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Abstract

Event-B is a tool-supported specification language that canbe used e.g. for the
modelling of concurrent programs. This calls for code generation and a means
of executing the resulting code. One approach is to preservethe original event-
based nature of the model and use a run-time scheduler and message passing to
execute the translated events on different computational nodes. While constitut-
ing a straightforward method, it involves considerable communication overhead, a
problem aggravated by the fine-grained nature of events in Event-B. In this paper,
we consider the efficiency of such a solution when applied to acompute-intensive
model. In order to mitigate overhead, we also use a method allowing computa-
tional nodes to repeat event execution without the involvement of the scheduler.
To find out under what circumstances the approach performs most efficiently, we
perform an empirical study with different parameters.

Keywords: Parallel computing, Event-B, Scheduling, Message passing, Effi-
ciency
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1 Introduction

Event-B [2] is a formal modelling language based on set transformers and the
stepwise refinement approach. While designed for full-system modelling, it can
also be used for correct-by-construction software development. Event-B also has a
parallel interpretation, which allows for the modelling ofconcurrent systems. Tool
support for Event-B has been achieved through the open-source Rodin platform
[3, 4, 27], to which further functionality can be added in theform of plug-ins.

Code generation from Event-B can be achieved in a number of different ways.
A straightforward approach that preserves the event naturehas been proposed in
[12, 18], for which a preliminary plug-in has been developed. In this approach,
the model is translated into a C++ class, where events are directly translated into
methods. The methods are invoked using a separate scheduler, which in turn
deploys the MPI (Message Passing Interface) [24] library toachieve parallel exe-
cution on a multi-core/multi-processor system, or even on acluster. This solution
has the advantage that code execution very closely reflects the operating mecha-
nisms of the Event-B model. An additional benefit is that it also does not require
the developer to take a stand on specific schedules and prove that they are com-
patible with the original model.

However, this approach has a potentially serious drawback in the amount of
overhead introduced by the scheduler and the MPI communication. Due to the
practical nature of communication overhead, we recognise that it is difficult to
evaluate the impact from a strictly mathematical-logical perspective. The purpose
of this paper is, instead, to evaluate the viability of the scheduling approach by
performing an empirical study. Since preliminary tests indicate that the overhead
is unacceptably large, we propose a means of repeating execution of events with-
out the involvement of the scheduler. The repetitive approach is implemented as
part of the scheduling platform, and we let a factorisation model serve as a testbed
for benchmarking. This technical report constitutes an extended version of a pre-
viously published conference paper [11]. We here provide additional background
information as well as a more detailed description of our research than in the orig-
inal article.

The rest of the paper is structured as follows. We first discuss related work
in Section 2. In Section 3, we present background information on the Event-B
formalism to the extent needed for understanding this paper. We also discuss how
the models can be translated into a programming language (C++). Section 4 is
dedicated to concurrent scheduling of models. We also deal with communication
overhead and propose a repeating approach to improve efficiency. In Section 5, we
present the factorisation model that serves as the testbed for our study, whereas we
in Section 6 discuss how the actual benchmarking takes place. We give a number
of test configurations that we have used for the test runs, after which we present
the resulting execution times as well as an interpretation thereof. Finally, we sum
up the paper and draw conclusions in Section 7.
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2 Related Work

Unlike the classical B method [1], which focuses on acorrect-by-construction
approach, Event-B [2] was designed with system-level modelling in mind, but it
can also be used for pure software development. The formalism has its roots in B
Action Systems [30], based on the Action Systems formalism [6], which has been
used e.g. for the derivation of parallel algorithms [28]. Asa result, Event-B is
also suitable for modelling of parallel software. The use ofEvent-B is facilitated
by the Rodin platform [3, 4, 27], which provides tool supportfor the formalism.
Rodin is based on the Eclipse framework [14], and custom plug-ins can also be
used in the platform to provide additional functionality.

The Event-B scheduling approach we evaluate in the paper is based on [12,
18], which in turn has its roots in [13]. It is superficially related to the concept
of animation as in the ProB [22], AnimB [25] and Brama [29] plug-ins for the
Rodin platform. However, animation can be seen as a supplementary methodol-
ogy during the modelling and development stage, while we (asin [12, 13, 18])
use automated scheduling as a means of executing the final code generated from
the model. Furthermore, parallelism is typically not supported in animation, since
the primary goal of animation is to analyse models instead ofachieving efficient
execution.

Another approach to scheduling of Event-B models has been taken in papers
[21], [19] and [8]. The basic idea is to provide the models with explicit (sequen-
tial) control flow information expressed in dedicated scheduling languages. The
developer then has to prove that the desired control flow is correct with respect
to the typical Event-B behavioural semantics discussed in Section 3. This kind of
scheduling can also be extended to handle parallelism [9]. However, an important
difference as compared to the method we study is that scheduling decisions are
taken and proven correct by the developer at the modelling stage. The approach
we explore can instead be regarded ason-the-flyscheduling, where the scheduler
takes scheduling decisions duringrun-timebased on the current state. This elimi-
nates the need for explicit schedule design and associated proofs, but may, on the
other hand, induce a performance penalty.

A means of scheduling is also proposed in [23] for use with code obtained
by the Event-B to C/C++/C#/Java code generator EB2ALL, which the authors
present in the paper. However, to our knowledge, it supportsonly sequential exe-
cution, and therefore operates in a setting different from the one we consider here.
An approach that does support parallelism is given in [15], where Event-B models
are translated into Java for concurrent execution. The schedules are expressed by
the model developer in a dedicated language called OCB (Object-oriented Concur-
rent B). In that sense, it bears similarities to the developer-scheduled approaches
discussed above, in contrast to an on-the-fly approach. The method has also more
recently been adapted [16] for use with the Ada language.
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3 Event-B and Code Generation

3.1 The Event-B Formalism

Models in Event-B consist ofstaticanddynamicparts, denotedcontextsandma-
chines, respectively. Contexts may contain e.g.constants, carrier setsandaxioms,
and can be used by one or several machines. Machines, in turn,contain elements
such asvariables, eventsand invariants. The variablesv form the state space of
the model, whereas events model atomic state updates. Thereis also a special
initialisation event that gives initial values to the variables. The invariant I(v)
is used to assign types to the variables, as well as to restrict the valid state space.
Consequently, the initialisation event mustestablishthe invariant, whereas the rest
of the events mustpreserveit.

Each event, except for the initialisation, contains aguardG(v) and anaction
v :| A(v, v′). The guard contains a condition that must hold in order for the event
to be allowed to take place, whereby the event is said to beenabled. The action
describes how the state space is to be updated once the event is enabled and trig-
gered. An event can be expressed in the following general form [20]:

E , when G(v) then v :| A(v, v′) end

Here,v andv′ represent the variables before and after the event has takenplace,
respectively. The operator :| represents non-deterministic assignment, whereby
v :| A(v, v′) intuitively means that the variablesv are updated in such a way that
thebefore-after predicateA(v, v′) holds. A special case of the non-deterministic
assignment operator is the deterministic assignment, :=, which closely resembles
the assignment operator in standard programming languages. Note that the initial-
isation event is an exception, containing only an action butno guard. It also does
not depend on a previous state.

Refinement [5, 7, 31] is a key concept in Event-B, enabling models to be de-
veloped in a stepwise manner. The idea is to achieve a chain ofmodels, beginning
from an abstract one and gradually turning it into more concrete ones. For each
step, it must be shown that the new model is correct with respect to the previous
one. We omit a detailed description of refinement in this paper, since we only
focus on the last refinement step, which is the one to be converted to program
code.

Event-B does not mandate any specific behavioural semantics. Instead, it de-
fines a number of proof obligations, and any semantics compatible with them can
be used. Typically, the same behavioural semantics as in theAction Systems
formalism is deployed, and that one has also been used in thispaper. First, the ini-
tialisation event is executed, after which the rest of the execution can be thought of
as the events of the machine residing inside a loop. In each iteration, any enabled
event is non-deterministically chosen for execution, and the loop only terminates
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when no event is enabled any longer. This can be interpreted as a deadlock situa-
tion in control systems, but for the input-output focused models we are interested
in, it corresponds to termination.

3.2 Code Generation

Event-B does not specify how to generate executable code from models, and the
Rodin tool in its basic form cannot translate models into a programming language
without the use of extensions. However, a number of different approaches have
been proposed. In [32], a code generator plug-in was developed. It was mainly
intended for use as part of a virtual machine project, and supported translation of
the most important Event-B constructs. This approach was taken a step further
towards a more general-purpose tool, albeit an experimental one, in [12, 18]. The
model first has to be refined according to the Event-B refinement rules (e.g. using
the Rodin tool) until the events only contain concrete constructs that have direct
equivalents in C++. The guard of the event is translated intoa method returning
a boolean value reflecting enabledness, whereas the action results in a separate
method containing the C++ equivalent of its assignments. The idea was that the
resulting methods could be invoked by an accompanying scheduler.

The testbed model (see Section 5) we benchmark in this paper (Section 6) is
based upon a model originally used in [12, 18], and the translated code thereof.
The model has, however, been amended in ways that could not behandled by
the translation plug-in, and the code used for in this paper has, to a certain de-
gree, been translated manually. Even though we here rely on manually generated
code for evaluation of the scheduling approach, the processis time-consuming
and error-prone. Due to the latter, in particular, manual translation may negate the
correctness benefits of formal methods and does not constitute a realistic option
for use in industrial projects. A possible path forward would be further devel-
opment of the code generator of [12, 18]. An alternative approach would be to
use the translation tool EB2ALL, even though adaptations would have to be made
for the resulting code to be in a form compatible with the desired scheduling as
discussed in the next section.

4 Scheduling

4.1 Scheduling Platform

When an Event-B model has been translated into C++ code, a means of schedul-
ing the resulting code is required. Since we in this paper areinterested in eval-
uating the viability of run-time scheduling, we need a scheduling platform that
can invoke the methods that have been translated from the events. A prototype
version of such a scheduler, called ELSA, was developed in [13] for running code

4



generated from the Atelier B tool [10] when used for developing B Action Sys-
tems. The goal was to be able to execute the code of compute-intensive models
in parallel on a multi-processor computer or a cluster usingthe MPI framework.
In [12, 18], ELSA was adapted for use with code translated from Event-B mod-
els using a plug-in developed as part of the same research. Weuse this Event-B
compatible version of ELSA for the evaluations performed inthis paper, but we
have improved it further in a number of ways, e.g. to handle 64-bit integers and to
support repetition of events as presented in Section 4.2.

The scheduler code, which is written in C++, technically runs as part of both
the scheduling process and a number of slave processes. The code takes a separate
execution path on the scheduling process than on the event-executing slave pro-
cesses, reflecting the different roles they play. The processes are mapped to phys-
ical processors or cores by the MPI framework, which the scheduling software
uses for all inter-process communication. Communication takes place according
to a star topology with scheduling process is in the centre, delegating event exe-
cution to the slaves. The scheduling process keeps track of the state space of the
model, and when delegating an event for execution, it submits the current values
of the variables involved to the slave. When the slave has executed the event, it
returns the updated values of the variables to the scheduling process. To avoid
conflicts, events that have variables in common must not be scheduled in parallel.
It is also the responsibility of the scheduler to verify thatevents are enabled prior
to delegating them. Enabledness is easy to check, since the guards are translated
as boolean functions separate from the event actions. Though much simplified,
the workings of the scheduling process can be explained as checking events for
enabledness and delegating them for execution to slaves that are currently not pro-
cessing any other events. This takes place until no events are enabled, whereby
the scheduler terminates execution. A more detailed description of the scheduling
algorithm can be found in [12, 18].

4.2 Repeated Execution of Events

The scheduler in its basic form, as described above, has a practical problem that
needs to be tackled. After initial testing, it became evident that the overhead
involved outweighs the benefits that parallelism can provide, resulting in poor
execution times. The heart of the problem is not only the overhead in itself, but it
becomes particularly problematic when combined with the fine-grained nature of
Event-B events (or the corresponding C++ code). Events cannot contain structures
such as sequential composition or loops, and complex behaviour instead has to be
modelled in an alternative way, such as by repeated execution of events.

The scheduling approach above would imply that if an event isexecuted sev-
eral times in a row, the scheduling processes would be involved in every invo-
cation, resulting in excessive overhead. For this reason, we have amended the
scheduling platform so that the slave processes may executean event several times
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on their own. Before the scheduling process first delegates an event, it verifies the
enabledness and passes on the values of the variables to the slave process as pre-
viously described. However, after execution, the slave checks whether the event
is still enabled. If that is the case, it may run it again without any involvement
of the scheduling process. This procedure may take place several times, until the
event has been executed at mostREPEATtimes (including the initial execution
delegated by the scheduling process), after which the updated variable values are
reported to the central scheduler. The constantREPEATcan be seen as a pa-
rameter of the scheduling platform, and it applies to all slave processes and, in
principle, to all events. However, since events may disablethemselves even af-
ter only one or a few consecutive executions,REPEATis to be seen as an upper
limit. Also note that an event does not automatically becomedisabled after being
executedREPEATtimes, but to continue running it, it must once again be chosen
for execution by the scheduling process. In fact, the repetition mechanism has no
impact on the enabling/disabling of events, and it operateswithin the limits of the
behavioural semantics as described in Section 3.1.

5 Testbed Model

A suitable testbed model for our study should be compute-intensive, easily paral-
lelisable, convenient to express, and, for generality, as representative as possible
of how other high performance computation models would be expressed in Event-
B. The generality of the model is particularly important, since our goal is to draw
as universal conclusions as possible on the viability of thescheduling approach.
We find that an integer factorisation example given in [12, 18] for the most part
fulfils these requirements. However, since we have made improvements to the
scheduling approach as compared to [12, 18], especially by introducing repetition
of events, we have also revised the model accordingly.

The goal of the model is to find a factor of a given integern, such that it is
greater than or equal to 2 and less thann. However, ifn is a prime number, the
result reported will ben itself. The approach we take is based on trial division.
While there are much more sophisticated factorisation algorithms available, they
are not as straightforward, resulting in models much more difficult to follow and
evaluate. We are also not primarily interested in evaluating the efficiency of the
algorithmper se, but rather that of the scheduling method.

At the core of the model are the factorisation eventsprocess1, process2, etc.,
up till the number of computational slave processes. This typically corresponds to
the number of hardware computational nodes (processors or cores) to be used for
slave computations. The Event-B notation of the factorisation events, in a model
designed for two computational processes, is given in Figure 1. Note that we use
separate events instead of parametrisation, since we want the factorisation events
to be separate from each other. It was also of utmost importance that the model be
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process1,
when

continue 1 > 0
result 1 6= 0
i 1 < n/2

then
result 1 := n mod i 1
i 1 := i 1 + STEP

continue 1 := continue 1− 1
end

process2,
when

continue 2 > 0
result 2 6= 0
i 2 < n/2

then
result 2 := n mod i 2
i 2 := i 2 + STEP

continue 2 := continue 2− 1
end

Figure 1: Factorisation events for two computational processes.

expressed in such a way that the factorisation events have novariables in common,
since the scheduler would otherwise be unable to run them in parallel. They may,
nevertheless, refer to the same constants.

There are variablesi 1, i 2, etc., associated with the respective factorisation
events. Variablei 1 is initialised to the value 2 (i.e. 1+1),i 2 to the value 3 (i.e.
2+1), etc., and each time a factorisation eventm is executed, it checks whether
the constantn is divisible by the current value of its associated variablei m. If
that is the case, a factor has been found. To distribute the work evenly among the
processes,i m is after each trial division incremented by a constantSTEP, con-
taining the number of factorisation events in the model. In addition to the variable
i m, each factorisation eventm is also associated with a countercontinue m.
Initially set according to a constantCONTINUES, it is decreased by 1 after every
trial division. By checking thatcontinue m > 0 as part of the guard, the number
of consecutive executions of each factorisation event is limited toCONTINUES.

Since the factorisation events must not have any variables in common, they
cannot directly check whether another event has found a factor. This is where a
synchronisation eventnewroundcomes into play. After the factorisation events
have been executed for a maximum ofCONTINUEStimes, they disable them-
selves, and can only be re-enabled bynewround, provided that none of them has
already found a factor. The listing fornewroundis given to the left in Figure 2.
Note thatnewroundis disabled if the value of all variablesi m is greater than
n/2. Each of them factorisation events also disables itself if the corresponding
i m exceedsn/2. This is because a factor (less thann itself) cannot exist beyond
this threshold. It would actually be enough to check numbersup till

√
n, but since

Event-B does not support square root, we usen/2 as the limit.
In the case that no factorisation event finds a factor, and alli m exceedn/2,

eventfound0becomes enabled. This event is shown to the right in Figure 2,and
it simply sets a variableresult, storing the final result, ton. There are also events
found1, found2, etc., related to the factorisation eventsprocess1, process2, etc.,
respectively. These events, as shown in Figure 3, set theresult variable to the
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newround,
when

result 1 6= 0 ∧ result 2 6= 0
¬(i 1 > n/2 ∧ i 2 > n/2)
continue 1 < CONTINUES

∨continue 2 < CONTINUES

then
continue 1 := CONTINUES

continue 2 := CONTINUES

end

found0,
when

result 1 6= 0
result 2 6= 0
result = −1
i 1 > n/2
i 2 > n/2

then
result := n

end

Figure 2: Events for re-enabling the factorisation events (left) and for finalising
when it becomes clear that the number is prime (right).

found1,
when

result 1 = 0 ∧ result = −1
then

result := i 1− STEP

end

found2,
when

result 2 = 0 ∧ result = −1
then

result := i 2− STEP

end

Figure 3: Events for finalising when process 1 (left) or process 2 (right) has found
a factor.

value found by their associated factorisation events. Notethat even though the
final result has been found oncefound0or any of thefound1, found2, etc. events
has been executed, there is a possibility that one or severalof the factorisation
events may still be executed several times afterwards. Thisundesired behaviour
is a side effect of the independence of events, and it is aggravated by setting the
CONTINUESconstant to a large value. The choice of value forCONTINUESis,
however, a trade-off, since setting it to a value that is too small results in excessive
synchronisation by thenewroundevent.

In Figure 4, we give a sequential C++ function designed to perform factori-
sation similarly to the model presented above. A program based on the function
is used as comparison in Section 6 when evaluating the efficiency of the parallel
model. Though designed to resemble as closely as possible a sequential version
of the algorithm above, there are a number of differences. For example, since the
program is sequential, it obviously contains no synchronisation or other process-
related mechanisms, resulting in much simpler code. The sequential version also
always finds the lowest factor greater than or equal to 2, whereas the Event-B
model may find a greater factor depending on the relative progress of the pro-
cesses.
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long long factor(long long n) {
long long i = 1;
long long res = -1;
while(i < n/2 && res != 0) {
i++;
res = n % i;

}
if(res == 0) return i; else return n;

}

Figure 4: The C++ function for sequential factorisation used as comparison.

6 Benchmarking

6.1 Approach

Performance of the scheduling approach discussed in previous sections has been
evaluated by scheduling the testbed model on a multi-core/multi-processor system
using different parameters. The scheduler was compiled together with the C++
translation of the model using the GNU Compiler Collection (GCC) [17] with the
maximum (O3) level of optimisation. Since some parameters were part of the
model and could not be changed afterwards, we technically compiled different
models with minor changes from each other. To facilitate scripting for bench-
marking purposes, we also slightly modified the scheduler aswell as the model
code to support additional parametrisation. We do not expect these changes to
have disrupted test results by having any relevant impact onperformance.

The system used for the test runs consists of two Xeon E5430 (2.66 GHz)
processors, each of which has four computational cores, running a GNU/Linux
operating system and the MPICH2 [26] implementation of MPI.While thenu-
mericalresults will be dependent upon factors such as the clock frequency of the
processors, instruction set architecture, performance ofthe system memory, etc.,
we believe that theinterpretationof the results is representative of modern com-
puter systems with similar topology (e.g. the same number ofprocessor cores).
This is because we are mainly interested in the overall feasibility of the schedul-
ing framework and the impact of different parameter values.Since all our test
runs, including the comparison with a sequential program, have been done on the
same system, the results are mutually comparable to each other.

6.2 Parameters and Results

From the perspective of the scheduling platform, there are especially two param-
eters of interest: the number of slave processes and the value of REPEATused in
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Mean

Sequential 13.37 13.36 13.36 13.36 13.36 13.36 13.36 13.36
Par.c = 10

2 91.42 85.52 90.45 92.00 85.37 91.34 87.43 89.08
Par.c = 10

3 16.57 16.59 16.78 16.63 16.94 16.55 16.07 16.59
Par.c = 10

4 10.23 10.28 9.92 10.17 9.57 10.18 10.26 10.09
Par.c = 10

5 9.29 8.90 9.31 9.55 9.38 8.68 9.60 9.24
Par.c = 10

6 9.19 9.46 8.13 9.13 8.82 9.19 9.24 9.02
Par.c = 10

7 9.31 8.47 9.44 9.15 9.18 9.32 9.33 9.17
Par.c = 10

8 9.26 9.48 9.47 9.46 9.49 9.58 9.38 9.45
Par.c = 10

9 9.51 9.44 9.54 8.70 9.46 9.51 9.30 9.35

Table 1: Test runs with 3+1 processes,n = 2,147,483,647.

the scheduler. Important parameters related to the model are n, i.e. the number
to factorise, and the value of the constantCONTINUES. Even though we will not
mention it explicitly from now on, the number of slave processes also has impli-
cations on the model in that the number of factorisation events has to match, and
the value ofSTEPmust be set accordingly. Furthermore, we decided to keep the
values ofREPEATandCONTINUESbound to each other, even though it would
not absolutely have to be that way. We motivate our decision as follows. The value
of REPEAT, being a property of the scheduler, may have an impact on the perfor-
mance of execution, but it does not change the logics of the model. In contrast,
CONTINUESis part of the model, which is nevertheless constructed to produce
a correct result for different values ofCONTINUES. A value of REPEATless
than CONTINUESwould imply that there may be unnecessary involvement of
the scheduler even in cases where the slave processes could have been repeatedly
executed events on their own. Since the model is not aware of the impact of the
repetition mechanism of the scheduler, though interrupted, it would not even have
a chance of synchronising by executing thenewroundevent. AREPEATvalue
greater thanCONTINUESis also not motivated, since repeated execution of the
factorisation events would be limited byCONTINUESanyway.

For each set of parameters, we performed eight timed test runs. The initial
one was disregarded, since it may not be comparable should subsequent execu-
tions have any caching benefits. The timings of the subsequent seven executions
(numbered 1-7) were recorded, and the mean value was computed. The time unit
used was seconds and fractions thereof. Our first set of runs was performed with
the parametern = 2,147,483,647 with three slave processes. An additional process
was used for the scheduler, so technically, the execution involved four processes.
Note that we chosen to be a prime number in order to achieve benchmarking
times long enough to draw conclusions. We ran several subsequent test sets, with
the values ofc = REPEAT= CONTINUESbeing102, 103, ..., 109, respectively.
The results are shown in Table 1.

As can be seen in Table 1, with thec value set to 100 (i.e.102), the execution
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Mean

Sequential 498.63 427.11 549.03 448.51 555.63 567.38 516.91 509.03
Par.c = 10

2 2844.532883.502850.312802.622846.892840.902864.31 2847.58
Par.c = 10

3 544.07 555.74 542.31 560.58 557.56 552.23 550.53 551.86
Par.c = 10

4 320.24 320.19 319.80 320.67 320.69 317.67 318.21 319.64
Par.c = 10

5 292.76 293.95 293.61 293.13 294.09 292.09 292.34 293.14
Par.c = 10

6 288.50 290.00 290.34 288.24 290.16 290.23 288.50 289.42
Par.c = 10

7 288.32 286.88 288.05 288.52 289.86 296.57 288.13 289.48
Par.c = 10

8 289.03 287.51 289.40 288.18 287.32 286.79 287.81 288.01
Par.c = 10

9 288.06 288.29 287.24 288.24 287.97 288.34 287.68 287.97

Table 2: Test runs with 3+1 processes,n = 68,720,001,023.

times are several times higher than that of the sequential program with a mean
value of 13.36 seconds for the sequential version versus 89.08 seconds for the
parallel one. It can be explained by overhead that, in this case, is clearly not
outweighed by the potential benefits of parallelism. This isapparently the case
even though the slave processes may allow the factorisationevents to be executed
up to 100 times without involving the scheduling process. The overhead may
in part be due to MPI communication, but also behaviour specific to the parallel
model, such as thenewroundevent, may have an impact. However, ifc is set
to 1000, timings approach those of the sequential model, andwith a c value of
10000, the parallel model is faster at 10.09 seconds on average. Values ofc beyond
105 do not seem to provide further gains, and execution times level out at about
9 to 9.5 seconds, which constitutes approximately 70% of therunning time of
the sequential version. However, we also realise that execution times of only
a few seconds may not necessarily be representative of performance in general.
For example, the time taken to initialise the scheduling platform may have an
unduly large impact. Therefore, we performed a new set of test runs with the
same parameters, except for setting the value ofn to 68,720,001,023, which is
also a prime number. We present the results in Table 2.

The general pattern turned out to be the same as for the lower value ofn. For
ac value of 100, execution times are poor in this case, as well, but fromc = 10000
and beyond, we see performance gains. While they also level out for higher val-
ues ofc, execution times are around 50%-60% as compared to the corresponding
sequential program. This is better than in the previous case. However, we were
also interested in testing how the framework scales when thenumber of processes
increases. Therefore, we did yet another set of test runs. Wekept the value ofn at
68,720,001,023, but increased the number of slave processes to six, in addition to
the scheduling process, which is always present. The results are given in Table 3.
Note that the sequential test runs used for comparison were not redone, since the
value ofn remained unchanged.

While we see the same pattern as before, execution times are considerably
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Mean

Sequential 498.63 427.11 549.03 448.51 555.63 567.38 516.91 509.03
Par.c = 10

2 2574.732074.182609.962647.202494.592577.472632.28 2515.77
Par.c = 10

3 338.11 319.87 347.55 335.40 324.07 348.34 346.58 337.13
Par.c = 10

4 159.96 137.46 165.59 141.58 160.85 158.15 153.70 153.90
Par.c = 10

5 147.62 146.77 147.72 147.02 121.49 148.72 146.45 143.68
Par.c = 10

6 113.44 144.23 136.24 145.56 145.35 145.51 145.68 139.43
Par.c = 10

7 145.03 145.50 134.56 146.20 129.59 145.29 146.63 141.83
Par.c = 10

8 119.44 146.29 144.89 134.04 145.75 139.15 130.20 137.11
Par.c = 10

9 140.61 120.94 139.71 138.91 140.97 142.09 141.35 137.80

Table 3: Test runs with 6+1 processes,n = 68,720,001,023.

shorter. The scenario wherec = 100 is still highly inefficient, but it is nonetheless
slightly faster than with three slave processes. We also note that for ac value
of 1000, performance is now better than for the sequential comparison, whereas
it was a bit slower than sequential in the 3+1 set-up. Atc = 10000, and espe-
cially from c = 105, where the levelling out seems to start, performance is greatly
increased as compared to using three slave processes. For such values ofc, exe-
cution times in the 6+1 process set-up are around half of those in the 3+1 setting,
indicating a good scalability of the scheduling approach.

7 Conclusions

In this paper, we have performed an empirical study on the efficiency of MPI-
based parallel scheduling of compute-intensive code translated from an Event-B
model. The purpose was to evaluate whether an on-the-fly scheduling approach
taken is feasible from a practical perspective. We used an integer factorisation
model as a testbed for the study. The main pitfall we suspected in the basic form
of the framework was that the overhead of the scheduler and the MPI library
communication would defeat the potential speed gains of parallelism. This is
because individual events in Event-B are typically very fine-grained.

In an attempt to mitigate excessive overhead, we introducedan optimisation
in the form of repeated event execution without the involvement of the scheduler.
A benefit of this solution is that it directly reduces the communication overhead.
The repetitive behaviour introduced is compatible with theoriginal behavioural
semantics typically used in Event-B, and can therefore be considered correct from
a theoretical point of view. To benefit from this strategy, the model should be
designed so that computational events are enabled a large number of times in a
row.

We performed a number of test runs on a multi-core/multi-processor system
to evaluate the performance of the testbed factorisation model when using the op-
timisation. The tests involved different numbers of processor cores in use, and
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different limits on how many times events can be executed consecutively with-
out involving the scheduling process. The runs showed that given a large enough
number of repetitions, the performance increased to a degree where the program
clearly benefits from parallel execution, as compared to a corresponding sequen-
tial program. We also found that when increasing the cores inuse from 3 slave
processes + 1 scheduler, to a 6+1 configuration, performanceincreased consider-
ably. This indicates a good scalability of the approach. In conclusion, the em-
pirical study we have performed hints at a potential practical applicability of the
run-time scheduling framework in question.
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