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Abstract

Building a large system through a systematic, step-by-step refinement of an ini-
tial abstract specification is a well established technique in software engineering,
not yet much explored in systems biology. In the case of systems biology, one
starts from an abstract, high-level model of a biological system and aims to add
more and more details about its reactants and/or reactions, through a number of
consecutive refinement steps. The refinement should be done in a quantitatively
correct way, so that (some of) the numerical properties of the model (such as the
experimental fit and validation) are preserved. In this study, we focus on the data-
refinement mechanism where the aim is to increase the level of details of some
of the reactants of a given model. That is, we analyse the case when a model is
refined by substituting a given species by several types of subspecies. We show in
this paper how the refined model can be systematically obtained from the original
one. As a case study for this methodology we choose a recently introduced model
for the eukaryotic heat shock response, [19]. We refine this model by including
details about the acetylation of the heat shock factors and its influence on the heat
shock response. The refined model has a significantly higher number of kinetic
parameters and variables. However, we show that our methodology allows us to
preserve the experimental fit/validation of the model with minimal computational
effort.

Keywords: Model refinement, quantitative analysis, heat shock response, acety-
lation.
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1 Introduction

Extensive experimental and computational effort is invested nowadays in com-
piling large, system-level models for complex biological systems, including reg-
ulatory networks, signaling pathways, metabolic pathways etc. The first step in
developing such system-level models lies usually in creating an abstraction of
the biological process consisting of a relatively small number of biochemical re-
actions describing the main mechanisms of the considered process. The chosen
reactions can be abstract representations of some particular subprocess, encapsu-
lating, in fact, many biochemical reactions from the considered system. A mathe-
matical model is then associated to the molecular model comprising these chosen
reactions. For this, one chooses an appropriate kinetic law, e.g., mass-action law
or Michaelis-Menten kinetics, based on which one can then write the mathemati-
cal equations describing the dynamics of the system. The numerical setup of this
mathematical model is either obtained from the literature, or, using available ex-
perimental data, it is derived through various computational model fit procedures.

Starting from this abstract model, the process of model development proceeds
with a series of iterative steps involving hypothesis generation, experimental de-
sign, experimental analysis and model refinement, [2], [12]. Particularly, the sim-
plifications and abstractions included in the initial model might be refined later
on, including more accurate details of the process. One approach for this would
be to simply repeat the whole model development procedure in order to include all
the intended changes. However, this can be extremely inefficient since it requires
to re-fit the model, a step which is both time-consuming and computationally-
intensive, [3]. Another approach, that seems little investigated so far, is to re-
fine the initial model step-by-step making sure that the experimental (numerical)
model fit is preserved. In other words, the numerical setup of the refined model
should be obtained from that of the initial model, see [16] for a recent case study
regarding self-assembly models.

In this study, we focus on the model refinement step within the above model
development cycle. In particular, we analyse the case when the model is adjusted
by refining some of its reactants, i.e., by replacing a given species by some of
its subspecies. This is the case, for instance, when more details about the post-
translational modifications of proteins, e.g., acetylation or phosphorylation, are
required. In such a case, the model is refined by replacing a given protein P with
its variants indicating whether P withstood some post-translational modification
or not, e.g., whether P was acetylated or not. This substitution of species also
leads to a refinement of all the reactions in which protein P was involved. Then,
we show how we can attain the values of the parameters of the refined model from
those of the initial model. Hence, we make sure that we preserve all previously
obtained systemic properties, such as numerical fit of the model.

The paper is organized as follows. First, we present the model refinement
procedure consisting in replacing a species with several subspecies while still pre-
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serving the previously obtained model fit with respect to some experimental data.
Then, we illustrate this technique by considering as a case study the regulatory
role of protein acetylation within the eukaryotic heat shock response. In particu-
lar, we refine a recent model for the eukaryotic heat shock response, see [19], by
considering also the acetylation of some particular proteins.

2 Quantitative model refinement
There are several types of refinement that can be applied on a given model. For
instance, one could focus on the data of a given model and refine it by replacing
one (or more) of its species with a number of subspecies. This way, the refined
model would illustrate various differences in the behaviour of those subspecies.
We call this data refinement. Another type of refinement, that we call process re-
finement, concerns the model reactions. That is, the model is refined by replacing
a generic reaction describing a particular process with several reactions detailing
on the intermediary steps of that process.

The problem of formal refinement has been considerably documented in the
field of software engineering, particularly related to the concurrent computing
paradigm [24], [1]. It aroused from the need to prove (in a formal/mathematical
way) that the final implementation of a system corresponds to its original speci-
fications. In systems biology, the problem of quantitative model refinement has
already been investigated within the framework of rule-based modelling, see [17],
[10], [5]. This approach is not concerned with the data refinement we have previ-
ously defined, since this type of refinement is already built in the system through
agent resolution [10]. However, the main consideration in this respect is rule re-
finement, a method to refine set rules so that the dynamic behaviour of the model
is preserved [17]. Rule based modelling allows the construction of more detailed
models through resolution augmentation in the space of agents and rules, compris-
ing model variants in more finely-grained hierarchical structures [10]. This type
of framework enables writing feasible models and operates on their perturbation
spaces in order to evaluate perturbation effects over a particular model [5].

However, independently of the type of refinement chosen, the refinement pro-
cess should preserve the systemic properties of the original model, e.g., the model
fit. We present here an approach for data model refinement which preserves the
previously obtained numerical properties of the model.

Consider that a model M consists of a list of m species Σ = {A1, A2, ..., Am}
and n reactions ri, 1 ≤ i ≤ n, of the form:

ri : Si,1A1 + Si,2A2 + ...+ Si,mAm
ki−→ S ′

i,1A1 + S ′
i,2A2 + ...+ S ′

i,mAm,

where Si,1, ..., Si,m, S
′
i,1, ..., S

′
i,m ≥ 0 are some integers called the stoichiometric

coefficients of ri and ki ≥ 0 is the kinetic rate constant of ri. A number of
different mathematical formulations can be associated to model M , in terms of
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continuous or discrete variables, deterministic or non-deterministic evolution etc.
We choose in this study a continuous, mass-action formulation, where to each
variable Ai, 1 ≤ i ≤ n, we associate a time-dependent function [Ai] : R+ → R+

describing its concentration level. In particular, for each species Ai, we denote by
[Ai](t) its concentration at time t. The dynamics of the system is then described
through a system of differential equations [13] in which, for each reaction, we
assumed the principle of mass action, originally introduced in [8], [9].

In particular, for model M we obtain the following system of ODE:

d[Aj]

dt
= −

n∑
i=1

(kiSi,j

m∏
k=1

[Ak]
Si,k) +

n∑
i=1

(kiS
′
i,j

m∏
k=1

[Ak]
Si,k), 1 ≤ j ≤ m. (1)

The next lemma tackles the existence and uniqueness of solutions of systems
of ODEs derived following the mass action law.

Lemma 1. [11] Given a molecular model and its associated system of ODEs
derived based on the principle of mass action, for any fixed initial condition, there
is an open interval I ⊂ R+, such that the system of ODEs has a unique solution
on I.

Assume that the model M is to be detailed by distinguishing several subspecies
of A1. Such subspecies may be several different forms of A1, several biochem-
ical configurations of A1 (e.g., caused by some post-translational modifications)
etc. Each of these subspecies may participate in all reactions, where A1 partic-
ipated (in model M ), possibly with different kinetics. If A1 is to be replaced
with subspecies B1, . . . , Bl, then we derive a new model MR, in which the set of
species is denoted through the new variables {A′

2, A
′
3, ..., A

′
m} ∪ {B1, ..., Bl}, for

some l ≥ 2. Variables A′
i, 2 ≤ i ≤ m, correspond to species Ai from model

M , whereas B1, ..., Bl are to replace species A1 in model MR. Moreover, each
reaction ri from M is replaced in MR by reaction r′i of the following type:

r′i : (Ti,1B1 + ...+ Ti,lBl) + Si,2A
′
2 + ...+ Si,mA

′
m

k′i−→
(T ′

i,1B1 + ...+ T ′
i,lBl) + S ′

i,2A
′
2 + ...+ S ′

i,mA
′
m,

with k′
i its kinetic rate constant, and Ti,1, ..., Ti,l, T

′
i,1, ..., T

′
i,l nonnegative integers

such that Ti,1 + ... + Ti,l = Si,1 and T ′
i,1 + ... + T ′

i,l = S ′
i,1. We say now that the

model MR is a data refinement of M on variable A1 if and only if the following
two conditions are satisfied:

[Ai](t) = [A′
i](t), for all 2 ≤ i ≤ m, (2)

[A1](t) = [B1](t) + ...+ [Bl](t), for all t ≥ 0. (3)

The refined model MR has m + l − 1 species, whereas M consists of m species;
thus, MR has a linear-increase in the size of its data set. The number of reactions
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replacing in MR the reaction ri of M is given by the number of non-negative
integer solutions of the following system of equations:

Ti,1 + Ti,2 + ...+ Ti,l = Si;

T ′
i,1 + T ′

i,2 + ...+ T ′
i,l = S ′

i;

over the independent unknowns Ti,j, T
′
i,j, 1 ≤ j ≤ l. The number of solutions of

the first equation is the multinomial coefficient “l multichooses Si”, see [6]:((
l
Si

))
=

(
l + Si − 1

Si

)
=

(l + Si − 1)!

Si!(l − 1)!
.

Since the two equations in the system are independent, the number of solutions
of the system is

((
l

Si

))
·
((

l
S′
i

)). This gives the increase in the number of reactions in
the model refinement from M to MR. In terms of kinetic parameters, MR will
have

((
l

Si

)) new free parameters, given by the number of possible combinations of
B1, ..., Bl as reactants.

Arguing on the basis of biokinetics, see [18], we may assume that Si ≤ 2: any
reaction with a ternary (or higher) stoichiometric coefficient would be so slow
that its effects may be ignored. In case Si = 1, MR will have

((
l
1

))
= l new kinetic

parameters, i.e., a linear increase in the parameter space. In case Si = 2, MR

will have
((

l
2

))=l(l+1)/2 new parameters, i.e., a quadratic increase in the parameter
space.

Some of the new kinetic parameters of MR may be known from the literature,
or the they can be experimentally measured. For the rest of them, for which no
previous knowledge and no direct kinetic measurements are available, a compu-
tational procedure is needed to calculate them so that (2) and (3) hold. Such a
procedure should focus only on those parameters whose kinetic values are not
known.

Re-running parameter estimation procedures when the parameter space wit-
nesses a (potentially) quadratic increase in every step of the refinement is compu-
tationally very expensive. Moreover, such a procedure makes little sense since the
fit of an intermediate model is lost in the next refinement step.

We propose in this paper an approach where we systematically set the val-
ues of the unknown kinetic parameters of the refined model so that relations (2)
and (3) hold. Clearly, some of the potential choices are unreasonable, such as
those where we would set to 0 the kinetic parameters of all reactions involv-
ing B2, B3, ..., or Bl; such a choice would eliminate the idea of refinement and
it would only rename all the variables of M in MR. Instead, we take an ap-
proach where the refined subspecies B1, ..., Bl of species A1 are not distinguish-
able through the kinetics of the reactions they participate in. Thus, in the absence
of any biological data regarding differences between some of these reactants, our
choice of kinetic parameters aims to make no numerical distinctions between their
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reaction kinetics. As a side effect, this leads to simpler and more elegant mathe-
matical considerations.

Consider next an example of such a data refinement procedure, in which we
show how we can obtain the kinetic rate constants of the refined model depend-
ing on the type of equations included in the original model. We consider the
Lotka-Volterra system, [15], [22], composed of the species A (the prey) and B
(the predator), and the following reactions:

A
k1−→ 2A, A+B

k2−→ 2B, B
k3−→ ∅.

The set of mass-action based ODEs describing the dynamics of this system are:

d[A]/dt = k1[A]− k2[A][B] d[B]/dt = k2[A][B]− k3[B].

After refining the Lotka-Volterra model on variable A into subspecies A1 and
A2, we obtain the following set of reactions:

A1
r1−→ A1 + A1, A1

r2−→ A1 + A2, A1
r3−→ A2 + A2,

A2
r4−→ A1 + A1, A2

r5−→ A1 + A2, A2
r6−→ A2 + A2,

A1 +B′ r7−→ 2B′, A2 +B′ r8−→ 2B′, B′ r9−→ ϕ.

This leads to the following system of ODEs describing the dynamics of the
variables A1, A2, and B′:

d[A1]/dt = (r1 − r3)[A1] + (2r4 + r5)[A2]− r7[A1][B
′],

d[A2]/dt = (r2 + 2r3)[A1] + (−r4 + r6)[A2]− r8[A2][B
′],

d[B′]/dt = r7[A1][B
′] + r8[A2][B

′]− r9[B
′].

Thus, d([A1]+[A2])/dt = (r1−r3+r2+2r3)[A1]+(2r4+r5−r4+r6)[A2]−(r7+
r8)[A1][B

′]. Consequently, if we choose r1 = r2 = r3 = r4 = r5 = r6 = k1/3,
r7 = r8 = k2 and r9 = k3 then we obtain

d([A1] + [A2])/dt = k1([A1] + [A2])− k2([A1] + [A2])[B
′],

d[B′]/dt = k2([A1] + [A2])[B
′]− k3[B

′],

which is identical to the initial system up to a renaming of variables where [A] is
replaced by [A1] + [A2] and [B] is replaced by [B′]. For any x0 ≥ 0, if we set
the initial values of the variables A1, A2, and B′ such that [A](x0) = [A1](x0) +
[A2](x0) and [B](x0) = [B′](x0), it follows from Lemma 1 that there exists an
open interval I including x0 such that [A](t) = [A1](t) + [A2](t) and [B](t) =
[B′](t), for all t ∈ I . That is, the second model is indeed a quantitative refinement
of the initial one (on the interval I).
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3 Models

3.1 The eukaryotic heat shock response: a molecular model

The heat shock response in eukaryotes is an evolutionarily conserved mechanism
that controls the cellular response to proteotoxicity originating from environmen-
tal stressors such as elevated temperatures. When subjected to increased temper-
atures, proteins in the cell tend to misfold and accumulate in large aggregates that
eventually induce cell death. Survival of the cell is promoted by a mechanism that
restores protein homeostatis, i.e. the equilibrium between synthesis, folding and
degradation of proteins.

We describe the molecular model for the heat shock response proposed in [20]
as follows. The key factors within this process are the heat shock proteins (hsp),
that act as chaperones, assisting the misfolded proteins (mfp) in their refolding
process. The response is regulated by the transactivation of the hsp-encoding
genes. The transcription of the gene is mediated by specific heat shock transcrip-
tion factors (hsf). The hsf’s trimerize (hsf3) and subsequently bind to a promoter
site of the hsp-encoding gene, called heat shock element (hse). The trimeriza-
tion phase of the heat shock factors is preceded by a dimerization stage result-
ing in the constitution of dimers (hsf2). Hsf trimers bind to heat shock elements
forming hsf3: hse complexes. Therefore, protein synthesis is activated and new
hsp molecules are ultimately formed. When the level of hsp’s is sufficiently ele-
vated, hsp synthesis is turned off through an ingenious mechanism [19, 20]. Heat
shock proteins bind to the hsf molecules forming hsp: hsf complexes, thus imped-
ing hsf’s to trimerize and to bind to the heat shock elements. The sequestration
of hsf’s can be done in three different ways: by breaking dimers, trimers, and
by unbinding hsf3 from the heat shock elements combined with the simultaneous
breaking of the trimer. However, an increase in the temperature causes some of the
proteins (prot) to misfold, which drives hsp away from hsf. This in turn quickly
turns on the heat shock response since the heat shock factors are again free and
thus able to promote the synthesis of more heat shock proteins. The reactions of
the molecular model in [19] are presented in Table 1.

Table 1: The molecular model for the eukaryotic heat shock response proposed in [19].

2 hsf � hsf2 hsp+ hsf3 → hsp: hsf +2 hsf
hsf + hsf2 � hsf3 hsp+ hsf3: hse → hsp: hsf +2 hsf + hse
hsf3 + hse � hsf3: hse hsp → ∅
hsf3: hse → hsf3: hse+ hsp prot → mfp
hsp+ hsf � hsp: hsf hsp+mfp � hsp:mfp
hsp+ hsf2 → hsp: hsf + hsf hsp:mfp → hsp+ prot
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3.2 Mathematical model
Associated to the molecular model in Table 1, we consider a mathematical model
formulated in terms of mass-action based ODEs, see [13]. The model was origi-
nally considered in [19]. We include the system of ODEs in Table 2 and we refer
the reader to [19] for more details.

Both the kinetic rate constants and the initial values of all reactants were esti-
mated in [19], by imposing the following three conditions:

(i) the system is in a steady state if the temperature is 37◦C. This is a natural
consequence of the fact that the model should not exhibit any response in
the absence of the heat shock, i.e., at 37◦C;

(ii) the numerical predictions of the model for [hsf3: hse](t) should agree with
the experimental data from [14], for a temperature of 42◦C;

(iii) the numerical prediction of the model for [hsp](t) should confirm the data
obtained in [19] through a de-novo fluorescent reporter-based experiment,
for a temperature of 42◦C.

3.3 The role of protein acetylation within the eukaryotic heat
shock response

It has been recently shown that the acetylation of the heat shock factors (hsf),
i.e., the transcription factors for the hsp-encoding genes, plays an important role
in regulating the heat shock response [23]. The acetylation process consists in
substituting an acetyl group for a hydrogen atom within a chemical compound.
The reverse process, i.e., the deacetylation, represents the suppression of an acetyl
group from a compound. Protein acetylation can occur at the alpha-amino group
of the amino-terminus (N-terminal acetylation) or on the lysine residues at the
epsilon-amino group (lysine acetylation) [7]. The lysine acetylation in particular
is known to play a significant role in gene regulation by changing the charge of
histone tails. Due to the neutralization of the positive charge of the histones, lysine
acetylation diminishes their DNA binding affinity [4, 21].

3.4 Data refinement of the model
We discuss, in this section, how to extend the heat shock model of [19] to account
for the acetylation of hsf and its influence on the response. For this, we refine all
species and complexes involving hsf to account for two subtypes of hsf: one where
its K80 residue is not acetylated, and one where it is acetylated. Consequently, the
complex hsp: hsf will also be refined to two subtypes, depending on the acetylation
of its hsf component. In the case of hsf2, hsf3 and hsf3: hse, the refinement will
be accomplished by counting how many of the hsf components in that complex
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(two in the case of hsf2 and three in the case of hsf3 and hsf3: hse) have their K80
residue acetylated. Thus, we perform the following data refinements:

hsf → {rhsf, rhsf(1)};
hsf2 → {rhsf2, rhsf2(1), rhsf2(2)};
hsf3 → {rhsf3, rhsf3(1), rhsf3(2), rhsf3(3)};
hsf3: hse → {rhsf3: rhse, rhsf3(1): rhse, rhsf3(2): rhse, rhsf3(3): rhse};
hsp: hsf → {rhsp: rhsf, rhsp: rhsf(1)}.

These data refinements imply several changes in the list of reactions of our model.
For example, the reaction hsp+ hsf � hsp: hsf is replaced by two reactions :
rhsp+ rhsf � rhsp: rhsf, and rhsp+rhsf(1) � rhsp: rhsf(1). As another exam-
ple, reaction 2 hsf � hsf2 is replaced by three reactions, based on the method
described in Section 2:

2 rhsf � rhsf2; rhsf + rhsf(1) � rhsf2
(1); 2rhsf(1) � rhsf2

(2).
Due to space limitations, the complete list of reactions is given in Appendix B.
The refined model consists of 39 reactions, some of which are reversible.

3.5 Quantitative equivalence of the basic and the refined model
We discuss now the numerical setup of the refined model for the heat shock re-
sponse in such a way that the refinement procedure is quantitatively correct as
defined in (2)-(3). The initial values of the refined variables are set so that the
following 10 conditions (derived from the data refinement relationships) are sat-
isfied:

[hsf](0) = [rhsf](0) + [rhsf(1)](0);

[hsf2](0) = [rhsf2](0) + [rhsf2
(1)] + [rhsf2

(2)](0);

[hsf3](0) = [rhsf3](0) + [rhsf3
(1)](0) + [rhsf3

(2)](0) + [rhsf3
(3)](0);

[hsp: hsf](0) = [hsp: rhsf](0) + [rhsp: rhsf(1)](0);

[hsf3: hse](0) = [rhsf3: rhse](0) + [rhsf3
(1): rhse](0) + [rhsf3

(2): rhse](0)+

+ [rhsf3
(3): rhse](0);

[hsp](0) = [rhsp](0);

[hsp:mfp](0) = [rhsp: rmfp](0);

[mfp](0) = [rmfp](0);

[prot](0) = [rprot](0);

[hse](0) = [rhse](0).

The system of mass-action based ODEs for the refined model is in Table 4.
The refined model consists of 20 species, 39 reactions (some of them reversible),
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54 kinetic parameters. We recall that the basic model had 10 species, 12 reactions
and 16 kinetic parameters. We focus now on the numerical setup of the refined
model so that it is a quantitative refinement of the model in [19], as defined in
Section 2. We first introduce the following notations:

Rhsf = rhsf + rhsf(1);
Rhsf2 = rhsf2+ rhsf2

(1) + rhsf2
(2);

Rhsf3 = rhsf3+ rhsf3
(1) + rhsf3

(2) + rhsf3
(3);

Rhsf3:Rhse = rhsf3: rhse+ rhsf3
(1): rhse+ rhsf3

(2): rhse+ rhsf3
(3): rhse;

Rhsp:Rhsf = rhsp: rhsf + rhsp: rhsf(1).

We aim to identify some values for the kinetic parameters of the refined model
in such a way that its system of differential equations is identical to the sys-
tem associated to the initial model, modulo a variable renaming where hsf, hsf2,
hsf3, hsf3: hse, and hsp: hsf are replaced by Rhsf, Rhsf2, Rhsf3, Rhsf3:Rhse, and
Rhsp:Rhsf, respectively. To drive this process, we write the ODEs for [Rhsf],
[Rhsf2],[Rhsf3], [Rhsf3:Rhse] and for [Rhsp:Rhsf], see Table 5, based on the sys-
tem of ODEs in Table 4. We then choose the values of the kinetic parameters in
such a way that the right hand side of each ODE in Table 5 becomes identical
to the right hand side of the corresponding ODE in Table 2, modulo the variable
renaming above. For example, we aim to choose the kinetic parameters of the
refined model in such a way that the ODE corresponding to Rhsf in Table 5 is
identical to the ODE corresponding to hsf in Table 2, modulo the variable renam-
ing above. To identify the first term of the ODE for Rhsf (in the form written in
Table 5) with the first term of the ODE for hsf (in the form written in Table 2), it
is enough to set r+1 = k+

1 , r+2 = 2k+
1 , and r+3 = k+

1 . A similar reasoning for all
terms of all ODEs leads to a solution.

Due to space limitations, we skip all details and only include the table listing
the identified values for the parameters in Appendix D. Clearly, the solution is not
unique. However, to find one, we cannot count on solving the systems of ODEs
in Tables 2 and 5; in fact these systems cannot be solved analytically. Instead,
we simply chose the values of the kinetic parameters of the refined model as ex-
pressions of the kinetic parameters of the original model, in such a way that the
ODEs in Table 5 can be rewritten to the equations in Table 2, modulo the variable
renaming above. Based also on the way we set up the initial values of the refined
variables, it follows that the systems of differential equations associated to the ini-
tial model and to the refined one have identical initial conditions. Thus, it follows
from Lemma 1 that conditions (2) and (3) are satisfied, i.e., the second model is
indeed a quantitative refinement of the initial model in Table 1.
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4 Discussion

We focus in this paper on quantitative model refinement as an essential stage
within the complex process of model development in systems biology. In par-
ticular, we analyse the case when the model is refined by replacing one species
with several subspecies. Specifically, we show that, by attaining the numerical
setup of the refined model from that of the initial model, we obtain a quantita-
tive refinement which preserves previously obtained numerical properties of the
model, e.g., model fit and validation, see [3].

We refined the model from [19] by considering only one acetylation site for
each hsf molecule. This led to a significant augmentation in the number of reac-
tions of the refined model and, consequently, in the number of parameters. While
the basic model comprises a set of 12 reactions involving 10 different species and
16 kinetic rate constants, the refined model contains a number of 39 reactions in-
volving 20 species and 54 kinetic rate constants. Fitting a model of this proportion
implies a lot of time and computational resources. However, with our approach,
we were able to build a refined model, with a satisfactory numerical behaviour
(as defined in our notion of quantitative refinement), avoiding any supplementary
model fit.

Our solution to the problem of setting the kinetic parameters of the refined
model is clearly not unique. Since the systems of ODEs corresponding to the
original and to the refined model are in general impossible to solve analytically,
we adopt a symbolic approach where we make sure that the two systems of ODEs
are isomorphic through the variable renaming given by the data refinement rela-
tionship. In the absence of any biological knowledge regarding the kinetic param-
eters of the refined model, our solution is only driven by the symbolic approach
described above. If there is biological knowledge about some of the values of the
parameters of the refined model, then such knowledge can be taken into consid-
eration in the form of constraint in our symbolic approach. The existence of a
solution in such a case, as well as effectively constructing one appear as interest-
ing problems in this context.

We only focused in this paper on refining the basic heat shock response model
of [19] in a quantitatively correct way to include some of the details of the acety-
lation of hsf. Due to lack of space, we did not include in the refined model the
details regarding the role that the acetylation of hsf plays in fine-tuning the heat
shock response, as described in [23]. We plan to return to these aspects in a sepa-
rate study.
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A The original ODE-based model for the heat shock
response

Table 2: The system of ODEs associated with the biochemical model proposed in [19].

d[hsf]/dt = −2k+
1 [hsf]

2 + 2k−
1 [hsf2]− k+

2 [hsf][hsf2] + k−
2 [hsf3]

−k+
5 [hsf][hsp] + k−

5 [hsp: hsf] + k6[hsf2][hsp]
+2k7[hsf3][hsp] + 2k8[hsf3: hse][hsp]

d[hsf2]/dt = k+
1 [hsf]

2 − k−
1 [hsf2]− k+

2 [hsf][hsf2] + k−
2 [hsf3]

−k6[hsf2][hsp]
d[hsf3]/dt = k+

2 [hsf][hsf2]− k−
2 [hsf3]− k+

3 [hsf3][hse] + k−
3 [hsf3: hse]

−k7[hsf3][hsp]
d[hse]/dt = −k+

3 [hsf3][hse] + k−
3 [hsf3: hse] + k8[hsf3: hse][hsp]

d[hsf3: hse]/dt = k+
3 [hsf3][hse]− k−

3 [hsf3: hse]− k8[hsf3: hse][hsp]
d[hsp]/dt = k4[hsf3: hse]− k+

5 [hsf][hsp] + k−
5 [hsp: hsf]− k6[hsf2][hsp]

−k7[hsf3][hsp]− k8[hsf3: hse][hsp]− k+
11[hsp][mfp]

+(k−
11 + k12)[hsp:mfp]− k9[hsp]

d[hsp: hsf]/dt = k+
5 [hsf][hsp]− k−

5 [hsp: hsf] + k6[hsf2][hsp]
+k7[hsf3][hsp] + k8[hsf3: hse][hsp]

d[mfp]/dt = ϕT [prot]− k+
11[hsp][mfp] + k−

11[hsp:mfp]
d[hsp:mfp]/dt = k+

11[hsp][mfp]− (k−
11 + k12)[hsp:mfp]

d[prot]/dt = −ϕT [prot] + k12[hsp:mfp]
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B The refined model for the heat shock response

Table 3: The list of reactions for the refined model. For an irreversible reaction qi, ri
denotes its kinetic rate constant. For a reversible reaction qi, we denote by r+i and r−i the
kinetic rate constants of its ‘left-to-right’ and ‘right-to-left’ directions, respectively.

Reaction
Kinetic rate
constants

2 rhsf � rhsf2 r+1 , r
−
1

rhsf + rhsf(1) � rhsf2
(1) r+2 , r

−
2

2rhsf(1) � rhsf2
(2) r+3 , r

−
3

rhsf + rhsf2 � rhsf3 r+4 , r
−
4

rhsf(1) + rhsf2 � rhsf3
(1) r+5 , r

−
5

rhsf +rhsf2
(1) � rhsf3

(1) r+6 , r
−
6

rhsf(1) + rhsf2
(1) � rhsf3

(2) r+7 , r
−
7

rhsf +rhsf2
(2) � rhsf3

(2) r+8 , r
−
8

rhsf(1) + rhsf2
(2) � rhsf3

(3) r+9 , r
−
9

rhsf3+ rhse � rhsf3: rhse r+10, r
−
10

rhsf3
(1) + rhse � rhsf3

(1): rhse r+11, r
−
11

rhsf3
(2) + rhse � rhsf3

(2): rhse r+12, r
−
12

rhsf3
(3) + rhse � rhsf3

(3): rhse r+13, r
−
13

rhsf3: rhse → rhsf3: rhse+ rhsp r14
rhsf3

(1): rhse → rhsf3
(1): rhse+ rhsp r15

rhsf3
(2): rhse → rhsf3

(2): rhse+ rhsp r16
rhsf3

(3): rhse → rhsf3
(3): rhse+ rhsp r17

rhsp+ rhsf � rhsp: rhsf r+18, r
−
18

rhsp+rhsf(1) � rhsp: rhsf(1) r+19, r
−
19

rhsp+ rhsf2 → rhsp: rhsf + rhsf r20
rhsp+rhsf2

(1) → rhsp: rhsf +rhsf(1) r21
rhsp+rhsf2

(1) → rhsp: rhsf(1)+ rhsf r22
rhsp+rhsf2

(2) → rhsp: rhsf(1)+rhsf(1) r23
rhsp+ rhsf3 → rhsp: rhsf +2 ∗ rhsf r24
rhsp+rhsf3

(1) → rhsp: rhsf +rhsf(1) + rhsf r25
rhsp+rhsf3

(1) → rhsp: rhsf(1)+2 ∗ rhsf r26
rhsp+rhsf3

(2) → rhsp: rhsf +2rhsf(1) r27
rhsp+rhsf3

(2) → rhsp: rhsf(1)+rhsf(1) + rhsf r28
rhsp+rhsf3

(3) → rhsp: rhsf(1)+2rhsf(1) r29
rhsp+ rhsf3: rhse → rhsp: rhsf +2 rhsf + rhse r30
rhsp+ rhsf3

(1): rhse → rhsp: rhsf(1) +2 rhsf + rhse r31
rhsp+ rhsf3

(1): rhse → rhsp: rhsf +rhsf(1) + rhsf + rhse r32
rhsp+ rhsf3

(2): rhse → rhsp: rhsf(1) +rhsf(1) + rhsf + rhse r33
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Table 3: The list of reactions for the refined model - Continued

rhsp+ rhsf3
(2): rhse → rhsp: rhsf +2rhsf(1) + rhse r34

rhsp+ rhsf3
(3): rhse → rhsp: rhsf(1) +2rhsf(1) + rhse r35

rhsp → ∅ r36
rprot → rmfp r37
rhsp+ rmfp � rhsp: rmfp r+38, r

−
38

rhsp: rmfp → rhsp+ rprot r39
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C The ODE-based model of the refined heat shock
response model

Table 4: The system of differential equations of the mathematical model associated with
the refined heat shock response model

d[rhsf]/dt = −2r+1 [rhsf]
2 + 2r−1 [rhsf2]− r+2 [rhsf][rhsf

(1)] + r−2 [rhsf2
(1)]

−r4
+[rhsf][rhsf2] + r4

−[rhsf3]− r6
+[rhsf][rhsf2

(1)] + r6
−[rhsf3

(1)]

−r8
+[rhsf][rhsf2

(2)] + r8
−[rhsf3

(2)]− r18
+[rhsp][rhsf]

+r18
−[rhsp: rhsf] + r20[rhsp][rhsf2] + r22[rhsp][rhsf2

(1)]

+2r24[rhsp][rhsf3] + r25[rhsp][rhsf3
(1)] + 2r26[rhsp][rhsf3

(1)]

+r28[rhsp][rhsf3
(2)] + 2r30[rhsp][rhsf3: rhse]

+2r31[rhsp][rhsf3
(1): rhse] + r32[rhsp][rhsf3

(1): rhse]

+r33[rhsp][rhsf3
(2): rhse]

d[rhsf(1)]/dt = −r+2 [rhsf][rhsf
(1)] + r−2 [rhsf2

(1)]− 2r3
+[rhsf(1)]

2

+2r3
−[rhsf2

(2)]− r5
+[rhsf(1)][rhsf2] + r5

−[rhsf3
(1)]

−r7
+[rhsf(1)][rhsf2

(1)] + r7
−[rhsf3

(2)]− r9
+[rhsf(1)][rhsf2

(2)]

+r9
−[rhsf3

(3)]− r19
+[rhsp][rhsf(1)] + r19

−[rhsp: rhsf(1)]

+r21[rhsp][rhsf2
(1)] + r23[rhsp][rhsf2

(2)] + r25[rhsp][rhsf3
(1)]

+2r27[rhsp][rhsf3
(2)] + r28[rhsp][rhsf3

(2)] + 2r29[rhsp][rhsf3
(3)]

+r32[rhsp][rhsf3
(1): rhse] + r33[rhsp][rhsf3

(2): rhse]

+2r34[rhsp][rhsf3
(2): rhse] + 2r35[rhsp][rhsf3

(3): rhse]

d[rhsf2]/dt = r+1 [rhsf]
2 − r−1 [rhsf2]− r+4 [rhsf][rhsf2] + r−4 [rhsf3]

−r+5 [rhsf
(1)][rhsf2] + r−5 [rhsf3

(1)]− r20[rhsp][rhsf2]

d[rhsf2
(1)]/dt = r+2 [rhsf][rhsf

(1)]− r−2 [rhsf2
(1)]− r+6 [rhsf][rhsf2

(1)]

+r−6 [rhsf3
(1)]− r+7 [rhsf

(1)][rhsf2
(1)] + r−7 [rhsf3

(2)]

−r21[rhsp][rhsf2
(1)]− r22[rhsp][rhsf2

(1)]

d[rhsf2
(2)]/dt = r+3 [rhsf

(1)]2 − r−3 [rhsf2
(2)]− r+8 [rhsf][rhsf2

(2)]

+r−8 [rhsf3
(2)]− r+9 [rhsf

(1)][rhsf2
(2)] + r−9 [rhsf3

(3)]

−r23[rhsp][rhsf2
(2)]

d[rhsf3]/dt = r+4 [rhsf][rhsf2]− r−4 [rhsf3]− r+10[rhsf3][rhse]
+r−10[rhsf3: rhse]− r24[rhsp][rhsf3]

d[rhsf3
(1)]/dt = r+5 [rhsf

(1)][rhsf2]− r−5 [rhsf3
(1)] + r+6 [rhsf][rhsf2

(1)]

−r−6 [rhsf3
(1)]− r+11[rhsf3

(1)][rhse] + r−11[rhsf3
(1): rhse]

−r25[rhsp][rhsf3
(1)]− r26[rhsp][rhsf3

(1)]

d[rhsf3
(2)]/dt = r+7 [rhsf

(1)][rhsf2
(1)]− r−7 [rhsf3

(2)] + r+8 [rhsf][rhsf2
(2)]

−r−8 [rhsf3
(2)]− r+12[rhsf3

(2)][rhse] + r−12[rhsf3
(2): rhse]

−r27[rhsp][rhsf3
(2)]− r28[rhsp][rhsf3

(2)]

d[rhsf3
(3)]/dt = r+9 [rhsf

(1)][rhsf2
(2)]− r−9 [rhsf3

(3)]− r+13[rhsf3
(3)][rhse]

+r−13[rhsf3
(3): rhse]− r29[rhsp][rhsf3

(3)]
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Table 4: The system of differential equations of the mathematical model associated with
the biochemical model - Continued

d[rhse]/dt = −r+10[rhsf3][rhse] + r−10[rhsf3: rhse]− r+11[rhsf3
(1)][rhse]

+r−11[rhsf3
(1): rhse]− r+12[rhsf3

(2)][rhse] + r−12[rhsf3
(2): rhse]

−r+13[rhsf3
(3)][rhse] + r−13[rhsf3

(3): rhse] + r30[rhsp][rhsf3: rhse]

+r31[rhsp][rhsf3
(1): rhse] + r32[rhsp][rhsf3

(1): rhse]

+r33[rhsp][rhsf3
(2): rhse] + r34[rhsp][rhsf3

(2): rhse]

+r35[rhsp][rhsf3
(3): rhse]

d[rhsf3: rhse]/dt = r+10[rhsf3][rhse]− r−10[rhsf3: rhse]
−r30[rhsp][rhsf3: rhse]

d[rhsf3
(1): rhse]/dt = r+11[rhsf3

(1)][rhse]− r−11[rhsf3
(1): rhse]

−r31[rhsp][rhsf3
(1): rhse]− r32[rhsp][rhsf3

(1): rhse]

d[rhsf3
(2): rhse]/dt = r+12[rhsf3

(2)][rhse]− r−12[rhsf3
(2): rhse]

−r33[rhsp][rhsf3
(2): rhse]− r34[rhsp][rhsf3

(2): rhse]

d[rhsf3
(3): rhse]/dt = r+13[rhsf3

(3)][rhse]− r−13[rhsf3
(3): rhse]

−r35[rhsp][rhsf3
(3): rhse]

d[rhsp]/dt = r14[rhsf3: rhse] + r15[rhsf3
(1): rhse] + r16[rhsf3

(2): rhse]

+r17[rhsf3
(3): rhse]− r+18[rhsp][rhsf] + r−18[rhsp: rhsf]

−r+19[rhsp][rhsf
(1)] + r−19[rhsp: rhsf

(1)]− r20[rhsp][rhsf2]

−r21[rhsp][rhsf2
(1)]− r22[rhsp][rhsf2

(1)]− r23[rhsp][rhsf2
(2)]

−r24[rhsp][rhsf3]− r25[rhsp][rhsf3
(1)]− r26[rhsp][rhsf3

(1)]

−r27[rhsp][rhsf3
(2)]− r28[rhsp][rhsf3

(2)]− r29[rhsp][rhsf3
(3)]

−r30[rhsp][rhsf3: rhse]− r31[rhsp][rhsf3
(1): rhse]

−r32[rhsp][rhsf3
(1): rhse]− r33[rhsp][rhsf3

(2): rhse]

−r34[rhsp][rhsf3
(2): rhse]− r35[rhsp][rhsf3

(3): rhse]
−r36[rhsp]− r+38[rhsp][rmfp] + r−38[rhsp: rmfp]
+r39[rhsp][rmfp]

d[rhsp: rhsf]/dt = r+18[rhsp][rhsf]− r−18[rhsp: rhsf] + r20[rhsp][rhsf2]

+r21[rhsp][rhsf2
(1)] + r24[rhsp][rhsf3] + r25[rhsp][rhsf3

(1)]

+r27[rhsp][rhsf3
(2)] + r30[rhsp][rhsf3: rhse]

+r32[rhsp][rhsf3
(1): rhse] + r34[rhsp][rhsf3

(2): rhse]

d[rhsp: rhsf(1)]/dt = r19
+[rhsp][rhsf(1)]− r19

−[rhsp: rhsf(1)]

+r22[rhsp][rhsf2
(1)] + r23[rhsp][rhsf2

(2)]

+r26[rhsp][rhsf3
(1)] + r28[rhsp][rhsf3

(2)]

+r29[rhsp][rhsf3
(3)] + r31[rhsp][rhsf3

(1): rhse]

+r33[rhsp][rhsf3
(2): rhse] + r35[rhsp][rhsf3

(3): rhse]
d[rhsp: rmfp]/dt = r+38[rhsp][rmfp]− (r−38 + r39)[rhsp: rmfp]
d[rmfp]/dt = r37[rprot]− r+38[rhsp][rmfp] + r−38[rhsp: rmfp]
d[rprot]/dt = −r37[rprot] + r39[rhsp: rmfp]
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Table 5: The ODEs corresponding to Rhsf, Rhsf2, Rhsf3, Rhsf3:Rhse, and Rhsp:Rhsf in
the refined model

d[Rhsf]/dt = −2(r+1 [rhsf]
2 + r+2 [rhsf][rhsf

(1)] + r3
+[rhsf(1)]2) + 2(r−1 [rhsf2]

+r−2 [rhsf2
(1)] + r3

−[rhsf2
(2)])− (r4

+[rhsf][rhsf2] + r6
+[rhsf][rhsf2

(1)]

+r8
+[rhsf][rhsf2

(2)] + r5
+[rhsf(1)][rhsf2] + r7

+[rhsf(1)][rhsf2
(1)]

+r9
+[rhsf(1)][rhsf2

(2)]) + (r4
−[rhsf3] + (r5

− + r6
−)[rhsf3

(1)]

+(r7
− + r8

−)[rhsf3
(2)] + r9

−[rhsf3
(3)])− [rhsp](r18

+[rhsf]

+r19
+[rhsf(1)]) + (r18

−[rhsp: rhsf] + r19
−[rhsp: rhsf(1)])

+[rhsp](r20[rhsf2] + (r21 + r22)[rhsf2
(1)] + r23[rhsf2

(2)])

+2[rhsp](r24[rhsf3] + (r25 + r26)[rhsf3
(1)] + (r27 + r28)[rhsf3

(2)]

+r29[rhsf3
(3)]) + 2[rhsp](r30[rhsf3: rhse] + (r31 + r32)[rhsf3

(1): rhse]

+(r33 + r34)[rhsf3
(2): rhse] + r35[rhsf3

(3): rhse])

d[Rhsf2]/dt = (r+1 [rhsf]
2 + r+2 [rhsf][rhsf

(1)] + r+3 [rhsf
(1)]2)− (r−1 [rhsf2]

+r−2 [rhsf2
(1)] + r−3 [rhsf2

(2)])− (r+4 [rhsf][rhsf2] + r+6 [rhsf][rhsf2
(1)]

+r+8 [rhsf][rhsf2
(2)] + r+5 [rhsf

(1)][rhsf2] + r+7 [rhsf
(1)][rhsf2

(1)]

+r+9 [rhsf
(1)][rhsf2

(2)]) + (r−4 [rhsf3] + (r−5 + r−6 )[rhsf3
(1)])

+(r−7 + r−8 )[rhsf3
(2)] + r−9 [rhsf3

(3)])− [rhsp](r20[rhsf2]

+(r21 + r22)[rhsf2
(1)] + r23[rhsf2

(2)])

d[Rhsf3]/dt = (r+4 [rhsf][rhsf2] + r+6 [rhsf][rhsf2
(1)] + r+8 [rhsf][rhsf2

(2)]

+r+5 [rhsf
(1)][rhsf2] + r+7 [rhsf

(1)][rhsf2
(1)] + r+9 [rhsf

(1)][rhsf2
(2)])

−(r−4 [rhsf3] + (r−5 + r−6 )[rhsf3
(1)] + (r−7 + r−8 )[rhsf3

(2)] + r−9 [rhsf3
(3)])

−[rhse](r+10[rhsf3] + r+11[rhsf3
(1)] + r+12[rhsf3

(2)] + r+13[rhsf3
(3)])

+(r−10[rhsf3: rhse] + r−11[rhsf3
(1): rhse] + r−12[rhsf3

(2): rhse]

+r−13[rhsf3
(3): rhse])− [rhsp](r24[rhsf3] + (r25 + r26)[rhsf3

(1)]

+(r27 + r28)[rhsf3
(2)] + r29[rhsf3

(3)])

d[Rhsf3:Rhse]/dt = [rhse](r+10[rhsf3] + r+11[rhsf3
(1)] + r+12[rhsf3

(2)]

+r+13[rhsf3
(3)])− (r−10[rhsf3: rhse] + r−11[rhsf3

(1): rhse] + r−12[rhsf3
(2): rhse]

+r−13[rhsf3
(3): rhse])− [rhsp](r30[rhsf3: rhse] + (r31 + r32)[rhsf3

(1): rhse]

+(r33 + r34)[rhsf3
(2): rhse] + r35[rhsf3

(3): rhse])

d[Rhsp:Rhsf]/dt = [rhsp](r+18[rhsf] + r19
+[rhsf(1)])− (r−18[rhsp: rhsf]

+r19
−[rhsp: rhsf(1)]) + [rhsp](r20[rhsf2] + (r21 + r22)[rhsf2

(1)]

+r23[rhsf2
(2)]) + [rhsp](r24[rhsf3] + (r25 + r26)[rhsf3

(1)]

+(r27 + r28)[rhsf3
(2)] + r29[rhsf3

(3)])

+[rhsp](r30[rhsf3: rhse] + (r31 + r32)[rhsf3
(1): rhse]

(r33 + r34)[rhsf3
(2): rhse] + r35[rhsf3

(3): rhse])
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D The numerical setup of the refined model

Table 6: The numerical values of the parameters of the refined model

r+1 = k+
1 ; r+8 = k+

2 ; r16 = k4; r28 = k7/2;

r−1 = k−
1 ; r−8 = k−

2 /2; r17 = k4; r29 = k7;

r+2 = 2 · k+
1 ; r+9 = k+

2 ; r18
+ = k+

5 ; r30 = k8;

r−2 = k−
1 ; r−9 = k−

2 ; r18
− = k−
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