Fredrik Degerlund | Richard Gronblom | Kaisa Sere

Code Generation and’ Scheduling of
Event-B Models

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 1027, December 2011

1

Code Generation and Scheduling of
Event-B Models

Fredrik Degerlund
Abo Akademi University, Dept. of Information Technologies
Joukahainengatan 3-5, 205800/Turku, Finland
fredrik. degerl und@bo. fi

Richard Gronblom
Abo Akademi University, Dept. of Information Technologies

Joukahainengatan 3-5, 205800/Turku, Finland

Kaisg Sere
Abo Akademi University, Dept. of Information Technologies

Joukahainengatan 3-5, 205&00/Turku, Finland
kai sa. sere@bo. fi

TUCS Technical Report
No 1027, December 2011

Abstract

Event-B is a formal method for full system modelling, and R@DIN platform
provides tool support for it. The method can be used for sispwevelopment
of parallel programs, but there are different approachestte generation and
execution of the resulting code. In this paper, we demoteshew C++ code can
be generated using a separate plug-in for the RODIN tool hamdthe resulting
code can be scheduled concurrently using a dedicated tobile\&ur approach
is related to animation in preserving the event nature,ppsus execution over
several processors or a network using the MPI (Messagerfgdsserface) frame-
work.

Keywords: Formal methods, Event-B, RODIN, scheduling, parallelisff)

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

Event-B [1] is a state-based formal method for full-systeodelling, and it can
be used for stepwise development of software. The RODINgslat[18] provides
tool support for Event-B, and different functionality cam échieved through cus-
tom plug-ins. Software production calls for code genergtand, in the case of
concurrent programs, a means of co-ordinating executidhefesulting code.
In this paper, we suggest one approach to code generatiovemtB. We have
written a plug-in for the RODIN platform that translates retsdinto C++ [20]
code, which can then be compiled into object code. The getwmde consists
of C++ methods, which can be executed in parallel using araggpacheduler that
we have developed. Scheduling depends on a behaviourahesyavhich for
our tool is inherited from the Action Systems formalism [@hd which allows for
a parallel interpretation of programs. We support paraiecution of indepen-
dent events by using the MPI (Message Passing Interfacegfr@rk [16], which
allows events to be distributed over several cores or psacssas well as over
a network. The work presented in this paper is based on thé&ensthesis of
Gronblom [10].

The rest of the paper is structured as follows. In sectione2skortly discuss
Event-B, related formalisms and generation of code. In@e&, we focus on our
code generation plug-in that can translate a certain claEsent-B models into
C++ code. Next, in section 4, we present a scheduling toagded to execute the
code produced by the plug-in on a topology consisting of oaster and several
slave nodes. We also discuss scheduling policies as wekasneters that can
be given to control what events are executed on which node.théf give a
practical example in section 5, in which our approach is usegenerate code
from a factorisation model and execute it on processors inster. Finally, we
sum the paper up in section 6, where we also discuss relatéd wo

2 Event-B

2.1 Background and code generation

Event-B has its roots in the B method and the Action Systemmdbsm. The B
method was designed for correct-by-construction devetyrof software, it is
based on refinement, and tool support is provided by Atelian&the B toolkit.
The Action Systems formalism is also based on refinement laaddrrect-by-
construction paradigm, but unlike the B method, it exhilitsevent-based be-
havioural semantics. This approach has later been appili¢iiecB method in the
form of B Action Systems [21], whereby the established B dawdn, to a cer-
tain degree, be used to prove correctness. Event-B is artimueof B Action
Systems, but with tool support of its own [18]. It does, hoerwuse a modified
modelling language, and code generation was initially nppsrted by the tool.

1

refines refine
—»| Machine 4 Machine

seesl seesl

extends extends
Context f——» Context

Figure 1: Hierarchy of machines and contexts in Event-B.

One strategy for code generation was proposed by Wright Z&ticularly for
use with a virtual machine framework. The method we propsd®sed on his
work, as well as on an approach previously developed [6] facBon Systems.

2.2 Event-B syntax and semantics

In Event-B, models are expressed in the forrmaichinesandcontexts Machines
containvariables invariantsandeventswhereas contexts consistcdrrier sets
constantsandaxioms Machines can be declared seecontexts, whereby they
are free to make use of the values contained in the contexite€s carextend
another context, whereas machines idimeeach other. This results in a chain of
machines and contexts, in which models are developed irpavigte manner. The
modelling hierarchy can be illustrated [1] as in figure 1, vehéhe most concrete
versions are shown to the right.

Machine structure. The general structure of a machine is shown in figure 2.
The clause MACHINE contains the name of the machine. If inesfianother
machine, the name of that machine is given in the REFINESselaall contexts
that are seen by the machine are listed in SEES. The variablee machine are
listed in the VARIABLES clause, and their types are givenN?WARIANTS, to-
gether with other properties that should always hold in tbeeh The VARIANT
clause is used under certain circumstances when converdgerscto be shown.
Finally, the events of the machine are given in the EVENT8s#a Events model
the behaviour of the machine in terms of state transitiontherstate space made
up of the variables.

Events. Events can be written in the following form [12]:
E = when G(v) then v:| §v,v’) end

An event consists of two parts:guard Qv) and anaction v:| S(v,v’). The guard
states a necessary condition for the action to take pladewaen the guard eval-

2

MACHINE
REFINES
SEES
VARIABLES
INVARIANTS
VARIANT
EVENTS
END

Figure 2: The structure of an Event-B machine.

uates to true, the event is said todreabled The action describes the relationship
between the value of the variables before the action talee® i) and right after

it has occurred\). The expression :| v,v’) can intuitively be understood so
that the variables of the machine are assigned new valuegimaway that the
action relatior§(v,v’) holds. Since there may be several possible combinations of
new values satisfying the relation, the assignment canksswon-deterministic.
Each machine also contains a special initialisation evest lhas no guard, and
the action of which can be expressedvasA(V'). This event is intended to take
place at the time the machine is initialised, before anyrotivents are executed.
Since it initialises the state space, its actahA(v') does not depend on previous
values of the variables. Correctness properties are intErexpressed as proof
obligations that have to be discharged for each model. Statf pbligations in-
clude properties such as invariant preservation, but afsoement correctness is
expressed in the form of proof obligations.

Behavioural semantics. Strictly speaking, Event-B has no fixed behavioural
semantics, and any behavioural semantics that is comeatiith the Event-B
proof obligations can be applied [12]. However, the sameasgits as in the
Action Systems formalism is typically used. This semantiisbe assumed in
this paper, and it intuitively works as follows. When a maehstarts executing,
its initialisation event is run to assign initial values betvariables. The rest of the
events are then considered to be inside a loop where enaldatsare chosen for
execution in a non-deterministic order. Events may enatfledésable each other,
as part of the execution of their action, and the machineitextes only when none
of the events is enabled any more. This behavioural sensaaio has a parallel
interpretation. Events are assumed to be atomic, wherebptwore events that
do not interfere with each other can be executed in paraiigdrference freedom
can be guaranteed if the events have no variables in commaithe variables
they have in common are only read, but never written, by tle@&svn question.

3

3 Codegeneration

Event-B in its basic form does not support translation of elednto executable
code. We now show a means of translating a model into objet# twat can be
executed as a computer program. In our approach, transigtimade from the
last refinement step, also called the ultimate refinemenitai@el. Other attempts
at generating code from Event-B models are summarised tioads, where we

compare them to our framework.

3.1 Approach summary

To achieve code generation, we have developed a plug-ihédRODIN platform.
The plug-in accepts a certain subset of Event-B models, randlates them into
C++ code, which is based on the C language, but possessé¢aaldiigh-level
features. However, C++ specific features are mostly not bgatle code gener-
ator, and it could easily be modified to generate standardde austead. Since
both C and C++ are widely used and their compiled code is gépdast, we
consider both of them to be suitable as a target language doehtranslation,
which is important in parallel computing.

The code generator is written in Java as a plug-in for the ROplatform.
The Eclipse IDE, which RODIN’s interface is based on, pregidjood support
for plug-in development. It provides an application pragraing interface (API)
for creating the user interface of a plug-in. A plug-in caness models that have
been created with RODIN, from a database. Event-B comperemet fetched
through an interface to the database. For example, one tantfes invariants of
a machine through a function call. This interface is usedieycode generator to
fetch the components of a model.

Our code generator does not only translate code on a oneetdasis, but
also adds components needed for parallel execution in tredséer, such as the
dependency matrices that we discuss in section 4. Sincecengputations would
be cumbersome to do by hand, we consider tool support maydataur frame-
work. The output of the code generator consists of a modelerted to a C++
class, in which the events of the model are represented dwdwset The idea is
that our scheduler (discussed in section 4) executes aedsexthe class through
aninterfacethat we have defined. An interface consists of a set of opemthat
can be executed by the clients. The interface of the mode¢homnseveral differ-
ent operations on the model. For example, it contains ojpesafor executing an
event, checking a guard and accessing a variable.

3.2 Event-BO

In most cases, an Event-B model cannot be elementarilylataelsinto computer
code of some programming language. This is because sp#ofifitanguages are

4

very different from programming languages. They both sarddferent purpose
and there is no one-to-one mapping between them. In ourapittie best way to
handle this difference is to define a subset of Event-B thasists of components
having a direct equivalent in the target language. We hafieatesuch a “con-
crete” subset, called Event-BO. This decision was inspied very similar set,
called BO, defined in classical B [5], which contains a sulb$elassical B with
some additional constructs. BO contains only concrete typiss and operations
on these, but not any abstract components that would berivied-to translate. It
is equivalent to a limited programming language that candseerted into pro-
gramming languages such as Ada or C. Components include@ ardd among
others,ntegers arrays enumerated seendarithmetic operationsAtelier B and
the B Toolkit both include a code generator that converts B@efs into com-
puter code. For this process, both tools have a separatedéBeahthat checks if
a model can be translated.

Ranges of variables. The components that we have allowed in Event-BO are
those that have a low level equivalent in C++. They are venegad and can be
expressed in most programming languages. Another resgitactor of Event-
BO is the fact that computer memory is limited, so the sizeware type and
data set has to be assigned a limited size. Otherwise, itdMoeilpossible for
variables tooverflow which is a situation when a variable is assigned a value
outside its available storage space on the computer. Tliesgiens normally
lead to incorrect behaviour. Integer overflow in the C pragrang language
causes undefined behaviour [14], so we have to preventisiigatvhere it can
occur.

Most programming languages have minimum and maximum integlees,
often denoted INTMIN and INT_MAX, respectively. Our target computer uses
signed 32-bit integers with a range betweeti ghd 22 — 1, from -2147483648 to
2147483647, in C++ programs. If the value of a variable ga@y®bd this range,
the program will not be valid. The size of enumerated setsaarays can neither
be of infinite size. A maximum size has to be defined in an iawvdri

To prevent overflowing, we impose restrictions on the aréhioal operations
in Event-BO. We only allow operations that have two factdfghere are more
than two factors, the whole expression can be valid, evemgih@a part of the ex-
pression overflows. For instance, the arithmetic opergtidin_MAX+1)-1 over-
flows in the first part. The maximum integer value plus one oabe represented
by the storage space of the integer. However, the whole sgijore is of legal
range, as the result is INMAX.

However, there are techniques for handling integer overflivis common
thatwrap aroundis used in situations of this type. If an arithmetic expressi
overflows, it continues the operation from the oppositeegrer. This is similar to
how the modulo operator works. For example, if an arithmedidition overflows
with 5, the result will be evaluated to INMIN+4. By using wrap around, the

5

operation (INTMAX+1)-1 would be evaluated correctly on a computer. First,
(INT_MAX+1) would overflow so the value will be in the opposite ettre, i.e.
INT_MIN. The second part of the expression, IMIN-1, will also overflow and
be evaluated in INIMAX. Hence, the correct result is achieved. Arithmetic op-
erations in Event-BO would be less strict by using a targeglege that supports
wrap around.

Invariants. Invariants are used in Event-BO for assigning types andicgshs
to variables. Every variable has to be assigned a type dfreitibeger, Boolean,
enumerated set or an array of one of these types. Event-Bfchagher restric-
tions on the invariant, as they only concern the verificapart of the model, but
not the functionality. Therefore, they will not be needethie executable version,
and do not have to be translated.

3.3 Formal presentation of Event-BO

We now present Event-B0 formally by using simplifigebduction rulesn Backus-
Naur Form Variables are defined in an identifier and assigned a type invari-
ant. The type is assigned by using the “belongs to” operatenoted by the
symbole. Arrays are defined using the function operator, denoted from a
numerical interval, O tan, that maps to one of the three Event-BO types. Type
assignments are defined in the following way:

TypeAssignment ::=

Identifier € (BOOLintegefenumerated sgt
ArrayTypeAssignment ::=

Identifiere 0.N — (BOOL]integefenumerated sgt

Variable assignments have to be written in a very simple forfavent-BO. On
the left-hand side we have a single variable or array ele@hon the right-hand
side a variable, a value or a two-part arithmetic operat@me important thing to
note is that events are atomic, which means that all the isutiists of an event
are executed at once. This has the effect that variableramsigts are updated
only after the whole event has been executed. This is notabe in C++, where
any variable assignments instantly take effect. Hence, ave o forbid events
that first update a variable and then use it in a later sulistitLas it would poten-
tially lead to incorrect C++ code. Assignments are formakpressed as follows:

Assignment ::=
Identifier:= (IdentifiefValug ArithmeticOperatiorBOOL)

The arithmetic operations allowed in Event-B are the fowsidanes:addition,
subtraction multiplication and division including themodulooperation. They

6

can have one value or one identifier on each side:

ArithmeticOperation ::=
(Valugldentifien (+ | - | * | = | mod) (alugldentifier)

Event guards are predicates that have to be true for therstats of the event to
be executed, i.e. event preconditions. Event parameterdedined in the same
section as the guards. In Event-B, parameters can be adsagtype implicitly.

For instance, a parameter occurring in an arithmetic pageliwill be assigned a
numerical type automatically. This is similar to implicyjoe casting in dynamic
languages. However, in Event-BO, every parameter has tedigreed a type ex-
plicitly, as in static programming languages. Guards caexdpeessed as follows:

RelationalExpression ::=

Expression RelationalOperator Expression
Expression ::=

(Identifier| Value| ArithmeticOperatioh

The relational operators can be of six different types inrfAB0. Integers can
be used with all operators. Booleans and enumerated setsbabe used with
the “equals” and “not equals” operators. The following tielaal operators are
allowed:

Relational Operator ::=
El#I<l<]>]2)

3.4 Operation of the code generator

The plug-in starts by fetching the most refined machine in @seh Event-B
model, constituting the most concrete version in the refer@nehain. This ma-
chine needs to be in Event-BO form in order to be translataplthe code gen-
erator. One problem that we encountered with the refinensgech of Event-B
is that some elements can only be found in abstract machiaesdarlier steps
of the refinement chain. With components scattered acrossaeanachines and
contexts, one would have to first merge all machines into emerete machine.
However, this is not supported by our code generator, as we iat focused on
model merging. Therefore, the code generator demandsltitainaponents that
are used in the most refined machine be situated in it. The gederator per-
forms translation and Event-BO checking simultaneoudlghécks on the fly if
components are of Event-B0O form and if they are, it proceedotvert them to
C++ code. If an illegal component is encountered, the piugpiminates with an
error code describing why the component could not be trgedla

7

Event-B C++
MACHINE m int varl
VARIABLES bool var?2
varl int var3[N|
var2 bool var4[N|
var3

var4d

INVARIANTS

varl € -2147483648..2147483647
var2 € BOOL

var3e 0.N — -2147483648..2147483647
var4 € 0.N — BOOL

Figure 3: Translation of type assignments.

Every event of a machine is translated into two separatetims: one that
contains the guard and one that contains the assignmenis.désign decision
was taken due to the fact that the guard checking is done byntster node
before an event is run, and the slaves only execute the tutlsis of the event.

3.5 Trandation rules of the code generator

This section presents the rules of how the components of antE model are
translated into C++ code. In Event-B machines, progranabées are defined in
two steps. The variable first has to be defined by a unique nartteei VARI-
ABLES clause. The variable is then assigned a type in aniamvar It is also
possible to add other restricting invariants to variabléswever, such invariants
will not be converted to code because they concern the doegs of the model,
not the functionality. Translation rules for type definitgare defined in figure 3.

In every Event-B model, all variables have to be assignehinralues in
the INITIALISATIONevent. Integers, Booleans and enumerated sets always have
to be given a deterministic value. However, we have not imgleted a way
of initializing arrays, as large arrays would require hwettdr of substitutions in
the initialisation. The code will automatically initiaksthe elements to values
that the compiler has chosen. However, for correctness,IR@Bmands that all
variables be initialised. Arrays have to be initialised dong “dummy” values in
a non-deterministic assignment. It would be possible tosade mechanism for
initialising arrays that can be converted to C++ code.

Constants can be defined in contexts, by an identifier in thdE€TANTS field
and a value assignment in an axiom. Constants are usefulafigdgrogramming
as they can be accessed simultaneously by several procEssesants are trans-
lated into code as described in Figure 4.

Enumerated sets are defined in a context, by a set name in e 8&use,

8

Event-B C++

CONTEXTc |const int constl = val ue
CONSTANTS
constl
AXIOMS
constl=value

Figure 4: Translation of constants.

Event-B C++

CONTEXT ¢ enum Enuml {const 1, const2}
SETS

Enuml

CONSTANTS

constl

const2

AXIOMS

Enum1= {constlconst2
constl# const2

Figure 5: Translation of enumerated set definitions.

where elements of the set are defined as constants. The behidefined in an
axiom that states which elements belong to the set. We atsbtoalenote that all
the elements in the set are different, in order to be ablegindjuish them from
each other. Figure 5 describes how enumerated sets arateahisito C++.

A machine can use an enumerated set as defined above, if ttextigristed
in the SEES clause of the machine. Variables in the machindlen be type
assigned to the enumerated set, either as a single set oragnodrenumerated
sets. Figure 6 describes translation of type assignmemtwherated sets.

The guards of an event are situated in the WHERE clause of emt.e¥he

Event-B C++

MACHINE m Enunl varl
SEESc Enun® var 2[N|
VARIABLES

varl

var2

INVARIANTS

varl € Enuml

var2 € 0..N— Enuml

Figure 6: Translation of enumerated set type assignments.

9

Event-B C++

EVENT e
WHERE
guardl valuel# value2| val uel ! = val ue2
guard2 valuel=value2| val uel == val ue2

guard3: valuel< value2| val uel < val ue2
guardd: valuel< value2| val uel <= val ue2
guards valuel> value2| val uel > val ue2
guard@ valuel> value2| val uel >= val ue2

Figure 7: Translation of guard predicates.

Event-B C++
EVENT e
WHERE
guard.1: valuell¢p, valuel? | (val uell ¢, val uel2 && ...

&& valuennl @, valuen2)

guard.n: valuenl @, valuen2

Figure 8: Translation of multiple guards.

six different predicates allowed in Event-BO0 are transldatecode as described in
figure 7, where “value” denotes a variable or a constant valligtiple guards,

in an event, are combined witbgical and represented by the operator “&&” in
C++. In this way, all the guards are situated in a single wagdi that has to be
true in order for the event to be executed. Multiple guar@steanslated to code
as described in figure 8, whe@®, ..., @, denotes the relational predicates in
figure 7 and Yalue;;” denotes a variable or constant value.

Substitutions are very similar in Event-B and C++. They apéhldenoted
by an assignment operator. The left-hand side can contaamiable or an array
element. The right-hand side consists of a variable, a valwan arithmetic op-
eration. We do not allow non-deterministic substitutiom€Eivent-B0. Figure 9
describes translation of variable and array substitutions

Events in Event-B are translated into methods in the C++sclakhey are
implicitly indexed in the scheduler, so that the first eveiit have index 0 and

Event-B C++
EVENT e vari abl e = val ue
THEN array(index) = val ue

variable:=value
array[indey := value

Figure 9: Translation of substitutions.

10

Event-B C++

EVENT evl |int Machine C ass::evl guard(void) {
WHERE if(guardl &% guard2 && ... & guard.n)
guard 1 return true;

guard 2 el se return fal se;

: }

guard.n int Machi neC ass::evl(void) {

THEN assi gnnent _1;

assignmentl assi gnment 2;

assignmeng :

: assi gnnent _m

assignmenmn | }

Figure 10: Translation of events.

the next event index 1, etc. The guard and the assignmentsastated into two
separate functions. This structure is required by the adbeds the master node
checks the guards and the substitutions are executed oiaveewdes. The guard
function has all the guards in a singfecase If all guards are true, the function
will return true, otherwise it will return false. Event tislation is defined in figure
10.

Event parameters in Event-B have a parameter name defindte iANY
clause and its type defined in the WHERE clause. Every eveatpeer is repre-
sented by a separate machine variable in the C++ class. @bisioh was taken
because the master node first creates the parameter andetigsnisto a slave
node. Parameters have a naming scheme associated withethig ievthe form
“eventnameparametername.” Upon executing a parametrised event atfaenp
eters have to be assigned new values that are either fetchhaddomised. The
code generator automatically creates an external funfiicthe parameters in the
Environment class, which is used for defining how the vallnesikl be created.
Parameters are translated to code as described in figure 11.

It is also possible to include additional restrictions oe ffarameters. For
example, the guard/arl < 10” states thatarl also has to be less than 10. How-
ever, the parameter randomiser does not automaticallygiene value that fulfils
all the guards. It only determines the type of the param&iece a parameter can
be restricted in an infinite amount of ways, it would requivéte|a sophisticated
algorithm to automatically determine the range of values the guards impose.
Therefore, users have to define the parameter functionsatignu

If a model is in Event-BO form, then the code generator wahslate it into
two different C++ files that the scheduler can execute. Thehina and the con-
texts are translated into the header file “Machine.h” andthece code file “Ma-
chine.cpp.” The C++ class that represents the model is d@kiimihe source code

11

Event-B C++

EVENT evl int evivarl
ANY bool evl_.var?2
varl enum evl_var 3
var2
var3
WHERE
varl € -2147483648..2147483647
var2 € BOOL
var3 € enum

Figure 11: Translation of event parameters.

file. The interface to the model is also located in this file.uberated sets and
constants that are defined in a context are situated in thedehéée. The code

generator also generates two files for handling parametezheader, “Environ-
ment.h,” and the source code in the “Environment.cpp” filaustdm functions

that create parameter values can be added to the latter file.

4 Scheduling

In order to execute the code generated by the plug-in, we &lavedeveloped a
scheduling platform. This tool has its roots in a method gilvg Degerlund et al.

[6] of correctly scheduling an action system in a paralleliemment. Schedul-
ing in this sense means assigning computational work toggs®s. As the Action
Systems formalism targets parallel and distributed systéts structure is read-
ily suitable for parallel execution. The only rule that hasbe followed is that

events that have no variables in common can be executedafigdaifo execute

an action system in parallel, we have to fulfil this criterfon correct behaviour.

Degerlund et al. achieve this by applying mutual exclusmihe variables, so
that they cannot be accessed by two or more events simultalyedvents that

need to access a variable that is currently in use by anotket bave to wait until

it is freed up. Note that the terminology used in action syst¢heory is some-
what different from that of Event-B. For example, the wadionhas a different

meaning in action systems (correspondingtentsn Event-B) as compared to
how it is used in Event-B. For clarity, we will stick to EveBtterminology, even

when discussing theory with its roots in the Action Systearsnalism.

Scheduling tool support. Degerlund et al. developed the proof-of-concept pro-
gramELSAthat implements the described scheduling method for dalsBimod-
els. As most of the research in the field has been theoret@als was put on
implementation issues. ELSA can schedule classical B msanfeBO form that

12

have been translated to computer code. Models are creatbdhei Atelier B
tool and then converted to C code by the built-in code geaerBLSA is written
in C++ and utilises the MPICH2 communication library [17} f]mmmunication
between nodes in a computer cluster. MPICHZ2 is an implertientaf the Mes-
sage Passing Interface (MPI) [16], which is the most donticammunication
protocol used for parallel programming [9]. The MPI stablbas been widely
use in computer clusters and supercomputers. MPICH2 pee\ad interface for
communication between computersigssage passing

The Event-B scheduler is based on the code of ELSA, but amtzhanges
and added functionality needed for Event-B and our framkwbine scheduler is
written in C++ code and utilises the MPICH2 communicatidomdry for parallel
computing. This set-up was considered to be suitable foreguirements. The
scheduler takes as input an Event-BO model, which has beaslated to C++
code by the code generator. Upon execution, it schedules/grds in parallel on
a computer cluster or a computer with multiple computationees or processors.

4.1 Background theory

The scheduler is based on the parallel interpretation ebresystems / Event-
B stating that events that share no variables can be exesumedtaneously. To
schedule an event, two properties must hold:

1. The guard of the event is true.

2. No other events that share variables are currently beiegued.

To avoid interference, we utilise mutual exclusion to préwariables from being
accessed simultaneously by several events. This is impletéy using a lock-
ing mechanism. An event in execution locks all variable®ived in the event,

so that no other events can access them. The variable loeksyplemented by
Boolean variables. If a variable is locked, then a corredpanBoolean locking

variable will have the value true, and if the variable is nouse, the lock will

instead have the value false. We only need to implement teshamism on the
master node, as it takes all scheduling decisions. The kreksnplemented using
a matrix that is created in two steps.

Variable-event matrices. When executing an action system or an Event-B model
in parallel, we have to prevent several events that sharablaes from being exe-
cuted simultaneously. To achieve this, we first generatgdhable-eventnatrix,

ve of the sizen* m, wherenis the number of global variables ands the number

of events in the system. For every elemesy;, wherei € {1..n} andj € {1..m},

in the matrix, we will have a Boolean value. If variables involved in event,

the element will have the value true and if it is not involveedyill have the value
false. By “involved,” we denote that an event accesses abii This matrix
describes the dependencies between the events and thadesiria

13

Event-event matrices. After the variable-event matrix has been created, we can
create a scheme of the dependencies between events, pdcrésthe variables.
This is described in thevent-evenmatrix, eg of sizem * m, wherem is the
number of events in the system. This matrix also containddawovalues and is
derived from thevematrix. Elemente,; is true if there exists & € {1..n}, where

vey; = vey; = true, otherwise it will have the value false. This means thtne
events andj both use variabl&, they have a variable dependency and cannot be
executed simultaneously.

Event-location matrices. We also have a third matrix/ (eventlocation), for
specifying which events are allowed to run on the processdnsaction system
can be partitioned with respect to either variables or evgif)], dividing them
into disjoint sets. By partitioning a system with respeat¥ents, every processor
has a set of events that can be executed on it. This schemaréseated by the
el matrix of the sizan* p, wheremis the number of events in the action system
andp is the amount of processors used on a computer cluster. rifegieel;;,
wherei € {1.m} andj € {1.p}, is true, then everitis allowed to be executed on
processof. If el;; is false, then it is not allowed to be executed on procegsor
Every processor should have at least one event that is alltovee executed on
it, and each event should be executable on at least one poyc&his matrix can,
for example, be used to reserve a faster processor for a ¢eAmgansive event.

Scheduler considerations. We have implemented the three above-mentioned
matrices for our Event-B scheduler. The code generatoulzd&s the two de-
pendency matrices upon model translation. Ehenatrix can be defined in a
configuration file of the scheduler. This matrix is optiorad the scheduler. If it
is not defined, all events can be executed on any processor.

The scheduler tries to schedule events to the nodes in teeecln around-
robin fashion, as the execution order of an Event-B model is naeraenistic.
It first checks that the guard of an event is true and that ibiscarrently being
executed. Then it checks whether the event shares any heriatih other events
currently being executed. If thisis the case, the eventaidmnscheduled. Finally,
it checks if there are any idle nodes that can execute thd.e&#gar a slave node
has executed an event, it returns the updated values ofrebl@s involved in the
event to the master node, after which the variables can ayaia be accessed by
other events.

When all guards of a machine are false, the scheduler is dersl to be
deadlocked This is often a desired termination state. However, sonséegys
will always have a guard evaluating to true and can theref@ezute infinitely.
This is often the case in reactive systems that are designexetute forever. A
system of this type has to be terminated manually. An EvemtaBhine is said to
be deterministic if only one guard is true at any time. Suckmrees will not gain
any speed from parallel execution, as only one event candxguged at once.

14

Master node

Slave node 1 Slave node 2 Slave node n

Figure 12: Relationship between master and slave nodes.

Fairnessof events concerns the order of event execution. It is ptessitat
an event can be blocked by other events in execution, eitbeause of mutual
exclusion or because all processors are constantly busthelformer case, we
have implemented some fairness, by always checking thelguadifferent order.
Every time the scheduler iterates through the guards, itssteom a different
one. Otherwise, an event could constantly disable otherte\®/ always being
executed first. It is also possible to exercise manual cbbiyaediting theel
matrix. For example, a specific processor can be reserveddiven event.

4.2 Operation of Scheduler

In our parallel execution of Event-B models, we have a cémaster process
that schedules events to be executed on slave nodes, dstkasin figure 12.
The master node has the most up-to-date state of the Evertelglrand it takes
all scheduling decisions. Upon scheduling an event to aestade, the master
node sends all the variables involved in the event to it. Theesproceeds to
execute the event and once finished, it sends back all thabkesi to the master
node. Then the master updates the master state of the matiélems up the
variables that were involved in the event.

4.3 Scheduler algorithms

The master node constantly schedules events to the noddsap.alt schedules
any event that satisfies all the conditions described abdke.main scheduling
algorithm is expressed in pseudocode in figure 13.

After the scheduler has looped through all events once, itiswar a slave
node that has finished execution to send back the result® dvants are being
executed, then the program terminates. This algorithmgsré®ed in pseudocode
in figure 14.

The slave nodes have a different algorithm that they cotigtimop through.
All the slave nodes continuously wait to be scheduled antevdter receiving an
index of an event to execute, they receive the values of thahlas involved in

15

WHI LE any guard true

DO iterate through events 1..n with

IF event i is already running
THEN stop current iteration

| F variables involved in event i in use
THEN stop current iteration

| F the guard event i is false
THEN stop current iteration

| F event i has paraneters
THEN r andom se paraneters

| F idle nodes avail abl e
THEN schedul e event i to free node

send variables involved in event i to the node

| F event i has paraneters
THEN send paraneters to the node

Figure 13: Master node scheduling algorithm.

| F any events are currently in execution
THEN
wai t until any node has finished execution
get index of executed event
recei ve variables involved in the event
free up variables involved in the event
ELSE send term nation signal to all nodes

Figure 14: Master node receive results algorithm.

16

DO
recei ve an i ndex of schedul ed event
| F i ndex equals term nation signa
THEN term nate
receive the variables involved in the event
| F event has paraneters
THEN recei ve paraneters
execute event
si gnal nmaster node that execution has finished
send back the variables involved in the event

Figure 15: Slave node algorithm.

the event and any parameters it might have. It then proceeslsstute the event
by using the variables it received. After finishing, it retsithe updated variables
to the master node and idles until it is scheduled anotherteVdis algorithm is
described in figure 15.

4.4 Scheduler logging facilities

We have implemented logging facilities for the scheduldriclv can be used to
write a log file of how the scheduling occurred. Degerlund etiaveloped a log
analyser in Java, which provides a graphical representafithe execution. We
have, however, not implemented any tools for log analysiflge scheduler has
the possibility to log the following events:

e Execution initialised / Amount of Nodes / Amount of events
e Eventi scheduled / To nodg/ At iterationx

e Nodej finished / Event numbarexecuted successfully

e Program termination

By logging how many events that are scheduled for everytitarait is possible
to analyse the parallel properties of the model. If the sysseldom has sev-
eral events that can be executed in parallel, it cannot gajrsegnificant speed
improvement by parallel execution.

5 Example: Factorisation
We now show how our method can be used in practice using ageintactor-

ization example. The scenario is that we have an integef which we want to
find the lowest factor (greater than 1).nfs a prime number, the result produced

17

should ben itself. The algorithm we use is trial division, which is is@lf inef-
fective, but simple enough to show how our method works. Tiodlpm being
embarrassingly parallelit is also easy to share the tasks between different pro-
cessors. The factorisation algorithm is performed by cimeciwhethern mod 7

is zero, for values of starting from 2 counting up t¢/n. If a factor has not been
found by then, it can be shown mathematically thas a prime number. Since
Event-B does not support square root, we instead8eas our limit, which is
correct, albeit not as efficient. As soon as a match is foureatgorithm termi-
nates and the corresponding value @ returned.

The parallel version of the algorithm works in the same wageet that it
performs several trial divisions concurrently. Every mse has a different set of
divisors, with the first one performing the modulo operatioth i and the second
one withi + 1, the third one withi + 2 etc. Instead of increasing thievariable
by one, we increase it with the process amount. In this wagtyegvent uses a
different set of values foi. By definingn as a constant in the context, it can be
used by all events. Race conditions can not occur when angesmstant values
concurrently. The algorithm would normally be performedHawing the same
function executed on every node, but with different paramsetSuch algorithms
cannot be modelled in Event-B, so instead, several diffexeents that perform
the same computations can be created. One drawback witis thiat a dynamic
number of threads cannot be used to execute the algorithm.

Test case modelling. In our test case, we have modelled parallel trial division
with three different events that perform modulo operatisimsultaneously. For
every event, there are three associated variables, an variable that is used in
the modulo operation, @sult,,...ss variable for storing the result of the modulo
operation, and a Boolean variable callethtinue,,..ss for controlling program
execution. Therocess subscript denotes a process number, which in our model
is 1, 2 or 3. The variablg,,...ss is increased by 3 after every trial division, so that
all events have a different set of values g, .ss. The continue,,...ss variable
has to be true for the trial division to be carried out, anéradixecution, it is set
to false by the event. A fourth event, callefdeck, sets all thecontinue Booleans

to true if no divisor ton has been found, and if is there is still a possibility to find
one. The program continues until the smallest divisar kas been found, or until
each countei,,...ss has exceeded/2 . In the latter case; is a prime, as it has
no other factors other than 1 and itself.

Results. We executed the model successfully, with different valwes:f on
a computer with eight cores. The algorithm was modelled a&smachine and
one context, both in Event-BO form. The model was automiyyiteanslated to
C++ code by our code generator. By computing and examinieg@tentevent
matrix of the code, we can see that events 1 to 3, the triasidwievents, share
no variables. Hence, they can be executed in parallel. Ewenber 4 is the event

18

that checks the result. It is involved with the variables wérgs 1 to 3 and can
therefore not be scheduled while any other events are rgnAislightly amended
version of the model can be found in appendix A.

6 Conclusonsand futurework

In this paper, we have proposed an approach to code gemeusiity the Event-B
formalism, as well as scheduling and execution of the regutiode. Software can
be modelled and refined in the established Event-B tool (BBIRI platform) in
the standard way, but the last refinement step has to comghiyE~vent-BO, which
is a subset of the Event-B language. Event-BO0 is inspirechbyB0 language of
the Atelier B tool used for the classical B method, an it ordypt@ins constructs
that can be easily translated into C++. While the correspooé between the two
languages has not been formally proven, Event-BO has beefulta designed
to contain only constructs that have a very close corresporelto C++ code.
Events are translated to C++ methods, and the construotgeallin the events are
restricted. Translation from Event-B0O to C++ has been imglieted as a plug-in
for the RODIN platform.

We have also developed a scheduler, written in C++, thated ts execute
the generated events (methods). Execution adheres to theaoly used be-
havioural semantics of Event-B, in which enabled eventaanedeterministically
chosen for execution, and the program terminates when aiits\are disabled.
The scheduler makes use of the fact that events are assuinedtomic, and it is
therefore possible to schedule events in parallel, givahah events executed in
parallel have no variables in common. The scheduler us@dfi¢Message Pass-
ing Interface) framework to schedule events on differentpssors in a network,
or on different cores of a multi-core processor.

Related and futurework. Code generation for Event-B and related formalisms
has also been studied elsewhere. The Atelier B tool for thssatal B method
defines a BO language [5], from which its code generator istigbroduce C/C++
or Ada code. The intermediary BO language serves the camespg purpose as
Event-BO in our work, and Event-BO is in fact inspired by BOteker B does
not take a stand on a behavioural semantics, and the opesgth events in
Event-B) are simply translated into functions in the talgeguage, but have to
be explicitly called upon by the programmer. Conseque#itglier B does not
provide a scheduler, nor does it explicitly take a stand arcaaent execution. A
scheduler that can be used with (slightly modified) code gead from Atelier B
has, however, been developed by Degerlund et al. [6]. Thisdder is intended
for use in B Action Systems, and it also constitutes the cede lfior the scheduler
of this paper.

A code generator for Event-B similar to ours has been deeeldyy Wright

19

[22]. It was, however, developed for the purpose of a virtnathine project, and
was not intended to be an all-round tool. Our code generaohe seen as an
extension, taking Wright's work one step further towardeaegal tool. A similar
tool, EB2ALL, with C, C++, C# and Java code generation has luksveloped at
Loria [15]. To our knowledge, it focuses strictly on code geation, and does not
take a stand on scheduling. Edmunds has suggested an EvedieRjeneration
approach [7] in which the developer can express control fidarimation in a lan-
guage called OCB (Object-oriented Concurrent-B). Theetalgnguage is Java,
and concurrent execution is supported. This method givesiéveloper more
control over the execution of the final program, which is sbmes a desired fea-
ture. It is, however, a different design philosophy as comg#o ours, where we
rely on the established Event-B behavioural semanticsetrttié scheduler auto-
matically take care of the scheduling in such a manner thagrad to the seman-
tics. This approach has also been further developed by Edsnamd Butler and
adapted to ADA code generation [8]. Another approach to Eescheduling
has been proposed by Bostrom [3]. Bostrom’s work, whiduggs on sequential
programs, relies on explicit schedules given in a scheguanguage, and pro-
poses a pattern-based approach to showing the correcthespasing a given
schedule on an Event-B model. Related methods have beeastaddy lliasov
[13] and Hallerstede [11]. An approach that introduces supfor concurrent
programs has also been suggested by Bostrom et al. [4].

The automated “on-the-fly” scheduling of our approach hasattvantage that
it very closely preserves the usual behavioural semantitgeonodels. It also fa-
cilitates for the developer, since the execution order efavents is automatically
decided by the scheduler during run-time. On the other hifwedack of explicit
control flow also poses a challenge. Since the events arelgigteone by one
on different processors/cores, the communication overieaometimes large.
Future work includes evaluating how this affects the pcattise of our method,
and also investigating means of (automatically) scheduljiroups of events, or
repetitive execution without involving the scheduler. Tdtallenge constitutes
achieving this in a way that adheres to the standard beh@alisamantics and,
thus, would not require the introduction of explicit contilow structures.

References

[1] J.-R. Abrial. Modeling in Event-B - System and Software Engineei@amn-
bridge University Press, 2010.

[2] R.J.R. Back and R. Kurki-Suonio. Decentralisation obgess nets with

centralised control. IfProc. of the 2nd ACM SIGACTS-SIGOPS Symp. on

Principles of Distributed Computingages 131-142, 1983.

20

[3] P. Bostrom. Creating sequential programs from eventdaels. InPro-
ceedings of the 8th international conference on Integré¢echal methods
IFM’10, pages 74-88, Berlin, Heidelberg, 2010. Springertsg.

[4] P. Bostrom, F. Degerlund, K. Sere, and M Waldén. Corenirscheduling
of event-b models. IRroceedings 15th International Refinement Workshop
pages 166-182, June 2011.

[5] ClearSy. B language reference manual version 1.8.6.
http://www.atelierb.eu/ressources/manrefb1.8.6 dik.p

[6] F. Degerlund, M. Waldén, and K. Sere. Implementati®ués concerning
the action systems formalism. Froceedings of the Eighth International
Conference on Parallel and Distributed Computing, Apgdiicas and Tech-
nologies PDCAT '07, pages 471-479, Washington, DC, USA, 2007. IEEE
Computer Society.

[7] A. Edmunds.Providing Concurrent Implementations for Event-B Develop
ments PhD thesis, University of Southampton, 2010.

[8] A. Edmunds and M. Butler. Tasking Event-B: An extensiorElvent-B for
generating concurrent code. RLACES 20112011.

[9] T. Gangadharappa, M. Koop, and D. K. Panda. Designingemadliating
mpi-2 dynamic process management support for infiniban®rdceedings
of the 2009 International Conference on Parallel Procegsiorkshops
ICPPW 09, pages 89-96, Washington, DC, USA, 2009. IEEE Ggderp
Society.

[10] R. Gronblom. A framework for code generation and patadxecution of
event-b models. Master’s thesiho Akademi University, 2009.

[11] S. Hallerstede. Structured Event-B models and prodfsAbstract State
Machines, B and Arolume 5977 oL NCS pages 273-286. Springer-Verlag,
2010.

[12] S. Hallerstede. On the purpose of event-b proof oblgat Form. Asp.
Comput, 23:133-150, January 2011.

[13] A. lliasov. On Event-B and control flow. Technical Rep@S-TR-1159,
School of Computing Science, Newcastle University, 2009.

[14] B. W. Kernighan and D. RitchieThe C Programming Languag®rentice-
Hall, 1978.

[15] Loria. EB2ALL. http://eb2all.loria.fr/.

21

[16] Message passing interface forum. http://www.mpisfarorg/.
[17] MPICH2 website. http://www.mcs.anl.gov/researchjpcts/mpich2/.
[18] RODIN platform website. http://www.event-b.org.

[19] K. Sere. Stepwise Derivation of Parallel AlgorithmsPhD thesis Abo
Akademi University, 1990.

[20] B. Stroustrup.The C++ Programming LanguageAddison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2000

[21] M. Waldén and K. Sere. Reasoning about action systesing the b-method.
Form. Methods Syst. De4d.3:5-35, May 1998.

[22] S. Wright. Using eventb to create a virtual machinerungion set architec-
ture. Abstract State Machines, B angages 265-279, 2008.

22

A Factorisation model

MACHINE TrialDiv
SEES TrialDiv_Context
VARIABLES
il
i2
i3
result_1
result 2
result_3
continue_1
continue_2
continue_3
INVARIANTS
invl @ ¢ 1 € —2147483648 .. 2147485647
inv2: 1.2 € —2147483648 .. 2147485647
inv3: 1.8 € —2147483648 .. 2147485647
invd : result_1 € —2147483648 .. 2147483647
invh : result_2 € —2147/83648 .. 2147483647
inve : result_3 € —2147483648 .. 2147483647
inv7 : continue_1 € BOOL
inv8 : continue_2 € BOOL
inv9 : continue_8 € BOOL
invli0: n > 4
invil: n < 2147485647
invi2: n/2 + 8 < 2147483647

EVENTS
Initialisation
begin

actl: i_1 =2
act2: 1.2 :=38
act3: 1.8 =4
actd : result_1 := —1
actb: result_2 .= —1
act6 : result_8 := —1

act7 : continue_1 := TRUE
act8: continue_2 .= TRUE
act9 : continue_3 := TRUFE

23

end

Event processkE

when

grdl :
grd2 :

then

actl:
act2:
act3:

end

Event processZ

when

grdl :
grd2 :

then

actl :
act2 :
act3:

end

Event process3=

when

grdl :
grd2 :

then

actl :
act2 :
act3:

end
Event check=
when

grdl :
grd2 :
grd3 :
grd4 :

then

actl :
act2:
: continue_8 := TRUE

act3
end

END

continue-1 = TRUE
i1 <n/2

result_1 :=n mod i_1
1.1 =491 +3
continue_1 = FALSE

continue_2 = TRUFE
i-2<n/2

result_2 := n mod 1_2
1.2 =12+ 38
continue_2 := FALSE

continue.8 = TRUFE
i3 <n/2

result_3 :=n mod 1_3
1.3 =13+ 3
continue_3 := FALSE

result_1 # 0
result_2 # 0
result_3 # 0
i1 <n/2Vi2<n/2Vi3<n/?

continue_1 = TRUE
continue_2 .= TRUFE

24

CONTEXT TrialDiv_Context
CONSTANTS

n
AXIOMS

axml : n = 479001599
END

25

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

\\ ?A ,/ University of Turku
g é e Department of Information Technology
[— 4
<, N e Department of Mathematics
1y

O

Abo Akademi University
e Department of Information Technologies

Turku School of Economics
e Institute of Information Systems Sciences

ISBN 978-952-12-2685-4
ISSN 1239-1891

