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Abstract

A subsetd of N is called an IP-set ifi contains all finite sums of distinct terms of
some infinite sequende:,, ),.«n Of natural numbers. Central sets, first introduced
by Furstenberg using notions from topological dynamicastitute a special class
of IP-sets possessing additional nice combinatorial ptegse Each central set
contains arbitrarily long arithmetic progressions, andtsons to all partition reg-
ular systems of homogeneous linear equations. In this pe@ehow how certain
families of aperiodic words of low factor complexity may bged to generate a
wide assortment of central sets having additional nice gntogs inherited from
the rich combinatorial structure of the underlying word. @dmsider Sturmian
words and their extensions to higher alphabets (so-calledux-Rauzy words),
as well as words generated by substitution rules includiedamous Thue-Morse
word. We also describe a connection between central setshanstrong coin-
cidence condition for fixed points of primitive substitut®which represents a
new approach to the strong coincidence conjecture forugie Pisot substitu-
tions. Our methods simultaneously exploit the generalrshed combinatorics
on words, the arithmetic properties of abstract numerasigsiems defined by
substitution rules, notions from topological dynamicdugéng proximality and
equicontinuity, the spectral theory of symbolic dynamggtems, and the beau-
tiful and elegant theory, developed by N. Hindman, D. Stsargl others, linking
IP-sets to the algebraic/topological properties of then&{ech compactification
of N. Using the key notion gf-lim,,, regarded as a mapping from words to words,
we apply ideas from combinatorics on words in the framewdnktafilters.

Keywords: Sturmian words, numeration systems, IP-sets, centralasetshe
Stone€ech compactification.

TUCS Laboratory
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1 Introduction

LetN = {0,1,2,3,...} denote the set of natural numbers, andRinthe set of
all non-empty finite subsets o¥.

Definition 1.1. A subsetd of N is called an IP-set ifA contains{}_ _.x,|F €
Fin(N)} for some infinite sequence of natural numbegs< z; < zo---. A
subsetd C Nis called an IP-set if AN B # () for every IP-set3 C N.

By a celebrated result of N. Hindman [23], given any finitetipan of N, at
least one element of the patrtition is an IP-set. It follovesrfrHindman’s theorem
that every IP-set is an IP-set, but the converse is in general not trueadty fnore
generally Hindman shows that given any finite partition olRsset, at least one
element of the partition is again an IP-set. In other wordgatoperty of being an
IP-set ispartition regular, i.e., cannot be destroyed via a finite partitioning. Other
examples of partition regularity are given by the pigeostminciple, sets having

1



positive upper density, and sets having arbitrarily lonigharetic progressions
(Van der Waerden’s theorem). In [22], Furstenberg intredua special class
of IP-sets, called central sets, having a substantial coatdiial structure. The
property of being central is also partition regular. Cdnsets were originally
defined in terms of topological dynamics:

Definition 1.2. A subsetd C N is called central if there exists a compact met-
ric space(X,d) and a continuous mafy’ : X — X, pointsz,y € X and a
neighborhoodJ of y such that

e y is a uniformly recurrent point inY,
e 1z andy are proximal,
e A={neN|T"(z) e U}.
We sayA C Nis central if AN B # () for every central seB C N.

Recall thatr is said to bauniformly recurrentif each factor ofr occurs inz with
bounded gap. Two points,y € X are said to bgroximalif for everye > 0
there exists: € N such that!/(7"(z), T"(y)) < ¢. We remark that from the above
definition, it is not at all evident that central sets are #ss We later give an
alternative definition (see Definition 3.5) which makes thomt clear. The equiv-
alence between the two definitions is due to Bergelson andriiam [7].

The question of determining whether a given subgetC N is an IP-set
or a central set is typically quite difficult, even if for eyeA, either A or its
complement is an IP-set (resp. central set). It turns odtithaach case this
guestion may be reformulated in terms of whether or not thhedsbelongs to
a certain class of ultrafilters dN (see Theorem 5.12 in [26] in the case of IP-
sets and [7] in the case of central sets). But the questiorelminiging or not
to a given (non-principal) ultrafilter is generally equathysterious. An equiv-
alent word combinatorial reformulation of this questioras follows: Given a
binary wordw = wywiw, ... € {0,1}*, putw|, = {n € N|w, = 0} and
w|, = {n € N|w, = 1}. The question is then to determine whether the.get
or w\l is an IP-set or central set. Of course in general, this redtation is as
difficult as the original question. However, should the worlde characterized by
some rich combinatorial properties, or be generated by ssimgple” combina-
torial or geometric algorithm (such as a substitution ral&nite state automaton,
a Toeplitz rule...) or arise as a natural coding of a readgrgimple symbolic
dynamical system, then the underlying rigid combinatastalcture of the word
may provide insight to our previous question. Furthermsueh families of words
may be used to obtain simple constructions of central seisdpadditional nice
properties inherited from the rich underlying combinabstructure. One of our
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objectives here is to illustrate this latter point.

Let A denote a finite non-empty set (called the alphabet) and=
wowrws . .. € AN, For each finite word: on the alphabetl we set

w‘u = {n €N | WnWn41 -« Wi lu|-1 = u}

In other Wordsw\u denotes the set of all occurrencesudh w.

In this paper we investigate partitions Nf by sets of the formu}u defined by
wordsw of low factor complexity. Our goal is to study these partisoin the
framework of IP-sets and central sets. All infinite wotdss AY considered in
this paper are uniformly recurrent. As we shall see, in camiwork IP-sets and
central sets are one and the same:

Theorem 1. Letw € A" be uniformly recurrent. Then the setu is an IP-set if
and only if it is a central set.

The above theorem allows us to simultaneously state oultsesterms of IP-sets
and central sets.

We begin by considering the simplest aperiodic infinite vgpmamely Stur-
mian words. Sturmian words are infinite words over a binaphabet having
exactlyn + 1 factors of length for eachn > 0. Their origin can be traced back
to the astronomer J. Bernoulli Il in 1772. A fundamentaluleslue to Morse
and Hedlund [31] states that each aperiodic (meaning nibmately periodic)
infinite word must contain at least+ 1 factors of each length > 0. Thus Stur-
mian words are those aperiodic words of lowest factor corxifyle They arise
naturally in many different areas of mathematics includtoghbinatorics, alge-
bra, number theory, ergodic theory, dynamical systems dfedehtial equations.
Sturmian words are also of great importance in theoretiogsigs and in theoret-
ical computer science and are used in computer graphicg@al @dpproximation
of straight lines.

Letw € {0, 1}" be a Sturmian word, and |€ denote the shift orbit closure of
w. Then(2 contains a unique word (called thecharacteristic wordl having the
property that bothw, 1o € Q. In order to state our results, we must distinguish
between two cases:

Definition 1.3. A Sturmian wordv is called nonsingular if it does not contain the
characteristic wordv as a proper tail. Otherwise it is said to be singular.

Theorem 2. Letw € (2 be a nonsingular Sturmian word, anda factor ofw.
Thenw}u is an IP-set (resp. central set) if and onlyuifis a prefix ofw. In other
words, for every prefix of w, the setu}u is an IP*- set (resp. centratset).
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As a corollary we deduce that

Corollary 1. Letw € Q be a nonsingular Sturmian word. For every factoof w
andn € w| the sets| —nisacentraf set.

We note that in general the property of being afi-$Bt is not translation invari-
ant. See also Theorem 1.1 in [8]. As an immediate consequertbe previous
corollary, we have

Corollary 2. For eachr > 1 there exists a partition dN into setsAg, A, ..., A,
such that for eacl) < i < r andn € N, exactly one of the sefsdy — n, A; —
n,..., A, —n}is an IP*-set (resp. centréalset).

In fact, givenr > 1, let w be any nonsingular Sturmian word (for instance the
Fibonacci word) and lef,, () denote the set of all factors ofof lengthr. Then
ther+1 setsw \u with v € F,,(r) define a partition oN with the required property.

For singular Sturmian words we have

Theorem 3. Letw € Q2 be a Sturmian word such thdt* (w) = © withny > 1.
Thenw\u is an IP-set (resp. central set) if and only if eitheis a prefix ofw or a
prefix ofw’ wherew’ is the unique other element Qfwith 70 (') = &.

Some (but not all) of the results on Sturmian partitionsectte so-called Arnoux-
Rauzy words, which may be regarded as natural combinatdahsions of Stur-
mian words to larger alphabets [1].

We also consider partitions defined by words generated bstisution rules.
For instance, by considering partitions §fdefined by words generated by the
generalized Thue-Morse substitution to an alphabet ofisize2, we show that

Theorem 4. For each pair of positive integersand N there exists a partition of
N=A UA U ---UA,
such that
e A, —nisacentral setforeach <i<randl <n<N.

e Foreachn > N, exactly one of these{sd; —n, Ay —n,..., A, —n}isa
central set.

The second assertion of Theorem 4 relies on the fact thatfeachpoint of the
generalized Thue-Morse substitution is distal. At leasthim case of the Thue-
Morse substitution itself this may already be known, butdléhors have been
unable to locate this result anywhere in the literature. @aof of this fact uses a
result of V. Baker, M. Barge and J. Kwapisz which states thes@ibshiftg X, T")
generated by primitive substitutions of Pisot type, the imak equicontinuous
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factorm : X — Xeqfis finite to one [3].

By considering partitions defined by words generating malirsubshifts
which are topologically weak mixing (for example the sulfispenerated by the
substitutiord — 001 and1 — 11001) we prove that

Theorem 5. For each positive integer there exists a partition di = 4; U Ay U
---U A, such that foreach < ¢ < randn > 0, the setd; — n is a central set.

We also consider words on infinite alphabets. Via iteratdohgieomic closures
(see Definition 7.1), we construct a uniformly recurrentnité wordw on an
infinite alphabet4 which gives rise to an infinite partition &f into central sets:

Theorem 6. Let A be a right infinite word on a finite or infinite alphabgt with
the property that each letter € A occurs inA an infinite number of times. Let
denote the iterated palindromic operator and set ¢)(A). Then

1. wis uniformly recurrent and closed under reversal, i.ey, # vivy ... v IS
a factor ofw, then so is its mirror imagey, . . . vov;.

2. The sem\a + 1 is a central set for each letter € A.

In particular if we take the word\ to be on an infinite alphabet, the se{ts}a +
1},e4 form a countably infinite collection of pairwise disjointrteal subsets of
N.1

An important open problem in the theory of substitutionshe so-called
strong coincidence conjecturghich states that each pair of fixed pointsand
y of an irreducible primitive substitution of Pisot type sé&ithe following con-
dition called thestrong coincidence conditionThere exist a lette. and a pair
of Abelian equivalent words, ¢, such thatsa is a prefix ofz andta is a prefix
of y. This combinatorial condition, originally due to P. ArnourdaS. Ito, is an
extension of a similar condition considered by F.M. DekkimlL4] in the case of
uniform substitutions. In this case Dekking proves thatdbedition is satisfied
if and only if the associated substitutive subshift bage discrete spectrume.,
is metrically isomorphic with translation on a compact Aaelgroup. The strong
coincidence conjecture has been verified for irreducibimiive substitutions of
Pisot type on a binary alphabet by M. Barge and B. DiamondT#E following
establishes a link between the strong coincidence comgand central sets:

Theorem 7. Let 7 be a primitive substitution verifying the strong coinciden
condition. Then for any pair of fixed poinisand y, and any prefix: of y, we
have thatx\u is a central set.

1This is a special case of a prior result of Hindman, Leader$tnauss [25] in which they
show that every central set Mis a countable union of pairwise disjoint central sets.
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Our proof of Theorem 7 makes use of the so-called Dumont-Hsommera-
tion systems defined by substitutions, and constitutes aapgwoach to the strong
coincidence conjecture.

The main results in this paper rely on various interacticte/ken different ar-
eas of mathematics, some of which had not previously beecttifinked: They
include the general theory of combinatorics on words, tltraetic properties
of abstract numeration systems defined by substitutiopmlagical dynamics,
the spectral theory of symbolic dynamical systems, and daatiful theory, de-
veloped by Hindman, Strauss and others, linking IP-setscantral sets to the
algebraic/topological properties of the StoBieeh compactificatioN. We re-
gardSN as the collection of all ultrafilters oN. An ultrafilter may be thought of
as a{0, 1}-valued finitely additive probability measure defined onsalbsets of
N. This notion of measure induces a notion of convergepdan,,) for sequences
indexed byN, which we regard as a mapping from words to words. This key no-
tion of convergence allows us to apply ideas from combinegarn words in the
framework of ultrafilters.

The paper is organized as follows: 48 we present some of the basic ideas
and tools from combinatorics on words which will be used tigiwout the paper.
In §3 we outline the key features of the algebraic and topoldgioaperties of
the StoneCech compactificatioN in connection with IP-sets and central sets.
Since the material if2 may be unfamiliar to specialists in topological semig®up
and vice-versa, we take some care to explain both topicsattampt to make the
paper more accessible. §4 we analyze some concrete examples which illustrate
some of the results mentioned above in Theorems 2 and 3. Weotisieg more
than the combinatorial properties of the words consideabdénerated by substi-
tutions) and the arithmetic properties of the underlyingrat-Thomas numera-
tion system. Irt5 we extend the results §# to all Sturmian words, in particular
those not generated by substitutions. Here we make use afdkbraic proper-
ties of the semigroupN. In §6 we consider partitions defined by the generalized
Thue-Morse substitution and prove Theorem 4. Alsg6rwe prove Theorem 5
by considering subshifts which are topologically weak mgxiln§7 we consider
some infinite words on an infinite alphabet generated bytitaraf the palin-
dromic closure operator. Using these words we constructiiafpartitions ofiN
and prove Theorem 6. Finally i§8, after a brief review of the Dumont-Thomas
numeration systems defined by substitutions, we discussiaection between
central sets and the strong coincidence condition for gubishs.



2 Words and substitutions

In this section we give a brief summary of some of the basi&gpazind in com-
binatorics on words.

2.1 Words & subshifts

Given a finite non-empty sed (called thealphabe}, we denote by4*, AN and
A” respectively the set of finite words, the set of (right) irtBniords, and the set
of bi-infinite words over the alphabegt. Given a finite word: = a,a, . . . a,, with
n > 1 anda; € A, we denote the length of u by |u|. The empty wordwill be
denoted by and we sefz| = 0. We putA™ = A* — {¢}. For eachu € A, we let
|u|, denote the number of occurrences of the leiter . Two wordsu andv in
A* are said to bé\belian equivalentdenoted: ~gp, v, if and only if jul, = |v],
foralla € A. Itis readily verified that-5, defines an equivalence relation dn.

Given an infinite wordv € AN, a wordu € A" is called afactor of w if
U = wwii1 -+ - Wiy, fOr some natural numbeisandn. We denote byF,,(n) the
set of all factors ofv of lengthn, and set

Fo = U Fo(n).

neN

A factor u of w is calledright specialif both ua andub are factors ofu for some
pair of distinct letters:, b € A. Similarly « is calledleft specialif both au andbu
are factors ofv for some pair of distinct letterg, b € A. The factoru is called
bispecial if it is both right special and left special. For each faaior F, set

W‘u = {n c N | WnWn41 - - .wn+|u‘_1 = U,}

We sayw is recurrentif for every u € F, the setw\u is infinite. We sayw is
uniformly recurrentf for everyu € F, the setw\u is syndedic, i.e., of bounded

gap.
We endowA" with the topology generated by the metric

1
d(z,y) = on wheren = inf{k : z # yi}

wheneverr = (z,)neny andy = (y,)nen are two elements ofl™. Let 7 : AN —
AN denote theshift transformation defined by : (z,,)neny — (Tpi1)nen. By @
subshifton A we mean a paifX,7") whereX is a closed and-invariant subset
of AN. A subshift(X,T) is said to beminimalwheneverX and the empty set
are the onlyZ-invariant closed subsets of. To eachw € A" is associated the
subshift(X, T") whereX is the shift orbit closure ab. If w is uniformly recurrent,
then the associated subslHiiff, 7') is minimal. Thus any two words andy in X
have exactly the same set of factors, i€,,= F,. In this case we denote bfx
the set of factors of any word € X.



Two pointsz, y in X are said to bgroximalif and only if for eachN > 0
there exists: € N such that

TnTptl - - TntN = YnYn+1 - - - YntN-

Two pointsz,y € X are said to beegionally proximalif for every prefixu of x
andv of y, there exist points’, ' € X with 2’ beginning inu andy’ beginning
in v and withz’ proximal toy’. Clearly if two points inX are proximal, then they
are regionally proximal. A point € X is calleddistal if the only point in X
proximal toz is z itself. A minimal subshift( X, 7T") is said to betopologically
mixing if for every any pair of factors,, v € Fx there exists a positive integer
N such that for each > N, there exists a block of the formlVv € Fx with
|W| = n. A minimal subshift X, T') is said to beopologically weak mixingf for
every any pair of factors, v € Fx the set

{neN|ud"vNFx #0}

is thick, i.e., for every positive integéy, the set containg/ consecutive positive
integers.

2.2 Substitutions

Many of the words and subshifts considered in this paper eanermgqted by sub-
stitutions. Asubstitutionr on an alphabe#d is a mappingr : A — A*. The
mappingr extends by concatenation to maps (also denetedl* — A* and
AN — AN The Abelianizationof 7 is the square matrix/. whoseij-th entry
is equal to|7(j)|;, i.e., the number of occurrences ofn 7(j). A substitution
7 is said to beprimitive if there is a positive integer. such that for each pair
(1,7) € A x A, the letter; occurs int™(j). Equivalently if all the entries of\/"
are strictly positive. In this case it is well known that thatnx A/, has a sim-
ple positive Perron-Frobenius eigenvalue calledditegion of 7. A substitutionr

is said to barreducible if the minimal polynomial of its dilation is equal to the
characteristic polynomial of its Abelianizatiavi,.. A substitutionr is said to be
of Pisot typeif its dilation is a Pisot number. Recall that a Pisot numisean al-
gebraic integer greater thdrall of whose algebraic conjugates lie strictly inside
the unit circle.

Let 7 be a primitive substitution otd. A word w € A" is called afixed
pointof 7 if 7(w) = w, and is called geriodic pointif 7™ (w) = w for some
m > 0. Although 7 may fail to have a fixed point, it has at least one periodic
point. Associated to is the topological dynamical syste(X,7T"), where X is
the shift orbit closure of a periodic pointof 7. The primitivity of = implies that
(X, T) is independent of the choice of periodic point and is minimal

An important example of a primitive substitution is thkeue-Morse substitu-
tion defined by the morphisith— 01 and1 — 10. It has two fixed points

u = 011010011001011010010110011010. ..
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and
v = 100101100110100101101001100101 . ..

whereu,, = 1 — v, for everyn > 0. Alternatively, it can be shown that, is equal
to 0 if and only if the binary expansion of contains an even number d§. For
example,us = ug = 0, and in facts = 101 and6 = 110 expressed in base
Two other primitive substitutions we will make referencefist introduced some
thirty years ago by F.M. Dekking and M. Keane, are the sultsiinisO — 001,

1 +— 11100 and0 ~ 001, 1 — 11001. Both have two fixed points, and have
the same Abelianization. It is shown in [15] that the suligieherated by the first
substitution is topologically mixing, but not the secondit Both are topologically
weak mixing.

2.3 Sturmian words & generalizations

Letw € AN and set
pu(n) = Card F,(n)).

The functionp,, : N — N is called thefactor complexity functionf w. Given a
minimal subshift(X,7") on A, we haveF,(n) = F,.(n) for all w,w’ € X and
n € N. Thus we can define the factor complexity ) (n) of a minimal subshift
(X, T) by

pix.r)(n) = pu(n)

foranyw € X.

A word w € AY is periodic if there exists a positive integer such that
wit+p = w; for all indices:, and it isultimately periodidf w;,, = w; for all suffi-
ciently largei. An infinite word isaperiodicif it is not ultimately periodic. By a
celebrated result due to Hedlund and Morse [31], a word isately periodic if
and only if its factor complexity is uniformly bounded. Inrgiaular, p,(n) < n
for all n sufficiently large. Words whose factor complexity(n) = n + 1 for all
n > 0 are calledsturmian wordsThus, Sturmian words are those aperiodic words
having the lowest complexity. Singeg,(1) = 2, it follows that Sturmian words
are binary words. The most extensively studied Sturmiardvi®ithe so-called
Fibonacci word

f = 01001010010010100101001001010010010100101001001010010 - - -

fixed by the morphisnt) — 01 and1 — 0. Letw € {0,1}" be a Sturmian
word, and let? denote the shift orbit closure af. The conditionp,,(n) = n + 1
implies the existence of exactly one right special and oftesfgecial factor of
each length. Clearly, given any two left special factorg mnecessarily a prefix
of the other. It follows thaf2 contains a unique word all of whose prefixes are left
special factors ofv. Such a word is called theharacteristic wordand denoted
w. It follows that bothOw, 1o € €. It is readily verified that the Fibonacci word
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above is a characteristic Sturmian word. A Sturmian woid calledsingularif
T"(w) = © for somen > 1. Otherwise it is said to bronsingular.

Sturmian words admit various types of characterizationgexmetric and
combinatorial nature. We give two such characterizatiohgchv will be used
in the paper: as irrational rotations on the unit circle asdreechanical words.
In [31] Hedlund and Morse showed that each Sturmian word neayehlized
measure-theoretically by an irrational rotation on theleir That is, every Stur-
mian word is obtained by coding the symbolic orbit of a pairdn the circle (of
circumference one) under a rotatié, by an irrational angley, 0 < a < 1,
where the circle is partitioned into two complementary ivdés, one of lengtla
and the other of length — «. And conversely each such coding gives rise to a
Sturmian word. The quantity is called theslope Namely, theotation by angle
« is the mappingr,, from [0, 1) (identified with the unit circle) to itself defined
by R, (z) = {x+ o}, where{z} = z —[z] is the fractional part of. Considering
a partition of[0, 1) into I, = [0,1 — «), I = [1 — a, 1), define a word

50 () = 0, if Ri(p) ={p+na}e I,
P, i RMp) ={p+nalel

One can also defing = (0,1 — «], I{ = (1 — a, 1], the corresponding word
is denoted by, ,. For a Sturmian wordv of slopea its subshift(2 is given by
Q = {50, 5, |0 € [0,1)}.

A straightforward computation shows that

Sa,p(n) = la(n+1) + p] — lan+p],

Sap(n) = la(n+ 1)+ p] = [an + pl;
sa,p @nds;, , are called theipperandlower mechanical wordgof slopea) based
atp.

In [1] Arnoux and Rauzy introduced a class of uniformly reeat (minimal)
sequences on am-letter alphabet of complexity,(n) = (m — 1)n + 1 char-
acterized by the following combinatorial criterion knows e condition: w
admits exactly one right special and one left special faofagach length. We
call themArnoux-Rauzy sequencékhis condition distinguishes them from other
sequences of complexityn — 1)n + 1 such as those obtained by coding trajecto-
ries of m-interval exchange transformations. These words are giyneegarded
as natural combinatorial generalizations of Sturmian wdadhigher alphabets.
In particular, the Fibonacci word generalizes to théonacci word fixed by the
substitution

om:9{0,1,....om—1}y = {0,1,..., m—1}"

given by

(i) = 0i+1) foro0<i<m-—1
o= 0 fori=m—1

10



However, many of the dynamical and geometrical interpiatatof Sturmian
words do not extend to this new class of words (see [12] fongia).

In the subsequent sections we will consider partitiond afefined by words.
Letw € AY, and letF denote the set of factors of A finite subsetX is called a
F-prefix codaf X C F and given any two distinct elements &t neither one is
a prefix of the other. AF-prefix code isF-maximalif it is not properly contained
in any otherF-prefix code. The simplest example offamaximal prefix code is
the set of all elements of of some fixed lengtll. EachF-maximal prefix code
X defines a partition

N = U w}u
ueX

If w is a Sturmian word, then the corresponding partition isecath Sturmian
partition.

3 Ultrafilters, IP-sets and central sets

3.1 Stone€ech compactification

Many of our results rely on the algebraic/topological proies of the Stonésech
compactification olN. The Stoneech compactificatiopN of N is one of many
compactifications oN. It is in fact the largest compact Hausdorff space gener-
ated byN. More precisely5N is a compact and Hausdorff space together with a
continuous injection : N — (N satisfying the following universal property: any
continuous mag : N — X into a compact Hausdorff space lifts uniquely to a
continuous mapf : N — X, i.e., f = (f oi. This universal property charac-
terizesGN uniquely up to homeomorphism. While there are differentrads for
constructing the Ston€ech compactification df,, we shall regardN as the set

of all ultrafilters onN with the Stone topology.

Recall that a sei/ of subsets ofN is called anultrafilter if the following
conditions hold:

0eU.
If AedandA C B, thenB € U.

AN B € U whenever bot and B belong tal/.

ForeveryA C NeitherA € U or A° € U whereA° denotes the complement
of A.

For every natural number € N, the set/,, = {A C N|n € A} isanexample
of an ultrafilter. This defines an injection N — (N by: n — U,,. An ultrafilter
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of this form is said to berincipal. By way of Zorn’s lemma, one can show the
existence of non-principal (dree) ultrafilters.

It is customary to denote elements @N by lettersp, ¢,r.... For each set
A C N, we setd° = {p € ON|A € p}. Then the se8 = {A°|A C N} forms
a basis for the open sets (as well as a basis for the closgb$elN and defines
a topology onsN with respect to whichBN is both compact and Hausdoffflt
is not difficult to see that the injection: N — SN is continuous and satisfies
the required universal property. In fact, given a contirmmapf : N — X
with X compact Hausdorff, for each ultrafiltere SN, the pushfowardf (p) =
{f(n)|n € p} defines an ultrafilter oiX having a unique limit point f (p).

There is a natural extension of the operation of additican N to SN making
0N a compacteft-topological semigroupMore precisely we define addition of
two ultrafiltersp, ¢ by the following rule:

p+q={ACN|{neN|A—ncep}eq}

It is readily verified thap + ¢ is once again an ultrafilter and that for each
fixed p € N, the mapping; — p + ¢ defines a continuous map froaN into
itself.2 The operation of addition igN is associative and for principal ultrafilters
we haveld,, + U, = U,,.,. However in general addition of ultrafilters is highly
non-commutative. In fact it can be shown that the centerasipely the set of all
principal ultrafilters [26].

3.2 |P-sets and central sets

Let (S, +) be a semigroup. An elemente S is called aridempotenif p+p = p.
We recall the following result of Ellis [20]:

Theorem 3.1 (Ellis [20]). Let (S, +) be a compact left-topological semigroup
(i.e.,Vx € S the mapping; — z + y is continuous). The&§ contains an idempo-
tent.

It follows that SN contains a non-principal ultrafilter satisfyingp + p = p. In
fact, we could simply apply Ellis’s result to the semigrdiip- {0}. This would
then exclude the only principal idempotent ultrafilter, redyri{,. From here on,
by an idempotent ultrafilter i’N we mean a free idempotent ultrafilter.

We will make use of the following striking result due to Hindmlinking IP-
sets and idempotents i#N :

2Although the existence of free ultrafilters requires Zoterasma, the cardinality ofN is 22"
from which it follows thatgN is not metrizable.

30ur definition of addition of ultrafilters is the same as thiaeg in [6] but is the reverse of
that given in [26] in whichA € p + ¢ if and only if {n € N|JA — n € ¢} € p}. In this caseN
becomes a compact right-topological semigroup.
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Theorem 3.2(Theorem 5.12 in [26]) A subsetd C N is an IP-set if and only if
A € pfor some idempotent € GN.

It follows immediately thatd is an IP-set if and only ifA € p for every idempo-
tentp € BN (see Theorem 2.15 in [6]). We also note that the property imighan
IP-set is partition regular.

To see the connection between idempotent ultrafilters arsi®, consider a
setA, C N belonging to some idempotentc SN. Then asA, € p + p it follows
that there exist, € Ay suchthatdoN Ay —xg € p. Setd; = AgN Ay — xo. Since
A, € p+pwe can choose; € A; (r; # o) suchthatd;NA; —z; € p. Note that
thus far we have, x; andz,+x; all belong toA,. SetA, = A,NA; —x;. Again
sinceA; € p + p we can choose, € A, (distinct from bothzy, x1) such that
Ay N Ay — x9 € p. Sincexy, € Ao, it follows thatzy, 20 + 21 € A C A,.
Sincexg,flfg +x € A it follows that To + o, To + X1 + g € Ap. Thus
{0, x1, T2, 0 + T1,T0 + T2, T1 + T2, + x1 + 22} C Ag. Iterating this pro-
cess we obtain an infinite sequence of distinct poimts,.cn such that for any
finite subsetr” C N the sum)_ _. z, belongs toA,. In other words 4, is an
IP-set.

In [22], Furstenberg introduced a special class of IP-getied central sets,
having additional rich combinatorial properties. They &eriginally defined in
terms of topological dynamics (see Definition 1.2). As in tase of IP-sets,
they may be alternatively defined in terms of belonging toecsp class of free
ultrafilters, called minimal idempoteritsTo define a minimal idempotent we must
first review some basic properties concerning idealsNin

Let (S, +) be any semigroup. Recall that a sub%et S is called aright
(resp. left) idealf T+ S C 7 (resp.S+Z C 7). Itis called awo sided ideaif it
is both a left and right ideal. A right (resp. left) ideais calledminimalif every
right (resp. left) ideal7 included inZ coincides withZ.

We recall some useful facts concerning minimal right idedila semigroup
(similar considerations apply to minimal left ideals):

Facts:

1. Let M be a minimal right ideal of. Then every element in M generates
Minthesensethaml =2+ S =z + M.

2. If R is aright ideal ofS with the property thak = =+ R for everyx € R,
thenR is a minimal right ideal.

3. Let M be a minimal right ideal of. ThenM = x + M for everyx € S.

4. Every minimal right ideal\ is contained in every two sided ideal

4The equivalence between the two definitions is due to Besgedsad Hindman [7].
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Minimal right/left ideals do not necessarily exist e.g. teemmutative semi-
group(N, +) has no minimal right/left ideals (the idealskhare all of the form
7, = [n,+o00) = {m € N|m > n}.) However,

Proposition 3.3. Every compact Hausdorff left-topological semigroup (e3iY)
admits a minimal right ideal and a minimal left ideal.

Let M be a minimal right ideal of a left-topological semigroupn& M is
of the formz + S with x € M., it follows that M is closed. Thus\ is a compact
left-topological semigroup and hence by Ellis [20] consaam idempotent. It is
verified thatS+p is then a minimal left ideal, thate S+p and thap+SNS+p =
p+ S + pis agroup. More generally the intersection of any minimghtiideal
with any minimal left ideal is a group and hence contains amipotent.

Let K (S) denote the union of all minimal right ideals 6f ThenK (S) is a
two sided ideal and is in fact the smallest such ideal. To kmewe first note
that K (S) is a right ideal (being the union of right ideals). To see tRafS) is
also a left ideal, let: € K(S) andy € S. Thenz € M for some minimal right
ideal M. Thusy + = € y + M which by Fact (3) is a minimal right ideal. Hence
y +z € K(S). This shows that<'(S) is a two sided ideal of. By Fact (4) it
follows that K (S) is contained in every two sided ideal
We could have definel (S) to be the union of all minimal left ideals &f and in
an analogous way deduced ttatS) is the smallest two sided ideal 8f Thus

K(8) = J{£|£ is aminimal left ideal ofS}
= J{R R is a minimal right ideal ofS}.

Definition 3.4. An idempotenp is called a minimal idempotent if it belongs to
K(S).

Thus as every compact left-topological semigroup (6I§) contains a mini-
mal right ideal, and by Ellis every minimal right ideal coimsan idempotent, we
deduce that every compact left-topological semigroupaosta minimal idem-
potent. Alternatively, given two idempotenisg € S we writep < ¢ if

Ptq=q+p=p.

It turns out that an idempotenis minimal if and only if it is minimal with respect
to the relation< .

Definition 3.5. A subsetd C N is called central if it is a member of some min-
imal idempotent ingN. It is called a central-set if it belongs to every minimal
idempotent inSN.
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It follows from the above definition that every central sedisIP-set and that
the property of being central is partition regular. Cengetis are known to have
substantial combinatorial structure. For example, anyraéset contains arbitrar-
ily long arithmetic progressions, and solutions to all p@m regular systems of
homogeneous linear equations (see for example [8]). Manlyeofich properties
of central sets are a consequence of the so-c@lédral Sets Theorefirst poved
by Furstenberg in Proposition 8.21 in [22] (see also [13,d).2 Furstenberg
pointed out that as an immediate consequence of the CemtislTheorem one
has that wheneveé¥ is divided into finitely many classes, and a sequenge,cy
is given, one of the classes must contain arbitrarily lontiaretic progressions

whose increment belongs {0 .- z,|F € Fin(N)}.

3.3 Limits of ultrafilters

It is often convenient to think of an ultrafilteras a{0, 1}-valued, finitely additive
probability measure on the power setidf More precisely, for any subset C
N, we sayA hasp-measurel, or is p-large if A € p. This notion of measure
gives rise to a notion of convergence of sequences index&dvalyich is the key
tool in allowing us to apply ideas from combinatorics on weotd the framework
of ultrafilters. However, from our point of view, it is more tnaal to define it
alternatively as a mapping from words to words (see Remdr®)3Let.4 denote
a non-empty finite set. Then each ultrafiltee SN naturally defines a mapping

p*:AN—>AN
as follows:

Definition 3.6. For eachp € AN andw € AY, we definep*(w) € AY by the
condition: v € A* is a prefix ofp*(w) <= w| € p.

We note that ifu,v € A*, w| ,w| € pand|v| > |ul, thenu is a prefix ofv. In
fact, if v' denotes the prefix of of length|u| then a&)}v C w|,,, it follows that
. € pand hence. = v'. Thusp*(w) is well defined.

We note that ifv, v € A" and if each prefix: of v is a factor ofv, then there
exists an ultrafiltep € SN such thap*(w) = v. In fact, the set

w

C = {w|, |uis a prefix of /}

satisfies the finite intersection property, and hence by @®@argument involving
Zorn’s lemma it follows that there existgae N with C C p.

It follows immediately from the definition op*, Definition 3.5 and Theo-
rem 3.2 that

Lemma 3.7. The se‘w}u is an IP-set (resp. central set) if and onlyuifis a prefix
of p*(w) for some idempotent (resp. minimal idempotent) 5N.
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Lemma 3.8. For eachp € 8N, w € AY andu € A* we have
p*(w)‘u ={m € N|w}u —m € p}
Wherew\u — m is defined as the set of all€ N such that, + m € w\u.

Proof. Supposen € p*(w)|,. Then by definition: occurs in positiomr in p*(w).
Let v denote the prefix gf*(w) of length|v| = m + |u|. Then, asu is a suffix of
v we haveu| +m Cw| andhences| C w| —m.Butasv is a prefix ofp*(w)
we havep\v € pand henceu\u — m € p as required.

Conversely, fixn € N such thatu\u —m € p. Let Z be the set of all factors
v of w of length|v| = m + |u| ending inu. Then

w‘ —mQUw‘.
u v
veEZ

It follows that there exists € Z such thatu}v € p. In other words, there exists
v € Z such that is a prefix ofp*(w). It follows thatu occurs in positionn in
p(w). O

Lemma 3.9. For p,¢ € SN andw € AY, we have(p + ¢)*(w) = ¢*(p*(w)). In
particular, if p is an idempotent, thepi(p*(w)) = p*(w).
Proof. For each word: € A* we have that. is a prefix of(p + ¢)*(w) if and only
if

w| €ep+q={meN|w| —mep}eq

On the other handj is a prefix ofg* (p*(w)) if and only if p*(w)| € ¢. The result
now follows immediately from the preceding lemma. O

Lemma 3.10. For eachp € AN andw € A" we havep*(T'(w)) = T(p*(w))
whereT : AN — AY denotes the shift map.

Proof. Assumeu € A* is a prefix ofp*(T'(w)). ThenT(w)\u € p. But
T(w)}u = U w‘au'
acA

It follows that there exista € A such thatu\au € p. Thusau is a prefix ofp*(w)
and hence: is a prefix ofT'(p*(w)). O

In what follows, we will make use of the following key resuit[i6] (see also
Theorem 1 in [10]):

Theorem 3.11(Theorem 3.4 in [6]) Let (X, T") be a topological dynamical sys-
tem. Then if two points,y € X are proximal withy uniformly recurrent, then
there exists a minimal idempotent SN such thap*(x) = y.
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As a consequence we have

Theorem 3.12.Letw € A" be a uniformly recurrent word, and letc A*. Then
w|, isan IP-setif and only if,| is a central set.

Proof. ForanyA C N we have thatifd is central therd belongs to some minimal
idempotenty € SN and hence in particulas belongs to an idempotent jpN.
Hence by Theorem 3.2 we have thais an IP-set. Now suppose thaﬁu is an
IP-set. Therzw\u belongs to some idempotent N. Sety = p*(w). Thenu is a
prefix of v. Also, sincep is idempotent we have(v) = p*(p*(w)) = p*(w) = v.
Hence for every prefix of v we have that/| € p andw| € p and hence
v|, Nw|, € p.Inparticulary| Nw| # 0. Hencew andv are proximal. Since
w is uniformly recurrent, it follows that is also uniformly recurrent. Hence
by Theorem 3.11 there exists a minimal idempotentith ¢*(w) = v. Hence
w|, € ¢, whenceu| is central. O

Remark 3.13. It is readily verified that our definition gf* coincides with that
of p-lim,, . More precisely, given a sequenge, ),y in a topological space and
an ultrafilterp € BN, we write p-lim,, z,, = y if for every neighborhood’,
of y one has{n |z, € U,} € p. In our case we havg*(w) = p-lim, (7" (w))
(see [24]). With this in mind, the preceding two lemmas ard iweown (see for
instance [10, 24]). However, our defining conditionpdfin Definition 3.6 does
not directly rely on the topology and so may be applied in oteneral settings.
For instance, lef2 C AN be a subshift, andV" = {ny < n; < ny < ---} an
infinite sequence of natural numbers. For each €2 we put

X,/f = {WntneWntny - - Wnany_, |1 >0} C AF.

For eachu € X3V we define the set

wN}u = {’fl eN | WntnoWntng -+ - Wntng_q — u}

Then the sets”V'| with v € X partitionN. So, givenp € N, for eachk > 1
there exists a unique € X} with w'| € p. Moreover ifv € X}, andw| €
p, thenwu is a prefix ofv. So using the condition in Definition 3.6, each infinite
sequenceV and ultrafilterp € SN defines a mappin@ — . Of particular
interest is the case in whidh is a uniform set in the sense of T. Kamae avids
chosen such thai[ V] is a super-stationary set (see [28, 29]).

Another situation in which the defining condition of Defioiti 3.6 applies is
in the context of infinite permutations [21]. By an infiniterpritationr we mean
a linear ordering ofN. Then for each finite permutatianof {1,2,...,n} we say
thatu occurs in positiomn of 7 if the restriction ofr to {m, m+1, ..., m+n—1}
is equal tou. Thus we may define the setu as the set of alln € N such that
u OCCUrs in positionn in 7, and again the set;s\u (over all permutations of
{1,2,...,n}) determine a partition df. Hence each € (N defines a map from
the set of all infinite permutations into itself.
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4 A first analysis of some concrete examples

4.1 The Fibonacci word

While most of the proofs of the results announced in the thiobion rely on the
algebraic and topological properties of ultrafiltersfmand their links to IP-sets,
we begin by analyzing concretely a few examples generatesinbyle substitu-
tion rules. To establish that certain subsetNdre IP-sets, we will use nothing
more than the definition of IP-sets and the abstract nunoeratistems defined by
substitutions first introduced by J.-M. Dumont and A. Thoifias 18].

Let us begin with théibonacciinfinite wordf = fofi f> ... € {0, 1},

We set

f\oz {n e N|f, =0}

and
fl, ={neN|f, =1}

Sof|, ={0,2,3,5,7,8,10,11,13,15,16, .. .} andf|, = {1,4,6,9,12,14,17,.. .}.
This defines the Sturmian partitidf = f| U f| . Let us denote by, the nth
Fibonacci number so thaty, = 1,F, = 2, F, = 3,.... It is well known that
each positive integer has one or more representations when expressed as a sum
of distinct Fibonacci numbers. One way of obtaining suchpaiggentation is by
applying thegreedy algorithmThis gives rise to a representationodf the form
n=SF tFwitht; € {0,1} and witht;,,; # 11 for each0 < i < k — 1. Such

a representation of is necessarily unique and is called teckendorff represen-
tation [32] (a special case of the Dumont-Thomas numeration sygl&mi18]).
We shall writeZ(n) = txt,_1 . . . to. For example, applying the greedy algorithm
ton = 50 we obtain50 = 34 + 13 + 3 = F7 + F5 + F, which gives rise to
the representatiog (50) = 10100100. It follows immediately thatz (£,,) = 10™.
The connection betweef(n) and the entryf,, of the Fibonacci word is given
by the following well known fact:f,, = 0 wheneverZ(n) ends in0 and f,, = 1
wheneverZ(n) ends inl. Thus

f|, = {n € N| Z(n)ends i}

and
f|, = {n e N|Z(n)endsinl}.

We now consider the sequente,),cn given byz, = Fy,,1. It is readily
verified that for eachd € Fin(N), the Zeckendorff representation df, _, z,
ends in10*™*! wherem = min(A). In fact, the symbolic sum of the individual
Zeckendorff representations of eaeh occurring in}_, _, x, does not involve
any carry overs. Moreover the resulting expression doesomtain any occur-
rences ofl1 and hence is equal to the Zeckendorff representatiop of , x,,.
Thus every finite sum of the forf’, _ , z,, with A € Fin(N) belongs td\o. Thus
we have shown thdt|  is an IP-set.
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We next verify thaff| is not an IP-set, and hen€g is an IP-set. We will
use the following general observation. Consider a sulAsetN partitioned into
k > 0 non-intersecting setsd = A; U A, U --- U A,. Suppose that for each
1 < j < k there exists a positive integéf (which may depend on) such that
whenevern,, m,, ..., my are distinct elements of;, we haveZﬁil m; ¢ A.
Then A is not an IP-set. In fact, ifl were an IP-set, then for some< j < k,
there would exist a sequeneg < z, < z3 < --- contained inA4; such that
{>nerznlF € FiN(N)} C A.

Leta = 3‘—2\/5 Then the Fibonacci wordl is the orbit of the pointy under
irrational rotationR,, on the unit circle byx. Let I be the intervall — a, 1) (the
interval coded by). Son € f|, ifand only if R (o) = {a+na} = {(n+1)a} €
1.

Fix (1-a)/3 <o < (1—-a)/2andputl; = [l —a,1—a)andl, =
1 —a/,1). Sincea’ < (1 — «)/2 it follows thata/ < «. Also for j = 1,2 set
A; ={n e N|R"(«a) € I,;}. ThusA,, A, partitions the sef\l. We now show that
f}l is not an IP-set by showing that the sum of any three elemédms belongs
to f|, and that the sum of any two elementsfbelongs tof| .

Now take anyn;,nq,n3 € A; and setr; = {(ny + l)a},zo = {(ny +
Da},z3 = {(ns+ 1)a} € [1 —a,1— ). Thenn; + ny + n3 corresponds to the
point{(n;+ns+ns+1)a} = {x;+xe+x3—20}. Sincery, zy, x5 € [1—a, 1—a),
we have{z; + 25 + 25 — 2a} € [{3 — 5a}, {3 — 3¢/ — 2a}). Sinceo’ > 5% it
follows that2 — 30’ — 2a < 1 — «a, and hencg2 — 3¢/ — 2a} < 1 — «, which
gives{3 — 30’ — 2a} <1 — « as required.

Similarly take anyn;,ny € As. Setxy = {(n; + 1)a}, 22 = {(na + 1)a} €
[1—a/,1). Thenn;+n, corresponds to the poifitn; +ns+1)a}t = {x1+xs—at.
Sincexy, x5 € [1—a/, 1), we have{x; + 22 —a} € [{2—2d' —a},1—a). Since
o < 2 itfollows that{1 — 2o/ — o} > 0, and hencg2 — 2o/ — a} > 0.

The above arguments may be generalized to showfmais an IP-set for
every prefixu of f.

In contrast, let us consider the segs, and g|, whereg = 0f =
001001010010010. ... Thus,

gly={neN|g,=0} ={0}U{n>1]f 1 =0}

Consider the sequence, ),y defined byy,, = Fy,.». It is readily verified that
Z(y, — 1) = (10)"*! and hence each, belongs tOg\O. Now fix A € Fin(N).
Since the Zeckendorff representation f,. , v, ends in10*"** wherem =
min(A), it follows thatZ(}", _, y» — 1) ends in(10)™*!, and hencé_, _, y. €
g|,- Thus, g|, is an IP-set. Similarly, it is readily verified that for each €
Fin(N), we have thafy_ _, z, € g|, wherex, = F,.,. Thus this time we
obtain the Sturmian decompositidh = g|, U g|, in which both setg|, and
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g|, are IP-sets. In this case, neithgly norg|, is an IP-set. Once again, these
arguments may be extended to show that hgth andg|, are IP-sets for any
prefixu of f and hence neither set is ariBet.

In summary, by Theorem 3.12 we have:

Proposition 4.1. Letf denote the Fibonacci word. Then for every prefiaf f the
setf}u is an IP*-set (and hence a centraset). Settings = 0f we have that for
every prefix: of f the setgs| andg|, are both IP-sets (resp. central sets).

4.2 Them-bonacci word

The above analysis extends more generally to the so-caltednacci word. Fix
a positive integem > 2, and lett = totit,... € {0,1,...,m — 1}" denote the
m-bonacci infinite wordixed by the substitution

om:{0,1,...,m—1} - {0,1,...,m —1}"

given by

(i) = 0(i+1) for0<i<m-—1
T\ = 0 fori=m—1

Using the associated Dumont-Thomas numeration systemjlve&aw:

Proposition 4.2. Letm > 2, and consider the partition dff given by

:Ug‘k

0<k<m—1

whereg = 0t € {0,1,...,m — 1}". Then for eact) < k < m — 1 the sefg|, is
an IP-set (resp. central set).

The proof is a simple extension of the ideas outlined abovkercase of the
Fibonacci word. For eactn > 2, we define then-bonacci numbers by, = 2*
foro <k <m-landTy, =Ty 1+ Ty o+ -+ Ty, for k > m. When
m = 2, these are the usual Fibonacci numbers. Each positive ntegey be
written in one or more ways in the form = Zle t;T)._; wheret; € {0,1} and
t; = 1. By applying the greedy algorithm, one obtains a represientaf » of the
formw = tyt, - - - t;, with the property thatv does not contaim consecutive'’s.
Such a representation afis necessarily unique and is called theZeckendorff
representatiorof n, denotedz,, (n) (see [19]). ThusZ,,(T,,) = 10™ for n > 0.

Proof. Fix 0 < k£ < m — 1. We will show that the s@\k is an IP-set. Itis well
known thatt,, =  if and only if Z,,(n) ends in01*. Hence

g}k ={neN|g,=k}={neN|t,_, =k} ={n e N|Z,(n—1)ends i1}
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Consider the sequence,,),.cn given byz, = T,,,.. It is readily verified
for any finite subsefl C N, them-Zeckendorff representation of the finite sum
S = > ,.caTn €Nds iN10™* wherer = min(A) and hence thex-Zeckendorff
representation of — 1 ends in(1™~10)"1* and hence ¢ g\k as required.

Having established that each of the sgrtgis an IP-set (fob < k <m —1), it
follows that nog|, is an IP-set.
]

As an immediate consequence of Proposition 4.2 we have:

Corollary 4.3. For each positive integer there exists a partitiotN = A; U A, U
---U A, in which each4,; is a central set.

Proof. For eachl < k < r, it suffices to taked,, = g|, _, . O

5 Sturmian partitions & central sets

In this section we prove the results announced in sectiomtearoing Sturmian
partitions ofN. Throughout this sectiow = wywws ... € {0, 1} will denote a
Sturmian word,F the set of all factors ab, and (€2, T") the subshift generated by
w, whereT" denotes the shift map. We denotedy (2 the characteristic word.

Lemma 5.1. If w,w',w” € Q are such thatl™ (w) = T™ (') = T™(w"), then
Card{w,w’,w"} < 2.

Proof. This follows immediately from the fact th&t contains a unique charac-
teristic word and that this word is aperiodic. O

We will make use of the following key lemma which essentiagys that two
distinct Sturmian words andw’ are proximal if and only if " (w) = T"(w') = ©
for somen > 1.

Lemma 5.2. Let w and «’ be distinct elements d. Then eitherT"(w) =
T™(w'") = @ for somen > 1, or there existsV > 0 such thatv, w11 . .. wpin #
wyw 4 - - wh y foreveryn € N.

Proof. We will use a definition of Sturmian words via rotations, whvee recalled
in Section 2. Notice thab = s, = s,,,, and singular words correspond to the
case when the orbit of a point under rotation map goes throlgipointa. If
Sa,p IS NON-singular, then, , = s, ,. If w # w’ are singular words defined by
rotations of the same point, i. e, = s, ,, w' = s, ,, then they differ only when
they pass through—« ando, i. e., in maximum two points, so there exists> 1
such thatf™ (w) = T™ (W) = ©.

Now consider the case when v’ are defined by rotations of two different
pointsp, p/, 0 < p < p’ < 1. To be definite, let us consider the interval exchange
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of I, and!; for bothw andw’. We should prove that there there exidts> 0 such
thatw,wp 41 ... Wpin # wywh, ... wy,, y for everyn € N. We havew,; # w; if
and only ifw; € Iy, w, € I orw; € I, w, € I,. This condition is equivalent
tow, € [l—a—(p—p),1l—a)Ull—(p —p),1). The distribution of points
from the orbit of any poin@ under rotation by is dense, it means that for every
there existsV(¢), such that aftelV (¢) iterations points split the intervél, 1) into
intervals of length less than Puttinge = p' — p, we get that everyv = N (¢)
consecutive iterations there will be a point in every in&wf lengthy’ — p, so
there are points ifi —a— (p' —p), 1 —«) and[1 — (p' —p), 1) everyN iterations,
and hence for every there exists € [n,n + N — 1] with w; # wy.

]

We first consider the case of nonsingular Sturmian words:

Lemma 5.3. Letw € {0,1}" be a nonsingular Sturmian word ande SN an
idempotent ultrafilter. Thep*(w) = w.

Proof. Suppose to the contrary that(w) # w. Then sincew is nonsingular,
Lemma 5.2 implies that for all sufficiently long factarof w, we have thazlv\u N
p*(w)\u = (. But, by Lemma 3.9 we havg*(p*(w)) = p*(w), that is the image
underp* of w andp*(w) coincides. It follows by definition op* that for every
prefixu of p*(w) we havew| € pandp*(w)| € pandhences| Np*(w)|, €p,
a contradiction. O

Theorem 5.4.Letw € (2 be a nonsingular Sturmian word, anda factor ofw.
Thenw\u is an IP-set (resp. central set) if and onlyufis a prefix ofw. Hence for

every prefix of w andn € w}v the setu\v —n is an IP*-set (resp. centrélset).

Proof. Let w be a nonsingular Sturmian word,a prefix ofw, andp € SN an
idempotent ultrafilter. Then by Lemma 5.3s a prefix ofp*(w) and hencev}u €

p. Thus for each prefix. of w the setw\u belongs to every idempotent ultrafilter
and hence is an IPset. It follows that ifv € F is not a prefix otw, thenw\v IS not
an IP-set. Finally, let be any factor ofs andn € N. Thenw| —n = T"(w)|,.
If n € w}v, thenw is a prefix of7™(w) from which it follows that

w|, —n=T"w)|,.=T"(w)|, €p
Hencew| —nisan IP-set m

As a consequence of the above theorem we have

Corollary 5.5. Letw andw’ be two nonsingular Sturmian words, not necessarily
of the same slope. Then for every prefigf w and every prefix’ of v’ we have
thatw\u Nw'| , is an IP*-set (resp. centralset), in particular the intersection is
infinite.
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We note that the assumption thatandw’ be nonsingular is necessary, as for
example if we considew = 0f andw’ = 1f with f the Fibonacci word, then
w‘o Nnw'|, = {0}.

Proof. Let w andw’ be two nonsingular Sturmian words,a prefix ofw, v’ a
prefix of o', andp € SN an idempotent ultrafilter. Then by Corollary 1 we have
thatw| € pandw| , € pandhences| Nwl|, € p. Thusw| Nw|  belongs to
every idempotent and hence is ari-get. O

We next consider singular Sturmian words.

Lemma 5.6. Let w,w’ € Q be distinct Sturmian words such that(w) =
T™(w'") = @ for someny, > 1. Then for everyu € F and every non-principal
ultrafilter p € SN we have

w| ep=d|, ep
In particular, p*(w) = p*(w').

Proof. Sincep is a non-principal ultrafilter, we have thaf € p <= w| N
[N,+o0c) € pforall N > 1. Similarly w'| € p <= /| N[N, +o0) € p forall
N > 1. But for eachu € F, we havew| N [ng,+00) = | N [ng,+o0). The
result now follows. O

Lemma 5.7. Letw,w’ € Q be as in the previous lemma, and je€ SN be an
idempotent ultrafilter. Thep*(w) = p*(w') € {w,w'}.

Proof. Thatp*(w) = p*(w’) follows from the previous lemma and the fact that
idempotent ultrafilters are non-principal (see for inst&af@]). By Lemma 3.10,
p* commutes with the shift map, and hence

mop(w) = p*(T™w) = p*(w) = @

where the last equality follows from Lemma 5.3. By Lemma Sfileed tow” =
p*(w) it follows thatp*(w) = w or p*(w) = '. O

Theorem 5.8. Letw € Q) be a Sturmian word such tha@t™ (w) = © withng > 1.
Thenw}u is an IP-set (or central set) if and only if eitharis a prefix ofw or a
prefix ofw’ wherew’ is the unique other element Qfwith 770 (&) = @.

Proof. Letw € Q2 andn, be as in the statement of the theorem. Then there exists
a uniquev’ € Q with o’ # w and with7™ (w') = @. Suppose thab}u is an IP-set

for someu € F. Then by Lemma 3.7 it follows that is a prefix ofp*(w) for
some idempotent ultrafilter € SN. It follows from Lemma 5.7 that: is a prefix

of w or a prefix ofw’. This proves one direction.

To establish the other direction, we must show tbﬁ:[ is a central set for
each prefixu of w or of w'. By Theorem 3.11, there exist minimal idempotent
ultrafiltersp;, p, € BN such thatp}(w) = w andpi(w) = w'. The result now
follows. O
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Remark 5.9. V. Bergelson [9] suggested to us that the above result maglated
to a previously known partition df into two central sets{ = {[mz],m € N}
andY = {[my],m € N}, wherex andy are two irrational numbers satisfying
1/z + 1/y = 1. In fact, this partition precisely corresponds to our pemtitof N
into two IP-setsu| andw|, wherew is of the form0w andw is a characteristic
Sturmian.

This could be seen using the definition of Sturmian words vecmanical
words (see Section 2 for notation). For a slopge haves,, = 00. Leta = 1/x
andl/y = 1—a;thens, o(n) = 1 if and only if there exists an integérsuch that
a(n+1) > kandan < k. Itis easy to see that this pair of equations is equivalent
ton < kx < n + 1, which impliesn € X. We haves, c(n) = 0 if and only if
there exists an integérsuch thaiv(n + 1) < k+ 1 andan > k. Itis not difficult
to see that this pair of equations is equivalenttel (n — k)y < n + 1, which
impliesn € Y.

Remark 5.10. We are unable to extend the results on Sturmian partitiordl to
Arnoux-Rauzy words. In fact, our proof of Lemma 5.2 reliestba geometric
interpretation of Sturmian words as codings of orbits urateirrational rotation
on the circle. It was shown in [12] that there exist ArnouxdRawords which
are not measure-theoretically conjugate to a rotation emttorus. In this case,
we do not understand for which pairs of Arnoux-Rauzy wordhasubshift are
proximal.

6 Other central partitions defined by substitutions

We begin by briefly reviewing some notions from topologicghdmics in the
framework of minimal subshiftéX, 7") which will be used in the proof of Theo-
rem 4. For this we consider two-sided subshifts 7) meaning thaf{ c A%. So
points in X are bi-infinite words. A subshiftX, T") is said to beequicontinuous
if for every e > 0, there exists @ > 0, such that for alle,y € X, if d(z,y) < §
thend(7T"(z), T"(y)) < € for everyn € Z. A subshift(Y, T") is called afactor of
(X, T) if there exists a continuous surjection

T: X =Y

which commutes with the shift m&p. It is well known (for instance by way of
Zorn’s lemma) that every subshiffX, 7") has amaximal equicontinuous factor
(Y,T)i.e., (Y,T) is an equicontinuous factor ¢, 7") and any equicontinuous
factor (Z,T) of (X, T) is also a factor ofY, 7). It is also well known that ifr :
X — Y is the maximal equicontinuous factor, then for any two minty € X
we have thatr(x) = 7 (y) if and only if x andy are regionally proximal (see [2] ).

Proof of Theorem 4Let us fix positive integers and V. Consider the constant
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length substitution
7 {1,2,...,r} = {1,2,...,r}"

given byl — 123---r,2+— 23---r1,3 +— 34---r12, ..., r — r12---1r — 1.

In caser = 2 We have the Thue-Morse substitution on the alphdle?}. For

1 < i < r, let 2 denote theth fixed point ofr beginning in the lette. As

|n the case of Thue-Morse, for# j the wordse® andz¥) never coincide, i.e.,
2+ 2 for eachn € N. Let (X,T) denote the one-sided minimal subshift
generated by the primitive substitutionWe will now show that each of the fixed
pointsz is distal.

Lemma 6.1. Let z denote any one of the fixed pointd of the substitution
above. Then is distal. In particular, the two fixed points of the Thue-Ner
substitution are each distal.

Proof. Let (X, T) denote the two-sided subshift generated-bgnd letr : X —
Y denote the maximal equicontinuous factor. The substitutiabove is of Pisot
type, in fact, the dilation of is » and all other eigenvalues are equabtdNote
thatr is not an irreducible substitution). In [3], V. Baker, M. Barand J. Kwapisz
show that for a primitive substitution of Pisot type (irrethle or not), the map-
ping onto the maximal equicontinuous factor is finite to ofibus there exists a
constant' such that for any. € X, there are at most' pointsz’ € X which are
regionally proximal taz In particular, for any: € X, there are at mosf' points
2 € X which are proximal ta:.

Now suppose € X is proximal toz. We will show thaty = x. It is easy to
see that the bi-infinite word = zrey - = € X wherezrey denotes the reversal
or mirror image ofz, and where denotes the origin. Similarly, lef denote a
left infinite word such that the concatenatigh= ' - y € X. Sincex andy are
proximal, it follows thatz and 2" are proximal. Set- = 7". Sincer, and hence
o, are of constant length, it follows thatz’) is proximal too(z). Buto(z) = =.
Hence(o"(2')),>0 defines an infinite sequence of pointsXheach of which is
proximal toz, and which in the limit tends t@rev 219 wherei is the first (meaning
rightmost) letter ofy’ andj is the first letter ofy. But since there are only finitely

many points inX which are proximal ta: it follows thato™(2) = x%w z\) for

somen > 0. Hence by de-substituting we obtaih = xré\, 219 from which it
follows thaty = z9). Thus bothz andy are fixed points of which are assumed
proximal. It follows thaty = = and hence: is distal as required. O

Putz = 2. Sincex is distal, so isT"(x) for eachn > 1. On the other
hand, it is easy to see that for each positive integaeve haveu[n]r € X,
whereu”[n] denotes the reversal of the prefix of) of lengthn. Thus ther
words {uV[n]z, u@[n]x, ..., u"[n]zr} are pairwise proximal and each begin in
distinct letters (this is because the fixed points neveraide). Finally letw =
uM[N + 1]z, and setd; = w|, for eachl < i < r. Then eachd; is a central set.
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For eachl < n < N, we have thatd; — n = T”(w)\i =uM[N+1- n]x‘i is
a central set. But fok > 1, we have thatd; — (N + k) = Tk_l(x)‘i which is a
central set if and only if"*~*(z) begins ini.

(|

Proof of Theorem 5Fix a positive integer. Let 7 be a primitive substitution
whose associated subsHiftis topologically weak mixing. For instance we may
take the substitutio® — 001 and1 — 11001 or 0 — 001 and1 ~— 11100
(see [15]). Letw € Q. Fix m such thatp,(m) > r, and puts = p,(m). Let

uy, us, . . ., u, denote the factors ab of lengthm. As pointed out to us by V.
Bergelson and Y. Son [9], the weak mixing implies that theafgboints in 2
proximal tow is dense i) (see for instance page 184 of [22]). Thus for each
factor u; there exists a word; € () beginning inu; and which is proximal to
w. Hence by Theorem 3.11 there exists a minimal idempoterdfilar p; € SN
such thap? (w) = z;. Hence for each < i < s we have thazlu\m € p; and hence

W‘w is a central set. Finally, for each positive integeand for each < i < swe
have that

w‘ui —n= T”(w)‘ui.

Again the weak mixing implies that there exists a word €2 beginning inu; and
proximal to7™(w). Hence there exists a minimal idempotent SN such that
p*(T"(w)) = « from which it follows thato| —n € p and hencey|, —nisa
central set. Thus we obtain a partitionfof

N = Ow
i=1

into s-many central sets and for each positive integend1 < i < s we have
thatw\u_ — n IS again a central set. Thus, setting

Us

.Ai::u

Us

fori=1,...,r—1, and

s

A, = Uw

i=r—1

Uj

we obtain the desired partition Bf. O

7 Infinite central partitions of N
In this section we construct infinite partitionsi¥finto central sets by using words

on an infinite alphabet and prove Theorem 6. Our constructiakes use of the
notion ofiterated palindromic closure operatdfirst introduced in [16]):
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Definition 7.1. The iterated palindromic operatay is defined inductively as fol-
lows:

° Y(e) =¢,
e For any wordw and any lettew, ¢ (wa) = (Y(w)a) .

We denote withu+) theright palindromic closuref the worduw, i.e., the shortest
palindrome which has as a prefix.

For exampley(aaba) = aabaaabaa. The operator) has been extensively
studied for its central role in constructing standard Starmand episturmian
words. It follows immediately from the definition thatfis a prefix ofv, then
¥(u) is a prefix ofiy(v). Thus, given an infinite word: = wowjws ... on the
alphabet4 we can define

Y(w) = lim Y(wowrws . . . wy).

The following lemma summarizes the propertieg/afeeded.

Lemma 7.2. Let A be a right infinite word over the (finite or infinite) alphahét
and letw = ¥(A). Then the following statements hold:

1. The wordv is closed under reversal, i.e.if= v vy . .. v, IS a factor ofw,
then so is its mirror imagey, . . . vav;.

2. The wordv is uniformly recurrent.

3. If each lettern € A appears inA an infinite number of times, then for each
prefixu of w and eachu € A, we haveuu is a factor ofw.

Proof. Since any factor ofv is contained in some(v) for a sufficiently long
prefix v of A, and«(v) is by definition a palindrome (and hence closed under
reversal), the first statement is proved. The second stateimeasily derived
from the fact that for any finite prefixa of A (a being a letter), we have that
|(va)| < 2|¢(v)| + 1 and moreover)(va) begins and ends itt(v). It follows
that any factor of length (for examplg)y(v)| contains an occurrence ¢fv).
Finally suppose each € A appears infinitely many times ift. Thus for any
lettera and any prefixo of A there exists a prefix ol of the formwvv’a. From
the definition ofy» we then have thab(vv’)a is a prefix ofw and«(vv’) ends in
¥(v), soy(v)a is a factor ofw. Sincey(v) is a palindrome and is closed under
reversal, we obtain that for any prefixof A and for any letter, the wordai)(v)
is a factor ofv and the third statement easily follows. O

With the preceding Lemma, we are now able to construct iefipértitions of
N such that each element of the partition is an IP-set.
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Proposition 7.3. Letw = ¢(A) whereA is a right infinite word on an infinite
alphabetA with the property that each letterc A occurs inA an infinite number
of times. Then, for any € A, the setuw|_is a central set, thugw| + 1}.c.4is
an infinite partition ofN into central sets.

Proof. From 7.2 we clearly have that is uniformly recurrent and closed under
reversal. Furthermore, since eack A occurs inA an infinite number of times,
by (2) of the same lemma we also obtain that condition (3) $iadd that for any
lettera, the set of factors aiw coincides with that ofo. From this and from the
uniform recurrence ob, we have thatw is uniformly recurrent as well. Let us
denote byr, the image ofv under the morphism, defined as follows:

® :ua(a) =0,
o u,(z)=1Iif x # a.

Sinceaw is uniformly recurrent for any, it is clear that alsdr, is uniformly
recurrent for any:. From Theorem 3.11, we then have that for arthere exists

a minimal idempotent ultrafiltep, such that?(0r,) = Om,. In particular, this
means, by Lemma 3.7, that, | , (which clearly coincides withw| by definition)

is a central set for any. The statement can then be easily derived from the fact
thataw}a—w‘ajtl. O

8 Strong coincidence condition

Letr > 2 be a positive integer and sdt= {1,2,...,r}. A primitive substitution
7: A— A" is said to satisfy thetrong coincidence conditiafhand only if for
any pair of fixed points: andy, we can writex = sca’, andy = tcy’ for some
s,t € AT, c e A, anda’,y’ € A with s ~4p ¢. This combinatorial condition,
originally due to P. Arnoux and S. Ito, is an extension of aikintondition con-
sidered by F.M. Dekking in [14] in the case odnstant length substitutionise.,
when|7(a)| = |7(b)| for all a, b € A. In this case Dekking proves that the condi-
tion is satisfied if and only if the associated substitutiveshift hagure discrete
spectrum i.e., is metrically isomorphic with translation on a corapabelian
group. Clearly not all primitive substitutions satisfy tskeong coincidence con-
dition. For instance, it is not satisfied by the Thue-Mordessitution (in fact the
two fixed points disagree in each coordinate). It is conjectthowever that if
7 is an irreducible primitive substitution of Pisot type, the satisfies the strong
coincidence condition. M. Barge and B. Diamond establighedconjecture for
binary primitive substitutions of Pisot type [4]. Other@ithe conjecture remains
open for substitutions on alphabets greater that two. 8utishs of Pisot type
provide a framework for non-constant length substitutionsvhich the strong
coincidence condition implies pure discrete spectrum.

As a consequence of Theorem 3.11 we have
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Corollary 8.1. Let7 be a primitive substitution verifying the strong coinciden
condition. Then

1. Any two fixed points of are proximal.

2. For any pair of fixed points: and y, there exists a minimal idempotent
ultrafilter p € SN with p*(x) = y.

3. For any pair of fixed points andy, and any prefix: of y, we have thajv\u
is a central set.

Remark 8.2. For irreducible primitive substitutions of Pisot type,lths out that
each of the above conditioni$), (2), and(3) are equivalent and each implies the
strong coincidence condition. A proof of this fact will bergh in [11]. However,
for a general primitive substitution we always have tfiat<—= (2) = (3). The
two fixed points of the uniform substitutian — aaab, b — bbab are proximal
but do not satisfy the strong coincidence condition. V. Bé&gn and Y. Son [9]
showed that the fixed points of — aab, b — bbaab satisfy (3) but not (1) and

(2).

Proof. Condition (1) is immediate from the definition of strong adglence. By
Theorem3.11 we have that (1) implies (2) and hence (3). 0J

We present now an alternative and constructive proof of¢B)aithe so-called
Dumont-Thomas numeration systems defined by substitufiohsl8]. Since in
the irreducible Pisot case, condition (3) alone impliesstneng coincidence con-
dition, this method of proof constitutes a new approach ¢ostinong coincidence
conjecture. We begin with a brief review of these numeratigystems.

8.1 Abstract numeration systems defined by substitutions

Let 7 denote a substitution on a finite alphabktFor simplicity we assume that
7 has at least one fixed point = zyz,25 ... beginning in some letted € A.
The idea behind the numeration system is quite natural:.yes@srdinater,, of
the fixed pointz is in the image of- of some coordinate,,, with m < n. More
precisely, consider the least positive integersuch thatryz, ...z, is a prefix
of 7(xoxy ... 2z,). In this case we can writeyz; ... x,, = 7(xox1 . .. Tp1)UpTy
whereuw,,z,, is a prefix ofr(z,,). We now imagine a directed arc from, to x,
labeledu,,. In this way every coordinate, is the target of exactly one arc, and the
source ofr(z,)|-many arcs. It follows that for eachthere is a unique pathfrom
xg to x,,. Thus every natural numbermay be represented by a finite sequence of
labelsu; obtained by reading the labels along the path the direction fromz,
tox,.

More formally, associated tois a directed grapt () defined as follows: the
vertex set oG (7) is the setd. Given any pair of vertices, b we draw a directed
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edge fromu to b labeledu € A* if ubis a prefix ofr(a). In other words, for every
occurrence ob in 7(a) there is a directed edge fromto b labeled by the prefix
(possibly empty) of-(a) preceding the given occurrencelofigure 1 depicts the
graphg(r) for the Fibonacci substitutiom+— ab, b — a.

a

«(_12 O

€

Figure 1: The Fibonacci automaton

For simplicity, in case some lettéroccurs multiple times in(a), we draw
just one directed edge fromto b having multiple labels as described above. This
is shown in Figure 2 in the case of the substitution: aab, b — bbaab.

aa
£, e,0b,bbaa

b, bba

Figure 2: The automaton af— aab, b — bbaab.

Letz = xgz129 . . . denote the fixed point af beginning ina. Then the graph
G(7) has a singleton loop basedalabeled with the empty word. We consider
this to be the empty obth path ata. More generally by a path at € A we
mean a finite sequence of edge labelsu, - - - u,, corresponding to a path in
G(7) originating at vertex: with the condition that,, # ¢ whenever the length
of the pathn. > 0. For example in the case of the Fibonacci substitution, excep
for the paths = ¢, each path is given by a word ifu, ¢} beginning ina and not
containing the factotia. For each path = uguqus - - - u,, set

n—l( n—2<

uy)T Ug) T (Up—1)Up

ps) = 7"(uo)T

andX\(s) = |p(s)|. In [17, 18] it is shown that for each pathata, the wordp(s)
is a prefix of the fixed point ata and conversely for each prefixof = there is a
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unique paths ata with p(s) = u. This correspondence defines a numeration sys-
tem in which every natural numbeérs represented by the path= uguius - - - u,

in G(7) from vertexa to vertexz; corresponding to the prefix of lengttof x, so
that

(#) L= A(s) = |7"(uo)| + |7 (un) | + 7" *(ua)| + -+ + |7 (un1)] + [ua].

Generally by the numeration system one means the quarititieés)| for all
n > 0 and all proper prefixes of the images under of the letters of4. Then
a proper representation of in this numeration is an expression of the form (*)
corresponding to a path= wugujus - - - u, IN G(7).

In the case of a uniform substitution of lendthhis corresponds to the usual
basek-expansion of. In the case of the Fibonacci substitution, eaghe {z, a}
andu;u; 1 # aa for each0 < i < n — 1. Thus this representation bfs precisely
the Zeckendorff representation btliscussed ir§4 in which [ is expressed as a
sum of distinct Fibonacci numbers via the greedy algorithm.

In general, this numeration system not only depends on th&tisutionr but
also on the choice of fixed point. For example for the sultstituin Figure 2
the number5 is represented by the pathaa from vertexa or by the pathp,
from vertexb. In fact, 7(a)aa = aabaa is the prefix of lengtth of 7°°(a) while
7(b)e = bbaab is the prefix of lengtty of 7°°(b).

An alternative reformulation is as follows: Given two disti pathss =
UglqUsg - - - Uy, ANAE = wvouivy - - - v, both starting from the same vertex we
write s < t if eithern < m or if n = m there exists € {0,2,...,n} such that
u; = v; for j < 4, and|ul; < |v|;. This defines a total order on the set of all paths
starting from vertex:. In the case of the Fibonacci substitution, we list the paths
ata in increasing order

€,a, ag, AEE, AEQ, AEEE, AEEA, AEAE, AEEEE, . . .

Thus there is an order preserving correspondence betuden, 3, ... and the
set of all paths at ordered in increasing order.

While these numeration systems are very natural and sirmplefine, they are
typically extremely difficult to work with in terms of add@th and multiplication.

Let « andb be distinct vertices ir§j(7). We say a patly originating ata is
synchronizingelative tob if there exists a patk’ originating ath having the same
terminal vertex asg and with A\(s) = A(s’). From this point of view the strong
coincidence conjecture implies that

{A(s) | s = a synchronizing path relative &
is a thick set.
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8.2 Proof of (3) in Corollary 8.1

Let 7 be a primitive substitution satisfying the strong coincide condition. Sup-
posex andy are fixed points of beginning ina andb respectively. Then we can
write © = scz’, andy = tcy’ for somes,t € AT, c € A, andz’,y’ € A with
s ~gpt- By replacingr by a sufficiently large power af, we can assume that

e scis a prefix ofr(a),
e tcis a prefix ofr(b),

e hoccursinr(c).

Figure 3: Vertices:, b, c of G(7)

Thus inG(7) there is a directed edge fromto c labeleds, a directed edge
from b to c labeledt, and a directed edge fromto b labeledr for some prefix-
of 7(c). See Figure 3.

We now define a sequence of pathg);>o from a to b by

pi =S, e, e,...,¢&.
—
Putn; = A(p;). Then clearly{n; |i > 0} C x\b. We now show that any finite sum
of distinct elements from the sét; |« > 0} is contained inz:\b. Set

q =1,r,6,6,...,€.
——
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Then eachy; is a path fromb to b and sinces andt are Abelian equivalent it
follows that\(p;) = A(¢;). Fix £ > 1 and chooseé; < iy < --- < ix. Then

Z Api;) = Api) + i Api,)
= Api,) + i AMas,)

=[P )+ [T () + Y (T O+ [ (0)])

(]

1

{7 ()2 (1) ) 2 (1) 1)

N .

_ ‘T2ik+1<s>7_2ik (T>T2ik,1+1

which is represented by a pathd@ir) from « to b and hence corresponds to an
occurrence ob in z. This shows thai:}b is an IP-set, and hence by Theorem 3.12

x\b is a central set. A similar argument applies for any prefof y by defining
the pathg; by
Di = S, T,EEy. .., E
N.

with N; sufficiently large.
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