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Abstract

A subsetA of N is called an IP-set ifA contains all finite sums of distinct terms of
some infinite sequence(xn)n∈N of natural numbers. Central sets, first introduced
by Furstenberg using notions from topological dynamics, constitute a special class
of IP-sets possessing additional nice combinatorial properties: Each central set
contains arbitrarily long arithmetic progressions, and solutions to all partition reg-
ular systems of homogeneous linear equations. In this paperwe show how certain
families of aperiodic words of low factor complexity may be used to generate a
wide assortment of central sets having additional nice properties inherited from
the rich combinatorial structure of the underlying word. Weconsider Sturmian
words and their extensions to higher alphabets (so-called Arnoux-Rauzy words),
as well as words generated by substitution rules including the famous Thue-Morse
word. We also describe a connection between central sets andthe strong coin-
cidence condition for fixed points of primitive substitutions which represents a
new approach to the strong coincidence conjecture for irreducible Pisot substitu-
tions. Our methods simultaneously exploit the general theory of combinatorics
on words, the arithmetic properties of abstract numerationsystems defined by
substitution rules, notions from topological dynamics including proximality and
equicontinuity, the spectral theory of symbolic dynamicalsystems, and the beau-
tiful and elegant theory, developed by N. Hindman, D. Strauss and others, linking
IP-sets to the algebraic/topological properties of the Stone-Čech compactification
of N. Using the key notion ofp-limn, regarded as a mapping from words to words,
we apply ideas from combinatorics on words in the framework of ultrafilters.

Keywords: Sturmian words, numeration systems, IP-sets, central setsand the
Stone-̌Cech compactification.
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1 Introduction

Let N = {0, 1, 2, 3, . . .} denote the set of natural numbers, and Fin(N) the set of
all non-empty finite subsets ofN.

Definition 1.1. A subsetA of N is called an IP-set ifA contains{
∑

n∈F xn |F ∈
Fin(N)} for some infinite sequence of natural numbersx0 < x1 < x2 · · · . A
subsetA ⊆ N is called an IP∗-set ifA ∩B 6= ∅ for every IP-setB ⊆ N.

By a celebrated result of N. Hindman [23], given any finite partition of N, at
least one element of the partition is an IP-set. It follows from Hindman’s theorem
that every IP∗-set is an IP-set, but the converse is in general not true. In fact, more
generally Hindman shows that given any finite partition of anIP-set, at least one
element of the partition is again an IP-set. In other words the property of being an
IP-set ispartition regular, i.e., cannot be destroyed via a finite partitioning. Other
examples of partition regularity are given by the pigeonhole principle, sets having
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positive upper density, and sets having arbitrarily long arithmetic progressions
(Van der Waerden’s theorem). In [22], Furstenberg introduced a special class
of IP-sets, called central sets, having a substantial combinatorial structure. The
property of being central is also partition regular. Central sets were originally
defined in terms of topological dynamics:

Definition 1.2. A subsetA ⊂ N is called central if there exists a compact met-
ric space(X, d) and a continuous mapT : X → X, pointsx, y ∈ X and a
neighborhoodU of y such that

• y is a uniformly recurrent point inX,

• x andy are proximal,

• A = {n ∈ N | T n(x) ∈ U}.

We sayA ⊂ N is central∗ if A ∩ B 6= ∅ for every central setB ⊆ N.

Recall thatx is said to beuniformly recurrentif each factor ofx occurs inx with
bounded gap. Two pointsx, y ∈ X are said to beproximal if for every ǫ > 0
there existsn ∈ N such thatd(T n(x), T n(y)) < ǫ. We remark that from the above
definition, it is not at all evident that central sets are IP-sets. We later give an
alternative definition (see Definition 3.5) which makes thispoint clear. The equiv-
alence between the two definitions is due to Bergelson and Hindman [7].

The question of determining whether a given subsetA ⊆ N is an IP-set
or a central set is typically quite difficult, even if for every A, eitherA or its
complement is an IP-set (resp. central set). It turns out that in each case this
question may be reformulated in terms of whether or not the set A belongs to
a certain class of ultrafilters onN (see Theorem 5.12 in [26] in the case of IP-
sets and [7] in the case of central sets). But the question of belonging or not
to a given (non-principal) ultrafilter is generally equallymysterious. An equiv-
alent word combinatorial reformulation of this question isas follows: Given a
binary wordω = ω0ω1ω2 . . . ∈ {0, 1}∞, put ω

∣
∣
0

= {n ∈ N |ωn = 0} and
ω
∣
∣
1

= {n ∈ N |ωn = 1}. The question is then to determine whether the setω
∣
∣
0

or ω
∣
∣
1

is an IP-set or central set. Of course in general, this reformulation is as
difficult as the original question. However, should the wordω be characterized by
some rich combinatorial properties, or be generated by some“simple” combina-
torial or geometric algorithm (such as a substitution rule,a finite state automaton,
a Toeplitz rule...) or arise as a natural coding of a reasonably simple symbolic
dynamical system, then the underlying rigid combinatorialstructure of the word
may provide insight to our previous question. Furthermore,such families of words
may be used to obtain simple constructions of central sets having additional nice
properties inherited from the rich underlying combinatorial structure. One of our
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objectives here is to illustrate this latter point.

Let A denote a finite non-empty set (called the alphabet) andω =
ω0ω1ω2 . . . ∈ AN. For each finite wordu on the alphabetA we set

ω
∣
∣
u

= {n ∈ N |ωnωn+1 . . . ωn+|u|−1 = u}.

In other words,ω
∣
∣
u

denotes the set of all occurrences ofu in ω.
In this paper we investigate partitions ofN by sets of the formω

∣
∣
u

defined by
wordsω of low factor complexity. Our goal is to study these partitions in the
framework of IP-sets and central sets. All infinite wordsω ∈ AN considered in
this paper are uniformly recurrent. As we shall see, in our framework IP-sets and
central sets are one and the same:

Theorem 1. Letω ∈ AN be uniformly recurrent. Then the setω
∣
∣
u

is an IP-set if
and only if it is a central set.

The above theorem allows us to simultaneously state our results in terms of IP-sets
and central sets.

We begin by considering the simplest aperiodic infinite words, namely Stur-
mian words. Sturmian words are infinite words over a binary alphabet having
exactlyn + 1 factors of lengthn for eachn ≥ 0. Their origin can be traced back
to the astronomer J. Bernoulli III in 1772. A fundamental result due to Morse
and Hedlund [31] states that each aperiodic (meaning non-ultimately periodic)
infinite word must contain at leastn+ 1 factors of each lengthn ≥ 0. Thus Stur-
mian words are those aperiodic words of lowest factor complexity. They arise
naturally in many different areas of mathematics includingcombinatorics, alge-
bra, number theory, ergodic theory, dynamical systems and differential equations.
Sturmian words are also of great importance in theoretical physics and in theoret-
ical computer science and are used in computer graphics as digital approximation
of straight lines.

Letω ∈ {0, 1}N be a Sturmian word, and letΩ denote the shift orbit closure of
ω. ThenΩ contains a unique word̃ω (called thecharacteristic word) having the
property that both0ω̃, 1ω̃ ∈ Ω. In order to state our results, we must distinguish
between two cases:

Definition 1.3. A Sturmian wordω is called nonsingular if it does not contain the
characteristic word̃ω as a proper tail. Otherwise it is said to be singular.

Theorem 2. Let ω ∈ Ω be a nonsingular Sturmian word, andu a factor ofω.
Thenω

∣
∣
u

is an IP-set (resp. central set) if and only ifu is a prefix ofω. In other
words, for every prefixu of ω, the setω

∣
∣
u

is an IP∗- set (resp. central∗-set).
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As a corollary we deduce that

Corollary 1. Letω ∈ Ω be a nonsingular Sturmian word. For every factorv of ω
andn ∈ ω

∣
∣
v

the setω
∣
∣
v
− n is a central∗ set.

We note that in general the property of being an IP∗-set is not translation invari-
ant. See also Theorem 1.1 in [8]. As an immediate consequenceto the previous
corollary, we have

Corollary 2. For eachr ≥ 1 there exists a partition ofN into setsA0, A1, . . . , Ar

such that for each0 ≤ i ≤ r andn ∈ N, exactly one of the sets{A0 − n,A1 −
n, . . . , Ar − n} is an IP∗-set (resp. central∗ set).

In fact, givenr ≥ 1, let ω be any nonsingular Sturmian word (for instance the
Fibonacci word) and letFω(r) denote the set of all factors ofω of lengthr. Then
ther+1 setsω

∣
∣
u

with u ∈ Fω(r) define a partition ofN with the required property.

For singular Sturmian wordsω we have

Theorem 3. Letω ∈ Ω be a Sturmian word such thatT n0(ω) = ω̃ with n0 ≥ 1.
Thenω

∣
∣
u

is an IP-set (resp. central set) if and only if eitheru is a prefix ofω or a
prefix ofω′ whereω′ is the unique other element ofΩ with T n0(ω′) = ω̃.

Some (but not all) of the results on Sturmian partitions extend to so-called Arnoux-
Rauzy words, which may be regarded as natural combinatorialextensions of Stur-
mian words to larger alphabets [1].

We also consider partitions defined by words generated by substitution rules.
For instance, by considering partitions ofN defined by words generated by the
generalized Thue-Morse substitution to an alphabet of sizer ≥ 2, we show that

Theorem 4. For each pair of positive integersr andN there exists a partition of

N = A1 ∪A2 ∪ · · · ∪ Ar

such that

• Ai − n is a central set for each1 ≤ i ≤ r and1 ≤ n ≤ N.

• For eachn > N, exactly one of the sets{A1 − n,A2 − n, . . . , Ar − n} is a
central set.

The second assertion of Theorem 4 relies on the fact that eachfixed point of the
generalized Thue-Morse substitution is distal. At least inthe case of the Thue-
Morse substitution itself this may already be known, but theauthors have been
unable to locate this result anywhere in the literature. Ourproof of this fact uses a
result of V. Baker, M. Barge and J. Kwapisz which states that for subshifts(X, T )
generated by primitive substitutions of Pisot type, the maximal equicontinuous
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factorπ : X → Xeq is finite to one [3].

By considering partitions defined by words generating minimal subshifts
which are topologically weak mixing (for example the subshift generated by the
substitution0 7→ 001 and1 7→ 11001) we prove that

Theorem 5. For each positive integerr there exists a partition ofN = A1 ∪A2 ∪
· · · ∪ Ar such that for each1 ≤ i ≤ r andn ≥ 0, the setAi − n is a central set.

We also consider words on infinite alphabets. Via iterated palindromic closures
(see Definition 7.1), we construct a uniformly recurrent infinite wordω on an
infinite alphabetA which gives rise to an infinite partition ofN into central sets:

Theorem 6. Let ∆ be a right infinite word on a finite or infinite alphabetA with
the property that each lettera ∈ A occurs in∆ an infinite number of times. Letψ
denote the iterated palindromic operator and setω = ψ(∆). Then

1. ω is uniformly recurrent and closed under reversal, i.e., ifv = v1v2 . . . vk is
a factor ofω, then so is its mirror imagevk . . . v2v1.

2. The setω
∣
∣
a
+ 1 is a central set for each lettera ∈ A.

In particular if we take the word∆ to be on an infinite alphabet, the sets{ω
∣
∣
a

+
1}a∈A form a countably infinite collection of pairwise disjoint central subsets of
N.1

An important open problem in the theory of substitutions is the so-called
strong coincidence conjecturewhich states that each pair of fixed pointsx and
y of an irreducible primitive substitution of Pisot type satisfy the following con-
dition called thestrong coincidence condition: There exist a lettera and a pair
of Abelian equivalent wordss, t, such thatsa is a prefix ofx andta is a prefix
of y. This combinatorial condition, originally due to P. Arnoux and S. Ito, is an
extension of a similar condition considered by F.M. Dekkingin [14] in the case of
uniform substitutions. In this case Dekking proves that thecondition is satisfied
if and only if the associated substitutive subshift haspure discrete spectrum, i.e.,
is metrically isomorphic with translation on a compact Abelian group. The strong
coincidence conjecture has been verified for irreducible primitive substitutions of
Pisot type on a binary alphabet by M. Barge and B. Diamond [4].The following
establishes a link between the strong coincidence conjecture and central sets:

Theorem 7. Let τ be a primitive substitution verifying the strong coincidence
condition. Then for any pair of fixed pointsx and y, and any prefixu of y, we
have thatx

∣
∣
u

is a central set.

1This is a special case of a prior result of Hindman, Leader andStrauss [25] in which they
show that every central set inN is a countable union of pairwise disjoint central sets.
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Our proof of Theorem 7 makes use of the so-called Dumont-Thomas numera-
tion systems defined by substitutions, and constitutes a newapproach to the strong
coincidence conjecture.

The main results in this paper rely on various interactions between different ar-
eas of mathematics, some of which had not previously been directly linked: They
include the general theory of combinatorics on words, the arithmetic properties
of abstract numeration systems defined by substitutions, topological dynamics,
the spectral theory of symbolic dynamical systems, and the beautiful theory, de-
veloped by Hindman, Strauss and others, linking IP-sets andcentral sets to the
algebraic/topological properties of the Stone-Čech compactificationβN. We re-
gardβN as the collection of all ultrafilters onN. An ultrafilter may be thought of
as a{0, 1}-valued finitely additive probability measure defined on allsubsets of
N. This notion of measure induces a notion of convergence (p-limn) for sequences
indexed byN, which we regard as a mapping from words to words. This key no-
tion of convergence allows us to apply ideas from combinatorics on words in the
framework of ultrafilters.

The paper is organized as follows: In§2 we present some of the basic ideas
and tools from combinatorics on words which will be used throughout the paper.
In §3 we outline the key features of the algebraic and topological properties of
the Stone-̌Cech compactificationβN in connection with IP-sets and central sets.
Since the material in§2 may be unfamiliar to specialists in topological semigroups
and vice-versa, we take some care to explain both topics in anattempt to make the
paper more accessible. In§4 we analyze some concrete examples which illustrate
some of the results mentioned above in Theorems 2 and 3. We usenothing more
than the combinatorial properties of the words considered (all generated by substi-
tutions) and the arithmetic properties of the underlying Dumont-Thomas numera-
tion system. In§5 we extend the results in§4 to all Sturmian words, in particular
those not generated by substitutions. Here we make use of thealgebraic proper-
ties of the semigroupβN. In §6 we consider partitions defined by the generalized
Thue-Morse substitution and prove Theorem 4. Also in§6 we prove Theorem 5
by considering subshifts which are topologically weak mixing. In§7 we consider
some infinite words on an infinite alphabet generated by iteration of the palin-
dromic closure operator. Using these words we construct infinite partitions ofN
and prove Theorem 6. Finally in§8, after a brief review of the Dumont-Thomas
numeration systems defined by substitutions, we discuss a connection between
central sets and the strong coincidence condition for substitutions.
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2 Words and substitutions

In this section we give a brief summary of some of the basic background in com-
binatorics on words.

2.1 Words & subshifts

Given a finite non-empty setA (called thealphabet), we denote byA∗, AN and
AZ respectively the set of finite words, the set of (right) infinite words, and the set
of bi-infinite words over the alphabetA. Given a finite wordu = a1a2 . . . an with
n ≥ 1 andai ∈ A, we denote the lengthn of u by |u|. Theempty wordwill be
denoted byε and we set|ε| = 0. We putA+ = A∗ − {ε}. For eacha ∈ A, we let
|u|a denote the number of occurrences of the lettera in u. Two wordsu andv in
A∗ are said to beAbelian equivalent,denotedu ∼ab v, if and only if |u|a = |v|a
for all a ∈ A. It is readily verified that∼abdefines an equivalence relation onA∗.

Given an infinite wordω ∈ AN, a wordu ∈ A+ is called afactor of ω if
u = ωiωi+1 · · ·ωi+n for some natural numbersi andn. We denote byFω(n) the
set of all factors ofω of lengthn, and set

Fω =
⋃

n∈N

Fω(n).

A factoru of ω is calledright specialif both ua andub are factors ofω for some
pair of distinct lettersa, b ∈ A. Similarly u is calledleft specialif both au andbu
are factors ofω for some pair of distinct lettersa, b ∈ A. The factoru is called
bispecial if it is both right special and left special. For each factoru ∈ Fω set

ω
∣
∣
u

= {n ∈ N |ωnωn+1 . . . ωn+|u|−1 = u}.

We sayω is recurrent if for every u ∈ Fω the setω
∣
∣
u

is infinite. We sayω is
uniformly recurrentif for every u ∈ Fω the setω

∣
∣
u

is syndedic, i.e., of bounded
gap.

We endowAN with the topology generated by the metric

d(x, y) =
1

2n
wheren = inf{k : xk 6= yk}

wheneverx = (xn)n∈N andy = (yn)n∈N are two elements ofAN. Let T : AN →
AN denote theshift transformation defined byT : (xn)n∈N 7→ (xn+1)n∈N. By a
subshiftonA we mean a pair(X, T ) whereX is a closed andT -invariant subset
of AN. A subshift(X, T ) is said to beminimal wheneverX and the empty set
are the onlyT -invariant closed subsets ofX. To eachω ∈ AN is associated the
subshift(X, T ) whereX is the shift orbit closure ofω. If ω is uniformly recurrent,
then the associated subshift(X, T ) is minimal. Thus any two wordsx andy in X
have exactly the same set of factors, i.e.,Fx = Fy. In this case we denote byFX

the set of factors of any wordx ∈ X.
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Two pointsx, y in X are said to beproximal if and only if for eachN > 0
there existsn ∈ N such that

xnxn+1 . . . xn+N = ynyn+1 . . . yn+N .

Two pointsx, y ∈ X are said to beregionally proximalif for every prefixu of x
andv of y, there exist pointsx′, y′ ∈ X with x′ beginning inu andy′ beginning
in v and withx′ proximal toy′. Clearly if two points inX are proximal, then they
are regionally proximal. A pointx ∈ X is calleddistal if the only point inX
proximal tox is x itself. A minimal subshift(X, T ) is said to betopologically
mixing if for every any pair of factorsu, v ∈ FX there exists a positive integer
N such that for eachn ≥ N, there exists a block of the formuWv ∈ FX with
|W | = n. A minimal subshift(X, T ) is said to betopologically weak mixingif for
every any pair of factorsu, v ∈ FX the set

{n ∈ N | uAnv ∩ FX 6= ∅}

is thick, i.e., for every positive integerN, the set containsN consecutive positive
integers.

2.2 Substitutions

Many of the words and subshifts considered in this paper are generated by sub-
stitutions. Asubstitutionτ on an alphabetA is a mappingτ : A → A+. The
mappingτ extends by concatenation to maps (also denotedτ) A∗ → A∗ and
AN → AN. The Abelianizationof τ is the square matrixMτ whoseij-th entry
is equal to|τ(j)|i, i.e., the number of occurrences ofi in τ(j). A substitution
τ is said to beprimitive if there is a positive integern such that for each pair
(i, j) ∈ A × A, the letteri occurs inτn(j). Equivalently if all the entries ofMn

τ

are strictly positive. In this case it is well known that the matrix Mτ has a sim-
ple positive Perron-Frobenius eigenvalue called thedilation of τ. A substitutionτ
is said to beirreducible if the minimal polynomial of its dilation is equal to the
characteristic polynomial of its AbelianizationMτ . A substitutionτ is said to be
of Pisot typeif its dilation is a Pisot number. Recall that a Pisot number is an al-
gebraic integer greater than1 all of whose algebraic conjugates lie strictly inside
the unit circle.

Let τ be a primitive substitution onA. A word ω ∈ AN is called afixed
point of τ if τ(ω) = ω, and is called aperiodic pointif τm(ω) = ω for some
m > 0. Although τ may fail to have a fixed point, it has at least one periodic
point. Associated toτ is the topological dynamical system(X, T ), whereX is
the shift orbit closure of a periodic pointω of τ. The primitivity of τ implies that
(X, T ) is independent of the choice of periodic point and is minimal.

An important example of a primitive substitution is theThue-Morse substitu-
tion defined by the morphism0 7→ 01 and1 7→ 10. It has two fixed points

u = 011010011001011010010110011010 . . .
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and
v = 100101100110100101101001100101 . . .

whereun = 1−vn for everyn ≥ 0. Alternatively, it can be shown thatun is equal
to 0 if and only if the binary expansion ofn contains an even number of1s. For
example,u5 = u6 = 0, and in fact5 = 101 and6 = 110 expressed in base2.
Two other primitive substitutions we will make reference to, first introduced some
thirty years ago by F.M. Dekking and M. Keane, are the substitutions0 7→ 001,
1 7→ 11100 and0 7→ 001, 1 7→ 11001. Both have two fixed points, and have
the same Abelianization. It is shown in [15] that the subshift generated by the first
substitution is topologically mixing, but not the second. But both are topologically
weak mixing.

2.3 Sturmian words & generalizations

Let ω ∈ AN and set
ρω(n) = Card(Fω(n)).

The functionρω : N → N is called thefactor complexity functionof ω. Given a
minimal subshift(X, T ) onA, we haveFω(n) = Fω′(n) for all ω, ω′ ∈ X and
n ∈ N. Thus we can define the factor complexityρ(X,T )(n) of a minimal subshift
(X, T ) by

ρ(X,T )(n) = ρω(n)

for anyω ∈ X.
A word ω ∈ AN is periodic if there exists a positive integerp such that

ωi+p = ωi for all indicesi, and it isultimately periodicif ωi+p = ωi for all suffi-
ciently largei. An infinite word isaperiodicif it is not ultimately periodic. By a
celebrated result due to Hedlund and Morse [31], a word is ultimately periodic if
and only if its factor complexity is uniformly bounded. In particular, pω(n) < n
for all n sufficiently large. Words whose factor complexityρω(n) = n + 1 for all
n ≥ 0 are calledSturmian words. Thus, Sturmian words are those aperiodic words
having the lowest complexity. Sinceρω(1) = 2, it follows that Sturmian words
are binary words. The most extensively studied Sturmian word is the so-called
Fibonacci word

f = 01001010010010100101001001010010010100101001001010010 · · ·

fixed by the morphism0 7→ 01 and 1 7→ 0. Let ω ∈ {0, 1}N be a Sturmian
word, and letΩ denote the shift orbit closure ofω. The conditionρω(n) = n + 1
implies the existence of exactly one right special and one left special factor of
each length. Clearly, given any two left special factors, one is necessarily a prefix
of the other. It follows thatΩ contains a unique word all of whose prefixes are left
special factors ofω. Such a word is called thecharacteristic wordand denoted
ω̃. It follows that both0ω̃, 1ω̃ ∈ Ω. It is readily verified that the Fibonacci word
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above is a characteristic Sturmian word. A Sturmian wordω is calledsingular if
T n(ω) = ω̃ for somen ≥ 1. Otherwise it is said to benonsingular.

Sturmian words admit various types of characterizations ofgeometric and
combinatorial nature. We give two such characterizations which will be used
in the paper: as irrational rotations on the unit circle and as mechanical words.
In [31] Hedlund and Morse showed that each Sturmian word may be realized
measure-theoretically by an irrational rotation on the circle. That is, every Stur-
mian word is obtained by coding the symbolic orbit of a pointx on the circle (of
circumference one) under a rotationRα by an irrational angleα, 0 < α < 1,
where the circle is partitioned into two complementary intervals, one of lengthα
and the other of length1 − α. And conversely each such coding gives rise to a
Sturmian word. The quantityα is called theslope. Namely, therotationby angle
α is the mappingRα from [0, 1) (identified with the unit circle) to itself defined
byRα(x) = {x+α}, where{x} = x− [x] is the fractional part ofx. Considering
a partition of[0, 1) into I0 = [0, 1 − α), I1 = [1 − α, 1), define a word

sα,ρ(n) =

{

0, if Rn
α(ρ) = {ρ+ nα} ∈ I0,

1, if Rn
α(ρ) = {ρ+ nα} ∈ I1

One can also defineI ′0 = (0, 1 − α], I ′1 = (1 − α, 1], the corresponding word
is denoted bys′α,ρ. For a Sturmian wordw of slopeα its subshiftΩ is given by
Ω = {sα,ρ, s

′
α,ρ|ρ ∈ [0, 1)}.

A straightforward computation shows that

sα,ρ(n) = ⌊α(n + 1) + ρ⌋ − ⌊αn+ ρ⌋,

s′α,ρ(n) = ⌈α(n + 1) + ρ⌉ − ⌈αn+ ρ⌉;

sα,ρ ands′α,ρ are called theupperandlower mechanical words(of slopeα) based
atρ.

In [1] Arnoux and Rauzy introduced a class of uniformly recurrent (minimal)
sequencesω on am-letter alphabet of complexityρω(n) = (m − 1)n + 1 char-
acterized by the following combinatorial criterion known as the⋆ condition: ω
admits exactly one right special and one left special factorof each length. We
call themArnoux-Rauzy sequences. This condition distinguishes them from other
sequences of complexity(m− 1)n+ 1 such as those obtained by coding trajecto-
ries ofm-interval exchange transformations. These words are generally regarded
as natural combinatorial generalizations of Sturmian words to higher alphabets.
In particular, the Fibonacci word generalizes to them-bonacci word fixed by the
substitution

σm : {0, 1, . . . , m− 1} → {0, 1, . . . , m− 1}∗

given by

σm(i) =

{
0(i+ 1) for 0 ≤ i < m− 1
0 for i = m− 1

10



However, many of the dynamical and geometrical interpretations of Sturmian
words do not extend to this new class of words (see [12] for example).

In the subsequent sections we will consider partitions ofN defined by words.
Let ω ∈ AN, and letF denote the set of factors ofω. A finite subsetX is called a
F -prefix codeif X ⊂ F and given any two distinct elements ofX, neither one is
a prefix of the other. AF -prefix code isF -maximalif it is not properly contained
in any otherF -prefix code. The simplest example of aF -maximal prefix code is
the set of all elements ofF of some fixed lengthd. EachF -maximal prefix code
X defines a partition

N =
⋃

u∈X

ω
∣
∣
u

If ω is a Sturmian word, then the corresponding partition is called aSturmian
partition.

3 Ultrafilters, IP-sets and central sets

3.1 Stone-̌Cech compactification

Many of our results rely on the algebraic/topological properties of the Stone-̌Cech
compactification ofN. The Stone-̌Cech compactificationβN of N is one of many
compactifications ofN. It is in fact the largest compact Hausdorff space gener-
ated byN. More preciselyβN is a compact and Hausdorff space together with a
continuous injectioni : N →֒ βN satisfying the following universal property: any
continuous mapf : N → X into a compact Hausdorff spaceX lifts uniquely to a
continuous mapβf : βN → X, i.e.,f = βf ◦ i. This universal property charac-
terizesβN uniquely up to homeomorphism. While there are different methods for
constructing the Stone-Čech compactification ofN, we shall regardβN as the set
of all ultrafilters onN with theStone topology.

Recall that a setU of subsets ofN is called anultrafilter if the following
conditions hold:

• ∅ /∈ U .

• If A ∈ U andA ⊆ B, thenB ∈ U .

• A ∩ B ∈ U whenever bothA andB belong toU .

• For everyA ⊆ N eitherA ∈ U orAc ∈ U whereAc denotes the complement
of A.

For every natural numbern ∈ N, the setUn = {A ⊆ N |n ∈ A} is an example
of an ultrafilter. This defines an injectioni : N →֒ βN by: n 7→ Un. An ultrafilter

11



of this form is said to beprincipal. By way of Zorn’s lemma, one can show the
existence of non-principal (orfree) ultrafilters.

It is customary to denote elements ofβN by lettersp, q, r . . . . For each set
A ⊆ N, we setA◦ = {p ∈ βN|A ∈ p}. Then the setB = {A◦|A ⊆ N} forms
a basis for the open sets (as well as a basis for the closed sets) of βN and defines
a topology onβN with respect to whichβN is both compact and Hausdorff.2 It
is not difficult to see that the injectioni : N →֒ βN is continuous and satisfies
the required universal property. In fact, given a continuous mapf : N → X
with X compact Hausdorff, for each ultrafilterp ∈ βN, the pushfowardf(p) =
{f(n) |n ∈ p} defines an ultrafilter onX having a unique limit pointβf(p).

There is a natural extension of the operation of addition+ onN to βN making
βN a compactleft-topological semigroup.More precisely we define addition of
two ultrafiltersp, q by the following rule:

p+ q = {A ⊆ N | {n ∈ N|A− n ∈ p} ∈ q}.

It is readily verified thatp + q is once again an ultrafilter and that for each
fixed p ∈ βN, the mappingq 7→ p + q defines a continuous map fromβN into
itself.3 The operation of addition inβN is associative and for principal ultrafilters
we haveUm + Un = Um+n. However in general addition of ultrafilters is highly
non-commutative. In fact it can be shown that the center is precisely the set of all
principal ultrafilters [26].

3.2 IP-sets and central sets

Let (S,+) be a semigroup. An elementp ∈ S is called anidempotentif p+p = p.
We recall the following result of Ellis [20]:

Theorem 3.1 (Ellis [20]). Let (S,+) be a compact left-topological semigroup
(i.e.,∀x ∈ S the mappingy 7→ x+ y is continuous). ThenS contains an idempo-
tent.

It follows thatβN contains a non-principal ultrafilterp satisfyingp + p = p. In
fact, we could simply apply Ellis’s result to the semigroupN − {0}. This would
then exclude the only principal idempotent ultrafilter, namely U0. From here on,
by an idempotent ultrafilter inβN we mean a free idempotent ultrafilter.

We will make use of the following striking result due to Hindman linking IP-
sets and idempotents inβN :

2Although the existence of free ultrafilters requires Zorn’slemma, the cardinality ofβN is 22
N

from which it follows thatβN is not metrizable.
3Our definition of addition of ultrafilters is the same as that given in [6] but is the reverse of

that given in [26] in whichA ∈ p + q if and only if {n ∈ N|A − n ∈ q} ∈ p}. In this case,βN

becomes a compact right-topological semigroup.
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Theorem 3.2(Theorem 5.12 in [26]). A subsetA ⊆ N is an IP-set if and only if
A ∈ p for some idempotentp ∈ βN.

It follows immediately thatA is an IP∗-set if and only ifA ∈ p for every idempo-
tentp ∈ βN (see Theorem 2.15 in [6]). We also note that the property of being an
IP-set is partition regular.

To see the connection between idempotent ultrafilters and IP-sets, consider a
setA0 ⊆ N belonging to some idempotentp ∈ βN. Then asA0 ∈ p+ p it follows
that there existx0 ∈ A0 such thatA0∩A0−x0 ∈ p. SetA1 = A0∩A0−x0. Since
A1 ∈ p+pwe can choosex1 ∈ A1 (x1 6= x0) such thatA1∩A1−x1 ∈ p.Note that
thus far we havex0, x1 andx0+x1 all belong toA0. SetA2 = A1∩A1−x1. Again
sinceA2 ∈ p + p we can choosex2 ∈ A2 (distinct from bothx0, x1) such that
A2 ∩ A2 − x2 ∈ p. Sincex2 ∈ A2, it follows that x2, x2 + x1 ∈ A1 ⊆ A0.
Sincex2, x2 + x1 ∈ A1 it follows that x2 + x0, x2 + x1 + x0 ∈ A0. Thus
{x0, x1, x2, x0 + x1, x0 + x2, x1 + x2, x0 + x1 + x2} ⊆ A0. Iterating this pro-
cess we obtain an infinite sequence of distinct points(xn)n∈N such that for any
finite subsetF ⊂ N the sum

∑

n∈F xn belongs toA0. In other words,A0 is an
IP-set.

In [22], Furstenberg introduced a special class of IP-sets,called central sets,
having additional rich combinatorial properties. They were originally defined in
terms of topological dynamics (see Definition 1.2). As in thecase of IP-sets,
they may be alternatively defined in terms of belonging to a special class of free
ultrafilters, called minimal idempotents4. To define a minimal idempotent we must
first review some basic properties concerning ideals inβN.

Let (S,+) be any semigroup. Recall that a subsetI ⊆ S is called aright
(resp. left) idealif I +S ⊆ I (resp.S +I ⊆ I). It is called atwo sided idealif it
is both a left and right ideal. A right (resp. left) idealI is calledminimal if every
right (resp. left) idealJ included inI coincides withI.

We recall some useful facts concerning minimal right idealsof a semigroup
(similar considerations apply to minimal left ideals):
Facts:

1. LetM be a minimal right ideal ofS. Then every elementx in M generates
M in the sense thatM = x+ S = x+ M.

2. If R is a right ideal ofS with the property thatR = x+R for everyx ∈ R,
thenR is a minimal right ideal.

3. LetM be a minimal right ideal ofS. ThenM = x+ M for everyx ∈ S.

4. Every minimal right idealM is contained in every two sided idealI.

4The equivalence between the two definitions is due to Bergelson and Hindman [7].
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Minimal right/left ideals do not necessarily exist e.g. thecommutative semi-
group(N,+) has no minimal right/left ideals (the ideals inN are all of the form
In = [n,+∞) = {m ∈ N |m ≥ n}.) However,

Proposition 3.3. Every compact Hausdorff left-topological semigroup (e.g., βN)
admits a minimal right ideal and a minimal left ideal.

Let M be a minimal right ideal of a left-topological semigroup. SinceM is
of the formx+S with x ∈ M, it follows thatM is closed. ThusM is a compact
left-topological semigroup and hence by Ellis [20] contains an idempotentp. It is
verified thatS+p is then a minimal left ideal, thatp ∈ S+p and thatp+S∩S+p =
p + S + p is a group. More generally the intersection of any minimal right ideal
with any minimal left ideal is a group and hence contains an idempotent.

Let K(S) denote the union of all minimal right ideals ofS. ThenK(S) is a
two sided ideal and is in fact the smallest such ideal. To see this we first note
thatK(S) is a right ideal (being the union of right ideals). To see thatK(S) is
also a left ideal, letx ∈ K(S) andy ∈ S. Thenx ∈ M for some minimal right
idealM. Thusy + x ∈ y + M which by Fact (3) is a minimal right ideal. Hence
y + x ∈ K(S). This shows thatK(S) is a two sided ideal ofS. By Fact (4) it
follows thatK(S) is contained in every two sided idealI.
We could have definedK(S) to be the union of all minimal left ideals ofS and in
an analogous way deduced thatK(S) is the smallest two sided ideal ofS. Thus

K(S) =
⋃

{L |L is a minimal left ideal ofS}

=
⋃

{R |R is a minimal right ideal ofS}.

Definition 3.4. An idempotentp is called a minimal idempotent if it belongs to
K(S).

Thus as every compact left-topological semigroup (e.g.βN) contains a mini-
mal right ideal, and by Ellis every minimal right ideal contains an idempotent, we
deduce that every compact left-topological semigroup contains a minimal idem-
potent. Alternatively, given two idempotentsp, q ∈ S we writep � q if

p+ q = q + p = p.

It turns out that an idempotentp is minimal if and only if it is minimal with respect
to the relation� .

Definition 3.5. A subsetA ⊂ N is called central if it is a member of some min-
imal idempotent inβN. It is called a central∗-set if it belongs to every minimal
idempotent inβN.
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It follows from the above definition that every central set isan IP-set and that
the property of being central is partition regular. Centralsets are known to have
substantial combinatorial structure. For example, any central set contains arbitrar-
ily long arithmetic progressions, and solutions to all partition regular systems of
homogeneous linear equations (see for example [8]). Many ofthe rich properties
of central sets are a consequence of the so-calledCentral Sets Theoremfirst poved
by Furstenberg in Proposition 8.21 in [22] (see also [13, 8, 27]). Furstenberg
pointed out that as an immediate consequence of the Central Sets Theorem one
has that wheneverN is divided into finitely many classes, and a sequence(xn)n∈N

is given, one of the classes must contain arbitrarily long arithmetic progressions
whose increment belongs to{

∑

n∈F xn|F ∈ Fin(N)}.

3.3 Limits of ultrafilters

It is often convenient to think of an ultrafilterp as a{0, 1}-valued, finitely additive
probability measure on the power set ofN. More precisely, for any subsetA ⊆
N, we sayA hasp-measure1, or is p-large if A ∈ p. This notion of measure
gives rise to a notion of convergence of sequences indexed byN which is the key
tool in allowing us to apply ideas from combinatorics on words to the framework
of ultrafilters. However, from our point of view, it is more natural to define it
alternatively as a mapping from words to words (see Remark 3.13). LetA denote
a non-empty finite set. Then each ultrafilterp ∈ βN naturally defines a mapping

p∗ : AN → AN

as follows:

Definition 3.6. For eachp ∈ βN andω ∈ AN, we definep∗(ω) ∈ AN by the
condition:u ∈ A∗ is a prefix ofp∗(ω) ⇐⇒ ω

∣
∣
u
∈ p.

We note that ifu, v ∈ A∗, ω
∣
∣
u
, ω

∣
∣
v
∈ p and|v| ≥ |u|, thenu is a prefix ofv. In

fact, if v′ denotes the prefix ofv of length|u| then asω
∣
∣
v
⊆ ω

∣
∣
v′
, it follows that

ω
∣
∣
v′
∈ p and henceu = v′. Thusp∗(ω) is well defined.

We note that ifω, ν ∈ AN and if each prefixu of ν is a factor ofω, then there
exists an ultrafilterp ∈ βN such thatp∗(ω) = ν. In fact, the set

C = {ω
∣
∣
u
| u is a prefix ofν}

satisfies the finite intersection property, and hence by a routine argument involving
Zorn’s lemma it follows that there exists ap ∈ βN with C ⊆ p.

It follows immediately from the definition ofp∗, Definition 3.5 and Theo-
rem 3.2 that

Lemma 3.7. The setω
∣
∣
u

is an IP-set (resp. central set) if and only ifu is a prefix
of p∗(ω) for some idempotent (resp. minimal idempotent)p ∈ βN.
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Lemma 3.8. For eachp ∈ βN, ω ∈ AN andu ∈ A∗ we have

p∗(ω)
∣
∣
u

= {m ∈ N |ω
∣
∣
u
−m ∈ p}

whereω
∣
∣
u
−m is defined as the set of alln ∈ N such thatn+m ∈ ω

∣
∣
u
.

Proof. Supposem ∈ p∗(ω)
∣
∣
u
. Then by definitionu occurs in positionm in p∗(ω).

Let v denote the prefix ofp∗(ω) of length|v| = m + |u|. Then, asu is a suffix of
v we haveω

∣
∣
v
+m ⊆ ω

∣
∣
u

and henceω
∣
∣
v
⊆ ω

∣
∣
u
−m. But asv is a prefix ofp∗(ω)

we haveω
∣
∣
v
∈ p and henceω

∣
∣
u
−m ∈ p as required.

Conversely, fixm ∈ N such thatω
∣
∣
u
−m ∈ p. Let Z be the set of all factors

v of ω of length|v| = m+ |u| ending inu. Then

ω
∣
∣
u
−m ⊆

⋃

v∈Z

ω
∣
∣
v
.

It follows that there existsv ∈ Z such thatω
∣
∣
v
∈ p. In other words, there exists

v ∈ Z such thatv is a prefix ofp∗(ω). It follows thatu occurs in positionm in
p∗(ω).

Lemma 3.9. For p, q ∈ βN andω ∈ AN, we have(p + q)∗(ω) = q∗(p∗(ω)). In
particular, if p is an idempotent, thenp∗(p∗(ω)) = p∗(ω).

Proof. For each wordu ∈ A∗ we have thatu is a prefix of(p+ q)∗(ω) if and only
if

ω
∣
∣
u
∈ p+ q ⇐⇒ {m ∈ N |ω

∣
∣
u
−m ∈ p} ∈ q.

On the other hand,u is a prefix ofq∗(p∗(ω)) if and only if p∗(ω)
∣
∣
u
∈ q. The result

now follows immediately from the preceding lemma.

Lemma 3.10. For eachp ∈ βN and ω ∈ AN we havep∗(T (ω)) = T (p∗(ω))
whereT : AN → AN denotes the shift map.

Proof. Assumeu ∈ A∗ is a prefix ofp∗(T (ω)). ThenT (ω)
∣
∣
u
∈ p. But

T (ω)
∣
∣
u

=
⋃

a∈A
ω
∣
∣
au
.

It follows that there existsa ∈ A such thatω
∣
∣
au

∈ p. Thusau is a prefix ofp∗(ω)
and henceu is a prefix ofT (p∗(ω)).

In what follows, we will make use of the following key result in [6] (see also
Theorem 1 in [10]):

Theorem 3.11(Theorem 3.4 in [6]). Let (X, T ) be a topological dynamical sys-
tem. Then if two pointsx, y ∈ X are proximal withy uniformly recurrent, then
there exists a minimal idempotentp ∈ βN such thatp∗(x) = y.
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As a consequence we have

Theorem 3.12.Letω ∈ AN be a uniformly recurrent word, and letu ∈ A+. Then
ω
∣
∣
u

is an IP-set if and only ifω
∣
∣
u

is a central set.

Proof. For anyA ⊂ N we have that ifA is central thenA belongs to some minimal
idempotentp ∈ βN and hence in particularA belongs to an idempotent inβN.
Hence by Theorem 3.2 we have thatA is an IP-set. Now suppose thatω

∣
∣
u

is an
IP-set. Thenω

∣
∣
u

belongs to some idempotentp ∈ βN. Setν = p∗(ω). Thenu is a
prefix of ν. Also, sincep is idempotent we havep∗(ν) = p∗(p∗(ω)) = p∗(ω) = ν.
Hence for every prefixv of ν we have thatν

∣
∣
v
∈ p andω

∣
∣
v
∈ p and hence

ν
∣
∣
v
∩ ω

∣
∣
v
∈ p. In particularν

∣
∣
v
∩ ω

∣
∣
v
6= ∅. Henceω andν are proximal. Since

ω is uniformly recurrent, it follows thatν is also uniformly recurrent. Hence
by Theorem 3.11 there exists a minimal idempotentq with q∗(ω) = ν. Hence
ω
∣
∣
u
∈ q, whenceω

∣
∣
u

is central.

Remark 3.13. It is readily verified that our definition ofp∗ coincides with that
of p-limn . More precisely, given a sequence(xn)n∈N in a topological space and
an ultrafilterp ∈ βN, we write p-limn xn = y if for every neighborhoodUy

of y one has{n |xn ∈ Uy} ∈ p. In our case we havep∗(ω) = p-limn(T n(ω))
(see [24]). With this in mind, the preceding two lemmas are well known (see for
instance [10, 24]). However, our defining condition ofp∗ in Definition 3.6 does
not directly rely on the topology and so may be applied in other general settings.
For instance, letΩ ⊆ AN be a subshift, andN = {n0 < n1 < n2 < · · · } an
infinite sequence of natural numbers. For eachω ∈ Ω we put

XN
k = {ωn+n0

ωn+n1
. . . ωn+nk−1

|n ≥ 0} ⊆ Ak.

For eachu ∈ XN
k we define the set

ωN ∣
∣
u

= {n ∈ N |ωn+n0
ωn+n1

. . . ωn+nk−1
= u}.

Then the setsωN ∣
∣
u

with u ∈ XN
k partitionN. So, givenp ∈ βN, for eachk ≥ 1

there exists a uniqueu ∈ XN
k with ωN ∣

∣
u
∈ p. Moreover ifv ∈ XN

k+1 andωN ∣
∣
v
∈

p, thenu is a prefix ofv. So using the condition in Definition 3.6, each infinite
sequenceN and ultrafilterp ∈ βN defines a mappingΩ → Ω. Of particular
interest is the case in whichΩ is a uniform set in the sense of T. Kamae andN is
chosen such thatω[N ] is a super-stationary set (see [28, 29]).

Another situation in which the defining condition of Definition 3.6 applies is
in the context of infinite permutations [21]. By an infinite permutationπ we mean
a linear ordering onN. Then for each finite permutationu of {1, 2, . . . , n} we say
thatu occurs in positionm of π if the restriction ofπ to {m,m+1, . . . , m+n−1}
is equal tou. Thus we may define the setπ

∣
∣
u

as the set of allm ∈ N such that
u occurs in positionm in π, and again the setsπ

∣
∣
u

(over all permutationsu of
{1, 2, . . . , n}) determine a partition ofN. Hence eachp ∈ βN defines a map from
the set of all infinite permutations into itself.
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4 A first analysis of some concrete examples

4.1 The Fibonacci word

While most of the proofs of the results announced in the Introduction rely on the
algebraic and topological properties of ultrafilters onN and their links to IP-sets,
we begin by analyzing concretely a few examples generated bysimple substitu-
tion rules. To establish that certain subsets ofN are IP-sets, we will use nothing
more than the definition of IP-sets and the abstract numeration systems defined by
substitutions first introduced by J.-M. Dumont and A. Thomas[17, 18].

Let us begin with theFibonacciinfinite wordf = f0f1f2 . . . ∈ {0, 1}N.
We set

f
∣
∣
0

= {n ∈ N|fn = 0}

and
f
∣
∣
1

= {n ∈ N|fn = 1}.

Sof
∣
∣
0

= {0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, . . .} andf
∣
∣
1

= {1, 4, 6, 9, 12, 14, 17, . . .}.

This defines the Sturmian partitionN = f
∣
∣
0
∪ f

∣
∣
1
. Let us denote byFn thenth

Fibonacci number so thatF0 = 1, F1 = 2, F2 = 3, . . . . It is well known that
each positive integern has one or more representations when expressed as a sum
of distinct Fibonacci numbers. One way of obtaining such a representation is by
applying thegreedy algorithm. This gives rise to a representation ofn of the form
n =

∑k
i=0 tiFi with ti ∈ {0, 1} and withti+1ti 6= 11 for each0 ≤ i ≤ k−1. Such

a representation ofn is necessarily unique and is called theZeckendorff represen-
tation [32] (a special case of the Dumont-Thomas numeration system[17, 18]).
We shall writeZ(n) = tktk−1 . . . t0. For example, applying the greedy algorithm
to n = 50 we obtain50 = 34 + 13 + 3 = F7 + F5 + F2 which gives rise to
the representationZ(50) = 10100100. It follows immediately thatZ(Fn) = 10n.
The connection betweenZ(n) and the entryfn of the Fibonacci wordf is given
by the following well known fact:fn = 0 wheneverZ(n) ends in0 andfn = 1
wheneverZ(n) ends in1. Thus

f
∣
∣
0

= {n ∈ N | Z(n) ends in0}

and
f
∣
∣
1

= {n ∈ N | Z(n) ends in1}.

We now consider the sequence(xn)n∈N given byxn = F2n+1. It is readily
verified that for eachA ∈ Fin(N), the Zeckendorff representation of

∑

n∈A xn

ends in102m+1 wherem = min(A). In fact, the symbolic sum of the individual
Zeckendorff representations of eachxn occurring in

∑

n∈A xn does not involve
any carry overs. Moreover the resulting expression does notcontain any occur-
rences of11 and hence is equal to the Zeckendorff representation of

∑

n∈A xn.
Thus every finite sum of the form

∑

n∈A xn with A ∈ Fin(N) belongs tof
∣
∣
0
. Thus

we have shown thatf
∣
∣
0

is an IP-set.
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We next verify thatf
∣
∣
1

is not an IP-set, and hencef
∣
∣
0

is an IP∗-set. We will
use the following general observation. Consider a subsetA ⊂ N partitioned into
k > 0 non-intersecting sets:A = A1 ∪ A2 ∪ · · · ∪ Ak. Suppose that for each
1 ≤ j ≤ k there exists a positive integerN (which may depend onj) such that
wheneverm1, m2, . . . , mN are distinct elements ofAj, we have

∑N
i=1mi /∈ A.

ThenA is not an IP-set. In fact, ifA were an IP-set, then for some1 ≤ j ≤ k,
there would exist a sequencex1 < x2 < x3 < · · · contained inAj such that
{
∑

n∈F xn|F ∈ Fin(N)} ⊂ A.

Let α = 3−
√

5
2
. Then the Fibonacci wordf is the orbit of the pointα under

irrational rotationRα on the unit circle byα. Let I be the interval[1 − α, 1) (the
interval coded by1). Son ∈ f

∣
∣
1

if and only ifRn
α(α) = {α+nα} = {(n+1)α} ∈

I.
Fix (1 − α)/3 ≤ α′ ≤ (1 − α)/2 and putI1 = [1 − α, 1 − α′) andI2 =

[1 − α′, 1). Sinceα′ ≤ (1 − α)/2 it follows thatα′ < α. Also for j = 1, 2 set
Aj = {n ∈ N|Rn(α) ∈ Ij}. ThusA1, A2 partitions the setf

∣
∣
1
. We now show that

f
∣
∣
1

is not an IP-set by showing that the sum of any three elements of A1 belongs
to f

∣
∣
0

and that the sum of any two elements ofA2 belongs tof
∣
∣
0
.

Now take anyn1, n2, n3 ∈ A1 and setx1 = {(n1 + 1)α}, x2 = {(n2 +
1)α}, x3 = {(n3 + 1)α} ∈ [1− α, 1− α′). Thenn1 + n2 + n3 corresponds to the
point{(n1+n2+n3+1)α} = {x1+x2+x3−2α}. Sincex1, x2, x3 ∈ [1−α, 1−α′),
we have{x1 + x2 + x3 − 2α} ∈ [{3 − 5α}, {3 − 3α′ − 2α}). Sinceα′ ≥ 1−α

3
it

follows that2 − 3α′ − 2α ≤ 1 − α, and hence{2 − 3α′ − 2α} ≤ 1 − α, which
gives{3 − 3α′ − 2α} ≤ 1 − α as required.

Similarly take anyn1, n2 ∈ A2. Setx1 = {(n1 + 1)α}, x2 = {(n2 + 1)α} ∈
[1−α′, 1). Thenn1+n2 corresponds to the point{(n1+n2+1)α} = {x1+x2−α}.
Sincex1, x2 ∈ [1−α′, 1), we have{x1 +x2 −α} ∈ [{2−2α′−α}, 1−α). Since
α′ ≤ 1−α

2
it follows that{1 − 2α′ − α} ≥ 0, and hence{2 − 2α′ − α} ≥ 0.

The above arguments may be generalized to show thatf
∣
∣
u

is an IP∗-set for
every prefixu of f .

In contrast, let us consider the setsg
∣
∣
0

and g
∣
∣
1

where g = 0f =
001001010010010 . . . . Thus,

g
∣
∣
0

= {n ∈ N | gn = 0} = {0} ∪ {n ≥ 1 | fn−1 = 0}.

Consider the sequence(yn)n∈N defined byyn = F2n+2. It is readily verified that
Z(yn − 1) = (10)n+1 and hence eachyn belongs tog

∣
∣
0
. Now fix A ∈ Fin(N).

Since the Zeckendorff representation of
∑

n∈A yn ends in102m+2 wherem =
min(A), it follows thatZ(

∑

n∈A yn − 1) ends in(10)m+1, and hence
∑

n∈A yn ∈
g
∣
∣
0
. Thus,g

∣
∣
0

is an IP-set. Similarly, it is readily verified that for eachA ∈

Fin(N), we have that
∑

n∈A xn ∈ g
∣
∣
1

wherexn = F2n+1. Thus this time we
obtain the Sturmian decompositionN = g

∣
∣
0
∪ g

∣
∣
1

in which both setsg
∣
∣
0

and
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g
∣
∣
1

are IP-sets. In this case, neitherg
∣
∣
0

nor g
∣
∣
1

is an IP∗-set. Once again, these
arguments may be extended to show that bothg

∣
∣
0u

andg
∣
∣
1u

are IP-sets for any
prefixu of f and hence neither set is an IP∗-set.

In summary, by Theorem 3.12 we have:

Proposition 4.1. Let f denote the Fibonacci word. Then for every prefixu of f the
setf

∣
∣
u

is an IP∗-set (and hence a central∗ set). Settingg = 0f we have that for
every prefixu of f the setsg

∣
∣
0u

andg
∣
∣
1u

are both IP-sets (resp. central sets).

4.2 Them-bonacci word

The above analysis extends more generally to the so-calledm-bonacci word. Fix
a positive integerm ≥ 2, and lett = t0t1t2 . . . ∈ {0, 1, . . . , m − 1}N denote the
m-bonacci infinite wordfixed by the substitution

σm : {0, 1, . . . , m− 1} → {0, 1, . . . , m− 1}∗

given by

σm(i) =

{
0(i+ 1) for 0 ≤ i < m− 1
0 for i = m− 1

Using the associated Dumont-Thomas numeration system, we will show:

Proposition 4.2. Letm ≥ 2, and consider the partition ofN given by

N =
⋃

0≤k≤m−1

g
∣
∣
k

whereg = 0t ∈ {0, 1, . . . , m− 1}N. Then for each0 ≤ k ≤ m− 1 the setg
∣
∣
k

is
an IP-set (resp. central set).

The proof is a simple extension of the ideas outlined above inthe case of the
Fibonacci word. For eachm ≥ 2, we define them-bonacci numbers byTk = 2k

for 0 ≤ k ≤ m − 1 andTk = Tk−1 + Tk−2 + · · · + Tk−m for k ≥ m. When
m = 2, these are the usual Fibonacci numbers. Each positive integer n may be
written in one or more ways in the formn =

∑k

i=1 tiTk−i whereti ∈ {0, 1} and
t1 = 1. By applying the greedy algorithm, one obtains a representation ofn of the
formw = t1t2 · · · tk with the property thatw does not containm consecutive1’s.
Such a representation ofn is necessarily unique and is called them-Zeckendorff
representationof n, denotedZm(n) (see [19]). ThusZm(Tn) = 10n for n ≥ 0.

Proof. Fix 0 ≤ k ≤ m − 1. We will show that the setg
∣
∣
k

is an IP-set. It is well
known thattn = k if and only ifZm(n) ends in01k. Hence

g
∣
∣
k

= {n ∈ N | gn = k} = {n ∈ N | tn−1 = k} = {n ∈ N | Zm(n−1) ends in01k}.
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Consider the sequence(xn)n∈N given byxn = Tmn+k. It is readily verified
for any finite subsetA ⊂ N, them-Zeckendorff representation of the finite sum
s =

∑

n∈A xn ends in10mr+k wherer = min(A) and hence them-Zeckendorff
representation ofs− 1 ends in(1m−10)r1k and hences ∈ g

∣
∣
k

as required.
Having established that each of the setsg

∣
∣
k

is an IP-set (for0 ≤ k ≤ m − 1), it
follows that nog

∣
∣
k

is an IP∗-set.

As an immediate consequence of Proposition 4.2 we have:

Corollary 4.3. For each positive integerr there exists a partitionN = A1 ∪A2 ∪
· · · ∪ Ar in which eachAi is a central set.

Proof. For each1 ≤ k ≤ r, it suffices to takeAk = g
∣
∣
k−1.

.

5 Sturmian partitions & central sets

In this section we prove the results announced in section 1 concerning Sturmian
partitions ofN. Throughout this sectionω = ω0ω1ω2 . . . ∈ {0, 1}N will denote a
Sturmian word,F the set of all factors ofω, and(Ω, T ) the subshift generated by
ω, whereT denotes the shift map. We denote byω̃ ∈ Ω the characteristic word.

Lemma 5.1. If ω, ω′, ω′′ ∈ Ω are such thatT n0(ω) = T n0(ω′) = T n0(ω′′), then
Card{ω, ω′, ω′′} ≤ 2.

Proof. This follows immediately from the fact thatΩ contains a unique charac-
teristic word and that this word is aperiodic.

We will make use of the following key lemma which essentiallysays that two
distinct Sturmian wordsω andω′ are proximal if and only ifT n(ω) = T n(ω′) = ω̃
for somen ≥ 1.

Lemma 5.2. Let ω and ω′ be distinct elements ofΩ. Then eitherT n(ω) =
T n(ω′) = ω̃ for somen ≥ 1, or there existsN > 0 such thatωnωn+1 . . . ωn+N 6=
ω′

nω
′
n+1 . . . ω

′
n+N for everyn ∈ N.

Proof. We will use a definition of Sturmian words via rotations, which we recalled
in Section 2. Notice that̃ω = sα,α = s′α,α, and singular words correspond to the
case when the orbit of a point under rotation map goes throughthe pointα. If
sα,ρ is non-singular, thensα,ρ = s′α,ρ. If w 6= w′ are singular words defined by
rotations of the same point, i. e.,w = sα,ρ, w′ = s′α,ρ, then they differ only when
they pass through1−α and0, i. e., in maximum two points, so there existsn0 ≥ 1
such thatT n0(ω) = T n0(ω′) = ω̃.

Now consider the case whenw, w′ are defined by rotations of two different
pointsρ, ρ′, 0 ≤ ρ < ρ′ < 1. To be definite, let us consider the interval exchange

21



of I0 andI1 for bothw andw′. We should prove that there there existsN > 0 such
thatωnωn+1 . . . ωn+N 6= ω′

nω
′
n+1 . . . ω

′
n+N for everyn ∈ N. We havewi 6= w′

i if
and only ifwi ∈ I0, w′

i ∈ I1 or wi ∈ I1, w′
i ∈ I0. This condition is equivalent

to wi ∈ [1 − α − (ρ′ − ρ), 1 − α) ∪ [1 − (ρ′ − ρ), 1). The distribution of points
from the orbit of any pointθ under rotation byα is dense, it means that for everyǫ
there existsN(ǫ), such that afterN(ǫ) iterations points split the interval[0, 1) into
intervals of length less thanǫ. Puttingǫ = ρ′ − ρ, we get that everyN = N(ǫ)
consecutive iterations there will be a point in every interval of lengthρ′ − ρ, so
there are points in[1−α− (ρ′−ρ), 1−α) and[1− (ρ′−ρ), 1) everyN iterations,
and hence for everyn there existsi ∈ [n, n+N − 1] with wi 6= w′

i.

We first consider the case of nonsingular Sturmian words:

Lemma 5.3. Let ω ∈ {0, 1}N be a nonsingular Sturmian word andp ∈ βN an
idempotent ultrafilter. Thenp∗(ω) = ω.

Proof. Suppose to the contrary thatp∗(ω) 6= ω. Then sinceω is nonsingular,
Lemma 5.2 implies that for all sufficiently long factorsu of ω, we have thatω

∣
∣
u
∩

p∗(ω)
∣
∣
u

= ∅. But, by Lemma 3.9 we havep∗(p∗(ω)) = p∗(ω), that is the image
underp∗ of ω andp∗(ω) coincides. It follows by definition ofp∗ that for every
prefixu of p∗(ω) we haveω

∣
∣
u
∈ p andp∗(ω)

∣
∣
u
∈ p and henceω

∣
∣
u
∩ p∗(ω)

∣
∣
u
∈ p,

a contradiction.

Theorem 5.4. Letω ∈ Ω be a nonsingular Sturmian word, andu a factor ofω.
Thenω

∣
∣
u

is an IP-set (resp. central set) if and only ifu is a prefix ofω. Hence for
every prefixv of ω andn ∈ ω

∣
∣
v

the setω
∣
∣
v
− n is an IP∗-set (resp. central∗ set).

Proof. Let ω be a nonsingular Sturmian word,u a prefix ofω, andp ∈ βN an
idempotent ultrafilter. Then by Lemma 5.3u is a prefix ofp∗(ω) and henceω

∣
∣
u
∈

p. Thus for each prefixu of ω the setω
∣
∣
u

belongs to every idempotent ultrafilter
and hence is an IP∗-set. It follows that ifv ∈ F is not a prefix ofω, thenω

∣
∣
v

is not
an IP-set. Finally, letv be any factor ofω andn ∈ N. Thenω

∣
∣
v
− n = T n(ω)

∣
∣
v
.

If n ∈ ω
∣
∣
v
, thenv is a prefix ofT n(ω) from which it follows that

ω
∣
∣
v
− n = T n(ω)

∣
∣
v
. = T n(ω)

∣
∣
v
∈ p.

Henceω
∣
∣
v
− n is an IP∗-set

As a consequence of the above theorem we have

Corollary 5.5. Letω andω′ be two nonsingular Sturmian words, not necessarily
of the same slope. Then for every prefixu of ω and every prefixu′ of ω′ we have
thatω

∣
∣
u
∩ ω′∣∣

u′
is an IP∗-set (resp. central∗ set), in particular the intersection is

infinite.
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We note that the assumption thatω andω′ be nonsingular is necessary, as for
example if we considerω = 0f andω′ = 1f with f the Fibonacci word, then
ω
∣
∣
0
∩ ω′∣∣

1
= {0}.

Proof. Let ω andω′ be two nonsingular Sturmian words,u a prefix ofω, u′ a
prefix ofω′, andp ∈ βN an idempotent ultrafilter. Then by Corollary 1 we have
thatω

∣
∣
u
∈ p andω

∣
∣
u′
∈ p and henceω

∣
∣
u
∩ ω

∣
∣
u′
∈ p. Thusω

∣
∣
u
∩ ω

∣
∣
u′

belongs to
every idempotent and hence is an IP∗-set.

We next consider singular Sturmian words.

Lemma 5.6. Let ω, ω′ ∈ Ω be distinct Sturmian words such thatT n0(ω) =
T n0(ω′) = ω̃ for somen0 ≥ 1. Then for everyu ∈ F and every non-principal
ultrafilter p ∈ βN we have

ω
∣
∣
u
∈ p⇐⇒ ω′∣∣

u
∈ p.

In particular,p∗(ω) = p∗(ω′).

Proof. Sincep is a non-principal ultrafilter, we have thatω
∣
∣
u
∈ p ⇐⇒ ω

∣
∣
u
∩

[N,+∞) ∈ p for all N ≥ 1. Similarly ω′∣∣
u
∈ p ⇐⇒ ω′∣∣

u
∩ [N,+∞) ∈ p for all

N ≥ 1. But for eachu ∈ F , we haveω
∣
∣
u
∩ [n0,+∞) = ω′∣∣

u
∩ [n0,+∞). The

result now follows.

Lemma 5.7. Let ω, ω′ ∈ Ω be as in the previous lemma, and letp ∈ βN be an
idempotent ultrafilter. Thenp∗(ω) = p∗(ω′) ∈ {ω, ω′}.

Proof. That p∗(ω) = p∗(ω′) follows from the previous lemma and the fact that
idempotent ultrafilters are non-principal (see for instance [6]). By Lemma 3.10,
p∗ commutes with the shift mapT, and hence

T n0p∗(ω) = p∗(T n0ω) = p∗(ω̃) = ω̃

where the last equality follows from Lemma 5.3. By Lemma 5.1 applied toω′′ =
p∗(ω) it follows thatp∗(ω) = ω or p∗(ω) = ω′.

Theorem 5.8.Letω ∈ Ω be a Sturmian word such thatT n0(ω) = ω̃ with n0 ≥ 1.
Thenω

∣
∣
u

is an IP-set (or central set) if and only if eitheru is a prefix ofω or a
prefix ofω′ whereω′ is the unique other element ofΩ with T n0(ω′) = ω̃.

Proof. Let ω ∈ Ω andn0 be as in the statement of the theorem. Then there exists
a uniqueω′ ∈ Ω with ω′ 6= ω and withT n0(ω′) = ω̃. Suppose thatω

∣
∣
u

is an IP-set
for someu ∈ F . Then by Lemma 3.7 it follows thatu is a prefix ofp∗(ω) for
some idempotent ultrafilterp ∈ βN. It follows from Lemma 5.7 thatu is a prefix
of ω or a prefix ofω′. This proves one direction.

To establish the other direction, we must show thatω
∣
∣
u

is a central set for
each prefixu of ω or of ω′. By Theorem 3.11, there exist minimal idempotent
ultrafiltersp1, p2 ∈ βN such thatp∗1(ω) = ω andp∗2(ω) = ω′. The result now
follows.
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Remark 5.9. V. Bergelson [9] suggested to us that the above result may be related
to a previously known partition ofN into two central setsX = {[mx], m ∈ N}
andY = {[my], m ∈ N}, wherex andy are two irrational numbers satisfying
1/x + 1/y = 1. In fact, this partition precisely corresponds to our partition of N

into two IP-setsω
∣
∣
0

andω
∣
∣
1

whereω is of the form0ω̃ andω̃ is a characteristic
Sturmian.

This could be seen using the definition of Sturmian words via mechanical
words (see Section 2 for notation). For a slopeα we havesα,0 = 0ω̃. Letα = 1/x
and1/y = 1−α; thensα,0(n) = 1 if and only if there exists an integerk such that
α(n+1) ≥ k andαn < k. It is easy to see that this pair of equations is equivalent
to n < kx ≤ n + 1, which impliesn ∈ X. We havesα,0(n) = 0 if and only if
there exists an integerk such thatα(n+ 1) < k+ 1 andαn ≥ k. It is not difficult
to see that this pair of equations is equivalent ton ≤ (n − k)y < n + 1, which
impliesn ∈ Y .

Remark 5.10. We are unable to extend the results on Sturmian partitions toall
Arnoux-Rauzy words. In fact, our proof of Lemma 5.2 relies onthe geometric
interpretation of Sturmian words as codings of orbits underan irrational rotation
on the circle. It was shown in [12] that there exist Arnoux-Rauzy words which
are not measure-theoretically conjugate to a rotation on then-torus. In this case,
we do not understand for which pairs of Arnoux-Rauzy words inthe subshift are
proximal.

6 Other central partitions defined by substitutions

We begin by briefly reviewing some notions from topological dynamics in the
framework of minimal subshifts(X, T ) which will be used in the proof of Theo-
rem 4. For this we consider two-sided subshifts(X, T ) meaning thatX ⊂ AZ. So
points inX are bi-infinite words. A subshift(X, T ) is said to beequicontinuous
if for every ǫ > 0, there exists aδ > 0, such that for allx, y ∈ X, if d(x, y) < δ
thend(T n(x), T n(y)) < ǫ for everyn ∈ Z. A subshift(Y, T ) is called afactor of
(X, T ) if there exists a continuous surjection

π : X → Y

which commutes with the shift mapT. It is well known (for instance by way of
Zorn’s lemma) that every subshift(X, T ) has amaximal equicontinuous factor
(Y, T ) i.e., (Y, T ) is an equicontinuous factor of(X, T ) and any equicontinuous
factor(Z, T ) of (X, T ) is also a factor of(Y, T ). It is also well known that ifπ :
X → Y is the maximal equicontinuous factor, then for any two pointsx, y ∈ X
we have thatπ(x) = π(y) if and only ifx andy are regionally proximal (see [2] ).

Proof of Theorem 4.Let us fix positive integersr andN. Consider the constant
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length substitution

τ : {1, 2, . . . , r} → {1, 2, . . . , r}+

given by1 7→ 123 · · · r, 2 7→ 23 · · · r1, 3 7→ 34 · · · r12, . . . , r 7→ r12 · · · r − 1.
In caser = 2 we have the Thue-Morse substitution on the alphabet{1, 2}. For
1 ≤ i ≤ r, let x(i) denote theith fixed point ofτ beginning in the letteri. As
in the case of Thue-Morse, fori 6= j the wordsx(i) andx(j) never coincide, i.e.,
x

(i)
n 6= x

(j)
n for eachn ∈ N. Let (X, T ) denote the one-sided minimal subshift

generated by the primitive substitutionτ. We will now show that each of the fixed
pointsx(i) is distal.

Lemma 6.1. Let x denote any one of the fixed pointsx(i) of the substitutionτ
above. Thenx is distal. In particular, the two fixed points of the Thue-Morse
substitution are each distal.

Proof. Let (X̃, T ) denote the two-sided subshift generated byτ, and letπ : X̃ →
Y denote the maximal equicontinuous factor. The substitution τ above is of Pisot
type, in fact, the dilation ofτ is r and all other eigenvalues are equal to0. (Note
thatτ is not an irreducible substitution). In [3], V. Baker, M. Barge and J. Kwapisz
show that for a primitive substitution of Pisot type (irreducible or not), the map-
ping onto the maximal equicontinuous factor is finite to one.Thus there exists a
constantC such that for anyz ∈ X̃, there are at mostC pointsz′ ∈ X̃ which are
regionally proximal toz In particular, for anyz ∈ X̃, there are at mostC points
z′ ∈ X̃ which are proximal toz.

Now supposey ∈ X is proximal tox. We will show thaty = x. It is easy to
see that the bi-infinite wordz = xrev · x ∈ X̃ wherexrev denotes the reversal
or mirror image ofx, and where· denotes the origin. Similarly, lety′ denote a
left infinite word such that the concatenationz′ = y′ · y ∈ X̃. Sincex andy are
proximal, it follows thatz andz′ are proximal. Setσ = τ r. Sinceτ, and hence
σ, are of constant length, it follows thatσ(z′) is proximal toσ(z). But σ(z) = z.
Hence(σn(z′))n≥0 defines an infinite sequence of points iñX each of which is
proximal toz, and which in the limit tends tox(i)

rev·x
(j) wherei is the first (meaning

rightmost) letter ofy′ andj is the first letter ofy. But since there are only finitely
many points inX̃ which are proximal toz it follows thatσn(z′) = x

(i)
rev · x

(j) for
somen ≥ 0. Hence by de-substituting we obtainz′ = x

(i)
rev · x

(j) from which it
follows thaty = x(j). Thus bothx andy are fixed points ofτ which are assumed
proximal. It follows thaty = x and hencex is distal as required.

Put x = x(1). Sincex is distal, so isT n(x) for eachn ≥ 1. On the other
hand, it is easy to see that for each positive integern we haveu(i)[n]x ∈ X,
whereu(i)[n] denotes the reversal of the prefix ofx(i) of lengthn. Thus ther
words{u(1)[n]x, u(2)[n]x, . . . , u(r)[n]x} are pairwise proximal and each begin in
distinct letters (this is because the fixed points never coincide). Finally letω =
u(1)[N + 1]x, and setAi = ω

∣
∣
i
for each1 ≤ i ≤ r. Then eachAi is a central set.
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For each1 ≤ n ≤ N, we have thatAi − n = T n(ω)
∣
∣
i
= u(1)[N + 1 − n]x

∣
∣
i

is
a central set. But fork ≥ 1, we have thatAi − (N + k) = T k−1(x)

∣
∣
i
which is a

central set if and only ifT k−1(x) begins ini.

Proof of Theorem 5.Fix a positive integerr. Let τ be a primitive substitution
whose associated subshiftΩ is topologically weak mixing. For instance we may
take the substitution0 7→ 001 and 1 7→ 11001 or 0 7→ 001 and 1 7→ 11100
(see [15]). Letω ∈ Ω. Fix m such thatρω(m) ≥ r, and puts = ρω(m). Let
u1, u2, . . . , us denote the factors ofω of lengthm. As pointed out to us by V.
Bergelson and Y. Son [9], the weak mixing implies that the setof points inΩ
proximal toω is dense inΩ (see for instance page 184 of [22]). Thus for each
factor ui there exists a wordxi ∈ Ω beginning inui and which is proximal to
ω. Hence by Theorem 3.11 there exists a minimal idempotent ultrafilter pi ∈ βN

such thatp∗i (ω) = xi. Hence for each1 ≤ i ≤ s we have thatω
∣
∣
ui
∈ pi and hence

ω
∣
∣
ui

is a central set. Finally, for each positive integern and for each1 ≤ i ≤ s we
have that

ω
∣
∣
ui
− n = T n(ω)

∣
∣
ui
.

Again the weak mixing implies that there exists a wordx ∈ Ω beginning inui and
proximal toT n(ω). Hence there exists a minimal idempotentp ∈ βN such that
p∗(T n(ω)) = x from which it follows thatω

∣
∣
ui
− n ∈ p and henceω

∣
∣
ui
− n is a

central set. Thus we obtain a partition ofN

N =

s⋃

i=1

ω
∣
∣
ui

into s-many central sets and for each positive integern and1 ≤ i ≤ s we have
thatω

∣
∣
ui
− n is again a central set. Thus, setting

Ai = ω
∣
∣
ui

for i = 1, . . . , r − 1, and

Ar =
s⋃

i=r−1

ω
∣
∣
ui

we obtain the desired partition ofN.

7 Infinite central partitions of N

In this section we construct infinite partitions ofN into central sets by using words
on an infinite alphabet and prove Theorem 6. Our constructionmakes use of the
notion of iterated palindromic closure operator(first introduced in [16]):
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Definition 7.1. The iterated palindromic operatorψ is defined inductively as fol-
lows:

• ψ(ε) = ε,

• For any wordw and any lettera, ψ(wa) = (ψ(w)a)(+).

We denote withw(+) theright palindromic closureof the wordw, i.e., the shortest
palindrome which hasw as a prefix.

For example,ψ(aaba) = aabaaabaa. The operatorψ has been extensively
studied for its central role in constructing standard Sturmian and episturmian
words. It follows immediately from the definition that ifu is a prefix ofv, then
ψ(u) is a prefix ofψ(v). Thus, given an infinite wordω = ω0ω1ω2 . . . on the
alphabetA we can define

ψ(ω) = lim
n→∞

ψ(ω0ω1ω2 . . . ωn).

The following lemma summarizes the properties ofψ needed.

Lemma 7.2. Let∆ be a right infinite word over the (finite or infinite) alphabetA
and letω = ψ(∆). Then the following statements hold:

1. The wordω is closed under reversal, i.e., ifv = v1v2 . . . vk is a factor ofω,
then so is its mirror imagevk . . . v2v1.

2. The wordω is uniformly recurrent.

3. If each lettera ∈ A appears in∆ an infinite number of times, then for each
prefixu of ω and eacha ∈ A, we haveau is a factor ofω.

Proof. Since any factor ofω is contained in someψ(v) for a sufficiently long
prefix v of ∆, andψ(v) is by definition a palindrome (and hence closed under
reversal), the first statement is proved. The second statement is easily derived
from the fact that for any finite prefixva of ∆ (a being a letter), we have that
|ψ(va)| ≤ 2|ψ(v)| + 1 and moreoverψ(va) begins and ends inψ(v). It follows
that any factor of length (for example)3|ψ(v)| contains an occurrence ofψ(v).

Finally suppose eacha ∈ A appears infinitely many times in∆. Thus for any
lettera and any prefixv of ∆ there exists a prefix of∆ of the formvv′a. From
the definition ofψ we then have thatψ(vv′)a is a prefix ofω andψ(vv′) ends in
ψ(v), soψ(v)a is a factor ofω. Sinceψ(v) is a palindrome andω is closed under
reversal, we obtain that for any prefixv of ∆ and for any lettera, the wordaψ(v)
is a factor ofω and the third statement easily follows.

With the preceding Lemma, we are now able to construct infinite partitions of
N such that each element of the partition is an IP-set.
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Proposition 7.3. Let ω = ψ(∆) where∆ is a right infinite word on an infinite
alphabetA with the property that each lettera ∈ A occurs in∆ an infinite number
of times. Then, for anya ∈ A, the setaω

∣
∣
a

is a central set, thus{ω
∣
∣
a

+ 1}a∈A is
an infinite partition ofN into central sets.

Proof. From 7.2 we clearly have thatω is uniformly recurrent and closed under
reversal. Furthermore, since eacha ∈ A occurs in∆ an infinite number of times,
by (2) of the same lemma we also obtain that condition (3) holds, so that for any
lettera, the set of factors ofaω coincides with that ofω. From this and from the
uniform recurrence ofω, we have thataω is uniformly recurrent as well. Let us
denote byπa the image ofω under the morphismµa defined as follows:

• µa(a) = 0,

• µa(x) = 1 if x 6= a.

Sinceaω is uniformly recurrent for anya, it is clear that also0πa is uniformly
recurrent for anya. From Theorem 3.11, we then have that for anya there exists
a minimal idempotent ultrafilterpa such thatp∗a(0πa) = 0πa. In particular, this
means, by Lemma 3.7, that0πa

∣
∣
0

(which clearly coincides withaω
∣
∣
a

by definition)
is a central set for anya. The statement can then be easily derived from the fact
thataω

∣
∣
a

= ω
∣
∣
a
+ 1.

8 Strong coincidence condition

Let r ≥ 2 be a positive integer and setA = {1, 2, . . . , r}. A primitive substitution
τ : A → A+ is said to satisfy thestrong coincidence conditionif and only if for
any pair of fixed pointsx andy, we can writex = scx′, andy = tcy′ for some
s, t ∈ A+, c ∈ A, andx′, y′ ∈ A∞ with s ∼ab t. This combinatorial condition,
originally due to P. Arnoux and S. Ito, is an extension of a similar condition con-
sidered by F.M. Dekking in [14] in the case ofconstant length substitutions, i.e.,
when|τ(a)| = |τ(b)| for all a, b ∈ A. In this case Dekking proves that the condi-
tion is satisfied if and only if the associated substitutive subshift haspure discrete
spectrum, i.e., is metrically isomorphic with translation on a compact Abelian
group. Clearly not all primitive substitutions satisfy thestrong coincidence con-
dition. For instance, it is not satisfied by the Thue-Morse substitution (in fact the
two fixed points disagree in each coordinate). It is conjectured however that if
τ is an irreducible primitive substitution of Pisot type, then τ satisfies the strong
coincidence condition. M. Barge and B. Diamond establishedthis conjecture for
binary primitive substitutions of Pisot type [4]. Otherwise the conjecture remains
open for substitutions on alphabets greater that two. Substitutions of Pisot type
provide a framework for non-constant length substitutionsin which the strong
coincidence condition implies pure discrete spectrum.
As a consequence of Theorem 3.11 we have
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Corollary 8.1. Let τ be a primitive substitution verifying the strong coincidence
condition. Then

1. Any two fixed points ofτ are proximal.

2. For any pair of fixed pointsx and y, there exists a minimal idempotent
ultrafilter p ∈ βN with p∗(x) = y.

3. For any pair of fixed pointsx andy, and any prefixu of y, we have thatx
∣
∣
u

is a central set.

Remark 8.2. For irreducible primitive substitutions of Pisot type, it turns out that
each of the above conditions(1), (2), and(3) are equivalent and each implies the
strong coincidence condition. A proof of this fact will be given in [11]. However,
for a general primitive substitution we always have that(1) ⇐⇒ (2) =⇒ (3). The
two fixed points of the uniform substitutiona 7→ aaab, b 7→ bbab are proximal
but do not satisfy the strong coincidence condition. V. Bergelson and Y. Son [9]
showed that the fixed points ofa 7→ aab, b 7→ bbaab satisfy (3) but not (1) and
(2).

Proof. Condition (1) is immediate from the definition of strong coincidence. By
Theorem3.11 we have that (1) implies (2) and hence (3).

We present now an alternative and constructive proof of (3) using the so-called
Dumont-Thomas numeration systems defined by substitutions[17, 18]. Since in
the irreducible Pisot case, condition (3) alone implies thestrong coincidence con-
dition, this method of proof constitutes a new approach to the strong coincidence
conjecture. We begin with a brief review of these numerations systems.

8.1 Abstract numeration systems defined by substitutions

Let τ denote a substitution on a finite alphabetA. For simplicity we assume that
τ has at least one fixed pointx = x0x1x2 . . . beginning in some lettera ∈ A.
The idea behind the numeration system is quite natural: every coordinatexn of
the fixed pointx is in the image ofτ of some coordinatexm with m ≤ n. More
precisely, consider the least positive integerm such thatx0x1 . . . xn is a prefix
of τ(x0x1 . . . xm). In this case we can writex0x1 . . . xn = τ(x0x1 . . . xm−1)unxn

whereunxn is a prefix ofτ(xm). We now imagine a directed arc fromxm to xn

labeledun. In this way every coordinatexn is the target of exactly one arc, and the
source of|τ(xn)|-many arcs. It follows that for eachn there is a unique paths from
x0 to xn. Thus every natural numbern may be represented by a finite sequence of
labelsui obtained by reading the labels along the paths in the direction fromx0

to xn.
More formally, associated toτ is a directed graphG(τ) defined as follows: the

vertex set ofG(τ) is the setA. Given any pair of verticesa, b we draw a directed
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edge froma to b labeledu ∈ A∗ if ub is a prefix ofτ(a). In other words, for every
occurrence ofb in τ(a) there is a directed edge froma to b labeled by the prefix
(possibly empty) ofτ(a) preceding the given occurrence ofb. Figure 1 depicts the
graphG(τ) for the Fibonacci substitutiona 7→ ab, b 7→ a.

Figure 1: The Fibonacci automaton

For simplicity, in case some letterb occurs multiple times inτ(a), we draw
just one directed edge froma to b having multiple labels as described above. This
is shown in Figure 2 in the case of the substitutiona 7→ aab, b 7→ bbaab.

Figure 2: The automaton ofa 7→ aab, b 7→ bbaab.

Let x = x0x1x2 . . . denote the fixed point ofτ beginning ina. Then the graph
G(τ) has a singleton loop based ata labeled with the empty wordε. We consider
this to be the empty or0th path ata. More generally by a path ata ∈ A we
mean a finite sequence of edge labelsu0u1u2 · · ·un corresponding to a path in
G(τ) originating at vertexa with the condition thatu0 6= ε whenever the length
of the pathn > 0. For example in the case of the Fibonacci substitution, except
for the paths = ε, each path is given by a word in{a, ε} beginning ina and not
containing the factoraa. For each paths = u0u1u2 · · ·un set

ρ(s) = τn(u0)τ
n−1(u1)τ

n−2(u2) · · · τ(un−1)un

andλ(s) = |ρ(s)|. In [17, 18] it is shown that for each paths ata, the wordρ(s)
is a prefix of the fixed pointx ata and conversely for each prefixu of x there is a
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unique paths ata with ρ(s) = u. This correspondence defines a numeration sys-
tem in which every natural numberl is represented by the paths = u0u1u2 · · ·un

in G(τ) from vertexa to vertexxl corresponding to the prefix of lengthl of x, so
that

(∗) l = λ(s) = |τn(u0)| + |τn−1(u1)| + |τn−2(u2)| + · · ·+ |τ(un−1)| + |un|.

Generally by the numeration system one means the quantities|τn(u)| for all
n ≥ 0 and all proper prefixesu of the images underτ of the letters ofA. Then
a proper representation ofl in this numeration is an expression of the form (*)
corresponding to a paths = u0u1u2 · · ·un in G(τ).

In the case of a uniform substitution of lengthk this corresponds to the usual
basek-expansion ofl. In the case of the Fibonacci substitution, eachun ∈ {ε, a}
anduiui+1 6= aa for each0 ≤ i ≤ n− 1. Thus this representation ofl is precisely
the Zeckendorff representation ofl discussed in§4 in which l is expressed as a
sum of distinct Fibonacci numbers via the greedy algorithm.

In general, this numeration system not only depends on the substitutionτ but
also on the choice of fixed point. For example for the substitution in Figure 2
the number5 is represented by the patha, aa from vertexa or by the pathb, ε
from vertexb. In fact, τ(a)aa = aabaa is the prefix of length5 of τ∞(a) while
τ(b)ε = bbaab is the prefix of length5 of τ∞(b).

An alternative reformulation is as follows: Given two distinct pathss =
u0u1u2 · · ·un and t = v0v1v2 · · · vm both starting from the same vertexa, we
write s < t if either n < m or if n = m there existsi ∈ {0, 2, . . . , n} such that
uj = vj for j < i, and|u|i < |v|i. This defines a total order on the set of all paths
starting from vertexa. In the case of the Fibonacci substitution, we list the paths
ata in increasing order

ε, a, aε, aεε, aεa, aεεε, aεεa, aεaε, aεεεε, . . .

Thus there is an order preserving correspondence between0, 1, 2, 3, . . . and the
set of all paths ata ordered in increasing order.

While these numeration systems are very natural and simple to define, they are
typically extremely difficult to work with in terms of addition and multiplication.

Let a andb be distinct vertices inG(τ). We say a paths originating ata is
synchronizingrelative tob if there exists a paths′ originating atb having the same
terminal vertex ass and withλ(s) = λ(s′). From this point of view the strong
coincidence conjecture implies that

{λ(s) | s = a synchronizing path relative tob}

is a thick set.
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8.2 Proof of (3) in Corollary 8.1

Let τ be a primitive substitution satisfying the strong coincidence condition. Sup-
posex andy are fixed points ofτ beginning ina andb respectively. Then we can
write x = scx′, andy = tcy′ for somes, t ∈ A+, c ∈ A, andx′, y′ ∈ A∞ with
s ∼ab t. By replacingτ by a sufficiently large power ofτ, we can assume that

• sc is a prefix ofτ(a),

• tc is a prefix ofτ(b),

• b occurs inτ(c).

Figure 3: Verticesa, b, c of G(τ)

Thus inG(τ) there is a directed edge froma to c labeleds, a directed edge
from b to c labeledt, and a directed edge fromc to b labeledr for some prefixr
of τ(c). See Figure 3.

We now define a sequence of paths(pi)i≥0 from a to b by

pi = s, r, ε, ε, . . . , ε
︸ ︷︷ ︸

2i

.

Putni = λ(pi). Then clearly{ni | i ≥ 0} ⊆ x
∣
∣
b
. We now show that any finite sum

of distinct elements from the set{ni | i ≥ 0} is contained inx
∣
∣
b
. Set

qi = t, r, ε, ε, . . . , ε
︸ ︷︷ ︸

2i

.
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Then eachqi is a path fromb to b and sinces and t are Abelian equivalent it
follows thatλ(pi) = λ(qi). Fix k ≥ 1 and choosei1 < i2 < · · · < ik. Then

k∑

j=1

λ(pij ) = λ(pik) +
k−1∑

j=1

λ(pij)

= λ(pik) +
k−1∑

j=1

λ(qij )

= |τ 2ik+1(s)| + |τ 2ik(r)| +
k−1∑

j=1

(|τ 2ij+1(t)| + |τ 2ij (r)|)

= |τ 2ik+1(s)τ 2ik(r)τ 2ik−1+1(t)τ 2ik−1(r)τ 2ik−2+1(t)τ 2ik−2(r) · · · τ 2i1+1(t)τ 2i1(r)|

which is represented by a path inG(τ) from a to b and hence corresponds to an
occurrence ofb in x. This shows thatx

∣
∣
b

is an IP-set, and hence by Theorem 3.12
x
∣
∣
b

is a central set. A similar argument applies for any prefixu of y by defining
the pathspi by

pi = s, r, ε, ε, . . . , ε
︸ ︷︷ ︸

Ni

with Ni sufficiently large.
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