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Abstract

We consider a multicriteria Boolean programming problem offinding the Pareto
set. Partial criteria are given as quadratic functions, andthey are exposed to in-
dependent perturbations. We study quantitative characteristic of stability (stability
radius) of the problem. The lower and upper bounds on the stability radius are
obtained in the situation where solution space and problem parameter space are
endowed with various Hölder’s norms.
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1 Introduction

One of the most well-known approaches to multicriteria discrete otimization prob-
lem stability investigation is that focusing on finding quantitative bounds that char-
acterize the level of stability. The so-called stability radius is a key concept that
holds information about an extreme level of problem parameter perturbations lead-
ing to a situation where no new Pareto optima (efficient solutions) appear. Most
of the results obtained in this direction specify stabilityradius analytical formu-
lae or bounds for multicriteria problems of Boolean and integer programming with
linear [1–7] and minmax (or maxmin) [8–14] criteria.

In this paper, we analyze stability of multicriteria variant of the well-known
quadratic optimization problem with Boolean variables (see e.g. [15]). We obtain
the lower and upper bounds on stability radius of the problemconsidered.

2 Problem formulation and basic definitions

LetA = [aijk] ∈ R
n×n×m be a matrix with corresponding cutsAk ∈ R

n×n, k ∈
Nm = {1, 2, . . . ,m}. Let alsoX ⊆ E

n = {0, 1}n, |X| > 1, be a set of feasible
solutions (Boolean vectors)x = (x1, x2, . . . , xn)

T . We define a vector criterion

f(x,A) = (f1(x,A1), f2(x,A2), . . . , fm(x,Am)) → min
x∈X

,

with partial criteria being quadratic functions

fk(x,Ak) = xTAkx, k ∈ Nm.

Denote

X(x,A) = {x′ ∈ X : g(x, x′, A) ≥ 0(m) & g(x, x′, A) 6= 0(m)},

g(x, x′, A) = (g1(x, x
′, A1), g2(x, x

′, A2), . . . , gm(x, x′, Am)),

gk(x, x
′, Ak) = fk(x,Ak)− fk(x

′, Ak) = (x− x′)TAk(x− x′),

0(m) = (0, 0, . . . , 0) ∈ R
m.

Underm-criteria quadratic problemZm(A) we understand the problem of
finding thePareto set(the set ofefficientsolutions)

Pm(A) = {x ∈ X : X(x,A) = ∅}.

The solutions which are not efficient are generally termedinefficient.
If m = 1, the multicriteria problem is transformed into scalar quadratic pro-

gramming problem with Boolean variables which has lots of applications. The
quadratic assignment problem and different optimization problems on graphs are
represented in the scheme of the problem [15]. It has many applications in elec-
tronics design, partitioning problem, covering problem, packing problem etc. It
also has application to statistical physics [16]. In [17], it was discussed how a
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molecular conformation problem can be formulated as the Boolean quadratic pro-
gramming problem. In [18], an application of the problem to cellular radio channel
assignment was mentioned.

It has been known for a long time that the Boolean quadratic problem is equiv-
alent to the problem of finding a maximum cut in a graph. In [19]and [20], it was
also shown that a number of graph problems (maximum clique, maximum vertex
packing, minimum vertex cover (maximum independent set) maximum weight in-
dependent set can all be formulated as scalar Boolean quadratic problem. It has nu-
merous applications in computer-aided design [21], capital budgeting and financial
analysis [22,23], traffic message management [24], and machine scheduling [25].

For example, in [23] a classical model of investment portfolio risk evaluation is
formulated where one of the objective represents the risk measured by variance that
lead us to quadratic programming. Contrary to classical Markowitz’s model, our
model operates with binary alternatives only, i.e. insteadof investment proportions
we are dealing with Boolean decision alternatives either toinvesst a given asset or
not.

In the solution spaceRn, we define an arbitraryHölder’s normlp, p ∈ [1,∞],
i.e. under norm of vectora = (a1, a2, . . . , an)

T ∈ R
n we understand the number

‖a‖p =















(

∑

j∈Nn

|aj |
p
)1/p

if 1 ≤ p <∞,

max{|aj | : j ∈ Nn} if p = ∞.

Thus, for any matrixAk ∈ R
n×n, the norm of the matrix is defined as a norm

of vector composed of all the matrix elements.
In the criterion spaceRm, we define anotherHölder’s normlq, q ∈ [1,∞], i.e.

under norm of matrixA ∈ R
n×n×m we understand the number

‖A‖pq = ‖(‖A1‖p, ‖A2‖p, . . . , ‖Am‖p)‖q,

It is easy to see that
‖Ak‖p ≤ ‖A‖pq, k ∈ Nm. (1)

Let ζ be eitherp or q. It is well-known thatlζ norm, defined inRn, induces
conjugatedlζ∗ norm in(Rn)∗. Forζ andζ∗, the following relations hold

1

ζ
+

1

ζ∗
= 1, 1 < ζ <∞.

In addition, ifζ = 1 thenζ∗ = ∞. Obviously, ifζ∗ = 1 thenζ = ∞. Also notice
thatζ andζ∗ belong to the same range[1,∞]. We also set1ζ = 0 if ζ = ∞.

For any two vectorsa and b of the same dimension, the followingHölder’s
inequalitiesare well-known (see e.g. [26])

|aT b| ≤ ‖a‖ζ‖b‖ζ∗ . (2)

To any vectorx = (x1, x2, . . . , xn)
T ∈ E

n we assign a vector̃x composed of
all the possible productsxixj, i.e.

x̃ = (x11, x12, . . . , xn−1n, xnn)
T ∈ E

n2

,
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where

xij =

{

1 if xixj = 1,
0 if xixj = 0.

Taking into account Hölder’s inequalities (2), we can see that for anyx, x′ ∈
E

n andk ∈ Nm the following inequalities hold

|fk(x,Ak)| = |xTAkx| ≤ ‖Ak‖p‖x̃‖p∗ , (3)

|gk(x, x
′, Ak)| ≤ ‖Ak‖p‖x̃− x̃′‖p∗ . (4)

Using the well-known condition (see [26]) that transforms (3) and (4) into
equalities, the validity of the following statements becomes transparent

∀ x, x′ ∈ R
n ∀ δ > 0 ∃ B ∈ R

n×n

(

‖B‖p = δ & |(x− x′)TB(x− x′)| = δ‖x̃− x̃′‖p∗
)

. (5)

In addition it is easy to see that for any vectora = (a1, a2, . . . , an)
T ∈ R

n

with condition |aj | = α, j ∈ Nn and any matrixAk = [aijk] ∈ R
n×n with

condition|aijk| = α, (i, j) ∈ Nn ×Nn, the following inequalities are valid

‖a‖p = αn
1

p , (6)

‖Ak‖p = αn
2

p . (7)

Givenε > 0, let

Ωpq(ε) =
{

A′ ∈ R
n×n×m : ‖A′‖pq < ε

}

be the set ofperturbing matricesA′ with cutsA′
k ∈ R

n×n, k ∈ Nm, and‖A′‖pq
is the norm ofA′ = [a′ijk] ∈ R

n×n×m. Denote

Ξpq =
{

ε > 0 : ∀ A′ ∈ Ωpq(ε) (Pm(A+A′) ⊆ Pm(A))
}

.

Following [2,7,13,14], the number

ρ = ρm(p, q) =







sup Ξpq if Ξpq 6= ∅,

0 if Ξpq = ∅.

is called thestability radiusof problemZm(A), m ∈ N, with Hölder’s normslp
andlq in the spacesRn andRm respectively. Thus, the stability radius of problem
Zm(A) defines the extreme level of independent perturbations of the elements of
matrixA in the spaceRn×n×m that do not lead to the situation where new Pareto
optimal solutions appear.

It is evident that ifPm(A) = X, the inclusion

Pm(A+A′) ⊆ Pm(A)

holds for any perturbing matrixA′ ∈ Ωpq(ε) with ε > 0. So, the stability radius
is infinite whenPm(A) = X. The problemZm(A) that satisfiesPm(A) 6= X is
callednon-trivial.
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3 Bounds on stability radius

Givenp, q ∈ [1,∞], for non-trivial problemZm(A), m ∈ N, we set

φ = φm(p) = min
x 6∈Pm(A)

max
x′∈Pm(x,A)

min
k∈Nm

gk(x, x
′, Ak)

‖x̃− x̃′‖p∗
,

ψ = ψm(p, q) = min
{

n
2

pm
1

qφm(∞), σm(p)
}

,

where
Pm(x,A) = Pm(A) ∩X(x,A).

σm(p) = min{‖Ak‖p : k ∈ Nm}.

Theorem 1 Givenp, q ∈ [1,∞] andm ∈ N, for the stability radiusρm(p, q) of
non-trivial problemZm(A), the following lower and upper bounds are valid

φm(p) ≤ ρm(p, q) ≤ ψm(p, q).

Proof. First, we prove thatρ ≥ φ. If φ = 0, then it is self-evident. Letφ > 0, and
let the perturbing matrixA′ ∈ R

n×n×m with cutsA′
k, k ∈ Nm, belong to the set

Ωpq(φ), i.e. ‖A′‖pq < φ. According to (1) and the definition of the numberφ, for
any solutionx 6∈ Pm(A), there existsx0 ∈ Pm(x,A) such that

gk(x, x
0, Ak)

‖x̃− x̃0‖p∗
≥ φ > ‖A′‖pq ≥ ‖A′

k‖p , k ∈ Nm.

Therefore, by (4), we have

gk(x, x
0, Ak +A′

k) = gk(x, x
0, Ak) + gk(x, x

0, A′
k) ≥

gk(x, x
0, Ak)− ‖A′

k‖p‖x̃− x̃0‖p∗ > 0, k ∈ Nm.

Thus, any solution that is not efficient in the problemZm(A) stays inefficient in the
problemZm(A+A′). So, we conclude that for any perturbing matrixA′ ∈ Ωpq(φ)
the inclusion holds

Pm(A+A′) ⊆ Pm(A),

and henceρ ≥ φ.
Further, we prove that

ρ ≤ n
2

pm
1

q φm(∞). (8)

According the definition of numberφm(∞), there exists a solutionx0 6∈ Pm(A)
such that for any solutionx ∈ Pm(x0, A) we can point out the indexs = s(x) ∈
Nm such that

gs(x
0, x,As) ≤ φm(∞)‖x̃0 − x̃‖1 > 0. (9)

Settingε > n
2

pm
1

q φm(∞), we define the elementsa0ijk of any cutA0
k, k ∈ Nm,

of the perturbing matrixA0 according to the formula

a0ijk =







α if x0ix
0
j = 0, k ∈ Nm,

−α if x0ix
0
j = 1, k ∈ Nm,
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where
φm(∞) < α <

ε

n
2

pm
1

q

. (10)

Then according to (6) and (7), we get

‖A0
k‖p = αn

2

p , k ∈ Nm,

‖A0‖pq = αn
2

pm
1

q ,

A0 ∈ Ωpq(ε).

In addition, due to the construction of matrixA0
k, for any solutionx 6= x0 and any

k ∈ Nm we have

gk(x
0, x,A0

k) = (x0−x)TA0
k(x

0−x) =
∑

i∈Nn

∑

j∈Nn

a0ijk(x
0
i x

0
j−xixj) = −α‖x̃0−x̃‖1.

(11)
Using (9) and (10), we continue

gs(x
0, x,As+A

0
s) = gs(x

0, x,As)+gs(x
0, x,A0

s) ≤ (φm(∞)−α)‖x̃0−x̃‖1 < 0.

So, we deduce
∀ x ∈ Pm(x0, A) (x 6∈ X(x0, A+A0)). (12)

Obviously, in the caseX(x0, A + A0) = ∅, the solutionx0 is efficient in the
perturbed problemZm(A + A0), i.e. x0 ∈ Pm(A + A0). Now it is time to recall
thatx0 6∈ Pm(A).

Further, we should proveX(x0, A + A0) 6= ∅. If so, then due to the outer
stability of the Pareto set ( [27], p. 34) there exists a solution x∗ ∈ Pm(x0, A+A0).
Let us show thatx∗ 6∈ Pm(A). We prove by contradiction. Suppose thatx∗ ∈
Pm(A). Then by (12), we have

x∗ ∈ Pm(A)\Pm(x0, A).

Then two cases are possible only.
Case 1.f(x∗, A) = f(x0, A). Then for anyk ∈ Nm equations (11) imply that

gk(x
0, x∗, Ak +A0

k) = gk(x
0, x∗, Ak) + gk(x

0, x∗, A0
k) = −α‖x̃0 − x̃∗‖1 < 0.

Case 2.There exists an indexs such thatfs(x∗, As) > fs(x
0, As). Then using

(11), we get

gs(x
0, x∗, As +A0

s) = gs(x
0, x∗, As)− α‖x̃0 − x̃∗‖1 < 0.

As a result, in both cases we get a contradiction withx∗ ∈ Pm(x0, A+A0).

Summarizing, we have just shown that for anyε > n
2

pm
1

qφm(∞) we can
guarantee the existence of the perturbing matrixA0 ∈ Ωpq(ε) and existence of the
solution (x0 or x∗) such that the solution is not efficient in the problemZm(A) and
efficient in the perturbed problemZm(A + A0). Thus the following statement is
valid

∀ ε > n
2

pm
1

q φm(∞) ∃ A0 ∈ Ωpq(ε) (Pm(A+A0) 6⊆ Pm(A)).
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Hence inequality (8) is true.
We are finally left with a need to demonstrate thatρ ≤ σm(p). To do that it is

sufficient to show that for any indexk ∈ Nm we should have

ρ ≤ ‖Ak‖p.

Let x0 = (x01, x
0
2, . . . , x

0
n)

T 6∈ Pm(A), Let fix an arbitrary indexs ∈ Nm and
denote

γs = ‖As‖p . (13)

Assumingε > γs, we define a numberδ such that

0 < δn
2

p < ε− γs. (14)

Now consider an auxiliary matrixU = U(x0) = [uij ] ∈ R
n×n with elements

uij =







δ if x0i x
0
j = 0,

−δ if x0i x
0
j = 1.

Using (7), we deduce

‖U‖p = δn
2

p . (15)

Besides that, for any solutionx ∈ X\{x0} the following is obvious

(x0 − x)TU(x0 − x) = −δ‖x̃0 − x̃‖1 < 0. (16)

Let A0 ∈ R
n×n×m be a perturbing matrix with cutsA0

k ∈ R
n×n, k ∈ Nm,

defined as follows

A0
k =

{

U −Ak if k = s,

0(n×n) if k 6= s,

where0(n×n) is (n×n)-matrix with all zero elements. Then according to (13)-(15),
we get

‖A0‖pq = ‖A0
s‖pq = ‖U −As‖p ≤ ‖U‖p + ‖As‖p = δn

2

p + γs < ε,

i.e.A0 ∈ Ωpq(ε). In addition, due to (16), we get

gs(x
0, x,A0

s) = gs(x
0, x, U −As) = −δ‖x̃0 − x̃‖1 − gs(x

0, x,As).

Therefore, for any solutionx ∈ X\{x0} we get

gs(x
0, x,As +A0

s) = −δ‖x̃0 − x̃‖1 < 0.

This implies that for any solutionx ∈ X\{x0} we havex 6∈ X(x0, A+A0). Since
x0 6∈ X(x0, A+A0), we haveX(x0, A+A0) = ∅, i.e.

x0 ∈ Pm(A+A0).

Summarizing, for anyε > γs we can guarantee the existence of the perturbing
matrixA0 ∈ Ωpq(ε) such that the inefficient solutionx0 of Zm(A) (x0 6∈ Pm(A))
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becomes efficient in the perturbed problemZm(A + A0) (x0 ∈ Pm(A + A0)).
Therefore, the following formula is valid

∀ ε > γs ∃ A0 ∈ Ωpq(ε) (Pm(A+A0) 6⊆ Pm(A)).

Henceρ ≤ γs = ‖As‖p for anys ∈ Nm (recall thats has been chosen arbitrary),
i.e. ρ ≤ σm(p).

Thus, we have shown bothρ ≤ σm(p) and (8), so collecting all together we get
the valid upper bound specified in the theorem

ρm(p, q) ≤ ψm(p, q).

Finally, we have just shown the correctness of both the lowerboundφm(p) ≤
ρm(p, q) and the upper boundρm(p, q) ≤ ψm(p, q). specified in the theorem for
non-trivial problemZm(A), m ∈ N, p, q ∈ [1,∞]. Thus, the theorem has been
proven.

Since the equalities are evident

‖x̃− x̃′‖1 = ‖x̃‖1 + ‖x̃′‖1 − 2(x̃)T x̃′ = ‖x‖21 + ‖x′‖21 − 2(xTx′)2,

the following corollary is concluded directly from the theorem, and it illustrates
attainability of the lower and upper bounds forp = q = ∞.

Corollary 1 The stability radiusρm(∞,∞) of non-trivial problemZm(A), m ∈
N, is expreseed by the following formula

ρm(∞,∞) = min
x 6∈Pm(A)

max
x′∈Pm(x,A)

min
k∈Nm

(x− x′)TAk(x− x′)

‖x‖21 + ‖x′‖21 − 2(xTx′)2
.

The next corollary implies that the lower bound for the stability radius specified
in the theorem is also attainable in the case|Pm(A)| = 1.

Corollary 2 Let problemZm(A), m ∈ N, have a unigue efficient solutionx0.
Then for anyp, q ∈ [1,∞] we have

ρm(p, q) = min
x∈X\{x0}

min
k∈Nm

gk(x, x
0, Ak)

‖x̃− x̃0‖p∗
. (17)

Proof. For the sake of brevity, we denoteξ the right-hand side of (17). Let
Pm(A) = {x0}. Then according to the definition ofξ there exists a solution
x∗ 6∈ Pm(A) and an indexs ∈ Nm such that the following equality holds

ξ‖x̃∗ − x̃0‖p∗ = gs(x
∗, x0, As), (18)

with ξ > 0. Settingε > ξ, we fix a the numberδ that satisfies the condition

ξ < δ < ε. (19)

Due to (5), there exists a matrixB ∈ R
n×n such that

‖B‖p = δ,
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(x∗ − x0)TB(x∗ − x0) = −δ‖x̃∗ − x̃0‖p∗ .

Now we define the cutsA0
k, k ∈ Nm, of the perturbing matrixA0 ∈ R

n×n×m as
follows

A0
k =

{

B if k = s,

0(n×n) if k 6= s,

where0(n×n) is (n× n)-matrix with all zero elements. Then we get

‖A0‖pq = ‖A0
s‖p = ‖B‖p = δ,

gs(x
∗, x0, A0

s) = −δ‖x̃∗ − x̃0‖p∗ .

Using (18) and (19), we deduce

gs(x
∗, x0, As+A0

s) = gs(x
∗, x0, As)− δ‖x̃∗ − x̃0‖p∗ = (ξ− δ)‖x̃∗ − x̃0‖p∗ < 0.

This impliesx0 6∈ X(x∗, A+A0). If X(x∗, A+A0) = ∅, thenx∗ ∈ Pm(A+A0).
Otherwise, due to the property of outer stability of the Pareto set (see again [27]),
we can point out a solution̂x ∈ Pm(x∗, A+A0) such that̂x ∈ Pm(A+A0).

Summarizing, for anyε > ξ we can guarantee the existence of the perturbing
matrixA0 ∈ Ωpq(ε) such that there exists a solutionx′ ∈ X\{x0} with the condi-
tion x′ ∈ Pm(A + A0) , i.e. Pm(A + A0) 6⊆ Pm(A). This confirms thatρ ≤ ξ.
Since the problemZm(A) is non-trivial (|Pm(A)| = 1), then due to the theorem,
we getρ ≥ ξ. Since at the same time we have bothρ ≤ ξ andρ ≥ ξ, the formula
(17) holds.

8



References

[1] SERGIENKO I.V., SHILO V.P. Discrete optimization problems. Problems,
methods of solutions, investigations. Naukova dumka, Kiev, 1979.

[2] EMELICHEV V.A., GIRLICH E., NIKULIN Y.V., PODKOPAEV D.P. Stability
and regularization of vector problems of integer linear programming, Opti-
mization, 2002,51, No.4, 645–676.

[3] EMELICHEV V.A., K UZMIN K.G. On a type of stability of a multicriteria
integer linear programming problem in the case of a monotonenorm, Journal
of Computer and Systems Sciences International, 2007,46, No.5, 714–720.

[4] L IBURA M., NIKULIN Y.V. Stability and accuracy functions in multicriteria
linear combinatorial optimization problems, Annals of Operations Research,
2007,147, 255–267.

[5] EMELICHEV V.A., PODKOPAEV D.P. Quantitative stability analysis for vec-
tor problems of 0-1 programming, Discrete Optimization, 2010,7, No.1–2,
48–63.

[6] EMELICHEV V.A., K UZMIN K.G. Stability radius of a vector integer linear
programming problem: case of a regular norm in the space of criteria, Cyber-
netics and Systems Analysis, 2010,46, No.1, 72–79.

[7] EMELICHEV V.A., K UZMIN K.G., MYCHKOV V.I. Estimates of stability
radius of multicriteria Boolean problem with H”lder metrics in parameter
spaces, Bulletin of the Academy of Sciences of Moldova. Mathematics, 2015,
78, No.2, 74–81.

[8] L IBURA M., NIKULIN Y.V. Stability and accuracy functions in multicriteria
combinatorial optimization problem withΣ-MINMAX andΣ-MINMIN partial
criteria, Control and Cybernetics, 2004,33, No.3, 511–524.

[9] EMELICHEV V.A., KOROTKOV V.V. On stability radius of the multicriteria
variant of Markowitz’s investment portfolio problem, Bulletin of the Academy
of Sciences of Moldova. Mathematics, 2011,65, No.1, 83–94.

[10] EMELICHEV V.A., KOROTKOV V.V. Stability radius of a vector investment
problem with Savage’s minimax risk criteria, Cybernetics and Systems Analy-
sis, 2012,48, No.3, 378–386.

[11] EMELICHEV V.A., KOROTKOV V.V. On stability of a vector Boolean in-
vestment problem with Wald’s criteria, Discrete Math. Appl., 2012,22, No.4,
367–381.

[12] EMELICHEV V.A., KOROTKOV V.V. On stability of multicriteria investment
Boolean problem with Wald’s efficiency criteria, Bulletin of the Academy of
Sciences of Moldova. Mathematics., 2014,74, No.1, 3–13.

9



[13] KOROTKOV V.V., N IKULIN Y.V., EMELICHEV V.A. Stability of the bicri-
teria Boolean investment problem subject to extreme optimism and pessimism
criteria, Croatian Operation Research Review, 2015,6, No. 1, 195–205.

[14] BUKHTOYAROV S.E., EMELICHEV V.A. On the stability measure of solu-
tions to a vector version of an investment problem, Journal of Applied and
Industrial Mathematics, 2015,9, No. 3, 328–334.

[15] SHOR N.Z., STETSENKO S.I. Quadratic extreme problems and non-
differential optimization. Naukova dumka, Kiev, 1989.
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