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Abstract

Event-B is a tool-supported specification language thatbmansed e.g. for the
modelling of concurrent programs. This calls for code gatien and a means
of executing the resulting code. One approach is to predaereriginal event-
based nature of the model and use a run-time scheduler arghgeepassing to
execute the translated events on different computatiovdés. While constitut-
ing a straightforward method, it involves considerable oamication overhead, a
problem aggravated by the fine-grained nature of eventsém&B. In this paper,
we consider the efficiency of such a solution when applieddomapute-intensive
model. In order to mitigate overhead, we also use a methowiay computa-
tional nodes to repeat event execution without the invokeinof the scheduler.
To find out under what circumstances the approach perfornss efficiently, we
perform an empirical study with different parameters.

Keywords: Parallel computing, Event-B, Scheduling, Message pasdtifii;
ciency
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1 Introduction

Event-B [2] is a formal modelling language based on set foangers and the
stepwise refinement approach. While designed for fullesystnodelling, it can
also be used for correct-by-construction software devetay. Event-B also has a
parallel interpretation, which allows for the modellingomincurrent systems. Tool
support for Event-B has been achieved through the operesdrodin platform
[3, 4, 27], to which further functionality can be added in tben of plug-ins.

Code generation from Event-B can be achieved in a numbeffefeint ways.
A straightforward approach that preserves the event naagdeen proposed in
[12, 18], for which a preliminary plug-in has been developédthis approach,
the model is translated into a C++ class, where events agetljitranslated into
methods. The methods are invoked using a separate scheahieh in turn
deploys the MPI (Message Passing Interface) [24] libraycineve parallel exe-
cution on a multi-core/multi-processor system, or even oluster. This solution
has the advantage that code execution very closely refleetsgerating mecha-
nisms of the Event-B model. An additional benefit is that $ioatloes not require
the developer to take a stand on specific schedules and gravéhey are com-
patible with the original model.

However, this approach has a potentially serious drawhbatke amount of
overhead introduced by the scheduler and the MPI commumicaDue to the
practical nature of communication overhead, we recogrnaeit is difficult to
evaluate the impact from a strictly mathematical-logicaigpective. The purpose
of this paper is, instead, to evaluate the viability of theextuling approach by
performing an empirical study. Since preliminary testddate that the overhead
is unacceptably large, we propose a means of repeatingtexecd events with-
out the involvement of the scheduler. The repetitive apgraa implemented as
part of the scheduling platform, and we let a factorisatiauei serve as a testbed
for benchmarking. This technical report constitutes aemrotéd version of a pre-
viously published conference paper [11]. We here providktexhal background
information as well as a more detailed description of oueaesh than in the orig-
inal article.

The rest of the paper is structured as follows. We first discakated work
in Section 2. In Section 3, we present background inforrmatio the Event-B
formalism to the extent needed for understanding this pafderalso discuss how
the models can be translated into a programming language)(C3ection 4 is
dedicated to concurrent scheduling of models. We also diélalommunication
overhead and propose a repeating approach to improve etficien Section 5, we
present the factorisation model that serves as the testbedif study, whereas we
in Section 6 discuss how the actual benchmarking takes .pleayive a number
of test configurations that we have used for the test runst afttich we present
the resulting execution times as well as an interpretatensof. Finally, we sum
up the paper and draw conclusions in Section 7.
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2 Related Work

Unlike the classical B method [1], which focuses ora@rect-by-construction
approach, Event-B [2] was designed with system-level miodein mind, but it

can also be used for pure software development. The formdlgs its roots in B
Action Systems [30], based on the Action Systems formal@nyhich has been
used e.g. for the derivation of parallel algorithms [28]. &sesult, Event-B is
also suitable for modelling of parallel software. The us&wént-B is facilitated
by the Rodin platform [3, 4, 27], which provides tool suppint the formalism.

Rodin is based on the Eclipse framework [14], and custom-plagan also be
used in the platform to provide additional functionality.

The Event-B scheduling approach we evaluate in the papeassdoon [12,
18], which in turn has its roots in [13]. It is superficiallylaged to the concept
of animation as in the ProB [22], AnimB [25] and Brama [29] gluns for the
Rodin platform. However, animation can be seen as a suppi@myemethodol-
ogy during the modelling and development stage, while war(d%2, 13, 18])
use automated scheduling as a means of executing the firalgererated from
the model. Furthermore, parallelism is typically not supgad in animation, since
the primary goal of animation is to analyse models insteaatcbfeving efficient
execution.

Another approach to scheduling of Event-B models has bdemta papers
[21], [19] and [8]. The basic idea is to provide the modeldwakplicit (sequen-
tial) control flow information expressed in dedicated sclied) languages. The
developer then has to prove that the desired control flow risecbwith respect
to the typical Event-B behavioural semantics discusse@ati@ 3. This kind of
scheduling can also be extended to handle parallelism [@jvever, an important
difference as compared to the method we study is that scingddécisions are
taken and proven correct by the developer at the modelleqgestThe approach
we explore can instead be regardesaghe-flyscheduling, where the scheduler
takes scheduling decisions duringh-timebased on the current state. This elimi-
nates the need for explicit schedule design and associetefspbut may, on the
other hand, induce a performance penalty.

A means of scheduling is also proposed in [23] for use withecobtained
by the Event-B to C/C++/C#/Java code generator EB2ALL, Wlitee authors
present in the paper. However, to our knowledge, it suppmiis sequential exe-
cution, and therefore operates in a setting different fioenane we consider here.
An approach that does support parallelism is given in [1bre Event-B models
are translated into Java for concurrent execution. Thedsdbs are expressed by
the model developer in a dedicated language called OCB (®bjeented Concur-
rent B). In that sense, it bears similarities to the develgobeduled approaches
discussed above, in contrast to an on-the-fly approach. Htlead has also more
recently been adapted [16] for use with the Ada language.
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3 Event-B and Code Generation

3.1 TheEvent-B Formalism

Models in Event-B consist (dtaticanddynamicparts, denotedontextsandma-
chinesrespectively. Contexts may contain eegnstantscarrier setsandaxioms
and can be used by one or several machines. Machines, ircantain elements
such asvariables eventsandinvariants The variables form the state space of
the model, whereas events model atomic state updates. Ehalso a special
initialisation event that gives initial values to the variables. The irasairi (v)
is used to assign types to the variables, as well as to reffitewalid state space.
Consequently, the initialisation event mastablistthe invariant, whereas the rest
of the events mugireservat.

Each event, except for the initialisation, containguard G(v) and anaction
v | A(v,v’). The guard contains a condition that must hold in order ferevent
to be allowed to take place, whereby the event is said tertadled The action
describes how the state space is to be updated once the gesraled and trig-
gered. An event can be expressed in the following general f20]:

E 2 when G(v) then v ;| A(v,v') end

Here,v andv’ represent the variables before and after the event has pdd&ee,
respectively. The operatof represents non-deterministic assignment, whereby
v 1| A(v, ') intuitively means that the variablesare updated in such a way that
the before-after predicatel(v, v’) holds. A special case of the non-deterministic
assignment operator is the deterministic assignment, hichwclosely resembles
the assignment operator in standard programming langubliges that the initial-
isation event is an exception, containing only an actiomiouguard. It also does
not depend on a previous state.

Refinement [5, 7, 31] is a key concept in Event-B, enabling @éstb be de-
veloped in a stepwise manner. The idea is to achieve a chaodéls, beginning
from an abstract one and gradually turning it into more cetecones. For each
step, it must be shown that the new model is correct with i@dpethe previous
one. We omit a detailed description of refinement in this pagpi@ace we only
focus on the last refinement step, which is the one to be ctawéo program
code.

Event-B does not mandate any specific behavioural semairtgtead, it de-
fines a number of proof obligations, and any semantics cabipatith them can
be used. Typically, the same behavioural semantics as ifttien Systems
formalism is deployed, and that one has also been used ipapeyr. First, the ini-
tialisation event is executed, after which the rest of thexakon can be thought of
as the events of the machine residing inside a loop. In eaddtibn, any enabled
event is non-deterministically chosen for execution, dellbop only terminates
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when no event is enabled any longer. This can be interpratadiaadlock situa-
tion in control systems, but for the input-output focuseddels we are interested
in, it corresponds to termination.

3.2 Code Generation

Event-B does not specify how to generate executable code rinodels, and the
Rodin tool in its basic form cannot translate models into@pamming language
without the use of extensions. However, a number of diffeegaproaches have
been proposed. In [32], a code generator plug-in was degdlofi was mainly
intended for use as part of a virtual machine project, angeupd translation of
the most important Event-B constructs. This approach weenta step further
towards a more general-purpose tool, albeit an experirhen&g in [12, 18]. The
model first has to be refined according to the Event-B refinémes (e.g. using
the Rodin tool) until the events only contain concrete cwtss that have direct
equivalents in C++. The guard of the event is translatedameethod returning
a boolean value reflecting enabledness, whereas the aesatis in a separate
method containing the C++ equivalent of its assignment® ifilba was that the
resulting methods could be invoked by an accompanying steed

The testbed model (see Section 5) we benchmark in this p&eetién 6) is
based upon a model originally used in [12, 18], and the tededlcode thereof.
The model has, however, been amended in ways that could nioardied by
the translation plug-in, and the code used for in this papet to a certain de-
gree, been translated manually. Even though we here relyamuatly generated
code for evaluation of the scheduling approach, the prosesme-consuming
and error-prone. Due to the latter, in particular, manuwaidlation may negate the
correctness benefits of formal methods and does not camstitcealistic option
for use in industrial projects. A possible path forward wbbk further devel-
opment of the code generator of [12, 18]. An alternative aaphh would be to
use the translation tool EB2ALL, even though adaptationgldbave to be made
for the resulting code to be in a form compatible with the debsscheduling as
discussed in the next section.

4 Scheduling

4.1 Scheduling Platform

When an Event-B model has been translated into C++ code, amwéachedul-
ing the resulting code is required. Since we in this papelrdgezested in eval-
uating the viability of run-time scheduling, we need a schieg platform that
can invoke the methods that have been translated from thesevA prototype
version of such a scheduler, called ELSA, was developed3hfft running code
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generated from the Atelier B tool [10] when used for develgpB Action Sys-
tems. The goal was to be able to execute the code of comptgtesive models
in parallel on a multi-processor computer or a cluster usiiegMPI framework.
In [12, 18], ELSA was adapted for use with code translatethfEevent-B mod-
els using a plug-in developed as part of the same researchuséihis Event-B
compatible version of ELSA for the evaluations performedhis paper, but we
have improved it further in a number of ways, e.g. to handkeBéhtegers and to
support repetition of events as presented in Section 4.2.

The scheduler code, which is written in C++, technicallysas part of both
the scheduling process and a number of slave processesod@eakes a separate
execution path on the scheduling process than on the exents#ng slave pro-
cesses, reflecting the different roles they play. The pseseare mapped to phys-
ical processors or cores by the MPI framework, which the delireg software
uses for all inter-process communication. Communicaties place according
to a star topology with scheduling process is in the cenekeghting event exe-
cution to the slaves. The scheduling process keeps tratledtate space of the
model, and when delegating an event for execution, it subthé current values
of the variables involved to the slave. When the slave hasutgd the event, it
returns the updated values of the variables to the schegphocess. To avoid
conflicts, events that have variables in common must not lhedsded in parallel.
It is also the responsibility of the scheduler to verify thaénts are enabled prior
to delegating them. Enabledness is easy to check, sincaitlrdgare translated
as boolean functions separate from the event actions. Though simplified,
the workings of the scheduling process can be explained eckity events for
enabledness and delegating them for execution to slavesrghaurrently not pro-
cessing any other events. This takes place until no eveatsrabled, whereby
the scheduler terminates execution. A more detailed gegmmiof the scheduling
algorithm can be found in [12, 18].

4.2 Repeated Execution of Events

The scheduler in its basic form, as described above, hasctigaigoroblem that
needs to be tackled. After initial testing, it became evidéat the overhead
involved outweighs the benefits that parallelism can preyvigsulting in poor
execution times. The heart of the problem is not only the loead in itself, but it
becomes particularly problematic when combined with the-§rained nature of
Event-B events (or the corresponding C++ code). Eventsatarumtain structures
such as sequential composition or loops, and complex betavistead has to be
modelled in an alternative way, such as by repeated execatievents.

The scheduling approach above would imply that if an eveakéexcuted sev-
eral times in a row, the scheduling processes would be iedbia every invo-
cation, resulting in excessive overhead. For this reasenhave amended the
scheduling platform so that the slave processes may exacu@eent several times
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on their own. Before the scheduling process first delegatesent, it verifies the
enabledness and passes on the values of the variables tawa@rocess as pre-
viously described. However, after execution, the slaveksevhether the event
is still enabled. If that is the case, it may run it again withany involvement
of the scheduling process. This procedure may take plaaadimes, until the
event has been executed at mB&PEATtimes (including the initial execution
delegated by the scheduling process), after which the addeariable values are
reported to the central scheduler. The consRBPEATcan be seen as a pa-
rameter of the scheduling platform, and it applies to aNelprocesses and, in
principle, to all events. However, since events may diséidenselves even af-
ter only one or a few consecutive executioREPEATIs to be seen as an upper
limit. Also note that an event does not automatically becdisabled after being
executedREPEATtimes, but to continue running it, it must once again be chose
for execution by the scheduling process. In fact, the répatmechanism has no
impact on the enabling/disabling of events, and it openattsn the limits of the
behavioural semantics as described in Section 3.1.

5 Testbed Model

A suitable testbed model for our study should be computnsive, easily paral-
lelisable, convenient to express, and, for generalityepsasentative as possible
of how other high performance computation models would lpgessed in Event-
B. The generality of the model is particularly importanthce our goal is to draw
as universal conclusions as possible on the viability ofsitieeduling approach.
We find that an integer factorisation example given in [13,fd8the most part
fulfils these requirements. However, since we have madeavepnents to the
scheduling approach as compared to [12, 18], especiallgtbyducing repetition
of events, we have also revised the model accordingly.

The goal of the model is to find a factor of a given integesuch that it is
greater than or equal to 2 and less tharHowever, ifn is a prime number, the
result reported will be: itself. The approach we take is based on trial division.
While there are much more sophisticated factorisationrdlyos available, they
are not as straightforward, resulting in models much mdifecdit to follow and
evaluate. We are also not primarily interested in evalggttive efficiency of the
algorithmper se but rather that of the scheduling method.

At the core of the model are the factorisation eventsxess]process2etc.,
up till the number of computational slave processes. Thgglly corresponds to
the number of hardware computational nodes (processormes)cto be used for
slave computations. The Event-B notation of the factonsatvents, in a model
designed for two computational processes, is given in EiguiNote that we use
separate events instead of parametrisation, since we haifddtorisation events
to be separate from each other. It was also of utmost impeetdnat the model be
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processt2

when
continue_1 > 0
result_1 # 0
i-l<n/2

then
result_1 := n mod i_1
i.1:=1.1+ STEP
continue_l := continue_1 — 1

process2

when
continue_2 > 0
result 2 # 0
i2<n/2

then
result_2 := n mod i_2
12:=12+ STEP
continue_2 := continue_2 — 1

end end

Figure 1: Factorisation events for two computational psses.

expressed in such a way that the factorisation events havariables in common,
since the scheduler would otherwise be unable to run therarialpl. They may,
nevertheless, refer to the same constants.

There are variables 1, i_2, etc., associated with the respective factorisation
events. Variablé_1 is initialised to the value 2 (i.e. 1+1),2 to the value 3 (i.e.
2+1), etc., and each time a factorisation evenis executed, it checks whether
the constant: is divisible by the current value of its associated variabte. If
that is the case, a factor has been found. To distribute thk @@nly among the
processes;_m is after each trial division incremented by a constamER con-
taining the number of factorisation events in the model.dditon to the variable
i-m, each factorisation event is also associated with a countemtinue_m.
Initially set according to a consta@®ONTINUES it is decreased by 1 after every
trial division. By checking thatontinue_m > 0 as part of the guard, the number
of consecutive executions of each factorisation eveningeéid toCONTINUES

Since the factorisation events must not have any variablesmmon, they
cannot directly check whether another event has found arfa¢tis is where a
synchronisation eventewroundcomes into play. After the factorisation events
have been executed for a maximum@DNTINUEStimes, they disable them-
selves, and can only be re-enabledn@wround provided that none of them has
already found a factor. The listing forewroundis given to the left in Figure 2.
Note thatnewroundis disabled if the value of all variablesm is greater than
n/2. Each of them factorisation events also disables itself if the corresiam
i-m exceeds:/2. This is because a factor (less thaitself) cannot exist beyond
this threshold. It would actually be enough to check numbprsil \/n, but since
Event-B does not support square root, we ug2as the limit.

In the case that no factorisation event finds a factor, andsallexceedn /2,
eventfoundObecomes enabled. This event is shown to the right in Figuea@,
it sSimply sets a variableesult storing the final result, te. There are also events
foundl, found2 etc., related to the factorisation eveptecess]process2etc.,
respectively. These events, as shown in Figure 3, setethdt variable to the
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newrounds found0=
when when
result_1 # 0 A result_2 # 0 result_1 # 0
=il >n/2Ni2 >n/2) result 2 # 0
continue_l < CONTINUES result = —1
Veontinue_2 < CONTINUES i-1>n/2
then i2>n/2
continue_l := CONTINUES then
continue_2 := CONTINUES result :=n
end end

Figure 2: Events for re-enabling the factorisation evelaft)(and for finalising
when it becomes clear that the number is prime (right).

found1= found2=
when when
result_ 1 = 0 A result = —1 result_2 = 0 A result = —1
then then
result :=i_.1 — STEP result == 1.2 — STEP
end end

Figure 3: Events for finalising when process 1 (left) or pesc2 (right) has found
a factor.

value found by their associated factorisation events. Nudéeven though the
final result has been found onfmundOor any of thefoundl, found2 etc. events
has been executed, there is a possibility that one or sevkthk factorisation
events may still be executed several times afterwards. dridesired behaviour
is a side effect of the independence of events, and it is agtgd by setting the
CONTINUESconstant to a large value. The choice of valueG&@NTINUESs,
however, a trade-off, since setting it to a value that is toalsresults in excessive
synchronisation by theewroundevent.

In Figure 4, we give a sequential C++ function designed tdoper factori-
sation similarly to the model presented above. A progranedas the function
is used as comparison in Section 6 when evaluating the eitigief the parallel
model. Though designed to resemble as closely as possilelguestial version
of the algorithm above, there are a number of differencesekample, since the
program is sequential, it obviously contains no synchiatros or other process-
related mechanisms, resulting in much simpler code. Theesgal version also
always finds the lowest factor greater than or equal to 2, edsethe Event-B
model may find a greater factor depending on the relativerpesgof the pro-
cesses.



| ong I ong factor(long long n) {
long long i = 1;
long long res = -1,
while(i <n/2 & res !'=0) {
i ++;
res =n %i;
}
if(res == 0) return i; else return n;
}

Figure 4: The C++ function for sequential factorisationdiae comparison.

6 Benchmarking

6.1 Approach

Performance of the scheduling approach discussed in pregiections has been
evaluated by scheduling the testbed model on a multi-caréAprocessor system
using different parameters. The scheduler was compileetheg with the C++
translation of the model using the GNU Compiler Collecti®@CC) [17] with the
maximum (O3) level of optimisation. Since some parametezsevpart of the
model and could not be changed afterwards, we technicaltypded different
models with minor changes from each other. To facilitatépsioig for bench-
marking purposes, we also slightly modified the schedulevelsas the model
code to support additional parametrisation. We do not exiiese changes to
have disrupted test results by having any relevant impapeoformance.

The system used for the test runs consists of two Xeon E5486 (3Hz)
processors, each of which has four computational coresjimgra GNU/Linux
operating system and the MPICH2 [26] implementation of MRhile the nu-
mericalresults will be dependent upon factors such as the clockiénecy of the
processors, instruction set architecture, performandbeo$ystem memory, etc.,
we believe that thénterpretationof the results is representative of modern com-
puter systems with similar topology (e.g. the same numberreéessor cores).
This is because we are mainly interested in the overallbdagiof the schedul-
ing framework and the impact of different parameter valugsice all our test
runs, including the comparison with a sequential prograemelbeen done on the
same system, the results are mutually comparable to eaeh oth

6.2 Parametersand Results

From the perspective of the scheduling platform, there spe&ally two param-
eters of interest: the number of slave processes and the gAREPEATused in
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\ H Run 1\ Run 2\ Run 3{Run 4Run ﬂRun 6\ Run 7H Mean\

Sequential|| 13.37]13.36| 13.36| 13.36| 13.36| 13.36| 13.36|| 13.36
Par.c = 10| 91.4285.52(90.45| 92.00| 85.37| 91.34| 87.43(/89.08
Par.c = 10| 16.57/ 16.59| 16.78| 16.63| 16.94| 16.55| 16.07|| 16.59
Par.c = 10%|10.23/10.28| 9.92{10.17| 9.57 | 10.18| 10.26(/10.09
Par.c =10°| 9.29] 8.90| 9.31| 9.55| 9.38| 8.68| 9.60 || 9.24
Par.c =10°| 9.19] 9.46| 8.13| 9.13| 8.82| 9.19| 9.24 || 9.02
Par.c = 107] 9.31| 8.47| 9.44] 9.15] 9.18| 9.32| 9.33| 9.17
Par.c = 10°| 9.26 | 9.48| 9.47| 9.46 | 9.49| 9.58| 9.38 | 9.45
Par.c = 107| 9.51| 9.44| 9.54| 8.70| 9.46| 9.51| 9.30| 9.35

Table 1: Test runs with 3+1 processess 2,147,483,647.

the scheduler. Important parameters related to the model,are. the number

to factorise, and the value of the const@@NTINUES Even though we will not
mention it explicitly from now on, the number of slave proges also has impli-
cations on the model in that the number of factorisation &s/kas to match, and
the value ofSTEPmust be set accordingly. Furthermore, we decided to keep the
values of REPEATand CONTINUESbound to each other, even though it would
not absolutely have to be that way. We motivate our decissdoliows. The value

of REPEAT being a property of the scheduler, may have an impact ondtferp
mance of execution, but it does not change the logics of théetndn contrast,
CONTINUESIs part of the model, which is nevertheless constructed aoyre

a correct result for different values @ONTINUES A value of REPEATless
than CONTINUESwould imply that there may be unnecessary involvement of
the scheduler even in cases where the slave processes eveldden repeatedly
executed events on their own. Since the model is not awarteeahtpact of the
repetition mechanism of the scheduler, though interryptegbuld not even have

a chance of synchronising by executing ti@vroundevent. AREPEATvalue
greater thartCONTINUESIs also not motivated, since repeated execution of the
factorisation events would be limited IGONTINUESanyway.

For each set of parameters, we performed eight timed test rtihe initial
one was disregarded, since it may not be comparable shob#kguent execu-
tions have any caching benefits. The timings of the subse¢gesan executions
(numbered 1-7) were recorded, and the mean value was cothpite time unit
used was seconds and fractions thereof. Our first set of rasperformed with
the parametet = 2,147,483,647 with three slave processes. An additicnagss
was used for the scheduler, so technically, the executimivad four processes.
Note that we chose to be a prime number in order to achieve benchmarking
times long enough to draw conclusions. We ran several subsetest sets, with
the values of: = REPEAT= CONTINUESbeing10?, 103, ..., 10%, respectively.
The results are shown in Table 1.

As can be seen in Table 1, with thevalue set to 100 (i.eL0?), the execution
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\ H Runl\ Runz\ Run3\ Run4\ RunS\ Run6\ Run7H Mean\

Sequential|| 498.63| 427.11| 549.03| 448.51| 555.63| 567.38| 516.91| 509.03
Par.c = 102 2844.532883.5(02850.312802.622846.892840.902864.31|2847.58
Par.c = 10%| 544.07| 555.74| 542.31| 560.58| 557.56| 552.23| 550.53| 551.86
Par.c = 10%| 320.24| 320.19| 319.80| 320.67| 320.69| 317.67| 318.21|| 319.64
Par.c = 10°| 292.76| 293.95| 293.61| 293.13| 294.09| 292.09| 292.34|| 293.14
Par.c = 10°| 288.50| 290.00| 290.34| 288.24| 290.16| 290.23| 288.50| 289.42
Par.c = 107 | 288.32| 286.88| 288.05| 288.52| 289.86| 296.57| 288.13| 289.48
Par.c = 10%| 289.03| 287.51| 289.40| 288.18| 287.32| 286.79| 287.81| 288.01
Par.c = 10”| 288.06| 288.29| 287.24| 288.24| 287.97| 288.34| 287.68| 287.97

Table 2: Test runs with 3+1 processes; 68,720,001,023.

times are several times higher than that of the sequentgram with a mean
value of 13.36 seconds for the sequential version versu3888conds for the
parallel one. It can be explained by overhead that, in th&ecés clearly not
outweighed by the potential benefits of parallelism. Thiapparently the case
even though the slave processes may allow the factorisawiemts to be executed
up to 100 times without involving the scheduling process.e Dwerhead may
in part be due to MPI communication, but also behaviour $jgeta the parallel
model, such as theewroundevent, may have an impact. Howevercifs set
to 1000, timings approach those of the sequential modelwatida ¢ value of
10000, the parallel model is faster at 10.09 seconds ongeeXalues ot beyond
10° do not seem to provide further gains, and execution times lewt at about
9 to 9.5 seconds, which constitutes approximately 70% ofraim@ing time of
the sequential version. However, we also realise that exectimes of only
a few seconds may not necessarily be representative ofrperfce in general.
For example, the time taken to initialise the schedulingfpien may have an
unduly large impact. Therefore, we performed a new set dfrtess with the
same parameters, except for setting the value td 68,720,001,023, which is
also a prime number. We present the results in Table 2.

The general pattern turned out to be the same as for the Ialee vfn. For
ac value of 100, execution times are poor in this case, as walfrbm ¢ = 10000
and beyond, we see performance gains. While they also lewdbohigher val-
ues ofc, execution times are around 50%-60% as compared to thespomding
sequential program. This is better than in the previous.cHesvever, we were
also interested in testing how the framework scales whenuh#er of processes
increases. Therefore, we did yet another set of test runkepfethe value of: at
68,720,001,023, but increased the number of slave prac&ssex, in addition to
the scheduling process, which is always present. The seardtgiven in Table 3.
Note that the sequential test runs used for comparison wenedone, since the
value ofn remained unchanged.

While we see the same pattern as before, execution timesoasederably
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\ H Runl\ Runz\ Run3\ Run4\ RunS\ Run6\ Run7H Mean\

Sequential|| 498.63| 427.11| 549.03| 448.51| 555.63| 567.38| 516.91| 509.03
Par.c = 102 2574.732074.182609.962647.202494.592577.472632.28/2515.77
Par.c = 10%| 338.11| 319.87| 347.55| 335.40| 324.07| 348.34| 346.58| 337.13
Par.c = 10*| 159.96| 137.46| 165.59| 141.58| 160.85| 158.15| 153.70|| 153.90
Par.c = 10°| 147.62| 146.77| 147.72| 147.02| 121.49| 148.72| 146.45| 143.68
Par.c = 10°| 113.44| 144.23| 136.24| 145.56| 145.35| 145.51| 145.68| 139.43
Par.c = 107 | 145.03| 145.50| 134.56| 146.20| 129.59| 145.29( 146.63| 141.83
Par.c = 10%| 119.44| 146.29| 144.89| 134.04| 145.75| 139.15| 130.20| 137.11
Par.c = 10| 140.61| 120.94| 139.71| 138.91| 140.97| 142.09| 141.35|| 137.80

Table 3: Test runs with 6+1 processes; 68,720,001,023.

shorter. The scenario whete= 100 is still highly inefficient, but it is nonetheless
slightly faster than with three slave processes. We alse tiwit for ac value
of 1000, performance is now better than for the sequentiapasison, whereas
it was a bit slower than sequential in the 3+1 set-up.cAt 10000, and espe-
cially from ¢ = 10°, where the levelling out seems to start, performance islgrea
increased as compared to using three slave processes. dhovaues of:, exe-
cution times in the 6+1 process set-up are around half okthothe 3+1 setting,
indicating a good scalability of the scheduling approach.

7 Conclusions

In this paper, we have performed an empirical study on theieffty of MPI-
based parallel scheduling of compute-intensive code lastsfrom an Event-B
model. The purpose was to evaluate whether an on-the-flydstihg approach
taken is feasible from a practical perspective. We used sgeén factorisation
model as a testbed for the study. The main pitfall we susgentthe basic form
of the framework was that the overhead of the scheduler amdviRl library
communication would defeat the potential speed gains ddligdism. This is
because individual events in Event-B are typically very-fynained.

In an attempt to mitigate excessive overhead, we introdacedptimisation
in the form of repeated event execution without the involeahof the scheduler.
A benefit of this solution is that it directly reduces the coomeation overhead.
The repetitive behaviour introduced is compatible with dhiginal behavioural
semantics typically used in Event-B, and can therefore bsidered correct from
a theoretical point of view. To benefit from this strategye thodel should be
designed so that computational events are enabled a largbenwof times in a
row.

We performed a number of test runs on a multi-core/multepssor system
to evaluate the performance of the testbed factorisatiotetnehen using the op-
timisation. The tests involved different numbers of preogscores in use, and
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different limits on how many times events can be executecgecutively with-
out involving the scheduling process. The runs showed tivaha large enough
number of repetitions, the performance increased to a deghere the program
clearly benefits from parallel execution, as compared toreesponding sequen-
tial program. We also found that when increasing the corasefrom 3 slave
processes + 1 scheduler, to a 6+1 configuration, performaonceased consider-
ably. This indicates a good scalability of the approach. dnatusion, the em-
pirical study we have performed hints at a potential prattpplicability of the
run-time scheduling framework in question.
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