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Abstract

This paper presents a method for statistical analysis of hybrid systems af-
fected by stochastic disturbances, such as random computation and com-
munication delays. The method is applied to the analysis of a computer
controlled digital hydraulic power management systems, where such effects
are present. Bayesian inference is used to perform parameter estimation and
we use hypothesis testing based on Bayes factors to compare properties of
different variants of the system to assess the impact of different random dis-
turbances. The key idea is to use sequential sampling to generate only as
many samples from the models as needed to achieve desired confidence in
the result.

Keywords: Statistical model-checking, verification and validation, stochas-
tic systems, hypothesis testing, parameter estimation, Bayes factors
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1 Introduction

Model-based design in e.g. Simulink is a popular way to design control
software, where the discrete controller controls a continuous-time system. In
this approach, the control algorithms are designed together with a simulation
model of the system to be controlled. This allows use of system simulation for
controller validation even before the system is built. Typically the models are
synchronous, i.e. computation is assumed to take no time. Delays are often
modeled deterministically with the worst case or average case. This simplifies
modelling and simulation is also typically faster. However, random delays
and computation times might have a large impact on the system behaviour
in practise. Including these delays makes analysis of the models harder.

Even if safety is important, sufficient performance of the system is cru-
cial. One important question to answer is how different modifications to a
model impact performance. Here we are mainly interested in the impact
of stochastic disturbances on the system compared to the ideal synchronous
system. To compare models we rely on hypothesis testing. In [17] they
use Bayesian hypothesis testing based on Bayes factors for Statistical Model
Checking (SMC). They have developed a procedure to generate samples that
for a BLTL property φ that holds with a probability p choose to either ac-
cept the hypothesis H0 : p ≥ θ or H1 : p < θ, where θ is a user defined
bound. Compared to numerical model checking techniques, the advantage
of using SMC is that it is fast and easy to implement for various modelling
frameworks, as one only needs to sample traces. We extend the approach to
hypothesis testing in [17] to compare parameters for statistical models de-
rived from the different system models. Sequential sampling is used to draw
samples until a desired confidence in the results has been achieved. As sim-
ulations can take a very long time this is very useful. Small sample sizes are
also important when applying the methodology to the actual final system.
We check hypotheses such as, e.g., is the mean of the mean square error over
a time interval greater in one model or the other, or, is the rate of events
greater in one model or the other. By using several different hypotheses we
can build a comprehensive suite of checks to automatically compare how dif-
ferent versions of models behave in the presence of stochastic disturbances
with desired confidence in the result.

We are also interested in estimation of parameters for different random
variables, in particular for validating the statistical models used in hypoth-
esis testing. Bayesian statistical model checking [17] provides methods to
estimate probabilities for desirable properties expressed in some logic to hold
in stochastic models. They consider the satisfaction of a Bounded Linear
Time Logic (BLTL) formula as a Bernoulli random variable and estimate
the probability that the property holds. The procedure ensures that the real
probability is within given bounds with given probability chosen by the user.
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The estimation can be carried out to an arbitrary level of precision. In this
paper we use the same approach as [17] to do more general Bayesian infer-
ence. We use the same idea of sequential sampling to sample from random
variables to estimate parameters of statistical models, in particular random
variables that can be seen as approximately Normal and Poisson distributed.
This is used to estimate properties such as the average mean square error of
a signal over a time interval or the rate that events occur. The approach can
be extended to other distributions.

In this paper we compare two different variants with different disturbances
of a model of digital hydraulic power management system (DHPMS) [15].
This is done to get a better understanding of how this system will perform
in real life under non-ideal conditions. Our contribution is:

• A significant extension of the approach in [17] to compare properties
of different models and to analyse more general properties than the
probability of a BLTL formula to hold. Both parameter estimation
and hypothesis testing is discussed.

• Application of the methodology to a case study with a discussion on
possible extensions and limitations. The case study demonstrates issues
often encountered when running controllers under non-ideal conditions.

In Section 2, we present the case study. In Section 3 we briefly discuss
Simulink models and SMC and in Section 4 we describe the performance
metrics used in the paper. Section 5 presents the statistical techniques used
and Section 6 shows the application to the case study. Sections 7 and 8
present related work and conclusions.

2 Case study

The example used in this paper is a model of a six-piston digital hydraulic
power management system (DHPMS) with two independent outlets. The
hydraulic diagram of the machine is shown in Figure 1 but, for simplicity,
only three pumping pistons are presented. Each piston can be connected to
either one of the outlets A or B, or to the tank line T via on/off control
valves. Hence, the DHPMS can operate as a pump, motor, and transformer.
Furthermore, it can provide independent supply line pressures for the actua-
tors. The pressure levels are kept as close as possible to user-defined reference
values by utilising a model-based control approach to select optimal pump-
ing and motoring modes for each piston [12]. Furthermore, the valve timing
must be accurate to avoid too high and too low pressures (cavitation) in
the piston chambers which can damage the system. The control algorithm
for the optimal control signals is described in [8]. An example simulation of
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Figure 1: The hydraulic diagram of a DHPMS with three pistons. The figure
shows three pistons connected to a rotating shaft on the left. Each piston is
connected via valves to high pressure lines A and B, as well as a tank line T
[15].

the complete synchronous system for 15 seconds is shown in Figure 2. Pres-
sure tracking in the A and B-lines are shown to the left (two bottom-most
graphs shows pressures p, the two topmost graphs shows fluid flows Q), while
cylinder chamber pressures are shown to the right. As can be seen from the
figures, the observed pressure (obs.) follows the reference (ref.) closely in
both the A- and B-lines. The cylinder pressures are also below the high
pressure limit of 20MPa.

2.1 Test systems

The goal is to investigate the impact of random time delays on system per-
formance. This is used to assess how control algorithms constructed in an
ideal model with deterministic timing will behave in practise. We compare
two models:

System 1. In this model, the controller is assumed to be synchronous and
all delays deterministic. Also the rotation speed of the motor is constant
and known to the controller. This makes the model simpler and simulation
is fast. The sampling period Ts is 50µs, the delay d of opening and closing
the valves are 1ms. The rotation frequency of the motor is a fixed 25Hz.

System 2. In this model computation time is taken into account. The delay
before reading inputs is assumed to be a uniformly distributed variable in the
interval [0.01Ts..0.1Ts]µs. The computation time between the input is read
until outputs are produced is assumed to be a uniformly distributed random
variable in the interval [0.1Ts..0.55Ts]µs. The rotation speed of the motor
is fixed at 25Hz, but the controller estimates the speed with an incremental
rotary encoder [2]. Additionally, the valves open and close with a delay in
the interval [0.9d..1.1d]ms.
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Figure 2: Results from a simulation of System 1. The figures to the left show
flows Q and pressures p in the A and B-lines. The figures to the right shows
pressures in the pumping cylinders 1..6.

System 3. This model has a slower sampling time than the other two mod-
els, Ts = 100µs. The valves are also slower with a delay of 4ms. Computation
times and valve delays are defined in the same way as in System 2.

3 Modelling and specification

We have used Simulink as our Modelling tool. A Simulink model can be
assumed to be a probabilistic discrete-time hybrid automaton (DTHA) [17].
Hence, there is a well-defined probability measure over the trace space pro-
duced by simulating a model. Simulink/Stateflow is a complex language and
a full formal semantics as a DTHA that accurately considers all features is
difficult to define. However, we do not need a formal semantics, since we
only sample traces. The sampling uses the built-in simulation capabilities of
Simulink. Note that changing the simulation algorithm (differential equation
solver) can change the semantics of the model, hence it is important to use
the same configuration parameters for the simulation in all experiments. In
[17] they use properties that can be checked on finite prefixes of simulations
of a model, i.e. their truth-value depend only on a finite prefix. All statistics
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we compute apply only for finite prefixes of predefined length of simulation
traces. Hence, we cannot draw conclusions about the behaviour of infinite
traces from our statistical results. However, the considered simulation traces
can be arbitrarily long. The models considered in this paper are open models,
where the input signals are random signals with some properties, representing
possible workloads of the system. The models are closed by also modelling
the random input signals. Generating random input signals that are repre-
sentative of real workloads in both the time and frequency domain can be
challenging. However, a thorough investigation of this topic is outside the
scope of this paper.

4 Definition of performance

We analyse performance using several different metrics. The goal of the
metrics is to capture key performance properties of the system, where the
metric for a model can be seen as a random variable. These metrics obtained
from different versions of the system can then be used to compare them.

Mean square error. The DHPMS should provide pressure to the A- and
B- lines as close as possible to the reference pressures. Hence, we need a
characterisation of the deviation. One common way to characterise the size
of the deviation is the mean square of the error signal v:

J = lim
T→∞

∫ T

0

v(t)2dt (1)

We cannot simulate the system for an infinite time and we therefore compute
the mean square error for a finite time interval [t0, t1], Jn =

∫ t1
t0
v(t)2dt for

each run n of the system. Then Jn is a random variable. We do not know
the shape of v(t)2, but if the system is time invariant then according to
the Central Limit Theorem Jn is approximately normally distributed. This
follows from the fact that Jn can be seen as the average of mean square
errors of smaller intervals that then, if sufficiently long, are approximately
independent and identically distributed (iid). Then if time invariance is again
assumed, J is the average of all Ji with E[J ] = limN→∞

1
N

ΣN
i=0E[Ji] = E[Ji].

Note that in special cases we can actually compute E[J ] exactly [14].

Safety properties. Safety properties can be formulated as BLTL prop-
erties and the probability that they hold can be directly estimated by the
approach in [17]. One safety relevant performance property is to ensure that
pressure peaks occur sufficiently rarely. We can analyse this property by
computing the probability of a pressure peak during a certain time interval.
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Rate of events. We are also interested in analysing how often good or
bad events happen in the system. E.g. for the pressure in the pumping
cylinders, we know that pressure peaks can occur. Furthermore, we are more
interested in the event that the pressure becomes too high than the time
the pressure stays too high. We can analyse this by analysing the rates of
pressure peaks or low pressure (cavitation) events. If we assume the events
are independent from each other, the number of events per time unit follows
a Poisson distribution.

5 Statistical analysis
We cannot compute the properties of the random variables described earlier
exactly due to system complexity and we instead use Bayesian statistics to
analyse them. Bayesian inference is based on using the Bayes rule (2) [7] to
fit a probability model to a set of data possibly using some prior information.
The result is probability distribution on the parameters of the model.

p(θ|y) =
p(y|θ)p(θ)
p(y)

(2)

Bayes rule gives the posteriori probability p(θ|y) where θ are the parameters
of the model and y is the data. The notation p(θ|y) denotes the conditional
probability for θ given y. The distribution p(y|θ) is called the sampling
distribution and gives the probability distribution for observing y. The prior
distribution p(θ) describes prior knowledge of θ, while p(y) is a normalisation
factor p(y) =

∫
p(y|θ)p(θ)dθ for continuous θ.

When data y has been observed we can use this to make predictions about
an unknown observable ŷ from the same process [7].

p(ŷ|y) =

∫
p(ŷ|θ)p(θ|y)dθ (3)

Hence, the prediction uses the posteriori probability density estimated for θ
to estimate the probability for ŷ. Predictive distributions are used here to
validate the models against the data.

The goal of parameter estimation is to estimate the probability of a certain
property for any random simulation of a system. Each property can be
evaluated on a prefix with fixed length of a simulation. When evaluating a
BLTL formula we like to estimate the probability θ that the property holds
in a random simulation. That the property φ holds for a simulation σ can be
associated with a Bernoulli distributed random variable X. The conditional
probability that the property holds is p(x|θ) = θx(1 − θ)1−x where x = 1 if
the property holds (σ |= φ) and x = 0 if it does not (σ 6|= φ). The (unknown)
probability for x = 1 is given by θ. For inference, we need a prior probability
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density for θ. If no information is available a non-informative prior can be
used.

To simplify computation we can use a so called conjugate prior [7]. Using
a conjugate prior means intuitively that the posteriori distribution has the
same form as the prior distribution. The conjugate prior for the Bernoulli
distribution is the Beta-distribution Beta(θ|α, β) = 1

B(α,β)
θα−1(1 − θ)β−1

where B(α, β) is the Beta function. If we have iid random variables then
p(x1, . . . , xn|θ) = Πn

i=1p(xi|θ) where x1, . . . , xn is the results of n simula-
tions. The posteriori distribution p(θ|x1, . . . , xn) is then p(θ|x1, . . . , xn) =
Beta(θ|α + x, β + n− x) where x is the number of 1:s in the samples and n
is the number of samples. α and β are given by the prior Beta-distribution.
If α = β = 1 the Beta-distribution equals the uniform distribution, which is
considered a non-informative prior.

We are not limited to only Bernoulli distributed random variables. How-
ever, to avoid computational problems and thereby automate the approach,
it is extremely useful if the sampling distribution has a conjugate prior. In
this paper we use Poisson distribution as a sampling distribution where the
Gamma distribution is a conjugate prior, as well as the normal distribution
with unknown mean and variance. Given the prior distribution of the rate
of events r, Gamma(r|α, β) where α, β > 0 are user defined parameters and
samples k1, . . . , kn drawn from a Poisson distribution with unknown rate r,
Poisson(ki|r), the posteriori probability distribution for the rate r is [7]:

p(r|k1, . . . , kn) = Gamma(r|α + nk̄, β + n) (4)

Here k̄ is the average of k1, . . . , kn. In the case of normally distributed data
N(yi|µ, σ2), where µ is the mean and σ2 is the variance, the marginal poste-
riori distribution for the mean µ is given by the Student-t distribution:

p(µ|y1, . . . , yn) = tνn(µ|µn, σ2
n/κn) (5)

with νn degrees of freedom [7] where the parameters are:

µn = κ0
κ0+n

µ0 + n
κ0+n

ȳ

κn = κ0 + n
νn = ν0 + n
νnσ

2
n = ν0σ

2
0 + (n− 1)s2 + κ0n

κ0+n
(x̄− µ0)

2

(6)

The parameters κ0, ν0, µ0, σ0 are chosen by the user for the prior distribution,
ȳ is the average and s2 is the computed variance of the samples.

5.1 Bayesian estimation algorithm

The goal is to estimate parameters θ of a chosen statistical model. The idea
here is to draw samples until the desired confidence in the result has been
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Table 1: The interval [t0, t1] for the three posteriori distributions used in the
paper.

Distribution lower bound t0 upper bound t1
Beta p̂+ δ ≤ 1?max(0, p̂− δ) : 1− 2δ p̂− δ ≥ 0?min(1, p̂+ δ) : 2δ
Student-t µ̂− δσ̂ µ̂+ δσ̂

Gamma r̂ −max(δ, δ
√
r̂) ≥ 0?

r̂ −max(δ, δ
√
r̂) : 0

r̂ −max(δ, δ
√
r̂) ≥ 0?

r̂ +max(δ, δ
√
r̂) : 2max(δ, δ

√
r̂)

achieved. The confidence in the estimate is defined as an interval for [t0, t1]
in which the estimated parameter θ should be with the probability of at least
c. The probability γ of θ being in the interval is given by

γ =

∫ t1

t0

p(θ|y)dθ (7)

where p(θ|y) is the posteriori probability of θ given the data y. This inte-
gral can be computed efficiently numerically in the case of Beta, Gamma
and Student-t distribution using e.g. MATLAB. However, for more complex
distribution this is typically not the case [7]. The algorithm to estimate θ,
which is a straightforward extension of the algorithm in [17], is shown in Fig-
ure 3. The first step in the loop is to draw a sample by simulating the model,
then the function f is used to calculate the data needed in the parameter
estimation from the generated simulation trace. Finally, the probability that
θ is between t0 and t1 is computed. If the probability is high enough the loop
terminates.

The interval [t0, t1] used for the different distributions are given in Table
1, where δ is a user defined parameter determining the width of the interval.
We use the mean of the posteriori distribution as the center of the inter-
val. For the Poisson distributed variables and for the normally distributed
random variables, the width of the interval is defined as a fraction δ of the
estimated standard deviation of the sampling distributions. Note that for
a Poisson process, the mean equals the variance. Note also the handling of
boundary cases. One could also consider a (user-defined) static lower bound
for the width t1−t0 in the case of normally distributed data, since width now
approaches zero when the variance approaches zero. Other choices of interval
bounds are possible, as long as the width of the interval t1 − t0 converges to
a strictly positive value.

5.2 Bayesian hypothesis testing

We compare models by using Bayesian hypothesis testing with Bayes fac-
tors [13]. Here we decide between two mutually exclusive hypotesis H0 and
H1. For a parameter θ defined on two models M1 and M2 we will use the
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Input :
f(σ, y)−A function that computes a statistic on a trace and adds it to existing statistics
p(θ|y, θ0)−A posteriori probability density function
t0(y, θ0)−A function that computes lower bound for the interval
t1(y, θ0)−A function that computes upper bound for the interval
c ∈ (0.5, 1)− The interval coverage coefficent

Output :
y − The statistic y needed for the posteriori distribution

repeat
σ := Draw a sample trace from the system model
y := f(σ, y)
t0 := t0(y, θ0)
t1 := t1(y, θ0)

γ :=
∫ t1
t0
p(θ|y, θ0)dθ

until γ ≥ c
return y

Figure 3: The algorithm for parameter estimation to a desired precision

hypotheses:

H0 : θ1 ≥ θ2 H1 : θ1 < θ2 (8)
H0 : |θ1 − θ2| ≤ ε H1 : |θ1 − θ2| > ε (9)

The hypotheses in (8) are used to test if θ in modelM1 is greater or less than
θ in M2. The second set of hypotheses in (9) are used to check if θ in both
models differ from each other with less than a user defined value ε.

For normally distributed data, θ will typically be the mean µ and for
Poisson distributed data θ is the rate r. Based on the data d Bayes theorem
then gives the posteriori probability hypothesis Hi

p(Hi|d) = p(d|Hi)p(Hi)
p(d|H0)p(H0)+p(d|H1)p(H1)

i = 0, 1 (10)

Here the prior probabilities must be strictly positive and p(H1) = 1− p(H0).
The posteriori odds for hypothesis H0 is

p(H0|d)

p(H1|d)
=
p(d|H0)p(H0)

p(d|H1)p(H1)
(11)

The Bayes factor B is then defined as B = p(d|H0)/p(d|H1). When the priors
are fixed, the Bayes factor is used to measure the confidence in the hypothesis
H0 against H1. Guidelines for interpreting the Bayes factor are given in [13].
A Bayes factor B ≥ 100 can be seen as strong evidence in favour for H0

and a value of B ≤ 0.01 as strong evidence in favour for H1. We adapt
the algorithm from [11, 17] to dynamically chose the number of samples so
that either H0 is accepted with a fixed threshold T or H1 is accepted with a
threshold 1/T .
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We use the posteriori probabilities p(H0|d) and p(H1|d) to compute the
Bayes factor. Below we show the definition of the Bayes factor for normally
distributed data and the hypotheses H0 : µ1 ≥ µ2 and H1 : µ1 < µ2. In
this case, the posteriori distribution of µ1 and µ2 are Student-t distributions.
The probability for µ1 ≥ µ2 is obtained by integrating joint probability dis-
tribution p(µ1, µ2) over the area satisfying this condition. The same applies
to µ1 < µ2. Assuming µ1 and µ2 are independent, the posteriori odds then
becomes:

p(H0|d)

p(H1|d)
=

∫∞
−∞

∫ µ1
−∞ tνn1(µ1|µn1 , σ

2
n1
/κn1)tνn2(µ2|µn2 , σ

2
n2
/κn2)dµ2dµ1∫∞

−∞

∫∞
µ1
tνn1(µ1|µn1 , σ

2
n1
/κn1)tνn2(µ2|µn2 , σ

2
n2
/κn2)dµ2dµ1

(12)

where µn is the mean estimated from the sample average, σ2
n the variance

estimated from the sample variance, νn and κn are the degrees of freedom.
For H0 and H1 in (9) the posteriori odds become:

p(H0|d)

p(H1|d)
=

∫∞
−∞

∫ µ1+ε
µ1−ε tνn1(µ1|µn1 , σ

2
n1
/κn1)tνn2(µ2|µn2 , σ

2
n2
/κn2)dµ2dµ1∫∞

−∞

∫ µ1−ε
−∞ tνn1(µ1|µn1 , σ

2
n1
/κn1)tνn2(µ2|µn2 , σ

2
n2
/κn2)dµ2dµ1+∫∞

−∞

∫∞
µ1+ε

tνn1(µ1|µn1 , σ
2
n1
/κn1)tνn2(µ2, µn2 , σ

2
n2
/κn2)dµ2dµ1

(13)
The Bayes factor then becomes B = p(H1)p(H0|d)

p(H0)p(H1|d) . For other forms of the
posteriori distributions (Gamma distribution and Beta distribution in this
paper) the Bayes factor for the hypothesis can be formulated in a similar
manner. Note that the Bayes factor is notorious for being difficult to compute
for arbitrary distributions [13]. In our cases numerical integration techniques
in MATLAB work on the tests we have done when the number of samples
are sufficiently large. However, more easily computed approximations, such
as the Schwarz criterion, exists [13]. Markov Chain Monte-Carlo (MCMC)
techniques [7] to compute approximate the integrals can also be used, but
due to the large number of samples needed to accurately approximate the
integrals, they can be very slow.

The Bayesian hypothesis testing algorithm in Figure 4 modifies the one
in [17] to test hypotheses concerning two models. The algorithm draws iid
sample traces from the models on which the desired hypothesis is tested.
Samples are drawn until either the Bayes factor is greater than a predefined
threshold indicating thatH0 should be accepted or the Bayes factor is smaller
than 1/T indicating that H1 should be accepted.

Note that it is useful to combine the estimation algorithm with the hy-
pothesis testing algorithm. As the statistical models are approximations, the
estimated θ is needed to validate that the statistical model approximates the
data sufficiently well. Additionally, when deciding between hypotheses H0

and H1 in (8) and θ0 ≈ θ1 then a huge number of samples might be needed to
accept one of the hypothesis even if the values of the parameters are almost
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Input :
f(σ, y)−A function that computes a statistic on a trace and adds it to existing statistics
p(θ|y, θ0)−A posteriori probability density function
T ≥ 1− The threshold to accept H0

Output :
H0 : θ1 ≥ θ2 accepted or H1 : θ1 < θ2 accepted

do
σ1 := Draw a sample trace from the system model 1
σ2 := Draw a sample trace from the system model 2
y1 := f(σ1, y1)
y2 := f(σ2, y2)
B := BayesFactor(p, y1, y2, θ0)
if (B > T ) then return H0 accepted
if (B < 1/T ) then return H1 accepted

end do

Figure 4: The Bayesian hypothesis testing algorithm

the same. Hence, one can also stop the iteration when the parameters θ0
and θ1 has been estimated to desired precision, while the hypothesis testing
is still inconclusive.

5.3 Algorithm analysis

We essentially use the same estimation and hypothesis testing algorithms as
in [17], but use different probability distributions. They have proved termi-
nation (with high probability) of both parameter estimation and hypothesis
testing. Termination of parameter estimation is straightforward to prove and
the proof in [17] is straightforward to adapt here. Termination of hypothesis
testing is more difficult, see [10] for a proof in the case of Bernoulli sampling
distribution with a Beta prior. In the case of hypothesis testing, termination
is in our case perhaps more of a theoretical interest, due to numerical prob-
lems when deciding between hypotheses where the evidence in favour of one
or the other is weak.

The upper bound 1/T on the probability of making type I and type II
errors in hypothesis testing has also been proved [17]. By type I error we mean
that we reject the H0 hypothesis even if it is true. A type II error is the error
of accepting H0 even if it is false. The bound on the probability on the type
I/II error in hypothesis testing is straightforward to derive for the Poisson
distribution (same proof as in [17]) and it works with minor modifications
for the normal distribution. The probability of estimation errors [17] can be
analysed in terms of Type I/II error by using the hypothesis H0 : θ ∈ [t0, t1]
and H1 : θ /∈ [t0, t1]. The hypothesis H0 then represents the case that
θ is within the desired interval. The probability of a type I or II error
is bounded above by (1−c)π0

c(1−π) where c is the coverage coefficient and π0 is
the prior probability of H0. Note that this applies when we sample from
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Figure 5: The number of iterations required to achieve desired precision using
the parameter estimation algorithm. The number of iterations for Poisson
distributed data is shown to the left and for normally distributed data to the
right.

random variable with the assumed distribution. However, here we typically
approximate the probability distribution of a random variable with an easy
to use distribution. Hence, the error bounds provide only an idealised bound
and the real bounds are unknown.

Figure 5 shows the number of iterations needed when estimating rate r for
Poisson distributed data (left) and when estimating the mean (here the mean
µ = 0) of normally distributed data (right) using the interval bounds in Table
1. As the interval [t0, t1] becomes smaller the number of iterations required
increases rapidly. The increase in c does not have as strong impact, which is
also noted in [17]. The number of iterations required for Poisson distributed
data is almost independent of the rate r except for small rates, due to the
fixed minimum size of the interval. In the case of normally distributed data,
the number of samples is the same regardless of the variance, except when
the variance becomes small when the number of samples required approaches
infinity as the interval width approaches zero. Hence, proper scaling of the
problem becomes essential.

6 Application
The testing methodology has been applied to the case study to evaluate
7 different properties in the tests Test 1, . . . ,Test 7 described below. The
metrics in Section 4 are used. The results comparing System 1 and System
2 are summarised in Tables 2 and 3, while the results for comparing System
1 and System 3 are summarised in Tables 4 and 5. Recall the bounds on
the probability of Type I and II errors and the bound on the probability of
estimation errors discussed in Section 5.3.
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Figure 6: The estimated and observed distribution of the mean square error
in System 1 (left) and System 2 (right).

Table 2: Results from parameter estimation in the five tests for System 2
Test Post. dist. c δ γ iterations
Test 1 Student-t 0.9 0.1 0.9 274
Test 2 Beta 0.9 0.02 0.9 539
Test 3 Gamma 0.9 0.1 0.9 271
Test 4 Gamma 0.9 0.1 0.99 73
Test 5 Student-t 0.9 0.1 0.9 273
Test 6 Gamma 0.9 0.1 0.9 271
Test 7 Beta 0.9 0.01 0.9 113

6.1 Comparision of System 1 with System 2

Mean square error of pressure tracking (Test 1). When analysing
pressure tracking performance, we focus on the pressure in the A-line of the
system. We are interested in the difference pA − pA,ref , where pA is the
(continuous) pressure signal and pA,ref is the (discrete) reference pressure.

This test consider the mean square error (1) of the difference pA − pA,ref
over a time window of 5-15s. This is a performance property. The square
error is scaled by a factor of 10−6 to avoid numerical problems. The time
windows have been chosen to avoid transients at the start of the system in
order to focus on steady-state behaviour.

Figure 6 shows the observed and estimated distributions of mean square
errors for System 1 and System 2, respectively. As can be seen from the
figures, the normal distribution is a fairly good approximation of the observed
distribution. A surprising result is that the control quality does not decrease
even with the delays. The hypothesis H0 in (9) stating that the mean square
errors differ at most by ε, where ε is the estimated standard deviation of
System 1, is accepted with the threshold T = 100 in 21 iterations.
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Figure 7: The estimated the probability that the that property G15s(pi(1) ≤
21MPa) holds in System 1 (left) and System 2 (right).

Probability of pressure peaks (Test 2). Absence of peaks is described
as the BLTL property, G15s(pi(1) ≤ 21MPa). The probability of a property
violation is assumed to be a Bernoulli distributed random variable. The
estimated probability for the property to hold for System 1 and System 2
is shown in Figure 7. The hypothesis that the property holds with greater
probability in System 1 than in System 2 is accepted after 76 iterations.

The rate of cylinder pressure peaks (Test 3) and low pressure (Test
4). A pressure peak event is defined as a pressure rising above 21MPa and
a low pressure event is defined as the pressure falling below 0.1MPa. All
cylinders are analysed separately and events are counted for each type of
violation (low pressure, pressure peak) separately. A Poisson distribution is
assumed for the rate of events.

Figure 8 shows estimated and observed distribution of low pressure events
for the first pumping cylinder in System 1 and System 2, respectively. The
rates for all 6 cylinders are very similar in both cases. In System 1 the events
occur rarely, while in System 2 they occur with an average rate of above 20

Table 3: Results from hypothesis testing comparing System 1 and System 2
Test Post. dist. T Result (iterations)
Test 1, hypotheses (8) Student-t 100 H1 accepted (233)
Test 1, hypotheses (9), ε = 0.033 Student-t 100 H0 accepted (21)
Test 2, hypotheses (8) Beta 100 H0 accepted (76)
Test 4, hypotheses (8) Gamma 100 H1 accepted (50)
Test 5, hypotheses (8) Student-t 100 H1 accepted (9)
Test 5, hypotheses (9), ε = 82 Student-t 100 H0 accepted (46)
Test 7, hypotheses (8) Beta 100 H1 accepted (4)

14



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of events

F
re

qu
en

cy

 

 

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of events

F
re

qu
en

cy

 

 

Observed
Computed

Observed
Computed

Figure 8: The rate at which low pressure events occur in System 1 (left) and
in System 2 (right).
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Figure 9: The rate at which high pressure events occur in System 1 (left)
and in System 2 (right).

events per 10s. The hypothesis that the rate in System 2 is greater than
in System 1 is accepted after 50 iterations with threshold T = 100. This is
actually the main difference between System 1 and System 2. For example,
in System 1 the probability that there are 0 cavitation events during one
minute assuming Poisson distributed events and that the rate is constant
over time is 0.91.

Pressure peaks occur with approximately the same rate in both System
1 and System 2. The rate of high pressure events in System 1 and System 2
are shown in Figure 9. However, the high pressure peaks in System 2 do not
follow a Poisson distribution very well, which indicates that the events are
not independent. Additional tests have also confirmed this result. This is
actually an interesting discovery. Hence, that a probabilistic model does not
fit the data is here an interesting result in itself. However, the hypothesis
testing approach cannot be used to compare models in this case. A more
accurate approximation, recommended in [7] when events are clustered, is a
negative binomial distribution.
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Figure 10: The estimated and observed distribution of the energy loss in
System 1 (left) and System 2 (right).

Energy losses (Test 5). We can estimate the energy losses in the pumping
process. Test 5 compares the energy losses in the two systems. As the total
energy losses are the sum of smaller random losses, the central limit theorem
motivates the assumption that the energy losses over a fixed time interval
is a normally distributed random variable if the system is time invariant.
The energy loss during the time interval 0-15s is similar in both systems (see
Figure 10), the estimated mean in System 1 is µ̂1 = 5370J and µ̂2 = 5380J in
System 2. The hypothesis that the means are within one standard deviation
σ̂ = 87 from each other is accepted in 46 iterations.

The rate at which the valve delay is further that 15% from the
expected value (Test 6). The delays in closing and opening valves is an
important factor for system performance. Each valve has a pre-determined
average delay. This delay can be compensated for in the control software.
However, the actual delay is a random variable with unknown distribution.
We analyse the rate of the delay of opening or closing of a valve will be
outside the limits given by the interval d ∈ [da − 0.15da, da + 0.15da]ms
where da is the average delay of the valve. As we assume the length of delays
in different valve events are independent from each other, we can assume the
number of events in a time interval follows a Poisson distribution. The rate
gives information of how often a property becomes false (in violations/10s).
It does not provide information about the fraction of time it is false. This
gives a more fine grained information than just a probability that a property
violated in a given time.

The expected valve delay in System 2 is da = 1.45ms. In this test the rate
of violations of these bounds are assessed. The unit is number of violations
in 10s. The estimation gives the mode of the rate of r̂ = 2.55 for the Poisson
distribution. Using a predictive distribution, we have validated that this
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Figure 11: The rate at which the delay of valves is more then 15% from the
expected in System 2.

distribution fits the data closely (see Figure 11).

Probability of cavitation (Test 7). Cavitation is defined as the pressure
pi = 0 in a cylinder, in BLTL the property to check is F15spi = 0. In System
1 cavitation is never observed in the time interval 5-15s while in System 2, it
is observed every time. The probability distribution of cavitation in System
1 and System 2 is shown in Figure 12. The hypothesis that the probability
is smaller in System 1 than System 2 is accepted after only four iterations.

Conclusions. The control performance given by the mean square error and
the energy consumption are not significantly negatively affected by the addi-
tional disturbances in System 2. The only significant effect is the increase of
low pressure events. However, when testing several hypotheses, the probabil-
ity to have at least one type I/II error is p(nerror ≥ 1) = 1− p(nerror = 0). If
hypothesis i has threshold Ti and the errors are independent, then this proba-
bility is bounded above, p(nerror ≥ 1) ≤ 1−Π(1− 1

Ti
). Hence, the probability

of type I and II errors can be significant, if we have many hypotheses and a
relatively small T .

6.2 Comparision of System 1 with System 3

We are also interested how much slower (and thereby cheaper) valves than in
System 2 can be used. Also a slower sampling time allows cheaper processors
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Figure 12: The estimated probability density that cavitation occurs in Sys-
tem 1 (left) and System 2 (right).

to be used or it allows running also other applications on the same platform.
Here we use a model that has a slower sampling time, Ts = 100µs. The valves
are also slower with a delay of 4ms. Computation times and valve delays are
defined in the same way as in System 2. We use the same tests Test 1,. . .,
Test 7 as in the comparision with System 2. The results are summarised in
Tables 4 and 5.

Mean square error of pressure tracking (Test 1). This test consider
the mean square error (1) of the pressure difference (pA,ref − pA) over a time
window of 5-15s. The square error is scaled by a factor of 10−6 to avoid
numerical problems.

Figure 13 shows the observed and estimated distributions of mean square
errors for System 1 and System 3 respectively. The hypotesis that the mean
of mean square errors is greater in System 3 than in System 1 is accepted
in 86 iterations. The hypothesis that the difference between the means is
greater than one standard deviation is also accepted in 162 iterations.

Probability of pressure peaks (Test 2). The probability of pressure
peaks in the pumping cylinders is estimated in this test. Absence of peaks is
described as the BLTL property, G15s(pi ≤ 21MPa). The estimated prob-
abilites for the property to hold in System 1 and System 3 are shown in
Figure 14. The hypothesis that the property holds with greater probability
in System 1 than in System 3 is accepted after 4 iterations.
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Figure 13: The estimated and observed distribution of the mean square error
in System 1 (left) and System 3 (right) .

Table 4: Results from parameter estimation in the five tests for System 3
Test Post. dist. c δ γ iterations
Test 1 Student-t 0.9 0.1 0.9 273
Test 2 Beta 0.9 0.01 0.9 339
Test 3 Gamma 0.9 0.1 0.9 271
Test 4 Gamma 0.9 0.1 0.9 271
Test 5 Student-t 0.9 0.1 0.9 273
Test 7 Beta 0.9 0.01 0.9 113

Table 5: Results from hypothesis testing comparing System 1 and System 3
Test Post. dist. T Result (iterations)
Test 1, hypotheses (8) Student-t 100 H1 accepted (86)
Test 1, hypotheses (9), ε = 0.033 Student-t 100 H1 accepted (162)
Test 2, hypotheses (8) Beta 100 H0 accepted (4)
Test 5, hypotheses (8), Student-t 100 H1 accepted (20)
Test 5, hypotheses (9), ε = 82 Student-t 100 H1 accepted (10)
Test 7, hypotheses (8) Beta 100 H1 accepted (4)
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Figure 14: The estimated the probability that the that propertyG15s(pi(1) ≤
21MPa) holds in System 1 (left) and System 3 (right).
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Figure 15: The rate at which low pressure events occur in System 1 (left)
and in System 3 (right).

The rate of cylinder pressure peaks (Test 3) and low pressure (Test
4). A pressure peak event is defined as a pressure rising above 21MPa and
a low pressure event is defined as the pressure falling below 0.1MPa. All
cylinders are analysed separately and events are counted for each type of
violation (low pressure, pressure peak) separately.

Figure 15 shows estimated and observed distribution of low pressure
events for the first pumping cylinder in System 1 and System 3, respectively.
The rates for all 6 cylinders are very similar in both cases. In System 1 the
events occur rarely, while in System 3 they occur regularly. Note that the
low pressure events do not follow a Poisson distribution in System 3. This is
probably due to the impact of the reference pressure becomes visible. The
rate of high pressure events are shown in Figure 16. Just as in System 2,
the high pressure peaks do not follow a Poisson distribution, which indicates
that the events are not independent.
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Figure 16: The rate at which high pressure events occur in System 1 (left)
and in System 3 (right).
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Figure 17: The estimated and observed distribution of the energy loss in
System 1 (left) and System 3 (right).

Energy losses (Test 5). The energy losses during the time interval 0-15s
are similar in both systems as shown in Figure 10, the estimated mean in
System 1 is µ̂1 = 5370J and µ̂3 = 5890J in System 3, indicating a 10%
increase in energy consumption in System 3 compared to System 1. The
hypothesis that the means are more than one standard deviation σ̂ = 10
from each other is accepted in 50 iterations.

The rate at which the valve delay is further that 15% from the
expected value (Test 6). This test was skipped for System 3, since the
computation time becomes very long and it is not expected to reveal anything
interesting not already shown in the corresponding test for System 2. The
reason is that these delays depend directly on the computation times and
valve delays and there is no feedback involved.
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Probability of cavitation (Test 7). In this test the probability of cavi-
tation in the cylinders is assessed in the two systems. The property in BLTL
is, F15spi = 0. In System 1 cavitation is never observed in the time interval
5-15s while in System 3, it is observed every time. The hypothesis that the
probability is smaller in System 1 than System 3 is accepted after only four
iterations.

Conclusions. The control performance does not deteriorate very much due
to the large delays indicated by the relatively small increase in the mean
square error. The system also becomes less energy efficient, but only by
an estimated 10%. The main problem is that pressure peaks and cavita-
tion occur much more often, and both situations are problematic. Overall,
the problems already partly visible in System 2 becomes worse here due to
longer delays with more variation. However, this evaluation pinpoints the
problems and provides means to evaluate if potential new solutions improve
the situation.

7 Related work

Statistical model checking has been an active area of research. The focus
has been on checking various kinds of (bounded) temporal logic formula
on stochastic models. Here we directly extend the methodology in [17] to
more general properties than can be expressed by temporal logic formulas
using well-known Bayesian techniques. Younes and Simmons [16] have used
hypothesis testing to determine if the probability that a temporal logic prop-
erty holds is above a desired limit. They use the sequential probability ratio
test (SPRT) to adaptively sequentially sample only as many times as needed.
Additionally, they can also bound the probability of Type I and II errors.
However, they perform no parameter estimation, which is here important
for model validation. For parameter estimation, techniques based on the
Chernoff-Hoeffding bound have been used by Hérault et.al. [9]. According
to experiments by Zuliani et. al. [17], this estimation approach can be sig-
nificantly slower than the Bayesian approach used here. Both hypothesis
testing using SPRT and parameter estimation using the Chernoff-Hoeffding
bound has been implemented in UPPAAL-SMC [6, 3]. Additionally they
implement comparisons of probabilities from different models by hypothesis
testing based on SPRT. David et.al. [5] have also used ANOVA for model
comparison. The goal is similar to how we compare parameters in different
models using Bayesian hypothesis testing. However, an in-depth comparison
is further work.

Jitterbug [4] can be used to compute the mean square error (1) numer-
ically for a special kind of systems. However, in our case the systems do
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not fulfil the requirements (the system dynamics is not linear). We have
also analysed worst case timing for a version of the case study system [2]
by applying model-checking of timed automata in the TIMES tool [1]. That
paper focuses on the improvements obtained by using interrupt driven tasks
instead of periodic tasks. Here the focus is on the impact of random delays
on system performance.

8 Conclusions

This paper presents an approach to statistically analyse and compare stochas-
tic models, based on Bayesian parameter estimation and hypothesis testing.
We demonstrated the approach to compare two versions of a model of a dig-
ital hydraulics power management system. The differences in the models
concern stochastic delays and disturbances. The results from the hypoth-
esis testing show that we can gain confidence in the result with relatively
few samples. The parameter estimation was used to validate that data fits
the used probability model. However, comprehensive model validation [7] is
outside the scope of the paper.

In [17], they give bounds on probability of Type I and Type II errors in
hypothesis testing and bounds on the error of estimated probabilities. Al-
though the same results apply here, the Poisson and Normal distributions are
approximations of the real processes and, hence, model validation becomes
an essential step in order to draw valid conclusions. Therefore, parameter
estimation is an important complement to hypothesis testing. To automate
the analysis there need to be efficient ways to accurately compute the needed
integrals. The need for certain types of statistical models then also limits the
approach to certain properties, where the models are expected to provide a
good fit or where a poor fit provides some insight into the behaviour of the
process.

The approach in the paper is not limited to analysing impact of random
delays, but can be used for other purposes as well. The key advantage is to
generate only as many samples as needed to gain a desired confidence. Addi-
tionally, prior information can be included by using the prior distributions.
Future work include using more complex statistical models. Incremental
model validation would also be useful to ensure that the checking process
returns an accurate result.
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