Matteo Brunelli | Andrew Critch | Michele Fedrizzi

A note on the proportionality between some consistency indices in the AHP

TUCS Technical Report
No 1012, May 2011

A note on the proportionality between some consistency indices in the AHP

Matteo Brunelli
TUCS and Åbo Akademi University, Department of Information Technologies
Joukahainengatan 3-5A, 20520 Turku, Finland
matteo.brunelli@abo.fi
Andrew Critch
University of California, Berkeley, Department of Mathematics
Berkeley, CA 94720, United States
critch@math.berkeley.edu
Michele Fedrizzi
University of Trento, Department of Computer and Management Sciences
Via Inama 5, 38122 Trento, Italy
michele.fedrizzi@unitn.it

Abstract

Analyzing the consistency of preferences is an important step in decision making with pairwise comparison matrices, and several indices have been proposed in order to estimate it. In this paper we prove the proportionality between some consistency indices in the framework of the Analytic Hierarchy Process. Knowing such equivalences eliminates redundancy in the consideration of evidence for consistent preferences.

Keywords: Analytic hierarchy process; consistency indices; pairwise comparison matrices; reciprocal relations

1 Introduction

Measuring the inconsistency of an $n \times n$ pairwise comparison matrix - that is, assigning a numerical value to "how much" the matrix $\mathbf{A}=\left(a_{i j}\right)_{n \times n}$ deviates from one indicating consistent preferences - is an important issue in the Analytic Hierarchy Process (AHP), as well as in other alternative methods of decisionmaking.

The oldest and most commonly used measure is the consistency index, $C I$, introduced by Saaty [17],

$$
\begin{equation*}
C I=\frac{\lambda_{\max }-n}{n-1}, \tag{1}
\end{equation*}
$$

where $\lambda_{\text {max }}$ is the maximum eigenvalue of A. After Saaty, several other authors proposed different consistency indices in order to find the most suitable way to estimate "how far" A is from the consistency condition

$$
\begin{equation*}
a_{i j} a_{j k}=a_{i k} \forall i, j, k . \tag{2}
\end{equation*}
$$

Note that Saaty's definition (1) is based on the fact that, for a positive reciprocal matrix, condition (2) holds if and only if $\lambda_{\max }=n$.

Appropriate consistency evaluation of elicited preferences is seen as important largely because the achievement of a satisfactory consistency level is viewed as a desirable property. The more consistent are the preferences of a decision maker, the more likely he/she is a reliable expert, has a deep insight into the problem, and acts with attention and care with respect to the problem he/she is facing. Conversely, if judgements are far from consistency, i.e. they are heavily contradictory, it is likely that they were given with poor competence and care. Several inconsistency indices have been already proposed in literature to estimate the degree of incoherence of judgements $[2,3,4,6,10,11,15,16,21]$

If two indices are proportional, it is important to know their proportionality for two reasons. From an empirical point of view, they should not be considered as contributing independent evidence for the consistency of a subject's preferences. On the other hand, from a mathematical perspective, their equivalence may be taken to suggest that they represent an important quantity.

2 Pairwise comparison matrices and consistency indices

Given a set of alternatives $X=\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$, a pairwise comparison matrix $\mathbf{A}=\left(a_{i j}\right)_{n \times n}$ is a matrix $\mathbf{A} \in[1 / 9,9]^{n \times n}$ with (i) $a_{i i}=1 \forall i$ and (ii) $a_{i j} a_{j i}=1 \forall i, j$ where $a_{i j}$ is a multiplicative estimation of the degree of preference of x_{i} over x_{j} [17]. The comparison scale ranging from 1 to 9 was employed
by Saaty based on experimental evidence [13] that an individual cannot simultaneously compare more than 7 ± 2 objects without being confused. A pairwise comparison matrix is considered consistent if and only if the following transitivity condition holds:

$$
\begin{equation*}
a_{i k}=a_{i j} a_{j k} \forall i, j, k . \tag{3}
\end{equation*}
$$

If \mathbf{A} is consistent, then there exists a vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ such that

$$
\begin{equation*}
a_{i j}=\frac{w_{i}}{w_{j}} \forall i, j . \tag{4}
\end{equation*}
$$

In this case, the vector w can be obtained using the geometric mean method:

$$
\begin{equation*}
w_{i}=\left(\prod_{j=1}^{n} a_{i j}\right)^{\frac{1}{n}} \forall i . \tag{5}
\end{equation*}
$$

Some other types of matrices have been proposed in order to pairwise compare alternatives, and perhaps the second best known approach, after that of Saaty, is based on reciprocal relations [22]. Reciprocal relations, which are sometimes also called fuzzy preference relations, can be represented by means of matrices $\mathbf{R}=\left(r_{i j}\right)_{n \times n}$ with (i) $r_{i i}=0.5 \forall i$ and (ii) $r_{i j}+r_{j i}=1 \forall i, j$ where $r_{i j}$ is an estimation of the degree of preference given to x_{i} compared with x_{j}. Tanino calls a reciprocal relation matrix additively consistent if

$$
\begin{equation*}
r_{i j}-r_{i k}-r_{k j}+0.5=0 \forall i, j, k . \tag{6}
\end{equation*}
$$

Pairwise comparison matrices and reciprocal relations are theoretically interchangeable representations of preferences, relatable by means of a function $f:[1 / 9,9] \rightarrow[0,1]$ defined in [7] as follows

$$
\begin{equation*}
r_{i j}=f\left(a_{i j}\right)=\frac{1}{2}\left(1+\log _{9} a_{i j}\right), \tag{7}
\end{equation*}
$$

and its inverse

$$
\begin{equation*}
a_{i j}=f^{-1}\left(r_{i j}\right)=9^{2\left(r_{i j}-0.5\right)} . \tag{8}
\end{equation*}
$$

Under this transformation, given $\mathbf{A}=\left(a_{i j}\right)$ and $\mathbf{R}=\left(r_{i j}\right)$, if $r_{i j}=f\left(a_{i j}\right) \forall i, j$, then $\mathbf{A}=\left(a_{i j}\right)$ and $\mathbf{R}=\left(r_{i j}\right)$ can be considered to represent the same preference configuration.

Besides Saaty's consistency index (1), several other consistency indices have been proposed in the literature so far, and in this short paper we establish the proportionality between two pairs of them. Hence, let us first briefly recall the definitions of the four consistency indices at issue.

2.1 The Geometric Consistency Index

The geometric consistency index [1,5] is based on the deviations of the entries $a_{i j}$ of \mathbf{A} from the consistent values w_{i} / w_{j}, where the weight vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ is given by (5). It has the following formulation:

$$
\begin{equation*}
G C I=\frac{2}{(n-1)(n-2)} \sum_{i=1}^{n} \sum_{j>i}^{n} \ln ^{2} e_{i j} \tag{9}
\end{equation*}
$$

with $e_{i j}:=a_{i j}\left(w_{j} / w_{i}\right)$ being a local estimator of inconsistency and $\frac{2}{(n-1)(n-2)}$ a normalization factor.

2.2 The index of Lamata and Peláez

The index of Lamata and Peláez [12, 14], denoted by $C I^{*}$, is based on the property that three alternatives x_{i}, x_{j}, x_{k} are pairwise compared in a consistent way if and only if the determinant of the corresponding pairwise comparison matrix of order three

$$
\mathbf{A}_{3 \times 3}=\left(\begin{array}{ccc}
1 & a_{i j} & a_{i k} \tag{10}\\
\frac{1}{a_{i j}} & 1 & a_{j k} \\
\frac{1}{a_{i k}} & \frac{1}{a_{j k}} & 1
\end{array}\right)
$$

is equal to zero,

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}_{3 \times 3}\right)=\frac{a_{i k}}{a_{i j} a_{j k}}+\frac{a_{i j} a_{j k}}{a_{i k}}-2=0 . \tag{11}
\end{equation*}
$$

Based on this property, the authors define the consistency index $C I^{*}$ of an $n \times n$ pairwise comparison matrix \mathbf{A} as the mean value of the determinants of all the 3×3 submatrices of \mathbf{A}.

2.3 The index c_{3}

Shiraishi et al. [18, 19, 20] proposed, as a consistency index of a pairwise comparison matrix, the coefficient c_{3} of its characteristic polynomial.

$$
P_{\mathbf{A}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n} .
$$

They proved [18] that $c_{3}(\mathbf{A}) \leq 0$ for every pairwise comparison matrix \mathbf{A}, with $c_{3}(\mathbf{A})=0$ if and only if \mathbf{A} is consistent, which justifies its use as a consistency index.

2.4 The index ρ

The index ρ for reciprocal relations [8,9] is based on an index of local consistency associated with the triplet $\left(x_{i}, x_{j}, x_{k}\right)$, that is

$$
\begin{equation*}
t_{i j k}^{2}=\left(r_{i j}-r_{i k}-r_{k j}+0.5\right)^{2} . \tag{12}
\end{equation*}
$$

which clearly derives from (6). Fedrizzi and Giove [9] defined a global consistency index as the mean value of the local consistency indices for all the possible triplets $\left(x_{i}, x_{j}, x_{k}\right)$, obtaining

$$
\begin{equation*}
\rho=\sum_{i<j<k}^{n}\left(r_{i j}-r_{i k}-r_{k j}+0.5\right)^{2} /\binom{n}{3} . \tag{13}
\end{equation*}
$$

3 Results

In this section we prove that the index c_{3} is proportional to $C I^{*}$, and the index ρ is proportional to $G C I$.
Proposition 1. Given a positive reciprocal matrix $\mathbf{A}_{n \times n}$ with $n \geq 3$, the consistency indices c_{3} and $C I^{*}$ satisfy the equality

$$
\begin{equation*}
c_{3}=-\binom{n}{3} C I^{*} . \tag{14}
\end{equation*}
$$

Proof. Consistency index $C I^{*}$ is the mean value of the determinants of all the 3×3 submatrices (10) of A, and therefore,

$$
\begin{equation*}
C I^{*}=\sum_{i=1}^{n} \sum_{j>i}^{n} \sum_{k>j}^{n}\left(\frac{a_{i k}}{a_{i j} a_{j k}}+\frac{a_{i j} a_{j k}}{a_{i k}}-2\right) /\binom{n}{3} . \tag{15}
\end{equation*}
$$

Furthermore, since \mathbf{A} is positive and reciprocal, by expanding $P_{\mathbf{A}}(\lambda)$ (see [18]) one obtains

$$
\begin{equation*}
c_{3}=\sum_{i=1}^{n} \sum_{j>i}^{n} \sum_{k>j}^{n}\left(2-\frac{a_{i k}}{a_{i j} a_{j k}}-\frac{a_{i j} a_{j k}}{a_{i k}}\right) . \tag{16}
\end{equation*}
$$

Then, equality (14) follows from (15) and (16).
If in this case the similarity between the two indices was quite clear, then the same cannot be said about the next two. For this reason, if the previous proof was straightforward, the next involves more computations.
Proposition 2. Given a reciprocal relation $\mathbf{R}=\left(r_{i j}\right)_{n \times n}$, the consistency indices ρ and GCI satisfy the equality

$$
\begin{equation*}
\rho=\frac{3}{4 \ln ^{2}(9)} G C I \tag{17}
\end{equation*}
$$

for every $n \geq 3$

Proof. For later convenience, letting $q_{i j}=r_{i j}-0.5$ allows us to write $r_{i j}+r_{j i}=1$ property as $q_{i j}=-q_{j i}$. Then, (8) becomes $a_{i j}=9^{2 q_{i j}}$. Now, write $t_{i j k}=r_{i j}-$ $r_{i k}-r_{k j}+0.5=q_{i j}+q_{j k}+q_{k i}$ so that, from (13), the index ρ can be reformulated (see [9]) as

$$
\begin{aligned}
\rho & =\sum_{i j k}^{n}\left(r_{i j}-r_{i k}-r_{k j}+0.5\right)^{2} / 6\binom{n}{3} \\
& =\sum_{i j k} t_{i j k}^{2} / 6\binom{n}{3} .
\end{aligned}
$$

Let us rewrite the Geometric Consistency Index (9) for reciprocal relations by applying (7). From (5),

$$
\log _{9} w_{i}=\frac{2}{n} \sum_{k} q_{i k}
$$

and thus, from the definition of local inconsistency $e_{i j}:=a_{i j} \frac{w_{j}}{w_{i}}$ in (9),

$$
\begin{aligned}
n \log _{9}\left(e_{i j}\right) & =2 n q_{i j}+2 \sum_{k}\left(q_{j k}-q_{i k}\right) \\
& =2 \sum_{k}\left(q_{i j}+q_{j k}+q_{k i}\right) \\
& =2 \sum_{k} t_{i j k}
\end{aligned}
$$

so the Geometric Consistency Index equals

$$
\begin{aligned}
G C I & =\frac{2}{(n-1)(n-2)} \sum_{i} \sum_{j>i} \ln ^{2} e_{i j} \\
& =\frac{1}{(n-1)(n-2)} \sum_{i j} \ln ^{2} e_{i j} \\
& =\frac{\ln ^{2}(9)}{(n-1)(n-2)} \sum_{i j}\left(\frac{2}{n} \sum_{k} t_{i j k}\right)^{2} \\
& =\frac{4 \ln ^{2}(9)}{n^{2}(n-1)(n-2)} \sum_{i j}\left(\sum_{k} t_{i j k}\right)^{2}
\end{aligned}
$$

At this point, the proportionality claim $\rho \propto G C I$ is equivalent to

$$
\sum_{i j k} t_{i j k}^{2} \propto \sum_{i j}\left(\sum_{k} t_{i j k}\right)^{2}
$$

(where the constant of proportionality could depend on n).
First, let us compute the LHS:

$$
t_{i j k}^{2}=q_{i j}^{2}+q_{j k}^{2}+q_{k i}^{2}+2\left(q_{i j} q_{j k}+q_{j k} q_{k i}+q_{k i} q_{i j}\right)
$$

Let $S=\sum_{i j} q_{i j}^{2}$ and $C=\sum_{i j k} q_{i j} q_{j k}$. Summing the expansion of $t_{i j k}^{2}$ one term at a time,

$$
\sum_{i j k} q_{i j}^{2}=\sum_{k} \sum_{i j} q_{i j}^{2}=n S
$$

and by symmetry,

$$
\sum_{i j k} q_{j k}^{2}=\sum_{i j k} q_{k i}^{2}=n S
$$

Similarly,

$$
\sum_{i j k} q_{i j} q_{j k}=\sum_{i j k} q_{j k} q_{k i}=\sum_{i j k} q_{k i} q_{i j}=C .
$$

Hence,

$$
\mathrm{LHS}=\sum_{i j k} t_{i j k}^{2}=n S+n S+n S+2(C+C+C)=3(n S+2 C) .
$$

Next let us compute the RHS, first by rewriting:

$$
\text { RHS }=\sum_{i j}\left(\sum_{k} t_{i j k}\right)^{2}=\sum_{i j}\left(\sum_{k l} t_{i j k} t_{i j l}\right)=\sum_{i j k l} t_{i j k} t_{i j l}
$$

$$
\begin{aligned}
t_{i j k} t_{i j l} & =\left(q_{i j}+q_{j k}+q_{k i}\right)\left(q_{i j}+q_{j l}+q_{l i}\right) \\
& =q_{i j}^{2}+q_{i j} q_{j l}+q_{i j} q_{l i}+q_{j k} q_{i j}+q_{j k} q_{j l}+q_{j k} q_{l i}+q_{k i} q_{i j}+q_{k i} q_{j l}+q_{k i} q_{l i}
\end{aligned}
$$

The 1st term sums to

$$
\sum_{i j k l} q_{i j}^{2}=\sum_{k l} \sum_{i j} q_{i j}^{2}=n^{2} S .
$$

The 2nd term sums to

$$
\sum_{i j k l} q_{i j} q_{j l}=\sum_{k} \sum_{i j l} q_{i j} q_{j l}=n C .
$$

Similarly, the 3rd, 4th, and 7th terms respectively sum to

$$
\sum_{i j k l} q_{l i} q_{i j}=\sum_{i j k l} q_{i j} q_{j k}=\sum_{i j k l} q_{k i} q_{i j}=n C,
$$

whereas the 5th and 9th terms each sum to

$$
\sum_{i j k l}-q_{k j} q_{j l}=\sum_{i j k l}-q_{k i} q_{i l}=-n C
$$

The 6th term sums to

$$
\sum_{i j k l} q_{j k} q_{l i}=\left(\sum_{j k} q_{j k}\right)\left(\sum_{l i} q_{l i}\right)=(0)(0)=0,
$$

and similarly the 8 th term sums to 0 .
Hence, the total sum is

$$
\begin{aligned}
\text { RHS } & =n^{2} S+n C+n C+n C-n C+0+n C+0-n C \\
& =n^{2} S+2 n C \\
& =n(n S+2 C)
\end{aligned}
$$

so we obtain the proportionality

$$
\frac{\mathrm{LHS}}{\mathrm{RHS}}=\frac{3(n S+2 C)}{n(n S+2 C)}=\frac{3}{n}
$$

and recover

$$
\begin{aligned}
\frac{\rho}{G C I} & =\frac{\mathrm{LHS}}{\mathrm{RHS}} \cdot \frac{n^{2}(n-1)(n-2)}{4 \ln ^{2}(9)} \cdot \frac{1}{6\binom{n}{3}} \\
& =\frac{3 n(n-1)(n-2)}{4 \ln ^{2}(9)} \cdot \frac{1}{n(n-1)(n-2)} \\
& =\frac{3}{4 \ln ^{2}(9)} .
\end{aligned}
$$

Note that the constant of proportionality between c_{3} and $C I^{*}$ depends on the number n of alternatives, whereas the one between ρ and $G C I$ does not. Propositions 1 and 2 can also be represented graphically. We randomly generated a large number of pairwise comparison matrices (or, equivalently, reciprocal relations) and associated each of them with a point on the cartesian plane having as coordinates the corresponding values of the two consistency indices involved in proposition 1. As expected, all the points lie on a straight line. The same holds for proposition 2.

4 Conclusions

When making use of the various indices observed and proven proportional in this paper, we believe it is important that the applied mathematician be aware of their equivalence. This avoids redundancy in the consideration of evidence for consistent preferences, and allows existing results proven for one index to apply directly to other indices which are proportional to it.

References

[1] Aguaròn, J., Moreno-Jimènez, J.M., The geometric consistency index: Approximated threshold, European Journal of Operational Research, 147, 137-145 (2003)
[2] Barzilai J., Consistency measures for pairwise comparison matrices, J. Multi-Crit. Decis. Anal., 7, 123-132 (1998)
[3] Cavallo B. and D'Apuzzo L., A General Unified Framework for Pairwise Comparison Matrices in Multicriterial Methods, International Journal of Intelligent Systems, 24, 377398 (2009)
[4] Cavallo B. and D'Apuzzo L., Characterizations of consistent pairwise comparison matrices over abelian linearly ordered groups, International Journal of Intelligent Systems, 25, 1035-1059 (2010)
[5] Crawford, G., Williams, C., A note on the analysis of subjective judgement matrices, Journal of Mathematical Psychology, 29, 25-40 (1985)
[6] Duszak Z. and Koczkodaj W. W., Generalization of a new definition of consistency for pairwise comparisons. Information Processing Letters 52, 273-276 (1994)
[7] Fedrizzi, M., On a consensus measure in a group MCDM problem, in Multiperson Decision Making Models using Fuzzy Sets and Possibility Theory (theory and Decision Library, series B: Mathematical and Statistical Methods, Vol. 18), J. Kacprzyk and M. Fedrizzi (eds.), Kluwer Academic Publisher, Dortrecht, The Netherlands (1990)
[8] Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A., On the issue of consistency in dynamical consensual aggregation. In Technologies for Constructing Intelligent Systems, Vol. 1, Bouchon Meunier B., Gutierrez Rios J., Magdalena L., Yager R. R. (ed.), Heidelberg: Physica, Studies in Fuzziness and Soft Computing, 89, 129-137, Springer (2002)
[9] Fedrizzi, M., Giove, S., Incomplete pairwise comparisons and consistency optimization, European Journal of Operational Research, 183, 303-313 (2007)
[10] Golden B. L. and Wang Q., An alternate measure of consistency, in Golden B. L., Wasil E. A. and Harker P. T. (ed.), The Analythic Hierarchy Process, Applications and studies, Springer-Verlag, 68-81. Berlin-Heidelberg (1989)
[11] Koczkodaj W. W., A new definition of consistency or pairwise comparisons. Mathematical \& Computer Modelling 18, 79-84 (1993)
[12] Lamata, M.T., Peláez, J.I., A method for improving the consistency of judgments, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10, 677-686 (2002)
[13] Miller, G. A., The magical number seven plus or minus two: some limits on our capacity for processing information, The Psychological Review, 63, 81-97 (1956)
[14] Peláez, J.I., Lamata, M.T., A new measure of inconsistency for positive reciprocal matrices, Computer and Mathematics with Applications, 46, 1839-1845 (2003)
[15] Ramík J. and Korviny P., Inconsistency of pair-wise comparison matrix with fuzzy elements based on geometric mean, Fuzzy Sets and Systems, 161, 1604-1613 (2010)
[16] Ramík J. and Perzina R., A method for solving fuzzy multicriteria decision problems with dependent criteria, Fuzzy Optimization and Decision Making, 9, 123-141 (2010)
[17] Saaty, T.L., A scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology, 15, 234-281 (1977)
[18] Shiraishi, S., Obata, T., Daigo, M., Properties of a positive reciprocal matrix and their application to AHP, Journal of the Operations Resesearch Society of Japan, 41, 404-414 (1998)
[19] Shiraishi, S., Obata, T., Daigo, M., Nakajima, N., Assesment for an incomplete matrix and improvement of the inconsistent comparison: computational experiments, Proceedings of ISAHP 1999, Kobe, Japan (1999)
[20] Shiraishi, S., Obata, T., On a maximization problem arising from a positive reciprocal matrix in the AHP, Bulletin of Informatics and Cybernetics, 34, 91-96 (2002)
[21] Stein W. E. and Mizzi P. J., The harmonic consistency index for the analytic hierarchy process, European Journal of Operational Research, 177, 488-497 (2007)
[22] Tanino, T., Fuzzy preference orderings in group decision making, Fuzzy Sets and Systems, 12, 117-131 (1984)

University of Turku

- Department of Information Technology
- Department of Mathematics

Åbo Akademi University

- Department of Information Technologies

Turku School of Economics

- Institute of Information Systems Sciences

