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Abstract

We consider a multicriteria Boolean programming probleniireding the Pareto
set. Partial criteria are given as quadratic functions, theg are exposed to in-
dependent perturbations. We study quantitative chaiatiteof stability (stability
radius) of the problem. The lower and upper bounds on théligtatadius are
obtained in the situation where solution space and problararpeter space are
endowed with various Holder's norms.
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1 Introduction

One of the most well-known approaches to multicriteria idige otimization prob-
lem stability investigation is that focusing on finding gtitative bounds that char-
acterize the level of stability. The so-called stabilitylites is a key concept that
holds information about an extreme level of problem paramgetrturbations lead-
ing to a situation where no new Pareto optima (efficient smhs) appear. Most
of the results obtained in this direction specify stabiligdius analytical formu-
lae or bounds for multicriteria problems of Boolean andgeteprogramming with
linear [1-7] and minmax (or maxmin) [8—14] criteria.

In this paper, we analyze stability of multicriteria vattiaof the well-known
quadratic optimization problem with Boolean variables(seg. [15]). We obtain
the lower and upper bounds on stability radius of the proltensidered.

2 Problem formulation and basic definitions

Let A = [a;j,] € R™*™™™ be a matrix with corresponding cuts, € R™*", k €
N, ={1,2,...,m}. LetalsoX C E" = {0,1}", |X| > 1, be a set of feasible
solutions (Boolean vectors) = (x1, s, ..., x,)’. We define a vector criterion

f(wvA) = (fl(val)va(wvAQ)v s 7fm(w7Am)) — min,

zeX

with partial criteria being quadratic functions
fe(z, Ag) = 2T Agz, k € Ny,
Denote
X(z,A)={2' e X : g(z,2/, A) > Omy & g(z, 2’ A) # O¢m) }»

g(fL’,fL’l,A) = (gl(.%',.%',,Al),gQ(fL',fL'/,AQ), .. 7gm(x7x,7Am))v
gr(z, 2’ Ag) = fu(x, Ax) — fu(2, Ay) = (x — 2")T Ag(z — o),
O(m) = (0,0,...,0) e R™.

Under m-criteria quadratic problemZ,,(A) we understand the problem of
finding thePareto sefthe set ofefficientsolutions)

Po(A)={re X: X(z,A) =0}

The solutions which are not efficient are generally terimedficient

If m = 1, the multicriteria problem is transformed into scalar qaéd pro-
gramming problem with Boolean variables which has lots giliaptions. The
guadratic assignment problem and different optimizatioblems on graphs are
represented in the scheme of the problem [15]. It has manlcagipns in elec-
tronics design, partitioning problem, covering probleracking problem etc. It
also has application to statistical physics [16]. In [1T]was discussed how a



molecular conformation problem can be formulated as thddawoquadratic pro-
gramming problem. In [18], an application of the problemétudar radio channel
assignment was mentioned.

It has been known for a long time that the Boolean quadratiblpm is equiv-
alent to the problem of finding a maximum cut in a graph. In [@84 [20], it was
also shown that a number of graph problems (maximum cliqueimum vertex
packing, minimum vertex cover (maximum independent seRimam weight in-
dependent set can all be formulated as scalar Boolean digguh@blem. It has nu-
merous applications in computer-aided design [21], chpitdgeting and financial
analysis [22, 23], traffic message management [24], and imasicheduling [25].

For example, in [23] a classical model of investment poidfdkk evaluation is
formulated where one of the objective represents the risksomed by variance that
lead us to quadratic programming. Contrary to classicalkiblaitz’'s model, our
model operates with binary alternatives only, i.e. instedvestment proportions
we are dealing with Boolean decision alternatives eithémtesst a given asset or
not.

In the solution spac®”, we define an arbitrariodlder’'s normi,, p € [1, o],

i.e. under norm of vectat = (ay,as,...,a,)’ € R™ we understand the number
1/p .
> ]aj]p) if 1<p< o0,
S
lallp =4 7€

max{|aj|: j € Np} if p=oc.

Thus, for any matrix4;, € R"*", the norm of the matrix is defined as a norm
of vector composed of all the matrix elements.

In the criterion spac®™, we define anothadodlder’s normi,, ¢ € [1, 0], i.e.
under norm of matrixd € R™*"*™ we understand the number

[Allpg = I ALp, [[A2llp, - - - [ Amlp) g
It is easy to see that
[Akllp < [[Allpg, & € Non- (1)

Let ¢ be eitherp or q. It is well-known thatl; norm, defined inR", induces
conjugated~ norm in(R™)*. For¢ and¢*, the following relations hold

! + ! 1, 1<(¢<
-+ ==1, Q.
¢ ¢
In addition, if( = 1 then(* = co. Obviously, if(* = 1 then{ = oo. Also notice
that¢ and(* belong to the same range co]. We also set = 0 if { = oc.
For any two vectors andb of the same dimension, the followirtgdlder’s
inequalitiesare well-known (see e.g. [26])

ja”®l < llallcllbll¢-- )

To any vectorr = (1, x,...,7,)] € E™ we assign a vectat composed of
all the possible products;z;, i.e.

~ T Tl2
T = (.%'11,1‘12,. . . 7xn—1n7xnn) cE",
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where
o 1 if Tily = 1,
xz] - 0 if .TiCCj = 0.

Taking into account Holder’s inequalities (2), we can e for anyx, 2’ €
E™andk € N, the following inequalities hold

|fu(z, Ar)| = |27 Apz| < || AkllplZ ], ®)
g (z, 2, Ap)| < | AkllpllE = Z]]p- - )

Using the well-known condition (see [26]) that transforn3 &nd (4) into
equalities, the validity of the following statements beesntransparent

Ve, € R" V6>0 3 BcR"™™"

(IBll, =6 & |(@ =2/ B(z - a')| = 8l|z — @[+ ). (5)

In addition it is easy to see that for any vectoe= (ay,as,...,a,)" € R”
with condition |a;| = «, j € N, and any matrix4d, = [a;;z] € R"*™ with
condition|a;;i| = «, (i,7) € N, x N, the following inequalities are valid

1
lall, = an?, (6)
2
[ Akllp = an?. @)
Givene > 0, let
Qpq(e) = {4 € RV™ ™0 || 4|y < e}

be the set operturbing matricesd’ with cuts A;, € R"*", k € N,,, and|| 4’|,
is the norm ofd” = [a;;,] € R™*™*™. Denote

Zpy={e>0: VA €Qule) (PulA+4) C Pu(A))}.
Following [2,7, 13, 14], the number
sup Zpq  if Epg # 0,
{ 0 if =, = 0.

p=pm(p,q) =

is called thestability radiusof problemZ,,(A), m € N, with Holder's normg,,
andl, in the spaceR™ andR" respectively. Thus, the stability radius of problem
Zm(A) defines the extreme level of independent perturbationseoékaments of
matrix A in the spacdR™*"*" that do not lead to the situation where new Pareto
optimal solutions appear.

It is evident that ifP,,,(A) = X, the inclusion

Pn(A+A") C P,(4)

holds for any perturbing matrid’ € Q,,(¢) with e > 0. So, the stability radius
is infinite whenP,,,(A) = X. The problemZ,,(A) that satisfies,,(4) # X is
callednon-trivial.



3 Bounds on stability radius
Givenp, g € [1, oo, for non-trivial problemZ,,,(A), m € N, we set

/
A
¢ =¢m(p)= min  max min w’
2@ P (A) @' € P (1,A) kENm || — &' o

b = Ym(p, q) = min {nFm g, (), o (p) },

where
Py (x,A) = P, (A) N X(z,A).

o(p) = min{]| Ay, : k € Ny},

Theorem 1 Givenp, ¢ € [1,00] andm € N, for the stability radiusp,, (p, ¢) of
non-trivial problemZ,,(A), the following lower and upper bounds are valid

dm(P) < pm(p,q) < Ym(p,q).

Proof. First, we prove thap > ¢. If ¢ = 0, then it is self-evident. Lep > 0, and
let the perturbing matrixd’ € R™*"*"™ with cuts A/, k € N,,, belong to the set
Qpg(@), i.e. [|A'|lpg < ¢. According to (1) and the definition of the numbgrfor
any solutionz ¢ P,,(A), there exists:’ € P, (z, A) such that

g (z, 29, Ay)

> ¢ > ||Al|lpg > |4kl s k € N
Hx_jOHp* > ¢ || HPQ—H ka’ m

Therefore, by (4), we have
gk(% .’I]O, Ak + A;c) = gk(x7 xov Ak) + gk(xv xov A?g) Z

g, 2%, A) = 1AL lIpl1E = &l > 0, k € Niy.

Thus, any solution that is not efficient in the probléin (A) stays inefficient in the
problemZ,,(A+ A’). So, we conclude that for any perturbing matdke Q,,(¢)
the inclusion holds

Pr(A+A') C Py(A),

and hence) > ¢.
Further, we prove that

p < nEM Gy (00). (8)
According the definition of numbef,,(cc), there exists a solution’ ¢ P, (A)
such that for any solutiom € P,,(2°, A) we can point out the index = s(z) €

N,, such that
9s(2°%, 2, Ag) < pn(00)[|7° — F[|1 > 0. ©)

Settinge > n%m%gbm(oo), we define the eIemen«tz%k ofany cutd?, k € N,,,
of the perturbing matrix4® according to the formula

0

« if x?:c(])- =0, k € Ny,
Qi = 0

—a if x?xj =1, k € Ny,
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where

bm(00) < & < ——. (10)

nrma

Then according to (6) and (7), we get
1A, = an?, k € Ny,

2 1
14%]lpg = an>mia,
AY € Qp(e).

In addition, due to the construction of matei¥, for any solutionz # 2 and any
k € N,, we have

gk(aco,x,Ag) = ( O—x)TAg(:cO—x) = Z Z a%k(m?x?—xixj) = —aH:EO—chl.
1€Np, JEN,
(11)
Using (9) and (10), we continue

QS('TO"T’AS-'—AS) = gs(:co,x,As)—l—gs(acO,x,Ag) < (¢m(00)—04)\|50—f||1 <0.

So, we deduce

Ve P,z A) (g X (20, A+ AY)). (12)
Obviously, in the caseX (2", A + A% = (), the solutionz® is efficient in the
perturbed problen,,,(A + AY), i.e. 2° € P,,(A + A%). Now it is time to recall
thatz® & P, (A).

Further, we should provel (z°, A + A%) # 0. If so, then due to the outer
stability of the Pareto set ([27], p. 34) there exists a sofut* € P, (2", A+ A°).
Let us show that* ¢ P,,(A). We prove by contradiction. Suppose thdt €
P,,(A). Then by (12), we have

z* € Pp(A)\ Py (2, A).

Then two cases are possible only.
Case 1.f(2*, A) = f(2°, A). Then for anyk € N,, equations (11) imply that
gk(.CCO,.CC*, Ak + Ag) = gk(.CCO,.CC*, Ak) + gk(‘roax*a Ag) = _aH:EO - ‘%*Hl <0.

Case 2.There exists an index such thatf,(z*, A;) > fs(z", As). Then using
(11), we get

gs(xo’x*’As + A(s)) = gs(xo,:c*,As) - aHjO - j*Hl <0.

As a result, in both cases we get a contradiction witke Py, (2, A + A°).

Summarizing, we have just shown that for any> n%m%qu(oo) we can
guarantee the existence of the perturbing matfixe Q,,(¢) and existence of the
solution ¢ or 2*) such that the solution is not efficient in the probléipn (A) and
efficient in the perturbed problei,, (A + AY). Thus the following statement is
valid

Ve > nrmigp(00) 3A° € Qpg(e) (Pn(A+ A°) € Pr(A)).
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Hence inequality (8) is true.
We are finally left with a need to demonstrate that o,,(p). To do that it is
sufficient to show that for any indeéxe N,,, we should have

p < [ Akllp-

Let 20 = (29,29,...,20)7 ¢ P, (A), Let fix an arbitrary index € N,, and
denote
Vs = HASHp : (13)

Assuminge > v, we define a number such that
0<dni <e—ns. (14)
Now consider an auxiliary matri&d = U (z2°) = [u;;] € R™™ with elements
0 if :C?:c(])- =0,
ul-j = )
—0 if x?x? =1.

Using (7), we deduce
2
1Ullp = onv. (15)

Besides that, for any solutione X\ {z"} the following is obvious
(2° = 2)TU (2 — 2) = =5)2° — 2|, < 0. (16)

Let A € R™™*™ pe a perturbing matrix with cutd? € R™", k € N,,,

defined as follows
k 0nxm) if k£ s,

where0("*™) is (n x n)-matrix with all zero elements. Then according to (13)-(15)
we get

14% g = 1148 lpq = 1 = Aslly < Ul + 1 Aallp = 607+ < <,
i.e. A° € Q,, (). In addition, due to (16), we get
9s(@°, 2, AY) = g5(a%, 2, U — Ay) = =0]17° — Z[|1 — gs(2°, z, Ay).
Therefore, for any solutiom € X\ {z°} we get
gs(2%, 2, Ay + A%) = —§||z° — z||; < 0.

This implies that for any solutiom € X\ {z°} we haver ¢ X (2%, A+ A°). Since
20 ¢ X (20, A+ AY), we haveX (2, A + A%) =0, i.e.

2% € P,(A+ A).

Summarizing, for any > ~, we can guarantee the existence of the perturbing
matrix A° € €,,(¢) such that the inefficient solutiar of Z,,,(A) (z° ¢ P,,(A))
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becomes efficient in the perturbed problefp, (A + A°) (20 € P,(A + A%)).
Therefore, the following formula is valid

Ve>v, 3AY € Qpu(e) (Pn(A+ A°) € P(A)).

Hencep < v5 = || Asl|, for anys € N, (recall thats has been chosen arbitrary),
i.e.p < om(p).

Thus, we have shown both< o,,(p) and (8), so collecting all together we get
the valid upper bound specified in the theorem

pm(p,q) < Um(p,q).

Finally, we have just shown the correctness of both the Idwemd ¢,,(p) <
pm(p, q) and the upper boung,,(p,q) < ¥, (p,q). specified in the theorem for
non-trivial problemZ,,(A), m € N, p,q € [1,00]. Thus, the theorem has been
proven.

Since the equalities are evident

12 — @l = @l + 12l - 2(2) 77" = [|l=]]§ + [l2"]F = 2(="2")?,

the following corollary is concluded directly from the threm, and it illustrates
attainability of the lower and upper bounds o= g = oo

Corollary 1 The stability radiusp,, (oo, oo) of non-trivial problemZ,,,(A), m €
N, is expreseed by the following formula

( )= (x — 2\ T Ap(x — o)
oo, 0O mln ax 1mn
Pmise: 2@ P A) 2P, A) KeNm 2|2+ 172 — 22T )2

The next corollary implies that the lower bound for the dighiadius specified
in the theorem is also attainable in the caBg(A)| = 1.

Corollary 2 Let problemZ,,(A), m € N, have a unigue efficient solutiorf.
Then for anyp, g € [1, co] we have

0
pm(p @) = min 9@, Av) 17)

Proof For the sake of brevity, we denotethe right-hand side of (17). Let
( ) = {zY}. Then according to the definition @f there exists a solution
¢ P,,(A) and an index € N,, such that the following equality holds

E7" = 7% = gs(a™,2°, As), (18)
with £ > 0. Settinge > &, we fix a the numbef that satisfies the condition
E<d<e. (19)
Due to (5), there exists a matrix € R"™*" such that

1Bllp =9,

7



(a* — 2% B(a® — 2°) = ~]|&" — &)

Now we define the cutsl?, k € N,,, of the perturbing matrixt® € R™*"*™ as
follows
AO _ B |f k =S,
B o) if k£ s,
where0(™*™) is (n x n)-matrix with all zero elements. Then we get

14°lpq = 1431, = 1Bl = 6,

s
gs((I)*’.’IJO,AS) = _5H'%* - ~OHP*'

Using (18) and (19), we deduce
gs(@*, 2%, Ag + AD) = gy (2%, 2%, Ag) = 0]|7* =7 = (€ =) [ — "]+ <O

This impliesz® ¢ X (z*, A+ AY). If X (2%, A+ A%) = (), thenz* € P, (A+ A°).
Otherwise, due to the property of outer stability of the Raset (see again [27]),
we can point out a solutiof € P,,(z*, A + A%) such thatt € P,,(A + A).

Summarizing, for any > £ we can guarantee the existence of the perturbing
matrix A° € Q,,(¢) such that there exists a solutiehe X\ {z"} with the condi-
tion2’ € P,,(A+ AY) ,ie. Pn(A+ A% € P,,(A). This confirms thap < &.
Since the problent,,(A) is non-trivial (P,,(A)| = 1), then due to the theorem,
we getp > £. Since at the same time we have bptk £ andp > £, the formula
(17) holds.
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