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Abstract

In this paper the extended supporting hyperplane algorithm is generalized for a class of
nonsmooth mixed-integer nonlinear programming problems. The generalization is to
use the subgradients of the Clarke subdifferential instead of gradients. Consequently,
all the functions in the problem are assumed to be locally Lipschitz continuous. The
algorithm is shown to converge to a global minimizer of the problem if the objective
function is convex and the constraint functions are f ◦-pseudoconvex. Some numerical
experiments are done on the parameters of the algorithm. In addition, ESH is compared
against αECP.
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1 Introduction

The extended supporting hyperplane (ESH) algorithm to solve smooth convex MINLP
problems was presented in [8]. It is based on the classical supporting hyperplane method
derived in [12]. The numerical comparisons in [8] suggest that the ESH algorithm is
efficient and on par with the current state-of-art MINLP solvers when solving MINLP
problems with smooth convex objective and constraint functions.

Motivated by the promising numerical results, we will generalize the ESH algorithm
to cover a certain class of nonsmooth generalized convex MINLP problems. By a con-
vex MINLP problem we mean that the objective function is convex and the feasible
set is convex when the integer variables are relaxed to continuous ones. We require
that the constraint functions are f ◦-pseudoconvex or, with an additional assumption,
f ◦-quasiconvex. These function classes are modifications of classical pseudo- and qua-
siconvexities for locally Lipschitz continuous functions. With these constraint functions
the feasible set is convex if the integer variables are relaxed to continuous ones. The
generalization follows similar steps to the generalization of the αECP algorithm in [7].
That is, instead of a gradient we will use a subgradient of the Clarke subdifferential.
The generalization also implies that the ESH-algorithm presented in [8] is suitable for
smooth pseudoconvex constraint functions too. In fact, this was essentially noted in
[12], but the term pseudoconvexity was not used.

ESH and αECP methods share many similarities. In fact, supporting hyperplanes
were seen as an alternative to cutting planes for the αECP algorithm in [10]. This will
essentially lead to the ESH algorithm. Both methods solve a sequence of MILP sub-
problems. After solving an MILP subproblem they stop or add a linear constraint to the
subsequent MILP subproblem. The linear constraints that ESH generates are supporting
hyperplanes to the feasible set. Thus, a supporting hyperplane usually creates a tighter
overestimate of the feasible set than a cutting plane would create. The downsides are
that we have to know an inner point of the integer relaxed feasible set and do an addi-
tional line search at each MILP iteration. Furthermore, to find an inner point another
solver than ESH is needed. In addition, it is easier to add several cutting planes in cer-
tain iterations than to add several supporting hyperplanes. Hence, specially if there are
many nonlinear constraint functions αECP may cut off larger part of the infeasible set
than ESH.

When dealing with f ◦-pseudoconvex constraint functions αECP needs to know suf-
ficiently large α-values. Usually, this information is not given and the cutting planes
may cut off small parts of the feasible region. This is not the case with the ESH method
making it theoretically more sound than αECP. However, αECP can solve problems
where it is not possible to evaluate nonlinear functions in points where integer variables
are assigned non-integer values. ESH can not solve this kind of problems.

The ESH algorithm is presented briefly in Section 3. In that section we also prove
that ESH can be generalized to solve problems with f ◦-pseudoconvex constraint func-
tions. In section 4 some numerical details and example problems are considered.

1



2 Preliminaries
In this section we present the generalized convexities we will use as well as needed
results on them. First, we give the definition of the generalization of the gradient.

DEFINITION 2.1. [4] Let f : Rn → R be locally Lipschitz continuous at x ∈ Rn. The
Clarke generalized directional derivative of f at x in the direction d ∈ Rn is defined by

f ◦(x;d) := lim sup
y→x
t↓0

f(y + td)− f(y)
t

and the Clarke subdifferential of f at x by

∂f(x) := {ξ ∈ Rn | f ◦(x;d) ≥ ξTd for all d ∈ Rn}.

Each element ξ ∈ ∂f(x) is called a subgradient of f at x.

THEOREM 2.2. Let f : Rn → R be locally Lipschitz continuous. Then

(i) ∂f(x) is a nonempty, convex and compact set.

(ii) f ◦(x;d) = max {ξTd | ξ ∈ ∂f(x)} for all d ∈ Rn.

Proof. The proofs can be found in [4].

The following definition presents the main function classes we are dealing with.

DEFINITION 2.3. Function f : Rn → R is f ◦-pseudoconvex (f ◦-quasiconvex), if it is
locally Lipschitz continuous and for all x,y ∈ Rn

f(y) < (≤)f(x) implies f ◦(x;y − x) < (≤)0.

Some basic properties of these function classes can be found in e.g. [2], where the
following results are presented (pp. 140-166).

THEOREM 2.4. Let f : Rn → R be locally Lipschitz continuous.

(i) If f is convex or pseudoconvex, then it is f ◦-pseudoconvex.

(ii) If f is f ◦-pseudoconvex, then it is f ◦-quasiconvex.

(iii) If f is f ◦-pseudoconvex, then 000 ∈ ∂f(x) implies that x is a global minimizer of
f .

(iv) If f is f ◦-quasiconvex, then it is quasiconvex.

(v) If fi, i = 1, 2, . . . ,m are f ◦-pseudoconvex (f ◦-quasiconvex), then maxi fi is f ◦-
pseudoconvex (f ◦-quasiconvex).

2



As can be seen from Theorem 2.4 (i) f ◦-pseudoconvexity is a generalization of the
classical pseudoconvexity which necessitates differentiability. By definition, the level
sets of a quasiconvex function are convex. Thus, Theorem 2.4 (ii) and (iv) implies that
the level sets of f ◦-pseudoconvex or f ◦-quasiconvex function are also convex. The
following result is a straightforward consequence of Theorem 2.4 (ii) and (iii).

COROLLARY 2.5. Let f : Rn → R be f ◦-pseudoconvex and x ∈ Rn. If there exists
y ∈ Rn such that f(y) < f(x), then f is f ◦-quasiconvex and 000 /∈ ∂f(x).

With some assumptions, f ◦-quasiconvexity implies f ◦-pseudoconvexity. For the
proof we need the following lemma which is also useful in the next section.

LEMMA 2.6. Let f : Rn → R be an f ◦-quasiconvex, y ∈ Rn, a > f(y) and A ⊂ Rn. If
a ≤ f(x) and 000 /∈ ∂f(x) for all x ∈ A, then there exists r > 0 such that ξT (y − x) ≤
−r ‖ξ‖ < 0 for all x ∈ A and ξ ∈ ∂f(x).

Proof. Since f(y) < a and f is continuous, there exists r > 0 such that f(z) < a for
all z ∈ Rn such that ‖z − y‖ ≤ r. Let x ∈ A and ξ ∈ ∂f(x) be arbitrary. Since

000 /∈ ∂f(x) we may define ŷ = y +
ξ
‖ξ‖r. The f ◦-quasiconvexity and the inequalities

f(ŷ) < a ≤ f(x) imply

f ◦(x; ŷ − x) ≤ 0. (1)

By Theorem 2.2 (ii), inequality (1) implies ξT (ŷ − x) ≤ 0. Thus,

ξT (y − x) = ξT (ŷ − ξ

‖ξ‖
r − x) = −r ‖ξ‖+ ξT (ŷ − x) ≤ −r ‖ξ‖ .

Since 000 /∈ ∂f(x) we have −r ‖ξ‖ < 0 proving the lemma.

THEOREM 2.7. Let f : Rn → R be f ◦-quasiconvex function. If 000 ∈ ∂f(x) implies that
x is a global minimizer, then f is f ◦-pseudoconvex.

Proof. Let x,y ∈ Rn be such that f(y) < f(x). By assumption we have 000 /∈ ∂f(x).
Choosing a = f(x) and A = {x}, Lemma 2.6 implies

f ◦(x,y − x) = max
ξ∈∂f(x)

ξT (y − x) < 0.

Thus, f is f ◦-pseudoconvex.

We will denote the closed line segment [x,y] = {λx+ (1− λ)y | 0 ≤ λ ≤ 1} and
the corresponding open line segment by (x,y).
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3 The ESH algorithm
Theorems for proving the ESH algorithm to converge to a global minimizer in problems
with linear objective function and f ◦-pseudoconvex constraint functions are considered
in this section. With an additional assumption, the constraint functions may be f ◦-
quasiconvex. Note that any nonlinear convex objective function can be transformed
to a linear objective function and a convex constraint. We begin by reformulating the
ESH algorithm from [8] to deal with nonsmooth functions. After that we prove the
convergence results for the problems with f ◦-pseudoconvex constraint functions.

3.1 Convex constraint functions
The considered problem is

min cTx

s.t. gm(x) ≤ 0 ∀m = 1, . . .M, (P)
x ∈ L ∩ Y,

where gm : Rn → R are convex, x ∈ Rn and the set L defines linear constraints. Integer
variables are defined in Y = {x | x ∈ Rn,xi ∈ Z if i ∈ IZ}, where IZ ⊆ {1, 2, . . . , n}.
We assume that L is a compact set. Since L is defined by linear constraints it will also
be convex. Denote Cm = {x | gm(x) ≤ 0} and C =

⋂M
m=1Cm. Thus, the feasible set is

C ∩L∩ Y . Denoting F (x) = maxm {gm(x)} we can also write C = {x | F (x) ≤ 0}.
We denote the indexes of active constraint functions on the set {x | F (x) = 0} by
I0(x) = {m | gm(x) = F (x) = 0}. For the moment, we assume that the Slater con-
straint qualification holds true. In other words,

there exists a point x ∈ L such that F (x) < 0. (2)

The algorithm will need a point xNLP such that F (xNLP) < 0. This can be obtained
by solving the problem

min F (x) (NLP)
s.t. x ∈ L.

Note that the problem (NLP) need not to be solved to the global minimum. It suffices
to find a point x such that F (x) < 0. The idea of the ESH algorithm is to solve a
sequence of mixed-integer linear programming problems

min cTx

s.t. lj(x
j) ≤ 0 j = 1, 2, . . . , k − 1 (MILPk)

x ∈ L ∩ Y,

where lj(x
j) ≤ 0 are supporting hyperplanes generated at the points xj such that

F (xj) = 0. At the first iteration, no such planes exist. Solving (MILP1) then gives

4



us a solution point x1
MILP. If F (x1

MILP) ≤ 0, we have thus found a feasible point to the
original problem (P). It will be a global minimizer since it was found through minimiza-
tion on a set containing the original feasible set.

Suppose then that F (x1
MILP) > 0. The point x1 where the first supporting hyperplane

is generated will be found through a line search between points xNLP and x1
MILP. Since

the constraint functions are continuous and F (xNLP) < 0 < F (x1
MILP), a point x1 ∈

[xNLP,x
1
MILP] such that F (x1) = 0 is guaranteed to exist. Since the constraint functions

are convex so is F and x1 will be unique. A new problem (MILP2) will be formed
by adding to (MILP1) the supporting hyperplane l1(x1) := ξT (x − x1) ≤ 0, where
ξ ∈ ∂gm(x1) for some m ∈ I0(x1). Our algorithm will continue solving the problems
(MILPk) accordingly until a stopping criterion is satisfied. The algorithm is as follows:

Algorithm 3.1 The ESH algorithm

Give a tolerance parameter εg > 0 and set k = 1.

1. Find xNLP such that F (xNLP) < 0 by solving the problem (NLP).

2. Solve the problem (MILPk). Denote the solution by xk
MILP.

3. If F (xk
MILP) ≤ εg then stop: xk

MILP is the final solution.
Otherwise, find xk ∈

[
xNLP,x

k
MILP

]
such that F (xk) = εg

2
with a line search.

4. Generate (MILPk+1) by adding to (MILPk) the supporting hyperplane
ξT (x− xk) ≤ 0, where ξ ∈ ∂gm(xk) and m ∈ I0(xk).

5. Set k = k + 1 and go to step 2.

Note that if εg > 0 then we will make the supporting hyperplanes on xk such that
F (xk) = εg

2
6= 0. This ploy allows us to deal with problems that do not satisfy the Slater

constraint qualification. In the interim, we will consider the theoretical case εg = 0.

In [8] it was shown that the ESH algorithm will converge to a global minimizer if
the constraint functions are convex and continuously differentiable (and εg = 0). In
the algorithm presented in [8] an LP step was used in order to speed up the algorithm.
In this step (MILPk) problem is solved with the integer variables relaxed to continuous
ones. This allows faster generation of supporting hyperplanes as LP problems are easier
to solve than MILP problems. The LP step will stop after a certain amount of iterations.
After the LP step, the algorithm starts solving MILP problems as stated but now there
are supporting hyperplanes already in (MILP0) giving an initial approximation of the
feasible set. The use of the LP step does not effect on whether the algorithm converges
to the global minimum or not.
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3.2 f ◦-pseudoconvex constraint functions

Knowing the basics of the ESH algorithm we are now ready to prove that it can be used
successfully for a larger set of problems than those with continuously differentiable and
convex objective and constraint functions. We shall first consider the case εg = 0 in
which case we have to require that the Slater constraint qualification holds true. We
shall assume that

i) gm is f ◦-quasiconvex for all m = 1, 2, . . . ,M

ii) 000 /∈ ∂gm(x) if m ∈ I0(x).

These conditions are fulfilled for f ◦-pseudoconvex constraint functions by Corollary
2.5 and the Slater constraint qualification (2). Since the level sets of f ◦-quasi- and f ◦-
pseudoconvex functions are convex, we are dealing with a convex MINLP problem: the
objective function is convex and the feasible set is a convex set, if the integer variables
are relaxed to continuous ones.

The convergence proof proceeds as follows. We will first show that a supporting
hyperplane does not cut off any feasible points, but it cuts off the previous solution
point of (MILPk) that was not within the set C. In the compact set L, this results in
a solution sequence that has an accumulation point. This point will be shown to be
feasible in C. Finally, this point proves to be a global minimizer to the problem (P ).

We shall begin by proving that a supporting hyperplane does not cut off any feasible
point.

THEOREM 3.1. The supporting hyperplane

ξT (x− xk) ≤ 0, ξ ∈ ∂gm(xk), m ∈ I0(xk) (3)

does not cut off feasible points.

Proof. It is sufficient to prove that the hyperplane (3) does not cut off any points from
the set Cm ⊃ C. Let y ∈ Cm be arbitrary. Then gm(y) ≤ 0 = gm(x

k) and the
f ◦-quasiconvexity of gm implies g◦m(x

k;y − xk) ≤ 0. By Theorem 2.2 (ii),

ξT (y − xk) ≤ max
ζ∈∂gm(xk)

ζT (y − xk) = g◦m(x
k;y − xk) ≤ 0.

Thus, the hyperplane (3) does not cut off y proving the theorem.

The next theorem shows that, if the current solution xk
MILP is infeasible, then it will

be cut off by the supporting hyperplane generated at xk.

THEOREM 3.2. Let ξ ∈ ∂gm(x
k), for any m ∈ I0(x

k). If F (xk
MILP) > 0, then

ξT (xk
MILP − xk) > 0.
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Proof. We may write xk = λxNLP+(1−λ)xk
MILP, where λ ∈ [0, 1]. Since F (xk

MILP) > 0
and F (xNLP) < 0 = F (xk), we have λ ∈ (0, 1). It is then straightforward to show that

− λ

1− λ
(xNLP − xk) = xk

MILP − xk.

Since gm(xNLP) < gm(x
k) and 000 /∈ ∂gm(x

k) (assumption ii) Lemma 2.6 implies (by
choosing A =

{
xk
}

) that there exists r > 0 such that

ξT (xk
MILP − xk) = − λ

1− λ
ξT (xNLP − xk) ≥ − λ

1− λ
(−r ‖ξ‖) > 0

proving the theorem.

With Theorems 3.1 and 3.2 we may prove the uniqueness of xk.

COROLLARY 3.3. If F (xk
MILP) > 0, then xk is unique.

Proof. Suppose there exist y, z ∈
(
xNLP,x

k
MILP

)
such that F (y) = F (z) = 0 and

y 6= z. Without loss of generality we may assume that z ∈
(
y,xk

MILP

)
. By Theorem

3.1, z is not cut off by the hyperplane generated at y. However, the hyperplane will
then not cut off either xk

MILP contradicting Theorem 3.2.

Suppose that at some iteration k we have F (xk
MILP) ≤ 0. By Theorem 3.1, the

feasible set of the problem (MILPk) includes C. Thus, xk
MILP is a global minimizer of

the problem (P ). On the other hand, if F (xk
MILP) > 0 for all k, Theorem 3.2 implies that

the points in the sequence (xk
MILP) are distinct. Since (xk

MILP) ⊂ L and L is compact,
the sequence has an accumulation point by the Bolzano-Weierstrass Theorem. Hence,
there exists a converging subsequence (x

kj
MILP) ⊂ (xk

MILP).
Next, we will show that the subsequence (x

kj
MILP) converges to a feasible point. To

prove this we need the following lemma.

LEMMA 3.4. Let (xkj
MILP) be a converging sequence and ξj ∈ ∂gmj

(xkj), mj ∈ I0(xkj).
Then

lim
j→∞

ξTj∥∥ξj∥∥(xkj
MILP − xkj) = 0.

Proof. Let ε > 0 be arbitrary. Choose j such that
∥∥∥xkj+1

MILP − x
kj
MILP

∥∥∥ < ε. Then

∣∣∣∣∣ ξTj∥∥ξj∥∥(xkj+1

MILP − xkj)−
ξTj∥∥ξj∥∥(xkj

MILP − xkj)

∣∣∣∣∣
≤

∥∥ξj∥∥∥∥ξj∥∥
∥∥∥xkj+1

MILP − x
kj
MILP

∥∥∥ < ε. (4)
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Since F (xkj
MILP) > 0 Theorem 3.2 implies 0 <

ξT

j

‖ξj‖
(x

kj
MILP − xkj). Then by the feasi-

bility of xkj+1

MILP in the problem (MILPkj+1
)

ξTj∥∥ξj∥∥(xkj+1

MILP − xkj) ≤ 0 <
ξTj∥∥ξj∥∥(xkj

MILP − xkj)

for all j. This and equation (4) implies limj→∞
ξT

j

‖ξj‖
(x

kj
MILP − xkj) = 0.

THEOREM 3.5. An accumulation point of the sequence (xk
MILP) is a feasible point.

Proof. By Lemma 3.4 we may re-index the convergent subsequence in a way that
ξT

j

‖ξj‖
(x

kj
MILP − xkj) − 1

j
≤ 0 for all j ∈ N, where ξj ∈ ∂gmj

(xkj) and mj ∈ I0(xkj).

Furthermore,

ξTj∥∥ξj∥∥(xkj
MILP − xkj)− 1

j
≤ 0

=
ξTj∥∥ξj∥∥(xkj − xkj)

=
ξTj∥∥ξj∥∥(λkjxNLP + (1− λkj)x

kj
MILP − xkj).

By rearranging the terms we have

λkj
ξTj∥∥ξj∥∥(xkj

MILP − xkj)− 1

j
≤ λkj

ξTj∥∥ξj∥∥(xNLP − xkj).

By choosing a = 0 andAm = {x ∈ L | F (x) = 0 and gm(x) = 0}we have gmj
(xNLP) <

a, xkj ∈ Amj
and Lemma 2.6 implies

λkj
ξTj∥∥ξj∥∥(xNLP − xkj) ≤ −λkj

∥∥ξj∥∥∥∥ξj∥∥rmj
= −λkjrmj

,

for some rmj
> 0. Since there are a finite number of constraints

−λkjrmj
≤ −λkjr,

where r = minm=1,2,...,M {rm} > 0. Thus,

λkj
ξTj∥∥ξj∥∥(xkj

MILP − xkj)− 1

j
≤ −λkjr.
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By solving λkj from this inequality we obtain

λkj ≤
1

j

(
r +

ξT

j

‖ξj‖
(x

kj
MILP − xkj)

) <
1

j · r
.

Hence, limj→∞ λkj = 0 implying F (x̂) = 0 where x̂ = limj→∞ x
kj
MILP.

Finally, the convergence result is given.

THEOREM 3.6. An accumulation point of the sequence (xk
MILP) is a global minimizer of

the problem (P ).

Proof. The proof is similar to Lemma 4 in [8].

Consider the case where εg > 0. Then, the supporting hyperplanes will be generated
at the points xk such that F (xk) = εg

2
. This implies that we do not need the Slater

constraint qualification to hold true and it suffices that F (xNLP) ≤ 0 as was noticed in
[8]. Also, for an f ◦-quasiconvex constraint function we have to require 000 /∈ ∂gm(x) if a
supporting hyperplane is generated from gm at x. Again, an f ◦-pseudoconvex constraint
function meets this requirement.

When εg > 0 Theorem 3.1 is valid. In other results we have to replace 0 by εg
2

or εg
when appropriate. Then it follows that if we do not find a point x such that F (x) < εg

2
,

the sequence of MILP solutions has an accumulation point x̂ with F (x̂) = εg
2

. Thus, we
will find x satisfying F (x) ≤ εg after a finite number of iterations. The final solution
point xk

MILP will be an εg-feasible global minimizer, that is, g(xk
MILP) ≤ εg and there

does not exist any feasible point that gives lower value to the linear objective function
than the current one. If a convex objective function is transformed to a linear objective
function, there might be a feasible solution giving a lower objective function value than
the one found. Nevertheless, this difference is at most εg.

3.3 On solving the NLP problem
To be able to solve a problem the ESH algorithm requires a point xNLP satisfying all the
nonlinear constraints. As previously mentioned, this can be found by solving (NLP).
The compactness of L and the continuity of F guarantee that a solution exists. If the
functions gm are f ◦-pseudoconvex then so is F by Theorem 2.4 (v). In this case the
nonsmooth problem (NLP) can be solved by e.g. the proximal bundle (PB) algorithm
[11]. If functions are f ◦-quasiconvex then F will be f ◦-quasiconvex by Theorem 2.4
(v). The PB algorithm will find a stationary point, which is not guaranteed to solve the
problem.

Note that if εg > 0 the point xNLP need only to satisfy F (xNLP) ≤ 0. Thus, by
relaxing the integer variables of the original problem we obtain a continuous problem,
whose global minimum point can be set to xNLP. Presumably, the objective function
will steer the xNLP to be close to a global minimizer. This can, in some problems,
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make the supporting hyperplanes to be close to the optimum, which possibly results in a
fewer number of MILP problems. The relaxed problem can be solved by e.g. the αECP
algorithm.

Typically some nonlinear constraints attain 0 at the relaxed global minimizer. Due
to tolerances this could lead to the case F (xNLP) > 0. Thus, to make sure that the
line search is successful the relaxed problem should be solved more accurately. More
precisely, the parameter εg when solving the relaxed problem should be at most half of
this parameter when solving the original MINLP problem.

Recall that a convex objective function f may be transformed to a constraint function
f − µ, where the auxiliary variable µ is the new linear objective function. The choice
of µNLP affects the values of f − µ in the line search and, thus, also the frequency of
computing supporting hyperplanes from f − µ. The µNLP can be set to the value that
the feasibility problem (NLP) gives. However, the only other constraints than f −µ that
include µ are the user given box constraints. Hence, µNLP would most probably be the
given upper bound being somewhat arbitrary.

The relaxed problem does not even include µ so it must be determined somehow.
The choice of µNLP can be seen as a parameter of the algorithm. The condition

f(xNLP)− µNLP ≤ 0 (5)

limits the choice. There are at least two systematic ways to determine µNLP. Consider
values

i) µNLP = f(xNLP)

ii) µNLP = f(xNLP)− F (xNLP).

The first one satisfies the inequality (5) as an equality. The second one makes f − µ as
large as F at the inner point.

4 Numerical considerations & examples
In this section we discuss some numerical details, especially, the line search. Further-
more, we solve four problems with ESH and compare ESH to αECP. In each problem
we will try out different inner points and subgradients to see what effect these have on
solving process. We solve all the problems with tolerance εg = 10−3. If it is required to
solve an optimization problem to find an inner point it has been done with αECP.

We use the GAECP solver to solve all the problems. The solver includes both the
ESH and the αECP algorithms. MILP problems were solved by CPLEX. More details
on this solver including the default parameters can be found in [13]. Problems were
solved using 64-bit windows 7 computer with Intel i3-2100 3.1GHz processor.

At first we motivate why the line search is made to find xk that has been shifted εg
2

in function space from the set {x | F (x) = 0}. Another possibility could be a shift in
the variable space.
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4.1 On the line search
In the implementation and numerical examples we will have εg > 0. In Algorithm 3.1
we apply a line search to find a point xk such that F (xk) = εg

2
. This implies that we

do not need the Slater constraint qualification to hold true, but we will end up to an εg-
feasible minimizer. Comparing the point xk to the one obtained by the algorithm with
εg = 0 we will do a shift εg

2
in the function value space towards the point xk

MILP, that is,
away from the point xNLP.

Next, we will give an example which shows that if εg = 0 or even if we do an εg
2

shift in the variable space we would need the Slater constraint qualification to hold true.
More precisely, we will do supporting hyperplanes on points xk+ δk, where F (xk) = 0
and

δk =
εg
2

xk
MILP − xk∥∥xk
MILP − xk

∥∥ . (6)

Consider problem

min −x1 − x2
s.t. g(x) ≤ 0

−2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2,

where g(x) = max {0, g1(x)} and

g1(x) =


(x2 − 1)2 + x21 − 1, x2 > 1

x21 − 1, −1 ≤ x2 ≤ 1

(x2 + 1)2 + x21 − 1, x2 < −1
.

The constraint function g is convex but does not satisfy the Slater constraint qualifica-
tion.

Suppose that we have xNLP = (1, 0). Note that (1, 0) is on the boundary. When
trying to solve this problem with the ESH algorithm with the shifts (6) and 0 < εg

2
< 1,

the first solution will be x1
MILP = (2, 2). The line search will find xk = xNLP = (1, 0)

and the supporting hyperplane x1 ≤ a, (a > 1) will be added to the problem. More
precisely a = 1 + εg

2
√
5

according to (6), but a > 1 is the property we are interested
in. The next solution will be x2

MILP = (a, 2). The solving process generates sequence
(xk

MILP) converging to the point (1, 2). However, this point is not even feasible. The
ESH algorithm without shift (6) and εg = 0 will find x2

MILP = (1, 2) and get stuck there.
This is due to the fact that a supporting hyperplane at xNLP does not cut off the point
(1, 2). Note that the Algorithm 3.1 can solve the problem when εg > 0.

In the forthcoming examples we use a line search based on the bisection method.
This guarantees that at each iteration of the line search, we find an interval [xL,xU ]
such that F (xL) ≤ εg

2
and εg

2
< F (xU) ≤ F (xk

MILP). We will stop the line search
when x satisfying εg

4
≤ F (x) < εg has been found. The supporting hyperplane will be

generated at this point.

11
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Figure 1: The feasible set and solving process of the given example when δ = 1
2
. The

dashed lines represents the first two hyperplanes and bolded region is the feasible set.

In the line search we do not need to calculate the values of all constraint functions in
each step. If gm(xk

MILP) < εg then, by quasiconvexity (Theorem 2.4 (iv)), gm(x) < εg
for all x ∈

[
xNLP,x

k
MILP

]
. Hence, in the line search on the line segment

[
xNLP,x

k
MILP

]
,

it is enough to apply the line search on function

Fk(x) = max
m∈Mk

gm(x), where Mk =
{
m | gm(xk

MILP) ≥ εg
}
.

4.2 Example problem 1
The problem 1 is a modification of the problem CB3 from [2, p. 252]. The problem
is modified by adding box constraints and by making one variable integer valued. The
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problem is

min max
{
x41 + x22, (2− x1)2 + (2− x1)2, 2ex2−x1

}
(P1)

s.t. 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5, x2 ∈ Z.

The objective function is nonsmooth and convex. The unique optimal point is
(1, 1) and the objective function attains value 2 at it. When the objective function is
transformed to the constraint f − µ ≤ 0, a new variable µ is introduced. The upper
bound of the objective function is f(−5, 5) ≈ 44 100. Thus, we add the box constraint
−50 000 ≤ µ ≤ 50 000 to the transformed problem.

The subgradient of the objective function can be set to be the gradient of an active
function. This rule will also be applied in the other problems. The rule does not define a
subgradient uniquely at the points where more than one function is active. Then, one of
the possible values is used. In this problem we prefer the gradient of the first function
over the others and the second function over the third.

First we tried out different inner points. As was discussed in Subsection 3.3, there
are two systematic choices of µNLP. Since there are no nonlinear constraint functions in
the problem P1, these two coincides. In addition to this choice we try µNLP to be the
upper bound 50 000. The results are given in Table 1.

Table 1: The results on solving the problem P1 with different inner points. Function
evaluations include evaluations in the line search and analytic subgradient evaluations.

Ip:(x1, x2) µNLP Function eval. # MILP problems

(1,1)
2 67 4
50 000 387 14

(0,1)
5.436564 194 13
50 000 348 13

(1,0)
5 197 13
50 000 352 13

(1,2)
5.436564 219 15
50 000 327 12

(2,1)
17 281 17
50 000 324 12

(0,3)
40.17 208 9
50 000 323 12

(3,3)
90 351 19
50 000 267 10

(3,0)
81 353 20
50 000 285 11

(5,5)
650 461 22
50 000 327 12
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Each run took only a few seconds and the optimum was found every time. Usually,
by having µNLP = 50 000 resulted in less or equal number of MILP problems than
having µNLP = f(xNLP). There are two exceptions: xNLP = (1, 1) which is the optimal
point and xNLP = (0, 3). Without the exception (0, 3), it seems that the farther the
point xNLP is from the minimizer the better the choice µNLP = 50 000 is compared to
the systematic choice. When the number of MILP problems were roughly the same
the choice µNLP = 50 000 resulted in more function evaluations. This is due to the line
search. The greater the µNLP the larger the interval where the line search is done. Hence,
more iterations are usually needed to find a point with given accuracy.

In three dimensions it is possible to visualize how µNLP effects on the supporting
hyperplanes. In x1x2µ-coordinate system the box constraints represent a rectangular
prism. Equation f(x1, x2)− µ = 0 represents a surface and the half of the prism where
f(x1, x2)−µ ≤ 0 is the feasible set. Any point there can be an inner point. Suppose we
are at one corner which is not feasible. The point, where the line between this corner
point and the inner point crosses the surface f(x1, x2) − µ = 0, is approximately the
point where the supporting hyperplane is created. When the inner point is changed the
point where the hyperplane is created is changed too. With this construction in mind
the above results sound reasonable. When the inner point is close to a minimizer the
linearizations will be close to the optimum as well and we do not need to make many
eventually unnecessary linearizations.

In the further considerations we will use both the best inner point (1, 1) and the
worst inner point (5, 5). Both of the tried µNLP values will be used. Next we alter the
subgradient. Instead of the previously mentioned rule, we set the subgradient to be the
mean of the gradients of the active functions. Since the mean is a convex combination
the resulting vector belongs to the subdifferential. In addition to the analytical subgra-
dients, we try vectors generated by the numerical finite difference method with the step
size δ = 10−3. This step size will be used in every forthcoming example problem if
not told otherwise. It is good to note that the finite difference method may lead to an
erroneous subgradient in the case of a nonsmooth function, and thus, does not have any
guarantee to be successful.

The choice of a correct analytical subgradient did not have any effect on solving
process. With the finite difference some changes are bound to happen. The changes
were generally minor. The number of MILP problems and the number of function
evaluations were almost unchanged. However, with the inner point (xNLP, µNLP) =
(1, 1, 2) the problem could not be solved with the numerical gradients (with the given
step size). The objective function is not differentiable at this point. The line search
found a point close to this point and the subgradient was approximated wrongly. This
resulted in a supporting hyperplane that is not in accordance with theory. The current
MILP solution was not cut off and the algorithm became fixed there. If the step size of
the finite difference method is decreased to δ = 10−4 the problem can be solved quite
similarly than with the analytical subgradients.

In Section 3 we assumed that each MILP problem is solved to the optimum. Another
way is to set xk

MILP the lth feasible solution when solving MILP problem. This reduces
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time needed to find xk
MILP but usually leads to more MILP problems all of which are not

solved to the optimum. The last MILP problem must be solved to an optimal point to
guarantee the optimality of the original MINLP problem. When the algorithm encoun-
ters xk

MILP that is not an optimal point of the MILP problem but is feasible in the original
problem, the value of l is increased by one. This process eventually leads to xk

MILP being
an optimal point in both MILP and MINLP problem. The parameter l is also known as
the MIP solution limit. We tried out initial values l = 1, 10, 100. The results are in Table
2.

Table 2: The results for the problem 1 when altering the ”MIP solution limit”-parameter.
The column # MILP problems is of form # MILP problems solved to optimum/# MILP
problems totally.

Inner point µNLP l Function eval. # MILP problems

(1,1)

2 10 67 4/4
2 1 56 2/5
50 000 10 387 14/14
50 000 1 383 5/16

(5,5)

650 10 461 22/22
650 1 496 16/27
50 000 10 327 12/12
50 000 1 376 5/16

Values l = 10 and l = 100 gave identical solving processes. This is due to the fact
that the MILP problems can be solved to the optimum when l = 10. When l = 1 more
MILP problems have to be solved. Solving times were roughly the same.

The best way to solve the problem was to set the inner point to be the optimal point
of the (relaxed) problem and give µNLP such value that f − µ = 0. MIP solution limit
could be set to 100.

4.3 Example problem 2
The second problem is another modified problem from [2]. There it is named Wolfe and
it can be found on page 257. Again we set the box constraints and define one variable
to be integer. The problem is

min f(x) (P2)

s.t. −5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5, x2 ∈ Z,

where

f(x) =


5
√
9x21 + 16x22 x1 ≥ |x2|

9x1 + 16|x2| 0 < x1 ≤ |x2|
9x1 + 16|x2| − x91 x1 ≤ 0

.
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The objective function is convex and the unique optimal point is (−1, 0). The objec-
tive function value at that point is −8. The upper bound for the objective function is
f(−5, 5) = 1 953 160 and bounds −2 000 000 ≤ µ ≤ 2 000 000 are added to the trans-
formed problem. First we tried out different inner points. The results are given in Table
3.

Table 3: The results on solving the problem P2 when trying different inner points.

Ip:(x1, x2) µNLP Function eval. # MILP problems

(-1,0)
-8 58 3
2 000 000 526 16

(0,0)
0 281 17
2 000 000 379 12

(-2,0)
494 615 28
2 000 000 582 18

(-1,1)
8 71 4
2 000 000 522 16

(-1,-1)
8 62 4
2 000 000 521 16

(-5,-5)
1 953 160 1058 36
2 000 000 720 22

(-5,5)
1 953 160 1058 36
2 000 000 723 22

(5,-5)
125 228 12
2 000 000 551 17

(5,5)
125 141 7
2 000 000 552 17

The optimum was reached every time. Here the best inner point was (−1, 0) with
µNLP = f(xNLP) = −8. The point (−1, 0) is the optimal point of both the original and
the relaxed problem. Otherwise the results were mixed. Sometimes when µNLP is at the
upper limit less MILP problems need to be solved than when µNLP = f(xNLP). We will
investigate further the best and the worst case, that is, (−1, 0) and (−5,−5). With each
of these points both choices of µNLP will be tested.

Next we tried out different subgradients. We took the extremal value and the mid-
dle point of the subdifferential as a subgradient exactly like in the previous example
problem. It turns out that the choice of a correct analytical subgradient did not have
any effect. This is natural as x1 < 0 for all points where supporting hyperplanes were
created. At these points the function is continuously differentiable. We also tried to
calculate the subgradients with the numerical finite difference. As with the previous
example, the differences between results when using numerical and analytical subgra-
dients were usually minor.
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The finite difference did not find the optimum when the inner point was the optimal
point and µNLP = f(xNLP). The reason for this is that the line search finds a point close
to the optimal one and the step size in the finite difference is larger than the distance
between these points. Due to this the approximated partial derivative ∂f

∂x1
has different

sign than the correct value. Therefore, the supporting hyperplane does not cut off the
previous MILP point and the algorithm gets stuck. This problem could be avoided by
decreasing the stepsize to δ = 10−5. It is interesting to notice that the bad behaviour of
the finite difference was not due to nonsmoothness: the objective function is differen-
tiable at (−1, 0). The results on altering the MIP solution limit parameter were similar
to those with the problem P1.

The best way to solve this problem was to use the inner point obtained from the
relaxed problem and set µNLP = f(xNLP). This result was also obtained in the previous
problem probably due to the problems being quite similar. Neither of the problems have
nonlinear constraints and the objective functions are convex. Furthermore, in the both
cases the solution of the relaxed problem is also the solution of the original problem.

4.4 Example problem 3
The third example problem is a modified version of the problem 1 in [14]. It is

min max
{
(x1 − 2)2, (x2 − 4)2

}
s.t.

|x1 − 3| − 10x1
3x1 + x2 + 1

+ 2 ≤ 0

(x1 − 7)2 − 5x2 ≤ 0 (P3)

1 ≤ x1 ≤ 8

1 ≤ x2 ≤ 8, x2 ∈ Z.

The objective function is convex and nonsmooth. The first constraint function is f ◦-
pseudoconvex and the second constraint function is convex. The unique optimal point
is (2.6, 4) giving value 0.36 to the objective function. Bounds−100 ≤ µ ≤ 100 is added
to the problem where the objective function is transformed to a constraint function.

Again we tried out some different inner points. The results are presented in Ta-
ble 4. The first inner point corresponds to the optimum point of the relaxed problem.
Since there are other constraints than the objective function constraint we may have
f(xMILP) 6= f(xMILP) − F (xMILP). Thus, we may try three different µMILP values. The
upper bound 100 was used although (8− 2)2 = 36 would have been sufficient.

Again, the optimum was found every time. When comparing different values of
µNLP, we can see from Table 4 that using µNLP such that f(xNLP) = µNLP resulted in the
largest number of MILP problems with the exception of xNLP being the optimal point
of the relaxed problem. By using simply µNLP = 100 usually needed the least number
of MILP problems. It is also interesting to note that the supporting hyperplanes were
done from the original constraints only 2-3 times totally in the problem with each of the
inner points. The other hyperplanes were created from the objective function constraint.
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Table 4: The results when solving the problem P3 with different inner points. The first
µNLP corresponds to f(xNLP), the second is f(xNLP)− F (xNLP) and the third one is the
upper bound. The row for the second value is omitted if it coincides with the first one.

Ip:(x1, x2) µNLP Function eval. # MILP problems

(2.57,3.925)
0.325 97 4
100 108 6

(3,4)
1 163 10
1.143 96 6
100 86 5

(4,2.5)
4 207 12
4.516 142 8
100 92 5

(6,8)
16 317 16
16.111 244 12
100 141 7

(5,5)
9 273 14
9.286 205 10
100 148 7

(13
3

,7)
9 237 13
100 113 6

The best and the worst inner points (2.57, 3.925), (6, 8) will be studied further with all
tested µNLP values.

The choice of different analytic subgradients did not affect the solving process.
When calculating subgradients with the finite difference method and step size δ = 10−3

the algorithm could not solve the problem with the inner point (6, 8, 16). The reason is
that the objective function is not differentiable at that point. The first line search will
ended up close to this point and calculated a wrong partial derivative due to the step
size. The problem can be solved by simply setting δ = 10−5. Otherwise, the results
were quite similar to those obtained by using analytic subgradients.

Since there are more than one constraint, we may try to add more than one sup-
porting hyperplane at xk. This can be done to any constraint function g that satisfies
ε
4
< g(xk) < ε. This did not have any effect on the solution sequences. When the MIP

solution limit parameter was altered the results were in line with the previous results.
The choice MIP solution limit = 1 resulted in more MILP problems than the choice
MIP solution limit = 10.

Again, the best way to solve the problem was to set the inner point to be the optimum
of the relaxed problem and set µNLP = f(xNLP).
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4.5 Example problem 4
The fourth problem P4 is the facility layout problem presented in [3] and [9]. There
are several formulations of the problem. The version that we solve is presented in the
appendix. The objective function is a sum of l1-norms and it is nonsmooth and con-
vex. In addition, there are 7 pseudoconvex constraints and 114 linear constraints. There
are 42 binary variables and 28 continuous variables. The objective function will be
transformed to 6 nonsmooth convex constraints. The use of only one objective function
constraint would result in a complex constraint function. Since the objective function
is a sum of 12 l1-norms of linear functions, the transformation to only one single con-
straint would have 212 different gradients on its domain of definition. Thus, to make
the perfect approximation of the objective function, 212 linearizations would be needed.
With 6 constraints each will have only 4 different gradients. By having 6 objective func-
tion constraints we also need 6 auxiliary variables. Lower and upper bounds for these
variables are set to 0 and 100, respectively.

It is hard to manually find inner points to this problem since the feasible set is rel-
atively small and there are many variables. We tested 2 different inner points. One is
obtained by solving the relaxed problem and the other one by solving the regular feasi-
bility problem. Three different values for µNLP was tested. At the same time we tested
if it has an effect to create all possible supporting hyperplanes.

Table 5: The result when solving the facility layout problem with different inner points
and different number of linearisations (# Lin). Column ”lin.” denotes how many sup-
porting hyperplanes were made.

# Lin. inner point µNLP F. eval. # MILP lin. CPU (s)

one

relaxed f 6 991 108 107 226
relaxed 100 6 555 111 110 117
regular f 3 393 57 56 131
regular f − F 3 570 57 56 127
regular 100 4 223 58 57 103

all possible

relaxed f 5 063 80 109 201
relaxed 100 5 368 90 110 113
regular f 2 278 37 56 74
regular f − F 2 621 40 56 81
regular 100 3 266 43 57 79

As can be seen from Table 5, using as many linearisations as possible was useful. In
the further considerations we will use all possible supporting hyperplanes. The optimal
value 20.73 was found every time. In terms of CPU time the best inner point was from
the regular feasibility problem with µNLP = f(xNLP) (74s) and the worst was the inner
point from relaxed problem with µNLP = f(xNLP) (201s). This result is different from
that of the previous problems, where the relaxed optimal point was the best choice. In
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those problems the relaxed optimal point was close to the actual optimal point. This
motivated us to try the inner point that is the correct minimizer. In terms of number
of MILP problems this choice was worse than the minimizer of the relaxed problem.
However, the solutions were obtained faster, although, not as fast as with the inner point
from the regular feasibility problem.

Next we tried out different subgradients for the best and the worst inner points. The
nonsmooth functions are of form |xi+1 − xi|. When xi+1 = xi the subgradient is not
unique. At these points an arbitrary subgradient of this function can be written

λ(−1, 1) + (1− λ)(1,−1), where λ ∈ [0, 1] .

This λ was altered to test different subgradients. The objective function is a sum of 24
l1-norms and we used the same λ for all of these. The results are in Table 6.

Table 6: The results when solving the facility layout problem with different subgradi-
ents. The row ”num” indicates that subgradients were calculated numerically. In the
row ”numd” the step size has been decreased to make it possible to solve the problem.

case λ F. eval. # MILP lin. CPU (s)
best 1 2 278 37 56 74

0.75 2 308 37 58 73
0.5 2 274 38 58 75
0.25 2 202 35 57 73
0 2 253 36 56 79
num - - - 8
numd 2 193 35 54 45

worst 1 5 063 80 109 201
num - - - 5
numd 5 063 80 109 202

Again the choice of the analytical subgradient did not have marked effect. In fact,
with the worst parameter combination it did not have any effect. The problem could
not be solved if the step size δ = 10−3 was used in the finite difference method. Yet
again the reason is that the nonsmooth function is not differentiable at the inner point.
The problem can be solved to the optimum when the step size of the finite difference is
decreased. The sufficiently small step sizes are δ = 10−7 for the best interior point and
δ = 10−4 for the worst interior point.

Finally, we altered the parameter MIP solution limit. The results are in Table 7. In
this problem choosing MIP solution limit = 1 was useful. Compared to MIP solution
limit = 10 it resulted in more MILP problems like in the previous examples, but solving
times were reduced significantly. The MILP problems were hard and it paid off to not
solve every MILP problem to optimum. With the choice 1 the algorithm could solve
the problem faster with the worst parameter combination than with the best parameter
combination and choice 10.
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Table 7: The results when solving the problem P4 with different values of MIP solution
limit.

case MIP. sol. F. eval. # MILP lin. CPU (s)
best 1 8 432 2/136 160 40

10 2 524 28/40 65 62
100 2 202 35/35 57 73

worst 1 10 401 4/197 231 45
10 5 105 32/81 116 127
100 5 063 281/281 109 201

4.6 Comparison to αECP
Here we present some theoretical differences between the αECP and ESH algorithms.
In addition, we solve the previously solved problems with αECP method and compare
it against ESH with best parameter combination. For details on the αECP algorithm we
refer to [7, 14].

The principal difference between the αECP and ESH algorithms is the type of cut-
ting planes that algorithms use. ESH creates supporting hyperplanes explained in the
previous section while αECP creates α-cutting planes. For the constraint function gm at
the point xk

MILP the α-cutting plane is

gm(x
k
MILP) + α · ξT (x− xk

MILP) ≤ 0,

where ξ ∈ ∂gm(x
k
MILP) and α ≥ 1 is sufficiently large. For a convex function α = 1

suffices but for an f ◦-pseudoconvex function sufficiently large α value is usually not
known. In practice α is first set to 1 but it is updated until the distance between the
α-cutting plane and xk

MILP is less than a given parameter εz > 0. Nevertheless, for
the given εz it can not be guaranteed that an updated α-cutting plane does not cut off
any feasible point. The ESH does not cut off any points from the feasible set even
if the constraint functions are f ◦-pseudoconvex. This makes ESH more appealing than
αECP to solve problems involving f ◦-pseudoconvex functions. With ESH the nonlinear
functions have to be evaluated also at points where integer variables attain non-integer
values due to the line search, while with αECP the evaluations are needed only at the
points where the integer variables attains integer values.

Presumably, a hyperplane that ESH creates usually cuts off more of the infeasible
region than an updated α-cutting plane. This could, in principle, lead to a solution
process with less number of MILP problems. If there are more than one constraint
function the approximation of the feasible set may be enhanced by adding more than
one α-cutting plane or supporting hyperplane per iteration. Naturally, creating more
linear constraints leads to larger MILP problems. It is straightforward to create an α-
cutting plane for any violating constraint from the solution point xk

MILP. A supporting
hyperplane may be created from a constraint function that is active at the point xk in

21



which the line search ends up to. The quasiconvexity of constraint functions implies
that there are at least as many violating constraints at point xk

MILP as there are active
constraints at xk. In other words, if there are many constraint functions it is possible to
make at least as many α-cutting planes than supporting hyperplanes per iteration. Thus,
the use of more than one cutting plane per iteration benefits more αECP than ESH.
Indeed, in the problem P3 ESH could do only one supporting hyperplane per iteration
although there were 3 constraints.

For the ESH method, the cost of solving less MILP problems is more function evalu-
ations per iteration due to the line search. This will most probably lead to a greater total
number of nonlinear function evaluations. Nevertheless, MILP problems are usually
difficult to solve and more time consuming than multiple nonlinear function evalua-
tions. However, this is not always the case. In a chromatographic separation prob-
lem [6] some function evaluations require solving partial differential equations and are
more time consuming than solving an MILP problem. Another type of time consuming
constraint functions are probabilistic constraints which are considered, for example, in
[1, 5].

When solving the example problems with αECP all possible linearisations are used
and MIP solution limit = 10 for all but the fourth problem where it is 1. Otherwise
parameters have default values including εz = 0.1 and εg = 0.001. Subgradients are
given analytically in a similar way they were given for ESH.

In addition, we solve different reformulations of the fourth problem. In one of these
the pseudoconvex constraints of form −hiwi + ai < 0 are transformed to two convex
constraints

−hi +
ai
wi

< 0 and − wi +
ai
hi
< 0. (7)

Note that the constraints are convex in the feasible set where wi, hi ≥ 0. This problem
is denoted P5. Another transformation is to replace the nonsmooth convex constraints

|xi+1 − xi|+ |yi+1 − yi| − di,i+1 ≤ 0,

created from the objective function, by linear constraints

xi+1 − xi ≤ dxi,i+1, xi − xi+1 ≤ dxi,i+1,

yi+1 − yi ≤ dyi,i+1, yi − yi+1 ≤ dyi,i+1.

This problem is denoted P6. Finally, if both of these transformations are done the prob-
lem is smooth and convex. We denote this problem P7.

The supposed strength of the ESH method compared to the αECP method is the need
to solve less MILP problems due to the tighter overestimate of the feasible set. From
Table 8 we see that this was true for the problems P1, P2 and P3. In these problems
ESH was also faster than αECP. However, αECP managed to solve all the problems in
a fewer number of function evaluations. This holds true even without taking account
of the effort needed to solve the NLP problem to find the inner point. The result is not
surprising since ESH will do a line search at every iteration resulting in more functions
evaluations.
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Table 8: Numerical results when solving the example problems with αECP and ESH
with the best found parameter combinations.

Problem Method function # # CPU
Name evaluations MILP lin. time (s)

P1
ESH 67 4/4 3 0.96
αECP 53 14/14 13 2.9

P2
ESH 58 3/3 2 0.79
αECP 81 21/21 20 2.4

P3
ESH 97 4/4 3 0.97
αECP 79 11/11 18 2.7

P4
ESH 8 432 2/136 160 40
αECP 5 029 2/98 1056 126

P5
ESH 11 617 2/119 178 36
αECP 2 664 2/39 654 29

P6
ESH 8 235 1/146 142 36
αECP 831 1/56 223 92

P7
ESH 8 405 1/90 153 26
αECP 1 568 1/40 504 18

In problems P4-P7 ESH created more MILP problems than αECP. However, it man-
aged to solve the problems P4 and P6 faster than αECP. In these problems there are
pseudoconvex constraint functions whereas in the problems P5 and P7 there are not.
Thus, it seems that αECP struggled with the pseudoconvex constraints. In these prob-
lems it took longer time to solve the MILP problems that αECP created. Actually,
since MIP solution limit was set to 1 it was hard to find a feasible point for the MILP
problems.

αECP handles pseudoconvex constraints by creating a cutting plane that may cut off
feasible points. It is updated in later iterations and finally only small parts of the feasible
region is cut off if any. The second MILP problem that αECP created in the problems
P4 and P6 had no feasible points. Consequently, the subsequent MILP problems may
have had a small feasible set. In the problems P5 and P7 the convex constraint (7) are
of the form l(x) + h(y), where l is linear. In these type of constraints a cutting plane
is already a supporting hyperplane to the feasible set defined by this constraint. Thus,
the cutting planes makes tight overestimate of the feasible set without needing the line
search.

It should be noted that parameters were not tuned for the problems P5, P6 and P7.
When changing MIP solution limit to 100 αECP could solve the Problems P5 and P7
in 17 and 13 seconds respectively. Otherwise, setting MIP solution limit to 1 was better
choice. The fastest way to solve the facility layout problem is to solve the formulation in
the problem P7 with the αECP method. This is the same formulation that can be found
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in MINLP Library2 (http://www.gamsworld.org/minlp/minlplib2/html/) as problem fo7.

5 Concluding remarks
In this paper, it was shown that the ESH method can be applied to nonsmooth locally
Lipschitz continuous functions. The only change to the original method is to use Clarke
subgradients instead of gradients. For a convex objective function and f ◦-pseudoconvex
constraints the algorithm was shown to converge to a global minimizer. This result re-
quires that the Slater constraint qualification holds true. If it does not, we can still
solve the problem but the obtained solution might be only εg-feasible. If the subdiffer-
entials of the constraint functions do not contain zero at the points where supporting
hyperplanes are created, the convergence theorems are also valid for f ◦-quasiconvex
constraint functions.

The ESH algorithm could solve all of the considered example problems to the best
known solutions. Comparison to the αECP algorithm showed that even if ESH managed
to solve a problem with less number of MILP problems the price we have to pay for it,
namely, doing the line searches and solving one NLP problem, may lead to a larger
number of nonlinear function evaluations. Also, it is not guaranteed that the ESH algo-
rithm solves a problem with a fewer number of MILP problems but it may still solve the
problem faster than αECP. ESH may have en edge over αECP when there are several
f ◦-pseudoconvex constraints. ESH solved most of the problems faster but an appropri-
ate inner point was searched before solving the problems. In this sense the results were
skewed to favour the ESH method. However, solving the feasibility problem to find the
inner point took merely few seconds in all of the problems.

There does not seem to be a systematic way to find the best inner point easily. The
results on the first three problems suggested to solve relaxed problem and use this solu-
tion as an inner point. Results on the fourth problem proved this method to be somewhat
suboptimal. The choice of a correct analytic subgradient had mostly only minor effect
on solving process. However, when the numerical finite difference with step size 10−3

was used to calculate subgradients ESH failed surprisingly often. This problem occurs
specially if a constraint function is not differentiable at the inner point.
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A The facility layout problem: P3

In this problem, 7 departments should be placed in a facility. The width and height of
the facility are wF = 8.54 and hF = 13 respectively. Decision variables, indices and
the problem are:
i, j = index of a department: 1, 2, . . . , 7.
xi, yi= coordinates of the center of department i.
wi = width of department i.
hi = height of department i.
Xij, Yij = auxiliary variables.

min
6∑

i=1

|xi − xi+1|+ |yi − yi+1| (8)

s.t. hiwi ≥ ai, i = 1, 2, . . . , 7 (9)

xi +
1

2
wi ≤ wF , i = 1, 2, . . . , 7 (10)

−xi +
1

2
wi ≤ 0, i = 1, 2, . . . , 7 (11)

yi +
1

2
hi ≤ hF , i = 1, 2, . . . , 7 (12)

−yi +
1

2
hi ≤ 0, i = 1, 2, . . . , 7 (13)

1

2
(wi + wj)− (xi − xj) ≤ wF (Xij + Yij), 1 ≤ i < j ≤ 7 (14)

1

2
(wi + wj)− (xj − xi) ≤ wF (1 +Xij − Yij), 1 ≤ i < j ≤ 7 (15)

1

2
(hi + hj)− (yi − yj) ≤ hF (1−Xij + Yij), 1 ≤ i < j ≤ 7 (16)

1

2
(hi + hj)− (yj − yi) ≤ hF (2−Xij − Yij), 1 ≤ i < j ≤ 7 (17)

x1 − x2 ≤ 0 (18)
y1 − y2 ≤ 0 (19)
wlow

i ≤ wi ≤ wup
i , i = 1, 2, . . . , 7 (20)

hlowi ≤ hi ≤ hupi , i = 1, 2, . . . , 7 (21)
Xij ∈ {0, 1} , 1 ≤ i < j ≤ 7 (22)
Yij ∈ {0, 1} , 1 ≤ i < j ≤ 7 (23)

Constraints (8) define the minimum area of the departments. Constraints (9)-(12)
make sure the departments are located inside the facility. Constraints (13)-(16) prevent
overlapping of the departments. Constraints (17)-(18) erase symmetric solutions. The
following parameters were used.
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Table 9: Parameters of problem P3

i 1 2 3 4 5 6 7
ai 16 16 16 36 9 9 9
wlow

i 2 2 2 3 1.5 1.5 1.5
wup

i 8 8 8 8.54 6 6 6
hlowi 2 2 2 4.2155 1.5 1.5 1.5
hupi 8 8 8 12 6 6 6

The feasible set of the problem is quite small. The total area of the facility is

wF · hF = 8.54 · 13 = 111.02.

The sum of the areas of the departments is at least
∑7

i=1 ai = 111. Since the departments
do not overlap the pseudoconvex constraints (7) are almost active at any feasible point.
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