⟩ε

)
, . . . , Jℓ

(
ε⟨uw⟩ε

)
⊢G A

(
u⟨w⟩ε

)
.

Construction 1 only adds the rule (10b) to R′, when ({J1, . . . , Jℓ}, C) ∈
�ε-Nullable(G). Then, by Lemma 6, the item C

(
u⟨ε⟩ε

)
can be

deduced in the grammar G. The item B
(
u⟨w⟩ε

)
can be deduced in G

by the induction hypothesis. Now the item A
(
u⟨w⟩ε

)
can be deduced

in G out of these premises: B
(
u⟨w⟩ε

)
, C

(
u⟨ε⟩ε

)
⊢G A

(
u⟨w⟩v

)
.

• Let r′ be of the form (10c). The last step of deduction of A
(
u⟨w⟩v

)
in G′ is C

(
u⟨w⟩v

)
, J1

(
ε⟨u⟩wv

)
, . . . , Jℓ

(
ε⟨u⟩wv

)
, K1

(
u⟨wv⟩ε

)
, . . . ,

Kt

(
u⟨wv⟩ε

)
. Since the rule (10c) is in R′, the set Nullable(G)

contains an element ({J1, . . . , Jℓ}, B, {K1, . . . , Kt}), and therefore, by
Lemma 4, one can deduce an item B

(
u⟨ε⟩wv

)
in G. Finally, the item

A
(
u⟨w⟩v

)
can be deduced in G by the rule A → BC (which is in R by

the construction) as follows: B
(
u⟨ε⟩wv

)
, C

(
u⟨w⟩v

)
⊢G A

(
u⟨w⟩v

)
.

• Let r′ be of the form (10d). This rule requires u = ε, and thus the last
step of deduction of A

(
u⟨w⟩ε

)
takes the form C

(
ε⟨w⟩v

)
, K1

(
ε⟨wv⟩ε

)
,

. . . , Kt

(
ε⟨wv⟩ε

)
⊢G A

(
ε⟨w⟩v

)
. The item C

(
ε⟨w⟩v

)
can be deduced in

G by the induction hypothesis.

The rule (10b) is only added to R′, when (B, {K1, . . . , Kt}) ∈
�ε-Nullable(G). Then, by Lemma 5, the item B

(
ε⟨ε⟩wv

)
can be de-

duced in the grammar G. Finally, the item A
(
ε⟨w⟩v

)
can be deduced in

G out of the premises B
(
ε⟨ε⟩wv

)
, C

(
ε⟨w⟩v

)
by the rule A → BC.

The construction eliminates the empty string in all direct conjuncts, but
the resulting grammar may still contain epsilon contexts (�ε and �ε), and
the next step is to eliminate these contexts.

4.2 Null contexts

Example 9. Consider the following grammar with two-sided contexts:

S → Ab | bA
A → a&�ε | c&�ε | d,

23

which defines the language {ab, db, bc, bd}. The conjunct �ε in the first rule
for nonterminal A ensures that A can only generate a in the sentence of the
form Ab (where A has left context ε), and not in bA. Similarly, �ε in the
second rule for A restricts the generation of c only in the very end of the
string.

In order to eliminate the contexts �ε and �ε from the grammar, one has
to add two variants of nonterminal A: one with the empty left context (0A1)
and another with the empty right context (1A0), having the rules 0A1 → a
and 1A0 → c, respectively. Since d can be generated by A in any contexts,
including the empty ones, the nonterminals 0A1 and 1A0 also have rules 0A1 →
d and 1A0 → d.

The rules for the initial symbol are changed to S → 0A1b | b 1A0, so that
the knowledge on the context emptiness is passed from S down to A.

Finally, the rules of the new grammar are as follows:

S → 0A1b | b1A0

0A1 → a | d
1A0 → c | d

The general construction makes four versions of each nonterminal: ℓAr,
where ℓ, r ∈ {0, 1} determine the emptiness of the left and the right context.

Construction 2. Let G = (Σ, N,R, S) be a grammar with two-sided con-
texts with all rules of the form

A → a (15a)

A → BC (15b)

A → B1 & . . .&Bk &�D1& . . .&�Dm&PE1& . . .&PEn&QF1& . . .&QFm′ &�H1& . . .&�Hn′ &
x∆y, (15c)

where a ∈ Σ, A,B,C,Bi, Di, Ei, Fi, Hi ∈ N , and

x∆y =

Σ∗, if x = 1 and y = 1

�ε, if x = 1 and y = 0

�ε, if x = 0 and y = 1

�ε&�ε, if x = 0 and y = 0.

Let N ′ = { xAy | A ∈ N, x, y ∈ {0, 1} }. Construct a grammar with
two-sided contexts G′ = (Σ, N ′, R′, 0S0) with the following set of rules.

1. For every rule of the form (15a) in R, add to R′ the four rules

ℓAr → a, with ℓ, r ∈ {0, 1}. (16a)

24

2. For every rule of the form (15b) in R, add to R′ the four rules

ℓAr → ℓB1 1Cr, with ℓ, r ∈ {0, 1}. (16b)

3. For every rule of the form (15c) in R, add to R′ all possible rules of the
form:

ℓAr → ℓB1
r
& . . .&

ℓBk
r
&�0D1

1
& . . .&�0Dm

1
&P0E1

r
& . . .&P0En

r
&

&QℓF1
0
& . . .&QℓFm′

0
&�1H1

0
& . . .&�1Hn′

0, (16c)

with ℓ, r ∈ {0, 1}, ℓ 6 x and r 6 y.

Lemma 8. Let G = (Σ, N,R, S) be a grammar with two-sided contexts, and
let G′ be the grammar obtained by Construction 2. Then for all A ∈ N
and for all x, y ∈ {0, 1}, LG′(xAy) = {u⟨w⟩v | u⟨w⟩v ∈ LG(A), sgn |u| =
x, sgn |v| = y }.

Claim 1.1. Let G = (Σ, N,R, S) be a grammar with two-sided contexts, and
let G′ be the grammar obtained by Construction 2. Then for all A ∈ N ,
⊢G A

(
u⟨w⟩v

)
implies that ⊢G′ sgn |u|Asgn |v|(u⟨w⟩v).

Proof. The proof is by induction on d, the number of steps used in deduction
of the item A

(
u⟨w⟩v

)
in G.

Basis. Let d = 1. Then w = a ∈ Σ and the deduction of the item
A
(
u⟨w⟩v

)
in the grammar G uses a rule A → a ∈ R. According to Construc-

tion 2, the grammar G′ has a rule of the form ℓAr → a, with ℓ, r ∈ {0, 1}.
Then ⊢G′ ℓAr

(
u⟨a⟩v

)
by this rule.

Induction step. Let d > 1 and let the item ⊢G A
(
u⟨w⟩v

)
be deduced in

the grammar G. Then the last step of its deduction can use a rule p ∈ R
which is either of the form (15b) or (15c).

1. Let p be of the form (15b). Then the item A
(
u⟨w⟩v

)
is deduced in

the grammar G as B
(
u⟨w1⟩w2v

)
, C

(
uw1⟨w2⟩v

)
⊢G A

(
u⟨w⟩v

)
for some

partition w1w2 = w. By induction hypothesis, ⊢G′ ℓB1
(
u⟨w1⟩w2v

)
and ⊢G′ 1Cr

(
uw1⟨w2⟩v

)
. Then ℓB1

(
u⟨w1⟩w2v

)
1Cr

(
uw1⟨w2⟩v

)
⊢G′

lAr
(
u⟨w⟩v

)
(with ℓ = sgn |u| and r = sgn |v|), by the rule of the

form (16b), which is added to R according to Construction 2.

2. Let p be of the form (15c). Then the item A
(
u⟨w⟩v

)
is deduced

in the grammar G as follows: Bi

(
u⟨w⟩v

)
, Di

(
ε⟨u⟩wv

)
, Ei

(
ε⟨uw⟩v

)
,

Fi

(
u⟨wv⟩ε

)
Hi

(
uw⟨v⟩ε

)
⊢G A

(
u⟨w⟩v

)
. By induction hypothesis, ⊢G′

ℓBi
r
(
u⟨w⟩v

)
, ⊢G′ 0Di

1
(
ε⟨u⟩wv

)
, ⊢G′ 0Ei

r
(
ε⟨uw⟩v

)
, ⊢G′ ℓFi

0
(
u⟨wv⟩ε

)
⊢G′ 1Hi

0
(
uw⟨v⟩ε

)
, where l = sgn |u| and r = sgn |v|.

According to Construction 2, the grammar G′ has a rule of the
form (16c), by which the item ℓAr

(
u⟨w⟩v

)
can be deduced as follows:

ℓBi
r
(
u⟨w⟩v

)
, 0Di

1
(
ε⟨u⟩wv

)
, 0Ei

r
(
ε⟨uw⟩v

)
, ℓFi

0
(
u⟨wv⟩ε

)
1Hi

0
(
uw⟨v⟩ε

)
⊢G′ ℓAr

(
u⟨w⟩v

)
.

25

Claim 1.2. Let G = (Σ, N,R, S) be a grammar with two-sided contexts, and
G′ = (Σ, N ′, R′, 0S0) be the grammar obtained by Construction 2. Moreover,
let ⊢G′ 0S0

(
ε⟨w0⟩ε

)
(with w0 ∈ Σ+), and let T be a deduction tree of this

item. Let I be a downward closed set of nodes in T . Then:

1. for each node τ = ℓAr
(
u⟨w⟩v

)
in T such that τ /∈ I, it holds that

ℓ = sgn |u| and r = sgn |v|;

2. Î ⊢G S
(
ε⟨w0⟩ε

)
, where Î = {A

(
u⟨w⟩v

)
| ℓAr

(
u⟨w⟩v

)
, ℓ, r ∈ {0, 1} }.

Proof. The proof is by induction on d, the number of nodes in T which do
not belong to the set I.

Basis. Let d = 0.
That is, there are no nodes τ in T such that τ /∈ I, and the first part of

the claim is thus proved.
Since the set I contains every node of the tree T , it contains the element

0S0
(
ε⟨w0⟩ε

)
. Then the set Î contains the item S

(
ε⟨w0⟩ε

)
. Therefore, Î ⊢G

S
(
ε⟨w0⟩ε

)
in zero steps, which proves the second part of the claim.

Induction step. Let d > 1 and let I be some downward closed set of nodes
in T .

Consider any node τ in T such that τ /∈ I and I ⊢G′ ℓAr
(
u⟨w⟩v

)
in

one step. Such an item exists, since the set of nodes of T not in I forms a
non-empty tree, which has leaves.

Define the set I ′ = I∪τ . This set is downward closed, since the deduction
of the item τ out of the premises I is made in one step.

Let us prove the first part of the claim.
Consider any node in T which is not in I. If that node is not τ , then

the first part of claim is given in the induction hypothesis for the set I ′.
Otherwise, that node is τ and it can either be a root of the tree or its
internal node.

If τ is the root of the tree T , then τ = 0S0
(
ε⟨w0⟩ε

)
. Then 0 = sgn |u|, as

claimed.
Assume that τ is in I ′ and is not the root of the tree T . Then τ has some

parent node ℓAr
(
u⟨w⟩v

)
in T , such that it is deducible in G′ by some rule

p ∈ R′, and the item τ is among the premises for such deduction.
Let p be of the form (16b). Then ℓB1

(
u⟨w1⟩w2v

)
, 1Cr

(
uw1⟨w2⟩v

)
⊢G′

ℓAr
(
u⟨w⟩v

)
for some partition w = w1w2.

1. Assume τ = ℓB1
(
u⟨w1⟩w2v

)
. Since w2 is not empty, this item satisfies

sgn |w2v| = 1, as desired. Since the first part of the claim holds for
the item ℓAr

(
u⟨w⟩v

)
, it also holds for the item ℓB1

(
u⟨w1⟩w2v

)
, that is,

ℓ = sgn |u|.

2. The case when τ = 1Cr
(
uw1⟨w2⟩v

)
can be proved in the same way.

26

Let p be of the form (16c). Then ℓBi
r
(
u⟨w⟩v

)
, 0Di

1
(
ε⟨u⟩wv

)
,

0Ei
r
(
ε⟨uw⟩v

)
, ℓFi

0
(
u⟨wv⟩ε

)
1Hi

0
(
uw⟨v⟩ε

)
⊢G′ ℓAr

(
u⟨w⟩v

)
.

1. Let τ = ℓBi
r
(
u⟨w⟩v

)
. Since the first part of the claim holds for the item

ℓAr
(
u⟨w⟩v

)
, it should also hold for ℓBi

r
(
u⟨w⟩v

)
, that is, ℓ = sgn |u| and

r = sgn |v|.

2. Let τ = 0Di
1
(
ε⟨u⟩wv

)
. The left context indicator of the nonterminal

0Di
1 is sgn |ε| = 0, and its right context indicator is sgn |wv| = 1 (since

w cannot be empty), as desired.

3. The case when τ = 1Hi
0
(
uw⟨v⟩ε

)
can be proved similarly.

4. Let τ = 0Ei
r
(
ε⟨uw⟩v

)
. The left context indicator for the nonterminal

0Ei
r is sgn |ε| = 0, as desired. Since the first part of the claim holds for

the item ℓAr
(
u⟨w⟩v

)
, it also holds for the item 0Ei

r
(
ε⟨uw⟩v

)
. That is,

r = sgn |v|.

5. The case when τ = ℓFi
0
(
u⟨wv⟩ε

)
is considered in an analogous way.

Let us now prove the second part of the claim. By induction hypothesis,
applied to the set I ′,

Î ′ ⊢G S
(
ε⟨w0⟩ε

)
. (17)

Let τ = ℓAr
(
u⟨w⟩v

)
(with ℓ, r ∈ {0, 1}).

Define
Î = Î ′ \ {A

(
u⟨w⟩v

)
}. (18)

and show that
Î ⊢G A

(
u⟨w⟩v

)
. (19)

Consider the tree T . The node ℓAr
(
u⟨w⟩v

)
should have child nodes which

represent a deduction of this item according to some rule p ∈ R′.
Depending on the form of this rule, the following cases are possible.

1. Let p be of the form (16a). Then w = a ∈ Σ and a
(
u⟨a⟩v

)
⊢G′

ℓAr
(
u⟨a⟩v

)
.

According to Construction 2, the grammar G has the rule A → a ∈ R,
by which the item A

(
u⟨w⟩v

)
can be deduced: a

(
u⟨a⟩v

)
⊢G A

(
u⟨a⟩v

)
.

2. Let p be of the form (16b). Then ℓB1
(
u⟨w1⟩w2v

)
, 1Cr

(
uw1⟨w2⟩v

)
⊢G′

ℓAr
(
u⟨w⟩v

)
(for some partition w = w1w2).

The set Î contains the items B
(
u⟨w1⟩w2v

)
and C

(
uw1⟨w2⟩v

)
.

According to Construction 2, the grammar G has a rule A → BC,
by which the item A

(
u⟨w⟩v

)
can be deduced in the grammar G:

B
(
u⟨w1⟩w2v

)
, C

(
uw1⟨w2⟩v

)
⊢G A

(
u⟨w⟩v

)
.

27

3. Let p be of the form (16c).

In this case, ℓBi
r
(
u⟨w⟩v

)
, 0Di

1
(
ε⟨u⟩wv

)
, 0Ei

r
(
ε⟨uw⟩v

)
, ℓFi

0
(
u⟨wv⟩ε

)
1Hi

0
(
uw⟨v⟩ε

)
⊢G′ ℓAr

(
u⟨w⟩v

)
and the set Î contains the items

Bi

(
u⟨w⟩v

)
, Di

(
ε⟨u⟩wv

)
, Ei

(
ε⟨uw⟩v

)
, Fi

(
u⟨wv⟩ε

)
Hi

(
uw⟨v⟩ε

)
.

According to Construction 2, the grammar G has a rule of the form

A → B1& . . .&Bk &�D1& . . .&�Dm&PE1& . . .&PEn&

&QF1 & . . .&QFm′ &�H1& . . .&�Hn′ &
x∆y,

(20)

with x, y ∈ {0, 1}.

• Let x = 1 and y = 1. That is, the rule (20) does not have �ε- or
�ε-conjuncts. Then the rule p may have any ℓ, r ∈ {0, 1}.
The item A

(
u⟨w⟩v

)
can be deduced in the grammar G as follows:

Bi

(
u⟨w⟩v

)
,Di

(
ε⟨u⟩wv

)
, Ei

(
ε⟨uw⟩v

)
, Fi

(
u⟨wv⟩ε

)
,Hi

(
uw⟨v⟩ε

)
⊢G

A
(
u⟨w⟩v

)
.

• Let x = 1 and y = 0. Then the rule (20) has a �ε-conjunct and
the condition for the rule (16c) requires that r = 0. By the first
part of this claim for lAr

(
u⟨w⟩v

)
, it holds that v = ε and u ∈ Σ∗.

Thus, the item A
(
u⟨w⟩v

)
is deduced as Bi

(
u⟨w⟩ε

)
, Di

(
ε⟨u⟩w

)
,

Ei

(
ε⟨uw⟩ε

)
, Fi

(
u⟨w⟩ε

)
⊢G A

(
u⟨w⟩ε

)
.

• Let x = 0 and y = 1, that is, the rule (20) has a �ε-conjunct.
This case is proved similarly to the previous one, and the item
A
(
u⟨w⟩v

)
can be deduced as: Bi

(
ε⟨w⟩v

)
, Ei

(
ε⟨w⟩v

)
, Fi

(
ε⟨wv⟩ε

)
,

Hi

(
w⟨v⟩ε

)
⊢G A

(
ε⟨w⟩v

)
.

• Let x = y = 0, that is the rule (20) has both �ε- and �ε-
conjuncts. In this case ℓ = r = 0. Hence, u = v = ε and the item
A
(
ε⟨w⟩ε

)
can be deduced in the grammar G out of the premises

Bi

(
ε⟨w⟩ε

)
, Ei

(
ε⟨w⟩ε

)
, Fi

(
ε⟨w⟩ε

)
.

Finally, it follows from (17)–(19) that Î ⊢G S
(
ε⟨w0⟩ε

)
.

4.3 Unit conjuncts

The third stage of the transformation to the normal form is removing the
unit conjuncts in rules of the form A → B& Already for conjunctive
grammars [8], the only known transformation involves substituting all rules
for B into all rules for A; in the worst case, this results in an exponential
blowup. The same construction applies verbatim to grammars with contexts.

Theorem 2. For each grammar with left contexts G = (Σ, N,R, S) there
exists and can be effectively constructed a grammar with left contexts G′ =
(Σ, N ′, R′, S) in the binary normal form, such that L(G) = L(G′) \ {ε}.

28

i

k

j

0

A∈
?

Ti,j

C∈
?

Tk,j

B∈
?

Ti,k

E∈
?

T0,jD∈
?

T0,i

F∈
?

Ti,n

H∈
?

Tj,n

i

k

j

i k j

0

C∈
?

Tk,j

B∈
?

Ti,k A∈
?

Ti,j

i k j

Figure 4: How the membership of A in Ti,j depends on other data, for rules
(a) A → BC and (b) A → BC &�D&PE&QF &�H.

5 Parsing algorithm

Let G = (Σ, N,R, S) be a grammar with two-sided contexts in the binary
normal form, and let w = a1 . . . an ∈ Σ+ with n > 1 and ai ∈ Σ be an input
string to be parsed. For every two positions i, j with 0 6 i < j 6 n, let

Ti,j =
{
A

∣∣ A ∈ N, ⊢G A
(
a1 . . . ai⟨ai+1 . . . aj⟩aj+1 . . . an

) }
be the set of nonterminals generating the corresponding substring. In par-
ticular, the string w is in L(G) if and only if S ∈ T0,n.

In ordinary context-free grammars, as well as in their conjunctive variant,
each set Ti,j depends only on the sets Ti′,j′ with j′ − i′ < j − i, and hence all
these sets may be constructed inductively, beginning with shorter substrings
and eventually reaching the set T0,n [8]. In grammars with only left contexts,
each set Ti,j additionally depends on the sets T0,i and T0,j via the conjuncts
of the form �D and PE, respectively, which allows constructing these sets
progressively for j = 1, . . . , n [2]. The structure of logical dependencies
in grammars with two-sided contexts is more complicated, as shown in the
following example.

Example 10. Consider the grammar with the rules S → AB, A → a&�B,
B → b&�C and C → a, and the input string w = ab. It is immediately seen
that C ∈ T0,1. From this one can infer that B ∈ T1,2, and that knowledge
can in turn be used to show that A ∈ T0,1. These data imply that S ∈ T0,2.
Thus, none of the sets T0,1 and T1,2 can be constructed before approaching
the other.

The proposed algorithm for constructing the sets Ti,j works as follows.
At the first pass, it makes all deductions ⊢G A

(
a1 . . . ai⟨ai+1 . . . aj⟩aj+1 . . . an

)
29

that do not involve any contexts, and accordingly puts A to the corresponding
Ti,j. This pass is done progressively for longer and longer substrings, as in
the case of context-free grammars. During this first pass, some symbols may
be added to any T0,j and Ti,n, so that some contexts are known to be true.
Then the algorithm makes another pass over all entries Ti,j, from shorter
substrings to longer ones, this time using the known true contexts in the
deductions. This may result in adding more elements to T0,j and Ti,n, which
will require another pass. Since a new pass is needed only if any new element
is added to any of 2n− 1 subsets of N , the total number of passes is at most
(2n− 1) · |N |+ 1.

For succinctness, the algorithm uses the following notation for multiple
context operators. For a set X = {X1, . . . , Xℓ}, with Xi ∈ N , and for an
operator Q ∈ {�,P,Q,�}, denote QX := {QX1, . . . , QXℓ}.

Algorithm 1. Let G = (Σ, N,R, S) be a grammar with contexts in the
binary normal form. Let w = a1 . . . an ∈ Σ+ (with n > 1 and ai ∈ Σ) be the
input string. Let Ti,j with 0 6 i < j 6 n be variables, each representing a
subset of N , and let Ti,j = ∅ be their initial values.

1: while any of T0,j (1 6 j 6 n) or Ti,n (1 6 i < n) change do
2: for j = 1, . . . , n do
3: for all A → a & �D & PE & QF & �H ∈ R do
4: if aj = a ∧ D ⊆ T0,j−1 ∧ E ⊆ T0,j ∧ F ⊆ Tj,n ∧ H ⊆ Tj+1,n

then
5: Tj−1,j = Tj−1,j ∪ {A}
6: for i = j − 2 to 0 do
7: let U = ∅ (U ⊆ N ×N)
8: for k = i+ 1 to j − 1 do
9: U = U ∪ (Ti,k × Tk,j)
10: for all A → B1C1& . . .&BmCm & �D & PE & QF & �H ∈

R do
11: if (B1, C1), . . . , (Bm, Cm) ∈ U ∧ D ⊆ T0,i ∧ E ⊆ T0,j ∧

F ⊆ Ti,n ∧ H ⊆ Tj,n then
12: Ti,j = Ti,j ∪ {A}
13: accept if and only if S ∈ T0,n

Theorem 3. For every grammar with two-sided contexts G in the binary
normal form, Algorithm 1, given an input string w = a1 . . . an, constructs
the sets Ti,j and determines the membership of w in L(G), and does so in
time O(|G|2 · n4), using space O(|G| · n2).

Each pass of Algorithm 1 is the same as the entire parsing algorithm
for grammars without contexts [8], and that algorithm can be accelerated

30

by changing the order of computing the entries Ti,j, so that most of the
calculations can be offloaded to a procedure for multiplying Boolean matri-
ces [20, 13]. If BMM(n) is the complexity of multiplying two n× n Boolean
matrices, the resulting algorithm works in time BMM(n). By the same
method, Algorithm 1 can be restated to make O(n) such passes, with the
following improvement in running time.

Theorem 4. For every grammar with two-sided contexts G in the binary
normal form, there is an algorithm to determine whether a given string w =
a1 . . . an is in L(G), which works in time O(|G|2 · n · BMM(n)), using space
O(|G| · n2).

Let ω be the infimum of all real numbers, for which BMM(n) = nω+o(1);
it is known that 2 6 ω < 2.373. Then the complexity of known parsing
algorithms for different families of formal grammars is as follows (with no(1)

factor omitted):

• n2 for unambiguous conjunctive and Boolean grammars, as well as for
all their subclasses down to linear grammars with disjunction only [12];

• nω for the general case of context-free grammars, including their con-
junctive and Boolean variants [20, 13];

• n3 for grammars with one-sided contexts [2];

• nω+1 for grammars with two-sided contexts (Theorem 4);

• n2ω for tree-adjoining grammars [17].

All these grammar formalisms can be described in the much more general
logic ILFP, introduced by Rounds [18], which allows recursive definitions of
n-ary predicates on positions in a string, existential and universal quantifica-
tion over such positions, as well as conjunction and disjunction. That logic
is the natural general concept for all known meaningful families of formal
grammars.

The complexity of parsing for different families of formal grammars is
illustrated in Figure 5.

To conclude, this paper has developed a formal representation for the idea
of phrase-structure rules applicable in a context, featuring in the early work
of Chomsky [3]. This idea did not receive adequate treatment before, due to
the inappropriate string-rewriting approach. Perhaps there were other good
ideas in the theory of formal grammars, which were incorrectly formalized
before, and could be re-investigated using the logical approach?

Another possibility for further studies is investigating Boolean and
stochastic variants of grammars with contexts, following the recent related
work [4, 7, 21].

31

Figure 5: Hierarchy of grammar families. Complexity of known parsing
algorithms.

Acknowledgements

Supported by the Academy of Finland under grant 257857.

References

[1] T. Aizikowitz, M. Kaminski, “LR(0) conjunctive grammars and deter-
ministic synchronized alternating pushdown automata”, Computer Sci-
ence in Russia (CSR 2011, St. Petersburg, Russia, 14–18 June 2011),
LNCS 6651, 345–358.

[2] M. Barash, A. Okhotin, “Defining contexts in context-free grammars”,
Language and Automata Theory and Applications (LATA 2012, A
Coruña, Spain, 5–9 March 2012), LNCS 7183, 106–118.

[3] N. Chomsky, “On certain formal properties of grammars”, Information
and Control, 2:2 (1959), 137–167.

[4] Z. Ésik, W. Kuich, “Boolean fuzzy sets”, International Journal of Foun-
dations of Computer Science, 18:6 (2007), 1197–1207.

[5] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”,
Journal of the ACM, 9 (1962), 350–371.

[6] A. Jeż, “Conjunctive grammars can generate non-regular unary lan-
guages”, International Journal of Foundations of Computer Science,
19:3 (2008), 597–615.

[7] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded se-
mantics for Boolean grammars”, Information and Computation, 207:9
(2009), 945–967.

32

[8] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), 519–535.

[9] A. Okhotin, “Conjunctive grammars and systems of language equa-
tions”, Programming and Computer Software, 28:5 (2002), 243–249.

[10] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1
(2004), 19–48.

[11] A. Okhotin, “Generalized LR parsing algorithm for Boolean grammars”,
International Journal of Foundations of Computer Science, 17:3 (2006),
629–664.

[12] A. Okhotin, “Unambiguous Boolean grammars”, Information and Com-
putation, 206 (2008), 1234–1247.

[13] A. Okhotin, “Fast parsing for Boolean grammars: a generalization of
Valiant’s algorithm”, Developments in Language Theory (DLT 2010,
London, Ontario, Canada, August 17–20, 2010), LNCS 6224, 340–351.

[14] A. Okhotin, “Conjunctive and Boolean grammars: the true general case
of the context-free grammars”, Computer Science Review, 9 (2013), 27–
59.

[15] A. Okhotin, “Improved normal form for grammars with one-sided con-
texts”, Descriptional Complexity of Formal Systems (DCFS 2013, Lon-
don, Ontario, Canada, 22-25 July 2013), LNCS 8031, 205–216.

[16] A. Okhotin, C. Reitwießner, “Conjunctive grammars with restricted dis-
junction”, Theoretical Computer Science, 411:26–28 (2010), 2559–2571.

[17] S. Rajasekaran, S. Yooseph, “TAL recognition inO(M(n2)) time”, Jour-
nal of Computer and System Sciences, 56:1 (1998), 83–89.

[18] W. C. Rounds, “LFP: A logic for linguistic descriptions and an analysis
of its complexity”, Computational Linguistics, 14:4 (1988), 1–9.

[19] I. H. Sudborough, “A note on tape-bounded complexity classes and
linear context-free languages”, Journal of the ACM, 22:4 (1975), 499–
500.

[20] L. G. Valiant, “General context-free recognition in less than cubic time”,
Journal of Computer and System Sciences, 10:2 (1975), 308–314.

[21] R. Zier-Vogel, M. Domaratzki, “RNA pseudoknot prediction through
stochastic conjunctive grammars”, Computability in Europe 2013. In-
formal Proceedings, 80–89.

33

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku

Faculty of Mathematics and Natural Sciences
• Department of Information Technology

• Department of Mathematics

Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

ISBN 978-952-12-2963-3
ISSN 1239-1891

