
Ville-Pekka Eronen | Marko M. Mäkelä | Tapio Westerlund

Nonsmooth Extended Cutting Plane Method

for Generally Convex MINLP Problems

TUCS Technical Report

No 1055, July 2012

Nonsmooth Extended Cutting Plane Method
for Generally Convex MINLP Problems

Ville-Pekka Eronen
University of Turku, Department of Mathematics and Statistics

FI-20014 Turku, Finland

vpoero@utu.fi

Marko M. Mäkelä
University of Turku, Department of Mathematics and Statistics

FI-20014 Turku, Finland

makela@utu.fi

Tapio Westerlund
Åbo Akademi University, Process Design and Systems Engineering Laboratory

Biskopsgatan 8, FI-20500 Åbo, Finland

twesterl@abo.fi

TUCS Technical Report

No 1055, July 2012

Abstract

In this article a generalization of the αECP algorithm to cover nondifferen-

tiable Mixed-Integer NonLinear Programming (MINLP) problems is studied.

In the generalization constraint functions are required to be f ◦-pseudoconvex

instead of pseudoconvex functions. This enables the functions to be nons-

mooth. The objective function is first assumed to be linear but also f ◦-

pseudoconvex case is considered. Furthermore, the gradients used in the

αECP algorithm are replaced by the subgradients of Clarke subdifferential.

With some additional assumptions the resulting algorithm shall be proven

to converge to a global minimum.

Keywords: Nonsmooth MINLP; Mixed-integer programming; Nonsmooth

optimization; Extended cutting plane algorithm; αECP; Subgradient; Pseu-

doconvex function; Generalized convexity

TUCS Laboratory

TOpGroup

1 Introduction

Practical optimization applications often include both discrete and contin-

uous variables with a nonlinear objective function. The αECP is an algo-

rithm designed for solving this kind of Mixed-Integer NonLinear Program-

ming (MINLP) problems with smooth (i.e. continuously differentiable) ob-

jective and constraint functions [16]. The basic idea is to relax nonlinear

functions and solve only MILP subproblems. The nonlinearities are taken

into account by adding cutting planes created from violated constraints. In

each step a cutting plane is created or updated. Ideally the cutting planes

cut off the infeasible points while leaving the feasible points in the problem.

The αECP is a generalization of the ECP method in which the cutting

planes are not updated. The ECP method finds a global minimum of an

MINLP problem if the objective and constraint functions are convex and

continuously differentiable [15], whereas the αECP finds a global minimum

if the objective and the constraint functions are pseudoconvex [16].

Other algorithms for solving MINLP problems include Branch-and-Bound

(see e.g. [6, 12]) and Outer Approximation (see e.g. [2, 5, 17]) type methods.

In these methods a NonLinear Programming (NLP) subproblem is solved

at each iteration. This is different from αECP where only MILP subprob-

lems are solved. Consequently, the αECP usually performs well compared

to others if the problem includes nonlinear functions whose evaluation is

time-costly. An example of such situation is a chromatographic separation

problem [3].

There are relatively few articles about nonsmooth MINLP problems. In

[5] a certain class of nonsmooth functions were addressed with OA method

and penalty function formulation. In [4] the ECP method was generalized

for nonsmooth convex problems. Furthermore, it was shown in [4] that OA

method cannot be generalized to nonsmooth functions by simply substituting

the gradients by subgradients.

In this article we shall generalize the αECP method to make it suitable

for nonsmooth nonconvex MINLP problems. Similarly to the generalization

of the ECP method [4] the main trick is to use a subgradient from the Clarke

subdifferential instead of a gradient. This trick is a common way to gen-

eralize algorithms to cover nonsmooth problems being exemplified by the

1

subgradient methods [13]. Under some theoretical conditions, the resulting

algorithm will first be proven to converge to a global minimum if the ob-

ject function is linear and the constraint functions are f ◦-pseudoconvex. The

f ◦-pseudoconvexity is a natural generalization of pseudoconvexity to nons-

mooth case in the sense that a continuously differentiable f ◦-pseudoconvex

function is pseudoconvex [11]. The algorithm will be further generalized to

the problems with f ◦-pseudoconvex objective functions.

The paper is organized as follows. Section 2 is devoted to the basic results

that are needed later. In Section 3 the generalization of the αECP method is

derived and shown to converge to a global minimum if the objective function

is linear. In Section 4 the algorithm is further generalized to problems with

f ◦-pseudoconvex objective function. In Section 5 the algorithm is applied to

three example problems. Section 6 summarizes the results.

2 Preliminaries

First of all we present some preliminaries from nonsmooth analysis.

Definition 2.1. The function f : R
n → R is upper semicontinuous at x if

for every sequence (xi) converging to x we have

lim sup
i→∞

f(xi) ≤ f(x).

Definition 2.2. A function f : R
n → R is locally Lipschitz continuous at a

point x ∈ R
n if there exist scalars K > 0 and δ > 0 such that

|f(y) − f(z)| ≤ K‖y − z‖ for all y, z ∈ B(x; δ), (1)

where B(x; δ) ⊂ R
n is an open ball with center x and radius δ.

Function f is called locally Lipschitz continuous if it is locally Lipschitz

continuous at every x ∈ R
n. Note that continuously differentiable or convex

functions are always locally Lipschitz continuous [1].

Definition 2.3. [1] Let function f be locally Lipschitz continuous at x ∈ R
n.

The Clarke generalized directional derivative of f at point x to direction

d ∈ R
n is

f ◦(x; d) = lim sup
y→x

t→0+

f(y + td) − f(y)

t
. (2)

2

With the generalized directional derivative we can generalize the ordinary

gradient.

Definition 2.4. [1] The Clarke subdifferential of locally Lipschitz continuous

function f at point x is the set

∂f(x) =
{

ξ | ξT d ≤ f ◦(x; d), for all d ∈ R
n
}

.

A vector ξ ∈ ∂f(x) is called a subgradient of function f at point x.

Next, we present some useful results concerning generalized directional

derivative and subdifferential.

Theorem 2.5. Let f : R
n → R be locally Lipschitz continuous at x ∈ R

n

with constant K. Then

(i) ∂f(x) is a nonempty, convex and compact set such that ∂f(x) ⊂ cl B(0; K).

(ii) f ◦(x; d) is upper semicontinuous as a function of (x; d).

Proof. See [10] pages 30 and 32.

From (i) we see that ‖ξ(x)‖ ≤ K for any ξ(x) ∈ ∂f(x). If f is continuously

differentiable then ∂f(x) = {∇f(x)} and f ′(x; d) = f ◦(x; d), where f ′ is the

ordinary directional derivative. In general, if the equality f ′(x; d) = f ◦(x; d)

holds for every d ∈ R, then the f is said to be subdifferentially regular at

point x. If f is subdifferentially regular at every x ∈ R
n then it is said to be

subdifferentially regular. With the aid of this property we may calculate the

subdifferential of maximum of a finite number of locally Lipschitz continuous

functions quite easily.

Theorem 2.6. Let fi : R
n → R be locally Lipschitz continuous at x for all

i = 1, . . . ,m. Then the function

f(x) = max {fi(x) | i = 1, . . . ,m}

is locally Lipschitz continuous at x and

∂f(x) ⊂ conv {∂fi(x) | fi(x) = f(x), i = 1, . . . ,m}. (3)

In addition, if fi is subdifferentially regular at x for all i = 1, . . . ,m, then f

is also subdifferentially regular at x and equality holds in (3).

3

Proof. See [1] page 47.

If in Theorem 2.6 fi(x) = f(x) then we say that fi is active at point x.

Next, we will consider a generalization of convexity. It is well known that

a continuously differentiable function f : R
n → R is pseudoconvex if for any

x, y ∈ R
n the inequality f(y) < f(x) implies ∇f(x)T (y − x) < 0. Next, we

will present an analogous concept for possible nonsmooth locally Lipschitz

continuous functions.

Definition 2.7. Let S ⊂ R
n be a convex set. A locally Lipschitz continuous

function f : S → R is f ◦-pseudoconvex if for any x, y ∈ S

f(y) < f(x) implies f ◦(x; y − x) < 0.

The concept of f ◦-pseudoconvexity has been presented in e.g. [8]. If f is

continuously differentiable then f ◦(x; y − x) = ∇f(x)T (y − x) and it is easy

to see that f is pseudoconvex if it is f ◦-pseudoconvex. Furthermore, it can

be shown that convex function is f ◦-pseudoconvex function.

Theorem 2.8. If function f : R
n → R is convex or pseudoconvex then it is

also f ◦-pseudoconvex.

Proof. See [11] page 6.

The maximum of a finite number of pseudoconvex functions is not nec-

essarily pseudoconvex. This can be seen easily by noting that the max-

imum function is not always differentiable everywhere. However, for f ◦-

pseudoconvex functions this is not a problem and it turns out that the max-

imum of a finite number of f ◦-pseudoconvex functions is f ◦-pseudoconvex.

Theorem 2.9. Let fi : R
n → R be f ◦-pseudoconvex for all i = 1, . . . ,m.

Then the function

f(x) = max {fi(x) | i = 1, . . . ,m}

is f ◦-pseudoconvex.

Proof. See [11] page 12.

4

Note that the maximum function of pseudoconvex functions fi, i = 1, . . . ,m

is always f ◦-pseudoconvex due to Theorems 2.8 and 2.9. Since a pseudo-

convex function is always subdifferentially regular, a gradient of an active

function fi at x belongs to the subdifferential ∂f(x) by Theorem 2.6. This

fact will be used frequently in the numerical examples.

The following lemma will turn out useful.

Lemma 2.10. Let f : R
n → R be f ◦-pseudoconvex function. Let A,C ⊂ R

n

be nonempty compact sets such that there exists a ∈ R with f(z) ≥ a for all

z ∈ A and f(w) < a for all w ∈ C. Then, there exists δ > 0 such that

sup
z∈A

ξ∈∂f(z)
w∈C

ξT (w − z) = −δ.

Proof. Suppose that f(z) ≥ a > f(w) for all z ∈ A and w ∈ C. The

definition of subdifferential and f ◦-pseudoconvexity of f implies that

ξT (w − z) ≤ f ◦(z; w − z) < 0 (4)

for all z ∈ A, ξ ∈ ∂f(z) and w ∈ C. Then, we have

sup
z∈A

ξ∈∂f(z)
w∈C

ξT (w − z) ≤ 0.

On contrary to the lemma, assume that there exists no δ > 0 defined above.

Thus, we have sequences (zi) ⊂ A, (wi) ⊂ C and (ξ(zi)) such that ξ(zi) ∈
∂f(zi) and ξ(zi)T (wi − zi) → 0 when i → ∞. Since the sets A and C are

compact sequences (zi) and (wi) can be chosen to be converging sequences.

Denote ẑ = limi→∞ zi and ŵ = limi→∞ wi. Then ẑ ∈ A and ŵ ∈ C since

the sets A and C are closed. Thus, we have f(ŵ) < a ≤ f(ẑ). By the first

inequality of (4) we have

0 = lim
i→∞

ξ(zi)T (wi − zi) ≤ lim sup
i→∞

f ◦(zi; wi − zi).

The upper semicontinuity of f ◦ leads to

0 ≤ lim sup
i→∞

f ◦(zi; wi − zi) ≤ f ◦(ẑ; ŵ − ẑ).

This contradicts with the inequality (4) and, thus, the lemma is proven.

Note that A or C may be a singleton.

5

3 The generalization of the αECP-algorithm

We are considering MINLP problems of type

min f(z)

s.t. gj(z) ≤ 0 j = 1, . . . , J (GP)

z ∈ L,

where z = (x, y), x ∈ R
n and y ∈ Z

m. The set L = X × Y , where X ⊂ R
n

is supposed to be a compact convex polytope and Y ⊂ Z
m is finite. The

constraint functions gj are supposed to be f ◦-pseudoconvex. Denote

ĝ(z) = max
j=1,...,J

{gj(z)} and N = {z | ĝ(z) ≤ 0} .

Then, the feasible set of problem (GP) can be written as N ∩ L. Since L is

compact and N is closed the feasible set N ∩ L is compact.

Requirements for the function f depends on section. In this section we

assume that the objective function of the problem (GP) is linear. That is,

we consider the problem

min cT z

s.t. z ∈ N ∩ L. (P)

From Theorem 2.8 we deduce that this formulation includes the problem

considered earlier in [14], where the constraints were pseudoconvex functions.

3.1 The generalized αECP algorithm

Our Nonsmooth α Extended Cutting Plane method (NαECP) solves the

problem (P) like αECP [14], but now the subgradients are used instead

of gradients. As in the original αECP method the nonlinear constraints

gj(z) ≤ 0, j = 1, . . . , J are first omitted from the problem. This results in

problem

min cT z

s.t. z ∈ L. (P 0)

This is a MILP problem and it can be solved by any decent MILP solver.

Let the solution to the problem (P 0) be z0. If ĝ(z0) ≤ 0 then z0 is a global

6

minimum of problem (P) since z0 ∈ N ∩ L and it is a global minimum in

L ⊃ N ∩ L. If ĝ(z0) > 0 then we create a cutting plane

l0j0(z) = gj0(z
0) + α0

j00ξj0(z
0)T (z − z0) ≤ 0, (5)

where gj0 is one of the most violated constraints, that is, ĝ(z0) = gj0(z
0).

Furthermore, ξj0(z
0) ∈ ∂gj0(z

0) and α0
j00 is set at first to 1. The superscript

of α denotes the iteration at which it was introduced. The first subscript

denotes the index of constraint and the second subscript indicates how many

times it has been updated. The second subscript is needed in the algorithm

but we usually omit it from theoretical considerations. The cutting plane (5)

will be added to the problem (P 0) resulting in problem (P 1)

min cT z

s.t. l0j0(z) ≤ 0 (P 1)

z ∈ L,

which is again a MILP problem. Similarly, at iteration i we will solve the

MILP problem

min cT z

s.t. lkjk
(z) ≤ 0 k = 0, 1, . . . , i − 1 (P i)

z ∈ L.

If the solution zi does not satisfy the nonlinear constraints, then we will add

the linear constraint

liji
(z) = gji

(zi) + αi
ji0

ξji
(zi)T (z − zi) ≤ 0 (6)

to the new problem (P i+1), where again, αi
ji0

is set to 1, gji
(zi) = ĝ(zi) and

ξji
(zi) ∈ ∂gji

(zi). The cutting plane (6) is called valid if it does not cut

off any points from the original feasible set N ∩ L. Next, we shall prove

that there always exists a certain value αi
ji

such that the cutting plane (6)

is valid. The existence follows from the f ◦-pseudoconvexity of the constraint

functions.

Theorem 3.1. Let zi ∈ L be a solution to the problem (P i) and ji be such

that gji
(zi) = ĝ(zi) > 0. Then, there exists M > 0 such that the cutting

plane

gji
(zi) + αi

ji
ξji

(zi)T (z − zi) ≤ 0 (7)

7

is valid if αi
ji

> M .

Proof. Since gji
(zi) > 0, the inequality gji

(z) < gji
(zi) holds for every feasible

z. From the f ◦-pseudoconvexity of function gji
and Definition 2.4, we deduce

that

ξji
(zi)T (z − zi) ≤ g◦

ji
(zi; z − zi) < 0

for any ξji
(zi) ∈ ∂gji

(zi). Since N ∩L and ∂gji
(zi) are compact (Theorem 2.5

(i)) the continuous function G(z, ξ) = ξT (z − zi) attains its maximum value

on the compact set (N ∩L)× ∂gji
(zi). Denote this negative scalar −ε. If we

choose αi
ji
≥ gji

(zi)

ε
, then for any z ∈ N ∩ L and ξji

(zi) ∈ ∂gji
(zi) we have

gji
(zi) + αi

ji
ξji

(zi)T (z − zi)

≤ gji
(zi) + αi

ji
max
z∈N∩L

ξ∈∂gji
(zi)

ξT (z − zi)

≤ gji
(zi) +

gji
(zi)

ε
(−ε) = 0.

Thus, we see that any point z ∈ N ∩ L satisfies the inequality (7). Conse-

quently, we may choose M =
gji

(zi)

ε
and the theorem is proved.

From the proof of Theorem 3.1 we see that the cutting plane (7) is valid

if

αi
ji
≥ max

z∈N∩L

ξ∈∂gji
(zi)

− gji
(zi)

ξT (z − zi)
. (8)

It is difficult to provide sufficiently large αi
ji

from the inequality (8). In

practise, a small value εz > 0 is given and a cutting plane from point zi is

considered valid if it’s shortest distance to zi is less or equal to εz and αi >

0. More precisely, denote Tij =
{

z | ξji
(zi)T (z − zi) = 0

}

, where ξji
(zi) ∈

∂gji
(zi) is chosen to the cutting plane. The cutting plane (with ‖ξji

(zi)‖ 6= 0)

can be written as

gji
(zi) + αi

ji
ξji

(zi)T (z − zi) =

gji
(zi) +

∥

∥ξji
(zi)

∥

∥αi
ji

ξji
(zi)T

‖ξji
(zi)‖(z − zi) ≤ 0.

Note that if ‖ξji
(zi)‖ = 0 then 0 ∈ ∂gji

(zi). Then it follows that zi is a

global minimum of gji
due to f ◦-pseudoconvexity of gji

(see [11] page 7). This

would imply that N = ∅ as gji
(zi) > 0. Thus, the assumption ‖ξji

(zi)‖ 6= 0

8

is sensible. If any point ẑ with ξji
(zi)T (ẑ − zi) < 0 that has distance to Tij

greater than or equal to εz, in other words

∣

∣

∣

∣

ξji
(zi)T

‖ξji
(zi)‖(ẑ − zi)

∣

∣

∣

∣

≥ εz,

should not be cutted off, then

gji
(zi) +

∥

∥ξji
(zi)

∥

∥αi
ji

ξji
(zi)T

‖ξji
(zi)‖(ẑ − zi) ≤ gji

(zi) +
∥

∥ξji
(zi)

∥

∥αi
ji
(−εz) ≤ 0.

This leads to inequality

αi
ji
≥ gji

(zi)

‖ξji
(zi)‖ εz

, (9)

which was presented in [16] for the smooth case. To make the algorithm

faster, αi
ji

is set to 1 at first and it is updated in later iterations until it

satisfies the inequality (9). More accurately, a coefficient β > 1 is given and

αi
ji

coefficients are updated according to equation

αi
ji(k+1) = βαi

jik
(10)

when necessary. Now we are ready to present the NαECP algorithm.

Algorithm 3.1.

0. Give tolerance parameter εg > 0, update parameter β > 1 and set i = 0.

Create the problem (P 0) by omitting the nonlinear constraints from (P).

1. Solve the MILP problem (P i).

2. If the problem has a solution denote it zi and go to the next step. If not

and some α coefficients does not satisfy inequality (9), update them according

to (10), set i = i + 1 and return to step 1. Otherwise, the problem has no

solution.

3. If ĝ(zi) > εg, then create problem P i+1 by adding a cutting plane (6)

from the point zi and function gji
with gji

(zi) = ĝ(zi). Set αi
ji

= 1, i = i + 1

and go to step 1. If ĝ(zi) ≤ εg and all α coefficients satisfy inequality (9)

then zi is the final solution and the algorithm stops. Otherwise, update all

α coefficients for which the inequality (9) is not satisfied, set i = i + 1 and

got to step 1.

9

3.2 The convergence proof

Next, we will prove that the generalized algorithm NαECP converges to a

global minimum if εg = 0. In order to be able to proof the convergence rigor-

ously, we assume that sufficiently large coefficients αi are known beforehand

and they are used immediatedly when the cutting planes are created. Thus,

the cutting planes are always valid and we do not need to update α values.

If all constraint functions are convex, then α = 1 is always sufficiently large

[4].

The difficulty with choosing εg = 0 is that the algorithm may not stop

after a finite number of iterations. On the other hand, if εg > 0 the algorithm

will always stop after a finite number of iterations but the solution may not

be feasible.

The assumption that sufficiently large α values are known beforehand is

unrealistic (unless functions are convex), but the convergence proof shows

that the algorithm used in practice has reasonable origins.

If we denote the feasible set of problem (P i) by

Ωi =
{

z | z ∈ Ωi−1, li−1
ji−1

(z) ≤ 0
}

.

and Ω0 = L we get a sequence

N ∩ L ⊂ · · · ⊂ Ωi ⊂ · · · ⊂ Ω0. (11)

The property (11) follows from Theorem 3.1 which states that the feasible

points are not cut off by the cutting planes as α coefficients are assumed to

be sufficiently large. The next theorem follows quite easily from the relation

(11).

Theorem 3.2. Suppose that the Algorithm 3.1 ends with a finite number of

iterations or an accumulation point ẑ of solution sequence (zi) is feasible.

Then the last iteration point or the accumulation point is a global minimum.

Proof. If the algorithm ends up with a finite number of iterations say at i,

the last solution point is feasible in problem (P). This point is also a global

minimum of the problem (P), since the point is a global minimum at the

feasible set of problem (P i) and this set includes the feasible set of problem

(P) according to (11).

10

Assume now that the accumulation point ẑ is feasible. Denote cT zi = Zi

and cT ẑ = Ẑ. By relation (11) the sequence (Zi) is nondecreasing and for

any i the Zi is a lower bound for the optimal objective function value. By

the continuity of the objective function we have Zi → Ẑ as i → ∞. Hence,

there exists a lower bound that is arbitrarily close to Ẑ and, thus, ẑ is a

global minimum.

Next, we will study the case where the Algorithm 3.1 does not converge

to a global minimum after a finite number of iterations. It turns out that

then we will have a sequence of solutions (zi) with an accumulation point ẑ

and this accumulation point is feasible in problem (P).

First, we prove with the following lemma and theorem that there exists

an accumulation point.

Lemma 3.3. If zi /∈ N∩L is the solution of problem (P i), then it is infeasible

in the subsequent MILP problems.

Proof. Since zi /∈ N ∩ L the cutting plane

liji
(z) = gji

(zi) + αi
ji
ξji

(zi)T (z − zi) ≤ 0 (12)

with gji
(zi) > 0 will be introduced to the subsequent MILP problems. Since

liji
(zi) = gji

(zi) + αi
ji
ξji

(zi)T (zi − zi) = gji
(zi) > 0

we see that zi does not satisfy inequality (12). Thus, zi is infeasible in all

subsequent MILP problems.

Theorem 3.4. If NαECP-algorithm does not stop after a finite number of

iterations, then it generates a solution sequence (zi) with an accumulation

point.

Proof. By Lemma 3.3 the sequence (zi) contains infinite number of different

points. Since (zi) ⊂ L and L is compact, the classical Bolzano-Weierstrass

Theorem states that the sequence (zi) has an accumulation point.

Now we know that an accumulation point exists. Next, we will prove that

any accumulation point of the sequence (zi) is feasible in problem (P). We

will need the following lemma for this.

11

Lemma 3.5. Let ẑ ∈ L\(N ∩ L) and j be such that gj(ẑ) > 0. Let ε > 0 be

such that gj(z) > 0 if z ∈ cl B(ẑ; ε). Then there exists D ∈ R such that

gj(z)

|ξj(z)T (w − z)| ≤ D, (13)

for all z ∈ cl B(ẑ; ε) ∩ L, w ∈ N ∩ L and ξj(z) ∈ ∂gj(z).

Proof. By local Lipschitz continuity of function gj we have

gj(z) ≤ gj(ẑ) + Kε. (14)

Denote A = cl B(ẑ; ε) ∩ L and C = N ∩ L. The set A is compact and

continuous function gj attains a minimum value on it. Denote this value g0.

Since A ⊂ cl B(ẑ; ε) we have g0 > 0. Thus, gj(z) ≥ g0 for all z ∈ A and

gj(w) ≤ 0 < g0 for all w ∈ C. Since gj is f ◦-pseudoconvex, according to

Lemma 2.10 there exists δ > 0 such that

sup
z∈A

ξ∈∂gj(z)

w∈C

ξT (w − z) = −δ.

Hence, for all z ∈ B(ẑ; ε) and w ∈ N ∩ L we have by f ◦-pseudoconvexity of

gj that

∣

∣ξj(z)T (w − z)
∣

∣ = −ξj(z)T (w − z)

≥ − sup
z∈A

ξ∈∂gj(z)

w∈C

ξT (w − z) = δ.

By (14) we may choose D =
gj(ẑ)+Kε

δ
.

Essentially the Lemma 3.5 states that for every z ∈ L\(N ∩ L) there

exists ε > 0 such that a finite α is sufficiently large for cutting planes created

at cl B(z; ε) ∩ L. This can be seen by rewriting the inequality (8) as follows

αi
ji
≥ max

z∈N∩L

ξ∈∂gji
(zi)

−gji
(zi)

ξT (z − zi)
= max

z∈N∩L

ξ∈∂gji
(zi)

gji
(zi)

|ξT (z − zi)| ,

where the equality is a consequence of the negativity of ξT (z − zi). Now, we

are ready to prove that an accumulation point is feasible.

12

Theorem 3.6. If the point ẑ is an accumulation point of the sequence of

MILP solutions generated by NαECP-algorithm, then it is a feasible point of

the problem (P).

Proof. On the contrary, assume that the accumulation point ẑ /∈ N ∩ L,

that is, ĝ(ẑ) > 0. Due to the finite number of constraint functions there

exists j such that gj is linearized infinitely many times and gj(ẑ) > 0. Since

R
n\ {z | gj(z) ≤ 0} is an open set, there exists ε > 0 such that gj(z) > 0

for all z ∈ cl B(ẑ; ε) and Lipschitz condition (1) holds for gj and any y, z ∈
cl B(ẑ; ε) with constant K > 0.

By Lemma 3.5 there is an upper bound for the quotient

gj(z)

|ξj(z)T (w − z)| ,

when z ∈ cl B(ẑ; ε)∩L and w ∈ N∩L. Thus, there exists a finite α̂ for which

cutting planes generated at B(ẑ; ε)∩L on function gj are valid. Assume that

for those cutting planes the chosen α values are smaller than α̃, that is,

α ∈ [α̂, α̃]. Denote

δ = min

{

ε,
gj(ẑ)

2α̃K + K

}

.

Let k > i and zk, zi ∈ B(ẑ; δ), where zk is the solution point to the problem

(P k) and gj is linearized at i. Then by inequality (1) we have

gj(z
i) ≥ gj(ẑ) − K

∥

∥ẑ − zi
∥

∥ > gj(ẑ) − Kδ. (15)

Also,

αi
jξj(z

i)T (zk − zi) ≥ −α̃
∥

∥ξj(z
i)
∥

∥

∥

∥zk − ẑ + ẑ − zi
∥

∥ ,

since αi
j ≤ α̃. By the triangle inequality and Theorem 2.5 (i) we have

−α̃
∥

∥ξj(z
i)
∥

∥

∥

∥zk − ẑ + ẑ − zi
∥

∥ ≥ −α̃K(
∥

∥zk − ẑ
∥

∥ +
∥

∥ẑ − zi
∥

∥) > −2α̃Kδ.

Together with (15) we have

gj(z
i) + αi

jξj(z
i)T (zk − zi) > gj(ẑ) − Kδ − 2α̃Kδ

≥ gj(ẑ) − (K + 2α̃K)
gj(ẑ)

2α̃K + K
= 0.

Thus, zk would not be a feasible point in the problem (P k), which contradicts

with the assumption. Hence, any accumulation point is feasible.

13

We summarize the convergence results in the following theorem.

Theorem 3.7. If εg = 0 and all the cutting planes are valid the NαECP-

algorithm converges to a global minimum.

Proof. If the algorithm stops after a finite number of iterations the result

follows from Theorem 3.2. If the algorithm does not stop after a finite num-

ber of iterations, it creates a sequence with a feasible accumulation point

by Theorems 3.4 and 3.6. A feasible accumulation point is then a global

minimum according to Theorem 3.2.

There may occur many accumulation points. However, since Theorems

3.4 and 3.6 considers any of them, all of the accumulations points will be

global minima.

Note, that there may not exist a global M for α values for which any cut-

ting plane would be valid. In fact, it is an open question whether there exists a

problem that generates sequences (zi) and values (M i) with limi→∞ M i = ∞.

Nevertheless, Theorems 3.4 and 3.6 guarantee that the sequence (zi) has an

accumulation point and it is feasible. Hence, a global minimum will be found

in this case as well.

For the next section we need the following result. Again, we assume that

sufficiently large α coefficients are known beforehand.

Theorem 3.8. If εg > 0 then the NαECP algorithm terminates after a finite

number of iterations.

Proof. On the contrary, assume that the algorithm does not terminate after

a finite number of iterations. Then the solution sequence (zi) has an accu-

mulation point by Theorem 3.4. Denote this accumulation point ẑ. Theorem

3.6 implies that ĝ(ẑ) ≤ 0. By the continuity of function ĝ there exists δ > 0

such that

|ĝ(z) − ĝ(ẑ)| < εg

if z ∈ B(ẑ; δ). By the definition of accumulation point there exist some

points (actually infinitely many) in the sequence (zi) that belongs to the set

B(ẑ; δ). Thus, there exists a point zj ∈ (zi) for which we have

ĝ(zj) ≤ ĝ(zj) − ĝ(ẑ) < εg, (16)

14

where ĝ(zj) > 0 since (zi) ∩ N ∩ L = ∅. The inequality (16) implies that

the algorithm terminates after the jth iteration. Thus, there can be at most

finite number of iterations.

4 f ◦-pseudoconvex objective function

Next we develop an algorithm that can deal also problems with an f ◦-

pseudoconvex objective function. As in the previous section, the constraint

functions are assumed to be f ◦-pseudoconvex. This algorithm can be seen

as a generalization to the algorithm presented in [16], where the object and

constraint functions were pseudoconvex.

Our algorithm solves problem (GP) as a series of MINLP subproblems

with linear objective function and f ◦-pseudoconvex constraints. This kind

of problem was already studied in Section 3. Throughout this section we

assume that in the MINLP problems εg > 0 and sufficiently large α coef-

ficients are known beforehand. It is convenient to introduce the notation

Ñ = {z | ĝ(z) ≤ εg}. We shall call a point z ∈ Ñ ∩ L an εg-feasible point.

From Theorem 3.8 we deduce that MINLP problems will be solved after a

finite number of iterations. On the other hand, the solution point may not

be feasible in the original problem (GP) but it will be εg-feasible. The first

problem is

min µ

s.t. µ ≥ µ0 (P 00
0)

z ∈ N ∩ L,

where the constant µ0 guarantees that the problem has a bounded solution.

Note that the purpose of the problem (P 00
0) is merely to find an ε-feasible

solution. Denote the solution point (z0, µ0). Now, we have an (εg-feasible)

upper bound f(z0) which we denote f1. Also, we denote z1
1 = z0. Next, we

15

will solve the problem

min µ

s.t. µ ≤ f1

f(z) ≤ f1 (P 11
1)

f1 + ξ(z1
1)

T (z − z1
1) ≤ µ (17)

z ∈ N ∩ L,

where ξ(z1
1) ∈ ∂f(z1

1). Note that constraint (17) guarantees that (P 11
1) has

a bounded solution. Therefore, we were allowed to discard the constraint

µ ≥ µ0. Let the next solution point be (z1, µ1). Note that f(z1) ≤ f1 + εg.

If f(z1) < f1, we have found a new upper bound f(z1) = f2. Then, f1 will

be replaced by f2 and we denote z1
2 = z1. Also, the constraint (17) will be

replaced by the constraint

f2 + ξ(z1
2)

T (z − z1
2) ≤ µ.

If f1 ≤ f(z1), then denote z2
1 = z1 and add a new constraint

f1 + ξ(z2
1)

T (z − z2
1) ≤ µ

to the problem. At iteration i we will solve the problem

min µ

s.t. µ ≤ fr

f(z) ≤ fr (P qi
r)

fr + ξ(zj
r)

T (z − zj
r) ≤ µ, for all j ∈ Jr (18)

z ∈ N ∩ L,

where i is the total number of iterations, r is the number of upper bounds

obtained so far and Jr = {1, . . . , q}, where q − 1 indicates how many times

we have solved MINLP problem with the upper bound fr. Note that the

only constraints that limits the optimal µ from below are (18). Then, we

may deduce that if (zi, µi) is the solution to the problem (P qi
r), we have

sup
j∈Jr

{

fr + ξ(zj
r)

T (zi − zj
r)

}

= µi. (19)

The algorithm proceeds as follows.

16

Algorithm 4.1.

0. Give positive accuracy tolerances εg, εf and set i = q = r = 0 and f0 = ∞.

Create the problem (P 00
0) by replacing the objective function f by µ and add

the constraint µ ≥ µ0.

1. Solve the MINLP problem (P qi
r) with the algorithm 3.1. Denote the

solution (zi, µi) and f = f(zi). If i = 0 remove constraint µ ≥ µ0.

2. If i > 0 and |f − µi| ≤ εf then zi is the final solution and algorithm stops.

3. If f < fr set fr+1 = f , q = 1 and z1
r+1 = zi. Update the constraints by

replacing old fr by fr+1. Discard the constraints (18) and add the constraint

fr+1 + ξ(z1
r+1)

T (z − z1
r+1) ≤ µ. Set r = r + 1.

4. If f ≥ fr set q = q+1, zq
r = zi and add the constraint fr+ξ(zq

r)
T (z−zq

r) ≤ µ

to the problem.

5. Set i = i + 1 and go to step 1.

Note that problems (P qi
r) can be solved to nearly global feasible solution

in a finite number of iterations if εg > 0.

In the following, we will prove that our algorithm converges. We assume

that the sequence of MINLP solutions (zi) contains only one accumulation

point and εf = 0. Then the algorithm will converge to a point z ∈ Ñ ∩ L

which is εg-feasible. Also, there are no feasible points with objective func-

tion value lower than f(z). We shall call such point z an εg-feasible global

minimum of problem (GP).

First, we note that if the point z is feasible in problem (GP) and f(z) <

fr, then it is feasible in problems (P qi
r) for all q and i. The constraints (18)

are satisfied with µ ≤ fr since

ξ(zj
r)

T (z − zj
r) ≤ f ◦(zj

r ; z − zj
r) < 0

for all j ∈ Jr. This is due to f ◦-pseudoconvexity of f and inequalities

f(z) < fr ≤ f(zj
r), j ∈ Jr. The other constraints are satisfied since z is

feasible in (GP) and f(z) < fr.

We denote µz̃ the optimal value of µ in problem (P qi
r) with additional

constraint z = z̃, where z̃ is feasible in (P qi
r). Consequently µz̃ ≥ µi.

Next, we will justify the stopping criterion |fr − µi| ≤ εf = 0.

Theorem 4.1. If µ = fr, then fr is an εg-feasible global minimum.

17

Proof. On the contrary, assume that there exists a feasible point z̃ with

f(z̃) < fr. Then, z̃ is feasible in current MINLP problem. Denote A =

Ñ ∩ L ∩ {z | f(z) ≥ fr}. By Lemma 2.10 there exists δ > 0 such that

−δ = sup
z∈A

ξ∈∂f(z)

ξT (z̃ − z) ≥ sup
j∈Jr

ξ(zj
r)

T (z̃ − zj
r) = µz̃ − fr.

Thus, at the feasible point z̃ we would have µz̃ ≤ fr − δ < µ which is

impossible since µ was assumed to be a minimum. Hence, there exists no

feasible point z̃ with f(z̃) < fr.

If the Algorithm 4.1 does not stop after a finite number of iterations there

will be an infinite sequence of solutions (z1
r)

∞

r=1 ⊂ (zi) or for some r there

will be an infinite sequence of solutions (zj
r)

∞

j=1. In the first case the sequence

contains only different points as f(z1
r1

) > f(z1
r2

) whenever r1 < r2. In the

latter case, if there exists j > k with zk
r = zj

r then from the constraint (18)

we see that

fr + ξ(zk
r)T (zj

r − zk
r) ≤ µ,

implying fr ≤ µ. With the constraint µ ≤ fr this results to µi = fr and the

algorithm stops. Hence, if the sequence (zj
r) is infinite for some r, then it

contains only different points.

In the following we shall show that if the sequence of solutions has one

accumulation point then the algorithm will end up with an εg-feasible global

minimum.

Theorem 4.2. If in the Algorithm 4.1 there will be an infinite number of

iterations for some r, then fr is an εg-feasible global minimum.

Proof. The infinite sequence (zj
r) belongs to the compact set L. Every point

of the sequence is different and, thus, there exists an accumulation point ẑ.

Let ε > 0 be such that the Lipschitz condition holds in B(ẑ; ε) with constant

K for function f . Let δ = min
{

ε, ε
2K

}

and k > j be indexes such that

zj
r , z

k
r ∈ B(ẑ; δ). Then, at problem (P

(k−1)i
r) the constraint

fr + ξ(zj
r)

T (z − zj
r) ≤ µ

is satisfied with z = zk
r and µ = µi. Thus,

fr + ξ(zj
r)

T (zk
r − zj

r) ≤ µi implying

ξ(zj
r)

T (zk
r − zj

r) ≤ µi − fr.

18

Both sides of the inequality are non-positive implying that

∣

∣ξ(zj
r)

T (zk
r − ẑ + ẑ − zj

r)
∣

∣ ≥
∣

∣µi − fr

∣

∣ .

The leftside is

∣

∣ξ(zj
r)

T (zk
r − ẑ + ẑ − zj

r)
∣

∣ ≤
∥

∥ξ(zj
r)

∥

∥ (
∥

∥zk
r − ẑ

∥

∥ +
∥

∥ẑ − zj
r

∥

∥)

< K2δ ≤ 2K
ε

2K
= ε.

Hence, |µi − fr| < ε.

Now, assume that there exists z̃ ∈ N ∩ L with f(z̃) < fr and denote

A = Ñ ∩ L ∩ {z | f(z) ≥ fr}. By Lemma 2.10 there exists δ > 0 such that

−δ = sup
z∈A

ξ∈∂f(z)

ξT (z̃ − z) ≥ sup
j∈Jr

ξ(zj
r)

T (z̃ − zj
r) = µz̃ − fr,

where Jr = N\ {0}. Let l be such that
∣

∣µl − fr

∣

∣ < δ. Then, µl > fr − δ ≥ µz̃

which is impossible since µl is the minimum at iteration l. Hence, the point

z̃ does not exist and the theorem is proved.

From Theorem 4.2 we deduce that if the sequence (zj
r) is infinite for some

r then the algorithm will converge despite of the number of accumulation

points. This is not the case when the upper bound is improved infinitely

many times.

Note that if the upper bound will be improved infinitely many times

there exists f̂ = limr→∞ fr. This follows from the facts that the continuous

function f is bounded below on a compact set L and the sequence (fr) is

decreasing.

Theorem 4.3. If r → ∞, and there is only one accumulation point, then

the Algorithm 4.1 converges to an εg-feasible global minimum.

Proof. All the points in the subsequence (z1
r) are different. As the points are

in the compact set L there exists an accumulation point ẑ. Let ε > 0 be such

that the Lipschitz condition holds in B(ẑ; ε) with constant K for function f .

Let δ = min
{

ε, ε
2K

}

and r̃ be an index such that z1
r̃ , z

1
r̃+1 ∈ B(ẑ; δ). Since

there is exactly one accumulation point, such r̃ is guaranteed to exist. Thus

we have

ξ(z1
r̃)

T (z1
r̃+1 − z1

r̃) ≤ µi − fr̃ < 0 implying
∣

∣ξ(z1
r̃)

T (z1
r̃+1 − z1

r̃)
∣

∣ ≥
∣

∣µi − fr̃

∣

∣

19

The leftside is
∣

∣ξ(z1
r̃)

T (z1
r̃+1 − ẑ + ẑ − z1

r̃)
∣

∣ ≤
∥

∥ξ(z1
r̃)

∥

∥ (
∥

∥z1
r̃+1 − ẑ

∥

∥ +
∥

∥ẑ − z1
r̃

∥

∥)

< K2δ ≤ 2K
ε

2K
= ε.

Thus, |µi − fr̃| < ε.

Now, assume that there exists z̃ ∈ N∩L such that f(z̃) < f̂ = limr→∞ fr.

Denote A = Ñ ∩L∩
{

z | f(z) ≥ f̂
}

. Then by Lemma 2.10 there exists δ > 0

such that

−δ = sup
z∈A

ξ∈∂f(z)

ξ(z)T (z̃ − z).

Let l and r be such that at iteration l we have
∣

∣µl − fr

∣

∣ < δ. Now we have

µz̃ = fr + max
j∈Jr

ξ(zj
r)

T (z̃ − zj
r) ≤ fr + sup

z∈A
ξ∈∂f(z)

ξ(z)T (z̃ − z) = fr − δ.

Thus, µz̃ < µl which is impossible since µl was the minimum. Hence, z̃ does

not exist and f̂ is an εg-feasible global minimum.

Again, we summarize the convergence proof.

Theorem 4.4. If εf = 0 and the solution sequence contains at most one

accumulation point the Algorithm 4.1 converges to an εg-feasible global min-

imum.

Proof. If the algorithm stops after a finite number of iterations, then µ = fr

and the minimum is found by Theorem 4.1. If the algorithm does not stop

after a finite number of iterations and there is exactly one accumulation point

then algorithm will converge to the minimum according to the Theorems 4.2

and 4.3.

The algorithm will converge after a finite number of iterations if εf > 0

which can be proven similarly to the case εg > 0 in Theorem 3.8.

5 Numerical examples

In this section we will apply the nonsmooth αECP algorithm to three example

problems. The first one is two dimensional problem

min f(x1, x2) = max
{

√

1 + |x1|,
√

1 + |x2|
}

s.t. −5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5, x2 ∈ Z (P1)

20

The objective function f can be considered as a maximum of four pseudo-

convex functions

g+
i (xi) =

√
1 + xi, xi ≥ 0

1 + 1
2
xi, xi < 0

and g−

i (xi) =

1 − 1
2
xi, xi ≥ 0

√
1 − xi, xi < 0

,

where i = 1, 2. Since the functions g+
i and g−

i are pseudoconvex, f is f ◦-

pseudoconvex by Theorems 2.8 and 2.9. The function f is nonsmooth at the

points satisfying the equation |x1| = |x2|. The gradient of an active function

is a subgradient of f at corresponding point by Theorem 2.6. By calculating

subgradients analytically this way the NαECP algorithm found the global

optimum (0, 0) with the optimal value 1.

We also tried to approximate a subgradient with the standard (forward)

finite difference method developed to calculate gradients numerically. It is

well known that the finite difference method is not the best way to calculate

a subgradient [9]. Indeed, the algorithm stopped at (−5,−5) yielding a non-

optimal objective function value 2.45.

The second problem is a modification of a problem presented in [16].

Replacing the term (x − 3)2 by |x − 3| we get a nonsmooth problem

min
|x − 3| − 10x

3x + y + 1

s.t. (x − 7)2 − 5y ≤ 0

x − 1.8y ≤ 0 (P2)

1 ≤ x, y ≤ 8

x ≥ 0, y ∈ Z
+.

The objective function can be viewed as a maximum of pseudoconvex func-

tions and thus, the subgradients can be calculated similarly to the first exam-

ple problem. We calculated again the subgradients both exactly and with the

finite difference method. The global optimum was obtained with both ways.

It turns out that in problem 2 the algorithm does not visit any nonsmooth

point and hence the finite difference method yields a correct approximation

to the gradients.

Finally we consider a real life problem, namely the cyclic scheduling prob-

lem taken from [7, 16]. In this problem there are 7 feeds and 4 furnaces and

optimal scheduling should be made in order to maximize the profit. The

21

problem has 140 binary variables, 233 continuous variables and 138 con-

straints. An outline of the problem is in the appendix. Again, we modified

the differentiable objective function. Instead of maximizing the profit, we

maximize the profit of the least profitable furnace. When we change the

maximization to minimization by multiplying the objective function with

−1, the objective function transforms to a maximum function of four pseu-

doconvex functions. Again, we will calculate the subgradients as in previous

examples. Both the exact subgradient and the finite difference method re-

sults in objective function value −39071. The numerical results of all three

problems are summarized in table 1. The problems were solved on HP pavil-

ion dv9500 notebook PC with 1.5 GHz Intel processor. In each problem we

Table 1: Numerical results

problem optimal value subgradient µ∗ iterations CPU-time(s)

P1 1
exact 1.00 33 0.45

numerical 2.45 2 0.04

P2 −258
101

≈ −2.55
exact −2.55 10 0.17

numerical −2.55 10 0.17

P3
best known exact −39071 255 85

= −39071 numerical −39071 210 60

had εz = 0.1 and β = 1.3. In problems 1 and 2 parameters εf = 0.001,

εg = 0.001 and the difference 0.001 in the finite difference were used. In

problem 3 we had εg = εf = 10, and the difference were 0.00001. Also, in

problem 3 a line search procedure introduced in [16] was used. This proce-

dure does not affect the theoretical convergence properties. If the procedure

is not used the algorithm will take much more time (> 6 hours).

6 Conclusions

The αECP method for nonsmooth MINLP problems was studied. The con-

sidered MINLP problem was required to have f ◦-pseudoconvex constraint

functions and linear or f ◦-pseudoconvex objective function. The algorithms

22

were readily generalized for nonsmooth functions from those presented in [14]

and [16]. In theory, the only difference in algorithms was that gradients were

replaced by subgradients.

In the case where the objective function is linear the algorithm was proven

to converge to global minimum if sufficiently large α coefficients are known

beforehand. If the objective function is f ◦-pseudoconvex the generalized

algorithm was proven to converge to an εg-feasible global minimum assumed

that sufficiently large α coefficients are known beforehand.

A few numerical problems were considered. The results were in accor-

dance with the theory. The algorithm converged to the global optimal solu-

tion or at least to the best known solution for all examples when applying

subgradients. When the gradients were approximated by finite differences, it

was further illustrated that the global optimal solution could not be achieved

in all examples.

References

[1] Clarke, F. H. Optimization and Nonsmooth Analysis. Wiley-

Interscience, New York, 1983.

[2] Duran, M. A., and Grossmann, I. E. An outer-approximation al-

gorithm for a class of mixed-integer nonlinear programs. Mathematical

Programming 36, 3 (1986), 307–339.

[3] Emet S., and Westerlund, T. Comparisons of solving a chromato-

graphic separation problem using MINLP methods. Computers & Chem-

ical Engineering 28, (2004), 673–682.

[4] Eronen, V-P., Mäkelä, M.M., and Westerlund, T. On the gen-

eralization of ECP and OA methods to nonsmooth convex MINLP prob-

lems. Optimization (2012), doi:10.1080/02331934.2012.712118.

[5] Fletcher, R., and Leyffer, S. Solving mixed integer nonlinear pro-

grams by outer approximation. Mathematical Programming 66, (1994),

327–349.

23

[6] Fletcher, R., and Leyffer, S. Numerical Experience with Lower

Bounds for MIQP Branch-and-Bound. University of Dundee, Numerical

analysis report, NA/151, (1995).

[7] Jain, V., and Grossmann, I. Cyclic scheduling of continuous parallel-

process units with decaying performance. AIChE Journal 44 , (1999),

1623–1636.

[8] Komlosi, S. Generalized monotonicity and generalized convexity. Jour-

nal of Optimization Theory and Applications 84 , (1995), 361–376.

[9] Lemaréchal, C. Nondifferentiable Optimization, in Optimization,

Nemhauser, G. L. and Rinnooy Kan, A. H. G. and Todd, M. J (eds.),

Elsevier North-Holland, Inc., New York, 1989.

[10] Mäkelä, M. M., and Neittaanmäki P. Nonsmooth Optimization:

Analysis and Algorithm with Applications to Optimal Control. World

Scientific Publications Publishing Co., Singapore, 1992.

[11] Mäkelä, M. M., Karmitsa, N. and Eronen, V-P. On generalized

pseudo- and quasiconvexities for nonsmooth functions. TUCS report 989,

Turku Centre for Computer Science (2011).

[12] Quesada, I., and Grossmann, I. E. An LP/NLP based branch-and-

bound algorithm for convex MINLP optimization problems. Computers

& Chemical Engineering 16, (1992), 937–947.

[13] Shor, N. Z. Minimization Methods for Non-Differentiable Functions.

Springer-Verlag, Berlin, 1985.

[14] Still, C., and Westerlund, T. Extended cutting plane algorithm,

in Encyclopedia of Optimization, C. A. Floudas and P.M. Pardalos (eds.),

Kluwer Academic Publishers, Dordrecht 2001.

[15] Westerlund, T., and Petterson, F. An extended cutting plane

method for solving convex MINLP problems. Computers & Chemical

Engineering 19, 11 (1995), 131–136.

24

[16] Westerlund T., and Pörn R. Solving pseudo-convex mixed integer

optimization problems by cutting plane techniques. Optimization and

Engineering 3, 3 (2002), 253–280.

[17] Yuan, X., Pibouleau, L., and Domenech, S. Experiments in

process synthesis via mixed-integer programming. Chemical Engineering

and processing 25, 2 (1989), 99–116.

25

A Example problem 3

Next we will briefly present the problem in the example 3. For more detailed

description we refer to [7]. The decision variables of the problem are

til = Total processing time of feed i in furnace l.

nil = Number of subcycles of feed i in furnace l.

∆til = The total time devoted to feed i in furnace l.

Tcycle = The common cycle time for all the furnaces.

Variables Si and yilk are auxiliary variables. The problem is

min max
l

1

Tcycle

7
∑

i=1

(Csilnil − PilDilciltil +
1

bil

PilDilailnil(e
−bi

til
nil − 1))

s.t. FloiTcycle + Si =
4

∑

l=1

Diltil ∀ i = 1, 2, . . . , 7

Si ≤ (Fupi − Floi)Tcycle ∀ i = 1, 2, . . . , 7

nil =
∑

k=ε,1,2,...,K

kyilk ∀ i = 1, 2, . . . , 7, l = 1, 2, 3, 4

∑

k=ε,1,2,...,K

yilk = 1 ∀ i = 1, 2, . . . , 7, l = 1, 2, 3, 4

∆til = nilτil + til ∀ i = 1, 2, . . . , 7, l = 1, 2, 3, 4
7

∑

i=1

∆til ≤ Tcycle ∀ l = 1, 2, 3, 4

til ≤ 40(1 − yilε) ∀ i = 1, 2, . . . , 7, l = 1, 2, 3, 4
4

∑

l=1

nil ≥ 1 ∀ i = 1, 2, . . . , 7

ε ≤ nil ≤ K, ∆til ≥ 0, til ≥ 0 ∀ i = 1, 2, . . . , 7, l = 1, 2, 3, 4

35 ≤ Tcycle ≤ 40, Si ≥ 0, ∀ i = 1, 2, . . . , 7,

yilk ∈ {0, 1} ∀ i = 1, 2, . . . , 7, l = 1, 2, 3, 4, k = ε, 1, 2, . . . , K.

Note that the only nonlinear part of the problem is the f ◦-pseudoconvex

objective function. In the problem we used the values K = 4 and ε = 0.01.

The values for parameters τil, Dil, ail, bil, cil, Pil, Csil, F loi and Fupi can be

found in table 2 on the next page.

26

Table 2: Parameter values of example problem 3

Furnace Feed i

Parameter l A B C D E F G

τil(d) 1 2 3 3 3 1 2 3

2 3 1 2 2 2 1 1

3 1 3 1 1 2 1 2

4 2 1 3 2 2 1 1

Dil(ton/d) 1 1300 1200 1100 800 1300 300 700

2 1100 1050 1000 1000 1200 400 600

3 900 800 800 1200 1000 300 850

4 1200 1000 800 700 1200 400 600

ail 1 0.30 0.40 0.35 0.32 0.29 0.35 0.31

2 0.32 0.38 0.33 0.31 0.28 0.40 0.34

3 0.31 0.35 0.36 0.36 0.29 0.37 0.31

4 0.31 0.36 0.35 0.36 0.28 0.39 0.32

bil(1/d) 1 0.10 0.20 0.10 0.20 0.23 0.34 0.20

2 0.20 0.10 0.20 0.25 0.29 0.27 0.30

3 0.30 0.20 0.30 0.27 0.28 0.29 0.25

4 0.20 0.20 0.15 0.25 0.29 0.22 0.28

cil 1 0.20 0.18 0.21 0.20 0.30 0.26 0.16

2 0.21 0.19 0.23 0.25 0.31 0.27 0.17

3 0.19 0.18 0.21 0.23 0.30 0.25 0.18

4 0.20 0.19 0.21 0.24 0.31 0.26 0.17

Pil($/ton) 1 123 105 110 123 105 110 120

2 114 132 129 114 132 129 113

3 110 122 120 110 122 120 117

4 120 125 129 115 115 128 115

Csil($) 1 100 90 80 75 90 93 78

2 80 85 75 90 94 78 70

3 90 90 90 85 93 92 75

4 80 90 85 80 92 85 72

Floi(ton/d) – 300 400 300 500 500 100 600

Fupi(ton/d) – 600 700 600 800 800 400 900

27

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-2769-1

ISSN 1239-1891

