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1 Introduction

While solving applied optimization problems, we have to take into account
different factors of uncertainty and randomness such as inadequacy of mathe-
matical models to real processes, round-off errors, measurement errors etc.
In all these cases, a mathematical problem can not be correctly posed and
solved without stability theory results. In multicriteria discrete optimization
problems stability research is usually tied with studying a discrete analogue
of the Hausdorff continuity (semicontinuity) for dot-valued mappings i.e.
mappings that assign each gang of possible data to a given set of optimal
solutions [1,2].

Despite the abundance of approaches to the stability analysis in discrete
optimization problems (the comprehensive idea of multiple studies on stabi-
lity is provided in [3, 4]), the two mainstream approaches can be defined:
qualitative and quantitative.

As a part of the qualitative approach, research is concentrated on identify-
ing the different types of problem stability [5 – 12] or establishing interconne-
ctions between different types of stability [13, 14]. In addition, searching and
describing the stability region for optimal solutions is also done (see e.g. [15]).

Big part of quantitative approach is particularised in [16], and it is tied
with obtaining valid assessments of changes in the initial data, retaining
some predetermined property of optimal solutions [17 – 21], and developing
algorithms for calculating these bounds [22 – 26]. The key point here is
stability radius, which is defined as the radius of the largest uncertain data
neighbourhood preserving some optimal property in the space of perturbed
problem parameters. Any perturbed problem with parameter point within
the neighbourhood is «close» to the original problem

This article belongs to the second approach, and it is a continuation of
publication series [27 – 34]. In that previous research, the author estimate
bounds for the stability radii of solutions in vector investment Boolean prob-
lems with different criteria of optimism and pessimism (Wald, Savage criterion
etc.) under a variety of combinations of linear l1, Chebyshev l∞ and Hölder lp
metrics in three-dimensional parameter space. In this study, we consider the
most general case where different Hölder norms are used in the parameter
space mentioned above. Here we obtain lower and upper bounds for the
stability radius of the vector investment problem with well-known in the
theory of decision-making criteria of extreme optimism regarding portfolio
returns.

The results presented here were also announced in [35].
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2 Problem formulation and the basic definitions
We consider a multicriteria discrete version of optimal investment problem.

Let introduce some notation:
Nn = {1, 2, ..., n} be various alternative investment projects (assets);
Nm be a set of possible states for the financial market (scenarios, the

situations in the market);
Ns be many types of (indicators) economic efficiency of investment pro-

jects;
eijk be expected economic evaluation (profitability) of the form k ∈ Ns

for investment project j ∈ Nn in the case, when the market is in the state
i ∈ Nm;

E = [eijk] ∈ Rm×n×s;
x = (x1, x2, ..., xn)T ∈ X ⊆ En is the investment portfolio, where

E = {0, 1},

xj =

{
1, if you select a portfolio j ∈ Nn,

0 otherwise;

So here X ⊂ En is the set of all possible investment portfolios, i.e. which
realization does not exceed the investor’s initial capital;

Rm is the state space of the financial market;
Rn is the space of the investment projects;
Rs is the space criterion of the cost efficiency.
For a given set of investment portfolios (Boolean vectors) X, |X| ≥ 2, the

vector criterion is defined

f(x,E) = (f1(x,E1), f2(x,E2), ..., fs(x,Es)),

whose components are optimistic criteria (MAX-MAX) of investment portfolio
returns:

fk(x,Ek) = max
i∈Nm

eikx = max
i∈Nm

∑
j∈Nn

eijkxj → max
x∈X

, k ∈ Ns,

where Ek ∈ Rm×n is the k-th cut of the matrix E = [eijk] ∈ Rm×n×s with
rows eik = (ei1k, ei2k, ..., eink) ∈ Rn, i ∈ Nm.

With a help of such criterion a venturesome investor optimizes the efficiency
of the portfolio under the assumption that the market is in the most profitable
condition, namely when portfolio is in the marginal revenue position. Obviously,
this approach is based on the stereotype of reckless optimism behaviour «or
sink or swim», «who do not risk, nothing gained» etc.

We mean by vector s-criterion problem Zs
m(E), s ∈ N, problem of finding

the Pareto set P s(E), that is set of the Pareto-optimal portfolios

P s(E) = {x ∈ X : X(x,E) = ∅},
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where

X(x,E) = {x′ ∈ X : f(x,E) ≤ f(x′, E) & f(x,E) 6= f(x′, E)}.

It’s clear that P s(E) 6= ∅ for any matrix E ∈ Rm×n×s. Note also that the
problem Zs

m(E) can be interpreted as «the best optimisation case».
Let different Hölder’s norms lp, lq and lr be given in the spaces Rn, Rm,

Rs respectively, where p, q, r ∈ [1,∞]. We understand by norm of matrix
E ∈ Rm×n×s the number

||E||pqr = ||(||E1||pq, ||E2||pq, ..., ||Es||pq)||r,

where
||Ek||pq = ||(||e1k||p, ||e2k||p, ..., ||emk||p)||q, k ∈ Ns.

Recall that the Hölder norm lp in space Rn is defined by the formula

||a||p =

(
∑

j∈Nn

|aj|p)1/p, if 1 ≤ p <∞,

max{|aj| : j ∈ Nn}, if p =∞,

where a = (a1, a2, ..., an)T ∈ Rn.
It is easy to see that the following inequalities hold

||eik||p ≤ ||Ek||pq ≤ ||E||pqr, i ∈ Nm, k ∈ Ns (1)

for any p, q, r ∈ [1,∞]. Following [21, 28, 30, 32], the number

ρ = ρsm(p, q, r) =

{
sup Ξ, if Ξ 6= ∅,
0, if Ξ = ∅,

is called the stability radius of the problem Zs(E), where

Ξ = {ε > 0 : ∀E ′ ∈ Ω(ε) (P s(E + E ′) ⊆ P s(E))},

Ω(ε) = {E ′ ∈ Rm×n×s : ||E ′||pqr < ε}.

Here Ω(ε) is a set of perturbing matrices, P s(E+E ′) is the Pareto set of the
perturbed problem Zs(E + E ′), ||E ′||pqr is the norm of matrix E ′ = ||e′ijk||.
Thus, the stability radius ρsm(p, q, r) for a problem Zs

m(E) is the limiting
level of elements perturbation for matrix E in the spase Rm×n×s that does
not lead to the emergence of new Pareto optimal portfolios. Obviously, when
P s(E) = X, the stability radius of a problem should be considered infinitely
large. If P s(E) 6= X, we call the problem nontrivial.
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3 Auxiliary assertions

Let u be one of the numbers p, q, r introduced above. With number u we
associate a number u′ as follows

1/u+ 1/u′ = 1, 1 < u <∞.

Moreover, let assume that u′ = 1 if u = ∞, and u = ∞ if u′ = 1. Therefore
in what follows we assume that the range of the numbers u and u′ is interval
[1,∞], and the numbers themselves are connected by the conditions above.
Additionally let’s assume that 1/u = 0 if u =∞.

Next, we will use the well-known Hölder’s inequality

|aT b| ≤ ||a||u||b||u′ , (2)

that holds for any vector a and b within the same dimension.
Lemma 1. For any portfolios x, x0 ∈ X and indexes i, i′ ∈ Nn, k ∈ Ns,

the following inequality holds

ei′kx
0 − eikx ≥ −||Ek||pq||(||x0||p′ , ||x||p′)||v, (3)

where
v = min{p′, q′}.

Indeed, if i 6= i′, then using Hölder’s inequality (2) we have

ei′kx
0 − eikx ≥ −(||ei′k||p||x0||p′ + ||eik||p||x||p′) ≥

≥ −||(||ei′k||p, ||eik||p)||q ||(||x0||p′ , ||x||p′)||q′ ≥

≥ −||Ek||pq||(||x0||p′ , ||x||p′)||q′ ≥ −||Ek||pq||(||x0||p′ , ||x||p′)||v.

If i = i′, then using (1) and Hölder’s inequality (2) it comes out that

ei′kx
0 − eikx ≥ −||eik||p||x0 − x||p′ ≥ −||Ek||pq||x0 − x||p′ ≥

−||Ek||pq||(||x0||p′ , ||x||p′)||p′ ≥ −||Ek||pq||(||x0||p′ , ||x||p′)||v.

Also it is easy to see that for the vector a = (a1, a2, ..., an)T ∈ Rn with
conditions |aj| = α, j ∈ Nn the equality

||a||p = αn1/p (4)

holds for any number p ∈ [1,∞].
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4 Bounds for the stability radius
For the non-trivial problem Zs

m(E), we assume

ϕ = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

||(||x′||p′ , ||x||p′)||v
,

ψ = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

||x′ − x||1
,

γ(x′, x) = min{fk(x′, Ek)− fk(x,Ek) : k ∈ Ns},

P (x,E) = X(x,E) ∩ P s(E),

v = min{p′, q′},

σ = min{||Ek||pq : k ∈ Ns}.
It is easy to see that ϕ, ψ ≥ 0.

Theorem 1. For the stability radius ρsm(p, q, r) of non-trivial problem
Zs

m(E), s ≥ 1, the following estimates are true

ϕ ≤ ρsm(p, q, r) ≤ min{n1/pm1/qs1/rψ, σ}, (5)

for any s,m ∈ N and p, q, r ∈ [1,∞]
Proof. At first we show that ρ ≥ ϕ.With ϕ = 0 this inequality is obvious.

Let ϕ > 0. We assume that the perturbing matrix E ′ = ||e′ijk|| ∈ Rm×n×s

with cut E ′k, k ∈ Ns, belongs to Ω(ϕ). According to the definition ϕ, for any
portfolio x /∈ P s(E) there exists portfolio x0 ∈ P (x,E) such that

γ(x0, x) ≥ ϕ||(||x0||p′ , ||x||p′)||v, k ∈ Ns.

Hence, taking into account inequality (1) and (3), for any index k ∈ Ns

we deduce

fk(x0, Ek + E ′k)− fk(x,Ek + E ′k) = max
i∈Nm

(eik + e′ik)x0 −max
i∈Nm

(eik + e′ik)x =

= min
i∈Nm

max
i′∈Nm

(ei′kx
0 + e′i′kx

0 − eikx− e′ikx) ≥

≥ fk(x0, Ek)− fk(x,Ek)− ||E ′||pqr||(||x0||p′ , ||x||p′)||v ≥
≥ (ϕ− ||E ′||pqr)||(||x0||p′ , ||x||p′)||v > 0,

where e′ik is the i-th row of the cut E ′k of matrix E ′. Thus, portfolio x doesn’t
belong to the Pareto set P s(E+E ′). Therefore, we conclude that the following
inclussion is correct

P s(E + E ′) ⊆ P s(E)
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for any perturbing matrix E ′ ∈ Ω(ϕ).
Therefore, ρ ≥ ϕ.
Next we prove the inequality ρ ≤ m1/pn1/qs1/rψ.
According to the definition of the number ψ, there is a portfolio x0 /∈

P s(E), such that for any portfolio x ∈ P (x0, E) there exists index l ∈ Ns,
whereby

fl(x,El)− fl(x0, El) ≤ ψ||x− x0||1. (6)

Assuming
ε > n1/pm1/qs1/rψ,

we define elements e0ijk for any k-th cut Ek
0 , k ∈ Ns, of the perturbed matrix

E0 = ||e0ijk|| ∈ Rm×n×s according to the rule

e0ijk =

{
δ, if i ∈ Nm, x

0
j = 1,

−δ, if i ∈ Nm, x
0
j = 0,

where
ψ < δ < ε/n1/pm1/qs1/r. (7)

Hence, according to (4), we obtain

||e0ik||p = δn1/p, i ∈ Nm, k ∈ Ns,

||E0
k ||pq = δn1/pm1/q, k ∈ Ns,

||E0||pqr = δn1/pm1/qs1/r.

It means that E0 ∈ Ω(ε). In addition, all rows e0ik, i ∈ Nm, k ∈ Ns,
are identical and they consist of component δ and −δ. Therefore, if we set
c = e0ik, i ∈ Nm, k ∈ Ns, we deduce that the correlation

c(x− x0) = −δ||x− x0||1 < 0, (8)

is valid for any portfolio x 6= x0.
Hence, taking into account (6) and (7), we conclude that for any portfolio

x ∈ P (x0, E) there exists an index l ∈ Ns such that

fl(x,El + E0
l )− fl(x0, El + E0

l ) = max
i∈Nm

(eil + e0il)x−max
i∈Nm

(eil + e0il)x
0 =

= min
i∈Nm

max
i′∈Nm

(ei′lx− eilx0 + e0i′lx− e0ilx0) =

= fl(x,El)− fl(x0, El) + c(x− x0) ≤ (ψ − δ)||x− x0||1 < 0.

Thus, the following formula holds

∀x ∈ P (x0, E) (x /∈ X(x0, E + E0)). (9)
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If X(x0, E+E0) = ∅, then it is obvious that portfolio x0 (it is not Pareto
optimal portfolio for problem Zs

m(E)) appears to be optimal in the perturbed
problem Zs

m(E + E0), i.e. x0 ∈ P s(E + E0).
If X(x0, E + E0) 6= ∅, then due to the external stability of the Pareto

set P s(E + E0) (look, for example, [37] p. 34) we can find portfolio x∗ ∈
P s(x0, E + E0). Let us show that x∗ /∈ P s(E).

Let assume, on the contrary, that x∗ ∈ P s(E). Then according to (9),
x∗ /∈ P s(x0, E). This leads to two cases.

At first, let have a look at the case f(x∗, E) = f(x0, E). Then for any
index k ∈ Ns according to (8), we have

fk(x∗, Ek + E0
k)− fk(x0, Ek + E0

k) = fk(x∗, Ek)− fk(x0, Ek) + c(x∗ − x0) =

= −δ||x∗ − x0||1 < 0.

Next, let’s examine the case where exists an index h ∈ Ns, that

fh(x∗, Eh) < fh(x0, Eh).

Then, again using (8), we arrive at correlation

fh(x∗, Eh +E0
h)− fh(x0, Eh +E0

h) = fh(x∗, Eh)− fh(x0, Eh) + c(x∗−x0) < 0.

As a result both cases contradict to the inclusion x∗ ∈ P s(x0, E + E0).
This proves that x∗ /∈ P s(E). Let us remind that x∗ ∈ P s(E + E0).

To summarize, we come to a conclusion that for any number ε >
> n1/pm1/qs1/rψ the existence of the perturbing matrix is guaranteed E0 ∈
Ω(ε), and there is a portfolio (x0 or x∗), which is not Pareto optimal portfolio
problem Zs

m(E), which is simultaneously the same in perturbed problem
Zs

m(E + E0). Thus, the following formula holds

∀ε > n1/pm1/qs1/rψ ∃ E0 ∈ Ω(ε) (P s(E + E0)) * P s(E).

Therefore, ρ ≤ n1/pm1/qs1/rψ.
Finally, we prove inequality

ρsm(p, q, r) ≤ σ.

Let x0 be any non-Pareto optimal portfolio for problem Zs
m(E), i.e. x0 /∈

P s(C). Let index l ∈ Nm be such that

σ = ||El||pq. (10)

Assuming ε > σ, let’s choose a number δ with condition

0 < δn1/pm1/q < ε− σ. (11)
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Next, consider the matrix V = [vij] ∈ Rm×n with elements

vij =

{
δ, if i ∈ Nm, x

0
j = 1,

−δ, if i ∈ Nm, x
0
j = 0.

Then, using (4) we obtain

||V ||pq = δn1/pm1/q. (12)

Moreover, all the rows of matrix V are the same, and they consist of numbers
δ and −δ. Having denoted the line as A, we have

A(x− x0) = −δ||x− x0||1 < 0 (13)

for any portfolio x ∈ X\{x0}. Cuts E0
k , k ∈ Ns perturbing matrix E0 ∈

Rm×n×s let us define according to the rule

E0
k =

{
V − Ek, if k = l,

0, if k 6= l,

where 0 ∈ Rm×n. Then referring to (10) – (12) we find

||E0||pqr = ||E0
l ||pq = ||V − El||pq ≤ ||V ||pq + ||El||pq ≤ δn1/pm1/q + σ < ε,

and taking into consideration the inequality (13), we obtain

fl(x,El + E0
l )− fl(x0, El + E0

l ) = fl(x, V )− fl(x0, V ) =

= A(x− x0) = −δ||x− x0||1 < 0.

It means that x /∈ X(x0, E + E0), where E0 ∈ Ω(ε). But as x0 /∈ X(x0, E+
E0), then X(x0, E + E0) = ∅. Therefore

x0 ∈ P s
m(E + E0).

Taking into account x0 /∈ P s(E), we conclude that ρsm(p, q, r) ≤ ε for any
number ε > σ. Therefore, ρsm(p, q, r) ≤ σ, together with previously proven
inequality

ρsm(p, q, r) ≤ n1/pm1/qs1/rψ

it provides wanted upper estimate of the stability radius. Theorem 1 is
proved.
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5 Corollaries

Corollary 1. For s,m ∈ N and p ∈ [1,∞] the inequalities hold

min
x/∈P s(E)

max
x′∈P (x,E)

γ(x, x′)

||x′ + x||1/p
′

1

≤ ρsm(p, p, p) ≤

≤ (nms)1/p min
x/∈P s(E)

max
x′∈P (x,E)

γ(x, x′)

||x′ − x||1
.

Hence, we obtain the following obvious statement indicating the assessment
reachability

Corollary 2. If for any two portfolios x /∈ P s(E) and x′ ∈ P (x,E) of
the problem Zs

m(E) the set

{j ∈ Nn : xj = x′j = 1}

is empty, then the following formula holds

ρsm(∞,∞,∞) = ϕ = ψ.

Corollary 3[32]. For s,m ∈ N and p ∈ [1,∞], the inequalities hold

min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

||x′||p′ + ||x||p′
≤ ρsm(p,∞, p) ≤

≤ (ns)1/p min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

||x′ − x||1
.

Corollary 4[33]. For s,m ∈ N and p ∈ [1,∞], the inequalities hold

min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

||x′ + x||1
≤ ρsm(∞, p, p) ≤

≤ (ms)1/p min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

||x′ − x||1
.

Corollary 5[34]. For s,m ∈ N and p ∈ [1,∞], the inequalities hold

min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

||x′||p′ + ||x||p′
≤ ρsm(p,∞,∞) ≤

≤ n1/p min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

||x′ − x||1
.
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6 The case of linear criteria
With m = 1 the investment problem is transformed into vector problem of
linear Boolean programming. Let it be written in a convenient form

Zs
1(E) : ekx→ max

x∈X
, k ∈ Ns.

where X ⊂ En, ek ∈ Rn is the k-th row of the matrix E = [ekj] ∈ Rs×n.
The very case can be interpreted as a situation in which the state of the
financial market doesn’t raise doubts. As before, let us consider that in the
space of projects Rn and a criterion space Rs set respectively the Hölder
norm lp и lr, where p, r ∈ [1,∞]. For the problem Zs

1(E), the same notation
P s(E), P (x,E) and etc will be used.

In this linear case, a lower bound for the stability radius ρs1 of a problem
Zs

1(E) can be improved. Indeed, the following theorem holds.
Theorem 2. For the stability radius ρs1(p, r) of non-trivial problem Zs

1(E),
the following bounds are valid

ξ(p) ≤ ρs1(p, r) ≤ n1/ps1/rξ(∞), (14)

where
ξ(p) = min

x/∈P s(E)
max

x′∈P (x,E)
min
k∈Ns

ek(x′ − x)

||x′ − x||p′
(15)

for any s ∈ N and p, r ∈ [1,∞].
Proof. The validity of the upper bound, i.e. the inequality

ρs1(p, r) ≤ n1/ps1/rξ(∞),

follows from Theorem 1. Next we prove the inequality

ρs1(p, r) ≥ ξ(p). (16)

With ξ(p) = 0, it is obvious. Let ξ(p) > 0 and E ′ ∈ Rs×n be the perturbing
matrix with the rows e′k ∈ Rn, k ∈ Ns, and norm

||E ′||pr = ||(||e′1||p, ||e′2||p, ..., ||e′s||p)||r < ξ(p).

According to (15) for every portfolio x /∈ P s(E) there is a Pareto-optimal
portfolio x0 ∈ P s(E) such that

||e′k||p ≤ ||E ′||pr < ξ(p) ≤ ek(x′ − x)

||x′ − x||p′
, k ∈ Ns.

Therefore, by Hölder’s inequality (2) for any index k ∈ Ns we have

(ek +e′k)(x0−x) = ek(x0−x)+e′k(x0−x) ≥ ek(x0−x)−||e′k||p||x0−x||p′ > 0,
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i.e. x /∈ P s(E+E ′). Hence, we come to a conclusion that P s(E+E ′) ⊆ P s(E)
under any perturbing matrix E ′ ∈ Rs×n with the norm ||E ′||pr < ξ(p).
Consequently, inequality (16) holds. Theorem 2 is proved.

Due to Theorem 2, we arrive at the known result, indicating the reachabi-
lity of lower and upper bounds (14) for the stability radius in the problem
Zs

1(E) with p = r =∞.
Corollary 6[38]. Given s ∈ N, for the stability radius of non-trivial

problem Zs
1(E), the next equality holds

ρs1(∞,∞) = min
x/∈P s(E)

max
x′∈P (x,E)

min
k∈Ns

ek(x′ − x)

||x′ − x||1
.

7 Conclusion
We considered a multicriteria discrete version of optimal investment problem.
Here venturesome investor optimizes the efficiency of the portfolio under the
assumption that the market is in revenue position. We obtained the lower
and upper attainable bounds for the stability radius of a vector Boolean
investment problem of portfolio optimization with the Hölder norms in the
parameter spaces. Conducting similar kind of research for vector investment
problems with non-Boolean decision variables could be an interesting direction
for further investigations.
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