
Fredrik Degerlund | Richard Grönblom | Kaisa Sere

Code Generation and Scheduling of
Event-B Models

TUCS Technical Report
No 1027, December 2011

Code Generation and Scheduling of
Event-B Models

Fredrik Degerlund
Åbo Akademi University, Dept. of Information Technologies,
Joukahainengatan 3-5, 20520Åbo/Turku, Finland
fredrik.degerlund@abo.fi

Richard Grönblom
Åbo Akademi University, Dept. of Information Technologies,
Joukahainengatan 3-5, 20520Åbo/Turku, Finland

Kaisa Sere
Åbo Akademi University, Dept. of Information Technologies,
Joukahainengatan 3-5, 20520Åbo/Turku, Finland
kaisa.sere@abo.fi

TUCS Technical Report

No 1027, December 2011

Abstract

Event-B is a formal method for full system modelling, and theRODIN platform
provides tool support for it. The method can be used for stepwise development
of parallel programs, but there are different approaches tocode generation and
execution of the resulting code. In this paper, we demonstrate how C++ code can
be generated using a separate plug-in for the RODIN tool, andhow the resulting
code can be scheduled concurrently using a dedicated tool. While our approach
is related to animation in preserving the event nature, it supports execution over
several processors or a network using the MPI (Message Passing Interface) frame-
work.

Keywords: Formal methods, Event-B, RODIN, scheduling, parallelism,MPI

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

Event-B [1] is a state-based formal method for full-system modelling, and it can
be used for stepwise development of software. The RODIN platform [18] provides
tool support for Event-B, and different functionality can be achieved through cus-
tom plug-ins. Software production calls for code generation, and, in the case of
concurrent programs, a means of co-ordinating execution ofthe resulting code.
In this paper, we suggest one approach to code generation in Event-B. We have
written a plug-in for the RODIN platform that translates models into C++ [20]
code, which can then be compiled into object code. The generated code consists
of C++ methods, which can be executed in parallel using a separate scheduler that
we have developed. Scheduling depends on a behavioural semantics, which for
our tool is inherited from the Action Systems formalism [2],and which allows for
a parallel interpretation of programs. We support parallelexecution of indepen-
dent events by using the MPI (Message Passing Interface) framework [16], which
allows events to be distributed over several cores or processors, as well as over
a network. The work presented in this paper is based on the master’s thesis of
Grönblom [10].

The rest of the paper is structured as follows. In section 2, we shortly discuss
Event-B, related formalisms and generation of code. In section 3, we focus on our
code generation plug-in that can translate a certain class of Event-B models into
C++ code. Next, in section 4, we present a scheduling tool designed to execute the
code produced by the plug-in on a topology consisting of one master and several
slave nodes. We also discuss scheduling policies as well as parameters that can
be given to control what events are executed on which node. Wethen give a
practical example in section 5, in which our approach is usedto generate code
from a factorisation model and execute it on processors in a cluster. Finally, we
sum the paper up in section 6, where we also discuss related work.

2 Event-B

2.1 Background and code generation

Event-B has its roots in the B method and the Action Systems formalism. The B
method was designed for correct-by-construction development of software, it is
based on refinement, and tool support is provided by Atelier Band the B toolkit.
The Action Systems formalism is also based on refinement and the correct-by-
construction paradigm, but unlike the B method, it exhibitsan event-based be-
havioural semantics. This approach has later been applied on the B method in the
form of B Action Systems [21], whereby the established B tools can, to a cer-
tain degree, be used to prove correctness. Event-B is a descendant of B Action
Systems, but with tool support of its own [18]. It does, however, use a modified
modelling language, and code generation was initially not supported by the tool.

1

Figure 1: Hierarchy of machines and contexts in Event-B.

One strategy for code generation was proposed by Wright [22], particularly for
use with a virtual machine framework. The method we propose is based on his
work, as well as on an approach previously developed [6] for BAction Systems.

2.2 Event-B syntax and semantics

In Event-B, models are expressed in the form ofmachinesandcontexts. Machines
containvariables, invariantsandevents, whereas contexts consist ofcarrier sets,
constantsandaxioms. Machines can be declared toseecontexts, whereby they
are free to make use of the values contained in the context. Contexts canextend
another context, whereas machines canrefineeach other. This results in a chain of
machines and contexts, in which models are developed in a stepwise manner. The
modelling hierarchy can be illustrated [1] as in figure 1, where the most concrete
versions are shown to the right.

Machine structure. The general structure of a machine is shown in figure 2.
The clause MACHINE contains the name of the machine. If it refines another
machine, the name of that machine is given in the REFINES clause. All contexts
that are seen by the machine are listed in SEES. The variablesof the machine are
listed in the VARIABLES clause, and their types are given in INVARIANTS, to-
gether with other properties that should always hold in the model. The VARIANT
clause is used under certain circumstances when convergence has to be shown.
Finally, the events of the machine are given in the EVENTS clause. Events model
the behaviour of the machine in terms of state transitions onthe state space made
up of the variables.

Events. Events can be written in the following form [12]:

E = when G(v) then v :| S(v,v’) end

An event consists of two parts: aguard G(v) and anaction v:| S(v,v’). The guard
states a necessary condition for the action to take place, and when the guard eval-

2

MACHINE
REFINES
SEES
VARIABLES
INVARIANTS
VARIANT
EVENTS
END

Figure 2: The structure of an Event-B machine.

uates to true, the event is said to beenabled. The action describes the relationship
between the value of the variables before the action takes place (v) and right after
it has occurred (v’). The expressionv :| S(v,v’) can intuitively be understood so
that the variables of the machine are assigned new values in such a way that the
action relationS(v,v’) holds. Since there may be several possible combinations of
new values satisfying the relation, the assignment can alsobe non-deterministic.
Each machine also contains a special initialisation event that has no guard, and
the action of which can be expressed asv :| A(v’). This event is intended to take
place at the time the machine is initialised, before any other events are executed.
Since it initialises the state space, its actionv :| A(v’) does not depend on previous
values of the variables. Correctness properties are in Event-B expressed as proof
obligations that have to be discharged for each model. Such proof obligations in-
clude properties such as invariant preservation, but also refinement correctness is
expressed in the form of proof obligations.

Behavioural semantics. Strictly speaking, Event-B has no fixed behavioural
semantics, and any behavioural semantics that is compatible with the Event-B
proof obligations can be applied [12]. However, the same semantics as in the
Action Systems formalism is typically used. This semanticswill be assumed in
this paper, and it intuitively works as follows. When a machine starts executing,
its initialisation event is run to assign initial values to the variables. The rest of the
events are then considered to be inside a loop where enabled events are chosen for
execution in a non-deterministic order. Events may enable and disable each other,
as part of the execution of their action, and the machine terminates only when none
of the events is enabled any more. This behavioural semantics also has a parallel
interpretation. Events are assumed to be atomic, whereby two or more events that
do not interfere with each other can be executed in parallel.Interference freedom
can be guaranteed if the events have no variables in common, or if the variables
they have in common are only read, but never written, by the events in question.

3

3 Code generation

Event-B in its basic form does not support translation of models into executable
code. We now show a means of translating a model into object code that can be
executed as a computer program. In our approach, translation is made from the
last refinement step, also called the ultimate refinement of amodel. Other attempts
at generating code from Event-B models are summarised in section 6, where we
compare them to our framework.

3.1 Approach summary

To achieve code generation, we have developed a plug-in for the RODIN platform.
The plug-in accepts a certain subset of Event-B models, and translates them into
C++ code, which is based on the C language, but possesses additional high-level
features. However, C++ specific features are mostly not usedby the code gener-
ator, and it could easily be modified to generate standard C code instead. Since
both C and C++ are widely used and their compiled code is generally fast, we
consider both of them to be suitable as a target language for model translation,
which is important in parallel computing.

The code generator is written in Java as a plug-in for the RODIN platform.
The Eclipse IDE, which RODIN’s interface is based on, provides good support
for plug-in development. It provides an application programming interface (API)
for creating the user interface of a plug-in. A plug-in can access models that have
been created with RODIN, from a database. Event-B components are fetched
through an interface to the database. For example, one can fetch the invariants of
a machine through a function call. This interface is used by the code generator to
fetch the components of a model.

Our code generator does not only translate code on a one-to-one basis, but
also adds components needed for parallel execution in the scheduler, such as the
dependency matrices that we discuss in section 4. Since suchcomputations would
be cumbersome to do by hand, we consider tool support mandatory for our frame-
work. The output of the code generator consists of a model converted to a C++
class, in which the events of the model are represented as methods. The idea is
that our scheduler (discussed in section 4) executes and accesses the class through
an interfacethat we have defined. An interface consists of a set of operations that
can be executed by the clients. The interface of the model contains several differ-
ent operations on the model. For example, it contains operations for executing an
event, checking a guard and accessing a variable.

3.2 Event-B0

In most cases, an Event-B model cannot be elementarily translated into computer
code of some programming language. This is because specification languages are

4

very different from programming languages. They both servea different purpose
and there is no one-to-one mapping between them. In our opinion, the best way to
handle this difference is to define a subset of Event-B that consists of components
having a direct equivalent in the target language. We have defined such a “con-
crete” subset, called Event-B0. This decision was inspiredby a very similar set,
called B0, defined in classical B [5], which contains a subsetof classical B with
some additional constructs. B0 contains only concrete datatypes and operations
on these, but not any abstract components that would be non-trivial to translate. It
is equivalent to a limited programming language that can be converted into pro-
gramming languages such as Ada or C. Components included in B0 are, among
others,integers, arrays, enumerated setsandarithmetic operations. Atelier B and
the B Toolkit both include a code generator that converts B0 models into com-
puter code. For this process, both tools have a separate B0 checker that checks if
a model can be translated.

Ranges of variables. The components that we have allowed in Event-B0 are
those that have a low level equivalent in C++. They are very general and can be
expressed in most programming languages. Another restricting factor of Event-
B0 is the fact that computer memory is limited, so the size of every type and
data set has to be assigned a limited size. Otherwise, it would be possible for
variables tooverflow, which is a situation when a variable is assigned a value
outside its available storage space on the computer. These situations normally
lead to incorrect behaviour. Integer overflow in the C programming language
causes undefined behaviour [14], so we have to prevent situations where it can
occur.

Most programming languages have minimum and maximum integer values,
often denoted INTMIN and INT MAX, respectively. Our target computer uses
signed 32-bit integers with a range between -232 and 232−1, from -2147483648 to
2147483647, in C++ programs. If the value of a variable goes beyond this range,
the program will not be valid. The size of enumerated sets andarrays can neither
be of infinite size. A maximum size has to be defined in an invariant.

To prevent overflowing, we impose restrictions on the arithmetical operations
in Event-B0. We only allow operations that have two factors.If there are more
than two factors, the whole expression can be valid, even though a part of the ex-
pression overflows. For instance, the arithmetic operation(INT MAX+1)-1 over-
flows in the first part. The maximum integer value plus one cannot be represented
by the storage space of the integer. However, the whole expression is of legal
range, as the result is INTMAX.

However, there are techniques for handling integer overflow. It is common
that wrap aroundis used in situations of this type. If an arithmetic expression
overflows, it continues the operation from the opposite extreme. This is similar to
how the modulo operator works. For example, if an arithmeticaddition overflows
with 5, the result will be evaluated to INTMIN+4. By using wrap around, the

5

operation (INTMAX+1)-1 would be evaluated correctly on a computer. First,
(INT MAX+1) would overflow so the value will be in the opposite extreme, i.e.
INT MIN. The second part of the expression, INTMIN-1, will also overflow and
be evaluated in INTMAX. Hence, the correct result is achieved. Arithmetic op-
erations in Event-B0 would be less strict by using a target language that supports
wrap around.

Invariants. Invariants are used in Event-B0 for assigning types and restrictions
to variables. Every variable has to be assigned a type of either integer, Boolean,
enumerated set or an array of one of these types. Event-B0 hasno other restric-
tions on the invariant, as they only concern the verificationpart of the model, but
not the functionality. Therefore, they will not be needed inthe executable version,
and do not have to be translated.

3.3 Formal presentation of Event-B0

We now present Event-B0 formally by using simplifiedproduction rulesin Backus-
Naur Form. Variables are defined in an identifier and assigned a type in an invari-
ant. The type is assigned by using the “belongs to” operator,denoted by the
symbol∈. Arrays are defined using the function operator, denoted “→,” from a
numerical interval, 0 ton, that maps to one of the three Event-B0 types. Type
assignments are defined in the following way:

TypeAssignment ::=
Identifier∈ (BOOL|integer|enumerated set)
ArrayTypeAssignment ::=
Identifier∈ 0..N → (BOOL|integer|enumerated set)

Variable assignments have to be written in a very simple formin Event-B0. On
the left-hand side we have a single variable or array elementand on the right-hand
side a variable, a value or a two-part arithmetic operation.One important thing to
note is that events are atomic, which means that all the substitutions of an event
are executed at once. This has the effect that variable assignments are updated
only after the whole event has been executed. This is not the case in C++, where
any variable assignments instantly take effect. Hence, we have to forbid events
that first update a variable and then use it in a later substitution, as it would poten-
tially lead to incorrect C++ code. Assignments are formallyexpressed as follows:

Assignment ::=
Identifier := (Identifier|Value|ArithmeticOperation|BOOL)

The arithmetic operations allowed in Event-B are the four basic ones:addition,
subtraction, multiplication anddivision, including themodulooperation. They

6

can have one value or one identifier on each side:

ArithmeticOperation ::=
(Value|Identifier) (+ | - | * | ÷ | mod) (Value|Identifier)

Event guards are predicates that have to be true for the statements of the event to
be executed, i.e. event preconditions. Event parameters are defined in the same
section as the guards. In Event-B, parameters can be assigned a type implicitly.
For instance, a parameter occurring in an arithmetic predicate will be assigned a
numerical type automatically. This is similar to implicit type casting in dynamic
languages. However, in Event-B0, every parameter has to be assigned a type ex-
plicitly, as in static programming languages. Guards can beexpressed as follows:

RelationalExpression ::=
Expression RelationalOperator Expression
Expression ::=
(Identifier | Value| ArithmeticOperation)

The relational operators can be of six different types in Event-B0. Integers can
be used with all operators. Booleans and enumerated sets canonly be used with
the “equals” and “not equals” operators. The following relational operators are
allowed:

RelationalOperator ::=
(= | 6= | < | ≤ | > | ≥)

3.4 Operation of the code generator

The plug-in starts by fetching the most refined machine in a chosen Event-B
model, constituting the most concrete version in the refinement chain. This ma-
chine needs to be in Event-B0 form in order to be translatableby the code gen-
erator. One problem that we encountered with the refinement aspect of Event-B
is that some elements can only be found in abstract machines from earlier steps
of the refinement chain. With components scattered across several machines and
contexts, one would have to first merge all machines into one concrete machine.
However, this is not supported by our code generator, as we have not focused on
model merging. Therefore, the code generator demands that all components that
are used in the most refined machine be situated in it. The codegenerator per-
forms translation and Event-B0 checking simultaneously. It checks on the fly if
components are of Event-B0 form and if they are, it proceeds to convert them to
C++ code. If an illegal component is encountered, the plug-in terminates with an
error code describing why the component could not be translated.

7

Event-B C++
MACHINE m int var1
VARIABLES bool var2
var1 int var3[N]
var2 bool var4[N]
var3
var4
INVARIANTS
var1∈ -2147483648..2147483647
var2∈ BOOL
var3∈ 0..N → -2147483648..2147483647
var4∈ 0..N → BOOL

Figure 3: Translation of type assignments.

Every event of a machine is translated into two separate functions: one that
contains the guard and one that contains the assignments. This design decision
was taken due to the fact that the guard checking is done by themaster node
before an event is run, and the slaves only execute the substitutions of the event.

3.5 Translation rules of the code generator

This section presents the rules of how the components of an Event-B model are
translated into C++ code. In Event-B machines, program variables are defined in
two steps. The variable first has to be defined by a unique name in the VARI-
ABLES clause. The variable is then assigned a type in an invariant. It is also
possible to add other restricting invariants to variables.However, such invariants
will not be converted to code because they concern the correctness of the model,
not the functionality. Translation rules for type definitions are defined in figure 3.

In every Event-B model, all variables have to be assigned initial values in
theINITIALISATIONevent. Integers, Booleans and enumerated sets always have
to be given a deterministic value. However, we have not implemented a way
of initializing arrays, as large arrays would require hundreds of substitutions in
the initialisation. The code will automatically initialise the elements to values
that the compiler has chosen. However, for correctness, RODIN demands that all
variables be initialised. Arrays have to be initialised to some “dummy” values in
a non-deterministic assignment. It would be possible to addsome mechanism for
initialising arrays that can be converted to C++ code.

Constants can be defined in contexts, by an identifier in the CONSTANTS field
and a value assignment in an axiom. Constants are useful in parallel programming
as they can be accessed simultaneously by several processes. Constants are trans-
lated into code as described in Figure 4.

Enumerated sets are defined in a context, by a set name in the SETS clause,

8

Event-B C++
CONTEXT c const int const1 = value
CONSTANTS
const1
AXIOMS
const1= value

Figure 4: Translation of constants.

Event-B C++
CONTEXT c enum Enum1 {const1, const2}
SETS
Enum1
CONSTANTS
const1
const2
AXIOMS
Enum1= {const1,const2}
const16= const2

Figure 5: Translation of enumerated set definitions.

where elements of the set are defined as constants. The set is then defined in an
axiom that states which elements belong to the set. We also need to denote that all
the elements in the set are different, in order to be able to distinguish them from
each other. Figure 5 describes how enumerated sets are translated into C++.

A machine can use an enumerated set as defined above, if the context is listed
in the SEES clause of the machine. Variables in the machine can then be type
assigned to the enumerated set, either as a single set or an array of enumerated
sets. Figure 6 describes translation of type assignment of enumerated sets.

The guards of an event are situated in the WHERE clause of an event. The

Event-B C++
MACHINE m Enum1 var1
SEES c Enum2 var2[N]
VARIABLES
var1
var2
INVARIANTS
var1∈ Enum1
var2∈ 0..N→ Enum1

Figure 6: Translation of enumerated set type assignments.

9

Event-B C++
EVENT e
WHERE
guard1: value16= value2 value1 != value2
guard2: value1= value2 value1 == value2
guard3: value1< value2 value1 < value2
guard4: value1≤ value2 value1 <= value2
guard5: value1> value2 value1 > value2
guard6: value1≥ value2 value1 >= value2

Figure 7: Translation of guard predicates.

Event-B C++
EVENT e
WHERE
guard 1: value11

⊕
1

value12 (value11
⊕

1
value12 && ...

... && value n1
⊕

n value n2)
guard n: valuen1

⊕
n valuen2

Figure 8: Translation of multiple guards.

six different predicates allowed in Event-B0 are translated to code as described in
figure 7, where “value” denotes a variable or a constant value. Multiple guards,
in an event, are combined withlogical and, represented by the operator “&&” in
C++. In this way, all the guards are situated in a single predicate that has to be
true in order for the event to be executed. Multiple guards are translated to code
as described in figure 8, where

⊕
1
, ...,

⊕
n denotes the relational predicates in

figure 7 and “valueij” denotes a variable or constant value.
Substitutions are very similar in Event-B and C++. They are both denoted

by an assignment operator. The left-hand side can contain a variable or an array
element. The right-hand side consists of a variable, a valueor an arithmetic op-
eration. We do not allow non-deterministic substitutions in Event-B0. Figure 9
describes translation of variable and array substitutions.

Events in Event-B are translated into methods in the C++ class. They are
implicitly indexed in the scheduler, so that the first event will have index 0 and

Event-B C++
EVENT e variable = value
THEN array(index) = value
variable:= value
array[index] := value

Figure 9: Translation of substitutions.

10

Event-B C++
EVENT ev1 int Machine Class::ev1 guard(void) {
WHERE if(guard 1 && guard 2 && ... & guard n)
guard 1 return true;
guard 2 else return false;
... }
guard n int Machine Class::ev1(void) {
THEN assignment 1;
assignment1 assignment 2;

assignment2
...

... assignment m;
assignmentm }

Figure 10: Translation of events.

the next event index 1, etc. The guard and the assignments aretranslated into two
separate functions. This structure is required by the scheduler, as the master node
checks the guards and the substitutions are executed on the slave nodes. The guard
function has all the guards in a singleif-case. If all guards are true, the function
will return true, otherwise it will return false. Event translation is defined in figure
10.

Event parameters in Event-B have a parameter name defined in the ANY
clause and its type defined in the WHERE clause. Every event parameter is repre-
sented by a separate machine variable in the C++ class. This decision was taken
because the master node first creates the parameter and then sends it to a slave
node. Parameters have a naming scheme associated with the event, in the form
“eventnameparametername.” Upon executing a parametrised event, the param-
eters have to be assigned new values that are either fetched or randomised. The
code generator automatically creates an external functionfor the parameters in the
Environment class, which is used for defining how the values should be created.
Parameters are translated to code as described in figure 11.

It is also possible to include additional restrictions on the parameters. For
example, the guard “var1< 10” states thatvar1 also has to be less than 10. How-
ever, the parameter randomiser does not automatically generate a value that fulfils
all the guards. It only determines the type of the parameter.Since a parameter can
be restricted in an infinite amount of ways, it would require quite a sophisticated
algorithm to automatically determine the range of values that the guards impose.
Therefore, users have to define the parameter functions manually.

If a model is in Event-B0 form, then the code generator will translate it into
two different C++ files that the scheduler can execute. The machine and the con-
texts are translated into the header file “Machine.h” and thesource code file “Ma-
chine.cpp.” The C++ class that represents the model is defined in the source code

11

Event-B C++
EVENT ev1 int ev1 var1
ANY bool ev1 var2
var1 enum ev1 var3
var2
var3
WHERE
var1 ∈ -2147483648..2147483647
var2 ∈ BOOL
var3 ∈ enum

Figure 11: Translation of event parameters.

file. The interface to the model is also located in this file. Enumerated sets and
constants that are defined in a context are situated in the header file. The code
generator also generates two files for handling parameters:the header, “Environ-
ment.h,” and the source code in the “Environment.cpp” file. Custom functions
that create parameter values can be added to the latter file.

4 Scheduling

In order to execute the code generated by the plug-in, we havealso developed a
scheduling platform. This tool has its roots in a method given by Degerlund et al.
[6] of correctly scheduling an action system in a parallel environment. Schedul-
ing in this sense means assigning computational work to processes. As the Action
Systems formalism targets parallel and distributed systems, its structure is read-
ily suitable for parallel execution. The only rule that has to be followed is that
events that have no variables in common can be executed in parallel. To execute
an action system in parallel, we have to fulfil this criterionfor correct behaviour.
Degerlund et al. achieve this by applying mutual exclusion to the variables, so
that they cannot be accessed by two or more events simultaneously. Events that
need to access a variable that is currently in use by another event have to wait until
it is freed up. Note that the terminology used in action systems theory is some-
what different from that of Event-B. For example, the wordactionhas a different
meaning in action systems (corresponding toeventsin Event-B) as compared to
how it is used in Event-B. For clarity, we will stick to Event-B terminology, even
when discussing theory with its roots in the Action Systems formalism.

Scheduling tool support. Degerlund et al. developed the proof-of-concept pro-
gramELSAthat implements the described scheduling method for classical B mod-
els. As most of the research in the field has been theoretical,focus was put on
implementation issues. ELSA can schedule classical B models of B0 form that

12

have been translated to computer code. Models are created with the Atelier B
tool and then converted to C code by the built-in code generator. ELSA is written
in C++ and utilises the MPICH2 communication library [17] for communication
between nodes in a computer cluster. MPICH2 is an implementation of the Mes-
sage Passing Interface (MPI) [16], which is the most dominant communication
protocol used for parallel programming [9]. The MPI standard has been widely
use in computer clusters and supercomputers. MPICH2 provides an interface for
communication between computers bymessage passing.

The Event-B scheduler is based on the code of ELSA, but contains changes
and added functionality needed for Event-B and our framework. The scheduler is
written in C++ code and utilises the MPICH2 communication library for parallel
computing. This set-up was considered to be suitable for ourrequirements. The
scheduler takes as input an Event-B0 model, which has been translated to C++
code by the code generator. Upon execution, it schedules theevents in parallel on
a computer cluster or a computer with multiple computational cores or processors.

4.1 Background theory

The scheduler is based on the parallel interpretation of actions systems / Event-
B stating that events that share no variables can be executedsimultaneously. To
schedule an event, two properties must hold:

1. The guard of the event is true.

2. No other events that share variables are currently being executed.

To avoid interference, we utilise mutual exclusion to prevent variables from being
accessed simultaneously by several events. This is implemented by using a lock-
ing mechanism. An event in execution locks all variables involved in the event,
so that no other events can access them. The variable locks are implemented by
Boolean variables. If a variable is locked, then a corresponding Boolean locking
variable will have the value true, and if the variable is not in use, the lock will
instead have the value false. We only need to implement this mechanism on the
master node, as it takes all scheduling decisions. The locksare implemented using
a matrix that is created in two steps.

Variable-event matrices. When executing an action system or an Event-B model
in parallel, we have to prevent several events that share variables from being exe-
cuted simultaneously. To achieve this, we first generate thevariable-eventmatrix,
ve, of the sizen * m, wheren is the number of global variables andm is the number
of events in the system. For every elementveij , wherei ∈ {1..n} andj ∈ {1..m},
in the matrix, we will have a Boolean value. If variablei is involved in eventj,
the element will have the value true and if it is not involved,it will have the value
false. By “involved,” we denote that an event accesses a variable. This matrix
describes the dependencies between the events and the variables.

13

Event-event matrices. After the variable-event matrix has been created, we can
create a scheme of the dependencies between events, with respect to the variables.
This is described in theevent-eventmatrix, ee, of sizem * m, wherem is the
number of events in the system. This matrix also contains Boolean values and is
derived from thevematrix. Elementeeij is true if there exists ak ∈ {1..n}, where
veki = vekj = true, otherwise it will have the value false. This means that if the
eventsi andj both use variablek, they have a variable dependency and cannot be
executed simultaneously.

Event-location matrices. We also have a third matrix,el (event-location), for
specifying which events are allowed to run on the processors. An action system
can be partitioned with respect to either variables or events [19], dividing them
into disjoint sets. By partitioning a system with respect toevents, every processor
has a set of events that can be executed on it. This scheme is represented by the
el matrix of the sizem * p, wherem is the number of events in the action system
andp is the amount of processors used on a computer cluster. If elementelij ,
wherei ∈ {1..m} andj ∈ {1..p}, is true, then eventi is allowed to be executed on
processorj. If elij is false, then it is not allowed to be executed on processorj.
Every processor should have at least one event that is allowed to be executed on
it, and each event should be executable on at least one processor. This matrix can,
for example, be used to reserve a faster processor for a compute-intensive event.

Scheduler considerations. We have implemented the three above-mentioned
matrices for our Event-B scheduler. The code generator calculates the two de-
pendency matrices upon model translation. Theel matrix can be defined in a
configuration file of the scheduler. This matrix is optional for the scheduler. If it
is not defined, all events can be executed on any processor.

The scheduler tries to schedule events to the nodes in the cluster in around-
robin fashion, as the execution order of an Event-B model is non-deterministic.
It first checks that the guard of an event is true and that it is not currently being
executed. Then it checks whether the event shares any variables with other events
currently being executed. If this is the case, the event cannot be scheduled. Finally,
it checks if there are any idle nodes that can execute the event. After a slave node
has executed an event, it returns the updated values of all variables involved in the
event to the master node, after which the variables can once again be accessed by
other events.

When all guards of a machine are false, the scheduler is considered to be
deadlocked. This is often a desired termination state. However, some systems
will always have a guard evaluating to true and can thereforeexecute infinitely.
This is often the case in reactive systems that are designed to execute forever. A
system of this type has to be terminated manually. An Event-Bmachine is said to
be deterministic if only one guard is true at any time. Such machines will not gain
any speed from parallel execution, as only one event can be executed at once.

14

Figure 12: Relationship between master and slave nodes.

Fairnessof events concerns the order of event execution. It is possible that
an event can be blocked by other events in execution, either because of mutual
exclusion or because all processors are constantly busy. Inthe former case, we
have implemented some fairness, by always checking the guards in different order.
Every time the scheduler iterates through the guards, it starts from a different
one. Otherwise, an event could constantly disable other events by always being
executed first. It is also possible to exercise manual control by editing theel
matrix. For example, a specific processor can be reserved fora given event.

4.2 Operation of Scheduler

In our parallel execution of Event-B models, we have a central master process
that schedules events to be executed on slave nodes, as illustrated in figure 12.
The master node has the most up-to-date state of the Event-B model and it takes
all scheduling decisions. Upon scheduling an event to a slave node, the master
node sends all the variables involved in the event to it. The slave proceeds to
execute the event and once finished, it sends back all the variables to the master
node. Then the master updates the master state of the model and frees up the
variables that were involved in the event.

4.3 Scheduler algorithms

The master node constantly schedules events to the nodes in aloop. It schedules
any event that satisfies all the conditions described above.The main scheduling
algorithm is expressed in pseudocode in figure 13.

After the scheduler has looped through all events once, it waits for a slave
node that has finished execution to send back the results. If no events are being
executed, then the program terminates. This algorithm is described in pseudocode
in figure 14.

The slave nodes have a different algorithm that they constantly loop through.
All the slave nodes continuously wait to be scheduled an event. After receiving an
index of an event to execute, they receive the values of the variables involved in

15

WHILE any guard true
DO iterate through events 1..n with i
IF event i is already running

THEN stop current iteration
IF variables involved in event i in use

THEN stop current iteration
IF the guard event i is false

THEN stop current iteration
IF event i has parameters

THEN randomise parameters
IF idle nodes available

THEN schedule event i to free node
send variables involved in event i to the node
IF event i has parameters

THEN send parameters to the node

Figure 13: Master node scheduling algorithm.

IF any events are currently in execution
THEN
wait until any node has finished execution
get index of executed event
receive variables involved in the event
free up variables involved in the event

ELSE send termination signal to all nodes

Figure 14: Master node receive results algorithm.

16

DO
receive an index of scheduled event
IF index equals termination signal
THEN terminate

receive the variables involved in the event
IF event has parameters
THEN receive parameters

execute event
signal master node that execution has finished
send back the variables involved in the event

Figure 15: Slave node algorithm.

the event and any parameters it might have. It then proceeds to execute the event
by using the variables it received. After finishing, it returns the updated variables
to the master node and idles until it is scheduled another event. This algorithm is
described in figure 15.

4.4 Scheduler logging facilities

We have implemented logging facilities for the scheduler, which can be used to
write a log file of how the scheduling occurred. Degerlund et al. developed a log
analyser in Java, which provides a graphical representation of the execution. We
have, however, not implemented any tools for log analysing.The scheduler has
the possibility to log the following events:

• Execution initialised / Amount of Nodes / Amount of events

• Eventi scheduled / To nodej / At iterationx

• Nodej finished / Event numberi executed successfully

• Program termination

By logging how many events that are scheduled for every iteration, it is possible
to analyse the parallel properties of the model. If the system seldom has sev-
eral events that can be executed in parallel, it cannot gain any significant speed
improvement by parallel execution.

5 Example: Factorisation

We now show how our method can be used in practice using an integer factor-
ization example. The scenario is that we have an integern, of which we want to
find the lowest factor (greater than 1). Ifn is a prime number, the result produced

17

should ben itself. The algorithm we use is trial division, which is in itself inef-
fective, but simple enough to show how our method works. The problem being
embarrassingly parallel, it is also easy to share the tasks between different pro-
cessors. The factorisation algorithm is performed by checking whethern mod i
is zero, for values ofi starting from 2 counting up to

√
n. If a factor has not been

found by then, it can be shown mathematically thatn is a prime number. Since
Event-B does not support square root, we instead usen/2 as our limit, which is
correct, albeit not as efficient. As soon as a match is found, the algorithm termi-
nates and the corresponding value ofi is returned.

The parallel version of the algorithm works in the same way, except that it
performs several trial divisions concurrently. Every process has a different set of
divisors, with the first one performing the modulo operationwith i and the second
one withi + 1, the third one withi + 2 etc. Instead of increasing thei variable
by one, we increase it with the process amount. In this way, every event uses a
different set of values fori. By definingn as a constant in the context, it can be
used by all events. Race conditions can not occur when accessing constant values
concurrently. The algorithm would normally be performed byhaving the same
function executed on every node, but with different parameters. Such algorithms
cannot be modelled in Event-B, so instead, several different events that perform
the same computations can be created. One drawback with thisis that a dynamic
number of threads cannot be used to execute the algorithm.

Test case modelling. In our test case, we have modelled parallel trial division
with three different events that perform modulo operationssimultaneously. For
every event, there are three associated variables: aniprocess variable that is used in
the modulo operation, aresultprocess variable for storing the result of the modulo
operation, and a Boolean variable calledcontinueprocess for controlling program
execution. Theprocess subscript denotes a process number, which in our model
is 1, 2 or 3. The variableiprocess is increased by 3 after every trial division, so that
all events have a different set of values foriprocess. Thecontinueprocess variable
has to be true for the trial division to be carried out, and after execution, it is set
to false by the event. A fourth event, calledcheck, sets all thecontinue Booleans
to true if no divisor ton has been found, and if is there is still a possibility to find
one. The program continues until the smallest divisor ton has been found, or until
each counteriprocess has exceededn/2 . In the latter case,n is a prime, as it has
no other factors other than 1 and itself.

Results. We executed the model successfully, with different values for n, on
a computer with eight cores. The algorithm was modelled as one machine and
one context, both in Event-B0 form. The model was automatically translated to
C++ code by our code generator. By computing and examining the event-event
matrix of the code, we can see that events 1 to 3, the trial division events, share
no variables. Hence, they can be executed in parallel. Eventnumber 4 is the event

18

that checks the result. It is involved with the variables of events 1 to 3 and can
therefore not be scheduled while any other events are running. A slightly amended
version of the model can be found in appendix A.

6 Conclusions and future work

In this paper, we have proposed an approach to code generation using the Event-B
formalism, as well as scheduling and execution of the resulting code. Software can
be modelled and refined in the established Event-B tool (the RODIN platform) in
the standard way, but the last refinement step has to comply with Event-B0, which
is a subset of the Event-B language. Event-B0 is inspired by the B0 language of
the Atelier B tool used for the classical B method, an it only contains constructs
that can be easily translated into C++. While the correspondence between the two
languages has not been formally proven, Event-B0 has been carefully designed
to contain only constructs that have a very close correspondence to C++ code.
Events are translated to C++ methods, and the constructs allowed in the events are
restricted. Translation from Event-B0 to C++ has been implemented as a plug-in
for the RODIN platform.

We have also developed a scheduler, written in C++, that is used to execute
the generated events (methods). Execution adheres to the commonly used be-
havioural semantics of Event-B, in which enabled events arenon-deterministically
chosen for execution, and the program terminates when all events are disabled.
The scheduler makes use of the fact that events are assumed tobe atomic, and it is
therefore possible to schedule events in parallel, given that all events executed in
parallel have no variables in common. The scheduler uses theMPI (Message Pass-
ing Interface) framework to schedule events on different processors in a network,
or on different cores of a multi-core processor.

Related and future work. Code generation for Event-B and related formalisms
has also been studied elsewhere. The Atelier B tool for the classical B method
defines a B0 language [5], from which its code generator is able to produce C/C++
or Ada code. The intermediary B0 language serves the corresponding purpose as
Event-B0 in our work, and Event-B0 is in fact inspired by B0. Atelier B does
not take a stand on a behavioural semantics, and the operations (cf. events in
Event-B) are simply translated into functions in the targetlanguage, but have to
be explicitly called upon by the programmer. Consequently,Atelier B does not
provide a scheduler, nor does it explicitly take a stand on concurrent execution. A
scheduler that can be used with (slightly modified) code generated from Atelier B
has, however, been developed by Degerlund et al. [6]. This scheduler is intended
for use in B Action Systems, and it also constitutes the code base for the scheduler
of this paper.

A code generator for Event-B similar to ours has been developed by Wright

19

[22]. It was, however, developed for the purpose of a virtualmachine project, and
was not intended to be an all-round tool. Our code generator can be seen as an
extension, taking Wright’s work one step further towards a general tool. A similar
tool, EB2ALL, with C, C++, C# and Java code generation has been developed at
Loria [15]. To our knowledge, it focuses strictly on code generation, and does not
take a stand on scheduling. Edmunds has suggested an Event-Bcode generation
approach [7] in which the developer can express control flow information in a lan-
guage called OCB (Object-oriented Concurrent-B). The target language is Java,
and concurrent execution is supported. This method gives the developer more
control over the execution of the final program, which is sometimes a desired fea-
ture. It is, however, a different design philosophy as compared to ours, where we
rely on the established Event-B behavioural semantics and let the scheduler auto-
matically take care of the scheduling in such a manner that adheres to the seman-
tics. This approach has also been further developed by Edmunds and Butler and
adapted to ADA code generation [8]. Another approach to Event-B scheduling
has been proposed by Boström [3]. Boström’s work, which focuses on sequential
programs, relies on explicit schedules given in a scheduling language, and pro-
poses a pattern-based approach to showing the correctness of imposing a given
schedule on an Event-B model. Related methods have been suggested by Iliasov
[13] and Hallerstede [11]. An approach that introduces support for concurrent
programs has also been suggested by Boström et al. [4].

The automated “on-the-fly” scheduling of our approach has the advantage that
it very closely preserves the usual behavioural semantics of the models. It also fa-
cilitates for the developer, since the execution order of the events is automatically
decided by the scheduler during run-time. On the other hand,the lack of explicit
control flow also poses a challenge. Since the events are scheduled one by one
on different processors/cores, the communication overhead is sometimes large.
Future work includes evaluating how this affects the practical use of our method,
and also investigating means of (automatically) scheduling groups of events, or
repetitive execution without involving the scheduler. Thechallenge constitutes
achieving this in a way that adheres to the standard behavioural semantics and,
thus, would not require the introduction of explicit control flow structures.

References

[1] J.-R. Abrial.Modeling in Event-B - System and Software Engineering. Cam-
bridge University Press, 2010.

[2] R.J.R. Back and R. Kurki-Suonio. Decentralisation of process nets with
centralised control. InProc. of the 2nd ACM SIGACTS-SIGOPS Symp. on
Principles of Distributed Computing, pages 131–142, 1983.

20

[3] P. Boström. Creating sequential programs from event-bmodels. InPro-
ceedings of the 8th international conference on Integratedformal methods,
IFM’10, pages 74–88, Berlin, Heidelberg, 2010. Springer-Verlag.

[4] P. Boström, F. Degerlund, K. Sere, and M Waldén. Concurrent scheduling
of event-b models. InProceedings 15th International Refinement Workshop,
pages 166–182, June 2011.

[5] ClearSy. B language reference manual version 1.8.6.
http://www.atelierb.eu/ressources/manrefb1.8.6.uk.pdf.

[6] F. Degerlund, M. Waldén, and K. Sere. Implementation issues concerning
the action systems formalism. InProceedings of the Eighth International
Conference on Parallel and Distributed Computing, Applications and Tech-
nologies, PDCAT ’07, pages 471–479, Washington, DC, USA, 2007. IEEE
Computer Society.

[7] A. Edmunds.Providing Concurrent Implementations for Event-B Develop-
ments. PhD thesis, University of Southampton, 2010.

[8] A. Edmunds and M. Butler. Tasking Event-B: An extension to Event-B for
generating concurrent code. InPLACES 2011, 2011.

[9] T. Gangadharappa, M. Koop, and D. K. Panda. Designing andevaluating
mpi-2 dynamic process management support for infiniband. InProceedings
of the 2009 International Conference on Parallel Processing Workshops,
ICPPW ’09, pages 89–96, Washington, DC, USA, 2009. IEEE Computer
Society.

[10] R. Grönblom. A framework for code generation and parallel execution of
event-b models. Master’s thesis,Åbo Akademi University, 2009.

[11] S. Hallerstede. Structured Event-B models and proofs.In Abstract State
Machines, B and Z, volume 5977 ofLNCS, pages 273–286. Springer-Verlag,
2010.

[12] S. Hallerstede. On the purpose of event-b proof obligations. Form. Asp.
Comput., 23:133–150, January 2011.

[13] A. Iliasov. On Event-B and control flow. Technical Report CS-TR-1159,
School of Computing Science, Newcastle University, 2009.

[14] B. W. Kernighan and D. Ritchie.The C Programming Language. Prentice-
Hall, 1978.

[15] Loria. EB2ALL. http://eb2all.loria.fr/.

21

[16] Message passing interface forum. http://www.mpi-forum.org/.

[17] MPICH2 website. http://www.mcs.anl.gov/research/projects/mpich2/.

[18] RODIN platform website. http://www.event-b.org.

[19] K. Sere. Stepwise Derivation of Parallel Algorithms. PhD thesis,Åbo
Akademi University, 1990.

[20] B. Stroustrup.The C++ Programming Language. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2000.

[21] M. Waldén and K. Sere. Reasoning about action systems using the b-method.
Form. Methods Syst. Des., 13:5–35, May 1998.

[22] S. Wright. Using eventb to create a virtual machine instruction set architec-
ture. Abstract State Machines, B and Z, pages 265–279, 2008.

22

A Factorisation model

MACHINE TrialDiv

SEES TrialDiv Context

VARIABLES

i 1

i 2

i 3

result 1

result 2

result 3

continue 1

continue 2

continue 3

INVARIANTS

inv1 : i 1 ∈ −2147483648 .. 2147483647

inv2 : i 2 ∈ −2147483648 .. 2147483647

inv3 : i 3 ∈ −2147483648 .. 2147483647

inv4 : result 1 ∈ −2147483648 .. 2147483647

inv5 : result 2 ∈ −2147483648 .. 2147483647

inv6 : result 3 ∈ −2147483648 .. 2147483647

inv7 : continue 1 ∈ BOOL

inv8 : continue 2 ∈ BOOL

inv9 : continue 3 ∈ BOOL

inv10 : n ≥ 4

inv11 : n ≤ 2147483647

inv12 : n/2 + 3 ≤ 2147483647

EVENTS
Initialisation

begin
act1 : i 1 := 2

act2 : i 2 := 3

act3 : i 3 := 4

act4 : result 1 := −1

act5 : result 2 := −1

act6 : result 3 := −1

act7 : continue 1 := TRUE

act8 : continue 2 := TRUE

act9 : continue 3 := TRUE

23

end

Event process1̂=

when
grd1 : continue 1 = TRUE

grd2 : i 1 ≤ n/2

then
act1 : result 1 := n mod i 1

act2 : i 1 := i 1 + 3

act3 : continue 1 := FALSE

end

Event process2̂=

when
grd1 : continue 2 = TRUE

grd2 : i 2 ≤ n/2

then
act1 : result 2 := n mod i 2

act2 : i 2 := i 2 + 3

act3 : continue 2 := FALSE

end

Event process3̂=

when
grd1 : continue 3 = TRUE

grd2 : i 3 ≤ n/2

then
act1 : result 3 := n mod i 3

act2 : i 3 := i 3 + 3

act3 : continue 3 := FALSE

end

Event check=̂

when
grd1 : result 1 6= 0

grd2 : result 2 6= 0

grd3 : result 3 6= 0

grd4 : i 1 ≤ n/2 ∨ i 2 ≤ n/2 ∨ i 3 ≤ n/2

then
act1 : continue 1 := TRUE

act2 : continue 2 := TRUE

act3 : continue 3 := TRUE

end

END

24

CONTEXT TrialDiv Context

CONSTANTS

n

AXIOMS

axm1 : n = 479001599

END

25

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Information Technologies

Turku School of Economics
• Institute of Information Systems Sciences

ISBN 978-952-12-2685-4
ISSN 1239-1891

