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(amizera@abo.fi)

Elena Czeizler
Department of Information Technologies,Åbo Akademi University,
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Abstract

In vitro assembly of intermediate filaments from tetrameric vimentin consists of
a very rapid phase of tetramers laterally associating into unit-length filaments
and a slow phase of filament elongation. We focus in this paperon a system-
atic quantitative investigation of two molecular models for filament assembly, re-
cently proposed in (Kirmse et alJ. Biol. Chem. 282, 52 (2007), 18563–18572),
through mathematical modeling, model fitting, and model validation. We analyze
the quantitative contribution of each filament elongation strategy: with tetramers,
with unit-length filaments, with longer filaments, or combinations thereof. In
each case, we discuss the numerical fitting of the model with respect to one set
of data, and its separate validation with respect to a second, different set of data.
We introduce a high-resolution model for vimentin filament self-assembly, able
to capture the detailed dynamics of filaments of arbitrary length. This provides
much more predictive power for the model, in comparison to previous models
where only the mean length of all filaments in the solution could be analyzed. We
show how kinetic observations on low-resolution models canbe extrapolated to
the high-resolution model and used for lowering its complexity.

Keywords: Mathematical modeling — Protein self-assembly — Quantitative
self-assembly strategies — Model resolution — Sensitivityanalysis — Filament
length distribution.
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1 Introduction

The cytoskeleton of eukaryotic cells is an intricate network of protein filaments
that extends throughout the cytoplasm. There are three types of protein filaments:
intermediate filaments(IFs), microtubules, andactin filaments, [24]. Together
with other proteins that attach to them, they form a system ofgirders, ropes, and
motors that gives the cell its mechanical strength, controls its shape, and drives and
guides its movements, see [17]. Compared with microtubulesand actin filaments,
IFs are more stable, tough and durable; in particular, IFs are the most insoluble
part of the cell, see [8]. IFs have an important structural function in reinforcing the
cells, organize cells into tissues, and most importantly, distribute the tensile forces
across the cells in a tissue, see [17]. Major degenerative diseases of skin, muscle,
and neurons are caused by disruptions of the IF cytoskeletonor its connections to
other cell structures. Currently, around80 diseases have been associated with the
IF gene family, including various skin fragility disorders, as well aslaminopathies,
a family of afflictions caused by point mutations in the laminA genes, [4, 5, 26].
A thorough understanding of the assembling principles of IFs can provide new
insights on comprehending these abnormal conditions, as well as a better basis
for diagnostic and possible treatment.

Contrary to the other protein filaments which are assembled from globular pro-
teins, see [11, 25, 22], IFs subunits areα-helical rods that assemble into rope-like
filaments [8]. Their assembly proceeds through a series of intermediate struc-
tures, which associate by lateral and end-to-end interactions. However, unlike in
the case of microtubules and actin filaments where rich literature is available, the
assembly principles of IFs are still poorly understood. We focus in this paper on
the quantitative kinetic strategies for thein vitro assembly of IFs from human vi-
mentin proteins (several other IF proteins exist, see [10]). On a first level of their
assembly, vimentin proteins rapidly associate parallellyinto dimers and then form
anti-parallel, half-staggered tetramers, see [9] and Figure 1 (a)-(e). Tetramers
then rapidly associate laterally to yield short filaments called unit-length filaments
(ULFs) of the same length as the tetramers, see [8] and Figure1 (f). On a second
level of the assembly, the ULFs and the emerging longer filaments elongate lon-
gitudinally with tetramers, with ULFs, and with other filaments, [8] and Figure 2.
On a third level, filaments undergo a radial compaction from an ULF diameter of
about15 nm to a filament diameter of about11 nm, see [8] for details.

We investigate in this paper two molecular models (the so-called simpleand
extendedmodels) introduced in [15] for thein vitro assembly of intermediate fi-
laments from tetrameric vimentin. We perform a quantitative analysis of the pre-
dictive capabilities of these models. We construct two massaction-based mathe-
matical models corresponding to the two molecular models. For each of them we
consider several different knockdown mutant model variants where various com-
binations of assembly mechanisms are analyzed separately.We use COPASI [12]
as a computational environment for the experimental data fitting (based on data
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Figure 1: The first stage in the assembly of human vimentin proteins. Interme-
diate filament subunits areα-helical rods, that associate parallelly into coiled-
coil dimers, which in turn form anti-parallel, half-staggered tetramers. Tetramers
rapidly associate laterally to yield the shortest filamentscalledunit-length fila-
ments(ULFs) of the same length as the tetramers. (a)α-helical rods, (b) coiled-
coil dimer, (c) another representation of a coiled-coil dimer, (d) tetramer, (e) ULF.

of [15] and [14]), the model validation, and the sensitivityanalysis. Our approach
for the numerical analysis of the models differs markedly from that of [15], see
Section 4 for a discussion.

Our study provides several conclusions regarding the kinetics of thein vitro
assembly of human vimentin. On one hand, we show that the filament elongation
process requires the end-to-end annealing of filaments as one of its features, which
is in agreement with the results of [15]. Indeed, in all of ourmodels where this re-
action was missing, either the model did not fit the experimental data or the model
was rejected in the validation round. Moreover, in almost all cases where the re-
action modeling the end-to-end annealing of filaments is present, its rate constant
is estimated to roughly the same value, although the other kinetic constants differ
from model to model. On the other hand, the quantitative contribution of the fila-
ment elongation with tetramers depends on the turnover rateof tetramers into unit
length filaments. If tetramers are quickly depleted from thesystem, e.g., through
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(b)

Figure 2: The two molecular models of thein vitro assembly of vimentin IF te-
tramers. (a) In thesimple modelfilaments undergo elongation either by (a.1)
longitudinal association of tetramers or (a.2) by end-to-end annealing of another
filament. (b) Theextended modeladds a distinction between minimal-length fila-
ments (ULFs) and longer filaments (consisting of at least 2 ULFs). In this case,
there is one extra possibility for filament elongation: (b.1) by tetramer, (b.2) by
the longitudinal association of a ULF, and (b.3) by another filament.

a high tetramer-to-ULF turnover rate as documented inin vitro experiments of
[15], then only one of eight possible assembly strategies correlates well with the
available experimental data, in agreement with conclusions of [15]. If free tetra-
mers are however available throughout the assembly, then weshow that several
different assembly strategies correlate similarly well with the experimental data.

One of the modeling challenges identified in [15] was to increase the resolu-
tion of the model: instead of collecting all filaments into a single variable, regard-
less of their length, one should describe separately the dynamics of filaments of
various lengths, at least up to a certain fixed, but arbitrarily high length, that we

3



call the resolution of the model. Indeed, the quantitative experimental data of [15]
captures the levels of filaments of various lengths, but the data is only used in [15]
to calculate the mean length of all filaments in the solution.We provide in this pa-
per a generic solution to this problem, demonstrating how toenhance the existing
filament assembly models with the dynamics of the filament length distribution.
Our enhanced model can have arbitrarily high resolution, being able to capture the
dynamics of filaments of arbitrarily high length. The size ofthis detailed model
is considerably higher than that of the basic model, both in terms of molecular
species, as well as in terms of molecular reactions. Based onkinetic observa-
tions on the basic model, we show however how the size of the high-resolution
model can be drastically reduced. Our approach towards high-resolution models
for protein self-assembly is independent of the particulars of vimentin filaments
and can be applied to other instances of protein-protein interactions and protein
assemblies.

2 Models and methodology

2.1 Two molecular models for the assembly of vimentin IFs

The in vitro assembly of vimentin IF proteins consists of three major phases,
see [10]: (i) formation of the unit-length filaments (ULF) structures; (ii) longi-
tudinal annealing of ULFs and growing filaments; (iii) radial compaction of im-
mature filaments into mature IFs. We consider here two molecular models for this
process, originally introduced in [15]. Both of them focus on the first two phases
of the assembly, ignoring the third.

Thesimple modelof [15] treats ULFs as ordinary filaments and describes the
assembly process through a sequence of molecular events as follows, see also
Figure 2 (a):

(i) two tetramers (denotedT) associate laterally into an octamer (denotedO):

2T → O; (1)

(ii) two octamers associate laterally to yield a hexadecamer (denotedH):

2O → H (2)

(iii) two hexadecamers associate laterally to form a (unit length) filament (de-
notedF):

2H → F (3)

(iv) a tetramer associates longitudinally to a filament to yield an elongated fila-
ment:

F+T → F; (4)
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(v) two filaments associate longitudinally to yield an elongated filament:

F+F → F . (5)

The extended modelof [15] adds a distinction between minimal-length fila-
ments (ULFs, denotedU) and longer filaments (consisting of at least two ULFs),
treating them as distinct species in the model, see Figure 2 (b). In terms of molec-
ular events, the extended model consists of the following reactions:

(i’) two tetramers (denotedT) associate laterally into an octamer (denotedO):

2T → O; (6)

(ii’) two octamers associate laterally to yield a hexadecamer (denotedH):

2O → H (7)

(iii’) two hexadecamers associate laterally to form a unit length filament (denoted
U):

2H → U (8)

(iv’) two unit length filaments associate longitudinally toform an elongated fila-
ment (denotedF):

2U → F (9)

(v’) a filament is elongated longitudinally with a tetramer:

F+T → F (10)

(vi’) a filament is elongated longitudinally with a unit length filament:

F+U → F (11)

(vii’) two filaments associate longitudinally to yield an elongated filament:

F+F → F (12)

2.2 Mathematical models

We consider a mathematical formulation of the simple and theextended models
for IF assembly based on the mass-action law, where each molecular species is
represented by a continuous non-negative real function denoting its concentration
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in time. The system of differential equations corresponding to the simple model
is the following:

d[T]/dt = −2ks
1[T]

2 − ks
t [T][F] (13)

d[O]/dt = ks
1[T]

2 − 2ks
2[O]2 (14)

d[H]/dt = ks
2[O]2 − 2ks

3[H]
2 (15)

d[F]/dt = ks
3[H]

2 − ks
f [F]

2 (16)

whereks
1, k

s
2, k

s
3, k

s
t , k

s
f are the kinetic rate constants of reactions (1)-(5), respec-

tively.
The mathematical model corresponding to the extended modelconsists of the

following system of differential equations:

d[T]/dt = −2ke
1[T]

2 − ke
t [T][F] (17)

d[O]/dt = ke
1[T]

2 − 2ke
2[O]2 (18)

d[H]/dt = ke
2[O]2 − 2ke

3[H]
2 (19)

d[U]/dt = ke
3[H]

2 − 2ke
4[U]

2 − ke
u[U][F] (20)

d[F]/dt = ke
4[U]

2 − ke
f [F]

2 (21)

whereke
1, k

e
2, k

e
3, k

e
4, k

e
t , k

e
u, k

e
f are the kinetic rate constants of reactions (6)–(12),

respectively.
An interesting aspect here is that the mass conservation relation on the total

number of tetramers in the model is evident in the molecular models (since there
is no synthesis and no degradation in the model), whereas it cannot be deduced
as a property of either of the two corresponding mathematical models. This is
a consequence of how, for example, the longitudinal association of two filaments
is modeled: the information about the lengths of the two input filaments is not
explicitly reproduced in a property of the two filaments. Onecan however cal-
culate the number of tetramers integrated in the assembled filaments, as we do in
Section 2.3, and then use this quantity to reason about the time-dependant dynam-
ics of the mean filament length (MFL). We relate MFL to the experimental data
of [15] and discuss the numerical fit of the models in Section 3.

2.3 Calculating the mean filament length

Relating the models proposed in the previous section for IF assembly to the quan-
titative data on the dynamics of the filament length is non-trivial because the two
models do not represent explicitly the information about the length of the emerg-
ing filaments. Indeed, both models collect all filaments intoa single variable (F ),
regardless of their length. We show however in this section that the dynamics of
the mean filament length can in fact be deduced based on the variables of the two
models.
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Figure 3: (a) The unit-length filament is approximately63 nm long ([2]). (b)
However, each ULF associated longitudinally at the end of anexisting filament (or
ULF) elongates it by approximately 42 nm ([2]). This is due tothe interdigitation
by which two ULFs anneal longitudinally.

During the process of ULFs aggregation atomic force microscopy (AFM)
shows that each ULF associated longitudinally at the end of an existing filament
adds to the length of that filament less than the stand-alone length of a ULF,
see [2]. In the model for vimentin assembly of [2] this is due to interdigitation
of the ULF and the filament to each other, see Figure 3. The stand-alone unit-
length filament is approximately63 nm long ([2]), while each additional ULF
elongates a filament by approximately 42 nm ([2]).

We denote byLm(t) the time-dependent expression for the mean filament
length (MFL) at timet. We also denote by#TF (t) the total number of all tetra-
mers integrated in the assembled filaments at timet. Since we consider two cate-
gories of filaments,U andF, we obtain that

Lm(t) =
lF (t) + lU(t)

#F (t) + #U(t)
, (22)

wherelF (t) andlU(t) denote the total length of all filaments and the total-length
of all ULFs at timet, while #F (t) and#U(t) denote the total number of all
filaments and that of all ULFs, respectively. Since in each filament the first ULF
accounts forlULF ≃ 63 nm of the total length of that filament and all the additional
ULFs elongate the filament byladdULF ≃ 42 nm, we have that

lF (t) = (#UF (t)−#F (t)) · laddULF +#F (t) · lULF

= #UF (t) · laddULF +#F (t) · (lULF − laddULF ),

where#UF (t) denotes the the total number of all ULFs in all filaments, in time.
Since ULFs consist on average of eight tetramers, we have that

#UF (t) =
#TF (t)

8
,

where#TF (t) is the number of tetramers already assembled into filaments.
We denote byc0 the initial molar concentration of all tetramers in the system

(occurring in any of the molecular species of the model: tetramers, octamers,
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hexadecamers, ULFs, or filaments). Then, in the case of the extended model we
obtain

#TF (t) = (c0 − [T ](t)− 2 [O](t)− 4 [H ](t)

− 8 [U ](t)) ·NA · V,

whereNA is the Avogadro constant andV is the volume of the system. Thus, (22)
becomes

Lm(t) =
c0−[T ](t)−2 [O](t)−4 [H](t)−8 [U ](t)

8
· laddULF

([F ](t) + [U ](t))

+
[F ](t) · (lULF − laddULF ) + lULF · [U ](t)

([F ](t) + [U ](t))
.

In the case of the simple model, we obtain that

#TF (t) = (c0 − [T ](t)− 2 [O](t)− 4 [H ](t)) ·NA · V.

Thus, (22) becomes

Lm(t) =
c0−[T ](t)−2 [O](t)−4 [H](t)

8
· laddULF

[F ](t)

+ (lULF − laddULF ).

Since the volumeV of the considered system does not change, the molar concen-
trations are expressed simply in terms of micromoles (without reciprocal of the
volume unit) in the continuation.

2.3.1 Experimental data and model fitting

For the parameter estimations and model validations we usedthe experimental
data from [14] on thein vitro assembly process of recombinant vimentin at37 ◦C.
The data consists of two sets, each containing the length distributions of growing
filaments at distinct time points up to20 min. The data sets were obtained by
adsorption of the filaments onto carbon-coated copper gridsand measurements of
the filament lengths from images recorded with electron microscopy (EM) in two
cases: when the initial amount of tetramers was0.45 µM and0.9 µM. For each set
the time-dependent mean filament length (MFL) was calculated. The MFL values
together with the0.95 confidence intervals are presented in Table 1. For detailed
description of experimental procedures and discussion on the independence of the
measured MFLs from the support medium we refer to [15].

For fitting our mathematical models, we used the MFL data obtained for an
initial tetramer concentration of0.45 µM. For model validation, we then compared
the numerical prediction for the mean filament length with the experimental data
in Table 1 for an initial tetramer concentration of0.9 µM.
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Table 1: Measurements on the mean filament length of vimentinprotein IFs, based
on EM data of [14] (data in [nm]); a preliminary version of thedata (containing
a few minor errors) is in [15].

Time [s]
Initial molar concentration of all tetramers (c0)

0.45µM 0.9µM
10 65.1±1.4 62.8±2.1
20 68.2±2.0
30 76.5±2.1 84.1±2.0
60 112.9±4.0 131.4±5.2

180 172.6±8.4
300 233.0±10.0 289.1±15.8
600 320.7±18.5 418.6±24.7
900 544.1±34.8

1200 474.9±37.2 821.3±41.5

We set the initial molar concentrations of all molecular species other than
tetramers to0, based on the setup of the experimental assays. Thus, there remained
to be estimated five independent parameters (rate constantsks

1, k
s
2, k

s
3, k

s
t andks

f )
for the simple model and seven of them (rate constantske

1, k
e
2, k

e
3, k

e
4, k

s
t , k

e
u andke

f )
for the extended model. Parameter estimations were performed in COPASI [12].

We also considered a qualitative property of the IF assembly, reported in [15]:
very quickly (within approximately10 seconds) after the initiation of the assem-
bly, ULF is the most predominant species in the system, whiletetramers are de-
pleted. This observation only applied for theab initio in vitro assembly of inter-
mediate filaments. The dynamics could however be very different if more free
tetramers were available for longer throughout the assembly (e.g., through an ad-
ditional tetramer synthesis mechanism). To test it, we considered two different
strategies for fitting our models: one where the tetramer-to-ULF turnover is fast,
and another where it is slow. While the latter setup does not mimic the presence
of a tetramer synthesis mechanism (introducing one would make it difficult to
compare the models), it does allow us to analyze the system inthe case where
tetramers are available for a longer period for the assembly. We demonstrate in
the next section that the two situations are indeed very different, in terms of which
filament elongation mechanisms (with tetramers, with ULFs,or with other fila-
ments) can explain the available experimental data.

The problem of estimating the parameters of computational models in systems
biology is difficult, see e.g., [3, 20, 21]. This problem can be formulated as a min-
imization of a cost function which quantifies the differences between the values
predicted by the model and the experimental measurements. There are numerous
methods, both local and global, which can be used to tackle this problem, each
with its own advantages and disadvantages. For instance, while local methods
work faster to find a solution, they tend to converge to local optima. On the other
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hand, global optimization methods are typically slower, but they tend to converge
to a global optimum. The global optimization methods can be further divided into
deterministic [6, 13] and stochastic approaches [1, 7]. Although the determinis-
tic methods guaranty the convergence to a global optimum, they cannot ensure the
termination of this process within a finite time interval [21]. On the other hand, the
inherent randomness of the stochastic approaches makes it very hard to guaranty
that these methods actually converge to the global optimum [21]. However, many
stochastic methods are capable of locating the vicinity of global solutions with
relative efficiency, i.e. they provide a very good approximation of the solution in
acceptable computation time [21]. This makes the stochastic global optimization
methods to be usually preferred for parameter estimation problems. We chose
COPASI, [12], as a computational environment for parameterfitting since it in-
cludes a number of various optimization algorithms, searching for either local or
global optimum values, see e.g., [19, 23]. This software is awidely used tool in the
computational systems biology modeling community, havinga documented good
performance, see e.g. [3, 20, 21]. In particular, for determining the best numerical
fits of our models, a suite of various global, stochastic parameter estimation pro-
cedures was used, comprising of methods such as Simulated Annealing, Genetic
Algorithm, Evolution Strategy using Stochastic Ranking, and Particle Swarm. All
these methods use specific strategies for sampling the parameter space looking for
combinations of parameter numerical values that give better and better fits of the
model predictions to the experimental data.

The fit of a model was performed by searching for a set of parameter values
that minimizes the sum of squared deviationsSSf of the values predicted by the
model from the0.45 µM experimental data. The validation of a fitted model was
performed by numerically simulating the model and by computing the sum of
squared deviationsSSv of the values predicted by the model from the0.9 µM ex-
perimental data. Moreover, the quality of the fit/validation for each model was es-
timated by a dimensionless number expressing the deviationof the model from the
experimental data, normalized by the mean of the predicted values. This method
for estimating the quality of model fit/validation was originally proposed in [16]
and it allows for comparison of different models and different data sets. The for-
mula for the quality of the fit (fq) is:

fq =

√

SSf/Nf

mean of predicted values
· 100%, (23)

whereNf is the number of0.45 µM experimental data points (in our caseNf = 8).
Similarly, the formula for the quality of the validation (vq) is:

vq =

√

SSv/Nv

mean of predicted values
· 100%, (24)

whereNv is the number of0.9 µM experimental data points (in our caseNv = 7).
It was argued in [16] that a low (say, lower than15%) value offq (vq) was con-
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(a) (b)

Figure 4: Time-dependent MFL growth corresponding to the simple model with-
out the quick filament formation requirement. (a) The model fit with respect to
the EM0.45 µM experimental data set. (b) Model validation based on the EM0.9
µM experimental data set. The continuous line is the model prediction regarding
Lm(t), that is compared with the experimental data showed with crossed points.
The short vertical lines represent the0.95 confidence intervals for the experimen-
tal data.

Table 2: Kinetic rate constant values inµM−1s−1 for the simple model.
ks
1 ks

2 ks
3 ks

t ks
f

3.39 · 10−3 30 30 0.83 0.11

sidered as an indicator of a successful fit (validation). We discuss the numerical
values offq andvq for all our models in Section 3.

3 Results

3.1 Data fitting the simple model

The kinetic rate constants in Table 2 yield an excellent fit (fq = 2.52%) of the
simple model for the experimental data from the assay with 0.45 µM tetramers
and a good validation (vq = 12.07%) of the model when compared with the data
from the assay with 0.9µM initial concentration of tetramers, see Figure 4.

This model however could not confirm the quick turnover of tetramers into
filaments. When this condition was taken into considerationby searching for
relatively high numerical values ofks

1, k
s
2, andks

3 (higher than 1µM−1s−1), the fit
of the model to the experimental data was unsuccessful (fq = 26.00%), despite
numerous rounds of parameter estimation. The following mathematical argument
is also indicating that this model cannot be given a reasonable fit. Based on the
observation that tetramers are quickly depleted (within10 seconds) by turning
them into ULFs, the model can be split into two processes separated in time: first,
the formation of filaments from tetramers, i.e.2T → O, 2O → H, 2H → F,
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and second, the elongation of filaments, i.e.F+F → F. The steady state value
of F in the first process is an initial value ofF in the second one. The second
process is described by the differential equationdF /dt = −k F2, which has an
analytical solution of the formF(t) = F0 /(1 + k t F0), whereF0 is the initial
value ofF. The initial concentration of tetramers in the first processis c0, hence it
follows thatF0 = c0/8 since all tetramers are turned into ULFs. In consequence,
the mean filament length can be expressed as

Lm(t) = lULF +
k c0 t

8
.

Thus,Lm(t) is a linear function. By plotting the experimental data in Table 1 for
time points after30 seconds, together with their0.95 confidence intervals one can
see that there exists nok such that the model would be fitted and validated against
the data.

3.2 Data fitting the extended model

In the case of the extended model we distinguished among three modes for fila-
ment elongation: (i) with a tetramer, (ii) with a ULF, or (iii) with another filament,
see Figure 2 (b). We investigated all eight possible combinations of these three
mechanisms and performed parameter estimation and numerical model validation
for each of them, see Figure 5. Excluding any of the three modes from the inves-
tigation was done by simply setting to0 the corresponding rate constants, i.e.ke

t ,
ke
u, andke

f , respectively.

3.2.1 The extended model with fast ULF formation.

In the case of fast tetramers-to-ULF turnover, both the simple model and the ex-
tended model can be reduced. Indeed, in this case, the populations of tetramers,
octamers, and hexadecamers are all quickly depleted (in a matter of seconds),
leaving only the filaments as the dominant species. Consequently, the longitudi-
nal assembly of tetramers to filaments has a negligible contribution to the overall
dynamics of the model: in the first few seconds the reaction isstrangled by the
negligible population of filaments, whereas later on the population of tetramers is
depleted. This is in agreement with [15], where it was observed that this particular
elongation has insignificant role. In this case we setke

t = 0 and we searched for
numerical values for the kinetic rate constantske

1, k
e
2, andke

3 that are greater than
3 µM−1s−1, to ensure a fast tetramer-to-ULF turnover. It turned out that scenario
VIII, where ke

u = ke
f = 0, could be immediately excluded. Indeed, in this sce-

nario no filament containing more than two ULFs could be assembled and so, all
filaments would be at most100 nm long, contradicting the experimental data in
Table 1.

Scenarios VI and VII, where the filament elongation takes place only by ULF
extension (ke

f = 0), or only by filament extension (ke
u = 0), respectively, could

12



Scenario I Scenario II

Scenario III Scenario IV

Scenario V Scenario VI

Scenario VII Scenario VIII

Figure 5: The eight possible scenarios for filament elongation. The tetra-
mers/ULFs/filaments are illustrated with the same type of block as in Figure 2.

Table 3: Kinetic rate constant values inµM−1s−1 (under fast ULF formation re-
quirement).

ke
1 ke

2 ke
3 ke

4 ke
u ke

f

3 30 30 0.25 0.95 0.11

not be fitted: for Scenario VI we obtainedfq = 22.77% and for Scenario VII
fq = 14.99%, vq = 16.07%. We concluded that these two strategies do not
represent viable pathways for vimentin IFs assembly.

In the case of scenario V we were able to obtain numerical values for the pa-
rameters, see Table 3, such that the predicted mean filament length was in good
agrement with the experimental data (fq = 3.66%, vq = 11.45%), virtually iden-
tical to that of the simple model, showed in Figure 4. We concluded that this
pathway, where the filament elongation is enabled both with ULFs and with other
filaments, is the only viable strategy for vimentin IFs assembly. This is in agree-
ment with observations of [15].

Numerically fitting this scenario, we noticed that the values of the two nu-
merical parameterke

2 andke
3 can be modified arbitrarily within the[3, 30] interval
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Table 4: Fit and validation quality measure values for scenarios I–VII (without
the fast ULF formation requirement).

I II III IV V VI VII

fq 1.71% 6.50% 1.98% 6.79% 2.04% 6.54% 13.01%

vq 12.70% 29.03% 12.36% 25.83% 12.65% 29.11% 19.19%

Table 5: Kinetic rate constant values inµM−1s−1 of scenarios I–VII (without the
fast ULF formation requirement).

I II III IV V VI VII

ke
1

0.0705 30 4.83 · 10−3 4.58 · 10−3 1.24 30 30

ke
2

30 30 30 10−09 17.78 30 30

ke3 11.34 4.63 · 10−3 21.25 6.06 · 10−5 2.65 · 10−2 4.67 · 10−3 30

ke
4

0.32 10.69 30 30 11.16 10.69 2.56

ket 15.48 30 0.61 0.84 0 0 0

keu 0.59 30 0 0 11.57 30 0

kef 0.10 0 0.10 0 0.10 0 0.15

without any significant change in the mean filament length prediction. This in-
dicates that the extended model under the fast ULF formationexhibits almost no
sensitivity of mean filament length with respect to these twoparameters in the
mentioned interval and, in consequence, our computationalmodel turns to have
less degrees of freedom in terms of the numerical fit.

3.2.2 The extended model with slow ULF formation.

In this case, we searched for arbitrary positive numerical values for the kinetic
rate constantske

1, k
e
2, andke

3. The result of fitting and validating the extended
model are very different in this case. We find that three out ofthe eight pathways
analyzed in this paper for vimentin IFs assembly can explainthe experimental
data, see Figures 6 and 7.

Scenario VIII could not be fitted based on similar considerations as in the case
of the fast ULF formation, see Figure 7 VIII(a) and VIII(b). In the case of the other
seven pathways, the model fit with respect to the EM0.45 µM data and the model
validation with respect to the EM0.9 µM data yielded good results, summarized
in Table 5, see Figures 6 and 7V-VII. We noted that in the case of scenarios II, IV,
and VI the experimental MFL measurement at1200 seconds for the EM0.9 µM
data was an outlier. In all these three scenarios, we haveke

f = 0, which indicates
that the process of end-to-end filament annealing plays a crucial role in the later
stages of the IFs elongation process, i.e., after the first600 seconds. In the case
of scenario VII, the model left several experimental data points as outliers, see
Figure 7VII(a) and (b).

We concluded that scenarios I, III, and V are similarly good in explaining the
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I(a) I(b)

II(a) II(b)

III(a) III(b)

IV(a) IV(b)

Figure 6: I(a)–IV(a) The model fit of the scenarios I to IV withrespect to the EM
0.45 µM experimental data set. I(b)–IV(b) Model validation of thescenarios I to
IV with respect to the EM0.9 µM experimental data set. The continuous line is
the model prediction regardingLm(t), that is compared with the experimental data
showed with crossed points. The short vertical lines represent the0.95 confidence
intervals for the experimental data.
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V(a) V(b)

VI(a) VI(b)

VII(a) VII(b)

VIII(a) VIII(b)

Figure 7: V(a)–VIII(a) The model fit of the scenarios V to VIIIwith respect to
the EM 0.45 µM experimental data set. V(b)–VIII(b) Model validation of the
scenarios V to VIII with respect to the EM0.9 µM experimental data set. The
continuous line is the model prediction regardingLm(t), that is compared with the
experimental data showed with crossed points. The short vertical lines represent
the0.95 confidence intervals for the experimental data.

16



experimental data in this case. These models correspond to the following three
pathways for filament elongation:

– Scenario I: by a tetramer, a ULF or another filament longitudinal elongation;

– Scenario III: by a tetramer or a filament longitudinal elongation;

– Scenario V: by a ULF or a filament longitudinal elongation.

3.3 Sensitivity analysis of the mean filament length

The effect of small variations in the model’s parameters over the evolution of the
entire model is estimated by the sensitivity analysis. Thismathematical method
consists in determining the time evolution of the partial derivatives of the solution
of the system with respect to the parameters of the system. Weinvestigated the
sensitivity of the mean filament length, i.e., theLm(t) function, with respect to the
parameters of the model. We compared the results of the sensitivity analysis in
the case of Scenarios I-VII of the extended model in order to gain further insight
into the possible pathways for IF vimentin assembly.

The concentration sensitivity coefficients are the time functions∂Xi/∂κj for
all 1 ≤ i ≤ 5 and1 ≤ j ≤ 7, whereX = (X1, . . . , X5) is the vector of the model
variables ([T], [O], [H], [U], and [F], respectively) andκ = (κ1, . . . , κ7) is the
vector of the model parameters (ke

1, k
e
2, k

e
3, k

e
4, k

e
t , k

e
u, andke

f , respectively). The
sensitivity of the mean filament length with respect to the parameters is obtained
as follows:

∂Lm(t)

∂κj

=
∂Lm

∂X

∂X

∂κj

=
∂Lm

∂X1

∂X1

∂κj

+ · · ·+
∂Lm

∂X5

∂X5

∂κj

,

for all 1 ≤ j ≤ 7.
Since we want to compare the MFL sensitivities of several models, we trans-

form these coefficients into dimensionless measurements bynormalizing them:

κj

Lm(t)

∂Lm(t)

∂κj

=
∂ lnLm(t)

∂ ln κj

, for all 1 ≤ j ≤ 7.

We can interpret these coefficients as follows: in Scenario I, an increase of1% of
the parameterke

f would generate at timet = 1200 s an increase of0.5165% of the
MFL, roughly as predicted by the value of∂ ln(Lm)/∂ ln(kf) at timet = 1200,
see Figure 8 b).

In the case of the extended model with fast ULF formation, only scenario
V could be experimentally validated. The results of the sensitivity analysis in
this case are presented in Figure 8 a). The most significant coefficients are with
respect to theke

4, k
e
u, andke

f parameters, with the latter one being the most signifi-
cant. This is consistent with the biological intuition thatthe mean filament length
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Figure 8: The non-negligible sensitivity coefficients of the MFL measurement for
the mathematical models corresponding to the scenario withfast ULF formation
requirement and the scenarios I to VII.
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is most dependent on the rate of filament formation (parameter ke
4) and elonga-

tion (parameterske
u andke

f ). Less intuitive is the fact that there is a negligible
dependency of the MFL measurement on the rate constantske

1, k
e
2, andke

3, which
determine the fast ULF formation. The rationale for this result is that these ki-
netic constants play a role only in the first seconds of the assembly. Once the vast
majority of tetramers are assembled into ULFs, their further contribution to the
model dynamics is insignificant.

The numerical time simulation of the non-negligible normalized MFL sensi-
tivity coefficients for scenarios I-VII without fast ULF formation requirement are
presented in Figure 8 b)–h). It turned out that the mean filament length is most
sensitive toke

u and especially toke
f , when these constants are non-zero. This obser-

vation helps explain whyke
f is estimated to very similar values in most scenarios

where its role is considered. Note also that while the sensitivity coefficient with
respect toke

f increases mainly after about 200 seconds, the sensitivity coefficients
for the parameterske

t andke
u have a steep increase in the first 100–200 seconds

(except in scenario VII where filament elongation takes place only by longitudi-
nal filament aggregation). The biological intuition here isthat on one hand, until
approximately 200 seconds the assembled filaments are relatively short and much
fewer than the ULF’s, while on the other hand the number of ULFs and of free
tetramers becomes very low after about 200 seconds.

3.4 The length distribution of filaments in time

The models discussed so far in this paper, as well as those in [15] collect all fi-
laments other than ULFs into one single variable denotedF , regardless of their
length. This approach is indeed enough for capturing the time-dependent dynam-
ics of the mean filament length, that could then be related to experimental data and
used for parameter estimation and model validation. As pointed out also in [15],
this modeling approach is however unsuitable for capturingthe time-dependent
distribution of the filament lengths. Indeed, the length of the assembling filaments
is not directly captured in the models, which makes it impossible to reason about
the time-dependant concentration of filaments of some givenlength. We describe
in this section a refined model for the self-assembly of vimentin filaments that al-
lows capturing the evolution of filaments of length up ton, for any given positive
integern.

For all i with 1 ≤ i ≤ n, we denote byFi the population of all filaments
of length exactlyi, where the length is in terms of the number of ULFs that the
filament consists of. Thus, the ULFs are denoted byF1 in the new model, the
filaments formed by the longitudinal extension of a ULF with another ULF have
length 2 and are denoted byF2, etc. The population of all filaments of length
higher thann is denoted byF≥n+1. The longitudinal extension of a filamentFi

(of lengthi ≤ n) with a filamentFj (of lengthj ≤ n) yields a filament of length
Fi+j if i+j ≤ n and a filamentF≥n+1 if i+j ≥ n+1. The extension of a filament

19



F≥n+1 with any other filament yields a filamentF≥n+1.
When describing the extended model for filament self-assembly based on the

populationsFi, 1 ≤ i ≤ n, andF≥n+1, a considerable challenge is posed by the
elongation of a filament with tetramers. Indeed, such a longitudinal elongation
leads to a filament that ends with an incomplete ULF. Only after the lateral asso-
ciation of seven other tetramers would this be a complete filament of length one
higher. This difficulty can be addressed by introducing a notation of the typeF j,k

i

with 1 ≤ i ≤ n and0 ≤ j, k ≤ 7 to denote filaments consisting ofi complete
ULFs, an incomplete ULF withj tetramers at their left end, and an incomplete
ULF with k tetramers at their right end, see Figure 9. One would also denote
by F j,k

≥n+1 the filaments consisting of more thann complete ULFs, an incomplete
ULF with j tetramers at their left end, and an incomplete ULF withk tetramers at
their right end. This approach leads however to a steep increase in the number of
model variables. For example, forn = 10, the model would have396 variables
just to denote the different types of filaments.

To keep the size of the model manageable we can however take advantage of
the kinetic observations we made on the extended model for filament assembly
in Section 3.2: in the case of fast ULF formation we have demonstrated that the
longitudinal elongation of filaments with tetramers has negligible kinetic influ-
ence on the dynamics of the model and that eliminating it leads to a numerically
equivalent model. Consequently, we can ignore all possiblefilaments having in-
complete ULFs at either end, since essentially all tetramers in the system assemble
into ULFs within a very short period of time. In this case our model consists of
the following reactions:

(T ) T + T → O;
(O) O +O → H ;
(H) H +H → F1;
(Ai,j) Fi + Fj → Fi+j ,

for all 1 ≤ i ≤ j ≤ n such that
i+ j ≤ n;

(Bi,j) Fi + Fj → F≥n+1,
for all 1 ≤ i ≤ j ≤ n such that
i+ j ≥ n + 1;

(Ci) F≥n+1 + Fi → F≥n+1,
for all 1 ≤ i ≤ n;

(D) F≥n+1 + F≥n+1 → F≥n+1.

We call this amodel of resolutionn, see Figure 10 for an illustration. For example,
in the case ofn = 10, the model consists of14 variables and69 reactions.

The initial values of all variables except forT are set to0, while that ofT is
assumed the same as in the extended model in Section 3.2. The kinetic rate con-
stants of the new model are set in such a way that the overall number of filaments
is the same as in the extended model. The kinetics of reactions (T), (O), and (H)
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Figure 9: A filament consisting of 5 complete ULFs, an incomplete ULF with 2
tetramers at the left end, and an incomplete ULF with 3 tetramers at the right end.
We denote it in our model withF 2,3

5 .

are the same as in the corresponding reactions of the extended model. Ifai,j is the
kinetic rate constant of reaction (Ai,j), bi,j that of reaction (Bi,j), ci that of reaction
(Ci), andd that of reaction (D), then we set their values as follows:

• a1,1 = ke
4, a1,j = ke

u, for all 1 < j ≤ n;

• b1,j = c1 = ke
u, for all 1 ≤ j ≤ n;

• ai,i = bi,i = ke
f , for all 1 < i ≤ n, andai,j = bi,j = ci = 2ke

f , for all
1 < i < j ≤ n;

• d = ke
f .

Based on the corresponding ODE models, a straightforward calculation shows
that with these kinetic constants, the extended model of Section 3.2 and the model
of resolutionn are equivalent in the following sense:

• [F1](t) = [U ](t) and

• ([F2] + . . .+ [Fn] + [F≥n])(t) = [F ](t),

for all time pointst ≥ 0.
As an example, we have implemented in COPASI the model in the case of

n = 10. In Figure 11 we plotted this model’s prediction for the distribution in
time of all filaments of length at least two. The resulting dynamics is in line with
the biological expectation. For example, the number of filaments of length two,
F2, witnesses a sharp increase right after the start of the experiment, as tetramers
are turned into (short) filaments.F2 then decreases quickly as filaments start com-
bining to each other to yield longer filaments.

4 Discussion

Related work. A recent review of the biochemistry of the intermediate fila-
ments, including kinetic aspects of their self-assembly isin [8]. The simple and
extended models for the self-assembly of vimentin proteinswere originally inves-
tigated in [15]. The approach used in the fitting and the validation of the models
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Figure 10: The scheme of a model of resolution3 for the self-assembly of IF. We
partition the population of filaments into filaments of length one (F1), of length
two (F2), and of length at least three (F≥3). The longitudinal annealing of two
filaments of length one yields a filament of length two (F1 + F1 → F2), that of
a filament of length one and another of length two yields a filament of length at
least three (F1 + F2 → F≥3), the annealing of two filaments of length two yields
a filament of length at least three (F2 + F2 → F≥3), and that of two filaments
of length at least three results in a filament belonging to thesameF≥3 group
(F≥3 + F≥3 → F≥3).
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Figure 11: Model prediction for the distribution in time of all the filaments con-
taining from two to ten ULFs.
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was somewhat ad-hoc in [15], as discussed below. We made in our paper a sys-
tematic investigation of the kinetics of the two models for intermediate filament
self-assembly, based on well-established techniques of model fit and model vali-
dation. Some of our results confirm those of [15], while others bring a new insight
into the nature of filament assembly. We discuss in the following the main points
of divergence between our approach and that of [15].

A main difference concerns the mathematical modeling of thesimple and the
extended models. The models in [15] assume that the lateral association of two
tetramers, of two octamers, and of two hexadecamers have thesame kinetic rate
constants. This strong model assumption is however unsubstantiated by experi-
mental evidence and leads to limiting the range of possible model behaviors. We
assign different kinetic constants for each different reaction to allow maximum
flexibility in the predictive power of the models.

Our mathematical expression for the mean filament length differs from the one
presented in [15]. In there, the authors use a so-calledlinear density variabledl,
set at43.5 nm, representing the length of a ULF inside a filament, regardless of
whether the ULF is the first of the filament, or a subsequent one. This distinction
is however crucial for estimating the mean filament length. Indeed, ignoring this
distinction introduces an approximation error which is proportional to the length
of each filament. For example, according to the formula from [15], the length of
a filament consisting of only two ULFs is2× 43.5 nm= 87 nm, while according
to the current knowledge regarding filaments measurements,see [2], its length is
63 nm+ 42 nm = 105 nm. Consequently, [15] introduces a so-called correction
factor that only partially addresses the problem. Our approach for computing the
MFL value is not influenced by this approximation error and leads to a correct
interpretation of the experimental data.

For the experimental data fit of the models, [15] performs a so-called pre-
assessment of the eight variants of the extended model. Based on somefixed
parameter values, the eight variants are classified into four classes of dynamics.
Three of the classes are then quickly dismissed from the analysis and only one
representative of the remaining class is chosen for furtherassessment. This ap-
proach is however assuming that the classification of the dynamics of the eight
model variants is independent of the parameter values, which is most likely not
true for mathematical models with5 or more parameters, such as those in [15]. In
our case the approach was different. During parameter estimation we fitted all the
variants of the extended model with respect to the EM0.45 µM experimental data
set. We then took advantage of the available data from the EM0.9 µM experiment
and performed model validation by comparing the predictions of the models with
the experimental data. On the contrary, the second set of data was used in [15]
in a second round of model fit, yielding different numerical values for the model
parameters.

For the sake of having models of small size, in the first part ofthe paper we do
not distinguish between filaments of different sizes and we use for the filament-
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filament extensions a “generic” kinetic constant. However,in the second part of
the paper we explicitly address the problem of extending themolecular model to
distinguish between filaments of different sizes, recognizing that different con-
stants may/should be used depending on the size of the filaments. We approach
the problem from a numerical point of view, aiming to build the extended model
in such a way that the numerical fit of the original model is preserved. On the
other hand, in [18] a physical approach to estimate how the size of the complexes
influences the binding rates is taken. However, this approach is based on the hy-
potheses that: i) reactants are shaped like balls and, especially, ii) the diameter of
the balls representing larger complexes is the same as the diameter of the balls rep-
resenting small complexes. Unfortunately, these assumptions make the approach
of [18] unsuitable for filament-filament interactions. The approach might be de-
veloped further to suit our models by modifying the reactants-as-balls assumption
and/or the assumption regarding the size of the larger complexes. This would re-
quire the recalculation of the collision probabilities in the stochastic approach to
chemical kinetics. This however is a project in itself, distinct from the aim and
scope of this paper.

Conclusions and further work. Our mathematical models show that if tetra-
mers are very quickly (in just a few seconds) assembled into ULFs, then the elon-
gation of filaments with ULFs and with other filaments both play a crucial role
in the formation of long intermediate filaments. The elongation with tetramers on
the other hand, has negligible quantitative contribution to the filament assembly.
One reason for this is that in the case of fast ULF formation, the population of
tetramers is very quickly depleted. However, this leaves open the question of the
filament assembly dynamics in the case when tetramers would be continuously
added to the system, i.e. by an additional synthesis mechanism. To address this
problem, we investigated our mathematical models in the case when the turnover
of tetramers into ULFs is slower. It turned out that in case the tetramers persist
in the system for a longer time, the dynamics of the filament assembly is much
richer and several different mechanisms can equally well explain the available ex-
perimental data. In fact, even the simple model discussed in[15] and in our paper
could be fitted to the experimental data. Anin vitro experiment where tetramers
were added either continuously or at well-chosen time points could offer more in-
sight into the role of tetramer longitudinal aggregation for the process of filament
elongation. Choosing the time points when the additional amount of tetramers
should be added to the solution could be done based on the analysis of our mathe-
matical models. For example, one could choose the time points where the number
of filaments in the solution is close to its maximum, so that the possible interplay
between tetramers and filaments has maximum flux.

It is visible already from the experimental data that the system does not reach
a steady state within 20 minutes, our time interval of choice. Similarly as in the
study in [15], we have focused on the early dynamics of the vimentin filament
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assembly, where the kinetics of the system is fast, with tetramers and ULFs being
quickly replaced by emerging filaments of various lengths. During this phase, the
presence of a large amount of tetramers and, a little later, of short filaments in the
solution make far more likely assembly/elongation events rather than disassembly
events. For this reason our models turn out to be able to explain the experimental
data during the early phase of the assembly, even though theydo not include any
disassembly or filament breaking mechanisms. The applicability of the models is
however tied to the early part of the assembly. Over longer time intervals (e.g.,
long enough so that the experimental data may potentially show a steady state),
the lack of a disassembly mechanism in the models makes them limited in their
predictive power. For example, a model with no disassembly or filament breaking
mechanism would predict that the system will reach (albeit in a huge interval
of time) a steady state where all initial tetramers are integrated into one single
filament (of huge length).

The methodology introduced in this paper for increasing theresolution of the
filament assembly model helps provide a deep insight into thedynamics of fila-
ment self-assembly. Details on the assembly of filaments of various lengths will
help in designing finer grained experimental assays that would focus on filaments
of different lengths at different time points. In terms of model complexity, in-
creasing the resolution of the model implies a considerableincrease in the size of
the model, linear in the number of variables and quadratic inthe number of reac-
tions. We showed however that the kinetic rate constants canbe set from a model
of low resolution to one of higher resolution in such a way that the model predic-
tions on the dynamics of the total amount of filaments, regardless of their length,
are preserved. In particular, this implies that given generic data on, for example,
the mean filament length, the model fit and the model validation problems can
be solved on the (smaller) model of low resolution and then extrapolated to the
models of higher resolution.
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C. Seidman, F. Muntoni, G. Müehle, W. Johnson, and B. McDonough. Mis-
sense mutations in the rod domain of the lamin A/C gene as causes of di-
lated cardiomyopathy and conduction-system disease.N. Engl. J. Med.,
341(23):1715–1724, 1999.

[6] I. E. Grossmann.Global optimization in engineering design. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1996.

[7] C. Guus, E. Boender, and H. E. Romeijn. Stochastic methods. In R. Horst
and P. M. Pardalos, editors,Handbook of Global Optimization. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1995.

[8] H. Herrmann and U. Aebi. Intermediate filaments: molecular structure, as-
sembly mechanism, and integration into functionally distinct intracellular
scaffolds.Ann Rev Biochem, 73:749–789, 2004.

[9] H. Herrmann, H. Bär, L. Kreplak, S. V. Strelkov, and U. Aebi. Intermediate
filaments: from cell architecture to nanomechanics.Nature Reviews Mol
Cell Biol, 8:562–573, 2007.
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