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Abstract 

Analyzing processes that cannot fully be measured is necessary for better decision 
making. In this paper we analyze some blast furnace data with the help of ANFIS 
(Artificial Neural Fuzzy Inference System).  The entire process is described, from the 
application, preprocessing the data and the analysis made. Also the results from the best 
ANFIS models are compared to results with more traditional ARMA-model theory (as a 
benchmark). Special features in this industrial case study, the blast furnace process, 
includes by exhibiting high levels of noise and complexity. 
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1. Introduction 

The escalating business climate of the twenty-first century has forced 
companies to study parts of their processes that at first glance might seem 
impossible to investigate.  By examine issues which previously were 
considered to be unthinkable, the companies try to gain an advantage 
towards their competitors.  These studies are facilitated with new, 
computationally powerful, data mining and soft computing techniques that 
have emerged during the last decades, making it possible to analyze data in 
completely new way, opening the possibility to gain better insights and 
understandings of the process and how it can be improved. 
 
Such data mining or modeling techniques allow for trend discovery or 
correlation analysis between different factors affecting the process. The goal 
of the analysis may be to build predictive forecasting models, to find 
alternate actions to be taken, or simply to gain a deeper understanding of 
the underlying influencing elements. One of the industries facing fierce 
competition is the steelmaking industry. According to a review by the 
Association of Finnish Steel and Metal Producers [2012], the ongoing 
political and economical crisis in Europe has radically increased price 
competition. As steelmaking is a global operation, it is usually among the 
first to be affected by a financial decline. The industry is also faced with 
increasing costs due to emissions trading- and sulphur directives of the 
European Union. These are examples of aspects that contribute to a general 
focus on production as well as a striving towards optimization of processes. 
 
In this paper, the blast furnace for the steel making process is examined. As 
the process is conducted at extreme conditions, it is impossible to observe 
what is occurring inside the furnace. Nevertheless, optimizing this part of 
the process would greatly improve the overall process and quality of the 
final product. By implementing the ANFIS (Artificial Neural Fuzzy Inference 
System) model on collected blast furnace data, we aim at optimizing the 
blast furnace process, or more specifically predicting the performance 
indicator Ƞ�� which describes the gas utilization rate in the furnace.  

This article is structured as follows: Section II presents the blast furnace 
process and introduces relevant concepts and theories associated with 
ANFIS.  Section III introduces the material used as inputs for the modeling 
phase. Section IV explains how the modeling phase was conducted and 
presents the results received from the ANFIS modeling. Finally, Section VI 
summarizes the article and gives some conclusions and possible future 
research directions. 
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2. Previous studies in blast furnace 

modeling 

Even if the blast furnace process has not, according to the authors’ 
knowledge, been modeled with an ANFIS approach, many other blast 
furnace models have certainly been created. The following section presents 
an introduction to blast furnace process and a short introduction to the Soft 
Computing field, including ANFIS, is given.  

The blast furnace 

A crucial part in the steelmaking process involves the blast furnace. The 
main operating task of the furnace is to melt and reduce oxygen from the 
iron ore before it is sent to a steel plant for further refinement. The process 
is run continuously, with iron-bearing materials and coke being charged 
from the top of the furnace (Geerdes et al., 2009). Air is preheated to 
temperatures of 1200 C° and other additional fuel is blasted in through 
pipes in the lower region. The hot air reacts with the coke and the additional 
fuel, which causes a burning flame. The generated gas ascends and 
gradually softens and melts the iron ore, which helped by gravity descends. 
The ore is simultaneously reduced of oxygen and the final products, hot 
metal and slag, is collected at the bottom of the furnace and also 
periodically removed through tapholes. Chemical analyses of the hot liquid 
metal are carried out to determine the quality of the product, after which it 
is sent to a steel plant for further processing. It has to be mentioned that 
the furnace process is continuous, meaning that each charging cannot be 
undone. Usually, the optimal charging distribution is commonly found 
individually for each furnace by trial and error. The process of reducing 
oxygen from the ore is crucial and directly related to the quality of the hot 
metal output of the furnace. There are two main reactions taking place in 
the furnace: 
 

• The direct reduction reaction, present in the lower part of the 
furnace. This reduction is dependent on expensive coke. 

• The indirect reduction reaction, present in the upper part of the 
furnace. This reduction is more cost effective, as the gas can itself 
remove oxygen from the ore at this stage. 

The efficiency of the indirect reaction is often expressed as the gas 
utilization rate, which is considered an important performance indicator of 
the furnace.  As the blast furnace is continuously running, it is impossible to 
embed sensors inside the furnace, turning the blast furnace into a black-box 
model. Instead, furnace operation relies heavily on experienced engineers 
for process monitoring and control. To aid operation of the furnace, external 
sensor data, other process information and the accumulated expertise of 
the engineers is used to monitor and adjust the process accordingly. The 



 

process is highly complex from 
numerous factors, nonlinear relations and a certain level of randomness.
In an ideal scenario, there is a column consisting entirely of coke at the 
very centre of the furnace, through which gas flows upward and branc
out towards the sides. If the column radius is too small, the gas will not 
reach the uppermost layers, but will branch out toward the walls at the 
bottom of the furnace, cool down too fast and slow down reduction 
reactions. If the column radius is too 
will flow straight through the center, not contributing to the ore reduction 
and going to waste. In the ideal case, some gas is supposed to ascend at 
the walls. Optimal gas flow control is based on maintaining the ba
between central and wall gas flow through optimized burden distribution 
(Nath, 2002 and Danloy et al. 2001). Although an optimal burden 
distribution theoretically could be calculated, it is influenced by a large 
number of parameters such as size and 
distribution of the previous charge. Small
conducted by Yu and Saxén (2010) but real
viable. Thus burden distribution is normally found individually for each 
furnace through trial and error. The aforementioned nonlinearity and 
complexity properties, however, speak for more intelligent soft computing 
methods, suggesting that the analysis and modeling process requires 
techniques from both domains to be combined.
 

Figure 1: Operating principles of the blast furnace

There are several attempts to model the blast furnace process, aiming to 
uncover hidden relationships not immediately visible due to the 
aforementioned “black-
models for describing the process have, for instance, been proposed by 
Nath (2002) and Danloy et al. (2001). Agarwal et al. (2010) states that 
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process is highly complex from a chemical point of view as it involves 
numerous factors, nonlinear relations and a certain level of randomness.
In an ideal scenario, there is a column consisting entirely of coke at the 
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mathematical models usually prove inadequate due to the high degree of 
nonlinearity and randomness of the process.  
 
Linear data-driven models have been studied by Saxén and Östermark 
(1996), Korpi et al. (2003) and Bhattachary (2005). These studies have 
used linear modeling techniques to study the effects of several explanatory 
variables of the silicon content in the hot metal part of the output. The 
results of these studies are promising, but might be outmaneuvered by 
nonlinear soft computing techniques in accounting for complex nonlinear 
relations. Nonlinear soft computing techniques have been applied to blast 
furnace process modeling in, amongst other: Hao et al. (2004), Helle and 
Saxén (2005) and Pettersson et al. (2007). These studies have used 
variants of neural networks or neural network-based hybrids to model 
furnace performance indicators with fairly good results. The outputs have 
mainly been variables expressing properties of the hot metal output such as 
the aforementioned silicon content. An interesting approach is presented by 
Agarwal et al. (2010) where they train a neural network using multi-
objective genetic algorithms. The study analyses blast furnace productivity 
related to two important performance indicators; carbon dioxide content of 
top gas and silicon content in the hot metal output. The research indicates 
that a productivity increase implies a compromise in one of the two 
indicators. Apart from the carbon dioxide content being an explanatory 
variable in Agarwal et al. (2010), no research could be found which studies 
the process relationships with carbon dioxide content in furnace top gas as 
a dependent variable.  
 
To the best of our knowledge, ANFIS has not been applied in this fashion. 
Agarwal et al. [2010] notes that a model high in complexity is difficult to 
execute, as it might capture noise in the data treating it as a trend, 
resulting in an overfit of the data. Contrarily, an overly simple model will fail 
to find the trends in the data. As ANFIS allows for customization regarding 
membership functions, inputs and rules, an appropriate degree of 
complexity is expected to be found. These findings indicate a validity to 
apply ANFIS to blast furnace process analysis. 

ANFIS 

Current systems have a lacking in handling imprecise and vague 
information but still achieving precise and useful results, which is a natural 
process for a human brain to perform.  Due to this, Soft Computing 
emerged as a sub-area of Computational Intelligence, offering techniques 
and solutions for computationally deal with imprecise data (Zadeh 1994a-
b). The Soft Computing techniques tend to be suitable for combining with 
other established methods, making it possible to create hybrid systems 
which are more suitable for problem solving and data analysis.  Fuzzy set 
theory (Zadeh, 1965), has recently attracted more interest, as computers 
are today more suitable for handling the somewhat computationally 
intensive calculations imminent in the Soft Computing field. 
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Another technique affiliated with soft computing is neural networks, inspired 
from the actual principles of the human brain, creating an artificial network 
of interconnected neurons (Jang et al., 1997). Due to its complex 
implementation, a neural network is sometimes regarded as a black-box 
model. This means that one is only able to see the model’s inputs and 
outputs, not what is going on inside the process. The advantage is the 
learning abilities, which is why it is often used together with other methods. 
By including fuzzy sets into the mixture it creates a hybrid approach, called 
neuro-fuzzy models, which integrates the strengths of both methods.  
Jang (1993) and Jang et al. (1997) introduced a class of adaptive networks 
that perform in the same manners as fuzzy inference systems, called 
ANFIS. The architecture combines the properties of neural networks and 
fuzzy logic, creating a dynamic fuzzy inference system similar to the Sugeno 
fuzzy model (Sugeno and Kang, 1988), built as a network based on the 
same manner as in neural networks.  
To define ANFIS, we assume that the rule base contains two fuzzy if-then 
rules (Takagi and Sugeno, 1985): 
 

����	1: ��	
	��	��	���	�	��	��, �ℎ��	�� =	��
 + ��� +	��,		 
����	2: ��	
	��	� 	���	�	��	� , �ℎ��	� =	� 
 + � � +	� . 

 
The ANFIS architecture thereafter consists of 5 layers: 
 
Layer 1 
Each node in the first layer is adaptive and has a function 
 

"�,# =	$%&'
(, �)�	� = 1,2	)�	 
"�,# =	$*&+,'�(, �)�	� = 3,4 

 
Where x or y is the input to node i and �# or �#/  is a linguistic label, 
associated with this node. "�,# represents the membership grade of a fuzzy 
set A. Parameters in this layer are referred to as premise parameters.  
 

Layer 2 
Opposite to the nodes in layer 1, the nodes in the second layer are fixed 
and labeled П, the output is the product of all the incoming signals: 
 

" ,# =	0# =	$%&'
($*&'�(, � = 1,2. 
 
The outputs from the nodes are equal to the firing strength of a rule.  
 
Layer 3 

The nodes in the third layer are fixed and labeled N. The ith node creates 
the ratio of the ith rule´s firing strength to the sum of all rules´ firing 
strengths: 

"1,# =	02333 	= 	 0#
0� + 0 

	 , � = 1,2.	 
 



 

The outputs of this layer are referred to as 
 

Layer 4 
Every node i in this layer is an 
 
"4,# =	02333�# = 02333'�#
 +	�#� + 
 
Where 0# is a normalized firing strength based on layer 3 and  
parameter set of this node, referred to as 
 
Layer 5 
The fifth and final layer consists of a single fixed node, labeled Σ, calculating 
the overall output as the sum of all incoming signals:
 

)5�����
 
With these 5 layers, an adaptive network is struct
functionality to a type-3 fuzzy inference 
of an ANFIS are composed of premise and consequent parameters. The 
premise parameters will modify the rule membership functions and thus will 
cause nonlinear changes from the system’s inputs to outputs. They are 
therefore nonlinear parameters. The consequent parameters modify the 
output functions, which are linear, thus these parameters
al. (1997) notes that nonlinear optimization methods cou
training of an ANFIS, the proposed hybrid method requires much less 
computation and will be faster. 
 

Figure 2: Type-3 ANFIS model (Jang

The ANFIS hybrid learning algorithm is composed of two passes, the
forward pass and the backward pass. These two constitute a training epoch, 
which is run a number of times until a specified model fit is obtained, 
according to different error criteria. In the forward pass, the premise 
parameters are given an initial esti
the node outputs are calculated layer by layer until the last layer is reached, 
after which the consequent parameters are estimated by a Least
Estimator LSE. Next, the algorithm calculates the output errors a
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propagates them backwards towards the input end, accumulating a gradient 
error vector. When the first layer has been reached, the premise 
parameters are updated by gradient descent methods. 

 

3. Using ANFIS for Blast Furnace 
modelingEven if the blast furnace process 

The analysis and modeling of the process is a key element in gaining a 
deeper understanding of the complex relationships and ongoing activities 
within the blast furnace. The performance indicator gas utilization rate was 
chosen as the target series for the conducted analysis and modeling. As 
noted in Chatfield (2000), an important question in multivariate analysis is 
whether or not to use the target series itself as an input to enhance model 
performance. In this study the target series was not included as an input to 
emphasize the focus on causal relationships. The different factors affecting 
the process with different time lags require that historical time series data 
of the process for a prolonged period to be obtained.  
 
ANFIS is expected to be able to handle the high complexity of the process, 
as well as to account for the nonlinear correlation which may be present in 
the data. Conventional time series techniques are to be used simultaneously 
in the analysis and pre-processing of the data. A well-known data mining 
framework, CRISP-DM, is to be used to guide the analysis and modeling 
process. Expert knowledge of the furnace is utilized at the initial analysis 
stage, but otherwise the modeling process is entirely data-driven. In this 
section, the data, the inputs and the time lags are presented as well as the 
preliminary modeling and model identification.  

The Data 

The need for high-quality data and comprehensive pre-processing of the 
data is essential. For the study, three months of detailed operational blast 
furnace data was used and, additionally, three more months of data was 
used for the evaluation conducted in the end of this article. The data 
consisted of three segments: 
 

• Charging data, consisting of precise amounts of each separate 
material, structured by charge and including a time code. 

• Continuous process data, such as temperature data of external 
sensors and detailed specifics of the hot blast. Structured as 
averages. 

• Hot metal analysis data, describing the quality of the final product 
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Discussions with a blast furnace expert suggested an aggregation of data to 
averages per hour, as narrower aggregation would yield noisy results. The 
charging data was assumed to obtain a total amount charged per hour. The 
final set of preprocessed data contained 36 columns and 2208 rows, 
corresponding to 36 inputs including 3 columns of time data and 16 
columns of temperature sensor data, and to 2208 hours of total data 
available. Scattered throughout the data was the short stops in charging, 
spanning from 1 hour stops to maximal stops of 13 hours. 
 
One important blast furnace performance indicator is Ƞ��, measuring the 
ratio of carbon monoxide converted to carbon dioxide. It evaluates 
performance of the data understanding indirect reduction reaction taking 
place in the upper part of the furnace. As this reaction does not consume 
coke, it is less costly and has the potential of cost savings if understood 
properly. It is expected of ANFIS to have adequate modeling capability to 
capture the complex and nonlinear relationships present in the data. 
At this stage, the initial time series were converted to graphs and reviewed 
in conjunction with the expert. The primary goal of this initial review was to 
identify portions of the time series data that showed anomalies that could 
not be explained as normal behavior of the furnace process. These portions 
of data were considered to be misleading for the modeling process and were 
therefore deleted. The charging caused empty values in charging data 
series and where also removed. 
 
The subsequent data about the stops in charging showed that it would 
require some hours after charging was resumed before the process would 
stabilize. The decision was made to remove a number of data after each 
stop in charging equal to the duration of the stop. For a stop lasting 5 
hours, these 5 hours and the following 5 hours of “stabilization data” would 
be removed. After reviewing all series, the raw input series of blast volume 
showed a few dips in the data significantly lower than average. These dips 
were deemed by the expert to be abnormal and all data, for which the blast 
volume was below a threshold of 1 ∗ 106 was deleted. The above-mentioned 
steps to ensure process continuity reduced the amount of data to 81.5% of 
the original, or to 1800 data points. 

The Inputs 

Charging data entails precise amounts of burden materials and coke 
charged into the furnace per time unit. The raw data series contain two 
different types of pellets, quartz, sinter, scrap metal and two different types 
of coke. A secondary data series obtained from the charging data was 
burden height, measured by a sensor after each charge. According to 
experts it would be wise to combine all the series of iron bearing sources, as 
well as the two different coke series. This would minimize the amount of 
total available inputs. Secondly, the combined series would be scaled in 
relative to the total amount of material charged. Thirdly, a few of the raw 
input series should be combined to support existing theory.  
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The four series derived from the charging data are:  
 

• Amount of iron-bearing material charged as percentage of total 
material charged 

• Amount of coke charged as percentage of total material charged 
• Amount of calculated iron charged divided by calculated coal charged 
• Amount of iron-bearing material charged divided by blast volume 

The first input, amount of iron-bearing material charged as percentage of 
total material charged, was calculated by adding the two pellet input series 
to the sinter input series and dividing by the total amount of pellets, sinter, 
coke and scrap metal charged per hour.  
 
The second input, amount of coke charged as percentage of total material 
charged, was determined by adding the two coke input series and dividing 
by the total amount of material charged as above. The series resembles the 
first input series if it would be inverted, caused by the amount of charged 
scrap metal being low in relation to the other charged materials.  
The third input, amount of iron divided by coal, was calculated as 
 

=�
> = 	0.65 ∗ AB + 1 ∗ CD + 0.61 ∗ C�

0.87 ∗ >"  

 
where PE = amount of pellets, SM = amount of scrap metal, SI = amount of 
sinter and CO = amount of charged coke. This series also has a clear visual 
resemblance to the first series, and it is expected that it thus may be 
omitted during the ANFIS modeling phase.  
 
The fourth and final input of the charging data, amount of iron-bearing 
material charged divided by blast volume. It was calculated by adding the 
two input pellet series to the sinter series and dividing by blast volume 
obtained from process data. 
 
The final series concern the top gas exiting the furnace. Geerdes et al. 
(2009) argues that hydrogen competes with carbon monoxide in reducing 
oxygen, causing a relation between hydrogen content in the top gas and the 
Ƞ��-content. Thus the hydrogen content in top gas is added as an input 
series. 
 
The final series derived from process data is the output series Ƞ��, 
describing the performance of the indirect reduction reaction in the furnace. 
This is the output series that was used in the ANFIS model. 
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Figure 3: Output ȠCO 

Time lags 

The input series affects the furnace process and the output Ƞ��  in different 
ways. For instance, input series related to the blast affect the process 
almost instantly, while changes in amounts of iron ore charged have a 
significantly longer delay, measured in hours, before notable changes in the 
process can be detected. The ANFIS model is expected to find the 
correlations within the series, but finds these based strictly on changes 
occurring within the same hour. Thus a controlled synchronization by 
introducing delay or lag in the input series is appropriate. 
 
In the first modeling phase, the goal is to utilize ANFIS to find the optimal 
time lags for each input. The procedure used is to systematically shift each 
input time series relative to the output Ƞ��  , train and evaluate ANFIS and 
study the results to determine the optimal time lag for each series. It is 
expected that the blast- and top gas-related series have a low optimal time 
lag, while charging data inputs will have a higher time lag. 
 
The ANFIS method depends on a training data set and a validation data set 
to be able to develop a model. The choice of how to split the data into 
training and validation sets was determined during preliminary testing to be 
an important criterion to the overall ANFIS performance. As discussed in 
Kohavi (1995), choosing a portion of the data with different characteristics, 
for instance a higher average, as training data, may result in a bias. As 
ANFIS attempts to validate the model against validation data with a lower 
average, model performance may be affected. Considering the output series 
Ƞ��,the first third of the data has a significantly higher mean, and thus this 
series is in risk of inducing such a bias.  

To avoid the training data and validation data selection bias, a method 
referred to as k-fold cross-validation (Kohavi, 1995 and Olson and Delen, 
2008) can be utilized. In this method a fold size k is chosen, which 
determine the number of runs required. The data is separated into k equal 
portions. For each run, a different portion of the data is used as validation 
data, while the remaining portions are used as training data. Using k-fold 
cross-validation (Viaene et al. 2005), with a chosen the fold size of k = 5, 
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the resulting k output models and their respective error values are averaged 
to obtain the overall model output and accuracy. 

 

4. Preliminary modeling phase 

It is well known that the complexity of the model increases exponentially 
with every added input parameter. This fact impacts the ANFIS modeling 
procedure in two ways; in limitations to model complexity due to available 
amount of data, and in exponentially rising total durations of ANFIS runs. 
By trial and error, different complexity settings were tested, the number of 
inputs in the ANFIS model was fixed to 5, as increasing the complexity 
mostly increased the runtime but barely affected the performance. Of 
course, the duration of the runs is an important factor to consider. Duration 
times exceeding several hours or even days are not viable. Considering the 
case of optimal input lags for the “Pellets and sinter” input series, the 
optimal time lags are expected to be among the values [2, 4, 6, 8, 10, 12, 
14]. With 7 similar lag intervals for each of the 12 input series, the total 
sum rises to 84. In cases where it can be established that there is no 
interdependence between some or all of the inputs to the output, the search 
of the model parameters becomes simple. In this case the selection of 
optimal time lag could then be done separately for each input and the 
search space would be radically reduced. In the case of the complex blast 
furnace process however, interdependence between inputs cannot be 
excluded. If all the possible combinations of inputs and 7 respective time 
lags would be considered, the resulting number of combinations is very 
large and very time consuming to analyze as selecting 5 from 84 yields 
close to 31 million combinations, causing an infeasible duration time if this 
would be done in a single ANFIS simulation. For the blast furnace model, a 
compromise between search space allowing for interdependence and 
limiting it to reduce computation time was implemented. 
 
The modeling procedure is split into two phases:The first phase, denoted 
the “Preliminary phase”, reduces the search space for the optimal time lags 
for each input series relative to the output series. The goal of the phase is 
to find the two time lags for each input series yielding the best correlation 
to the output. These two optimal time lags for each input are to be used in 
the next phase. The second phase, named “In-depth phase”, combines all 
the inputs with the two optimal time lags with the goal to find the top 5 
inputs yielding the best model performance. The training goal of ANFIS was 
to minimize the average of training and validation RMSE in the ANFIS 
output versus Ƞ��. 
 
The goal of the preliminary modeling phase is to find the optimal time lags 
for each input series. The input series related to the blast are expected to 
have a low optimal time lag, while series related to charging data are 
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expected to have a slightly higher optimal time lag. The compromise 
between search space reduction and interdependence between inputs was 
implemented and this phase was divided into four groups. The four groups 
consisted of four separate simulations based on different groupings of input 
series. In this manner, ANFIS was given opportunity to find 
interdependence between these inputs without causing duration times to 
expand to excessive proportions. 
 

 
Figure 4: Inputs and lags tested 

Figure 3 illustrates which inputs and which respective lag search range were 
used in which group. Combining the inputs in this manner allowed for some 
interdependency to be found between the inputs. In each group, ANFIS 
models with 4 inputs were simulated for each unique combination. Choosing 
uniquely 4 out of 3 inputs * 7 lags = 21 possible results in roughly 6000 
combinations. Each simulation yielded RMSE values for the training and the 
validation data set. These were averaged to produce an “Average RMSE”, 
which was used as the sorting criteria. Thus the inputs and lags could be 
ranked according to performance. 
 
The problem on how to identify the top inputs and lags from the large tables 
of data was solved by introducing density plots for visualization and aiding 
the decision making process. The density plot shows the distribution of the 
data, similar to a histogram. From the obtained data table, 21 new tables 
were derived, one for each input series, one for each lag. From these tables, 
all rows not containing the specific input series and lag, were removed. Now 
the distribution of the data in relation to “Average RMSE” could be 
visualized for each lag with density plots. Drawing the density plots for each 
input with all time lags could then be used to determine which time lags 
were optimal. 
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ANFIS model identification 

Using the obtained data from the preliminary modeling phase, the goal of 
the in-depth modeling phase is to determine the top inputs yielding the best 
ANFIS performance. The phase is divided into two parts. In the first part all 
possible combinations of choosing 4 out of 12 inputs with best 2 lags would 
be studied, enabling more interaction than in the previous phase where the 
inputs were divided into groups. Choosing uniquely 4 out of 24 yields 
roughly 10600 combinations. This is already a large number and thus the 
number of inputs was chosen as 4, increasing the number of inputs would 
create unfeasible running times. The result of the first part, 7 top inputs 
with one optimal time lag will be utilized in the second part, where the top 
overall models are to be determined. No other changes were made to the 
ANFIS simulations, and 5-fold cross validation still was implemented. The 
same density plot procedure was used to determine the best inputs and lags 
for ANFIS performance. 
 
The second part consisted of finding the top overall models based on the 
top 7 inputs. The ANFIS model was in practice limited to 5 inputs, choosing 
uniquely 5 out of 7 results in 21 combinations, out of which the top three 
models, sorted by averaging training RMSE and validation RMSE, are 
summarized in figure 5. 
 

 
Figure 5: The top 7 inputs 

 
Figure 6: Top three models of in-depth modelling phase 
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During the analyze stage another batch of furnace data was supplied. The 
data spanned three months and represents another realization of the 
process. No considerable alteration to the process was reported by the 
supplier. The data could thus be used to evaluate the top ANFIS models 
obtained in the modeling phase. The goal of the evaluation procedure is to 
measure the generalization performance of the ANFIS models when faced 
with new unseen data. The top 3 models obtained in the modeling phase 
will be evaluated by simulation of the new data without the new data 
affecting the model. The new data contained, after the same pre-processing 
procedure was conducted, 1770 data points. 
 

 
Figure 7: Top three models of in-depth modeling phase 

Figure 6 shows the top 3 models found earlier evaluated with the obtained 
testing data. As previously mentioned, minor changes to the ANFIS model 
and the smoothing of the series were required. Thus the residual analysis of 
the training (and validation) data does not generate equal RMSE-values to 
the simulations done without these modifications. Residual analysis was 
applied to the entire testing data portion. The five-fold cross-validation 
procedure was only used on the training and validation data, while the 
testing data portion was kept the same during the simulations. The ANFIS 
output of the testing portion is, however, an average of the five simulations, 
as is the case with the training and validation output. 
 
Figures 7, 8 and 9 presents the top 3 models with both training and testing 
data. Original Ƞ�� output is in blue, ANFIS output of the training and 
validation data portion is in red, while testing data output is in green. 
Overall, the testing data output performance is slightly worse than the 
output of the training data set. 



 

15 

 
Figure 8: ANFIS output, model 1 

 
Figure 9: ANFIS output, model 2 

 
Figure 10: ANFIS output, model 3 
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Although the high complexity of the blast furnace process was expected to 
render a linear model unfeasible, it was determined as an important step to 
implement a comparative linear model to assess the performance of the 
ANFIS model. As a final phase, the ANFIS model was compared with the 
multivariate autoregressive (Vector Autoregressive) model (Hatemi and 
Hacker, 2009). The linear model was implemented directly based on the top 
three models. The same pre-processed inputs were used, along with minor 
smoothing and the K-fold cross-validation procedure. 

 
Figure 11: Linear model output, model 1 

 
Figure 12: Linear model output, model 2 
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Figure 13: Linear model output, model 3 

The data used for training, validation and testing was identical to the ANFIS 
scenario. The figures 10, 11 and 12 show some promise for the training and 
validation portions, but poor generalization performance on the testing 
data. At t = 2000   2200, for instance, all linear models show a radical 
increase in the output, which is not present in the original testing data 
during the interval. One possible explanation for this behavior is that there 
is correlation present, which the linear models pick up, but that the relation 
is nonlinear. Thus the linear models exhibit poor extrapolation when 
exposed to previously unseen testing data. As the linear model was not 
limited to five inputs, the model was also tested with the full seven inputs. 
Overall model performance, however, showed merely a fractional 
improvement over the five-input models depicted above and was 
determined to be negligible. 

 

5. Conclusions and Future Research 

The aim with the research conducted was to produce an ANFIS model 
which, based a number of explanatory series, could predict the performance 
indicator Ƞ�� describing the gas utilization rate in the furnace. The modeling 
procedure was allowed to be completely data-driven, except for some 
expert knowledge that was utilized in the pre-processing stages and in the 
construction of the final input series, where several series consisted of 
mathematical combinations of two or more raw input series. 
 
The adequate performance of ANFIS combined with the proposed pre-
processing approach resulted in a system which is feasible for real-world 
industrial application. Discussions with the furnace experts revealed that it 
would be possible to use the ANFIS model as a support system alongside 
the existing systems which measure the performance of the furnace. Over 
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time, the model can be tuned in conjunction by experts, for instance by 
more proficient removal of outliers and anomalies in the training data. This 
is enabled by the experts having first-hand access and knowledge of 
changes in the process, which may not show clearly in the data. As both the 
amount and quality of data rises, there may be a possibility to gradually 
remove the k-fold cross-validation procedure, finally resulting in a single 
ANFIS model which allows for deeper understanding of the complex 
process. At that stage the analytics level of “forecasting and extrapolation” 
will have been attained and steps towards the final highest levels of 
analytics may be taken. If this stage is reached, there would be a lot of 
potential in creating a sophisticated decision support system with predictive 
capabilities which may be used for further process optimization.  

Except involving the tuning of expert into the process other future research 
directions may involve alternate neuro-fuzzy techniques to be applied to the 
problem. At the time of writing, other complex models are being 
implemented based on the pre-processed data. Alternative pre-processing 
choices are also viable, and may produce better results depending on the 
modeling technique. 
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