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Department of Computer Science, Åbo Akademi University, Turku, Finland
kai.wu@abo.fi

Krishna Kanhaiya
Turku Centre for Computer Science and
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Abstract

Computational analysis of the structure of intra-cellular molecular interaction net-
works can suggest novel therapeutic approaches for systemic diseases like cancer.
Recent research in the area of network science has shown that network control
theory can be a powerful tool in the understanding and manipulation of such bio-
medical networks. In 2011, Liu et al. developed a polynomial time optimization
algorithm for computing the size of the minimal set of nodes controlling a given
linear network. In 2014, Gao et al. generalized the problem for target structural
control, where the objective is to optimize the size of the minimal set of nodes
controlling a given target within a linear network. The working hypothesis in this
case is that partial control might be “cheaper” (in the size of the controlling set)
than the full control of a network. The authors developed a Greedy algorithm
searching for the minimal solution of the structural target control problem, how-
ever, no suggestions were given over the actual complexity of the optimization
problem. In here we prove that the structural target controllability problem is NP-
hard when looking to minimize the number of driven nodes within the network,
i.e., the first set of nodes which need to be directly controlled in order to struc-
turally control the target. We also show that the Greedy algorithm provided by
Gao et al. in 2014 might in some special cases fail to provide a valid solution, and
a subsequent validation step is required. Also, we improve their search algorithm
using several heuristics, obtaining in the end up to a 10-fold decrease in running
time and also a significant decrease of the size of the minimal solution found by
the algorithms.

Keywords: Network controllability, structural target control, computational com-
plexity, greedy algorithms, driver/driven nodes, output controllability

TUCS Laboratory
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1 Introduction

The intrinsic robustness of living systems against perturbations is a key factor that
explains why many single-target drugs have been found to provide poor efficacy
or lead to significant side effects [5]. The efficacy of multi-target therapies can be
understood from a robustness of disease-networks point of view to deal with sin-
gle node perturbations, due to inherent diversity and redundancy of compensatory
signaling pathways that result in highly resilient and resistant network architecture
with modular and interconnected topology [5]. Rather than trying to design selec-
tive ligands that target individual receptors only, network polypharmacology aims
to modify multiple cellular targets to tackle the compensatory mechanisms and
robustness of disease-associated cellular systems, as well as to control unwanted
off-target side effects that often limit the clinical utility of many conventional drug
treatments [1, 3, 5]. However, the exponentially increasing number of potential
drug target combinations makes the pure experimental approach quickly unfeasi-
ble, and translates into a need for design principles to determine the most promis-
ing target combinations to effectively control complex disease systems, without
causing drastic toxicity or other side-effects.

Network biology, with the help of mathematical modeling, has revolutionized
the human diseasome research and paved the way towards the development of new
therapeutic approaches and personalized medicine. Recent work on network con-
trollability has shown that full controllability and reprogramming of intercellular
networks can be achieved by a minimum number of control targets [10]. However,
the computer-based experimental tests of Liu et al. [10] suggest that the approach
is totally unfeasible in practice, as achieving full control over gene regulatory net-
works requires roughly 80% of the nodes (i.e., on the order of 800 - 1000 nodes)
to be directly controlled by an external controller.

Although diseased cells may harbor hundreds of genomic alterations in vari-
ous biological pathways [8, 17], only a subset of these alterations are driving the
disease initiation and progression. These genes form together the sets of (disease
specific) essential genes, see [2]. Due to the new CRISPR gene editing technol-
ogy, researchers can now pinpoint the sets of essential genes, for a very large class
of illnesses [11, 16], including many types of cancers [18].

In this research we concentrate over the target structural controllability prob-
lem, where the aim is to select a minimal set of driver/driven nodes which can
control a given target within a linear network. That is, for every initial configu-
ration of the system and any desired final configuration of the target nodes, there
exists a finite sequence of input functions for the driver nodes such that the target
nodes can be driven to the desired final configuration, in finite time.

The target controllability problem for linear networks is a particular case of
output controllability [14] and a generalization of the full controllability problem,
which requires the control over the entire system. In 2011 Liu et al. [10] have
provided a polynomial time algorithm (in the size of the network) computing the
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optimal solution for the full structural controllability problem. Few years latter,
Gao et al. [4] developed a Greedy algorithm searching for the minimal solution
of the structural target controllability problem. However, in this last research, no
suggestions were given over the overall complexity of the target control optimiza-
tion problem.

In this study we prove that the structural target controllability problem is NP-
hard when looking to minimize the number of driven nodes within the network.
The driven nodes of a network are those to be directly controlled from an out-
side agent in order to structurally control the given target. We also show that the
Greedy algorithm provided by Gao et al. [4] might sometimes fail to provide a
valid solution (i.e., a driver/driven set of nodes actually controlling the target),
and thus a subsequent validation step is required. Also, we improve their search
algorithm using several heuristics, obtaining up to a 10-fold decrease in the av-
erage running time and a significant decrease in the size of the average minimal
solution found by the algorithms, especially in the case of proportionally small
targets, i.e., less than 15% of the total number of nodes.

2 Background and Definitions
A linear, time invariant (in short lti) dynamical system is a system of the form

dx(t)

dt
= Ax(t) (1)

where x(t) = (x1(t), ..., xn(t))
T is the n-dimensional vector describing the sys-

tem’s state at time t, and A ∈ Rn×n is the time-invariant state transition matrix,
describing how each of these states are influencing the dynamics of the system.
The elements in x are called the variables/nodes/species of the system; we abuse
notation and denote with X the set of these variables. If the system is influenced
by a size-m external input controller u(t) = (u1(t), ..., um(t))

T , then system (1)
becomes:

dx(t)

dt
= Ax(t) +Bu(t) (2)

where B ∈ Rn×m is the time-invariant input matrix describing how each of
the n variables are affected by the m inputs. In the additional case when at
each time step t the system is also exporting a set of k output values, y(t) =
(y1(t), ..., yk(t))

T depending on the current state x(t), the system (1) becomes:

dx(t)

dt
= Ax(t)

y(t) = Cx(t)
(3)

where C ∈ Rk×n is the output matrix describing how each of the k outputs are
influenced by the n variables of the system at time t. For example, in the particular
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case when the desired output is represented just by the numerical values of a k
subset T ⊆ X of the total n variables, such as a target set, the output matrix
CT is a 0–1 matrix, with CT (i, j) = 1 iff i = j and i, j ∈ T , i.e., CT is the
the identity matrix restricted to the subset T . For ease of notation, such m-input,
k-output linear, time invariant, dynamical systems are denoted as (A,B,C) with
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rk×n

Given a target set T , a linear time-invariant dynamical system (A,B,CT ) is
said to be target controllable if there exists a time-dependent input vector u(t) =
(u1(t), ..., um(t))

T that can drive the state of the target variables to any desired
numerical setup in finite time. It is known, see e.g. [4], that a system (A,B,CT )
is target controllable if and only if

rank[CTB,CTAB, , CTA
2B, ..., CTA

n−1B] = |T | (4)

In the particular case when the target is the entire n variable set X , we can
see that the above condition is reduced to the well known Kalman condition for
full controllability [6], i.e., a linear dynamical system (A,B) is controllable if and
only if

rank[B,AB,A2B, ..., An−1B] = n (5)

A big step forward in the search for algorithms looking for efficient solutions
for the (target) controllability problem has been achieved by translating the prob-
lem to graphs. A first step in this direction is implemented by detaching from par-
ticular numerical setups of a linear system, and focussing on the intrinsic wiring
of the system’s variables. We say that a linear time-invariant dynamical system
(A,B,CT ) is structurally target controllable (with respect to a given size-k target
set T ) if there exists a time-dependent input vector u(t) = (u1(t), ..., um(t))

T and
a numerical setup for the non-zero values within the matrices A and B, that can
drive the state of the target nodes to any desired numerical setup in finite time.
According to equation (4) above, a system (A,B,CT ) is structurally target con-
trollable if and only if there exist values for the non-zero entries in A and B such
that

rank[CTB,CTAB, , CTA
2B, ..., CTA

n−1B] = k (6)

The case of full structural controllability is obtained from the above when T = X
and CT = In. It is known, see e.g. [9, 15], that if a system is structurally (target)
controllable, then it is (target) controllable in almost all numerical setups of the
non-zero values within the state transition matrix A.

Linear systems can be represented in terms of directed weighted graphs. The
n variables of the systems are the nodes of the graphs, while directed edges
correspond to non-zero values in the state transition matrix. That is, there ex-
ists a directed edge between variables xi an xj with weight v if and only if
A(xj, xi) = v 6= 0. Similarly, the size-m controller vector u corresponds to
m input nodes, u1, ...um, called driver nodes, while the input matrix B determines
the edges between the driver nodes and the network. That is, there exists a directed
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edge between ui an xj with weight w if and only if B(xj, ui) = w 6= 0. The nodes
xj such that there exists i with B(xj, ui) 6= 0 are called the driven nodes of the
network; these are the first nodes in the network which are directly manipulated
in order to drive the entire system to the desired state.

Instead of (target) structural controllability we can now talk of the equivalent
network controllability problem, where the variables and the targets are now nodes
in the directed network graph. It is known, see e.g. [9], that the structural control-
lability problem has a counterpart formulation in terms of network graphs. The n
variable system (A) is structurally controllable from the m-input/driver controller
u and control matrix B if and only if we can select a set of n directed paths from
the input/driver nodes (i.e., as starting points) to each of the network nodes (i.e., as
ending points), such that no two paths would intersect at the same distance d from
their end points. In case of the target controllability problem for a given target set
T , with |T | = m, the above condition must hold for a path family containing m
paths, connecting all the targets to the driver nodes.

From the point of view of bio-medical disease network analysis and control,
it is sometimes more advantageous to consider the set of driven nodes instead
of that of the driver nodes. To a rough understanding, the set of driver nodes is
describing the complexity of an outside controller, assuming this controller can
interact/influence with equal impact several of the network nodes; such an inter-
action could be seen for example as the influence of a drug over the expression
of some particular genes. Meanwhile, the set of driven nodes provide the exact
collection of network nodes, i.e., genes, that will be used in order to ultimately
control the entire set of target nodes. In particular, if we require that each driver
node is interacting with at most one network node, i.e., the control matrix B has
at most one non-zero entry for every column, then there is a one-to-one corre-
spondence between driver and driven nodes. From now on, within this study we
will concentrate over minimizing the set of driven nodes for the control of a given
target within a directed network.

Definition We say that for a time invariant dynamical system (A,B,CT ) the in-
put controller is 1-bounded if and only if matrix B contains only one non-zero
value on every column, i.e., each of the m inputs uj(t) control exactly one of the
variables xi(t), and that variable is independent of the choice for the time point t.

3 Driven Target Control is NP-hard

In this section we are going to prove that the problem of minimizing the number
of driven nodes for a given time invariant linear dynamical system (A,B,CT ) and
a target set T is NP-hard. If moreover the system (A,B,CT ) is 1-bounded, the
problem is equivalent to minimizing its number of driver nodes. We are providing
this result by proving that the corresponding decision problem, i.e., whether there
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exists a size-k 1-bounded controller B which can structurally control the target T ,
is itself NP-hard. This will be done via a reduction to 3SAT.

We recall that in a directed graph, we say that a node Xi is an ancestor of a
node Xj if there exists a directed path (possibly empty) from Xi to Xj .

Theorem 1 The 1-Bounded Target Control Optimization Problem is NP-hard, as
the following associated decision problem is itself NP-hard. Given a network
graph G = (V,E), a target subset T ⊆ V , and a number n ≤ |V |, is there a
size-n 1-bounded control scheme for the target T , i.e., a set of n driver nodes,
each interacting with exactly one node from the graph, such that we obtain the
full control of the target nodes T? In matrix representation, is there a matrix
B of size |V | × n, with exactly one non-zero entry per each column, such that
rank[CTB,CTAB, , CTA

2B, ..., CTA
n−1B] = |T |?

Proof: We are proving the NP-hardness result via a reduction from the 3SAT
problem. Let P be an arbitrary 3SAT boolean formula instance, containing n
boolean variables x1, ..., xn and m clauses Cl1, ..., Clm. We are going to construct
a graph G = (V,E) with |V | = 3m(m+1)/2+ 3n+m nodes and select a target
subset C with |C| = m+n such that the formula P is satisfiable if and only if the
cardinality of a minimal control set for C is n.

The graph G, presented also in Figure 1, can be described as follows. It con-
sists of five types of nodes: valuation-nodes, clause-nodes, tautology-nodes, and
path-nodes. The valuation set of nodes contains 2n nodes, XT

j , X
F
j , 1 ≤ j ≤ n,

one for each possible truth assignment of a variable xj . The clause set of nodes
contains m nodes, CL1, ..., CLm, one for each of the formula’s clauses. The
tautology set of nodes contains n nodes, TA1, ..., TAn, each corresponding to a
variable-specific tautological clause (xj∨¬xj). Finally, the path-level set of nodes
contains 3m(m+1)/2 nodes, that is, for each of the clauses Cli, with 1 ≤ i ≤ m,
we have 3i nodes Pa

(1;i)
j , Pa

(2;i)
j , and Pa

(3;i)
j , with 1 ≤ j ≤ i.

The directed edges of G can be easily described as follows. In the formula P ,
every clause Cli has exactly three valuations of the variables x1, ...,xn which may
validate Cli; let these be xv1

i1
, xv2

i2
, and xv3

i3
. Using the 3 disjoint sets of vertices

Pa
(1;i)
j , Pa

(2;i)
j , and Pa

(3;i)
j , with 1 ≤ j ≤ i, we connect the nodes Xv1

i1
, Xv2

i2
, and

Xv3
i3

to CLi, using 3 disjoint directed paths (each) of length i. The direction of
these edges are from the variable-type nodes towards the clause-type nodes.

In addition to the above edges, for any of the tautology-level nodes TAj , 1 ≤
j ≤ n, we have two directed edges (XT

j , TAj) and (XF
j , TAj), representing the

two valuations which would validate the corresponding clause.
We fix the set T = {TAj | 1 ≤ j ≤ n} ∪ {CLi | 1 ≤ i ≤ m} containing n

tautology nodes and m clause nodes as our target set.
We prove that the formula P is satisfiable if and only if the target T can be

controlled from exactly n control nodes. Moreover, at most one of the valuation
nodes associated to a boolean variable can be connected to a driver node.
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X1
T X1

F X2
T X2

F X3
T X3

F Xn
T Xn

F

CL1

CL2

CLm

TA1 TA2 TA3 TAn

P=(x1V x2V x3)    ( x1V x2V xn)

V L V V

(x3V x7V xn)

Figure 1: The graph associated to a boolean formula P . For reducing the com-
plexity of the notations, the path nodes Pak;ij are not labeled on the figure.

Indeed, the second requirement above can be easily concluded since we need
al least n distinct (1-bounded) driver nodes to control the n tautology nodes TAj ,
as for any two such nodes there is no node in G having a (directed) path to both of
them. Moreover, since these nodes are path-connected only with valuation nodes
(XT

j and XF
j ), controlling any TAj requires either a direct link to a driver node,

or a control via such a valuation node. Thus, if the target T is controlled using
exactly n driver nodes, then at most one of the valuation nodes associated to a
boolean variable can be connected to each of these driver node. From the above
reasoning we can also conclude that controlling all the tautology nodes, and thus
also the entire target T , requires at least n distinct driver nodes.

Let us assume first that formula P is satisfiable. Thus, there exists a valuation
xv1
1 , ...xvn

n for each of the n variables such that each clause is validated by at least
one of these truth assignments. Let Bi, 1 ≤ i ≤ n be a set of n driver nodes,
each connected by an edge (Bi, X

vi
i ) to the associated valuation node from the

validating truth assignment. Since the formula P is validated by this truth assign-
ment, it implies that all the clause nodes CL1, ..., CLn are connected to at least
one of the valuation nodes Xv1

1 , ..., Xvn
n , and thus to at least one of the driver bodes

B1...Bn. Moreover, by the way we constructed the graph G, if one of the above
valuation nodes is connected to several clause nodes, the length of all these paths,
i.e., the number of edges in-between the driver nodes and the clause nodes, are all
different, and of length greater or equal than 3.

In the same time, each of the n driver nodes is connected to exactly one tau-
tology node, using a path of size 2. Thus, the length of the above path is different
from any of the path which could connect the corresponding valuation node to any
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of the clause nodes.
To conclude, the n driver nodes are overall connected to all the nodes in the

target T . Also, for each of these driver nodes, the length of the paths connecting
it to nodes in the target T are all different. Also, for any such path of length k
between Bi and a target node Y ∈ T , there is no other path of length k between
Bi and any other target Y ′ ∈ T ; thus, the column CTA

kBi from the target control-
lability matrix contains only one non-zero entry. Thus, in the target controllability
matrix we can successfully choose m + n linearly independent columns, i.e., its
rank is m+ n.

Assume now that the target T , containing n tautology nodes and m clause
nodes, can be controlled from exactly n driver nodes b1, ..., bn, under the 1-bounded
principle (i.e., allowing for exactly 1 driven node per every driver node).

As previously demonstrated, none of the n driver nodes can control two tau-
tology nodes at the same time. Moreover, no two valuation nodes corresponding
to the same variable can be both connected to the same driver node.

Since the target T can be controlled from the b1...bn nodes, it means there
exists a matrix B ∈ R|V |×n such that the target controllability matrix satisfies:

rank[CTB,CTAB, , CTA
2B, ..., CTA

|V |−1B] = m+ n (7)

Moreover, from the reasoning above we have that each column of B contains
exactly one non-zero entry, either corresponding to a tautology-node or to a valu-
ation node. From the structure of the underlying graph G we have that the target
controllability matrix contains at most one non-zero entry per column, and that
such an entry corresponds to exactly one path from a driver node, to a target node.

Consider now the m clause-nodes from the target T . Since the target is entirely
controlled from the size n driver set, it means that the size-n set of driven nodes
has to be connected to the m clause nodes. In particular, since no edge is outgoing
from any of the tautology nodes, the subset of valuation nodes within the set of
driven nodes has to be connected to all the m clause nodes. That is, for each of
the clause nodes CLi there must exist at least one valuation node within the set
of driven nodes connected to CLi. According to the graph construction procedure
from the formula P , it means that every clause cli of P is validate by at least one
of the chosen valuations. Moreover, as demonstrated above, for each variable xj

we are picking (in the set of driven nodes) at most one of its valuation nodes.
Thus, the chosen valuations given by the set of driven nodes validate the formula
P , i.e., P is satisfiable.

The above result can be generalized for the case when each of the driver nodes
is connected to the network by at most k edges, for any given constant k. That
is, each driver node is controlling at most k driven nodes; we call such a system
k-bounded.

Definition We say that for a linear time invariant dynamical system (A,B,CT )
the input controller is k-bounded if and only if the matrix B contains at most k
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non-zero values on every column, i.e., each of the m inputs uj(t) control at most
k of the variables in X .

Theorem: The k-Bounded Target Control Optimization Problem is NP-hard.
Namely, given a linear time invariant dynamical system (A,B,CT ) with a k-
bounded input controller and target control set T , finding the minimal set of driven
nodes controlling the target T is an NP-hard optimization problem.

We omit the proof here.

4 Approximation algorithms for target control
We have demonstrated in the previous section that trying to provide the optimal
solution for the Target Control problem is computationally hard. An alternative
choice is to develop approximation algorithms, trying to get close to the optimal
solution in a time-efficient manner.

A first Greedy algorithm for the Target Control problem has been described
by Gao et al.[4]. The authors approach the problem from a different perspective,
that of generating a linking in an associated network, called the dynamic graph;
the method has its roots in earlier studies of Poljak and Murota [13, 14].

In the following we present first the approach of Poljak and Murota [14] which
connects the target control problem to the linking graph structure. Then, we pro-
ceed to presenting the Gao et al. approximation algorithm for target controllabil-
ity, show its connection to the linking graph approach, and analyze the algorithm’s
shortcomings. Finally, we introduce three new heuristic improvements of the op-
timization algorithm, and analyze their performance.

Let (A,B,CT ) be an lti dynamical system over n variables, m inputs, and l
targets (i.e., |T | = l), and let G = (V,E) be the associated network graph. The
dynamical graph G is a time-disjoint representation of the network graph, where
each state (from t = 1 to t = n) and each input variable (from t = 0 to t = n− 1)
is viewed as a distinct node at different time points, whereas the target states are
associated only with the time-point t = n+ 1. Formally, it is defined as the graph
G = (V ,E), with the set of nodes V = VA ∪ VB ∪ VC , where

• VA = {vi,t | i = 1..n, t = 1..n},

• VB = {vn+j,t | j = 1..m, t = 0..n− 1}, and

• VC = {vn+m+k | k = 1..l}.

Note that the nodes in VC are in one-to-one correspondence with the nodes VC , as
well as with the target T . The graph G has the following set of edges E:

• {(vj,tvi,t+1) | for all i and j such that Ai,j 6= 0, t = 1..n}∪

• {(vn+j,tvi,t+1) | for all i and j such that Bi,j 6= 0, t = 0..n− 1}∪
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• {(vj,nvn+m+i) | for all i and j such that Ci,j 6= 0}.

A collection L = (p1, p2, ..., pk) of k edge disjoint paths in the dynamical
graph G is called a linking of size k. If S, T ⊆ V are the sets of initial and
terminal nodes of the path L, then we say that L is an (S, T )-linking.

It has been shown in [14] that if (A,B) is an lti dynamical system with m
driver nodes (i.e., the number of columns of B is m) and T is a size-l target set
which is controllable from these driver nodes, then there must exist an (VB, VC)-
linking of size l. It has been a question for many years whether the converse of
the above result also holds. Namely, if for an lti system (A,B,CT ) there exists an
(VB, VC)-linking of size l, then does it imply that the size-m driver set associated
to B is controlling the target T , i.e., rank[CTB,CTAB, , CTA

2B, ..., CTA
n−1B] =

l? Although the answer to this question was proved in [14] to be negative, it be-
came clear that any counter-example for this claim must obey some very strict
design conditions regarding the controlling path from the driver nodes to the tar-
get.1 Thus, in practice, finding a collection of nodes VB such that there exists a
(VB, VC)-linking of size l provides a good candidate for the set of driver nodes
controlling the target VC .

The above approach has been employed by Gao et al. [4] which introduced
a Greedy algorithm for the target control problem. Namely, given an lti A and
a target T , their algorithm searches for a small set VB for which there exists a
(VB, VC)-linking. In turns, such a set VB would have a very high probability
for defining a set of driver nodes for the target T . However, after applying this
algorithm, one has to perform a validation step which verifies whether the selected
set of driver/driven nodes selected by the algorithm are indeed controlling the
target. This can be done by checking that the rank of the controllability matrix
[CTB,CTAB, , CTA

2B, ..., CTA
n−1B] is indeed equal to |T |.

In the following we describe the Gao et al. algorithm [4] and we introduce
three new heuristically improved variants of it. The comparative analysis of all
these algorithms is performed in Section 5

4.1 The basic Target Control Algorithm (TarCo)
Let A be an lti over n variables and let G = (VA, EA) be the directed graph
associated to it. Let T ⊆ VA be a set of target variables/nodes. The following
algorithm outputs a set of driven nodes D which has a one-to-one correspondence
to the searched set VB for which there exists a (VB, VC)-linking.

Step 1: Let i = 0, Ci = T , and D = Di = ∅.
Step 2: Define a bipartite graph Gbi with nodes L∪R, where L = VA, R = Ci,

and any node appearing both in VA and in Ci is treated distinctly in L and R. For

1An intuitive description of those systems for which a linking is not translated to a valid con-
trolling path is when there exist two targets t1 and t2 such that for every path from a driver note d
to t1 there exists another path from d to t2 using the exact same collection of edges (as a multiset).
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l ∈ L and r ∈ R there exists an edge (l, r) in Gbi iff (l, r) ∈ EA is an edge in the
initial directed graph G.

Step 3: Find a maximum matching (ML,MR) in Gbi, ML ⊆ L and MR ⊆ R,
and let Ci+1 = ML be the set of the left sided matched nodes and let Di = R\MR

be the set of right sided un-matched nodes. Let D = D ∪Di.
Step 4: We consider Ci+1 as the new set of target nodes. If Ci+1 = ∅ then we

complete the algorithm and output D. If not, we proceed to Step 5.
Step 5: If i < n then i = i + 1 and proceed to Step 2 with the updated target

Ci and driven set D. Else, proceed to Step 6.
Step 6: Output D as the set of driven nodes.
Note: The previous algorithm is focussed on minimizing the set of generic

driver nodes, and not the set of 1-bounded driver nodes (i.e., driven nodes) fo-
cussed on this research. In particular, the algorithm might not output the complete
set of driven nodes, but rather a subset of it which is in one-to-one correspondence
with the set of generic driver nodes. Indeed, if the algorithm ends in Step 6, then it
implies that the target set Cn is non-empty. Since the total number of nodes in G
is n, it implies that all the remaining nodes in Cn can be partitioned into a number
of cycles. Since the 1-bounded condition for driver nodes is not imposed, all the
nodes in these cycles, including the ones in Cn, can be controlled from any driver
nodes.

In order to modify the TarCo algorithm for finding a suitable set of driven
nodes, instead of driver nodes, we implemented an update/optimization step.

4.2 The Optimized Target Control Algorithm (OpTarCo)
In the TarCo algorithm, once a node x is selected for being a driven node, i.e.,
added to D in Step 3, we do not check whether until that stage the node x appeared
before in some previous control path. If so, now that we know that node x is
selected for being a driven node, we can prune that control path after reaching
node x. This leads to the following modified algorithm:

As before, let A be an lti over n variables and let G = (VA, EA) be the directed
graph associated to it. Let T ⊆ VA be the set of target variables/nodes.

Step 1 (Similar to TarCo): Let i = 0, Ci = T , and D = Di = ∅.
Step 2 (Similar to TarCo): Define a bipartite graph Gbi with nodes L ∪ R,

where L = VA, R = Ci, and any node appearing both in VA and in Ci is treated
distinctly in L and R. For l ∈ L and r ∈ R there exists an edge (l, r) in Gbi iff
(l, r) ∈ EA is an edge in the initial directed graph G.

Step 3.1: Find a maximum matching (ML,MR) in Gbi, ML ⊆ L and MR ⊆ R,
and let Ci+1 = ML be the set of the left sided matched nodes and Di = R \MR

be the set of right sided un-matched nodes.
Step 3.2: For each x ∈ Di \D, do:
Step 3.2.1: If node x appears in any previously computed Cj , j < i, then

remove the entire control path from that occurrence (in Cj) onward, and update
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all the sets Ck, Dk with j ≤ k ≤ i + 1 accordingly. Then update D as D =⋃
p=0toi D

p.
End For (from Step 3.2)
Step 4: We consider D = D∪Di as the new set of driven nodes, and Ci+1 \D

as the new set of targets. If Ci+1 = ∅ then we complete the algorithm and output
D. If not, we proceed to Step 5.

Step 5 (Similar to TarCo): If i < n then i = i+ 1 and proceed to Step 2 with
the updated target Ci and driver set D. Else, proceed to Step 6.

Step 6: For all the remaining nodes in Cn, add them one by one to the driven
set D and, at each new addition to D, perform the check from Step 3.2.1, i.e.,
pruning the existing controlling path for each new addition in D.

Step 7: Output D as the set of driven nodes.

4.3 Heuristically Optimized Target Control Algorithms (HeTarCo1-
3)

In Step 3 (resp. 3.1) of the previous two algorithms, at each iteration of the search
process we find a maximum matching in between the nodes of G and the current
target Ci. However, such maximum matchings might not be unique, in which
case some of these maximum matchings might be more suitable to be chosen.
Let us assume the algorithm is at some iteration i in its search procedure. Let
C1, ..., Ci, D1, ..Di−1 and D be the already computed sets of targets and driven
nodes. Let Gbi be the bipartite graph constructed in iteration i, with nodes L ∪R,
where L = VA, R = Ci, and any node appearing both in VA and in Ci is treated
distinctly in L and R. When searching for a maximum matching (ML,MR) in
Gbi, ML ⊆ L and MR ⊆ R, we are setting the following heuristic criteria for
guiding the process towards a minimum number of driven nodes. Note, not all
criteria below can be followed in the same time.

• Criteria 1: When computing the maximum matching (ML,MR), maximize
the use of already driven nodes in ML.

• Criteria 2: When computing the maximum matching (ML,MR) try to avoid
the creation of cyclic controlling path. That is, avoid selecting nodes x ∈
ML such that there exists j ≤ i and a sequence ui+1, ..., uj such that uk ∈
Ck for all j ≤ k ≤ i, ui+1 = uj = x, and for all j ≤ k ≤ i, uj is matched
to uj+1 in the corresponding bipartite graph.

• Criteria 3: When computing the maximum matching (ML,MR), maximize
the use of nodes in ML which have appeared in some previous Cj, j < i,
on a path that is already controlled (ends with a driven node).

• Criteria 4: When computing the maximum matching (ML,MR), maximize
the use of nodes in ML which have appeared in some previous Cj, j < i,
on a path that is not controlled yet.
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• Criteria 5: When computing the maximum matching (ML,MR), maximize
the use of edges (u, v) (with u ∈ ML and v ∈ MR) which have been used
in some previous matching and are part of at least one path that is already
controlled.

• Criteria 6: When computing the maximum matching (ML,MR), maximize
the use of edges (u, v) (with u ∈ ML and v ∈ MR) which have been used
in some previous matching, but are not part of any path that is already con-
trolled.

Following subsets of the above selection criteria, as well as the previously in-
troduced optimized control algorithm (OpTarCo) as a base algorithm, we define
in the following a series of three heuristically optimized target control algorithms,
as follows.

Algorithm HeTarCo1: Within Step 3.1 of the OpTarCo algorithm select a
maximum matching (ML,MR) following Criteria 2.

Algorithm HeTarCo2: Within Step 3.1 of the OpTarCo algorithm select
a maximum matching (ML,MR) following Criteria 1, 2, 3, and 4, in this exact
order of importance.

Algorithm HeTarCo3: Within Step 3.1 of the OpTarCo algorithm select a
maximum matching (ML,MR) following Criteria 2, 5, 6, 1, 3, and 4, in this exact
order of importance.

5 Results: A comparative analysis of the four algo-
rithms

We analyzed the performance of the four approximation algorithms against both
randomly generated networks and targets, as well as against a human protein-
protein interaction network, using as target a set of Breast Cancer specific essential
genes.2

We predict the performance of all four algorithms to be highly dependent on
the size of the network, i.e., the number of nodes and edges, the average degree,
the size and the choice of the target set, as well as the overall control-affinity of the
network, i.e., the size of its minimal driven set controlling the entire set of nodes.
Thus, in order to perform a fair analysis of the algorithms against one-another we
impose several conditions for our test cases.

We generated randomly a set of 100 networks, each over 1000 nodes and hav-
ing exactly 4000 directed edges, i.e., all networks have equal average node (in/out)

2Note that there is a one-to-one correspondence between genes and proteins; thus, having as
target a set of essential genes means the equivalent set of essential proteins.
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degree 4.3 For each network, we randomly selected 10 target sets of size 100, 200,
..., up to 1000 (i.e., all the network’s nodes), respectively. We performed 10 (in-
dependent) runs for each of the target sets (and networks) with each of the four
algorithms; all runs were performed on the same Xeon 6/3GHz core computer.

In order to compare the overall performance of all algorithms, as well as the
performance of each individual algorithm applied over different test-cases, we
normalize the performance of each run of an algorithm against the minimal total
driven control set of the network, i.e., against the size of the minimum set of driven
nodes controlling the entire network, as obtained over all runs with all algorithm
(40 runs for each of the complete 1000 target node set).4 Thus, a reported value of
1 for an algorithm’s run (for a target and a network) signifies that the size of that
solution is equal to the minimal total driven control set of that respective network.

In Fig. 2 we report the comparative analysis of the four algorithms with re-
gards to the average (normalized) size of solutions after each run of the algorithm,
Fig. 2a), by taking to minimum of 10 runs for the same algorithm over the same
target, Fig. 2b), as well as the average time complexity of each individual run,
Fig. 2c). Our analysis shows that in terms of minimality of the driven set solu-
tion, all three heuristic algorithms, HeTarCo1 − 3 perform slightly better than
OpTarCo, when the target set is proportionally small compared to the total num-
ber of nodes, i.e., less than 15%. When the target size increases on the other hand,
two out of three heuristically improved algorithms perform considerably worse,
whereas the third one has a very similar performance as OpTarCo. However, in
terms of average time taken by each of the algorithms to perform a run, there are
up to 10-fold decreases for all heuristically improved algorithms.

In order to better analyze the importance of multiple runs over the solution size
decrease we considered testing the four algorithms by doing multiple runs over a
fixed time period, namely 12 hours. For that we have selected a human protein-
protein interaction network consisting of approx. 3000 nodes (i.e., proteins) and
1000 directed edges (i.e., protein interactions); the network was obtained from
the SIGNOR (SIGnaling Network Open Resource) database [12]. For targets, we
have intersected the set of nodes from the previous network with the list of Breast
Cancer essential genes taken from the COLT-Cancer database [7]. In particu-
lar, we considered the MDA-MBD-231 cell line and followed the GARP (Gene
Activity Rank Profile) and GARP-P values of corresponding proteins mentioned
in the database, selecting those entries with negative GARP score and GARP-P

3Similar analyses were performed for networks of average degree from 2 to 6, but due to space
limitations we concentrate here over average degree 4 networks; similar results were obtained
in all cases, with more pronounced differences (for the normalized values) in the case of higher
degree networks.

4Note that computing the driven target control is different than computing the driver control,
as for the latter one there is a known polynomial time algorithm computing the size of the minimal
(total) driver control set, see [10]. In practice however, we observed that both values, i.e., for driver
and driven control, are very close to one-another in the case of randomly generated networks and
real-life bio-medical networks.
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a)

b)

c)

Figure 2: Comparative analysis of the four algorithms over randomly generated
networks. a) The average (normalized) size of the driven set per algorithm and per
target size; b) The average (normalized) size of the minimal size (over 10 runs) of
the driven set per algorithm and per target size; c) the average time required for a
single run, per algorithm and per target size.

value less than 0.05. The rationale behind this particular test-case can be found
in network pharmacology: Identifying a relative small set of proteins which could
control larger proportions of target essential genes would be advantageous for the
development of efficient drugs. By cascading effects, these drugs could target sev-
eral Breast Cancer essential genes in the same time, with minimal effect over the
healthy cells (by definition, disease-specific essential genes are not taken among
those genes which are essential for normal, i.e. healthy, cell survival).

The above procedure provided us with a set of 145 essential genes which could
be used as target pool. We selected 3 target sets containing 30, 72, and 145 nodes,
respectively; the choice of nodes for the smaller/incomplete targets was done ac-
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cording to an increasing ordering of their corresponding GARP values. The results
of the 12 hour runs of the algorithms are presented in Fig. 3. As it can be seen
from this analysis, the heuristically improved algorithms, especially HeTarCo2
and HeTarCo3, performed much better and faster.

a) Target size 30; b) Target size 72; c) Target size 145;

Figure 3: Comparative analysis of the four algorithms for multiple runs over a
fixed 12 hour time period. The reported performance is cut short if no smaller
sized solutions appear after a certain time point.

6 Conclusions
The network controllability approach provides an interesting insight into a sys-
tem modeled as a directed graph: given a set of target nodes, we can identify
a set of driven nodes that allow an external user to gain control over the target
nodes through an external intervention on the driven nodes, taking advantage of
the internal ‘wiring’ of the network. We established in this paper that calculat-
ing a minimal set of drive nodes is an NP-hard problem – this makes it hopeless
to apply the approach to real-life networks, such as signaling networks, that may
have thousands of nodes and edges. Even more, we established this hardness re-
sult for a more practical version of the problem, where the external intervention
mimics that obtained through drug delivery. The drug delivery constraint is mod-
eled in our approach through a driver node that interacts with exactly one node
in the graph (seen as the main target of that drug) or, in a different formulation,
with at most k nodes (seen as the main and the secondary targets of that drug). At
the same time, we introduced several different heuristics for approximated target
control; these algorithms find a set of driven nodes (perhaps not the smallest one)
that control a given set of target nodes. Our algorithms improve significantly the
currently known algorithm for the problem and we demonstrated in this paper that
they are efficiently applicable even to real-life-size networks.

There are several highly interesting research avenues that may be explored in
this area. On the theoretical side, an open problem is to establish the approxima-
tion threshold of our heuristics. Another one, on which almost nothing is known,
is on the general, rather than on the structural controllability of networks; in other
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words, this is the problem in which we also ask about the timing and the level
of the external intervention, in addition to identifying the driver nodes where it
should be applied. On the applied side, an interesting problem is to connect the
network controllability approach with data on FDA-approved drug targets, and
with data on gene-essentiality for different types of diseases; this has the poten-
tial of helping in the design of more diverse therapeutic strategies using currently
known drugs.
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