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Abstract

Given a finite wordu, we define itspalindromic length|u|pal to be the least
numbern such thatu = v1v2 . . . vn with eachvi a palindrome. We address the
following open question: Does there exist an infinite non ultimately periodic word
w and a positive integerP such that|u|pal ≤ P for each factoru of w? We give
a partial answer to this question by proving that if an infinite wordw satisfies the
so-called(k, l)-condition for somek andl, then for each positive integerP there
exists a factoru of w whose palindromic length|u|pal > P . In particular, the
result holds for all thek-power-free words and for the Sierpinski word.
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1 Introduction

Let A be a finite non-empty set, and letA+ denote the set of all finite non-empty
words inA. A word u = u1u2 · · ·un ∈ A+ is called apalindromeif ui = un−i+1

for eachi = 1, . . . , n − 1. In particular eacha ∈ A is a palindrome. We also
regard the empty word as a palindrome.

Palindrome factors of finite or infinite words have been studied from different
points of view. In particular, Droubay, Justin and Pirillo [4] proved that a word
of lengthn can contain at mostn + 1 distinct palindromes, which gave rise to
the theory ofrich words (see [5]). The number of palindromes of a given length
occurring in an infinite word is called itspalindrome complexityand is bounded
by a function of its usual subword complexity [1]. However, in this paper we
study palindromes in an infinite word from the point of view ofdecompositions.

For each wordu ∈ A+ we define itspalindromic length, denoted by|u|pal, to
be the least numberP such thatu = v1v2 · · · vP with eachvi a palindrome. As
each letter is a palindrome, we have|u|pal ≤ |u|, where|u| denotes the length ofu.
For example,|01001010010|pal = 1 while |010011|pal = 3. Note that010011 may
be expressed as a product of3 palindromes in two different ways:(0)(1001)(1)
and(010)(0)(11). In [10], O. Ravsky obtains an intriguing formula for the supre-
mum of the palindromic lengths of all binary words of lengthn.

The question considered in this paper is

Question 1. Do there exist an infinite non-ultimately periodic wordw and a pos-
itive integerP such that|u|pal ≤ P for each factoru of w?

We conjecture that such aperiodic words do not exist, but at the moment we
can prove it only partially. Namely, in this paper we prove that if such a word
exists, then it is notk-power-free for anyk and moreover, for allk > 1, l ≥ 0
it does not satisfy the(k, l)-condition defined in Section 4. A discussion what
exactly the condition means and which class of words should be studied now to
give a complete answer to the question is given in Section 5.

2 The case of k-power-free words

Let k be a positive integer. A wordv ∈ A+ is called ak-power if v = uk for
some wordu ∈ A+. An infinite word w = w1w2 . . . ∈ AN is said to bek-
power-freeif no factoru of w is ak-power. For instance, the Thue-Morse word
0110100110010110 . . . fixed by the morphism0 7→ 01, 1 7→ 10 is 3-power free
(see for example [7]).

Theorem 1. Letk be a positive integer andw = w1w2 . . . ∈ AN. If w is k-power
free, then for each positive integerP there exists a prefixu of w with |u|pal > P .

Recall that a wordu1 · · ·un is calledt-periodic if ui = ui+t for all i such that
1 ≤ i ≤ n − t.
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The proof of Theorem 1 will make use of the following lemmas.

Lemma 2. Let u be a palindrome. Then for every palindromic proper prefixv of
u, we have thatu is (|u| − |v|)-periodic.

PROOF. If u andv are palindromes withv a proper prefix ofu, thenv is also
a suffix ofu and henceu is (|u| − |v|)-periodic. �

In what follows, the notationw[i..j] can mean the factorwiwi+1 · · ·wj of a
word w = w1 · · ·wn · · · as well as its precise occurrence starting at the position
numberedi; we always specify it when necessary.

Lemma 3. Suppose the infinite wordw is k-power-free. Ifw[i1..i2] andw[i1..i3]
are palindromes withi3 > i2, then

|w[i1..i3]|

|w[i1..i2]|
> 1 +

1

k − 1
.

PROOF. By Lemma 2, the wordw[i1..i3] is (i3−i2)-periodic; at the same time,
it cannot contain ak-power, so,|w[i1..i3]| < k(i3 − i2). Thus,

|w[i1..i3]|

|w[i1..i2]|
=

|w[i1..i3]|

|w[i1..i3]| − (i3 − i2)
>

|w[i1..i3]|
(

1 − 1
k

)

(|w[i1..i3]|)
= 1 +

1

k − 1
.�

Lemma 4. Let N be a positive integer. Then for eachi ≥ 0, the number of
palindromes of the formw[i..j] of length less than or equal toN is at most2 +
logk/(k−1) N .

PROOF. For eachi ≥ 0, the length of the shortest non-empty palindrome
beginning in positioni is equal to1. By the previous lemma, the next palindrome
beginning in positioni is of length greater thank

k−1
, and the one after that is of

length greater than( k
k−1

)2, and so on. The longest one is of length at mostN but
greater than( k

k−1
)P , so thatP ≤ logk/(k−1) N , and the total numbern + 1 of such

words is at most1 + logk/(k−1) N. Adding the empty word which is a palindrome
gives the desired result. �

PROOF OF THEOREM 1. Fix a positive integerP and letN be a positive
integer satisfying

(2 + logk/(k−1) N)P < N.

By the previous lemma, the number of prefixes ofw of the form v1v2 . . . vP ,
where eachvi is a palindrome, of length less than or equal toN is at most
(2 + logk/(k−1) N)P , and hence at mostN. But w hasN-many non-empty pre-
fixes of length less than or equal toN. This means that there exists a prefixu of w
of length less than or equal toN such that|u|pal > P . �
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3 Privileged words and other regularities

In fact, the proof above does not use directly any propertiesof palindromes except
for Lemma 3. So, analogous statements on the properties ofk-power-free words
can be proved for any other type of word regularities for which lemmas analogous
to Lemma 3 hold. In particular, we can almost immediately extend Theorem 1 to
privileged words.

Privileged words have been introduced by J. Kellendonk, D. Lenz and J.
Savinien [6]; they are studied also in [9]. Privileged wordsare defined recursively
as follows: first, the empty word and each elementa ∈ A are privileged. Next, a
word u ∈ A+ with |u| ≥ 2 is privileged if and only if it is a complete first return
to a shorter non-empty privileged word, i.e., if there exists a non-empty privileged
wordv which is both a proper prefix and a proper suffix ofu and which occurs in
u exactly twice. For example,00 is privileged as it is a complete first return to the
privileged word0. Similarly,00101100 is privileged as it is a complete first return
to the privileged word00. This latter example shows that a privileged word need
not be a palindrome. Conversely, the palindromes1231321 and00101100110100
are not privileged as neither word is a complete first return.However, if a word
w is “rich”, meaning that it contains exactly|w| + 1 distinct factors which are
palindromes, then each non-empty factor ofw is a palindrome if and only if it
is privileged (see Proposition 2.3 in [6]). Thus analogously we define thepriv-
ileged lengthof a wordu ∈ A+, denoted|u|priv to be the least numbern such
thatu = v1v2 · · · vn with eachvi a privileged word. Again we have the inequality
|u|priv ≤ |u|. For instance,|00101100|priv = 1, while |00101100110100|priv = 3.
We note that00101100110100 may be written as a product of3 privileged words
in more than one way:(0)(010110011010)(0) or (00)(1011001101)(00).

The following lemma is analogous to Lemma 2.

Lemma 5. Let u be a privileged word. Then for every privileged proper prefixv
of u, we have thatu is (|u| − |v|)-periodic.

PROOF. Supposeu andv are privileged words withv a proper prefix ofu. We
will prove thatv is also a suffix ofu. We proceed by induction on|u|. The result
is vacuously true for|u| = 1. Next suppose|u| > 1. Thenu is a complete first
return to a privileged wordu′ with |u′| < |u|. We claim that|v| ≤ |u′|. In fact,
suppose to the contrary that|v| > |u′|. Thenu′ would be a proper prefix ofv and
hence by induction hypothesisu′ is also a suffix ofv. This means thatu′ occurs
at least three times withinu (as a prefix ofv, as a suffix ofv and as a suffix of
u). This contradicts thatu is a complete first return tou′. Having established that
|v| ≤ |u′|, it follows thatv is a suffix ofu′. In fact, if |v| = |u′|, thenv = u′ while
if |v| < |u′|, then by induction hypothesisv is a suffix ofu′. As u′ is a suffix ofu
we obtain thatv is a suffix ofu as required. Whence,u is (|u| − |v|)-periodic. �

Now using Lemma 5 we can prove the following lemma.
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Lemma 6. Suppose the infinite wordw is k-power-free. Ifw[i1..i2] andw[i1..i3]
are privileged words withi3 > i2, then

|w[i1..i3]|

|w[i1..i2]|
≥ 1 +

1

k − 1
.

PROOF. By Lemma 5, the wordw[i1..i3] is (i3 − i2)-periodic; the rest of the
proof is completely analogous to that of Lemma 3. �

Now, using this lemma, we analogously to Theorem 1 prove the following

Theorem 7. Letk be a positive integer andw = w1w2 . . . ∈ AN. If w is k-power
free, then for each positive integerP there exists a prefixu of w with |u|priv > P .

Instead of privileged words, we could use words of any other type for which
a statement analogous to Lemmas 3 and 6 would hold. However, the proof of
the next more general statement uses substantially properties that are specific to
palindromes.

4 The case of the (k, l)-condition

Recall that a fractional powerwp/q of a wordw whose length|w| is divisible by
q is defined as the wordw⌊p/q⌋w′, wherew′ is the prefix ofw of length{p/q}|w|.
To state the next, more general case for which we can prove theunboundedness
of the palindromic length, let us fix some integerk > 0 and define ak-run in
a wordw as follows: ak-run is an occurrencew[i..j] such that the wordw[i..j]
is a k′-power for some (possibly fractional)k′ ≥ k, but neitherw[i − 1..j] nor
w[i..j + 1] arek′′-powers for anyk′′ ≥ k.

Several problems on the maximal number and the sum of exponents of runs in
a finite word have been studied, e. g., in [2, 3].

Example 1. The word v = 1(100)5101(001)711 has two 5-runs, namely,
v[2..18] = (100)17/3 and v[18..40] = (010)23/3. They are also 2-runs, 3-runs
and 4-runs; the latter is also a 6-run and a 7-run. There are no8-runs inv.

Note thatk-runs are defined as occurrences of words, or, in fact, as pairs of
positions corresponding to their beginnings and ends. So, we can say that ak-run
w[i..j] covers a positionx of the wordw if i ≤ x ≤ j. Clearly, a position can
be covered by an arbitrary number ofk-runs, and even by an infinite number of
them.

Example 2. The third letter in the wordv = 00010010010100100101001001
is covered by three 3-runs:v[1..3] = 03, v[2..11] = (001)10/3 andv[3..26] =
(01001001)3.

The position 1 in the infinite word defined as the limit of the sequence{si}
∞
i=1,

wheres1 = 0001, si+1 = s3
i 1, is covered by an infinite number of 3-runs.
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Let us denote the number ofk-runs covering positionn in a wordw by rw,k(n)
or simply by rk(n) if w is fixed in advance. The maximal value ofrk(n) for
i ≤ n ≤ j is denoted byrk[i..j].

We say that an infinite wordw satisfies the(k, l)-conditionfor somek ≥ 2
andl ≥ 0 if it is not ultimately periodic andrw,k(n) ≤ l for all n, that is, if each
positionn in w is covered by at mostl manyk-runs.

Example 3. The Sierpinski wordws = 01011101019010111010127 · · · , defined
as the fixed point starting with 0 of the morphismϕ : 0 7→ 010, 1 7→ 111, satisfies
the (3, 1)-condition. Indeed, the only primitive factoru whose powers at least 3
occur inws is 1, and thus there is at most one 3-run covering each position init.

Remark 1. We have not managed to find a proof of this statement in the literature,
but it seems very believable that for any morphic wordw there exists somek such
that there exists only a finite number of primitive words whose powers greater
thank occur inw. If it is true, it means almost immediately that all the morphic
words satisfy a(k, 1)-condition for somek, and thus that all aperiodic morphic
words have unbounded palindromic length of factors.

The following theorem is a generalization of Theorem 1 whichcorresponds to
the particular case ofl = 0. Note that it is stated for a factor of the wordw, not
for a prefix.

Theorem 8. If an infinite wordw satisfies the(k, l)-condition for somek ≥ 2 and
l ≥ 0, then for each givenP > 0 it contains a factoru with |u|pal > P .

The remaining part of the section is devoted to the proof of this theorem. The
scheme of the proof is the following. In the first part of the proof we are going
to introduce a new measure of words, so that the ratio of measures of two palin-
dromes starting at a point is at least1 + C

k−1
for some constantC (Lemma 19).

In the second part of the proof we choose a factor of big enoughmeasure and
deduce that the factorizations of prefixes of this factor into P palindromes cannot
cover all the prefixes. Hence we derive the existence of a factor with palindromic
length greater thanP . Though the general idea of the proof is similar to the case
of k-power free words (with measure instead of length), the proof is much more
technical.

First of all, note that if there exist arbitrarily long partsw[i..j] of w with
rk[i..j] = 0, then we can proceed as in the proof of Theorem 1 and find a pre-
fix of palindromic length greater thanP in any factorw[i..i + N ] of w such that
rk[i..i + N ] = 0 and(2 + logk/(k−1) N)P < N . So, in the main case of the theo-
rem the length of factors ofw not intersecting with anyk-runs is bounded, and in
particularw contains an infinite number ofk-runs. So, from now on we assume
thatw satisfies this condition.

Let us say that ak-run w[i..j] is anupperk-run in w if it is not covered by
anotherk-run, that is, if there is nok-runw[i′..j′] not equal to it such thati′ ≤ i <
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j ≤ j′. For each positionn in w, we definemk(n) = m(n) to be the number of
upperk-runs of the formw[n..i] or w[i..n].

Example 4. Consider the wordv = 11(1000)30. In it, v[1..3] = 111, v[3..14] =
(1000)3 andv[12..15] = 0000 are upper 3-runs, whereas the 3-runsv[4..6] = 000
andv[8..10] = 000 are not upper since they are covered byv[3..14] = (1000)3.
Also, we havem(3) = 2, m(1) = m(12) = m(14) = m(15) = 1 andm(n) = 0
for any othern; herem(n) is exactly the number of occurrences of the positionn
in the notation of the upper 3-runs, which arev[1..3], v[3..14] andv[12..15].

Lemma 9. For eachn we have0 ≤ m(n) ≤ 2.

PROOF. At each positionn of w there is at most one upperk-run beginning in
positionn and at most one upperk-run ending in positionn, so,0 ≤ m(n) ≤ 2.
�

Now let us define themeasurem[i..j] of an occurrencew[i..j] by the sum

m[i..j] =

j
∑

n=i

m(n).

Then the functionm[i..j] clearly defines a measure in the following sense:m[i..j]
is non-negative and equal to0 for the empty wordw[i..i − 1], and the measure of
a disjoint union is the sum of the measures of each component.More precisely:

Lemma 10. For all i1 ≤ i2 < i3 we have

m[i1..i3] = m[i1..i2] + m[i2 + 1..i3]. �

Note also that the functionrk[i..j] is defined as the maximum ofrk(n) for
n ∈ {i, . . . , j}, and is uniformly bounded byl due to the(k, l)-condition, whereas
m[i..j] is defined as the sum ofm(n) and is not uniformly bounded since other-
wisew would contain a finite number ofk-runs. Recall that we assume that the
length of factors ofw not intersecting with anyk-runs is uniformly bounded, since
otherwise we simply apply the proof of Theorem 1. This gives us

Lemma 11. There exists a uniquel′, 1 ≤ l′ ≤ l, such that

• there exists someM > 0 such thatm[i..j] ≥ M impliesrk[i..j] ≥ l′;

• for all L there existi, j such thatm[i..j] ≥ L andrk[i..j] ≤ l′. �

In the remaining part of the proof we shall always consider (occurrences of)
factors ofw with rk[i..j] ≤ l′: due to the lemma above, their measures can be
arbitrarily large. Due to the same lemma, each part of such a word whose measure
is at leastM must contain a position covered by exactlyl′ of k-runs.

Let us say that ak-run w[j1..j2] is an internal run within an occurrence
w[p1..p2] if it intersects it but does not cover positionsp1 or p2, that is, if
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p1 < j1 < j2 < p2. Similarly, ak-run w[j1..j2] is called aleft k-run in a word
w[p1..p2] if it covers the positionp1 but not p2, that is, j1 ≤ p1 ≤ j2 < p2;
symmetrically, it is aright k-run if it covers the positionp2 but notp1, that is,
p1 < j1 ≤ p2 ≤ j2. At last, it is acoveringk-run if it covers both ending posi-
tions, that is, ifj1 ≤ p1 < p2 ≤ j2.

Lemma 12. Eachk-run intersecting with an occurrencew[p1..p2] is either inter-
nal, or left, or right, or covering.

PROOF. The four cases are determined by two facts: if the symbolswp1
and

wp2
are parts of thek-run. �

Lemma 13. If w[p1..p2] = w[q1..q2] and w[p1 + i..p2 − j] for somei, j > 0
is an internalk-run for w[p1..p2], thenw[q1 + i..q2 − j] is an internalk-run
in w[q1..q2]. However, the sets of left, right and covering runs depend onan
occurrence of a word, and thus can be completely different for w[p1..p2] and for
w[q1..q2]. Moreover, ifw[p1 + i..p2 − j] is an upperk-run, it does not imply that
w[q1 + i..q2 − j] is an upperk-run, and vice versa.

PROOF.If w[p1..p2] = w[q1..q2] = u = u1 · · ·un, wheren = p2 − p1 + 1 =
q2 − q1 + 1, thenw[p1 + i..p2 − j] = ui+1 · · ·un−j = v. By the maximality in the
definition of ak-run, we see that the symbolsui andun−j+1 break the periodicity
of v, so thek-run always starts at the symbol numberi + 1 of u and ends at its
symbol numbern − j + 1.

To give an example for the second part of the statement, consider the word

aba.bb.aba.ak−2.aba.bb.(aba)kcw′,

where the infinite wordw′ is on the alphabet{b, c}. We see that in the first occur-
rence ofaba in it, there are no left, right or coveringk-runs; in the second one,
there is a rightk-run ak, which is also a left run for the third occurrence ofaba;
and the fourth occurrence ofaba is a prefix of ak-run (aba)k covering it.

At last, one occurrence of a word can be an upper internalk-run whereas
another occurrence is not an upper one. As an example, consider the word

(bakb)kbb bakbcw′,

wherew′ does not contain the symbola. We see that in the firstk occurrences of
bakb thek-runsak are covered by thek-run(bakb)kb, and in the last one, thek-run
ak is an upper one. �

To state the next lemma, symmetric to the first part of the previous one, we let
ṽ = vnvn−1 · · · v1 denote the mirror image of a wordv = v1 · · · vn. In particular,
a palindrome is exactly a wordv such thatv = ṽ.

Lemma 14. If w[p1..p2] = v andw[q1..q2] = ṽ, and ifw[p1 + i..p2 − j] for some
i, j > 0 is an internalk-run withinw[p1..p2], thenw[q1 + j..q2 − i] is an internal
k-run in w[q1..q2].
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PROOF. It is sufficient to realize that ifv[i..j] is an internalk-run within
v = v1 · · · vn, then ṽ[n − j + 1..n − i + 1] is an internalk-run withing ṽ =
ṽ1 · · · ṽn = vn · · · v1. �

Lemma 15. The number of left (resp., right)k-runs forw[p1..p2] is bounded by
r(p1) (resp.,rk(p2)) and thus byrk[p1..p2].

PROOF. The k-runs covering the positionp1 are left or covering runs for
w[p1..p2], and their total number isrk(p1). Symmetrically, thek-runs covering
the positionp2 are right or covering runs forw[p1..p2], and their total number is
rk(p2). �

Lemma 16. The set of covering runs forw[p1..p2] can be non-empty only if
m[p1..p2] ≤ 2rk[p1..p2].

PROOF. Suppose that there is ak-run coveringw[p1..p2]. Then everyk-run
w[q1..q2] contributing to the measure ofw[p1..p2] satisfies the following condition:
one of the valuesq1, q2 lies inside the interval[p1..p2], the other one outside. In
other words, eitherp1 < q1, p1 ≤ q2 ≤ p2, or p1 ≤ q1 ≤ p2, p2 < q2. The number
of k-runs satisfying the first condition is at mostrk(p1), the number ofk-runs
satisfying the second condition is at mostrk(p2), and each of them contributes at
most1 to the measure. Therefore,m[p1..p2] ≤ rk(p1) + rk(p2) ≤ 2rk[p1..p2]. �

The following two “lemmas of inviolable parts” are crucial for the proof. The
first one is stated for an occurrence ofṽ and the second one for an occurrence of
v, since it is what we need further in the proof, but in fact bothof them can be
stated both forv and forṽ.

Lemma 17. If w[i1..i2] = v, rk[i1..i2] = l′, andm[i1..i2] ≥ M + 4l′, where the
parametersl′ andM are defined in Lemma 11, thenm[j1..j2] ≥ 2 for all j1, j2

such thatw[j1..j2] = ṽ andrk[j1..j2] ≤ l′.

PROOF. Due to Lemma 16, there are nok-runs coveringw[i1..i2]. Consider
the maximalq1 ∈ {i1, . . . , i2 − 1} such thatw[x..q1] is a leftk-run for w[i1..i2];
thisk-run is a covering one forw[i1..q1], and thus due to Lemma 16,m[i1..q1] ≤
2rk[i1..q1] ≤ 2rk[i1..i2] = 2l′. If there are no leftk-runs inw[i1..i2], we put
q1 = i1 − 1, and thusm[i1..q1] = 0 since it is an empty word. So, due to Lemma
10, we havem[q1 + 1..i2] = m[i1..i2] − m[i1..q1] ≥ M + 2l′.

Now symmetrically, due to Lemma 16, there are nok-runs coveringw[q1 +
1..i2]. Consider the minimalq2 ∈ {i1 + 1, . . . , i2} such thatw[q2..y] is a right
k-run for w[i1..i2]. In fact we haveq2 ≥ q1 + 2 since otherwisew[q2..y] is a
coveringk-run for w[q1 + 1..i2], a contradiction. So, thek-run w[q2..y] is a right
k-run forw[q1+1..i2] and a covering one forw[q2..i2], and thus due to Lemma 16,
m[q2..i2] ≤ 2rk[q2..i2] ≤ 2rk[i1..i2] = 2l′. If there are no rightk-runs inw[i1..i2],
we putq2 = i2 + 1, and thusm[q2..i2] = 0 since it is an empty word. So, due to
Lemma 10, we havem[q1 + 1..q2 − 1] = m[q1 + 1..i2] − m[q2..i2] ≥ M .
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Consider the occurrencew[q1 + 1..q2 − 1]. By the construction, allk-runs
covering it are internalk-runs forw[i1..i2]. At the same time,m[q1 + 1..q2 − 1] ≥
M , and thus by the definition ofM in Lemma 11, there is a positioni1 + n ∈
{q1 + 1, . . . , q2 − 1} with rk(i1 + n) = l′. But due to Lemma 14, all thel′

internalk-runs forw[i1..i2] = v covering the positioni1 + n have analogues in
w[j1..j2] = ṽ which cover the positionj2−n ∈ {j1, . . . , j2}. Due to the condition
rk[j1..j2] ≤ l′, at least one of thesel′ runs internal forw[j1..j2] and covering the
positionj2 − n is an upper run inw, and thus it contributes 2 tom[j1..j2]. �.

Lemma 18. If w[i1..i2] = v, rk[i1..i2] = l′, andm[i1..i2] = 2M + 4l′ + 2 + C,
where the parametersl′ andM are defined in Lemma 11, andC is some positive
constant, thenm[j1..j2] ≥ C for all j1, j2 such thatw[j1..j2] = v andrk[j1..j2] ≤
l′.

PROOF. As in the previous lemma, there are nok-runs coveringw[i1..i2]; and
after we cut fromw[i1..i2] the longest prefixw[i1..q1] covered by some leftk-
run and the longest suffixw[q2..i2] covered by some rightk-run, we get a factor
w[q1 + 1..q2 − 1] of measurem[q1 + 1..q2 − 1] ≥ 2M + 2 + C such that all
k-runs intersecting with it are internalk-runs forw[i1..i2]. We illustrate the proof
of Lemma 18 by Fig. 4. The “inviolable part” shown there is theword w[i1 +
n1..i1 +n2], whose measurem[i1 +n1..i1 +n2] does not depend on an occurrence
of v in w.

Consider the minimal prefixw[q1 +1..p1] and the minimal suffixw[p2..q2 −1]
of w[q1 + 1..q2 − 1] such thatm[q1 + 1..p1] ≥ M andm[p2..q2 − 1] ≥ M . Due to
Lemma 9, we havem[q1 + 1..p1] ≤ M + 1 andm[p2..q2 − 1] ≤ M + 1, and thus
due to Lemma 10,m[p1 + 1..p2 − 1] ≥ C. At the same time, due to the definition
of M , there are positionsi1 + n1 in w[q1 + 1..p1] andi1 + n2 in w[p2..q2 − 1] such
that rk(i1 + n1) = rk(i1 + n2) = l′. All the l′ runs contributing tork(i1 + n1)
(resp.,rk(i1 + n2)) are internalk-runs forw[i1..i2] and thus do not depend on the
occurrence ofv = w[i1..i2]. So, in another occurrencev = w[j1..j2] of v we have
rk(j1+n1) = rk(j1+n2) = l′, and all thek-runs contributing tork(j1+n1) (resp.,
rk(j1 +n2)) are internalk-runs forw[j1..j2]. So, there can be only internalk-runs
for w[j1..j2] which intersectw[j1 + n1..j1 + n2] and thus affect its measure. So,
m[j1..j2] ≥ m[j1 + n1..j1 + n2] = m[i1 + n1..i1 + n2] ≥ m[p1 + 1..p2 − 1] ≥ C.

In Fig. 4, the “inviolable part” shown there is the wordw[i1 + n1..i1 + n2],
whose measurem[i1 + n1..i1 + n2] does not depend on an occurrence ofv in w.

�

The following fact is analogous to Lemma 3

Lemma 19. Suppose that an infinite wordw satisfies the(k, l)-condition, and
the constantsl′ and M are defined by Lemma 11. Ifw[i1..i2] and w[i1..i3] are
palindromes, wherei3 > i2, rk[i1..i3] ≤ l′ andm[i1..i2] ≥ (k− 1)(4l′ +2M +3),
then

m[i1..i3]

m[i1..i2]
≥ 1 +

1

(k − 1)(4l′ + 2M + 3)
.

9
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Figure 1: Proof of Lemma 18

PROOF. By Lemma 2, the wordw[i1..i3] is (i3−i2)-periodic. Denote its suffix
w[i2 + 1..i3] by v and definek′ so thatw[i1..i2] = v′vk′−2 (and thusw[i1..i3] =
v′vk′−1) for some suffixv′ of v not equal tov (herev′ can be empty) and for some
k′ ≥ 2. Thenk′ ≤ k since otherwisew[i1..i3] would have been covered by some
k-run which is impossible due to Lemma 16.

Suppose thatm[i1..i2] = (k − 1)(4l′ + 2M + 2 + C) for some constantC.
Here by the assertion we haveC ≥ 1; note thatC can be non-integer. Due to
Lemma 10, the measure ofw[i1..i2] is the sum of measures of its prefixv′ and of
k′ − 2 occurrences ofv. By the pigeon-hole principle, it means that some of these
occurrences ofv (or of v′) have measure at least4l′ + 2M + 2+ ⌈C⌉. It means by
Lemma 18 that the measurem[i2 + 1..i3] of another occurrencew[i2 + 1..i3] of v
is at leastC. So, due to Lemma 10 again, we have

m[i1..i3]

m[i1..i2]
= 1 +

m[i2 + 1..i3]

m[i1..i2]
≥ 1 +

C

(k − 1)(4l′ + 2M + 2 + C)
.

The right hand side of this inequality is a growing function of C for C ≥ 1, so the
minimal value ofC = 1 gives its minimum, and we have

m[i1..i3]

m[i1..i2]
≥ 1 +

1

(k − 1)(4l′ + 2M + 3)
. �

Now we proceed to the second part of the proof, where we are going to use
Lemma 19 to prove that there should be a factor with palindromic length greater
thanP . The sketch of the remaining part of the proof is the following. We as-
sign to each factorw[i..j] its codeC[i..j], which is a word on a binary alphabet.
We code each factorizationP of a prefix ofw[i..j] into palindromes by a code
C∗([i..j], P), which is obtained fromC[i..j] by inserting symbols to positions be-
tween the palindromes. After that, taking a factorw[i..j] of big enough measure
(the required measure depends onP and several parameters of the word), we ob-
tain that the number of possible codes of factorizations of prefixes ofw[i..j] into
at mostP palindromes is less than the length of the codeC[i..j]. We deduce from
that the existence of a prefix ofw[i..j] not decomposable toP palindromes.

10



Consider a factorw[i..j] with rk[i..j] ≤ l′ of big enough measure (“long” fac-
tor). The required measureN is determined below by (2). Define thecodeC[i..j]
as a word on the alphabet{1, 2} obtained from the wordm(i)m(i + 1) · · ·m(j)
by erasing the symbols equal to 0. The length of the codeC[i..j] is denoted by
c[i..j]; clearly,

m[i..j]/2 ≤ c[i..j] ≤ m[i..j], (1)

since in factm[i..j] is the sum of the symbols ofC[i..j], and each of them is equal
to 1 or 2.

If i and j are fixed, consider the wordm(i)m(i + 1) · · ·m(j) ∈ {0, 1, 2}∗

and denote bynh the position giving thehth non-zero symbol in it, so that
m(nh) ∈ {1, 2} for all h = 1, . . . , c andm(n) = 0 for all othern ∈ {i, i +
1, . . . , j}\{n1, n2, . . . , nc}. We also definen0 = i − 1. Due to this definition, we
haveC[i..j] = a1 · · ·ac with ah ∈ {1, 2} andm(nh) = ah for all h = 1, . . . , c.

Example 5. Consider the prefixw[1..25] = 0101110101111111110101110 of the
Sierpinski wordw, considered as a word satisfying the(3, 1)-condition. Its code
is C[1..25] = 111111, and the positionsn1, . . . , n6 are equal to 4,6,10,18,22,24:
these are exactly first and last positions of 3-runs inw, that is, of “long” powers
of 1. We also fixn0 = 0.

Consider a factorization into palindromes of a prefixw[i..i′] of w[i..j]:
w[i..i′] = w[i0 + 1..i1]w[i1 + 1..i2] · · ·w[ip−1 + 1..ip], wherei = i0 + 1, ip = i′,
and each wordw[id +1..id+1] is a palindrome. Define thepartition to palindromes
P as the sequenceP = {i0, i1, . . . , ip}, and thecodeof this partition inw[i..j] as
the wordC∗([i..j], i1, . . . , ip) = C∗([i..j], P) on the alphabet{1, 2, ∗} obtained
from the codeC[i..j] by adding a star before the symbolah for eachd such that
nh−1 ≤ id < nh. Note that the number of stars in the code of a partition toP
palindromes is exactlyP + 1.

Example 6. Continuing the previous example, consider the following partition to
palindromes of a prefix of length 22 of the Sierpinski wordw, considered in its
turn as a prefix ofw[1..25]:

(010)(11)(10101111111110101)110.

We see thati0 = 0, i1 = 3, i2 = 5, i3 = 22, P = {0, 3, 5, 22}, and thus the code
of this partition isC([1..25], 3, 5, 22) = C([1..25], P) = ∗ ∗ 1 ∗ 1111 ∗ 1.

The stars correspond to the boundaries of palindromes, and the symbols 1 and
2 correspond to beginnings and ends of upperk-runs inw[i..j]. Note that the code
of a partition of a prefix ofw[i..j] always begins with a star.

We are going to prove that ifc[i..j] is large enough, then there is a pair of
consecutive symbols from{1, 2} in C[i..j] such that no partitionP of a prefix
of w[i..j] to at mostP palindromes has a star between them inC∗([i..j], P). In
particular it means that there is a prefix ofw[i..j] with palindromic length greater
thanP , and thus we prove Theorem 8.
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Lemma 20. Suppose that for the wordw[i..j] considered above we havec[i..j] =
N and i′, i ≤ i′ ≤ j is a position such thati′ = nh − 1 for someh, 1 ≤ h ≤ N .
Then the number of values ofh′ such that there existsi′′ with w[i′ + 1..i′′] being a
palindrome andnh′−1 ≤ i′′ < nh′ , is bounded byH = D1 + 1 + logD2

(2N/D1),
whereD1 = (k − 1)(4l′ + 2M + 3) andD2 = 1 + 1

D1

.

PROOF. The fact thatc[i..j] = N means in particular thatm[i..j] ≤ 2N due to
(1). We shall estimate the number of possible values ofm[i′ +1..i′′] not exceeding
2N , wherew[i′ + 1..i′′] is a palindrome, and this will give an upper bound for the
number of values ofh′, since thenh are exactly the positions where the measure
changes.

First of all, m[i′ + 1..i′′] can take at most(k − 1)(4l′ + 2M + 3) + 1 =
D1 + 1 values ofh′ from 0 to (k − 1)(4l′ + 2M + 3). Due to Lemma 19, the
value ofh′ numberedD1 + 2 must be equal at least toD1D2, whereD2 = 1 +

1
(k−1)(4l′+2M+3)

= 1 + 1
D1

; and the value ofh′ numberD1 + n + 1 is equal at
least toD1D

n
2 . Even for the maximaln we should haveD1D

n
2 ≤ 2N , so that

n ≤ logD2
(2N/D1), and the total possible number of measures of palindromes is

bounded byD1 + 1 + logD2
(2N/D1). �

Lemma 21. Suppose that for the wordw[i..j] considered above we havec[i..j] =
N andi′, i ≤ i′ ≤ j is a position such thatnh−1 ≤ i′ < nh for someh, 1 ≤ h ≤
N . Then the number of values ofh′, such that there existsi′′ withw[i′+1..i′′] being
a palindrome andnh′−1 ≤ i′′ < nh′, is bounded by(M + 4l′)(logD2

(2N/D1)) +
D3, where, as above,D1 = (k − 1)(4l′ + 2M + 3), D2 = 1 + 1

D1

, andD3 =

(M + 4l′)2 + M + 4l′ + D1 + 1.

PROOF. As in the previous lemma, we shall estimate the number of possible
values ofm[i′ + 1..i′′] not exceeding2N , wherew[i′ + 1..i′′] is a palindrome. As
above,m[i′ + 1..i′′] can take at most(k − 1)(4l′ + 2M + 3) + 1 = D1 + 1 values
from 0 to(k − 1)(4l′ + 2M + 3) = D1.

Suppose now thatm[i′ +1..i′′] > D1, and consider the prefixw[i′ +1..nh − 1]
of w[i′ + 1..i′′]; note that by the definition of the sequence{nh}, its measure
m[i′ +1..nh −1] = 0, and the measure ofw[nh..i

′′] is equal to that ofw[i′ +1..i′′].
Suppose first thatnh−i′−2 ≥ i′′−nh, that is, thatw[i′+1..nh−1] = t contains

the center of the palindromew[i′ + 1..i′′] = u. It means thatu = tv = ṽt′v and
t = ṽt′ for some wordsv andt′. We see that the measure of the occurrence ofṽ
starting ati′ +1 is equal to 0, and thus, due to Lemma 17, we havem[i′ +1..i′′] =
m[nh..i

′′] < M + 4l′, a contradiction to the fact thatm[i′ + 1..i′′] > D1.
Now suppose thatnh− i′−2 < i′′−nh, that is,w[i′ +1..nh −1] = t is shorter

than a half ofw[i′ + 1..i′′] = u. It means thatu = tvt̃ for some palindromev
starting at the positionnh. Let us denote the measure ofv by m. The measure of
the prefix occurrence oft is here equal to 0; so, due to Lemma 17, the measure
of the suffix occurrence of̃t is at mostM + 4l′ − 1. So, we havem ≤ m[i′ +
1..i′′] ≤ m + M + 4l′ − 1, so, for each possible value ofm ≥ D1 − (M +
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4l′), the measurem[i′ + 1..i′′] takes at mostM + 4l′ different values. Adding
possible values from 0 toD1, we see that the total number of values is bounded
by D1 + 1 + (M + 4l′)(H − D1 + M + 4l′), whereH is the bound for the
number of measures of palindromes starting atnh obtained in Lemma 20, so that
H = D1 + 1 + logD2

(2N/D1). Simplifying the expression, we obtain thatD1 +
1 + (M + 4l′)(H −D1 + M + 4l′)=(M + 4l′) logD2

(2N/D1) + (M + 4l′)(M +
4l′ + 1) + D1 + 1=(M + 4l′) logD2

(2N/D1) + D3. �

PROOF OF THEOREM 8. Fix a positive integerP and letN be a positive
integer satisfying

[(M + 4l′) logD2
(2N/D1) + D3]

P < N, (2)

where the constantsD1–D3 are defined in Lemma 21. Consider a factorw[i..j]
of w with rk[i..j] ≤ l′ and c[i..j] = N ; such a factorw[i..j] always exists by
the definitions ofl′ and ofc[i..j]. By the previous lemma, the number of possible
codes of decompositions of prefixes ofw[i..j] to P palindromesw[id + 1..id+1],
d = 0, . . . , P − 1, is at most[(M + 4l′) logD2

(2N/D1) + D3]
P , and hence less

thanN . In particular it means that the position of the last star in the code can take
less thanN different values; but the lengthc[i..j] of the code ofw[i..j] is N . So,
there are two consecutive symbols inc[i..j], corresponding to the positionsnh and
nh+1, such that the last star in the code of the decomposition toP palindromes can
never appear between them, that is, that no wordw[i..q], wherenh ≤ q < nh+1,
can ever be decomposed intoP palindromes. �

5 Discussion

Even if we prove that the palindromic length of factors of anyaperiodic word is
unbounded, some ultimately periodic words, for example,w = (110100)ω, con-
tain factors having arbitrarily large palindromic lengths. So, unlike for example
the result by Mignosi, Restivo and Salemi on repetitions andperiodicity [8], the
conjectured property will not give a characterization of aperiodic words.

We prove the following property of ultimately periodic words with a uniform
bound on the palindromic length of its factors:

Proposition 22. Let P be an integer,w an ultimately periodic word such that
|u|pal ≤ P for each factoru of w. Thenw has a tailw′ of the formw′ = (p1p2)

ω,
wherep1 andp2 are palindromes.

PROOF. Let w′ be a tail ofw having periodt. So w′ = vω with |v| = t.
Consider a factoru of w′ with |u| > tP . Thenu can be factored asu = v1v2 . . . vm

with m ≤ P and eachvi a non-empty palindrome. Thus at least one of the
palindromesvi (call it x) in this factorization has length greater thant. Thus there
exist factorsq1 andq2 (with q1 possibly empty) and a positive integern such that
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x = (q1q2)
nq1 and|q1q2| = t. Sincex is a palindrome, it follows that bothq1 and

q2 are palindromes. Sincev is a cyclic conjugate ofq1q2 it follows thatv is also a
product of two palindromesp1 andp2 (one possibly empty). �

Proposition 22 implies that if the answer to Question 1 is “no”, then an infinite
word w having a uniform bound on the palindromic length of its factors is ulti-
mately periodic, and moreover its period has the formp1p2, wherep1 andp2 are
palindromes.

As we have mentioned above in Remark 1, the(k, l)-conditions for somek and
l seems to be fulfiled in particular for all morphic words, so, it is hardly probable
that an example of an aperiodic word with bounded palindromic length of factors
will be a morphic word. At the same time, there exist Sturmianwords which do
not satisfy any(k, l)-condition: these are exactly Sturmian words whose elements
of the directive sequence are unbounded (see Chapter 2 of [7]for the definitions).
So, this paper does not contain a proof of unbounded palindromic length of factors
which would be valid for all Sturmian words.

It is also clear that

Lemma 23. If there exists an aperiodic word with bounded palindromic length of
factors, then there exists a binary one.

PROOF. Consider an aperiodic wordw on an alphabetA = {a1, . . . , aq} and
for eachi ∈ 1, . . . , q define a codingci by ci(ai) = 0, ci(b) = 1 for all other
symbolsb ∈ A. Consider the infinite wordsc1(w), . . ., cq(w). At least one of
them, let us denote it byc(w), is aperiodic (since otherwisew would be periodic
with period equal to the least common multiple of periods ofc1(w), . . ., cq(w)). At
the same time, for each factoru of w we have|u|pal ≥ |c(u)|pal. So, if |u|pal ≤ P
for all factorsu of w and for someP , then the same is true for all factorsc(u) of
the binary aperiodic infinite wordc(w): |c(u)|pal ≤ P . �

Remark 2. The proof of Lemma 23 above is valid only for the case of a finite
alphabetA. Another proof, valid also for the infinite alphabet{0, 1, . . . , n, . . .},
was suggested by T. Hejda who uses the morphismc defined byc(i) = 10i1. It is
not difficult to prove that if|u|pal ≤ P for all factorsu of w, then|v|pal ≤ P + 4
for all factorsv of c(w).

At last, we recall again that for the case ofk-power-free words, our proof can
be extended in particular to privileged words instead of palindromes (see Section
3). However, Theorem 8 cannot be directly extended to privileged words since
in Lemma 21, we used the properties specific for palindromes which allowed to
apply Lemma 17.
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