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Abstract

The heat shock response is a well conserved defence mechanism against the
accumulation of misfolded proteins due to prolonged elevated heat. The cell
responds to heat shock by raising the levels of heat shock proteins (hsp), which
are responsible for chaperoning protein refolding. The synthesis of hsp is highly
regulated at the transcription level by specific heat shock (transcription) factors
(hsf). One of the regulation mechanisms is the phosphorylation of hsf’s. Experi-
mental evidence shows a connection between the hyper-phosphorylation of hsf’s
and the transactivation of the hsp-encoding genes. In this paper we incorporate
several (de)phosphorylation pathways into an existing well validated computa-
tional model of the heat shock response. We analyze the quantitative control
of each of these pathways over the entire process. For each of these pathways
we create detailed computational models which we subject to parameter esti-
mation in order to fit them to existing experimental data. In particular, we find
conclusive evidence supporting only one of the analyzed pathways. Also, we
corroborate our results with a set of computational models of a more reduced
size.

Keywords: Model refinement, quantitative analysis, heat shock response, phos-
phorylation.
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1 Introduction

The heat shock response (HSR) is a well conserved cellular regulatory mecha-
nism dealing with increased accumulations of misfolded proteins due to elevated
temperature or other forms of stress, such as physical, environmental, or chemi-
cal [34, 21]. Under elevated temperatures proteins start misfolding and forming
enlarging cytotoxic aggregates [1]. Such bulk complexes may have very harmful
implications for the cell and the organism; it is known for example that the
generation of protein aggregates is associated with several neurodegenerative
diseases such as Alzheimer and Parkinson [30, 41]. The cell’s response is given
by an immediate increase of the level of chaperons, also called heat shock pro-
teins (hsp) which bind to the misfolded proteins and assist them in reacquiring
their functional fold. The synthesis of hsp is highly regulated at the transcription
level, by use of transcription factors. Once the stress disappears and the level
of misfolded proteins returns to normal, the entire HSR mechanism is switched-
off, and the cell returns to its physiological level of chaperons, see [23, 35, 40].
One of the most remarkable aspects about HSR is how evolutionary well con-
served this mechanism is, as it is present in almost all living cells. Some of the
species lacking the classical HSR can be found in the Antarctic ocean such as
the Odontaster validus sea star, the Euplotes focardii ciliate ([25]), the Tremato-
mus bernacchii notothenioid fish ([16]), and the Paraceradocus gibber gammarid
([7]). However, the relevance of this regulatory mechanism goes beyond HSR,
as heat shock proteins are associated and play a key role also in many other
cellular signaling and regulatory processes [22, 39]. Due to their contribution to
the resilience of cancer cells, hsp also became a cancer treatment target [6, 44].

It is known that hsp transcription is regulated also through the phospho-
rylation of its transcription factors (hsf) [43, 26, 42]. While some of the hsf
phosphorylation sites are constitutively phosphorylated and have an active role
in modulating the repression of the transcriptional activity [23], other sites, such
as Serine 230 of mammalian HSF1, become phosphorylated only during the heat
shock, and have a demonstrated role in promoting the inducible transcriptional
activity of hsf [17]. In particular, it has been experimentally observed in [23]
that upon heat shock, the overall level of hsf phosphorylation exhibits a clear
transient behavior, which follows closely (while slightly delayed) the DNA bind-
ing measurements. However, little to nothing has been made until now for trying
to understand the way in which the phosphorylation process acts as a control
mechanism over the hsp transcription process. In [40], the phosphorylation of
hsf is included into an HSR molecular model, but merely as an intermediate step
of the process, without giving much insight into the type of control it actually
enables.

In this study we performed a detailed analysis of several phosphorylation-
driven control mechanisms for the regulation of the HSR, namely for the reg-
ulation of the transcription process of new hsp. Recently, a simple and well
validated molecular and computational model for the HSR has been proposed
in [37, 36]. Because of its reduced size, this model was a good base for an
extension which incorporates also the hsf’s phosphorylation level. Using this
extended model, we investigated three different phosphorylation pathways to
uncover their control over the HSR process. For each of these pathways we
created detailed computational models which we subjected to parameter esti-
mation in order to fit them to existing experimental data. Our results show that
only one of these pathways is able to explain the experimental data. However,
for one of the remaining pathways, our results suggest that although it is not
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able to explain the experimental data by itself, it may have a role in fine-tuning
the control over the transactivation of the hsp-encoding genes.

2 Models

2.1 The heat shock response

Throughout this study, we used as reference the model recently introduced
in [37] and [36] for the eukaryotic HSR. Upon elevated temperatures, proteins
(denoted in the model as prot) start to misfold. In response, the cell quickly
raises the level of a special type of chaperons, called heat shock proteins (hsp).
These chaperons, sequestrate the misfolded proteins (mfp) and help them in
reassuming their functional fold. The control over the hsp synthesis is regulated
at the gene level through some specialized transcription factors called heat shock
factors (hsf). Upon heat shock, the hsf monomers migrate into the nucleus, and
form dimers (hsf2) and then trimers (hsf3). These trimers are able to bind to
the heat shock elements (hse), which are specific DNA sequences upstream of
the hsp-encoding gene. The hsf trimers then facilitate the transcription of the
gene and the eventual synthesis of new hsp.

When the level of hsp is high enough, a feedback mechanism ensures the
down-regulation of their further synthesis. This mechanism consists of the se-
questration of hsf by hsp, breaking in this way all the complexes in which hsf
takes part. In particular, hsp breaks also the hsf3: hse complex, unbinding the
hsf monomers from the DNA and effectively stopping in this way the transcrip-
tion of the hsp-encoding gene. The reactions of the model are presented in
Table 1, while the numerical setup of the associated computational model, i.e.
the initial concentrations of the reactants and the values of the kinetic parame-
ters (as reported in [37] and [36]), are given in Table 6, see the Appendix in the
supplementary information. We assumed that the only temperature-dependent
reaction is the protein misfolding, i.e., reaction 9 from Table 1. In particular,
we assumed that all the other kinetic constants, except for the protein mis-
folding rate, are unchanged within the temperature range 37 − 42◦C, avoiding
more complicated considerations based on the Arrhenius equation [29]. This
assumption is in line with the way the kinetic constants were deduced in [36]
(by fitting to heat shock data at 42◦C, while simultaneously constraining the
steady-state behavior at 37◦C). It is also in line with our expectation that the
massive changes in the protein misfolding rate caused by a 5◦C increase in tem-
perature and their effects on the system dynamics, far exceed those incurred by
very small changes in the kinetic constants of the other reactions.

The exponentially temperature-dependent rate law of the protein misfolding
reaction, φT , was deduced in [37, 36], by adapting a similar law from [28], based
on experimental studies of [27]:

φT =
(

1 − 0.4
eT−37

)
× 1.4T−37 × 1.45 × 10−5 s−1,

where T is the temperature of the environment in Celsius degrees. According
to [27], this law is valid for temperatures between 37 and 45◦C.
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Table 1: The molecular model for the eukaryotic heat shock response proposed
in [36].

Reaction Reaction

2 hsf � hsf2 (1) hsp + hsf3: hse → hsp: hsf +2 hsf + hse (7)
hsf + hsf2 � hsf3 (2) hsp → ∅ (8)
hsf3 + hse � hsf3: hse (3) prot → mfp (9)
hsp+ hsf � hsp: hsf (4) hsp +mfp � hsp:mfp (10)
hsp+ hsf2 → hsp: hsf + hsf (5) hsp:mfp → hsp+ prot (11)
hsp+ hsf3 → hsp: hsf +2 hsf (6) hsf3: hse → hsf3: hse + hsp (12)

2.2 Phosphorylation-induced activation of the heat shock
factors

The hsf proteins have several phosphorylation sites, some of which are known
to significantly influence their activity, see e.g. [15, 23, 18]. While some of
these sites are constitutively phosphorylated, others become phosphorylated
only as a result of the heat shock, see [17, 38]. In particular, Serine 230 is
a site that is hyperphosphorylated in reaction to stress, which has a positive
effect on the hsf transactivation capacity, as shown in [17]. Our models for
the phosphorylation of the heat shock factor only keep track of one single site
per monomer (two sites in hsf dimers, three in hsf trimers), focusing on the role
played by phosphorylation at S230. This choice also allows us to generate a series
of tractable computational models. Such a computational modeling approach
is typical for these situations, see e.g. [5, 40], as modeling all phosphorylation
sites would generate an untractable combinatorial explosion in the number of
different species and reactions. (Note that modeling explicitly k phosphorylation
sites for each hsf would generate O(23k) new species in the model due to the hsf
dimer and trimer species.) As a result, each hsf in our model can be either phos-
phorylated (hsfp), or un-phosphorylated (hsf). An un-phosphorylated hsf can
be phosphorylated only as a result of a catalytic reaction, involving a kinase (ki)
enzyme. This is a double step reaction, where the first step is the (reversible)
binding of hsf to the kinase (hsf: ki) and the second (irreversible) step is the
phosphorylation of hsf and the unbinding of ki. If hsf is in a dimer or trimer
complex, then each hsf from this complex becomes phosphorylated as a result
of a separate kinase-mediated phosphorylation reaction. We marked multiple
phosphorylated complexes by writing in the superscript a corresponding number
of p symbols.) For example, in the case of dimer complexes hsf2, we considered
the following phosphorylation reactions:

hsf2 + ki � hsf2: ki → hsfp2 + ki
hsfp2 + ki � hsfp2 : ki → hsfpp

2 + ki .

The dephosphorylation process is very similar to the phosphorylation one,
only that the catalytic reaction involves in this case a phosphatase (ph) enzyme;
e.g., for the case of hsfpp

2 species we considered the following dephosphorylation
reactions:

hsfpp
2 + ph � hsfpp

2 : ph → hsfp2 + ph
hsfp2 + ph � hsfp2 : ph → hsf2 + ph .

Experimental observations [17, 38], suggest that the hyper-phosphorylation
of the hsf3: hse complexes acts as an up-regulator for the transcription of new
hsp. In our analysis, we investigated two possible mechanisms for modeling the
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phosphorylation-dependent transcription.
In the first case, we assumed that the transcription proceeds linearly depend-

ing on the level of phosphorylation of the hsf3: hse complex. Since each hsf has
only one phosphorylation site, the complex hsf3: hse has four phosphorylation
states: not phosphorylated, or phosphorylated on one, two, or thee of the hsfs,
respectively. Thus we replaced reaction (12) from the reference model with the
following four reactions:

hsf3: hse → hsf3: hse+ hsp hsfpp
3 : hse → hsfpp

3 : hse+ hsp
hsfp3 : hse → hsfp3 : hse + hsp hsfppp

3 : hse → hsfppp
3 : hse + hsp .

We assumed that the speed of these reactions, i.e. the corresponding kinetic
rate constants, depends linearly on the phosphorylation state of the reactant.

In the second case, we assumed that hsp synthesis is activated only by the
hyper-phosphorylation of the hsf3: hse compound. Namely, the transcription of
the hsp encoding gene proceeds only after at least two of the hsfs from this
compound become phosphorylated. Thus, we replaced reaction (12) from the
reference model by:

hsfpp
3 : hse → hsfpp

3 : hse+ hsp hsfppp
3 : hse → hsfppp

3 : hse+ hsp .
By tuning the speed of the (de)phosphorylation reactions and of the hsp

synthesis reactions, we employed an additional control over the production of
new hsp proteins.

2.3 Mathematical models

Our computational models are described in terms of ordinary differential equa-
tions (ODEs), and they were derived based on the principle of mass-action
kinetics. To each species we associated a time-dependent continuous variable
representing its concentration level. For each variable, depending on the reac-
tions in which the associated reactant is involved, the differential equation gives
the cumulated production and consumption rates. According to the principle
of mass-action, the rate of a reaction is proportional to the concentration of the
involved reactants, see [11]. In some of the cases we simplify our analysis by
considering Michaelis-Menten kinetics to reduce the number of molecular species
considered in the model; when using this kinetics, the ki and ph enzymes are not
modeled explicitly anymore, and thus the computational model is significantly
reduced.

In our analysis, we considered several possible mechanisms which could ex-
plain the experimentally observed correlation between phosphorylation and the
DNA binding levels. Each of these mechanisms was embedded into the ex-
tended HSR model. Moreover, we derived appropriate ODE models, which we
subjected to parameter estimation procedures. All of our considered models are
freely available at [9], using the COPASI [19] computational environment.

2.4 Experimental data

We fitted our computational models using two sets of experimental data of [23].
The first is a set of experimental measurements regarding the DNA binding
activity of HeLa cells, while subjected to a continuous 42◦C heat shock for 4
hours. The second set reports the total number of phosphorylated hsf proteins
during the heat shock, i.e. also at 42◦C. As a final numerical prerequisite, we
required that the initial values of all species form a steady state of the model for
a temperature of 37◦C. This condition was justified by the fact that the system
is supposed to be in a steady state in the absence of the heat shock, see [37, 36].
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3 Methods

3.1 Quantitative model refinement of biomodels

The concept of quantitative model refinement was discussed in [10, 14] for rule-
based modeling and demonstrated on two larger case studies based on ODEs
in [8, 32]. The idea is to build a large, detailed computational model by start-
ing from a generic (and smaller) model, and subsequently adding more details
about its reactants and/or reactions. The aim is to perform the refinement in a
step-wise quantitatively correct way, to preserve all previously obtained systemic
properties of the generic model, such as the numerical fit and validation. In par-
ticular, a data-refinement mechanism was considered in [8, 32], where a model
was refined by substituting a given species by several types of subspecies, and
the refined model was algorithmically constructed from the original one. Note
that, once a species was substituted with several subspecies, all the reactions in
which the initial species was involved became also subject to refinement.

In the case of the HSR model analyzed here, we started from the basic model
of [36] where hsf has no post-translational modifications, and we extended this
model to the case where hsf, whether in a monomer or inside a complex, can
be phosphorylated. Moreover, since the basic model was thoroughly fitted and
validated to experimental data in [36], we aimed to preserve as much as possible
from that model’s kinetic rate parameters.

For each species that is refined by subspecies substitution, all the reactions
involving the initial species either as a reactant or as a product also had to be
refined. For instance, reaction (1) from the reference model (i.e., hsf + hsf �
hsf2) was replaced in the extended model by the following reactions:

hsf + hsf � hsf2 hsfp + hsf � hsfp2 hsfp + hsfp � hsfpp
2 .

We proceeded similarly with all reactions involving hsf or complexes containing
hsf. The final refined model is given in Table 2. At the end of this step we
had a model detailing the phosphorylation status of hsf, hsf2, hsf3, hsf3: hse and
hsp: hsf. It is important to note however that the model does not include details
about how any of these species can be (de)phosphorylated through interactions
with kinases and phosphatases, nor does it detail the effect of the heat shock on
these enzymes. These non-refinement extensions were added in the second step
of the model extension, see Section 4 and their kinetic constants were estimated
through model fit algorithms, see Section 3.2. The reactions added in the non-
refinement extension are given in Table 3.

Since the final model contains a large number of kinetic constants, our aim
was to derive as many of them as possible from the basic model rather than to
run parameter estimation for all of them, a computationally challenging prob-
lem. To do this, we required that the overall behavior of the refined model,
i.e. the model obtained after the first step of the extension, did not change in
the following sense: for each variable X of the basic model, we required that
the sum of all variables replacing X in the refined model coincided with X as
a function of time. In this way, we made sure that the numerical fit of the ba-
sic model (expressed without the phosphorylation details) was preserved in the
refined model. We also ensured in this way that all mass conservation relations
of the basic model were preserved in the refined model. In this formulation, we
essentially needed to solve a system of functional relations (expressed through
ODEs), one for each variable of the basic model, where the unknowns were the
kinetic rate constants of the refined model. We discuss the data refinement
technique in more details in the supplementary information. We also refer for
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Table 2: The molecular model for the eukaryotic heat shock response, refined
with the details of the phosphorylation status of hsf.

Reaction Reaction

2 hsf � hsf2 (1’) hsp+ hsfp
3 → hsp: hsfp +2 hsf (21’)

hsfp + hsf � hsfp
2 (2’) hsp+ hsfp

3 → hsp: hsf + hsfp + hsf (22’)
2 hsfp � hsfpp

2 (3’) hsp+ hsfpp
3 → hsp: hsf +2 hsfp (23’)

hsf + hsf2 � hsf3 (4’) hsp+ hsfpp
3 → hsp: hsfp + hsfp + hsf (24’)

hsfp + hsf2 � hsfp
3 (5’) hsp+ hsfppp

3 → hsp: hsfp +2 hsfp (25’)
hsf + hsfp

2 � hsfp
3 (6’) hsp+ hsf3: hse → hsp: hsf +2 hsf + hse (26’)

hsfp + hsfp
2 � hsfpp

3 (7’) hsp+ hsfp3 : hse → hsp: hsfp +2 hsf + hse (27’)
hsf + hsfpp

2 � hsfpp
3 (8’) hsp+ hsfp3 : hse → hsp: hsf + hsfp + hsf + hse (28’)

hsfp + hsfpp
2 � hsfppp

3 (9’) hsp+ hsfpp
3 : hse → hsp: hsfp + hsfp + hsf + hse (29’)

hsf3 + hse � hsf3: hse (10’) hsp+ hsfpp
3 : hse → hsp: hsf +2 hsfp + hse (30’)

hsfp
3 + hse � hsfp3 : hse (11’) hsp+ hsfppp

3 : hse → hsp: hsfp +2 hsfp + hse (31’)
hsfpp

3 + hse � hsfpp
3 : hse (12’) hsp → ∅ (32’)

hsfppp
3 + hse � hsfppp

3 : hse (13’) prot → mfp (33’)
hsp+ hsf � hsp: hsf (14’) hsp+ mfp � hsp: mfp (34’)
hsp+ hsfp � hsp: hsfp (15’) hsp: mfp → hsp + prot (35’)
hsp+ hsf2 → hsp: hsf + hsf (16’) hsf3: hse → hsf3: hse + hsp (36’)
hsp+ hsfp

2 → hsp: hsf + hsfp (17’) hsfp3 : hse → hsfp3 : hse + hsp (37’)
hsp+ hsfp

2 → hsp: hsfp + hsf (18’) hsfpp
3 : hse → hsfpp

3 : hse+ hsp (38’)
hsp+ hsfpp

2 → hsp: hsfp + hsfp (19’) hsfppp
3 : hse → hsfppp

3 : hse + hsp (39’)
hsp+ hsf3 → hsp: hsf +2 hsf (20’)

Table 3: The model for the (de)phosphorylation of hsf and of complexes con-
taining hsf

Reaction Kinetic Reaction Kinetic
rate rate

hsf + ki � hsf: ki k′+
16 , k′−

16 (40’) hsfp3 : ph → hsf3 + ph k′
19 (63’)

hsf: ki → hsfp + ki k′
17 (41’) hsp: hsf + ki � hsp: hsf: ki k′+

16 , k′−
16 (64’)

hsfp + ph � hsfp: ph k′+
18 , k′−

18 (42’) hsp: hsf: ki → hsp: hsfp + ki k′
17 (65’)

hsfp: ph → hsf + ph k′
19 (43’) hsp: hsfp + ph � hsp: hsfp: ph k′+

18 , k′−
18 (66’)

hsf2 + ki � hsf2: ki k′+
16 , k′−

16 (44’) hsp: hsfp: ph → hsp: hsf + ph k′
19 (67’)

hsf2: ki → hsfp
2 + ki k′

17 (45’) hsf3: hse+ ki � hsf3: hse: ki k′+
16 , k′−

16 (68’)

hsfp
2 + ki � hsfp2 : ki k′+

16 , k′−
16 (46’) hsf3: hse: ki → hsfp3 : hse+ ki k′

17 (69’)

hsfp2 : ki → hsfpp
2 + ki k′

17 (47’) hsfp3 : hse+ ki � hsfp3 : hse: ki k′+
16 , k′−

16 (70’)

hsfpp
2 + ph � hsfpp

2 : ph k′+
18 , k′−

18 (48’) hsfp3 : hse: ki → hsfpp
3 : hse + ki k′

17 (71’)

hsfpp
2 : ph → hsfp

2 + ph k′
19 (49’) hsfpp

3 : hse+ ki � hsfpp
3 : hse: ki k′+

16 , k′−
16 (72’)

hsfp
2 + ph � hsfp2 : ph k′+

18 , k′−
18 (50’) hsfpp

3 : hse: ki → hsfppp
3 : hse+ ki k′

17 (73’)

hsfp2 : ph → hsf2 + ph k′
19 (51’) hsfppp

3 : hse + ph � hsfppp
3 : hse: ph k′+

18 , k′−
18 (74’)

hsf3 + ki � hsf3: ki k′+
16 , k′−

16 (52’) hsfppp
3 : hse: ph → hsfpp

3 : hse + ph k′
19 (75’)

hsf3: ki → hsfp
3 + ki k′

17 (53’) hsfpp
3 : hse+ ph � hsfpp

3 : hse: ph k′+
18 , k′−

18 (76’)

hsfp
3 + ki � hsfp3 : ki k′+

16 , k′−
16 (54’) hsfpp

3 : hse: ph → hsfp3 : hse+ ph k′
19 (77’)

hsfp3 : ki → hsfpp
3 + ki k′

17 (55’) hsfp3 : hse+ ph � hsfp3 : hse: ph k′+
18 , k′−

18 (78’)

hsfpp
3 + ki � hsfpp

3 : ki k′+
16 , k′−

16 (56’) hsfp3 : hse: ph → hsf3: hse + ph k′
19 (79’)

hsfpp
3 : ki → hsfppp

3 + ki k′
17 (57’) ki → mki k′

20 · φT (80’)

hsfppp
3 + ph � hsfppp

3 : ph k′+
18 , k′−

18 (58’) mki + hsp � hsp: mki k′+
21 , k′−

21 (81’)
hsfppp

3 : ph → hsfpp
3 + ph k′

19 (59’) hsp: mki → ki + hsp k′
22 (82’)

hsfpp
3 + ph � hsfpp

3 : ph k′+
18 , k′−

18 (60’) ph → mph k′
23 · φT (83’)

hsfpp
3 : ph → hsfp

3 + ph k′
19 (61’) mph+ hsp � hsp: mph k′+

24 , k′−
24 (84’)

hsfp
3 + ph � hsfp3 : ph k′+

18 , k′−
18 (62’) hsp: mph → ph+ hsp k′

25 (85’)
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more details to [8], where the HSR model was extended to model the effects of
hsf acetylation on the control of the heat shock response. Similarly as in the
case of the present study, that extension consisted of a refinement step where
each hsf is replaced with two versions depending on whether it is acetylated (on
a specific) site or not, plus a non-refinement step detailing the control of the
acetylation on the heat shock response.

It is clear that the problem of deducing the kinetic constant of the refined
model based on the refinement conditions formulated above is not unique. For
example, the problem admits the trivial solution where the constants of all reac-
tions involving at least one phosphorylated species are set to 0, thus effectively
reducing the refined model to the basic model, see also the discussion in the
supplementary information. Since the systems of ODEs corresponding to the
original and to the refined model are in general impossible to solve analytically,
we adopt a symbolic approach similar to that in [8] where we set the kinetic
rate constants of the refined model as in Table 4. This particular choice of
constants is mathematically elegant since it is symmetrical with respect to the
phosphorylation status of the reactants: for example, a reaction involving fully
phosphorylated reactants have the same constant as the similar reaction involv-
ing the same reactants being non-phosphorylated. We refer to [8] for a mathe-
matical proof that the choice of constants as in Table 4 yields a refined model
that satisfies the refinement conditions formulated above. We also refer to [32]
for a different study, on protein self-assembly, based on the same technique of
quantitative refinement. In the absence of biological knowledge regarding the
kinetic parameters of the refined model, our solution is only driven by the sym-
bolic approach described above. If there is biological knowledge about some of
the values of the parameters of the refined model, then such knowledge can be
taken into consideration in the form of constraints in our symbolic approach.
The existence of a solution in such a case, where some of the refined reactions’
kinetic constant are know, as well as effectively constructing one, appears as an
interesting open mathematical problem in this context.

Table 4: The kinetic rate constants of the extended HSR model with respect to
corresponding rate constants of the reference model from Table 1. In this setup
the extended HSR model preserves the numerical fit of the reference model.

React. Kin. const. React. Kin. const. React. Kin. const.

(1′) k+
1 , k−

1 (14′) k+
4 , k−

4 (27′) 1/2 · k7

(2′) 2 · k+
1 , k−

1 (15′) k+
4 , k−

4 (28′) 1/2 · k7

(3′) k+
1 , k−

1 (16′) k5 (29′) 1/2 · k7

(4′) k+
2 , k−

2 (17′) 1/2 · k5 (30′) 1/2 · k7

(5′) k+
2 , 1/2 · k−

2 (18′) 1/2 · k5 (31′) k7

(6′) k+
2 , 1/2 · k−

2 (19′) k5 (32′) k8

(7′) k+
2 , 1/2 · k−

2 (20′) k6 (33′) ΦT

(8′) k+
2 , 1/2 · k−

2 (21′) 1/2 · k6 (34′) k+
10, k−

10

(9′) k+
2 , k−

2 (22′) 1/2 · k6 (35′) k11

(10′) k+
3 , k−

3 (23′) 1/2 · k6 (36′) k12

(11′) k+
3 , k−

3 (24′) 1/2 · k6 (37′) k12

(12′) k+
3 , k−

3 (25′) k6 (38′) k12

(13′) k+
3 , k−

3 (26′) k7 (39′) k12
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3.2 Parameter estimation

The problem of estimating the parameters of kinetic models in systems biology
is difficult, see e.g., [3, 31, 33]. It can be formulated as a mathematical optimiza-
tion problem where the goal is to minimize a cost function that quantifies the
differences between the model predictions and the experimental measurements.
The high number of variables in a typical biomodel makes an exact solution
to the problem unfeasible in practice. There are however many approximation
methods that can be used to, each with its own advantages and disadvantages.
For instance, while local approximation algorithms are faster, they tend to con-
verge to local optima. On the other hand, global optimization algorithms are
typically slower, but they tend to converge to a global optimum. The global
optimization methods can be further divided into deterministic [12, 20] and
stochastic approaches [2, 13]. Although the deterministic methods guaranty the
convergence to a global optimum, they cannot ensure the termination of this
process within a finite time interval [33] and usually come with no guarantees
on the speed of the convergence. On the other hand, the inherent randomness
of the stochastic approaches makes it difficult to guaranty their convergence to
global optima [33]. However, many stochastic methods are capable of locat-
ing the vicinity of global solutions with relative efficiency in practice [33]. We
choused COPASI, [19], as a computational environment for parameter fitting
since it includes a number of optimization algorithms, both local and global.
This software is a widely used tool in the computational systems biology mod-
eling community, having a documented good performance, see e.g. [3, 31, 33].
In particular, for determining the best numerical fits of our models, a suite
of various global, stochastic parameter estimation procedures was used, com-
prising of methods such as simulated annealing, genetic algorithm, evolution
strategy using stochastic ranking, and particle swarm. Each of these methods
uses its own specific strategy for sampling the parameter space looking for com-
binations of parameter numerical values that give better and better fits of the
model predictions to the experimental data.

We concentrated our numerical estimation procedures for deriving the kinetic
rate constants corresponding on the second step of the model extension (see the
discussion in Section 3.1): (de)phosphorylation reactions, the misfolding and
refolding reactions of the associated ki and ph enzymes, and the phosphorylation-
dependent transcription reactions. The remaining kinetic rate constants were
derived from the corresponding values from the reference model, by using the
quantitative refinement procedure, see Section 3.1.

We also preserved several other aspects from the reference model. We as-
sumed that the total number of hsf (phosphorylated or not) in monomers,
dimers, trimers, bound to DNA, or bound to hsp, is constant; the actual con-
centration of the total initial population was taken from [37]. Also, the total
number of hse, either free or bound to hsf3, is constant. As above, the total
concentration of the initial hse population was taken from [37].

The kinetic constants of all (de)phosphorylation reactions were considered
to be equal. We made this computational assumption since all of these reactions
refer to the (de)phosphorylation of the same protein, namely hsf.

The model fit consisted in searching for a set of parameter values that min-
imizes three different sums of squared deviations: (i) that of the model pre-
dictions for DNA binding activity at 42◦C from the experimental data of [23];
(ii) that of the model predictions for total phosphorylation at 42◦C from the
experimental data of [23]; (iii) that of the model predictions for hsf3: hse at 37◦C
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from the initial value hsf3: hse(0). The first two criteria seek to fit the model to
the available experimental data of [23] on DNA binding and heat shock factor
phosphorylation at 42◦C, while the last condition seeks to set the initial state
of the model to an approximation of a steady state of the model at 37◦C, an
internal restriction of our model proposed in [36], see also Section 2.4. Since
our fit condition involved two different temperature values, we duplicated the
model and ran the two models independently for temperature values of 37◦C
and 42◦C, resp. We made sure however that the two models use the same
initial values and the same kinetic constants. After each fit iteration, we ap-
proximated the steady state of the model at 37◦C using Copasi and set it as
the initial state of both models; we then compared the model predictions with
the two experimental data sets.

3.3 Quality of model fit

To estimate how good a model fit is, or in other words how well the global
minimum of the scoring function was approximated, a notion of model fit quality
was introduced in [24]. The fit quality considers only one set of experimental
data at a time and attempts to give a measure of the average deviation of the
model prediction from the experimental data, while relating it to the (average
of the) absolute values of the model predictions. In this way, the fit quality does
not discriminate against model deviations that are large in their absolute value,
but relatively small in comparison with the (also large) values that the model
aims to explain. This method also allows for comparisons of different models
and different data sets. The formula for the quality of the fit with respect to
the experimental data exp, denoted qual(exp), is:

qual(exp) =

√
SSf/Nf

mean of predicted values
· 100%, (1)

where SSf is the sum of squared deviation of the model predictions from the
experimental values exp and Nf is the number of experimental data points. It
was argued in [24] that a low (say, lower than 20%) value of qual(exp) could be
considered as an indicator of a successful fit. We discuss the quality of our best
fits of all our models in Section 5.

4 Hypothesis for the correlation between the
heat shock response and the hsf hyperphos-

phorylation

We proposed and analyzed in this study three alternative mechanisms for the
phosphorylation-induced regulation of HSR. In the first setting, we analyzed
whether the kinase and phosphatase dynamics for the heat-induced misfolding
and refolding could lead to the experimentally observed evolution of the total
level of phosphorylated hsf. In the second setting, on top of the the heat-
induced misfolding of both kinase and phosphatase, we also assumed that hsf
can be both phosphorylated and dephosphorylated while they are bound in
hsp: hsf complexes. In the third setting we assumed that hsp: hsf can only be
dephosphorylated, not phosphorylated.
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4.1 First scenario: heat-induced misfolding of the kinase
and phosphatase enzymes

The first phosphorylation-controlled mechanism for HSR involves the dynamics
of ki and ph enzymes. Similarly to other proteins, these enzymes are also subject
to misfolding due to heat shock. We hypothesized here that the increase in the
phosphorylation level at 42◦C could be explained if the phosphatase enzymes
were more prone to misfolding than the kinase. In order to investigate this
control mechanism, we incorporated it into the extended molecular model, and
derived the corresponding mathematical (ODE) model. The newly obtained
computational model was subjected to parameter estimation procedures, in or-
der to fit it to the available experimental data.

The new molecular reactions included into the extended model, are:

• heat-induced misfolding of kinase (mki) and phosphatase (mph): ki → mki,
ph → mph;

• sequestration of the misfolded enzymes by the chaperons: mki+ hsp �
hsp: mki, mph + hsp � hsp: mph;

• refolding of the enzymes: hsp: mki → ki + hsp, hsp: mph → ph+ hsp.

When deriving the associated computational extended model, the rate on
which the ki and ph enzymes are misfolded was inferred from the generic mis-
folding function of proteins, i.e. reaction (9) from Table 1, by multiplying it
with a constant, which remains to be estimated. We introduced this multipli-
cation with a constant to have a simple model for the case where the the ki and
ph populations are much more sensitive to heat than the average protein.

4.2 Second and third scenarios: (De)Phosphorylation of
hsf in hsp: hsf complexes

In the first scenario, hsf could be (de)phosphorylated while present in all com-
plexes, except when bound to hsp. However, as observed from the numerical
simulation of our reference HSR computational model, many hsfs are bound
in these complexes most of the time. By allowing the hsf proteins from these
complexes to be (de)phosphorylated, the influence of the phosphorylation pro-
cess over the control of the HSR increases. Due to the uncertainties regarding
the situations in which hsf is prone to (de)phosphorylation, we analyzed two
possible scenarios regarding the (de)phosphorylation of hsp: hsf. In scenario II,
in order to assume an un-biased approach, we allowed for both phosphorylation
and dephosphorylation. In scenario III, following the biological mechanism pro-
posed in [40], we considered that while within the hsp: hsf complex, hsf can only
be dephosphorylated.

In the first setting, six new reactions (containing also two new species) had
to be added to the molecular model for the (de)phosphorylation of the hsp: hsf
complex:

hsp: hsf + ki � hsp : hsf : ki → hsp: hsfp + ki,

hsp: hsfp + ph � hsp : hsfp : ph → hsp: hsf + ph .

In the second setting, since we allowed only for the dephosphorylation of the
hsp: hsfp complex, only the last three of the above reactions were included into
the model.
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No new kinetic rate constants were added to the models since the newly
introduced hsp: hsf (de)phosphorylation reactions had the same rate constants
as the already existing (de)phosphorylation reactions.

4.3 Gene transcription models

As we discussed in Section 2.2, we tested two different hypothesis for the
phosphorylation-induced transcription process. In the first case, we assumed
that the transcription proceeds linearly depending on the level of phosphory-
lation of the hsf3: hse complex. In the second case, we assumed that hsp synthesis
is activated only by the hyper-phosphorylation of the hsf3: hse compound, i.e.,
only when at least two of the hsf proteins from this compound are phosphory-
lated.

5 Results

We subjected all the computational models from the previous section to param-
eter estimation procedures. As previously mentioned, we estimated only part of
the model’s parameters, while the remaining ones were preserved from our ref-
erence HSR model. In particular, we estimated the rate constants of reactions
(36’)-(39’), denoted k′

12 − k′
15, resp., as described below. The parameters which

were (re)estimated during these processes are presented below:

• the three kinetic rate constants corresponding to the phosphorylation re-
actions, e.g., for reactions (40’) and (41’) (Table 2);

• the three kinetic rate constants corresponding to the dephosphorylation
reactions, e.g., for reactions (42’) and (43’) (Table 2);

• the kinetic rate constants k′
12 − k′

15 corresponding to the hsp synthesis
reactions:

– in the case when the flux of the hsp synthesis is linearly dependent on
the hsf3: hse phosphorylation level, we estimated two values: the base
rate a giving the transcription rate in the case of non-phosphorylated
hsf trimers and the increment b giving the linear dependency of the
transcription activity on the phosphorylation level of the hsf trimer.
We then set k′

12+i = a + i ∗ b, for i = 0, 1, 2, 3. (Table 2);
– in the case when hsp synthesis is activated only when the hsf3: hse

complex is hyper-phosphorylated (i.e., phosphorylated on either two
or all three sites) we estimated only one rate constant r, shared by
reactions (38’)-(39’) (Table 2). In this case, we set k′

12 = k′
13 = 0 and

k′
14 = k′

15 = r.

• the multiplication factor for the ki misfolding function in reaction (80’)
(Table 3);

• the two kinetic rate constants corresponding to the hsp (reversible) se-
questration of mki, i.e. reaction (81’) (Table 3);

• the kinetic rate constant corresponding to the hsp refolding of mki, i.e.
reaction (82’) (Table 3);

• the multiplication factor for the ph misfolding function in reaction (83’)
(Table 3);
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Table 5: The twelve computational models tested in this study.

Scenarios for the
(de)phosphorylation of hsf
I II III

Trans-
cription
level

Linear M1.1 M2.1 M3.1 Mass-action
Kinetic
model

Threshold M1.2 M2.2 M3.2 Mass-action
Linear M1.3 M2.3 M3.3 Michaelis-Menten
Threshold M1.4 M2.4 M3.4 Michaelis-Menten

• the two kinetic rate constants corresponding to the hsp (reversible) se-
questration of mph, i.e. reaction (84’) (Table 3);

• the kinetic rate constant corresponding to the hsp refolding of mph, i.e.
reaction (85’) (Table 3).

In addition to these kinetic rate constants, we also estimated the initial concen-
trations (given in numbers of molecules) for: [hsp], [mfp], [hsp : mfp], as well as
for the total populations of ki and ph enzymes, either free, or within a complex.

We investigated 12 models spanning the three scenarios for the (de)phos-
phorylation of hsf, see Section 4.1 – 4.2, the two mechanisms for the influence of
the phosphorylation on the transcription level of the hsp-gene, see Section 4.3
and two different kinetic models for the (de)phosphorylation reactions (mass-
action and Michaelis-Menten), see Section 6. For each model, we performed a
number of parameter estimation iterations using several algorithms implemented
in Copasi. The estimation procedure used two experimental data sets, one on
DNA binding and the other on phosphorylation, see Section 2.4. For the best
fit of each model we calculated the fit quality with respect to each of the two
data sets, as discussed in Section 3.3. We collected in Table 14 (supplementary
information) the average fit quality for each of the 12 models we tested. We
also illustrate the fits in Figures 2-4 included in the supplementary information.

5.1 Evaluation of the control mechanism based on heat in-
duced misfolding of kinase and phosphatase (scenario
I)

Despite numerous rounds of parameter estimations, the models M1.1 and M1.2
in which the control over the hsf phosphorylated populations (and thus over the
transcription level of the hsp encoding genes) is performed through a differen-
tiated ki and ph misfolding (and subsequent refolding) rate, could not be fit to
the experimental data. The result was independent of the two mechanisms for
the transactivation of the hsp-gene. The fit quality of the best estimated models
M1.1 and M1.2 were 61% and 41%, resp., which were considerably higher than
the 20% proposed threshold for a numerical indicator of a successful fit. We
considered this as a clear sign that the heat induced misfolding of ki and ph
is not the main driver for generating the transient phosphorylation of hsf, and
thus, not for the phosphorylation dependent regulation of the HSR.
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5.2 Evaluation of the control mechanisms based on the
(de)phosphorylation of hsp: hsf complexes (scenarios II
and III)

As a first subcase of this setting, we considered the un-biased assumption that
the complex hsp: hsf can be both phosphorylated and dephosphorylated (sce-
nario II). In this case, the computational models M2.1 and M2.2 could not
be fitted such that their predictions would be in agreement with the existing
experimental data. This was again independent of whether the transcription
of new hsp is activated by the hyper-phosphorylation of the hsf3: hse complex,
or whether it is linearly dependent on the phosphorylation level of hsf3: hse.
For these cases, the fit quality of the best estimated models M2.1 and M2.2
were 54% and 42%, respectively. However, in comparison with the estimations
from the previous setting, i.e., where the level of phosphorylated molecules is
modified only due to the differentiated misfolding and refolding of kinase and
phosphatase, the fitted model came closer to the experimental data. This sug-
gested that our initial reasoning of considering the hsf from the complex hsp: hsf
as a candidate for (de)phosphorylation did increase the influence of the phos-
phorylation process over the control of the HSR.

The reason this setup could not be fitted to the experimental values may
be the following. At 37◦C, we required that the phosphorylation level is al-
most 0%, where 100% represents the maximum phosphorylation level reached
at 42◦C. Moreover, at steady state at 37◦C, most of the hsfs are inside the
hsp: hsf complex, which allows for both phosphorylation and dephosphorylation
of hsf. Thus, in order for the phosphorylation level to be 0 at 37◦C, the activity
of phosphatases must dominate over the activity of the kinases on the complex
hsp: hsf. This leads to a tendency of heat shock factors to have low phospho-
rylation, which continues unhindered also under stress, thus making it difficult
for the model to predict high phosphorylation levels at 42◦C.

As a second subcase, we considered the situation when the complex hsp: hsf
can only be dephosphorylated (scenario III). Compared with the previous case,
the phosphorylated hsfs from within this setting had a different dynamics. Even
if in this setting the kinetic constants of the phosphorylation reactions are
greater than the ones of the dephosphorylation reaction, at steady state, most
of the hsfs are dephosphorylated because they are in the hsp: hsf complex. The
values of the quality of the best model fits in this setting were 16% and 18%
for models M3.1 and M3.2, resp., under the 20% quality threshold value. The
numerical setups for the best fits are given in Tables 7 and 8 for model M3.1
and Tables 9 and 10 for model M3.2 (see the Appendix in the supplementary
information).

6 Discussion

We performed in this paper a detailed analysis of the phosphorylation-mediated
transcription of heat shock proteins. The three distinct pathways considered in
here are each enforcing a different dynamics of the overall process. In the first
setting, we analyze whether the experimentally observed evolution of the level
of phosphorylated hsf can be explained by differentiated kinase and phosphatase
dynamics for heat-induced misfolding and subsequent refolding. In this pathway,
we assume that once a hsf enters a hsp: hsf complex, it can be neither phosphory-
lated nor de-phosphorylated. This particular aspect, i.e., the hsf being (de)phos-
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A.

B.

C.

D.

Figure 1: The normalized time-dependent levels of DNA binding and phos-
phorylated hsf metabolites for the case when the hsp: hsf complex can only be
dephosphorylated. The continuous lines are the model predictions, whereas the
experimental data (from [23]) are showed with crossed points. Figures A, B, C,
D correspond to models M3.1, M3.2, M3.3 and M3.4, resp.
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phorylated when within the hsp: hsf complex, is addressed in the following two
scenarios. Thus, in the second pathway we consider both hsp: hsf phosphory-
lation and de-phosphorylation reactions, while in the third pathway we consider
only hsp: hsf de-phosphorylation. For each of the three settings we perform a
detailed computational analysis including parameter estimations for fitting the
models to available experimental data. Despite numerous estimation rounds,
only the computational model corresponding to the third setting could be fitted
to the experimental data. A similar conclusion is obtained after a separate
analysis is performed on a reduced computational model.

In order to further verify our results, we repeated our analysis using a reduced
mathematical model employing Michaelis-Menten kinetics for the (de)phosphory-
lation of the heat shock factors, see Table 11 (the Appendix in the supplemen-
tary information). This type of kinetics has been previously employed in the
analysis of other (de)phosphorylation pathways, see e.g. [4]. Using Michaelis-
Menten kinetics, the computational model becomes significantly reduced, as
the ki and ph enzymes are not modeled explicitly anymore. Thus, even if this
computational model cannot capture the biological process in as many details
as the previous model, it has the advantage of having a considerably smaller
size. Because of this, it is easier to apply numerical procedures for parameter
estimation, and it can thus give relevant predictions on the actual design of the
regulation mechanism.

We considered for modelling each of the three control mechanisms: the case
when the hsf from within the hsp: hsf complex can be neither phosphorylated
nor dephosphorylated, the case when it can be both phosphorylated and dephos-
phorylated, and the case when it can be only dephosphorylated, respectively.
Moreover, in each of the above three cases, we considered both of the proposed
mechanisms for modeling the phosphorylation-dependent transcription of new
hsp: the case when the transcription is activated by the hyper-phosphorylation
of the hsf3: hse complex (namely at least two of the hsf proteins from this com-
pound are phosphorylated), and the case when the transcription speed is linearly
dependent on the phosphorylation level of hsf3: hse. Thus, six independent com-
putational models have been created and fitted to the experimental data: M1.3,
M1.4, M2.3, M2.4, M3.3 and M3.4.

The results of our second approach are in complete agreement with our previ-
ous findings. Both scenarios I and II could not be fitted to the experimental data.
This was independent of the way we modeled the phosphorylation-dependent
transcription. In particular, the fit quality values of the best estimated models
were: 30% and 27% for models M1.3 and M1.4, resp.; 27% and 37% for models
M2.3 and M2.4, resp. In the case of scenario III we obtained a good fitting of
the experimental data (albeit not as good as the fits in Figures 1 A. and B.), see
Figure 1 C. This result also proved to be independent of the way we modeled
the phosphorylation-dependent transcription, see Figure 1 D. for the case when
the transcription of new hsp is activated by the hyper-phosphorylation of the
hsf3: hse complex. The two associated fit quality values are 17% and 16% for
models M3.3 and M3.4, resp.

A possible reason for the fact that scenario I could not be fitted is that the hsf
from within the complex hsp: hsf do not participate at all in the (de)phosphory-
lation process. Carrying out several numerical simulations (modifying only part
of the kinetic parameters) we observe a relatively high phosphorylation level
in the steady state at 37◦C, much more than experimentally observed. This
might be explained by the following mechanism. As observed experimentally,
at steady state at 37◦C, only a few hsfs are in hsf3: hse complexes. Thus, in
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order to produce the smallest amount of hsp (needed even at 37◦C to achieve
an equilibrium), some (very few) hsf3: hse complexes must be highly phospho-
rylated. Because the hsf from within the complex hsp: hsf do not participate at
all in the (de)phosphorylation processes, the total level of phosphorylated hsf
at equilibrium must be high in order to have a small portion of the hsf3: hse
complexes phosphorylated.

In scenario II, by allowing the hsf from hsp: hsf complexes to be (de)phos-
phorylated, the influence of the phosphorylation process over the control of the
HSR increases. Thus, for example, at 42◦C, the phosphorylation level is higher
than in the previous setting in several of our numerical simulations. Although
the heat induced increase in the phosphorylation level (i.e., from steady state
at 37◦C to the peak of the heat shock from 42◦C) becomes more pronounced in
this setting, it is still not as considerable as experimentally observed, where we
have an increase from almost 0% before the heat shock to 100% during the peek
of the heat shock. This is because the phosphorylation level from 37◦C is still
too high. Moreover, most hsf are in hsp: hsf complexes, which allows for both
phosphorylation and dephosphorylation. Thus, in order to have a small portion
of the hsf3: hse complexes highly phosphorylated, the total level of phosphory-
lated hsf at equilibrium must be high.

Contrary to the previous two cases, in the third scenario we can distinguish
a mechanism which allows for few hsf3: hse complexes to be phosphorylated at
37◦C without increasing too much the overall hsf phosphorylation level at this
temperature. At 37◦C, most hsf are bound to hsp; some are phosphorylated
before binding to hsp, while others are not. By allowing only the dephospho-
rylation of hsp: hsfp we ensure a lower overall phosphorylation level, even if the
phosphorylation reaction is slightly more rapid than the dephosphorylation one.
Then, at 42◦C at the beginning of the heat shock (the first approximately 30
minutes) the phosphorylation level increases considerably as hsp: hsf complexes
are broken and hsfs become available for phosphorylation. This is intuitively
why the dephosphorylation-only of hsp: hsfp is the most probable phosphory-
lation-based control mechanism.

Although it is currently known that hsf can be phosphorylated on several
sites, see e.g. [15, 23, 18], in our present computational approach we have
modeled only one phosphorylation site for each hsf. Our choice is justified by
both modeling and methodological reasons. The current research investigates
the positive role of phosphorylation in the up-regulation of hsf transcriptional
activity. Although hsf can be phosphorylated on several sites, recent findings
have shown that one site particularly, namely S230, has a positive effect on
hsf transactivating capacity [17, 38]. Moreover, only upon heat shock, this site
is inducibly hyper-phosphorylated. At the same time, numerical modeling of
several phosphorylation sites for each hsf would require some enormous com-
puting power. Adding only one phosphorylation site for each hsf transforms
the complexity of the model substantially. Namely, if the initial ODE model
from [37] contains 10 species and 12 reactions, by incorporating in this model
only one phosphorylation site we obtained an ODE model with 45 species and
85 reactions. Numerical simulations and partial parameter estimations on this
model alone proved to be a computational challenge.

In our analysis of the phosphorylation mediated transcription of hsp, we con-
sidered three distinct (de)phosphorylation pathways for the hsf. Although by
the current knowledge of the biological network, each of these pathways seems
plausible, we do not exclude the possible existence of other scenarios, involv-
ing other (de)phosphorylation mechanisms. However, by our observation, the
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mechanisms described here have the greatest influence over the overall process,
while other mechanisms also considered during this research were able to just
slightly modify the predictions. It could thus be that some new mechanism, not
investigated by us, would make our predictions fit the experimental data even
better, in particular regarding the steep decrease of the phosphorylation level
occurring after 5000 seconds. For these data points, the predictions of our model
are higher than the experimental data, which could be explained through an ad-
ditional, as yet unidentified, control mechanism. The lack of data in-between
the data point at 3600 seconds and the one at 7200 seconds makes it difficult to
identify the possible nature of such a mechanism; additional experimental data
covering this time interval is likely to help the analysis.

Although it was not enforced by our numerical construction, an interest-
ing correlation appeared between the extended computational model for HSR
where we use only mass-action kinetics, and the reduced computational model
where we used Michaelis-Menten kinetics for modeling the (de)phosphorylation
of hsf. As a result of our parameter estimation procedures, the time-dependent
prediction of the extended model for the total number of phosphorylated mo-
lecules followed closely the available experimental data. In the case of the re-
duced model, although we still consider the fitting to be good, we can observe
a slight delay between the predicted time-dependent value of the total number
of phosphorylated hsf and the actual experimental data used to fit the model.
Although each of the numerical models were fitted independently according to
the available experimental data, the following correlation was observed. If from
the extended model we removed the 6 reactions modeling the misfolding, se-
questration by hsp, and refolding, respectively, for both ki and ph, then the new
prediction of our model regarding the time-dependent value of the total number
of phosphorylated hsf would be exactly as in the reduced numerical model. That
is, it would be slightly delayed if compared with the actual experimental data.
We conclude from here that, while the phosphorylation control mechanism given
by the misfolding (and subsequent refolding) of the ki and ph enzymes is not
sufficient in itself for generating the experimentally observed behavior of the
system, it still has a clear role in fine-tuning the phosphorylation response.
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Supplementary information

A Data refinement of a model

In the data-refinement approach, consider that a model M consists of a list of
m species Σ = {A1, A2, ..., Am} and n reactions ri, 1 ≤ i ≤ n, of the form:

ri : si,1A1 + si,2A2 + ... + si,mAm
ki−→ s′i,1A1 + s′i,2A2 + ... + s′i,mAm,

where si,1, ..., si,m, s′i,1, ..., s
′
i,m ≥ 0 are the stoichiometric coefficients of ri and

ki ≥ 0 is its the kinetic rate constant. Assume now that species A1 is to be de-
tailed in some way, differentiating it into several different subspecies B1, . . . , Bl;
such subspecies may be several different forms of A1, several biochemical config-
urations of A1 (e.g., caused by some protein post-translational modifications),
etc. Each of these subspecies may participate in all reactions, where A1 partic-
ipated (in model M), possibly with different kinetics. Model M is thus refined
into a new model MR, in which the set of species is denoted through the new
variables {A′

2, A
′
3, ..., A

′
m}∪{B1, ..., Bl}, for some l ≥ 2. Variables A′

i, 2 ≤ i ≤ m,
correspond to species Ai from model M , whereas B1, ..., Bl replace species A1

in model MR. Moreover, each reaction ri from M is replaced in MR by reaction
r′i of the following type:

r′i : (ti,1B1 + ... + ti,lBl) + si,2A
′
2 + ... + si,mA′

m

k′
i−→

(t′i,1B1 + ... + t′i,lBl) + s′i,2A
′
2 + ... + s′i,mA′

m,

with k′
i its kinetic rate constant, and ti,1, ..., ti,l, t

′
i,1, ..., t

′
i,l nonnegative integers

such that ti,1 + ... + ti,l = si,1 and t′i,1 + ... + t′i,l = s′i,1. We say now that the
model MR is a data refinement of M on variable A1 if and only if the following
two conditions are satisfied:

[Ai](t) = [A′
i](t), for all 2 ≤ i ≤ m, (2)

[A1](t) = [B1](t) + ... + [Bl](t), for all t ≥ 0. (3)

Some of the new kinetic parameters of MR may be known from the litera-
ture, or they can be experimentally measured. For the rest of them, for which
no previous knowledge and no direct kinetic measurements are available, a com-
putational procedure is needed to calculate them so that (2) and (3) hold. Such
a procedure should focus only on those parameters whose kinetic values are not
known.

Re-running parameter estimation procedures when the parameter space wit-
nesses a (potentially) quadratic increase in every step of the refinement is com-
putationally very expensive. Moreover, such a procedure makes little sense since
the fit of an intermediate model is lost in the next refinement step.

In our data-refinement approach we systematically set the values of the un-
known kinetic parameters of the refined model so that relations (2) and (3) hold.
Clearly, some of the potential choices of numerical values are unreasonable, such
as those where we would set to 0 the kinetic parameters of all reactions involv-
ing any of B2, B3, ..., Bl; such a choice would only rename all variables of
M into MR and completely elude the idea of refinement. Instead, we take an
approach where the refined subspecies B1, ..., Bl of species A1 are not distin-
guishable through the kinetics of the reactions they participate in. Thus, in the
absence of any biological data regarding differences between some of these reac-
tants, our choice of kinetic parameters aims to make no numerical distinctions
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between their reaction kinetics. As a side effect, this leads to simpler and more
elegant mathematical considerations. Note again that if some of the new kinetic
parameters of MR are known (e.g. from the literature), then their known value
is to be used in MR rather than deduced based on refinement.

Setting the kinetic constants of the refined model in the way explained above
depends heavily on the details of the model. Identifying a formal set of rules for
how to do it for an arbitrary model seems to be an open and highly interesting
problem. For a simple model consisting of reaction A

k−→ B only, refining A
into subspecies A1 and A2, it is enough to set the kinetic constants of the
refined reactions to k: A1

k−→ B, A2
k−→ B. Indeed, the mass action-based

ODE formulation of the refined model leads to d(A1 + A2)/dt = −k(A1 + A2),
i.e., the same ODE as that of A: dA/dt = −kA. On the other hand, for the
model 2A

k−→ B, refining A into A1 and A2 leads to reactions 2A1
k1−→ B,

A1 + A2
k2−→ B, 2A2

k3−→ B. Setting k1 = k2 = k3 = k as in the previous
example leads to an incorrect refinement where A1 + A2 �= A. Instead, setting
k1 = k3 = k, k2 = 2k leads to a correct refinement. Note also that refining
species A in the model B

k−→ 2A to subspecies A1 and A2 leads to the refined

model B
k−→ 2A1, B

k/2−−→ A1 + A2, B
k−→ 2A2. Intuitively, the non-uniform

setting of the constants in the last two examples compensates for the loss of
symmetry going from reaction 2A → B (B → 2A) to reaction A1 + A2 → B
(B → A1 + A2, resp.)
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Table 6: The numerical values of the parameters (A) and the values of the initial
populations (B) for the basic heat shock response model (Table 1). ki denotes
the kinetic rate constant of the irreversible reaction (i) in Table 1; k+

i denotes
the ‘left-to-right’ direction of reaction (i); k−

i denotes its ‘right-to-left’ direction.
The values of the initial populations are in � · ml−1.

A B

Par. Value Unit Par. Value Unit Species Init. pop.

k+
1 3.49 ml

#·s k7 2.73 · 10−7 ml
#·s [hsf] 0.67

k−
1 0.19 s−1 k8 3.2 · 10−5 s−1 [hsf2] 8.7 · 10−4

k+
2 1.07 ml

#·s k+
10 3.32 · 10−3 ml

#·s [hsf3] 1.2 · 10−4

k−
2 10−9 s−1 k−

10 4.44 s−1 [hse] 29.73

k+
3 0.17 ml

#·s k11 13.94 s−1 [hsf3: hse] 2.96

k−
3 1.21 · 10−6 s−1 k12 8.3 · 10−3 s−1 [hsp] 766.88

k+
4 9.74 ml

#·s [hsp: hsf] 1403.13

k−
4 3.56 s−1 [mfp] 517.352

k5 2.33 ml
#·s [hsp: mfp] 71.65

k6 4.31 · 10−5 ml
#·s [prot] 1.15 · 108
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Table 7: Parameter estimation results: the numerical values of the parame-
ters of the extended heat shock response model (Tables 2 and 3), for the case
when hsp: hsf can only be dephosphorylated, and the transactivation of the hsp-
encoding genes is proportional with the phosphorylation level of the hsf3: hse
complex (model M3.1). We skip the values of the rate constants for reactions
(1’)-(35’) (Table 2), which were fixed according to Tables 4 and 6. The rate
constants of reactions (36’)-(39’), k′

12 − k′
15, resp., were part of the parameter

estimation as described in Section 5.

Par. Value Units Par. Value Units

k′
12 1.85 · 10−3 s−1 k′

19 2.3 · 103 s−1

k′
13 3.73 · 10−3 s−1 k′

20 5.4 · 103

k′
14 5.61 · 10−3 s−1 k′+

21 5.43 · 10−4 ml
#·s

k′
15 7.49 · 10−3 s−1 k′−

21 9.45 s−1

k′+
16 4.12 · 10−2 ml

#·s k′
22 2.87 s−1

k′−
16 2.99 s−1 k′

23 1.09 · 103

k′
17 5.78 · 103 s−1 k′+

24 8.77 · 10−2 ml
#·s

k′+
18 1.64 · 10−3 ml

#·s k′−
24 1.73 s−1

k′−
18 1.72 · 10−2 s−1 k′

25 74.86 s−1
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Table 8: The values of the initial populations (given in � · ml−1) from the
extended heat shock response model (Tables 2 and 3), for the case when hsp: hsf
can only be dephosphorylated, and the transactivation of the hsp-encoding genes
is proportional with the phosphorylation level of the hsf3: hse complex (model
M3.1).

Species Init. pop. Species Init. pop.

[hsf] 0.68 [hsf3: hsep] 0.0435
[hsfp] 2.83 · 10−3 [hsf3: hsepp] 0.353
[hsf: ki] 8.68 · 10−5 [hsf3: hseppp] 2.91
[hsfp: ph] 1.15 · 10−7 [hsf3: hse: ki] 1.30 · 10−6

[hsf2] 9.27 · 10−4 [hsfp3 : hse: ki] 8.53 · 10−6

[hsfp2] 8.11 · 10−6 [hsfpp
3 : hse: ki] 6.07 · 10−5

[hsfpp
2 ] 1.95 · 10−8 [hsfppp

3 : hse: ph] 1.18 · 10−4

[hsf2: ki] 1.18 · 10−7 [hsfpp
3 : hse: ph] 2.83 · 10−5

[hsfp2 : ki] 1.03 · 10−9 [hsfp3 : hse: ph] 3.98 · 10−6

[hsfpp
2 : ph] 7.89 · 10−13 [hsp] 749

[hsfp2 : ph] 3.28 · 10−10 [hsp: hsf] 1396
[hsf3] 1.18 · 10−4 [hsp: hsfp] 5.67
[hsfp3] 1.64 · 10−5 [hsp: hsfp: ph] 2.3 · 10−4

[hsfpp
3 ] 2.17 · 10−6 [prot] 1.15 · 108

[hsfppp
3 ] 1.01 · 10−6 [mfp] 529.6

[hsf3: ki] 2 · 10−8 [hsp: mfp] 71.65
[hsfp3 : ki] 2.80 · 10−9 [ki] 17.87
[hsfpp

3 : ki] 3.92 · 10−10 [mki] 8.84
[hsfppp

3 : ph] 7.71 · 10−11 [hsp: mki] 0.292
[hsfpp

3 : ph] 1.83 · 10−10 [ph] 54.13
[hsfp3 : ph] 1.31 · 10−9 [mph] 0.008
[hse] 29.37 [hsp: mph] 6.87 · 10−3

[hsf3: hse] 6.05 · 10−3
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Table 9: Parameter estimation results: the numerical values of the param-
eters of the extended heat shock response model (Tables 2 and 3), for the
case when hsp: hsf can only be dephosphorylated, and the transactivation of
the hsp-encoding genes is activated only after the hsf3: hse complex is hyper-
phosphorylated (model M3.2). We skip the values of the rate constants for
reactions (1’)-(35’) (Table 2), which were fixed according to Tables 4 and 6.
The rate constants of reactions (36’)-(39’), k′

12 − k′
15, resp., were part of the

parameter estimation as described in Section 5.
Par. Value Units Par. Value Units
k′
12 0 s−1 k′

19 351 s−1

k′
13 0 s−1 k′

20 2.5 · 103

k′
14 1.6 · 10−2 s−1 k′+

21 7.46 · 10−3 ml
#·s

k′
15 1.6 · 10−2 s−1 k′−

21 0.117 s−1

k′+
16 1.56 ml

#·s k′
22 49.86 s−1

k′−
16 0.141 s−1 k′

23 2.5 · 103

k′
17 29.92 · 102 s−1 k′+

24 0.367 ml
#·s

k′+
18 1.51 ml

#·s k′−
24 5.02 · 10−2 s−1

k′−
18 9.98 s−1 k′

25 8.07 s−1
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Table 10: The values of the initial populations (given in � · ml−1) from the
extended heat shock response model (Tables 2 and 3), for the case when hsp: hsf
can only be dephosphorylated, and the transactivation of the hsp-encoding genes
is activated only after the hsf3: hse complex is hyper-phosphorylated (model
M3.2).

Species Init. pop. Species Init. pop.

[hsf] 0.655 [hsf3: hsep] 0.641
[hsfp] 4.6 · 10−3 [hsf3: hsepp] 0.727
[hsf: ki] 1.08 · 10−2 [hsf3: hseppp] 0.825
[hsfp: ph] 5.7 · 10−4 [hsf3: hse: ki] 0.009
[hsf2] 8.04 · 10−4 [hsfp3 : hse: ki] 0.01
[hsfp2] 3.19 · 10−5 [hsfpp

3 : hse: ki] 0.012
[hsfpp

2 ] 8.86 · 10−7 [hsfppp
3 : hse: ph] 0.102

[hsf2: ki] 1.75 · 10−5 [hsfpp
3 : hse: ph] 0.09

[hsfp2 : ki] 5.26 · 10−7 [hsfp3 : hse: ph] 0.079
[hsfpp

2 : ph] 1.1 · 10−7 [hsp] 777
[hsfp2 : ph] 3.95 · 10−6 [hsp: hsf] 1402
[hsf3] 3.37 · 10−5 [hsp: hsfp] 0.739
[hsfp3] 2.93 · 10−5 [hsp: hsfp: ph] 0.092
[hsfpp

3 ] 2.7 · 10−5 [prot] 1.15 · 108

[hsfppp
3 ] 2.74 · 10−5 [mfp] 510

[hsf3: ki] 5.56 · 10−7 [hsp: mfp] 71.65
[hsfp3 : ki] 4.85 · 10−7 [ki] 31.64
[hsfpp

3 : ki] 4.44 · 10−7 [mki] 1.19
[hsfppp

3 : ph] 3.4 · 10−6 [hsp: mki] 0.014
[hsfpp

3 : ph] 3.34 · 10−6 [ph] 29.56
[hsfp3 : ph] 3.62 · 10−6 [mph] 0.002
[hse] 29.63 [hsp: mph] 0.08
[hsf3: hse] 0.56
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Table 11: The reduced molecular model for the eukaryotic heat
shock response

Reaction Kinetic par.
2 hsf � hsf2 2k+

1 , k−
1 (1”)

hsfp + hsf � hsfp2 k+
1 , k−

1 (2”)
2 hsfp � hsfpp

2 k+
1 , k−

1 (3”)
hsf + hsf2 � hsf3 k+

2 , k−
2 (4”)

hsfp + hsf2 � hsfp3 k+
2 , 1

2k−
2 (5”)

hsf + hsfp2 � hsfp3 k+
2 , 1

2k−
2 (6”)

hsfp + hsfp2 � hsfpp
3 k+

2 , 1
2k−

2 (7”)
hsf + hsfpp

2 � hsfpp
3 k+

2 , 1
2k−

2 (8”)
hsfp + hsfpp

2 � hsfppp
3 k+

2 , k−
2 (9”)

hsf3 + hse � hsf3: hse k+
3 , k−

3 (10”)
hsfp3 + hse � hsfp3 : hse k+

3 , k−
3 (11”)

hsfpp
3 + hse � hsfpp

3 : hse k+
3 , k−

3 (12”)
hsfppp

3 + hse � hsfppp
3 : hse k+

3 , k−
3 (13”)

hsp+ hsf � hsp: hsf k+
4 , k−

4 (14”)
hsp+ hsfp � hsp: hsfp k+

4 , k−
4 (15”)

hsp+ hsf2 → hsp: hsf + hsf k5 (16”)
hsp+ hsfp2 → hsp: hsf + hsfp 1

2k5 (17”)
hsp+ hsfp2 → hsp: hsfp + hsf 1

2k5 (18”)
hsp+ hsfpp

2 → hsp: hsfp + hsfp k5 (19”)
hsp+ hsf3 → hsp: hsf +2 hsf k6 (20”)
hsp+ hsfp3 → hsp: hsfp +2 hsf 1

2k6 (21”)
hsp+ hsfp3 → hsp: hsf + hsfp + hsf 1

2k6 (22”)
hsp+ hsfpp

3 → hsp: hsf +2 hsfp 1
2k6 (23”)

hsp+ hsfpp
3 → hsp: hsfp + hsfp + hsf 1

2k6 (24”)
hsp+ hsfppp

3 → hsp: hsfp +2 hsfp k6 (25”)
hsp+ hsf3: hse → hsp: hsf +2 hsf + hse k7 (26”)
hsp+ hsfp3 : hse → hsp: hsfp +2 hsf + hse 1

2k7 (27”)
hsp+ hsfp3 : hse → hsp: hsf + hsfp + hsf + hse 1

2k7 (28”)
hsp+ hsfpp

3 : hse → hsp: hsfp + hsfp + hsf + hse 1
2k7 (29”)

hsp+ hsfpp
3 : hse → hsp: hsf +2 hsfp + hse 1

2k7 (30”)
hsp+ hsfppp

3 : hse → hsp: hsfp + + 2 hsfp + hse k7 (31”)
hsp → ∅ k8 (32”)
prot → mfp φT (33”)
hsp+ mfp � hsp: mfp k+

10, k
−
10 (34”)

hsp: mfp → hsp+ prot k11 (35”)
hsf3: hse → hsf3: hse+ hsp k′′

12 (36”)
hsfp3 : hse → hsfp3 : hse + hsp k′′

13 (37”)
hsfpp

3 : hse → hsfpp
3 : hse+ hsp k′′

14 (38”)
hsfppp

3 : hse → hsfppp
3 : hse+ hsp k′′

15 (39”)
hsf → hsfp K ′′1

M , V ′′1
max (40”)

hsfp → hsf K ′′2
M , V ′′2

max (41”)
hsf2 → hsfp2 K ′′1

M , V ′′1
max (42”)

hsfp2 → hsfpp
2 K ′′1

M , V ′′1
max (43”)

hsfpp
2 → hsfp2 K ′′2

M , V ′′2
max (44”)

hsfp2 → hsf2 K ′′2
M , V ′′2

max (45”)
hsf3 → hsfp3 K ′′1

M , V ′′1
max (46”)

Continued on next page
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Table 11 – continued from previous page
Reaction Kinetic par.
hsfp3 → hsfpp

3 K ′′1
M , V ′′1

max (47”)
hsfpp

3 → hsfppp
3 K ′′1

M , V ′′1
max (48”)

hsfppp
3 → hsfpp

3 K ′′2
M , V ′′2

max (49”)
hsfpp

3 → hsfp3 K ′′2
M , V ′′2

max (50”)
hsfp3 → hsf3 K ′′2

M , V ′′2
max (51”)

hsp: hsf → hsp: hsfp K ′′1
M , V ′′1

max (52”)
hsp: hsfp → hsp: hsf K ′′2

M , V ′′2
max (53”)

hsf3: hse → hsfp3 : hse K ′′1
M , V ′′1

max (54”)
hsfp3 : hse → hsfpp

3 : hse K ′′1
M , V ′′1

max (55”)
hsfpp

3 : hse → hsfppp
3 : hse K ′′1

M , V ′′1
max (56”)

hsfppp
3 : hse → hsfpp

3 : hse K ′′2
M , V ′′2

max (57”)
hsfpp

3 : hse → hsfp3 : hse K ′′2
M , V ′′2

max (58”)
hsfp3 : hse → hsf3: hse K ′′2

M , V ′′2
max (59”)
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Table 12: Parameter estimation results: the numerical values of the parameters
and the values of the initial populations for the reduced heat shock response
model from Table 11, for the case when hsp: hsf can only be dephosphory-
lated, and the transactivation of the hsp-encoding genes is proportional with
the phosphorylation level of the hsf3: hse complex. A. The numerical values of
the parameters. B. The values of the initial populations in � · ml−1.

A B

Par. Value Units Species Init. pop.

k′′
12 1.44 · 10−3 s−1 [hsf] 0.679

k′′
13 3.53 · 10−3 s−1 [hsfp] 2.04 · 10−4

k′′
14 5.62 · 10−3 s−1 [hsf2] 9.14 · 10−4

k′′
15 7.72 · 10−3 s−1 [hsfp2] 4.8 · 10−7

K ′′1
M 3.85 · 10−2 #

ml [hsfpp
2 ] 2.46 · 10−10

V ′′1
max 3.24 #

ml [hsf3] 1.35 · 10−4

K ′′2
M 1 · 10−5 #

ml [hsfp3] 6.96 · 10−8

V ′′2
max 1.64 #

ml [hsfpp
3 ] 5.89 · 10−11

[hsfppp
3 ] 2.27 · 10−11

[hse] 29.49
[hsf3: hse] 0.04
[hsf3: hsep] 3.97 · 10−2

[hsf3: hsepp] 3.97 · 10−2

[hsf3: hseppp] 3.08
[hsp] 754
[hsp: hsf] 1402
[hsp: hsfp] 1.07 · 10−4

[prot] 1.15 · 108

[mfp] 525
[hsp: mfp] 71.65
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Table 13: Parameter estimation results: the numerical values of the parameters
and the values of the initial populations for the reduced heat shock response
model from Table 11, for the case when hsp: hsf can only be dephosphorylated,
and the transactivation of the hsp-encoding genes is activated only after the
hsf3: hse complex is highly-phosphorylated (at leat two, out of three sites are
phosphorylated). A. The numerical values of the parameters. B. The values of
the initial populations in � · ml−1.

A B

Par. Value Units Species Init. pop.

k′′
12 0 s−1 [hsf] 0.667

k′′
13 0 s−1 [hsfp] 8.76 · 10−2

k′′
14 8.16 · 10−3 s−1 [hsf2] 6.77 · 10−4

k′′
15 8.16 · 10−3 s−1 [hsfp2] 1.77 · 10−4

K ′′1
M 2.93 · 10−2 #

ml [hsfpp
2 ] 4.71 · 10−5

V ′′1
max 123 #

ml·s [hsf3] 9.17 · 10−5

K ′′2
M 6.73 · 10−3 #

ml [hsfp3] 2.75 · 10−5

V ′′2
max 94.45 #

ml·s [hsfpp
3 ] 8.22 · 10−6

[hsfppp
3 ] 2.46 · 10−6

[hse] 29.57
[hsf3: hse] 0.07
[hsf3: hsep] 0.074
[hsf3: hsepp] 0.096
[hsf3: hseppp] 2.88
[hsp] 758
[hsp: hsf] 1403
[hsp: hsfp] 1.48 · 10−2

[prot] 1.15 · 108

[mfp] 523
[hsp: mfp] 71.65
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Table 14: The average fit quality for each of the tested models.

Model Avg. fit Model Avg. fit Model Avg. fit
quality quality quality

M1.1 61% M2.1 54% M3.1 16%
M1.2 41% M2.2 42% M3.2 18%
M1.3 30% M2.3 27% M3.3 17%
M1.4 27% M2.4 37% M3.4 16%
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A.

B.

C.

D.

Figure 2: The normalized time-dependent levels of DNA binding and phospho-
rylated hsf metabolites for the best fits of models M1.1 − M1.4, with the fit
quality indicated in Table 14. The continuous lines are the model predictions,
whereas the experimental data (from [23]) are showed with crossed points. Fig-
ures A, B, C, D correspond to models M3.1, M3.2, M3.3 and M3.4, resp.
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Figure 3: The normalized time-dependent levels of DNA binding and phospho-
rylated hsf metabolites for the best fits of models M2.1 − M2.4, with the fit
quality indicated in Table 14. The continuous lines are the model predictions,
whereas the experimental data (from [23]) are showed with crossed points. Fig-
ures A, B, C, D correspond to models M3.1, M3.2, M3.3 and M3.4, resp.
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Figure 4: The normalized time-dependent levels of DNA binding and phospho-
rylated hsf metabolites for the best fits of models M1.1 − M1.4, with the fit
quality indicated in Table 14. The continuous lines are the model predictions,
whereas the experimental data (from [23]) are showed with crossed points. Fig-
ures A, B, C, D correspond to models M3.1, M3.2, M3.3 and M3.4, resp.
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