
Emelichev Vladimir | Nikulin Yury

Stability of Extremum Solutions in Vec-
tor Quadratic Discrete Optimization

TUCS Technical Report
No 1189, September 2017





Stability of Extremum Solutions in Vec-
tor Quadratic Discrete Optimization

Emelichev Vladimir
Belarusian State University, Department of Mechanics and Mathematics,
Nezavisimisti 4, BLR-20030 Minsk, Belarus
vemelichev@gmail.com

Nikulin Yury
University of Turku, Department of Mathematics and Statistics,
Vesilinnantie 5, FIN-20100 Turku, Finland
yury.nikulin@utu.fi

TUCS Technical Report

No 1189, September 2017



Abstract

We consider a wide class of quadratic optimization problems with Boolean vari-
ables. Such problems can be found in economics, planning, project management,
artificial intelligence and computer-aided design. The problems are known to be
NP-hard. In this paper, the lower and upper bounds on the stability radius of the
set of extremum solutions are obtained in the situation where solution space and
criterion space are endowed with various Hölder’s norms.
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Many problems from the area of finance, economy, project management and
computer-aided design can be modelled as a quadratic optimization with either dis-
crete or continuous variables, see e.g. [1,2]. We consider a quadratic problem with
Boolean variables. It has been known for a long time that the Boolean quadratic
problem is equivalent to the problem of finding a maximum cut in a graph. In [3]
and [4], it was also shown that a number of graph problems (maximum clique, max-
imum vertex packing, minimum vertex cover (maximum independent set), maxi-
mum weight independent set) can all be formulated as scalar Boolean quadratic
problem. Quadratic Boolean programming is also related to some problems where
graph theory meets combinatorial optimization indirectly (see e.g. [5], [6])

Unconstrained quadratic Boolean programming problem, as well as their con-
strained counterparts, are generally belonging to the class of NP-hard problems [7],
and considered as classic problems in combinatorial optimization, see, for ex-
ample [8], for the characterization of the polytope of an unconstrained quadratic
Boolean programming problem.

The current work is filled with new results specifying attainable bounds on sta-
bility radius for multicriteria quadratic Boolean programming problem of finding
the extremum set in the situation where solution space and criterion space are en-
dowed with various Hölder’s norms. Notice that similar results were obtained in [9]
for the multicriteria linear Boolean programming problem of finding the Pareto set.

1. Problem statement and main definitions
LetA = [aijk] be a n×n×m-matrix with corresponding cutsAk ∈ Rn×n, k ∈

Nm = {1, 2, . . . ,m}, m ≥ 1. Let also X ⊆ En = {0, 1}n, |X| ≥ 2, be a set of
feasible solutions (Boolean vectors) x = (x1, x2, . . . , xn)

T , n ≥ 2.
We define a vector criterion

f(x,A) = (f1(x,A1), f2(x,A2), . . . , fm(x,Am)) → min
x∈X

,

with partial criteria being quadratic functions

fk(x,Ak) = xTAkx, k ∈ Nm.

In decision making theory, along with the well-known Pareto optimality prin-
ciple (see e.g. [10]), various choice functions are considered [11–14]. In this paper,
under m-criteria quadratic problem Zm(A) we understand the problem of finding
the set of extremum solutions defined in traditional way (see e.g. [11–13]):

Cm(A) = {x ∈ X : ∃s ∈ Nm ∀x′ ∈ X (gs(x, x
′, As) ≤ 0)},

where

gs(x, x
′, As) = fs(x,As)− fs(x

′, As) = (x− x′)TAs(x− x′).

Thus, the choice of extremum solutions can be interpreted as finding best solu-
tions for each of m criteria, and then combining them into one set. In other words,
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the set of extremum solutions contains all the individual minimizers of each ob-
jective. Obviously, C1(A), A ∈ Rn×n is the set of optimal solutions for scalar
problem Z1(A) with A ∈ Rn×n.

Taking into account that X is finite, the following formulae below are true:

Cm(A) = Sm(A)\(Pm(A)\Lm(A)) = Lm(A) ∪ (Sm(A)\Pm(A)),

Cm(A) ∩ Pm(A) = Lm(A),

Lm(A) ⊆ Pm(A) ⊆ Sm(A),

Lm(A) ⊆ Cm(A) ⊆ Sm(A),

where Pm(A) denotes the Pareto set [15], Sm(A) denotes the Slater set [16], and
Lm(A) denotes the lexicographic set (see e.g. [10, 17]). Below we define all the
three sets in a traditional way see e.g. [9, 18]:

Pm(A) = {x ∈ X : X(x,A) = ∅},

Sm(A) = {x ∈ X : ̸ ∃x0 ∈ X ∀k ∈ Nm (gk(x, x
0, Ak) > 0)},

Lm(A) =
∪

π∈Πm

L(A, π), L(A, π) = {x ∈ X : ∀x′ ∈ X (g(x, x′, A) ≤π 0(m))},

X(x,A) = {x′ ∈ X : g(x, x′, A) ≥ 0(m) & g(x, x′, A) ̸= 0(m)},

g(x, x′, A) = (g1(x, x
′, A1), g2(x, x

′, A2), . . . , gm(x, x′, Am)),

0(m) = (0, 0, . . . , 0) ∈ Rm.

Here Πm is the set of allm! permutations of numbers 1, 2, ...,m; π = (π1, π2, ..., πm) ∈
Πm; and the binary relation of lexicographic order between two vectors y =
(y1, y2, . . . , ym) ∈ Rm and y′ = (y′1, y

′
2, . . . , y

′
m) ∈ Rm is defined as follows

g(y, y′, A) ≤π 0(m) ⇔
(
y = y′

)
∨
(
∃k ∈ Nm ∀i ∈ Nk−1 (yπk

< y′πk
& yπi = y′πi

)
)
,

where N0 = ∅. Obviously all the sets, Pm(A), Sm(A), Lm(A) and Cm(A), are
non-empty for any matrix A = [aijk] ∈ Rn×n×m due to the finite number of
alternatives in X .

We will perturb the elements of matrix A ∈ Rn×n×m by adding elements of
the perturbing matrix A′ ∈ Rn×n×m. Thus the perturbed problem Zm(A+A′) of
finding extremum solutions has the following form

f(x,A+A′) → min
x∈X

.

In the solution space Rn, we define an arbitrary Hölder’s norm lp, p ∈ [1,∞],
i.e. under norm of vector a = (a1, a2, . . . , an)

T ∈ Rn we understand the number

∥a∥p =


( ∑
j∈Nn

|aj |p
)1/p

if 1 ≤ p <∞,

max{|aj | : j ∈ Nn} if p = ∞.
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Thus, for any matrix Ak ∈ Rn×n, the norm of the matrix is defined as a norm
of vector composed of all the matrix elements.

In the criterion space Rm, we define another Hölder’s norm lq, q ∈ [1,∞], i.e.
under norm of matrix A ∈ Rn×n×m we understand the number

∥A∥pq = ∥(∥A1∥p, ∥A2∥p, . . . , ∥Am∥p)∥q,

It is easy to see that
∥Ak∥p ≤ ∥A∥pq, k ∈ Nm. (1)

Let ζ be either p or q. It is well-known that lζ norm, defined in Rn, induces
conjugated lζ∗ norm in (Rn)∗. For ζ and ζ∗, the following relations hold

1

ζ
+

1

ζ∗
= 1, 1 < ζ <∞.

In addition, if ζ = 1 then ζ∗ = ∞. Obviously, if ζ∗ = 1 then ζ = ∞. Also notice
that ζ and ζ∗ belong to the same range [1,∞]. We also set 1

ζ = 0 if ζ = ∞.
For any two vectors a and b of the same dimension, the following Hölder’s

inequalities are well-known (see e.g. [19])

|aT b| ≤ ∥a∥ζ∥b∥ζ∗ . (2)

To any vector x = (x1, x2, . . . , xn)
T ∈ En, we assign a vector x̃ composed of

all the possible products xixj , i.e.

x̃ = (x11, x12, . . . , xnn−1, xnn)
T ∈ En2

,

where

xij =

{
1 if xixj = 1,
0 if xixj = 0.

Taking into account Hölder’s inequalities (2), we can see that for any x, x′ ∈
En and k ∈ Nm the following inequalities hold

|fk(x,Ak)| = |xTAkx| = |Akxx
T | ≤ ∥Ak∥p∥x̃∥p∗ , (3)

|gk(x, x′, Ak)| ≤ ∥Ak∥p∥x̃− x̃′∥p∗ . (4)

Using the well-known condition (see [19]) that transforms (3) and (4) into
equalities, the validity of the following statements becomes transparent

∀ x, x′ ∈ En ∀ δ > 0 ∃ B ∈ Rn×n

(
∥B∥p = δ & |(x− x′)TB(x− x′)| = δ∥x̃− x̃′∥p∗

)
. (5)

In addition it is easy to see that for any vector a = (a1, a2, . . . , an)
T ∈ Rn

with condition |aj | = α, j ∈ Nn, and any matrix Ak = [aijk] ∈ Rn×n with
condition |aijk| = α, (i, j) ∈ Nn ×Nn, the following inequalities are valid

∥a∥p = αn
1
p , (6)
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∥Ak∥p = αn
2
p . (7)

Given ε > 0, let

Ωpq(ε) =
{
A′ ∈ Rn×n×m : ∥A′∥pq < ε

}
be the set of perturbing matrices A′ with cuts A′

k ∈ Rn×n, k ∈ Nm, and ∥A′∥pq
is the norm of A′ = [a′ijk] ∈ Rn×n×m. Denote

Ξpq =
{
ε > 0 : ∀ A′ ∈ Ωpq(ε) (Cm(A+A′) ⊆ Cm(A))

}
.

Following [9, 20–22], the number

ρm(p, q) =

 sup Ξpq if Ξpq ̸= ∅,

0 if Ξpq = ∅

is called the stability radius of problem Zm(A), m ∈ N, with Hölder’s norms lp
and lq in the spaces Rn and Rm respectively. Thus, the stability radius of prob-
lem Zm(A) defines the extreme level of independent perturbations of the elements
of matrix A in the space Rn×n×m that do not lead to the situation where new
extremum solutions appear.

It is evident that if Cm(A) = X , the inclusion

Cm(A+A′) ⊆ Cm(A)

holds for any perturbing matrix A′ ∈ Ωpq(ε) with ε > 0. So, the stability radius
is infinite when Cm(A) = X . The problem Zm(A) that satisfies Cm(A) ̸= X is
called non-trivial.

2. Main result
Given p, q ∈ [1,∞], for non-trivial problem Zm(A), m ∈ N, we set

ϕm(p) = min
k∈Nm

min
x ̸∈Cm(A)

max
x′∈X\{x}

gk(x, x
′, Ak)

∥x̃− x̃′∥p∗
,

ψm(p, q) = min
{
n

2
pm

1
qϕm(∞), γm(p)

}
,

where
γm(p) = min{∥Ak∥p : k ∈ Nm}.

Theorem. Given p, q ∈ [1,∞] and m ∈ N, for the stability radius ρm(p, q)
of non-trivial problem Zm(A), the following lower and upper bounds are valid

0 < ϕm(p) ≤ ρm(p, q) ≤ ψm(p, q).

Proof. Since the formula

∀k ∈ Nm ∀x ̸∈ Cm(A) ∃x0 ∈ X (gk(x, x
0, Ak) > 0),
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is true, the inequality ϕm(p) > 0 tells us that the lower bound on the stability
radius as well as the stability radius itself are always positive.

First, we prove that ρm(p, q) ≥ ϕm(p). Let A′ ∈ Ωpq(ϕm(p)) be a perturbing
matrix with cuts Ak ∈ Rn×n, k ∈ Nm. Then according to the definition of the
number ϕm(p), for any index k ∈ Nm and any solution x ̸∈ Cm(A) there exists a
solution x0 ∈ X\{x} such that

gk(x, x
0, Ak)

∥x̃− x̃0∥p∗
≥ ϕm(p) > ∥A′∥pq ≥ ∥A′

k∥p,

due to (1). Therefore, using (4) we deduce

gk(x, x
0, Ak +A′

k) = gk(x, x
0, Ak) + gk(x, x

0, A′
k) ≥

gk(x, x
0, Ak)− ∥A′

k∥p∥x̃− x̃0∥p∗ > 0, k ∈ Nm,

i.e. x ̸∈ Cm(A + A′), Thus, any solution that is not extremum in the problem
Zm(A) stays so in the problem Zm(A + A′). So, we conclude that for any per-
turbing matrix A′ ∈ Ωpq(ϕm(p)) the inclusion holds Cm(A+ A′) ⊆ Cm(A), and
hence ρm(p, q) ≥ ϕm(p).

Further, we prove that

ρm(p, q) ≤ n
2
pm

1
qϕm(∞). (8)

According to the definition of number ϕm(∞), there exist an index s ∈ Nm and
solution x0 = (x01, x

0
2, . . . , x

0
n) ̸∈ Cm(A) such that for any solution x ∈ X\{x0}

we have
gs(x

0, x, As) ≤ ϕm(∞)∥x̃0 − x̃∥1 > 0. (9)

Setting ε > n
2
pm

1
qϕm(∞), we define the elements a0ijk of any cutA0

k, k ∈ Nm,
of the perturbing matrix A0 according to the formula

a0ijk =

 δ if x0ix
0
j = 0, k ∈ Nm,

−δ if x0ix
0
j = 1, k ∈ Nm,

where
ϕm(∞) < δ <

ε

n
2
pm

1
q

. (10)

Then according to (6) and (7), we get

∥A0
k∥p = δn

2
p , k ∈ Nm,

∥A0∥pq = δn
2
pm

1
q ,

A0 ∈ Ωpq(ε).

In addition, due to the construction of matrix A0
k, for any solution x ̸= x0 and

any k ∈ Nm we have

gk(x
0, x, A0

k) = (x0−x)TA0
k(x

0−x) =
∑
i∈Nn

∑
j∈Nn

a0ijk(x
0
ix

0
j−xixj) = −δ∥x̃0−x̃∥1.

(11)
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Using (9) and (10), we continue

gs(x
0, x, As+A

0
s) = gs(x

0, x, As)+gs(x
0, x, A0

s) ≤ (ϕm(∞)−δ)∥x̃0− x̃∥1 < 0

i.e. x0 ∈ Cm(A+A0).
Summarizing, for any ε > n

2
pm

1
qϕm(∞), we can guarantee the existence of

the perturbing matrix A0 ∈ Ωpq(ε) such that the solution, which is not extremum
in the original problem Zm(A), becomes an extremum in the perturbed problem
Zm(A+A0). Thus, the formula

∀ε > n
2
pm

1
qϕm(∞) ∃A0 ∈ Ωpq(ε) (Cm(A+A0) ̸⊆ Cm(A)).

So, inequality (8) holds.
We are finally left with a need to demonstrate that ρm(p, q) ≤ γm(p). To do

that it is sufficient to show that for any index s ∈ Nm we should have ρm(p, q) ≤
∥As∥p.

Let x0 = (x01, x
0
2, . . . , x

0
n)

T ̸∈ Cm(A). Denote

γs = ∥As∥p. (12)

Assuming ε > γs, we define a number δ such that

0 < δn
2
p < ε− γs. (13)

Now consider an auxiliary matrix U = U(x0) = [uij ] ∈ Rn×n with elements

uij =

 δ if x0ix
0
j = 0,

−δ if x0ix
0
j = 1.

Using (7), we deduce
∥U∥p = δn

2
p . (14)

Besides that, for any solution x ∈ X\{x0} the following is obvious (c.f. (11))

(x0 − x)TU(x0 − x) = −δ∥x̃0 − x̃∥1 < 0. (15)

Let A0 ∈ Rn×n×m be a perturbing matrix with cuts A0
k ∈ Rn×n, k ∈ Nm,

defined as follows

A0
k =

{
U −Ak if k = s,

0(n×n) if k ̸= s,

where 0(n×n) is (n×n)-matrix with all zero elements. Then according to (12)-(14),
we get

∥A0∥pq = ∥A0
s∥p = ∥U −As∥p ≤ ∥U∥p + ∥As∥p = δn

2
p + γs < ε,

i.e. A0 ∈ Ωpq(ε).
In addition, due to (15), we get

gs(x
0, x, A0

s) = (x0−x)TU(x0−x)−gs(x0, x, As) = −δ∥x̃0−x̃∥1−gs(x0, x, As).
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Therefore, for every solution x ∈ X\{x0} we get

gs(x
0, x, As +A0

s) = −δ∥x̃0 − x̃∥1 < 0,

i.e. x0 ∈ Cm(A+A0).
Summarizing, for any ε > γs we can guarantee the existence of the perturbing

matrix A0 ∈ Ωpq(ε) such that the solution x0, which is not an extremum in Zm(A)
(x0 ̸∈ Cm(A)), becomes an extremum in the perturbed problem Zm(A + A0)
(x0 ∈ Cm(A+A0)). Therefore, the following formula is valid

∀ ε > γs ∃ A0 ∈ Ωpq(ε) (Cm(A+A0) ̸⊆ Cm(A)).

So, ρm(p, q) < ε for any ε > γs, s ∈ Nm. Thus, ρm(p, q) ≤ γm(p) = min{∥As∥ :
s ∈ Nm}.

The Theorem has been proven.

3. Corollaries
Since the equalities

∥x̃− x̃′∥1 = ∥x̃∥1 + ∥x̃′∥1 − 2(x̃)T x̃′ = ∥x∥21 + ∥x′∥21 − 2(xTx′)2,

are evident the following corollary is concluded directly from the Theorem, and it
illustrates attainability of the lower and upper bounds for p = q = ∞.

Corollary 1. The stability radius ρm(∞,∞) of non-trivial problemZm(A), m ∈
N, is expressed by the following formula

ρm(∞,∞) = ϕm(∞) = ψm(∞,∞) = min
k∈Nm

min
x ̸∈Cm(A)

max
x′∈X\{x}

(x− x′)TAk(x− x′)

∥x∥21 + ∥x′∥21 − 2(xTx′)2
.

The next formula is a particular case of Corollary 1 for the scalar problem
Z1(A), A ∈ Rn×n.

ρm(∞,∞) = ϕm(∞) = ψm(∞,∞) = min
x̸∈C1(A)

max
x′∈C1(A)

(x− x′)TAk(x− x′)

∥x∥21 + ∥x′∥21 − 2(xTx′)2
.

The next corollary implies that the lower bound for the stability radius specified
in the Theorem is also attainable.

Corollary 2. For any given p, q ∈ [1,∞] and m ∈ N, there exists a class of
non-trivial problems Zm(A) such that the stability radius of a problem of the class
is expressed by formula

ρm(p, q) = ϕm(p).

Proof. Due to the Theorem, it suffices to find a class of problems Zm(A) with
ρm(p, q) ≤ ϕm(p).

Let X = {x0, x∗} ⊂ En and Cm(A) = {x0}, then x∗ ̸∈ Cm(A). According
to the definition of the number ϕm(p), there exists an index s ∈ Nm such that

ϕm(p)∥x̃∗ − x̃0∥p∗ = gs(x
∗, x0, As), (16)
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with ϕm(p) > 0. Setting ε > ϕm(p), we fix a the number δ that satisfies the
condition

ϕm(p) < δ < ε. (17)

Due to (5), there exists a matrix B ∈ Rn×n such that

∥B∥p = δ,

(x∗ − x0)TB(x∗ − x0) = −δ∥x̃∗ − x̃0∥p∗ .

Now we define the cuts A0
k, k ∈ Nm, of the perturbing matrix A0 ∈ Rn×n×m as

follows

A0
k =

{
B if k = s,

0(n×n) if k ∈ Nm\{s},

where where 0(n×n) is (n× n)-matrix with all zero elements. Then we get

gs(x
∗, x0, A0

s) = −δ∥x̃∗ − x̃0∥p∗ .

∥A0∥pq = ∥A0
s∥p = ∥B∥p = δ,

A0 ∈ Ωpq(ε).

Using (16) and (17), we deduce

gs(x
∗, x0, As+A

0
s) = gs(x

∗, x0, As)−δ∥x̃∗−x̃0∥p∗ = (ϕm(p)−δ)∥x̃∗−x̃0∥p∗ < 0.

This implies x∗ ∈ Cm(A + A0). Summarizing, for any ε > ϕm(p) we can
guarantee the existence of the perturbing matrix A0 ∈ Ωpq(ε) such that x∗ ̸∈
Cm(A) and x∗ ∈ Cm(A + A0) , i.e. the inclusion Cm(A) ⊇ Cm(A + A0) is not
valid. This confirms that ρm(p, q) ≤ ε for any ε > ϕm(p), and hence ρm(p, q) ≤
ϕm(p), Corollary 2 has been proven.

At the end we mention that fact that the results of the Theorem and Corollary 1
could also be formulated for X ⊆ Zn, but Corollary 2 stays true only for X ⊆ En.
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