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Abstract

We consider a wide class of quadratic optimization problemswith integer and
Boolean variables. In this paper, the lower and upper boundson the strong sta-
bility radius of the set of extremum solutions are obtained in the situation where
solution space and criterion space are endowed with variousHölder’s norms.
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1 Problem formulation and basic definitions

Let A = [aijk] be an×n×m– matrix with corresponding cutsAk ∈ R
n×n, k ∈

Nm = {1, 2, . . . ,m}, m ≥ 1. LetX ⊆ Z
n, 2 ≤ |X| < ∞, be a set of feasible

solutions (integer vectors)x = (x1, x2, . . . , xn)
T , n ≥ 2.

We define a vector criterion

f(x,A) = (f1(x,A1), f2(x,A2), . . . , fm(x,Am)) → min
x∈X

,

with partial criteria being quadratic functions

fk(x,Ak) = xTAkx, k ∈ Nm.

In decision making theory, along with the well-known Paretooptimality prin-
ciple (see e.g. [1]), various choice functions are considered [2–5]. In this paper,
underm-criteria quadratic problemZm(A) we understand the problem of finding
the set of extremum solutions defined in traditional way (seee.g. [2–4]):

Cm(A) = {x ∈ X : ∃s ∈ Nm ∀x′ ∈ X (gs(x, x
′, As) ≤ 0)},

where

gs(x, x
′, As) = fs(x,As)− fs(x

′, As) = (x− x′)TAs(x− x′).

Thus, the choice of extremum solutions can be interpreted asfinding best solu-
tions for each ofm criteria, and then combining them into one set. In other words,
the set of extremum solutions contains all the individual minimizers of each ob-
jective. Obviously,C1(A), A ∈ R

n×n is the set of optimal solutions for scalar
problemZ1(A) with A ∈ R

n×n.
Taking into account thatX is finite, the following formulae below are true:

Cm(A) = Sm(A)\(Pm(A)\Lm(A)) = Lm(A) ∪ (Sm(A)\Pm(A)),

Cm(A) ∩ Pm(A) = Lm(A),

Lm(A) ⊆ Pm(A) ⊆ Sm(A),

Lm(A) ⊆ Cm(A) ⊆ Sm(A),

wherePm(A) denotes the Pareto set [6],Sm(A) denotes the Slater set [7], and
Lm(A) denotes the lexicographic set (see e.g. [1,8]). Below we define all the three
sets in a traditional way see e.g. [9–11]:

Pm(A) =
{

x ∈ X : X(x,A) = ∅
}

,

Sm(A) =
{

x ∈ X : 6 ∃x0 ∈ X ∀k ∈ Nm (gk(x, x
0, Ak) > 0)

}

,

Lm(A) =
⋃

π∈Πm

L(A, π),

L(A, π) =
{

x ∈ X : ∀x′ ∈ X (g(x, x′, A) ≤π 0(m))
}

,
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X(x,A) =
{

x′ ∈ X : g(x, x′, A) ≥ 0(m) & g(x, x′, A) 6= 0(m)

}

,

g(x, x′, A) = (g1(x, x
′, A1), g2(x, x

′, A2), . . . , gm(x, x′, Am)),

0(m) = (0, 0, . . . , 0) ∈ R
m.

HereΠm is the set of allm! permutations of numbers1, 2, ...,m; π = (π1, π2, ..., πm) ∈
Πm; and the binary relation of lexicographic order between twovectorsy =
(y1, y2, . . . , ym) ∈ R

m andy′ = (y′1, y
′
2, . . . , y

′
m) ∈ R

m is defined as follows

y ≤π y
′ ⇐⇒

(

y = y′
)

∨
(

∃k ∈ Nm ∀i ∈ Nk−1 (yπk
< y′πk

& yπi
= y′πi

)
)

,

whereN0 = ∅. Obviously all the sets,Pm(A), Sm(A), Lm(A) andCm(A), are
non-empty for any matrixA = [aijk] ∈ R

n×n×m due to the finite number of
alternatives inX.

We will perturb the elements of matrixA ∈ R
n×n×m by adding elements of

the perturbing matrixA′ ∈ R
n×n×m. Thus the perturbed problemZm(A+A′) of

finding extremum solutions has the following form

f(x,A+A′) → min
x∈X

.

In the solution spaceRn, we define an arbitrary Hölder’s normlp, p ∈ [1,∞],
i.e. under norm of vectora = (a1, a2, . . . , an)

T ∈ R
n we understand the number

‖a‖p =















(

∑

j∈Nn

|aj |
p
)1/p

if 1 ≤ p <∞,

max{|aj | : j ∈ Nn} if p = ∞.

Thus, for any matrixAk ∈ R
n×n, the norm of the matrix is defined as a norm

of vector composed of all the matrix elements.
In the criterion spaceRm, we define another Hölder’s normlq, q ∈ [1,∞], i.e.

under norm of matrixA ∈ R
n×n×m we understand the number

‖A‖pq = ‖(‖A1‖p, ‖A2‖p, . . . , ‖Am‖p)‖q,

It is easy to see that
‖Ak‖p ≤ ‖A‖pq, k ∈ Nm. (1)

Let ζ be eitherp or q. It is well-known thatlζ norm, defined inRn, induces
conjugatedlζ∗ norm in(Rn)∗. Forζ andζ∗, the following relations hold

1

ζ
+

1

ζ∗
= 1, 1 < ζ <∞.

In addition, ifζ = 1 thenζ∗ = ∞. Obviously, ifζ∗ = 1 thenζ = ∞. Also notice
thatζ andζ∗ belong to the same range[1,∞]. We also set1ζ = 0 if ζ = ∞.
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For any two vectorsa and b of the same dimension, the following Hölder’s
inequalities are well-known (see e.g. [12])

|aT b| ≤ ‖a‖ζ‖b‖ζ∗ . (2)

To any vectorx = (x1, x2, . . . , xn)
T ∈ Z

n, we assign a vector̃x composed of
all the possible productsxixj, i.e.

x̃ = (x1x1, x1x2, . . . , xnxn−1, xnxn)
T ∈ Z

n2

.

Taking into account Hölder’s inequalities (2), we can see that for anyx, x′ ∈
Z
n andk ∈ Nm the following inequalities hold

|fk(x,Ak)| = |xTAkx| = |Akxx
T | ≤ ‖Ak‖p‖x̃‖p∗ ,

|gk(x, x
′, Ak)| ≤ ‖Ak‖p‖x̃− x̃′‖p∗ . (3)

It is also easy to see that for any vectora = (a1, a2, . . . , an)
T ∈ R

n with
condition |aj | = α, j ∈ Nn, and any matrixAk = [aijk] ∈ R

n×n with condition
|aijk| = α, (i, j) ∈ Nn ×Nn, the following inequalities are valid

‖a‖p = αn
1

p , (4)

‖Ak‖p = αn
2

p . (5)

Givenε > 0, let

Ωpq(ε) =
{

A′ ∈ R
n×n×m : ‖A′‖pq < ε

}

be the set of perturbing matricesA′ with cutsA′
k ∈ R

n×n, k ∈ Nm, and‖A′‖pq
is the norm ofA′ = [a′ijk] ∈ R

n×n×m. Denote

Ξpq =
{

ε > 0 : ∀ A′ ∈ Ωpq(ε) (Cm(A+A′) ∩ Cm(A) 6= ∅)
}

.

Following [10] and [13], the number

ρm(p, q) =







sup Ξpq if Ξpq 6= ∅,

0 if Ξpq = ∅

is called thestrong stability (in terminology of [14] and [15]T1-stability) radius
of problemZm(A), m ∈ N, with Hölder’s normslp andlq in the spacesRn and
R

m respectively. Thus, the strong stability radius of problemZm(A) defines the
extreme level of independent perturbations of the elementsof matrixA in the space
R

n×n×m not leading to the situation where new extremum solutions appear.
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2 Main result

Givenp, q ∈ [1,∞], for problemZm(A),m ∈ N, we set

φm(p) = min
x 6∈Cm(A)

min
k∈Nm

max
x′∈X\{x}

gk(x, x
′, Ak)

‖x̃− x̃′‖p∗
,

ψm(p) = max
x′∈Cm(A)

max
k∈Nm

min
x 6∈Cm(A)

gk(x, x
′, Ak)

‖x̃− x̃′‖p∗
,

γm(p, q) = n
2

pm
1

q min
x 6∈Cm(A)

max
k∈Nm

max
x′∈Cm(A)

gk(x, x
′, Ak)

‖x̃− x̃′‖1
.

It is evident that ifCm(A) = X, the inequality

Cm(A+A′) ∩ Cm(A) 6= ∅

holds for any perturbing matrixA′ ∈ Ωpq(ε) with ε > 0. So, the stability radius
is infinite whenCm(A) = X. The problemZm(A) that satisfiesCm(A) 6= X is
callednon-trivial.

Theorem 1 Given p, q ∈ [1,∞] and m ∈ N, for the strong stability radius
ρm(p, q) of non-trivial problem Zm(A), the following lower bound is valid

ρm(p, q) ≥ max{φm(p), ψm(p)} > 0.

In addition,

γm(p, q) ≥ ρm(p, q) ≥ max{φm(p), ψm(p)} > 0 (6)

if Zm(A) is a problem with Boolean variables, i.e. if X ⊆ E
n.

Proof. Since the formula

∀x 6∈ Cm(A) ∀k ∈ Nm ∃x0 ∈ X (gk(x, x
0, Ak) > 0),

is true, the inequalityφm(p) > 0 tells us that the lower bound on the strong stability
radius as well as the strong stability radius itself are always positive.

First, we prove thatρm(p, q) ≥ φm(p). LetA′ ∈ Ωpq(φm(p)) be a perturbing
matrix with cutsA′

k ∈ R
n×n, k ∈ Nm. Then according to the definition of the

numberφm(p), for any indexk ∈ Nm and any solutionx 6∈ Cm(A) there exists a
solutionx0 ∈ X\{x} such that

gk(x, x
0, Ak)

‖x̃− x̃0‖p∗
≥ φm(p) > ‖A′‖pq ≥ ‖A′

k‖p,

due to (1). Using (3) we conclude that for anyk ∈ Nm there existsx0 6= x such
that

gk(x, x
0, Ak +A′

k) = gk(x, x
0, Ak) + gk(x, x

0, A′
k) ≥

gk(x, x
0, Ak)− ‖A′

k‖p‖x̃− x̃0‖p∗ > 0,
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i.e. x 6∈ Cm(A + A′), Thus, any solution that is not extremum in the problem
Zm(A) so stays in the problemZm(A + A′). Then we conclude that for any
perturbing matrixA′ ∈ Ωpq(φm(p)) the inclusion holds∅ 6= Cm(A + A′) ⊆
Cm(A). It implies thatCm(A+A′) ∩Cm(A) 6= ∅ for anyA′ ∈ Ωpq(φm(p)), and
henceρm(p, q) ≥ φm(p).

Further, we prove thatρm(p, q) ≥ ψm(p). Since the formula

∃x′ ∈ Cm(A) ∃k ∈ Nm ∀x 6∈ Cm(A) (Ck(x− x′) > 0)

is true, the inequalityψm(p) > 0 is also evident.
LetA′ ∈ Ωpq(ψm(p)) be a perturbing matrix with cutsA′

k ∈ R
n×n, k ∈ Nm.

Then according to the definition of the numberψm(p), there exist indexs ∈ Nm

and solutionx0 ∈ Cm(A) such that for any solutionx 6∈ Cm(A) we have

gs(x, x
0, As)

‖x̃− x̃0‖p∗
≥ ψm(p) > ‖A′‖pq ≥ ‖A′

s‖p,

due to (1). Using (3), we conclude that for anyx 6∈ Cm(A) and anyA′ ∈
Ωpq(ψm(p)) the following inequalities hold

gs(x, x
0, As +A′

s) = gs(x, x
0, As) + gs(x, x

0, A′
s) ≥

gs(x, x
0, Ak)− ‖A′

s‖p‖x̃− x̃0‖p∗ > 0.

Therefore,
(

X\Cm(A)
)

∩ Cs(x
0, As +A′

s) = ∅,

where
Cs(x

0, As +A′
s) = {x ∈ X : gs(x

0, x,As +A′
s) > 0}.

Thus, any solution that is not extremum in the problemZm(A) so stays in the
problemZm(A + A′). Then we conclude that for any perturbing matrixA′ ∈
Ωpq(ψm(p)) the following inequality holds

Cm(A+A′) ∩ Cm(A) 6= ∅,

and henceρm(p, q) ≥ ψm(p).
Further we will consider the problemZm(A) with Boolean variables (X ⊆

E
n). And we demonstrate thatγm(p, q) ≥ ρm(p, q). According to the definition of

numberγm(p, q), there exists a Boolean solutionx0 = (x01, x
0
2, ..., x

0
n) 6∈ Cm(A),

x0 ∈ E
n such that for any extremum solutionx ∈ Cm(A) and any indexk ∈ Nm

we get

γm(p, q)‖x̃0 − x̃‖1 ≥ n
2

pm
1

q gk(x
0, x,Ak). (7)

Settingε > γm(p, q), we define the elementsa0ijk of any cutA0
k, k ∈ Nm, of

the perturbing matrixA0 according to the formula

a0ijk =















−δ if x0ix
0
j = 1,

δ if x0ix
0
j = 0,
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where
γm(p, q) < δn

2

pm
1

q < ε. (8)

Then according to (4) and (5), we get

‖A0
s‖p = δn

2

p ,

‖A0‖pq = δn
2

pm
1

q ,

A0 ∈ Ωpq(ε).

In addition, due to the construction of matrixA0
k, for any solutionx 6= x0 we

have
gk(x

0, x,A0
k) = (x0 − x)TA0

k(x
0 − x) =

∑

i∈Nn

∑

j∈Nn

a0ijk(x
0
i x

0
j − xixj) = −δ‖x̃0 − x̃‖1. (9)

Using (7), (8) and (9), we continue

gk(x
0, x,Ak +A0

k) = gk(x
0, x,Ak) + gk(x

0, x,A0
k) ≤

(

γm(p, q)(n
2

pm
1

q )−1 − δ
)

‖x̃0 − x̃‖1 < 0.

Thus,x 6∈ Cm(A + A0) whenx ∈ Cm(A). Summarizing, for anyε > γm(p, q),
we can guarantee the existence of the perturbing matrixA0 ∈ Ωpq(ε) such that

Cm(A+A0) ∩ Cm(A) = ∅,

i.e. ρm(p.q) < ε for any numberε > γm(p, q). So, inequality (6) holds. The
Theorem has been proven.

From the Theorem we get the following result.

Corollary 1 If Zm(A), A ∈ R
m×n, is a non-trivial problem with Boolean vari-

ables, i.e. ifCm(A) 6= X ⊆ E
n, then for anym ∈ N.

0 < max{φ,ψ} ≤ ρm(∞,∞) ≤ γ,

where

φ = min
x 6∈Cm(A)

min
k∈Nm

max
x′∈X\{x}

gk(x, x
′, Ak)

‖x̃− x̃′‖1
,

ψ = max
x′∈Cm(A)

max
k∈Nm

min
x 6∈Cm(A)

gk(x, x
′, Ak)

‖x̃− x̃′‖1
,

γ = min
x 6∈Cm(A)

max
k∈Nm

max
x′∈Cm(A)

gk(x, x
′, Ak)

‖x̃− x̃′‖1
.

Corollary 2 If Z1(A), A ∈ R
n, is a scalar non-trivial problem with Boolean

variables (X ⊆ E
n), then the following formula holds

ρ1(∞, q) = min
x 6∈C1(A)

max
x′∈X\{x}

g(x, x′, A)

‖x̃− x̃′‖1
.

Finally, we notice that Corollary 2 proves the attainability of φm(ρ) andγm(p, q)
whenm = 1 andp = ∞.
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