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Abstract

To disentangle the numerical contribution of modules to the system-level behavior
of a given biomodel, one often considers knockdown mutant models, investigating
the change in the model behavior when modules are systematically included and
excluded from the model architecture in all possible ways. We propose in this
paper a Boolean logic-based approach for extracting conclusions about the role
of each module from the systematic comparison of the numerical behavior of all
knockdown mutants. We associate a Boolean variable to each module, expressing
when the module is included in the architecture (value ‘true’) and when it is not
(value ‘false’). We can then express the satisfiability of system-level properties
of the full model, such as efficiency, or economical use of resources, in terms of
a Boolean formula expressing in a compact way which model architectures, i.e.,
which combinations of modules, give rise to the desired property. We demonstrate
this methodology on a recently proposed computational model for the heat shock
response in eukaryotes. We describe the contribution of each of its three feedback
loops towards achieving an economical and effective heat shock response. The
applicability of our approach is more general: the same method could be applied
to describe how properties of a wet-lab biomodel emerge from the combination of
its modules. In this case, one would simply replace the numerical simulation of
the computational models with the experimental measurement of the behavior of
the wet-lab biomodel and that of its knockdown mutant variants.

Keywords: mathematical model — modularization — Boolean logic — heat
shock response
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1 Introduction
Modularization of biomodels There is a sustained experimental and computa-
tional effort nowadays towards building large, system-level models for biochemi-
cal processes, including regulatory networks, signaling pathways, metabolic path-
ways, etc. Models can encompass thousands of reactants and reactions, see [7].
On this scale, understanding the details of the network, especially its regulatory
mechanisms, becomes a considerable challenge. Similar problems have also been
encountered in engineering (and elsewhere), see [9]. Thus, one strategy for eluci-
dating the structure of a biological system, is to adapt to systems biology methods
coming from engineering sciences, in particular from control theory, [19, 33, 35].
Applying a control-theoretical analysis to a biological system can provide a sys-
tematic way to identify the main regulatory components of a biological system,
including its feedforward and feedback mechanisms, see [11]. This, in turn, con-
tributes to the understanding of the reactivity, robustness and efficiency of the
biological system. To disentangle the individual contribution of the various com-
ponents to the network, knockdown mutants are often useful to consider, see [11].
The mutants are numerically compared to each other and to the reference model
in an effort to extract the individual contribution of each mechanism to the overall
behavior of the system.

Our approach for comparing knockdown mutant models We propose in this
paper a novel approach for identifying the numerical contribution of a compo-
nent to the system-level behavior of a larger model. The core technique we use
throughout the paper is to associate a Boolean variable to each of the compo-
nents. For each knockdown mutant we write a Boolean formula describing the
presence or the absence of each component (using the conjunction and the nega-
tion of Boolean variables). The obtained Boolean formulas encompass properties
of the architecture of the knockdown mutant models. Moreover, these formulas
do not depend on the parameters of the models. Going one step further, we can
also write a Boolean formula characterizing all mutant architectures that exhibit
a given property: we select all knockdown mutants that exhibit that property and
construct the disjunction of their Boolean formulas. The formula thus obtained
describes which components must be present/absent and in which configurations
in order for the system to exhibit the desired property. Iterating this technique
for several well chosen systemic properties may help to identify (at least quali-
tatively) the roles of each component. However, in order to perform numerical
simulations for the knockdown mutants, we need to fix a numerical setup for each
model, i.e., particular values for both the initial distribution of each species and
the kinetic rate constants of the models. In Section 4 we discuss in more details
the dependency of our analysis on the numerical setups chosen for the knockdown
mutant models.

Our approach is essentially different from the Boolean network framework
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often used for qualitative modeling and analysis of biological systems, see, e.g.,
[6, 17, 18, 32]. Within this framework, one usually associates to each species a
Boolean variable, which assumes the value 1 if that particular species is active,
i.e., its activity is biologically detectable, or 0 otherwise. Then, Boolean func-
tions are used to update the values of the variables at any time point, depending
on the values from the previous time step. Model checking techniques are also
often used for querying and validating various models of biomolecular systems,
for instance when verifying whether they fulfill a given property expressed as a
logical formula, see e.g., [4], [5], [25]. However, in our approach we are more
interested in the reverse situation, i.e., to construct the logical formula describing
the architecture of those models that verify a given property.

Case study: The eukaryotic heat shock response The heat shock response
(HSR) is an evolutionary-conserved global regulatory network found in virtually
all living cells. It allows the cell to quickly react to elevated temperatures by the
induction of some proteins called heat shock proteins (hsp). Exposure to raised
temperature leads to protein misfolding, which then accumulate and form aggre-
gates with disastrous effect for the cell. Stress conditions can be caused not only
by increased temperature but also by other forms of environmental, chemical or
physical stress, such as addition of ethanol, heavy metals, pollutants, high osmo-
larity, starvation, etc. The heat shock proteins act as chaperones – they stabilize
proteins and help to refold the denatured ones. They maintain the proper func-
tioning of the cell by preventing the formation of cytotoxic aggregates.

The heat shock response has been subject to intense scrutiny, see e.g., [8], [28],
[34], for at least two main reasons. First, as a primordial, very well-conserved
mechanism it is considered a promising candidate for providing insight into the
design principles of regulatory networks in general, see e.g., [23], [11]. Second,
the heat shock proteins, which are the main actors of the HSR, play crucial role
also in many other fundamental cellular processes, see e.g., [16], [27]. Therefore,
it is believed that the profound understanding of this defence mechanism would
have far-reaching ramifications for the biology of the living cell.

We use as a case study in this paper a model for the heat shock response
introduced in [26]. We take a control-based approach to identify three feedback
mechanisms in this model. We then apply our Boolean approach for knockdown
mutant comparison to identify the contribution of each of the three feedbacks
to having a response where the level of misfolded proteins remains low, with a
relatively low cost in terms of transactivating the heat shock protein genes.
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2 Models

2.1 The eukaryotic heat shock response: a molecular model.
The central role in the heat shock response is played by the heat shock pro-
teins (hsp), which act as chaperones for the misfolded proteins (mfp) by forming
hsp:mfp complexes and helping them to refold. In the model presented in [26],
the regulation of the heat shock response is done by controlling the transactivation
of the hsp-encoding genes. The transcription of these genes is initiated by some
specific proteins called heat shock factors (hsf) that first dimerize (hsf2), then
trimerize (hsf3) to finally bind to the promoters of the hsp-encoding genes, called
heat shock elements (hse). After the trimers bind to the promoter sites (hsf3: hse)
the transcription and translation of the hsp-encoding genes starts, ultimately pro-
ducing new hsp molecules.

Once the level of hsp molecules is high enough, the transcription process is
turned off through a self-regulating mechanism. The hsp molecules sequestrate
the heat shock factors (hsp: hsf), thus preventing them to trimerize and bind to
the heat shock elements. The sequestration of the heat shock factors by the heat
shock proteins can be done in three different ways: by binding to free hsf, by
breaking dimers and trimers, and by unbinding hsf3 from the DNA promoter sites
with simultaneous breaking of the trimer. Once the temperature increases, some
of the proteins (prot) start to misfold, driving hsp away from hsf. Thus, the heat
shock response is quickly switched on since the heat shock factors are again free
and able to promote the synthesis of more heat shock proteins. The reaction rules
of the molecular model introduced in [26] are presented in Table 1.

Clearly, the model in Table 1 is very generic in nature. For instance, the protein
synthesis and degradation (i.e., reactions 4 and 9) are greatly simplified. Also,
although there exist several types of slightly different heat shock proteins, see [14],
here they are all treated uniformly, with hsp 70 as base denominator. This is also
the case for the heat shock factors and the heat shock elements. Furthermore,
in this model all proteins are treated generically, through the prism of whether
they are properly folded (prot), or misfolded (mfp). Nevertheless, the model is
well suited for the purpose of demonstrating our method for knockdown mutant
analysis: the formal results of the analysis can be easily related to an intuitive
understanding of the model.

The model in Table 1 includes three mass conservation relations, see [26], for
the total amount of hsf, the total amount of proteins (other than hsp and hsf) in the
model, as well as for the total amount of hse:

[hsf] + 2× [hsf2] + 3× [hsf3] + 3× [hsf3: hse] + [hsp: hsf] = C1,

[prot] + [mfp] + [hsp:mfp] = C2,

[hse] + [hsf3: hse] = C3,

for some mass constants C1, C2, C3.
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2.2 The mathematical model.

We associate with the molecular model in Table 1 a mathematical model in terms
of ordinary differential equations (ODE), where for each reaction we assume the
principle of mass action, see, e.g., [22]. We associate with each reactant a contin-
uous, time-dependant variable that gives its concentration level. For each variable,
its differential equation gives the cumulated consumption and production rates of
the reactant corresponding to it in the molecular model. Thus, the dynamic behav-
ior of the molecular model is described through the set of all resulting differential
equations. We list them in Table 2 and refer to [26] for more details. The esti-
mation of both the kinetic rate constants and the initial values of all reactants was
done in [26] by imposing the following three conditions:

(i) The system is in a steady state at 37◦C, i.e., all differential equations are
made equal to zero. This condition comes as a natural consequence of the
fact that in the absence of the heat shock, i.e., at 37◦C, the model should
exhibit no response.

(ii) At 42◦C, the numerical predictions of the model for [hsf3: hse](t) should be
in agreement with the experimental data from [20].

(iii) At 42◦C, the numerical prediction of the model for [hsp](t) should verify
the data obtained in [26] through a de-novo fluorescent reporter-based ex-
periment.

The kinetic rate constants and the initial values obtained in [26] are presented
in Table 3. For more details on the parameter estimation and the experimental
validation of the model, we refer to [26]. The resulting model exhibits four major
numerical achievements, see [26]:

(A) It uses economically the cellular resources: In the absence of heat shock, the
transcription of the hsp-encoding gene is almost non-existent. This gene is
transactivated only for a short period of time after the temperature increases.

(B) It is fast to respond to a heat shock: Upon temperature upshift, the hsp-
encoding gene is quickly activated.

(C) The response is effective: The level of mfp is kept low when the heat shock
is mild.

(D) The response is scalable: The cell exhibits a higher response when exposed
to higher temperature.
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2.3 A control-based modularization of the heat shock response
model.

A control-driven analysis of the heat shock response model of [26] was introduced
in [10] to decompose the heat shock response model. The model was divided into
the following submodules: the plant, i.e., the process to be regulated, the con-
troller, i.e., the decision-making module, and the actuator, i.e., the module which
modifies the current state of the system, thus influencing the activity of the plant.
A sensor which measures the current state of the system and sends this infor-
mation to the controller and three feedback mechanisms regulating this process
were also identified. This decomposition of the heat shock model is presented in
Table 4, where the reaction numbers refer to the reactions in Table 1.

For a more intuitive understanding of this modularization, we also include
a graphical illustration in Figure 1. The three identified feedback loops and their
points of interaction with the mainstream process are depicted in Figure 2.

2.4 Knockdown mutant models.
In order to disentangle the role of the feedback mechanisms within the full model,
we consider eight knockdown mutants obtained by eliminating from the basic
model all combinations of the feedbacks FB1, FB2, and FB3. We will denote
each of these mutants as MX , where X ⊆ {1, 2, 3} represents the set of indexes
of the feedbacks included in the model MX :

• M0 includes no feedback, i.e., it consists of reactions [r1]-[r4], [r9]-[r12]
and the backward direction of reaction [r5]. In the control-theory terminol-
ogy, this model is called the open-loop design.

• M1 includes feedback FB1, i.e., it consists of reactions [r1]-[r5], [r9]-[r12].

• M2 includes feedback FB2, i.e., it consists of reactions [r1]-[r4], [r6]-[r7],
[r9]-[r12], and the backward direction of reaction [r5].

• M3 includes feedback FB3, i.e., it consists of reactions [r1]-[r4], [r8]-[r12],
and the backward direction of reaction [r5].

• M1,2 includes feedbacks FB1, FB2, i.e., it consists of reactions [r1]-[r7],
[r9]-[r12].

• M1,3 includes feedbacks FB1, FB3, i.e., it consists of reactions [r1]-[r5],
[r8]-[r12].

• M2,3 includes feedbacks FB2, FB3, i.e., it consists of reactions [r1]-[r4],
[r6]-[r12], and the backward direction of reaction [r5].

• M1,2,3 is the full, reference model, consisting of reactions [r1]-[r12].
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To identify the individual contributions of the three feedback mechanisms, we
compare the dynamics of these eight models at 42◦C. We choose this temperature
since at 42◦C the experimental data shows a heat shock response both in terms of
increased level of misfolded proteins and in terms of transcription activity of the
hsp-encoding genes, see [26].

2.5 Numerical setup of the knockdown mutant models.
In our comparison of the numerical knockdown mutant models we aim to focus
on the differences stemming from the intrinsic dissimilarities in their architectures
and eliminate as much as possible differences coming from unfavorable numerical
setups chosen for the various models. For example, we consider all knockdown
mutants as viable alternatives for the heat shock response model. We impose the
following three constraints:

(1) The kinetic rate constants for the reactions of each of the eight knockdown
mutants should be chosen in such a way that the numerical prediction for
the time evolution of the level of hsf3: hse fits in with the experimental data
given in [21] on DNA binding of hsf3.

(2) The initial distribution of the reactants of each mutant should be chosen in
such a way that they form a steady state at 37◦C for that particular model.

(3) For all knockdown mutants, the values of the mass constants C1, C2, C3 are
chosen to be identical to those of the reference model M1,2,3.

All three constraints come as natural consequences of the fact that we consider
all knockdown mutants as viable alternatives for the heat shock model. As such,
their dynamic behavior should be in agreement with the existent experimental
data and, at the same time, they should be in a steady state in the absence of a heat
shock, i.e., at 37◦C. Moreover, since they are all models for the same biological
process, they should all assume the same values for the mass constants.

3 Results
When comparing the performance of the eight alternative models we focused on
two aspects: the total amount of hsp and the total amount of mfp both at 37◦C and
at 42◦C. We were interested mainly in these two aspects since a very high level
of mfp indicates a non-effective response while a very high level of hsp indicates
a non-economical response.

We associated to each of the three feedback mechanisms a Boolean variable,
denoted by F1, F2 and F3, respectively. Then, for each knockdown mutant we
wrote a Boolean formula expressing which of the feedback mechanisms are pre-
sent in the model, see Table 5 where we denoted by ∧ the conjunction operator
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and by Fi the negation of the variable Fi. For example, to knockdown mutant
M1,2 we associated the Boolean formula F1 ∧ F2 ∧ F3 to express that feedbacks
FB1, FB2 are included in the model, while FB3 is not.

Going one step further in our approach, we considered all knockdown mutant
models having ‘low’ total amount of hsp at 37◦C and at 42◦C, respectively. By
writing the disjunction, denoted by ∨, of the formulas corresponding to these mu-
tants we obtained a Boolean formula describing the contribution of each feedback
to achieving the property: which feedbacks must be present in the model in order
for it to exhibit the desired property. We applied the same technique to describe
the architectures which exhibit ‘low’ levels for the total amount of mfp at 37◦C or
at 42◦C.

3.1 Numerical analysis of the knockdown mutant models.
We start our analysis with the mutant M0, which does not include any of the
three feedback mechanisms. The ODE mass-action model associated to M0 shows
that if the mutant starts from its steady state at 37◦C, then at any temperature
the differentials for [hsf], [hsf2], [hsf3], [hsf3: hse], [hse] and [hsp: hsf] are zero.
That is, those functions remain constant at their steady state values independent of
temperature. In particular, the DNA binding level, i.e., hsf3: hse, remains constant
even when we increase the temperature. So, for no numerical setup, this mutant
can provide numerical predictions in agreement with the data from [21] if it starts
from its steady state at 37◦C. Thus, we discarded this knockdown mutant from
our considerations.

For each of the mutants M1, M2, M3, M1,2, M1,3, and M2,3 we performed pa-
rameter estimation to identify a numerical setup, i.e., a set of values for the kinetic
rate constants, that provides numerical predictions in accordance with the exper-
imental data of [21]. The results are shown in Table 6-A. We then numerically
estimated the steady state of each model at 37◦C; the results are given in Table 6-
B. Finally, we numerically integrated the mathematical model corresponding to
each knockdown mutant starting from its own steady state values in Table 6-B.
We integrated the ODEs up to 14400 seconds (in model time), for a temperature
value of 42◦C. We collected in Table 7 the maximal values for the total amount of
hsp and mfp in each of these models, both at 37◦C and at 42◦C. For the numerical
integration we used the software COPASI [15].

We chose empirically four numerical thresholds separating the ‘low’ and ‘high’
values for the total amount of: (i) hsp proteins at 37◦C; (ii) mfp proteins at 37◦C;
(iii) hsp proteins at 42◦C; and (iv) mfp proteins at 42◦C. The thresholds we
selected were the following: l37hsp = 8000, l37mfp = 3000, l42hsp = 8 × 104, and
l42mfp = 2.5 × 106, respectively, all in terms of number of molecules. We plotted
the behavior of each knockdown mutant model with respect to these thresholds in
Figures 3 and 4.

We considered the following four properties:
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• Property P1: Low level for the total amount of hsp at 37◦C. This property
is exhibited only by the mutants M1, M3, M1,2, M1,3, and M1,2,3. Using
the Boolean formulas in Table 3 expressing each mutant in terms of their
feedback structure, we constructed a Boolean formula for property P1. This
is easily obtained as a disjunctive formula (logical OR) among the Boolean
formulas for M1, M3, M1,2, M1,3, and M1,2,3:

(F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3)∨
∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3),

which can be rewritten in a compact form as:

F1 ∨ (F1 ∧ F2 ∧ F3). (1)

Thus, property P1 can be satisfied if and only if either feedback FB1 is
present (regardless of whether FB2 and FB3 are included or not) or feed-
back FB3 is present while feedbacks FB1 and FB2 are absent.

• Property P2: Low level for the maximal value of the total amount of hsp
at 42◦C. This property is exhibited again only by mutants M1, M3, M1,2,
M1,3, and M1,2,3. So, we obtained the Boolean formula

F1 ∨ (F1 ∧ F2 ∧ F3). (2)

• Property P3: Low level for the total amount of mfp at 37◦C. This property
is exhibited only by the mutants M1, M3, and M1,2,3. So, in this case we
obtained the Boolean formula

(F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3). (3)

• Property P4: Low level for the maximal value of the total amount of mfp at
42◦C. This property is exhibited by the mutants M1, M2, M1,2, and M1,2,3.
In this case, we obtained the Boolean formula

(F1 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3). (4)

Notice that when defining the properties P1 and P3, we consider the total amounts
of hsp and mfp without referring to the maximal values, as in the case of P2 or
P4. This is due to the fact that P1 and P3 are considered at 37◦C, a temperature at
which the system is in a steady state. Thus, the total amounts are not changing in
time.

To investigate which knockdown mutants can be both effective and economic,
we looked at the models that exhibit low levels for both hsp and mfp. For a tem-
perature of 37◦C, we considered the models that verify simultaneously properties
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P1 and P3. The Boolean formula describing these architectures was easily ob-
tained as a conjunctive formula (logical AND) among the formulas for properties
P1 and P3, which could then be rewritten in a compact form as

(F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3).

Since this was identical with (3), we concluded that at 37◦C, once a mutant
achieved a low level for the total amount of mfp, it would also exhibit a low level
for the total amount of hsp. For the similar analysis at 42◦C we were interested
in the models that verify simultaneously properties P2 and P4. In this case, the
Boolean formula describing these architectures is

F1 ∧ (F2 ∨ (F2 ∧ F3)).

This shows that to obtain low values for both hsp and mfp at 42◦C the first feed-
back is essential. Moreover, only two types of mutant architectures predicted this
outcome: if both FB1 and FB2 were present in the model (regardless of whether
FB3 is included or not), or if FB1 was included while FB2 and FB3 were not.
Furthermore, it showed that the second feedback, in addition to the first one, has
a role in decreasing the levels of both hsp and mfp at 42◦C. The second type
of architecture, i.e., when FB1 was present in the model while FB2 and FB3

were absent, showed that the first feedback alone is sufficient to ensure a low
enough level of both hsp and mfp at 42◦C. However, when we compared the
values predicted by M1 and M1,2,3, see Figure 4, we noticed that the cumulative
effect of the second and the third feedbacks added to the first one is to further
reduce the total level of mfp.

We noticed that the Boolean formulas corresponding to properties P1 and P2

were identical. This means that once a knockdown mutant is able to keep a low
level of hsp at 37◦C, it will also be able to respond to heat shock with a rela-
tively low level of hsp. Moreover, this was the case only for two types of mutant
architectures: either when the feedback FB1 was present (regardless of whether
FB2 and FB3 were included or not) or when feedback FB3 was present while
feedbacks FB1 and FB2 were absent. This showed that the first and the third
feedbacks have roles in lowering the level of hsp both at 37◦C and at 42◦C. The
first type of mutant architecture, having the feedback FB1 present, was insensitive
to the second and the third feedbacks: whether they were included in the model
or not did not change the behavior of the model with respect to P1 and P2. The
second type of mutant architecture that satisfies the Boolean formula (1) showed
that in the absence of the first feedback, the third one is necessary to obtain low
levels of hsp both at 37◦C and at 42◦C.

If, on the other hand, we would require low levels of mfp both at 37◦C and
at 42◦C, i.e., if we would ask for properties P3 and P4 to be satisfied, then we
would see that the first feedback has to be present in the model. Otherwise, i.e.,
if F1 = 0, the two Boolean formulas (3) and (4) become F2 ∧ F3 and F2 ∧ F3,
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respectively, which obviously cannot be simultaneously satisfied. This confirmed
again our conclusion that the first feedback is essential for the model to satisfy all
four properties P1, P2, P3, and P4, i.e., for the model to exhibit low levels for both
hsp and mfp, both at 37◦C and at 42◦C.

4 Discussion

4.1 Previous approaches for model comparison.

The technique of mathematically controlled comparison, [31], provides a struc-
tured approach for comparing several alternative designs with respect to some
chosen measures of functional effectiveness. However, this framework imposes
one important constraint on the alternative designs: they are allowed to differ from
the reference design in only one component. Moreover, the mathematical models
both for the reference design and for the alternative architectures are developed
in the framework of canonical nonlinear modeling referred to as S-systems, [29]
and [30]. Then, using various systemic properties, one imposes some constraints
on all parameters of the alternative designs, setting their values depending on the
parameters of the reference model. Finally, one chooses some numerical mea-
sures of functional effectiveness and uses them to compare the alternative designs
with the reference model. This way, one can determine analytically the qualitative
differences between the compared models. If one is also interested in quantify-
ing these differences, then numerical values can be introduced for the parameters
of the models. However, by doing this the generality of the results is lost. An
extension of the method of mathematically controlled comparison was proposed
in [2] to include some statistical methods, see [1] and [3], which allow the use
of numerical values for the parameters while still preserving the generality of the
conclusions.

Another approach for model comparison was proposed in [10]. Since the al-
ternative designs are submodels of the reference model, the underlying reaction
networks of these models are very similar (although not identical), and both the
biological constraints and the kinetics of the reactions are taken from the refer-
ence model. The only remaining question is how to chose the initial distribution
of the variables in the alternative designs. In the mathematically controlled com-
parison they are usually taken from the reference model, see [11] for a case study
using this method. However, this might lead to biased comparisons for some bio-
chemical systems. For instance, for regulatory networks, models should be in a
steady state in the absence of the trigger of the response. In particular, the ini-
tial values of the reference model are usually chosen in such a way to fulfil this
condition. However, this does not imply in general that also a submodel will be
in its steady state if it starts from the same initial values as the reference model.
As a consequence, the dynamic behavior of the submodel will exhibit two inter-

10



twined tendencies: the migration from a possible unstable state and the response
to a particular stimulus. Thus, if the purpose of the comparison is to determine
the efficiency of the response of various submodels to a particular trigger, then the
approach proposed in [10] is more appropriate, leading to biologically unbiased
results. In this approach, the initial values of the reactants are chosen in such a
way that they constitute a steady state of that design in the absence of a trigger.
However, also in this approach, the comparison is done locally, for a particular set
of parameters. In [24], this method was combined with some statistical methods
of [1] and [3], leading to general comparison results independent of the values of
the parameters.

4.2 Our approach for knockdown mutant model comparison:
advantages and limitations.

In this paper, we proposed a novel approach to the knockdown mutant model com-
parison problem. First, we associated a Boolean variable to each of the three feed-
back mechanisms identified in [10] for the reference model of the eukaryotic heat
shock response. Then, for each knockdown mutant we wrote a Boolean formula
(using the conjunction and negation of the three introduced Boolean variables)
characterizing its control architecture, i.e., which of the three feedback mecha-
nisms are present in the model. As such, each of these formulas encompass time-
independent properties of the models. This makes our approach very different
from the Boolean network framework for modeling biological systems, see [6],
[17], [18], [32], where one usually associates a Boolean variable to each species
present in the system. Boolean formulas are then used to simulate the time evolu-
tion of the species. Moreover, in our approach the Boolean formulas associated to
each knockdown mutant are parameter independent, i.e., they are not influenced
by the parameters used to describe the compared models. Going one step further,
we could introduce a Boolean formula characterizing all those mutant architec-
tures that exhibit a given behavioral property, e.g., low levels of hsp or mfp. This
can be easily obtained as a disjunctive formula (logical OR) of the Boolean for-
mulas describing the architectures of the mutants exhibiting the required property.
However, in order to perform numerical simulations of the models we needed nu-
merical setups for each of the knockdown mutants, i.e., specific values both for the
initial distribution of the reactants and for the kinetic rate constants of the models.
For the initial values of the variables, we chose the approach proposed in [10],
i.e., we set them separately for each knockdown mutant in such a way that they
form a steady state for that particular model. Regarding the kinetic rate constants
in each of the knockdown mutants, one approach is to take them from the refer-
ence model, see [10]. The idea in this case is to make the whole comparison in
the numerical setup of the reference model. Alternatively, we proposed here to
separately estimate the kinetic constants of each alternative model with respect to
available experimental data. In other words, we considered all models to be vi-
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able alternatives for the biological system and, as such, we took for each of them
a most favorable numerical setup.

Since the numerical setup giving a good model fit is in general not unique, it
means that our analysis is sensitive with respect to the choice of the values for the
kinetic constants. This is often the case when model fitting is involved, see [7].
Repeating the analysis for several numerical setups (all of them as good in terms
of fitting the model to the experimental data) would enrich the conclusions, by po-
tentially showing that the same model architecture can exhibit different properties
depending on the numerical setup. The conclusions of the analysis also depend
on the numerical values chosen for the thresholds l37hsp, l

37
mfp, l

42
hsp, and l42mfp.

It is crucial for our approach that all knockdown mutant models are considered
in the analysis, i.e., all possible combinations ON/OFF of the model components
are included in the comparison. In this way, we obtain a complete characterization
of the properties being analyzed in terms of all model architectures that can ex-
hibit those properties. For a large number of components, this approach becomes
quickly computationally challenging: for n components to be analyzed, there are
2n knockdown mutant models to be compared. Including in the comparison only
a part of those mutants is also possible but then the output of the method is partial:
one only discovers some, potentially not all, model architectures exhibiting the
property of interest.

When we compared the numerical behavior of the knockdown mutants, we
chose a mathematical model formulation in terms of ordinary differential equa-
tions. However, our approach is independent of this formulation and it would work
equally well with other formulations, such as continuous-time Markov chains and
their numerical simulations based on Gillespie’s algorithm, see [12, 13].

Our approach can be easily extended to a more refined analysis, where the
range of the properties to be analyzed is divided into more domains than just ‘low’
and ‘high’. The range could in fact be divided into an arbitrarily high number of
intermediate domains, depending on the details of the case study. A Boolean
formula could be associated to characterize each of those domains in a manner
similar to that demonstrated in this paper.

5 Conclusions

We proposed in this paper a computational method to characterize how a system-
level behavior emerges from combinations of a network’s modules, and what is
the contribution of each module to that behavior. In our approach, a system-level
property is described as a Boolean formula, where each module is represented
through a Boolean variable, having value ‘true’ only if the module contributes to
that system property. We applied this method to a computational, in-silico model
and for that, we analyzed the numerical properties of this model and of all its
knockdown mutants. However, the applicability of our approach is more general.
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For example, one could think of applying the same approach in experimental prac-
tice in biology. When investigating a functional structure of a wet-lab biomodel,
one would identify a number of bio-modules and design wet-lab knockdown mu-
tants where certain combinations of bio-modules would be removed, switched-off
or silenced in some way. The individual mutants would be further experimentally
tested for certain properties. Finally, in order to describe how the properties of
the wet-lab biomodel emerge from the combination of its bio-modules, one could
adapt our method: Boolean variables would represent the bio-modules, Boolean
formulas would describe the system-level biological properties and the numerical
simulation of the computational models would be replaced with the experimental
measurement of the behavior of the wet-lab biomodel and that of its knockdown
mutant variants.
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Table 1: The molecular model for the eukaryotic heat shock response proposed in
[26].

Reaction
2 hsf � hsf2 [r1]
hsf + hsf2 � hsf3 [r2]
hsf3 + hse � hsf3: hse [r3]
hsf3: hse → hsf3: hse+ hsp [r4]
hsp+ hsf � hsp: hsf [r5]
hsp+ hsf2 → hsp: hsf + hsf [r6]
hsp+ hsf3 → hsp: hsf +2 hsf [r7]
hsp+ hsf3: hse → hsp: hsf +2 hsf + hse [r8]
hsp → ∅ [r9]
prot → mfp [r10]
hsp+mfp � hsp:mfp [r11]
hsp:mfp → hsp+ prot [r12]
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Table 2: The differential equations of the associated mathematical model origi-
nally introduced in [26].

Equation (Equation number)

d[hsf]/dt = −2k+
1 [hsf]

2 + 2k−
1 [hsf2]− k+

2 [hsf][hsf2] (5)
+ k−

2 [hsf3]− k+
5 [hsf][hsp] + k−

5 [hsp: hsf]

+ k6[hsf2][hsp] + 2k7[hsf3][hsp]

+ 2k8[hsf3: hse][hsp]

d[hsf2]/dt = k+
1 [hsf]

2 − k−
1 [hsf2]− k+

2 [hsf][hsf2] (6)
+ k−

2 [hsf3]− k6[hsf2][hsp]

d[hsf3]/dt = k+
2 [hsf][hsf2]− k−

2 [hsf3]− k+
3 [hsf3][hse] (7)

+ k−
3 [hsf3: hse]− k7[hsf3][hsp]

d[hse]/dt = −k+
3 [hsf3][hse] + k−

3 [hsf3: hse] (8)
+ k8[hsf3: hse][hsp]

d[hsf3: hse]/dt = k+
3 [hsf3][hse]− k−

3 [hsf3: hse] (9)
− k8[hsf3: hse][hsp]

d[hsp]/dt = k4[hsf3: hse]− k+
5 [hsf][hsp] + k−

5 [hsp: hsf] (10)
− k6[hsf2][hsp]− k7[hsf3][hsp]

− k8[hsf3: hse][hsp]− k+
11[hsp][mfp]

+ (k−
11 + k12)[hsp:mfp]− k9[hsp]

d[hsp: hsf]/dt = k+
5 [hsf][hsp]− k−

5 [hsp: hsf] (11)
+ k6[hsf2][hsp] + k7[hsf3][hsp]

+ k8[hsf3: hse][hsp]

d[mfp]/dt = ϕT [prot]− k+
11[hsp][mfp] + k−

11[hsp:mfp] (12)
d[hsp:mfp]/dt = k+

11[hsp][mfp]− (k−
11 + k12)[hsp:mfp] (13)

d[prot]/dt = −ϕT [prot] + k12[hsp:mfp] (14)
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Table 3: The numerical values of the parameters and the initial values of the
variables of the heat shock response model of [26].

A B
Param. Value Units Variable Initial conc.

k+
1 3.49 ml

#·s [hsf] 0.67

k−
1 0.19 s−1 [hsf2] 8.7 · 10−4

k+
2 1.07 ml

#·s [hsf3] 1.2 · 10−4

k−
2 10−9 s−1 [hse] 29.73

k+
3 0.17 ml

#·s [hsf3: hse] 2.96

k−
3 1.21 · 10−6 s−1 [hsp] 766.88

k4 8.3 · 10−3 s−1 [hsp: hsf] 1403.13
k+
5 9.74 ml

#·s [mfp] 517.352

k−
5 3.56 s−1 [hsp:mfp] 71.65

k6 2.33 ml
#·s [prot] 1.15× 108

k7 4.31 · 10−5 ml
#·s

k8 2.73 · 10−7 ml
#·s

k9 3.2 · 10−5 s−1

k+
11 3.32 · 10−3 ml

#·s
k−
11 4.44 s−1

k12 13.94 s−1

A. The numerical values of the parameters. B. The initial values of all variables.

Table 4: The control-based decomposition of the model in Table 1. We denote
the ‘left-to-right’ direction of reaction [r5] by [r5]+ and by [r5]− its ‘right-to-left’
direction.

Module and main task Reactions
Plant (protein misfolding and refolding) [r10], [r11],

[r12]
Actuator (regulate the level of hsp) [r4], [r9]
Sensor (measure the level of hsp)
Controller (modulate level of DNA binding) [r1], [r2],

[r3], [r5]−

Feedback FB1 (sequestration of hsf) [r5]+

Feedback FB2 (dimer and trimer breaking) [r6], [r7]
Feedback FB3 (hsp-forced DNA unbinding) [r8]
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Table 5: Boolean formulas encoding the presence or absence of the three feedback
mechanisms in each of the eight models.

Mutant Boolean formula

M0 F1 ∧ F2 ∧ F3

M1 F1 ∧ F2 ∧ F3

M2 F1 ∧ F2 ∧ F3

M3 F1 ∧ F2 ∧ F3

M1,2 F1 ∧ F2 ∧ F3

M1,3 F1 ∧ F2 ∧ F3

M2,3 F1 ∧ F2 ∧ F3

M1,2,3 F1 ∧ F2 ∧ F3

Table 6: Numerical values of the parameters and the initial values of the variables
of the knockdown mutants. A. The numerical values of the parameters in each
of the six knockdown mutants. ki denotes the kinetic rate constant of the irre-
versible reaction (i). k+

i denotes the ‘left-to-right’ direction of reaction (i), while
k−
i denotes its ‘right-to-left’ direction. Notice that there is no parameter k10 in the

table. It is assumed to be the temperature-dependant parameter ϕT whose value
is determined from the expression presented and discussed in [26]. B. The initial
values of all variables in each of the six knockdown mutants.

A
M1 M2 M3 M1,2 M1,3 M2,3

k+
1 0.02 10.00 4.36 · 10−7 7.24 0.04 10.00

k−
1 0.01 9.90 1.36 · 10−7 1.84 · 10−5 0.26 0.01

k+
2 9.90 6.02 0.23 0.34 0.00 0.01

k−
2 0.01 0.01 1.22 · 10−6 1.05 · 10−5 0.03 8.04 · 10−5

k+
3 0.08 3.04 0.01 0.70 0.13 10.00

k−
3 0.66 0.00 0.17 0.15 0.00 0.00

k4 0.01 10.00 0.19 0.00 0.51 1.59

k−
5 0.00 10.00 9.98 1.23 3.41 10.00

k+
5 0.15 - - 10.00 1.00 · 10−9 -

k6 - 0.60 - 1.00 · 10−9 - 0.13

k7 - 0.24 - 10.00 - 2.08 · 10−7

k8 - - 0.51 - 0.23 3.20

k9 3.20 · 10−5 3.20 · 10−5 3.20 · 10−5 3.20 · 10−5 3.20 · 10−5 3.20 · 10−5

k+
11 9.75 10.00 0.38 0.00 0.00 0.57

k−
11 6.52 1.00 · 10−9 10.00 1.30 · 10−8 0.32 5.01

k12 32.08 0.01 0.70 16.47 0.17 0.05

B
M1 M2 M3 M1,2 M1,3 M2,3

[hsf] 0.03 36.95 1399.68 1.27 67.96 33.45
[hsf2] 0.00 0.02 0.00 27.33 667.19 130.23

[hsf3] 0.11 1.52 · 10−5 4.28 0.01 2.39 0.09
[hse] 32.28 28.97 32.67 31.41 32.64 32.68
[hsf3: hse] 0.41 3.72 0.02 1.28 0.05 0.01

[hsp] 99.31 1.16262 · 106 100.05 130.39 839.82 662.90
[hsp: hsf] 1411.09 1364.52 0.09 1352.88 3.00 1118.47

[mfp] 1.24 8.58 · 10−5 405.56 47164.90 3915.46 244.61
[hsp:mfp] 31.14 144533 1426.09 60.62 6024.21 18259.40

[prot] 1.14916 · 108 1.14771 · 108 1.14914 · 108 1.14868 · 108 1.14906 · 108 1.14897 · 108
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Table 7: a) The numerical values for the total amount of hsp and mfp at 37◦C,
b) The maximal numerical values for the total amount of hsp and mfp at 42◦C.
All values are in terms of number of molecules and should be interpreted as an
average of a population of cells
a)

Total hsp Total mfp
M1 1541 32,3
M2 1, 3× 106 144533
M3 1526 1832
M1,2 1544 47225
M1,3 6867 9939,6
M2,3 20040,8 18504
M1,2,3 2241 589
b)

Max Total hsp Max total mfp
M1 2458 623997
M2 2, 41× 106 1, 28× 106

M3 19782,5 8, 8× 106

M1,2 1978,6 2, 41× 106

M1,3 73931,4 1, 3× 107

M2,3 233778 1, 27× 107

M1,2,3 3157 16116
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Figure 1: The control structure of the heat shock response network.

Figure 2: The control structure of the heat shock response network.
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Values on the axes are in terms of number of molecules and should be interpreted
as an average of a population of cells.

2
.0

1́
0
4

4
.0

1́
0
4

6
.0

1́
0
4

8
.0

1́
0
4

1
.0

1́
0
5

0

5.0 1́06

1.0 1́07

1.5 1́07

1
.5

1́
0
6

2
.0

1́
0
6

2
.5

1́
0
6

3
.0

1́
0
6

1M
2M

3M

1,2M

1,3M

2,3M

1,2,3M

Max Total HSP

M
a
x
 T

o
ta

l 
M

F
P

lmfp
42

lhsp
42

Figure 4: The maximal value for the total amount of hsp and mfp for each of the
seven models at 42◦C. Values on the axes are in terms of number of molecules
and should be interpreted as an average of a population of cells.

23



Joukahaisenkatu 3-5 B, FI-20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics
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