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Abstract

Given a finite wordu, we define itgpalindromic lengthju|,, to be the least
numbern such that, = vyv, ... v, with eachv; a palindrome. We address the
following open question: Does there exist an infinite nonmately periodic word
w and a positive integeP such thatu|,, < P for each facton of w? We give
a partial answer to this question by proving that if an inéinitordw satisfies the
so-called(k, [)-condition for some: andl, then for each positive integét there
exists a factorn of w whose palindromic lengthu|,.; > P. In particular, the
result holds for all thé:-power-free words and for the Sierpinski word.
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1 Introduction

Let A be a finite non-empty set, and lét™ denote the set of all finite non-empty
words inA. Aword u = uyus - - -u, € A" is called apalindromeif u; = u,,_;
for eachi = 1,...,n — 1. In particular eaclu € A is a palindrome. We also
regard the empty word as a palindrome.

Palindrome factors of finite or infinite words have been stddrom different
points of view. In particular, Droubay, Justin and Piril{] jproved that a word
of lengthn can contain at most + 1 distinct palindromes, which gave rise to
the theory ofrich words (see [5]). The number of palindromes of a given length
occurring in an infinite word is called ifgalindrome complexitand is bounded
by a function of its usual subword complexity [1]. Howevar,this paper we
study palindromes in an infinite word from the point of viewdgfcompositions.

For each word: € A we define itgalindromic lengthdenoted byu/,., to
be the least numbeP such thatu = vyv, - - - vp With eachv; a palindrome. As
each letter is a palindrome, we hgu,., < |u|, where|u| denotes the length of
For example|01001010010|,,; = 1 while [010011|,, = 3. Note that)10011 may
be expressed as a productopalindromes in two different way<0)(1001)(1)
and(010)(0)(11). In [10], O. Ravsky obtains an intriguing formula for the seypr
mum of the palindromic lengths of all binary words of length

The question considered in this paper is

Question 1. Do there exist an infinite non-ultimately periodic wardand a pos-
itive integerP such thatu|,, < P for each facton of w?

We conjecture that such aperiodic words do not exist, but@ntoment we
can prove it only partially. Namely, in this paper we provatttf such a word
exists, then it is nok-power-free for anyc and moreover, for alk > 1,7 > 0
it does not satisfy thék, [)-condition defined in Section 4. A discussion what
exactly the condition means and which class of words shoalstibddied now to
give a complete answer to the question is given in Section 5.

2 Thecaseof k-power-freewords

Let k& be a positive integer. A word € A" is called ak-powerif v = u* for
some wordu € A*. An infinite wordw = wjw,... € AY is said to bek-
power-freeif no factor« of w is a k-power. For instance, the Thue-Morse word
0110100110010110... fixed by the morphisnd — 01, 1 — 10 is 3-power free
(see for example [7]).

Theorem 1. Letk be a positive integer ang = w,w, ... € AN, If w is k-power
free, then for each positive integérthere exists a prefix of w with |u|p. > P.

Recall that a wordy; - - - u,, is called¢-periodic if u; = u;,, for all 7 such that
1 <1< n—t.



The proof of Theorem 1 will make use of the following lemmas.

Lemma 2. Letu be a palindrome. Then for every palindromic proper prefof
u, we have that: is (|u| — |v|)-periodic.

PrROOF If u andwv are palindromes with a proper prefix of:, thenv is also
a suffix ofu and hence: is (|u| — |v|)-periodic. O

In what follows, the notationw|i..j] can mean the factap;w;; - - - w; of a
wordw = wy - --w, --- as well as its precise occurrence starting at the position
numbered; we always specify it when necessary.

Lemma 3. Suppose the infinite word is k-power-free. Ifw[i;..io] andw]i;..is]
are palindromes withi; > i,, then

|wliq..is]| k—1

PROOF By Lemma 2, the wordb[i;..i3] is (i3 — i )-periodic; at the same time,
it cannot contain &-power, sojw/[i;..i3]| < k(ig — i2). Thus,

|wlir.is)| \wliy..i]] wliy..is]] 1
\wliy.is]|  |wliy..is]| — (is — 42) ~ (1= 1) (Jwlir.4s)]) bt k— 1'D

Lemma 4. Let N be a positive integer. Then for ea¢h> 0, the number of
palindromes of the formu[i..j] of length less than or equal & is at most2 +

logy. /(1) V-

PROOF For eachi > 0, the length of the shortest non-empty palindrome
beginning in positiorn is equal tol. By the previous lemma, the next palindrome
beginning in position is of length greater than,gﬁ—, and the one after that is of
length greater thahﬁ)z, and so on. The longest one is of length at mgdiut
greater thari%)”, so thatP < logy,/(k—1) IV, and the total number + 1 of such
words is at most + log;, 1) N. Adding the empty word which is a palindrome
gives the desired result. O

PROOF OF THEOREM 1. Fix a positive intege” and let N be a positive
integer satisfying
(2 + 10gk/(k_1) N)P < N

By the previous lemma, the number of prefixeswofof the formv,vsy ... vp,
where eachy; is a palindrome, of length less than or equalXois at most
(2 + logy/(k—1) N)¥  and hence at mosY. But w has N-many non-empty pre-
fixes of length less than or equal d This means that there exists a prefinf w
of length less than or equal 1§ such thafu/|,. > P. O
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3 Privileged wordsand other regularities

In fact, the proof above does not use directly any propedi@slindromes except
for Lemma 3. So, analogous statements on the propertiegofver-free words
can be proved for any other type of word regularities for wwhenmas analogous
to Lemma 3 hold. In particular, we can almost immediatelyegtTheorem 1 to
privileged words

Privileged words have been introduced by J. Kellendonk, BnzZ_and J.
Savinien [6]; they are studied also in [9]. Privileged woads defined recursively
as follows: first, the empty word and each elememrt A are privileged. Next, a
wordu € AT with |u| > 2 is privileged if and only if it is a complete first return
to a shorter non-empty privileged word, i.e., if there exashon-empty privileged
word v which is both a proper prefix and a proper suffix.odnd which occurs in
u exactly twice. For exampl@®( is privileged as it is a complete first return to the
privileged word0. Similarly, 00101100 is privileged as it is a complete first return
to the privileged word)0. This latter example shows that a privileged word need
not be a palindrome. Conversely, the palindrormzs 321 and00101100110100
are not privileged as neither word is a complete first retitowever, if a word
w is “rich”, meaning that it contains exactly| + 1 distinct factors which are
palindromes, then each non-empty factoruofs a palindrome if and only if it
is privileged (see Proposition 2.3 in [6]). Thus analogpwsé define thepriv-
ileged lengthof a wordu € A*, denotedu/|.,:, to be the least number such
thatu = vyvy - - - v, With eachw; a privileged word. Again we have the inequality
|u]priv < |ul. For instance}00101100|,,, = 1, while [00101100110100] iy = 3.
We note thad0101100110100 may be written as a product 8fprivileged words
in more than one way(0)(010110011010)(0) or (00)(1011001101)(00).

The following lemma is analogous to Lemma 2.

Lemma5. Letu be a privileged word. Then for every privileged proper prefix
of u, we have that is (Ju| — |v|)-periodic.

PROOF Suppose: andv are privileged words withr a proper prefix ot:.. We
will prove thatv is also a suffix ofu. We proceed by induction oju|. The result
is vacuously true fofu| = 1. Next supposéu| > 1. Thenw is a complete first
return to a privileged word, with |u/| < |u|. We claim thatjv| < |u/|. In fact,
suppose to the contrary that > |«’|. Thenu’ would be a proper prefix aof and
hence by induction hypothesig is also a suffix ofv. This means that’ occurs
at least three times within (as a prefix ofv, as a suffix ofv and as a suffix of
u). This contradicts that is a complete first return t@'. Having established that
lv| < |u/], it follows thatw is a suffix ofu'. In fact, if |v| = ||, thenv = " while
if Ju| < |u/|, then by induction hypothesisis a suffix ofu’. As v’ is a suffix ofu
we obtain that is a suffix ofu as required. Whence,is (|u| — |v|)-periodic. O

Now using Lemma 5 we can prove the following lemma.



Lemma 6. Suppose the infinite word is k-power-free. Ifw[i;..i] andw]i;..is]
are privileged words witlis > i,, then

|
|wiy..i9]| E—1

o
PROOF By Lemma 5, the wordu[i,..i3] is (i — i5)-periodic; the rest of the
proof is completely analogous to that of Lemma 3. O
Now, using this lemma, we analogously to Theorem 1 provedheviing

Theorem 7. Letk be a positive integer ang = w,ws, ... € AN, If w is k-power
free, then for each positive integérthere exists a prefix of w with |u|y, > P.

Instead of privileged words, we could use words of any otjee for which
a statement analogous to Lemmas 3 and 6 would hold. Howéweprbof of
the next more general statement uses substantially prepdnat are specific to
palindromes.

4 Thecaseof the (k,[)-condition

Recall that a fractional power?”/? of a wordw whose lengthw| is divisible by
q is defined as the wora?/4«w’, wherew' is the prefix ofw of length{p/q}|w|.
To state the next, more general case for which we can provertbeundedness
of the palindromic length, let us fix some integer> 0 and define &-run in
a wordw as follows: ak-run is an occurrence|i..j] such that the word/i..j]
is a k’-power for some (possibly fractionatf > k, but neitherw(i — 1..5] nor
wli..j + 1] arek”-powers for anyt” > k.

Several problems on the maximal number and the sum of exp®oéruns in
a finite word have been studied, e. g., in [2, 3].

Example 1. The wordv = 1(100)°101(001)711 has two 5-runs, namely,
v[2..18] = (100)*/® andv[18..40] = (010)**/3. They are also 2-runs, 3-runs
and 4-runs; the latter is also a 6-run and a 7-run. There ag8eroas inv.

Note thatk-runs are defined as occurrences of words, or, in fact, as pair
positions corresponding to their beginnings and ends. 8aam say that &-run
wli..j] covers a position: of the wordw if i < z < j. Clearly, a position can
be covered by an arbitrary number/ofuns, and even by an infinite number of
them.

Example 2. The third letter in the wordy = 00010010010100100101001001
is covered by three 3-run:[1..3] = 0%, v[2..11] = (001)'*/% andv[3..26] =
(01001001)3.

The position 1 in the infinite word defined as the limit of thgqsence(s; }°,,
wheres; = 0001, s;;1 = s31, is covered by an infinite number of 3-runs.
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Let us denote the number bfruns covering position in a wordw by r,, ;.(n)
or simply byr(n) if w is fixed in advance. The maximal value qf(n) for
i <n < jisdenoted by[i..j].

We say that an infinite word satisfies thek, [)-conditionfor somek > 2
and/ > 0 if it is not ultimately periodic and,, .(n) < [ for all n, that is, if each
positionn in w is covered by at mogtmanyk-runs.

Example 3. The Sierpinski wordv, = 0101110101°0101110101%7 - - -, defined
as the fixed point starting with 0 of the morphigm 0 — 010, 1 — 111, satisfies
the (3, 1)-condition. Indeed, the only primitive factarwhose powers at least 3
occur inw, is 1, and thus there is at most one 3-run covering each positin in

Remark 1. We have not managed to find a proof of this statement in thatiiee,
but it seems very believable that for any morphic warthere exists somke such
that there exists only a finite number of primitive words wh@owers greater
thank occur inw. If it is true, it means almost immediately that all the maph
words satisfy gk, 1)-condition for somet, and thus that all aperiodic morphic
words have unbounded palindromic length of factors.

The following theorem is a generalization of Theorem 1 whichresponds to
the particular case df= 0. Note that it is stated for a factor of the wotd not
for a prefix.

Theorem 8. If an infinite wordw satisfies thék, [)-condition for somé > 2 and
[ > 0, then for each giver® > 0 it contains a factor with |u|,. > P.

The remaining part of the section is devoted to the proofisfitheorem. The
scheme of the proof is the following. In the first part of thegqfrwe are going
to introduce a new measure of words, so that the ratio of mmeasif two palin-
dromes starting at a point is at ledst % for some constant’ (Lemma 19).
In the second part of the proof we choose a factor of big enongasure and
deduce that the factorizations of prefixes of this factar iftpalindromes cannot
cover all the prefixes. Hence we derive the existence of arfadgth palindromic
length greater tha®. Though the general idea of the proof is similar to the case
of k-power free words (with measure instead of length), the faomuch more
technical.

First of all, note that if there exist arbitrarily long parigi..j|] of w with
rrli..j] = 0, then we can proceed as in the proof of Theorem 1 and find a pre-
fix of palindromic length greater thaR in any factorw[i..i + N| of w such that
rli.i+ N] = 0and(2 + log, 1y N) < N. So, in the main case of the theo-
rem the length of factors ab not intersecting with any-runs is bounded, and in
particularw contains an infinite number @fruns. So, from now on we assume
thatw satisfies this condition.

Let us say that &-run wli..j] is anupperk-run in w if it is not covered by
anotherk-run, that s, if there is n@-runw[¢’..j'] not equal to it such that < i <
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j < j'. For each positiom in w, we definem;(n) = m(n) to be the number of
upperk-runs of the formw|n..i] or wli..n).

Example 4. Consider the word = 11(1000)%0. In it, v[1..3] = 111, v[3..14] =
(1000)* andv[12..15] = 0000 are upper 3-runs, whereas the 3-rufs.6] = 000
andw[8..10] = 000 are not upper since they are coveredufy..14] = (1000)3,
Also, we haven(3) = 2, m(1) = m(12) = m(14) = m(15) = 1 andm(n) = 0
for any othem; herem(n) is exactly the number of occurrences of the position
in the notation of the upper 3-runs, which afé..3|, v[3..14] andv[12..15].

Lemma 9. For eachn we have) < m(n) < 2.

PROOF At each positiom of w there is at most one uppkfrun beginning in
positionn and at most one uppérrun ending in positiom, s0,0 < m(n) < 2.
0

Now let us define theneasuren[i..j] of an occurrencev[i..j] by the sum

mli.j] = m(n).

n=t

Then the functionn|i..j] clearly defines a measure in the following sensé: .|
is non-negative and equal dfor the empty wordu[i..i — 1], and the measure of
a disjoint union is the sum of the measures of each compoNa&re precisely:

Lemma10. For all i; < iy < i3 we have

Note also that the function,[i..j| is defined as the maximum of,(n) for
n € {i,...,j}, andis uniformly bounded bydue to thek, [)-condition, whereas
mli..j] is defined as the sum ofi(n) and is not uniformly bounded since other-
wise w would contain a finite number df-runs. Recall that we assume that the
length of factors ofv not intersecting with ang-runs is uniformly bounded, since
otherwise we simply apply the proof of Theorem 1. This gives u

Lemma 11. There exists a uniquig, 1 < I’ <, such that
e there exists som&/ > 0 such thatn[i..j] > M impliesry[i..j] > U;
o for all L there exist, j such thatm|i..j] > L andry[i..j] <. O

In the remaining part of the proof we shall always considec(@orences of)
factors ofw with r,[i..j] < I': due to the lemma above, their measures can be
arbitrarily large. Due to the same lemma, each part of sucbrd whose measure
is at least) must contain a position covered by exadtlpf k-runs.

Let us say that &-run wlj;..72] is aninternal run within an occurrence
wpy..po] If it intersects it but does not cover positiops or p,, that is, if
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P < j1 < j2 < po. Similarly, ak-runw(j;..jo| is called aleft k-run in a word
wlpy..po] if it covers the positiorp; but notp,, that is,j; < p1 < jo < po;
symmetrically, it is aright k-run if it covers the positiom, but notp,, that is,
p1 < j1 < pa < jo. Atlast, it is acoveringk-run if it covers both ending posi-
tions, that is, ifj; < p; < py < Jo.

Lemma 12. Eachk-run intersecting with an occurrenee|p; ..ps| is either inter-
nal, or left, or right, or covering.

PrROOF The four cases are determined by two facts: if the symig|sand
w,, are parts of thé-run. O

Lemma 13. If w[p;..ps] = wlqi..q2] and wlp; + i..p; — j] for somei,j > 0
is an internal k-run for w{p;..ps], thenw|q, + i..q» — j] is an internal k-run
in w[g:..q2]. However, the sets of left, right and covering runs dependion
occurrence of a word, and thus can be completely differantfp,..p,] and for
wlq1..q2]. Moreover, ifw[p; + i..p; — j] is an upperk-run, it does not imply that
wlq1 + i..q2 — j| is an upperk-run, and vice versa.

PROOFEIf w(p;..ps] = wlg1..q2) = v = uy -+ - u,, Wwheren = ps —p; +1 =
g — ¢ + 1, thenwlp; +i..pa — j] = uiry - -u,_; = v. By the maximality in the
definition of ak-run, we see that the symbalsandu,,_;.; break the periodicity
of v, so thek-run always starts at the symbol number 1 of « and ends at its
symbol number — j + 1.

To give an example for the second part of the statement, @entie word

aba.bb.aba.a™?.aba.bb.(aba)" cw’,

where the infinite wordv’ is on the alphabefh, ¢}. We see that in the first occur-
rence ofaba in it, there are no left, right or coveringruns; in the second one,
there is a right-run o, which is also a left run for the third occurrenceddf:;
and the fourth occurrence aba is a prefix of ak-run (aba)* covering it.

At last, one occurrence of a word can be an upper intetrain whereas
another occurrence is not an upper one. As an example, esrisglword

(ba"b)*bb ba*bew’,

wherew’ does not contain the symbael We see that in the firgt occurrences of
ba*b thek-runsa® are covered by the-run (ba*b)*b, and in the last one, therun
a* is an upper one. O

To state the next lemma, symmetric to the first part of theiptes/one, we let
U = v,v,_1 - - - v; denote the mirror image of a word= v, - - - v,. In particular,
a palindrome is exactly a wordsuch that = 2.

Lemma 14. If w]p;..p2] = v andw|q;..q2] = 0, and ifw[p; + i..p — j] for some
i,7 > 0is an internalk-run within w[p;..p2|, thenw|q; + j..¢2 — ] is an internal
k-runinw(q;..qs).



PrOOF. It is sufficient to realize that ib[:..j] is an internalk-run within
v = vy, thenon — j + 1.n — ¢ + 1] is an internalk-run withingo =
Tpvv By = Up- 01 O

Lemma 15. The number of left (resp., right}runs forw]p;..ps] is bounded by
rp1) (resp.,ri(p2)) and thus by [p..po].

PROOF The k-runs covering the positiop, are left or covering runs for
wlpr..p2], and their total number is,(p;). Symmetrically, thek-runs covering
the positionp, are right or covering runs fow[p;..p,], and their total number is

Tk(p2)- ]

Lemma 16. The set of covering runs fow[p;..ps] can be non-empty only if
mp1..pa] < 2ri[p1..pal.

PROOF Suppose that there iskarun coveringw[p;..p2]. Then everyk-run
wlq1..q2] contributing to the measure effp; ..p,] satisfies the following condition:
one of the valueg, ¢, lies inside the intervalp;..ps], the other one outside. In
other words, eithep; < ¢, p1 < ¢ < po, Orp; < q1 < P2, P2 < 2. The number
of k-runs satisfying the first condition is at mast(p; ), the number oft-runs
satisfying the second condition is at mogtp; ), and each of them contributes at
most1 to the measure. Therefore,p;..ps] < re(p1) + 71 (p2) < 2rg[pr..p2]. O

The following two “lemmas of inviolable parts” are crucialrfthe proof. The
first one is stated for an occurrenceiond the second one for an occurrence of
v, since it is what we need further in the proof, but in fact botlihem can be
stated both for and foro.

Lemma 17. If wliy..is] = v, rx[iy..i2] = ', andmliy..i5] > M + 41’, where the
parameterd’ and M are defined in Lemma 11, then[j;..jo] > 2 for all ji, jo
such thatw(j;..52] = 0 andry[j;..52] < I’

PROOF Due to Lemma 16, there are heruns coveringu[i;..iz]. Consider
the maximaly, € {i,...,i; — 1} such thatw[z..q;] is a leftk-run for wi;..is];
this k-run is a covering one fow[i;..¢q;|, and thus due to Lemma 16y[i;..q;] <
2rlir.qi] < 2rgliy.dg] = 2U. If there are no leftk-runs inwli;..is|, we put
¢ = i; — 1, and thusnli;..q;] = 0 since it is an empty word. So, due to Lemma
10, we haven[q; + 1..is] = m[iy..is] — m[i;..q1] > M + 21'.

Now symmetrically, due to Lemma 16, there arekouns coveringw|q; +
1..i5]. Consider the minimal, € {i; + 1,...,iy} such thatw[g,..y| is a right
k-run for wli;..is]. In fact we havey, > ¢ + 2 since otherwisev|g,..y] is a
coveringk-run forw|q, + 1..i5], a contradiction. So, the-run w|g,..y] is a right
k-run forwlq; + 1..i] and a covering one fan[¢,..i5|, and thus due to Lemma 16,
m[qa..ia] < 2ri[qa..ia] < 2ryliy..i5] = 20", If there are no righk-runs inw/iy ..is],
we putgs = is + 1, and thusn[g,..is] = 0 since it is an empty word. So, due to
Lemma 10, we havei[q; + 1..g2 — 1] = m[q1 + 1..is] — m[ga..ia] > M.
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Consider the occurrence|q; + 1..¢g2 — 1]. By the construction, alk-runs
covering it are internat-runs forwli;..is]. At the same timep[q; + 1.2 — 1] >
M, and thus by the definition of/ in Lemma 11, there is a position + n €
{q +1,...,q2 — 1} with 7(iy + n) = I'. But due to Lemma 14, all thé
internal k-runs forwliy..i;] = v covering the positiord; + n have analogues in
wlj1..J2] = © which cover the positios, —n € {j1,. .., j2}. Due to the condition
rrlji-.je] < U, at least one of thedéruns internal forw[j;..j2] and covering the
positionj, — n is an upper run inv, and thus it contributes 2 ta[j; .. js). .

Lemma 18. If w[lllg] =, Tk[il..’ig] =17, andm[’il..ig] =2M +4l' +2+ C,
where the parameter$and M are defined in Lemma 11, arddis some positive
constant, themn[j;..j2] > C for all j;, j» such thatw[j;..j2] = v andry[j;..j2] <
l.

PROOF As in the previous lemma, there are hxouns coveringu[i;..is]; and
after we cut fromw/i;..i5] the longest prefixv[i;..q;] covered by some left-
run and the longest suffix[g...i2] covered by some righit-run, we get a factor
wlqr + 1..¢ — 1] of measuren|q; + 1..¢ — 1] > 2M + 2 4+ C such that all
k-runs intersecting with it are intern&atruns forw/i; ..iy]. We illustrate the proof
of Lemma 18 by Fig. 4. The “inviolable part” shown there is therd w[i; +
ni..i1 +ne), whose measune[i, +n;..i; +n»] does not depend on an occurrence
of vinw.

Consider the minimal prefin[q; + 1..p;] and the minimal suffixw|ps..qo — 1]
of w[g; + 1..¢2 — 1] such thatn|g; + 1..p1] > M andm/[p,..qo — 1] > M. Due to
Lemma 9, we havei|q; + 1..p1] < M + 1 andm|ps..q» — 1] < M + 1, and thus
due to Lemma 10n[p; + 1..p, — 1] > C. At the same time, due to the definition
of M, there are positions + n, in w(g; + 1..p1] andi; + ny in w(ps..qg2 — 1] such
thatry(i; + n1) = rx(iy + ng) = I'. All the I’ runs contributing to.(i; + ny)
(resp.,rx (i1 + n2)) are internak-runs forwli;..is] and thus do not depend on the
occurrence of = wliy..is]. S0, in another occurrenee= w|j; ..j»] of v we have
ri(j1+n1) = ri(j1+n9) = ', and all thek-runs contributing ta (5, +n4) (resp.,
rr(j1 + ng)) are internak-runs forw|j;..j2|. So, there can be only internalruns
for wj;..72] which intersecto[j; + n1..j1 + no] and thus affect its measure. So,
mlji..Jo] = m[j1 +ny..J1 +n2] = mlip +ny.dp +ng] > mlpr+ 1.py — 1] > C.

In Fig. 4, the “inviolable part” shown there is the woudi; + n;..i; + ns),
whose measurei[i; + n;..i; + ny] does not depend on an occurrence af w.

U

The following fact is analogous to Lemma 3

Lemma 19. Suppose that an infinite word satisfies thgk, [)-condition, and
the constants’ and M are defined by Lemma 11. f[i;..i5] and wli;..i3] are
palindromes, wheré; > iy, ri[i..i3) < U'andmliy..is] > (k—1)(4l' +2M + 3),

then i) .
mity..13

>1 .
mlinis] — (k= 1) (A +2M +3)

9



inviolable part

Figure 1: Proof of Lemma 18

PROOF By Lemma 2, the wora|i;..i3] is (i3 —iz)-periodic. Denote its suffix
wliy + 1..i3) by v and defingk’ so thatw[i;..i,] = v'v* =2 (and thuswli;..i3] =
v'v¥'~1) for some suffixy’ of v not equal ta (herev’ can be empty) and for some
k' > 2. Thenk’ < k since otherwisev[i;..i3] would have been covered by some
k-run which is impossible due to Lemma 16.

Suppose thatn[i..is] = (k — 1)(4l' + 2M + 2 4+ C') for some constant’.
Here by the assertion we havé > 1; note thatC' can be non-integer. Due to
Lemma 10, the measure of/i;..i5] is the sum of measures of its prefixand of
k" — 2 occurrences of. By the pigeon-hole principle, it means that some of these
occurrences of (or of v’) have measure at lea8t +2M + 2+ [C']. It means by
Lemma 18 that the measurefi, + 1..i3] of another occurrence|is + 1..i3] of v
is at least”. So, due to Lemma 10 again, we have

m[ll’lg]
— =1+ — > 1+ .
mliy..io] mliy.io] T (k—1)(4l' +2M + 2+ C)

The right hand side of this inequality is a growing functidrcofor C' > 1, so the
minimal value ofC' = 1 gives its minimum, and we have

> 1 . O
mliia — (k=)@ 1 2M +3)

Now we proceed to the second part of the proof, where we arggygoi use
Lemma 19 to prove that there should be a factor with palindrdemgth greater
than P. The sketch of the remaining part of the proof is the follogvitnWe as-
sign to each factow[i..j] its codeC'i..j|, which is a word on a binary alphabet.
We code each factorizatioh of a prefix ofwl:..j] into palindromes by a code
C*([i..], ), which is obtained front’[i..j] by inserting symbols to positions be-
tween the palindromes. After that, taking a factgs..;j] of big enough measure
(the required measure dependsim@and several parameters of the word), we ob-
tain that the number of possible codes of factorizationsrefixes ofwli..j] into
at mostP palindromes is less than the length of the c6de. j]. We deduce from
that the existence of a prefix offi..j| not decomposable t8 palindromes.

10



Consider a factow|:..j] with r;[i..j] < (" of big enough measure (“long” fac-
tor). The required measuré is determined below by (2). Define teedeC'i.. |
as a word on the alphabét, 2} obtained from the woran(i)m (i + 1) - - - m(j)
by erasing the symbols equal to 0. The length of the a@fej| is denoted by
cli..j]; clearly,

mli..jl/2 < cli..j] < mli.j), (1)

since in factn/[i..j] is the sum of the symbols @f[i..j|, and each of them is equal
to 1 or 2.

If < andj are fixed, consider the worek(i)m(i + 1)---m(j) € {0,1,2}*
and denote by, the position giving thehth non-zero symbol in it, so that
m(ny,) € {1,2} forall h = 1,...,candm(n) = 0 for all othern € {i,i +
1,...,71\{n1,n2,...,n.}. We also define, = i — 1. Due to this definition, we
haveC[i..j] = ay - - - a. with a, € {1,2} andm(ny,) = ap forallh =1,..., c.

Example 5. Consider the prefixy[1..25] = 0101110101111111110101110 of the
Sierpinski wordw, considered as a word satisfying tfs 1)-condition. Its code
is C[1..25] = 111111, and the positions,, ..., ng are equal to 4,6,10,18,22,24:
these are exactly first and last positions of 3-rungjrihat is, of “long” powers
of 1. We also fixny = 0.

Consider a factorization into palindromes of a prefi%i..i'] of w[i..j:
wli.i'] = wlip + 1..ig]wliy + 1..ig] - - - wlip—1 + 1..i,], wherei = ig + 1,1, = @/,
and each word[i;+1..i4,1] is @ palindrome. Define theartition to palindromes
PP as the sequende = {i, i1, ...,1%,}, and thecodeof this partition inw[i..j| as
the wordC*([i..j], 71, ... ,i,) = C*([i..5],P) on the alphabefl, 2, «} obtained
from the codeC[i..j] by adding a star before the symhg| for eachd such that
n,_1 < ig < ny. Note that the number of stars in the code of a partitio’to
palindromes is exactly + 1.

Example 6. Continuing the previous example, consider the followingipan to
palindromes of a prefix of length 22 of the Sierpinski wardconsidered in its
turn as a prefix ofv[1..25]:

(010)(11)(10101111111110101)110.

We see that, = 0,1, = 3,12 = 5, i3 = 22, P = {0, 3,5, 22}, and thus the code
of this partition isC'([1..25], 3, 5,22) = C'([1..25],P) = %% 1« 1111 % 1.

The stars correspond to the boundaries of palindromes hangl/mbols 1 and
2 correspond to beginnings and ends of ugpauns inw(i..j]. Note that the code
of a partition of a prefix ofv|i..j] always begins with a star.

We are going to prove that iffi..j] is large enough, then there is a pair of
consecutive symbols fromil, 2} in C[i..j] such that no partitio® of a prefix
of wli..j] to at mostP palindromes has a star between thentir{[i..j], P). In
particular it means that there is a prefixwofi.. ;] with palindromic length greater
than P, and thus we prove Theorem 8.

11



Lemma 20. Suppose that for the word[i..j] considered above we havg..j| =
N andi’, i < i’ < jis a position such that = n;, — 1 for someh, 1 < h < N.
Then the number of values Bfsuch that there exist§ with w[i’ + 1..:”] being a
palindrome and,,_; <" < ny, is bounded byl = D, 4 1 + logp, (2N/D;),
whereD, = (k — 1)(4' +2M + 3) and Dy = 1 + 3-.

PROOF The factthat]i..j| = N means in particular that[i..;] < 2N due to
(1). We shall estimate the number of possible values@f+ 1..i”] not exceeding
2N, wherew|/’ 4 1..i"] is a palindrome, and this will give an upper bound for the
number of values of’, since then,, are exactly the positions where the measure
changes.

First of all, m[¢' + 1..i"] can take at mostk — 1)(4l' + 2M + 3) + 1 =
D, + 1 values ofh/ from 0 to (k — 1)(4!' + 2M + 3). Due to Lemma 19, the
value of " numberedD; + 2 must be equal at least 13, Dy, whereDy, = 1 +
m =1+ Dil; and the value of’ numberD; + n + 1 is equal at
least toD; D%. Even for the maximah we should haveD, D} < 2N, so that
n < logp,(2N/D; ), and the total possible number of measures of palindromes is
bounded byD; + 1 + logp, (2N/D;). O

Lemma 21. Suppose that for the word[i..j|] considered above we havg..j| =
N andi’, i <4 < jis aposition such that;,_; < i’ < ny, forsomeh, 1 < h <
N. Then the number of values/df such that there existé with w[i’+1..:”] being
a palindrome and,_; <" < ny, is bounded byM + 41')(logp,,(2N/ D)) +
D3, where, as aboveD, = (k — 1)(4' +2M +3), Dy = 1+ -, and D3 =
(M +4l'*+M+4'+ Dy + 1.

PROOF As in the previous lemma, we shall estimate the number afiples
values ofm[i" + 1..7"] not exceedin@ N, wherew|i’ + 1..7"] is a palindrome. As
above,mn[i’ + 1..¢"] can take at mostk — 1)(4{' +2M + 3) + 1 = D; + 1 values
fromOto(k —1)(4l' +2M + 3) = D;.

Suppose now that[i' 4+ 1..2"] > D,, and consider the prefix[i' + 1..n;, — 1]
of w[i’ 4+ 1..i"]; note that by the definition of the sequenge,}, its measure
m[i’ + 1..n, — 1] = 0, and the measure af|n,,..."] is equal to that ofv[s’ + 1..7"].

Suppose first that, —i'—2 > i"—n,, thatis, thatw[i'+1..n,—1] = t contains
the center of the palindrome[i’ + 1..i"] = w. It means that = tv = ot'v and
t = ot’ for some words andt’. We see that the measure of the occurrence of
starting at’ + 1 is equal to 0, and thus, due to Lemma 17, we hayé+ 1..:"] =
mny..1"] < M + 4l', a contradiction to the fact that[i' + 1..7"] > D;.

Now suppose that, —i' —2 < i" —ny, thatis,w[i’ +1..n;, — 1] = t is shorter
than a half ofw[i’ + 1..i"] = u. It means that: = tvt for some palindrome
starting at the position,,. Let us denote the measurewby m. The measure of
the prefix occurrence dafis here equal to O; so, due to Lemma 17, the measure
of the suffix occurrence of is at mostM + 41’ — 1. So, we haven < m[i +
1.7"] < m+ M + 4" — 1, so, for each possible value of > D, — (M +
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4l"), the measuren[i’ + 1..7"] takes at most\/ + 4" different values. Adding
possible values from 0 t®,, we see that the total number of values is bounded
by D, +1+ (M + 4l')(H — D, + M + 4l'), where H is the bound for the
number of measures of palindromes starting,abbtained in Lemma 20, so that
H = Dy + 1 +logp,(2N/ D). Simplifying the expression, we obtain tha{ +
1+ (M +4l")(H — Dy + M +4l")=(M + 4l")logp,(2N/Dy) + (M + 41") (M +
4" +1) + Dy + 1=(M + 4l")logp,(2N/ Dy ) + Ds. O
PROOF OF THEOREM 8. Fix a positive intege” and let N be a positive
integer satisfying

[(M + 41" log,, (2N/Dy) + Ds)” < N, (2)

where the constant®;—D; are defined in Lemma 21. Consider a facitd.. ;|
of w with ryfi..j] < I’ andcli..j] = N; such a factorw[i..j] always exists by
the definitions of’ and ofc[i..j]. By the previous lemma, the number of possible
codes of decompositions of prefixesofi..j] to P palindromesw[iy + 1..74:1],
d=0,...,P—1,isat most(M + 4I') log,,(2N/D:) + D", and hence less
thanNV. In particular it means that the position of the last stahm¢ode can take
less thanV different values; but the lengti..j] of the code ofwl[i..j] is V. So,
there are two consecutive symbols:jn.j], corresponding to the positiong and
nn+1, Such that the last star in the code of the decompositidghgalindromes can
never appear between them, that is, that no wajidq|, wheren, < ¢ < nj.1,
can ever be decomposed inffogpalindromes. O

5 Discussion

Even if we prove that the palindromic length of factors of aperiodic word is
unbounded, some ultimately periodic words, for examples (110100)%, con-
tain factors having arbitrarily large palindromic lengtt®o, unlike for example
the result by Mignosi, Restivo and Salemi on repetitions p@dodicity [8], the
conjectured property will not give a characterization oéapdic words.

We prove the following property of ultimately periodic wardith a uniform
bound on the palindromic length of its factors:

Proposition 22. Let P be an integerw an ultimately periodic word such that
|ulpar < P for each factoru of w. Thenw has a tailw’ of the formuw’ = (p1p2)*,
wherep; andp, are palindromes.

PROOF Let w’ be a tail ofw having periodt. Sow’ = ¥ with |v| = ¢.
Consider a factor of w’ with |u| > ¢t P. Thenu can be factored as= vy v . .. v,
with m < P and eachv; a non-empty palindrome. Thus at least one of the
palindromes); (call it x) in this factorization has length greater thaThus there
exist factorsy; andg, (with ¢; possibly empty) and a positive integessuch that

13



r = (q192)"q1 and|q1q2| = t. Sincex is a palindrome, it follows that boty and
¢ are palindromes. Sinaeis a cyclic conjugate of; ¢ it follows thatv is also a
product of two palindromeg; andp, (one possibly empty). O

Proposition 22 implies that if the answer to Question 1 is’;'tieen an infinite
word w having a uniform bound on the palindromic length of its fastis ulti-
mately periodic, and moreover its period has the feim,, wherep, andp, are
palindromes.

As we have mentioned above in Remark 1, (the)-conditions for somé and
[ seems to be fulfiled in particular for all morphic words, $as ihardly probable
that an example of an aperiodic word with bounded palindedemgth of factors
will be a morphic word. At the same time, there exist Sturmiaimmds which do
not satisfy anyk, [)-condition: these are exactly Sturmian words whose elesnent
of the directive sequence are unbounded (see Chapter 2 fof [fle definitions).
So, this paper does not contain a proof of unbounded palnidri@ngth of factors
which would be valid for all Sturmian words.

It is also clear that

Lemma 23. If there exists an aperiodic word with bounded palindroneiedth of
factors, then there exists a binary one.

ProOF Consider an aperiodic word on an alphabetl = {a,,...,q,} and
for eachi € 1,...,q define a coding; by ¢;(a;) = 0, ¢;(b) = 1 for all other
symbolsb € A. Consider the infinite words, (w), ..., ¢,(w). At least one of
them, let us denote it by(w), is aperiodic (since otherwise would be periodic
with period equal to the least common multiple of periods 6fv), . . ., ¢,(w)). At
the same time, for each factorof w we have|u|y. > |c(u)|par. SO, if [u|pa < P
for all factorsu of w and for someP, then the same is true for all factar&:) of
the binary aperiodic infinite word w): |c(u)|pa < P. O

Remark 2. The proof of Lemma 23 above is valid only for the case of a finite
alphabetA. Another proof, valid also for the infinite alphabgt, 1, ..., n,...},
was suggested by T. Hejda who uses the morphisiefined byc(:) = 10°1. It is

not difficult to prove that ifiu|,, < P for all factorsu of w, then|v|,,y < P +4

for all factorsv of ¢(w).

At last, we recall again that for the casekepower-free words, our proof can
be extended in particular to privileged words instead oifolbmes (see Section
3). However, Theorem 8 cannot be directly extended to &t words since
in Lemma 21, we used the properties specific for palindromasiwallowed to
apply Lemma 17.
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