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Abstract

Model refinement is an important step in the model implementation cycle
that deals with adding details to an existing model. Several ways of im-
plementing model refinement have been discussed in the literature, for rule-
based models and for ODE models. We focus here on implementing model
refinement in the framework of Petri nets, using the programming capabil-
ities of colored Petri nets. We exemplify our strategy on a reaction-based
model of the eukaryotic heat shock response. We conclude with an analysis
of the initial and refined models, a proof that the two colored Petri net mod-
els we have built are bisimilar, and a discussion on how modeling biological
systems with colored Petri nets scales with further expansions of the model.

Keywords: Quantitative model refinement, colored Petri nets, bisimilar,
heat shock response.
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1 Introduction

One of the steps often required in modeling is model refinement, i.e. increas-
ing the level of detail of a model to include more information. This process
can be implemented either starting a new model from scratch, and doing all
the model fitting steps, or start from an existing fitted model to which details
are added in such a way that the model fit is preserved. The latter method
is called data refinement and has been introduced in [3, 14] for rule-based
models, and discussed in [6, 4] in the context of ODE models.

Throughout this paper we consider reaction-based models consisting of a
list of reactions of the type c1A1 + c2A2 + ... + cnAn → c′

1B1 + c′
2B2 + ... +

c′
mBm, with m, n ≥ 0, where Ai, Bj are molecular species representing the

reactants (substrate) and products of the reaction, respectively, and ci, c′
j are

the stoichiometric coefficients (multiplicities), with 1 ≤ i ≤ n, 1 ≤ j ≤ m.
The mathematical semantic for such a model can be defined both in terms
of continuous mathematics or in terms of discrete mathematics.

A reaction-based model can be refined to incorporate more information
regarding its reactants, a process called data refinement. In this paper we
consider the implementation of data refinement as presented in [5]. The
species of a model are considered to be either atomic or complex, where
a complex species contains in its structure at least two (possibly identical)
atomic species. Refinement can be done on atomic species only, and it implies
replacing the species with several of its variants. The change propagates
throughout the model to all complex species that contain the atomic species
being refined. Depending on the composition of complex species, one small
refinement of an atomic species can induce an explosion in the number of
species in the refined model, and consequently in the number of reactions.
For details on the size of this explosion, see [5].

We focus in this paper on a Petri net approach of refinement, with the
goal of obtaining a compact representation of the refinement of a model. To
this end, we use colored Petri nets, a variant of high-level Petri nets that are
“programmable” by means of data types (color sets), variables and functions.

As proof of concept, we implement the refinement of a model of the
eukaryotic heat shock response. We construct a Petri net model that we
subsequently refine to include more biological details. The refinement of
the model is compact; the structure of the Petri net (in terms of places,
transitions and arcs connecting them) remains the same. All details that
are added to the network are encoded by means of colors. Our focus is
on the ability of the [colored] Petri net framework to scale up with model
refinements.

The paper is organized as follows: we start with a short overview of the
Petri net formalism and its use in modeling biological systems, in Section 2.
We continue with the biological semantics of the eukaryotic heat shock re-
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sponse, our case study, in Section 3. We also present here the molecular
model for the heat shock response mechanism proposed in [15], and its re-
finement that accounts for the acetylation of one of the species, as introduced
in [6]. In Section 4 we present our Petri net model for the heat shock re-
sponse, and in Section 5 our modeling of its refinement as a colored Petri
net. We prove that the two networks are bisimilar in Section 6, and draw
some conclusions in Section 7.

2 Preliminaries on modeling with Petri nets

2.1 The Petri net formalism

Petri nets are a sound formalism for representing systems with concurrency
and resource sharing. They can also be viewed as a simple, graphical mod-
eling language represented as bipartite graphs. The language was defined by
Carl Adam Petri with the purpose of describing chemical processes in [16].
Many extensions of Petri nets have been developed, with colored Petri nets
being of particular interest for this paper. We consider the reader is familiar
with the concepts of Petri nets and colored Petri nets; for details, we refer
to [18, 19, 8].

Petri nets are represented as directed bipartite graphs, with four main
components: places, transitions, arcs and tokens. Places are represented
as circles, and they stand for the ”states” of the system. Transitions are
depicted as rectangles, and they stand for the transition of the system from
one state to another. A transition has several pre-places and several post-
places that are connected to it by arcs. Arcs represent the connection between
places and transitions, and have an associated multiplicity, denoting how
many elements of the preceding (following) place are consumed (produced).
Tokens represent the quantities of species denoted by places (be it the number
of particles or the concentration of a species).

Definition 1. [13] A Petri net is a tuple N = (P, T, F, f, M0) where P is
the finite set of places, T is the finite set of transitions, F ⊆ P × T ∪ T × P

is the set of arcs, f : F → N is the arc function assigning multiplicities to
each arc, and M0 : P → N is the function assigning an initial marking of the
network.

Labeled Petri nets are Petri nets with a labeling of their transitions:
N = (P, T, F, f, L) where L : T → A assigns labels from the set A to each
transition in T .

The colored counterpart of Petri nets has additional elements. Color sets
are associated to places, and they represent data types by means of colors.
Variables can be used to form complex arc expressions (the counterpart of
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simple arc multiplicities), functions, and guards (conditions associated to
transitions, that restrict the fireability of transitions to particular subsets
of the colored tokens flowing from pre-places to transitions). Each place p

contains a multiset of colored tokens with colors from the color set of p.
We use the following notations from [9, 12]: SMS denotes the set of all

multisets over a set S; EXP RS denotes the set of expressions over a set
of typed variables S; the type of the values obtained when evaluating an
expression e ∈ EXP RS is the type of the expression; b is a binding that
maps each variable onto a value b(v) which is of the same type as the variable;
t(b) is a transition instance with transition t ∈ T and binding b; p(c) is a
place instance with p ∈ P and c ∈ C; IP (p) (IT (t), resp.) denotes the place
(transition, resp.) instances of a place p ∈ P (transition t ∈ T , resp.); IP

(IT , resp.) denotes the set of all instances of all places p ∈ P (transitions
t ∈ T , resp.); f(x, y)〈b〉)〈c〉 denotes the number of tokens with color c that
are present when evaluating arc expression f(x, y) in binding b and M(p)〈c〉
denotes the number of tokens with color c that are present in place p in
marking M .

Definition 2. [10] A colored Petri net is a tuple N = (P, T, F, Σ, V, C, G, f,

M0) where P is the finite set of places, T is the finite set of transitions,
F ⊆ P ×T ∪T ×P is the set of arcs, Σ is the set of color sets, V is the set of
typed variables with types from Σ, C : P → Σ is the color function assigning
a color set to each place, G is the guard function, f : F → EXP RV is the
arc function assigning expressions over V to each arc such that the type of
the arc expression is C(p)MS where p ∈ P is the place connected to the arc,
and M0 : P → EXP R∅ is the function assigning an initialization expression
with type C(p)MS to each place p ∈ P .

Each colored Petri net can be unfolded to a behaviorally equivalent stan-
dard Petri net representation ([9, 12]). We denote by N∗ = (P ∗, T ∗, F ∗, f ∗,

M∗
0 ) the Petri net obtained by unfolding a colored Petri net N = (P, T, F, Σ,

V, C, G, f, M0).

Definition 3. [12] Given a colored Petri net N = (P, T, F, Σ, V, C, G, f, M0),
its unfolded Petri net is denoted by N∗ = (P ∗, T ∗, F ∗, f ∗, M∗

0 ), where: P ∗ =
IP ; T ∗ = IT ; F ∗ = {(p(c), t(b)) ∈ P ∗ × T ∗ | (f(p, t)〈b〉)〈c〉 > 0} ∪ {(t(b), p(c))
∈ T ∗×P ∗ | (f(t, p)〈b〉)〈c〉 > 0}; f ∗(p(c), t(b)) = (f(p, t)〈b〉)〈c〉, ∀(p(c), t(b)) ∈
F ∗ and f ∗(t(b), p(c)) = f(t, p)〈b〉)〈c〉, ∀(t(b), p(c) ∈ F ∗; M∗

0 (p(c)) = M0(p)〈c〉.

2.2 Petri nets in biomodeling

One of the many applications of Petri nets is modeling biological systems.
Such systems are bipartite, i.e. they consist of species and the interactions
between them. Some of the interactions are independent, and could fire in
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parallel, thus biological systems exhibit concurrent behavior. These charac-
teristics make them suitable for modeling within the Petri nets formalism,
as first proposed in [17]. Extensions of Petri nets allow modeling and sim-
ulation of both stochastic and continuous systems, integrating quantitative
and qualitative analysis techniques, see [2].

The species in a biological reaction-based model can be represented as
places in the Petri nets framework, and each reaction can be represented as
a transition that has all substrates as pre-places, and all products as post-
places, with the arc multiplicities given by the corresponding stoichiometric
coefficients. For more details about modeling biological systems in the Petri
net framework see [11].

The software we used to model our case study within the colored Petri
nets framework is Snoopy [20]. We used the related tool Charlie to validate
our implementations against some basic properties of the models.

3 Case study: the heat shock response

In this section, we briefly describe the regulatory mechanism of heat shock re-
sponse and present a biochemical reactions model of this process, as proposed
in [15]. We discuss the behavior of the system and the role of acetylation of
one of the main actors driving the response.

3.1 A molecular model for the heat shock response

The heat shock response (HSR) is a highly conserved regulatory mechanism
among eukaryotes, crucial for the survival of cells under stress conditions.
At high temperatures proteins misfold and tend to form large aggregates,
with destructive effects on the cell, leading to apoptosis. To counter this,
cells produce heat shock proteins (hsp’s), whose role is to assist misfolded
proteins in their correct refolding.

During the response, heat shock factor (hsf) monomers in inactive state
are transported to the nucleus of the cell, where they form trimers, hsf3,
and bind onto the promoter of the DNA heat shock genes (hse), expressing
heat shock proteins (hsp). When the number of hsp’s is sufficient, they will
negatively regulate the reaction, binding to hsf active trimers and causing
them to detach from DNA and dissociate into inactive monomers.

We consider the molecular model of the HSR proposed in [15]. The
atomic species considered in the system are hsf, hse, hsp, prot, and mfp. The
complex species and their composition are the following: hsf2 = {hsf, hsf},
hsf3 = {hsf, hsf, hsf}, hsf3: hse = {hsf, hsf, hsf, hse}, hsp: hsf = {hsf, hsp},
hsp: mfp = {hsp, mfp}.

The molecular model describing the heat shock response consists of 17
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irreversible reactions, listed in Table 1. They cover the trimerization of heat
shock factors in two steps, hsf3 binding to heat shock elements, transcription
of DNA and translation of hereby synthesized RNA into heat shock proteins.
The negative regulation of the response is modeled with reactions 5-8, and
degradation of hsp’s is modeled with reaction 9. Protein misfolding and
chaperon activity of hsp’s are modeled through reactions 10-12.

3.2 A refinement of the HSR model

Acetylation of hsf’s has a great influence on the heat shock response. A re-
finement of the model in [15] that considers hsf molecules as either acetylated
or non-acetylated has been proposed in [6]. We consider the same refinement
of the hsf molecules, but implement it differently, as we take into account
the order of molecules in a compound.

More specifically, the atomic species hsf is replaced in the refined model
with two of its variants: hsf(0), a non-acetylated hsf molecule, and hsf(1), an
acetylated hsf molecule. The implicit assumption in [15] is that the order
of the molecules in a compound does not matter, what matters is only the
number of acetylated sites. We make instead the assumption that the order
of molecules matters, a valid assumption since proteins have multiple binding
sites and this could introduce ordering. Thus a dimer hsf(0):hsf (1) is different
from hsf(1):hsf(0), although both dimers have one acetylated site. This small
refinement induces an explosion of the model. Our refined model is fully
listed in Table 2.

As opposed to the approach in [4], we consider that the number of
acetylated sites is conserved by the reactions. For example, a reaction
hsf(0) + hsf(0)

⇄ hsf(1) : hsf(1) will not appear in our refined model sincs it
violates the conservation of acetylated sites constraint. One could think of
this as a particular case of [4] where the reactions not present in the model
have kinetic constant 0.

4 A Petri net model for the basic HSR model

We modeled the heat shock response model presented in [15] as a Petri net,
following the standard methodology for modeling metabolic systems as Petri
nets see [17]. The resulting network can be seen in Figure 2, and its Snoopy
implementation is available at [1]. Throughout the paper we denote this
network by Hbas = (P, T, F, f1, M0,1) for some initial marking M0,1.

In order to validate our model, we simulated it with the numerical setup
of [15] and checked that the continuous evolution of species concentrations
is identical with the one reported in [15], data omitted here due to lack of
space. We also checked that the P-invariants of Hbas correctly encode the
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three mass conservation relations of the HSR model, see [15].

5 Colored Petri nets hide the combinatorial

state space explosion for the refined HSR

model

In this section we present our colored Petri net model of the refinement of
the HSR model, and our modeling choices. One option of modeling the
refinement of the HSR model in Table 2 is to use a standard Petri net. But
this network will have a transition for each reaction, thus 77 transtions and
29 places, an explosion we avoid through the use of colors.

There are multiple ways of choosing color sets in a colored Petri net
model of a biological system. Depending on the choice, additional transitions,
guards or complicated functions may have to be introduced in the network,
see [5]. For example, hsf dimers could be modeled as a place with an int color
set with values {0,1,2} denoting the number of acetylated sites. They could
also be modeled with an int color set with values {0,1,2,3} to account for
the order of the acetylated sites. The same could be done with a compound
color set {0, 1} × {0, 1}.

We chose to model the hsf molecules as a place with a color set Monomer

with values {0,1} denoting whether the molecule is acetylated (1) or not (0).
hsf dimers are modeled as a Cartesian product of two hsf’s, and hsf trimers
are modeled as a Cartesian product of three hsf’s. All complex species subject
to refinement are modeled as Cartesian products of their atomic components.
The atomic and complex species that are not refined have the default color
set offered by Snoopy, Dot with a single color dot. This representation is very
compact, and leaves the structure of the network unchanged when going from
a standard Petri net representation to a colored Petri net representation.

Our colored Petri net representation of the refined model is presented in
Figure 3, and its Snoopy implementation is available at [1]. The structure of
the network (places, transitions and the arcs connecting them) is the same
as the one in the basic model. For this reason we will use the same sets
of places, transitions and arcs in the definition of the refined network. The
context will make it clear whether we are talking about the basic network
or the refined one. We denote by Href = (P, T, F, Σ, V, C, G, f2, M0,2) our
colored Petri net for the refined HSR model. The initial marking M0,2 is
defined so that Equation (1) holds for all p ∈ P .

∑

c∈C(p)

M0,2(p)〈c〉 = M0,1(p). (1)

The entire complexity is encapsulated in the color sets of the places and

6



the arc expressions. To explain the choice of arc expressions, we first give
the example of three reactions, and then give a general rule. We consider
reactions hsp + hsf → hsp: hsf and 2 hsf ⇄ hsf2. Their representation as a
colored Petri net is shown in Figure 1. Places p, q, r, s denote hsf, hsp, hsf2

and hsp: hsf, respectively.

Figure 1: Example of a colored Petri net. The brown text on top of places
represents the color set. The black text below places and transitions repre-
sents their name, and the blue text on top of arcs is the arc expression.

p

Monomer

q

Dot

r

Dimer

s

HSPHSF

t f

t’

v1

v1++v2 (v1,v2)

t b

(v1,v2)v1++v2

dot (dot,v1)

colorset Monomer = int with 0-1;

colorset Dot = dot;

colorset Dimer = product with Monomer, Monomer;

colorset HSPHSF = product with Dot, Monomer;

variable v1:Monomer;

variable v2:Monomer;

Reaction hsp + hsf → hsp: hsf is refined into two reactions, see Table 2.
The arc expression of arc (q, t′) is dot, meaning a token with color dot is
consumed by reaction t′. Arc (p, t′) has arc expression v1, a variable of type
Monomer. The variable can be bound to either value 0 or value 1. In the
transition instance where v1 = 0, the product of transition t′ is (dot, 0);
thus this transition instance models the reaction hsp + hsf(0) → hsp: hsf(0).
Similarly, the transition instance where v1 is bound to value 1 models reaction
hsp + hsf(1) → hsp: hsf(1).

Reaction 2 hsf ⇄ hsf2 is refined into four reversible reactions, account-
ing for all possible combinations of acetylated and non-acetylated hsf’s, see
Table 2. The forward direction of the reaction is modeled by transition t f,
and the reverse direction is modeled by transition t b in Figure 1. Vari-
ables v1, v2 can be bound independently to values 0 or 1. The expres-
sion v1 + +v2 denotes a multiset with variables v1 and v2. The arc ex-
pression (v1, v2) denotes a tuple of type Dimer, with the particular values
of its components given by the values of variables v1 and v2. It is cru-
cial for the components of a compound type to be explicitly referred in
arc expressions, in order to satisfy the conservation of acetylated sites con-
straint and the ordering of molecules. Another crucial aspect to this end
is that the arc expressions of arcs connecting a transition with its post-
places use the variables of the arc expressions connecting the pre-places with
the transition. Thus, the transition instance of t f with v1 = 0 and v2 = 1

uniquely represents reaction hsf(0) + hsf(1) → hsf(0) : hsf(1) because the com-
pound it produces, (v1, v2), is bound to (0, 1). Similarly, the instance of t b

where v1, v2 are bound to 1 and 0 respectively uniquely represents reaction
hsf(1) : hsf(0) → hsf(1) + hsf(0) because it produces one v1 and one v2. The
bindings of the variables v1, v2 to values {(0, 0), (0, 1), (1, 0), (1, 1)} give all
the variants that reaction 2 hsf ⇄ hsf2 is refined to.
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As a general rule, the arc expression of an arc a ∈ F connected to a place
p that represents a species that is subject to refinement (hsf or a complex
species containing hsf) uses variables. If p represents hsf, then the arc ex-
pression uses as many variables with type C(p) as the multiplicity of arc a

in Hbas: f2(a) = v1 + + . . . + +vn, where vi ∈ V with type(vi) = C(p) and
n = f1(a). If p denotes a complex species S, then the arc expression uses
f1(a) ordered tuples of variables of types C(q), where q is the place denot-
ing hsf and values for places denoting atomic species that are contained in
complex species S, e.g. (dot, v1) for hsp: hsf or (v1, v2, v3, dot) for hsf3: hse.
With this construction of Href as a refinement of Hbas, the arc expressions
obey the rule | f2(a) |= f1(a) for all arcs a ∈ F , where | f2(a) | denotes the
cardinality of arc expression f2(a).

We denote by Hunf = (P ∗, T ∗, F ∗, f ∗
2 , M∗

0,2) the standard Petri net ob-
tained by unfolding Href . Hunf contains 29 places and 77 transitions (one
for each reaction in Table 2), as opposed to 10 places and 17 transitions for the
colored model. By definition of f ∗

2 as the equivalent of f2 in the unfolded net-
work, we have that

∑

q∈IP (p)
q∈ •t∗

f ∗
2 (q, t∗) =| f2(p, t) |, ∀t ∈ T, ∀p ∈ •t, ∀t∗ ∈ IT (t),

thus

∑

q∈IP (p)
q∈ •t∗

f ∗
2 (q, t∗) = f1(p, t), ∀t ∈ T, ∀p ∈ •t, ∀t∗ ∈ IT (t) (2)

6 Bisimilarity of the two Petri net models

Several equivalence criteria have been proposed for Petri nets, e.g. bisimilar-
ity, language (trace) equivalence, and reachability set equality. In our case we
cannot consider reachability set equality, since Hunf has a different number
of places than Hbas. Instead, we will prove that the two are bisimilar. First,
we recall the concept of bisimilarity in the context of standard labeled Petri
nets, and then we extend the definition to bisimilarity between a labeled
standard Petri net and a labeled colored Petri net. Finally, we prove the
bisimilarity between our two Petri net models.

Definition 4. [7] Given two labeled Petri nets N1 = (P1, T1, F1, f1, M0,1, L1)
and N2 = (P2, T2, F2, f2, M0,2, L2) with L1 : T1 → A and L2 : T2 → A, a
binary relation R ⊆ N

P1 ×N
P2 is a bisimulation if for all tuples (M1, M2) ∈ R

and for each label a ∈ A:

1. if M1
a
−→N1

M ′
1 for some M ′

1, then there is some M ′
2 such that M2

a
−→N2

M ′
2 and (M ′

1, M ′
2) ∈ R;

2. if M2
a
−→N2

M ′
2 for some M ′

2, then there is some M ′
1 such that M1

a
−→N1

M ′
1 and (M ′

1, M ′
2) ∈ R.
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Two labeled Petri nets N1, N2 are bisimilar if there is a bisimulation relation
R such that (M0,1, M0,2) ∈ R.

We now introduce a labeling of the unfolded equivalent of a colored Petri
net based on its original labeling.

Definition 5. Consider a colored Petri net N = (P, T, F, Σ, C, G, f, M0) and
its equivalent unfolded standard Petri net N∗ = (P ∗, T ∗, F ∗, M∗

0 ). For any
labeling L : T → A of N we define the equivalent labeling of N∗ as the
labeling L∗ : T ∗ → A such that for all transitions t ∈ T if L(t) = a, then all
transitions t′ ∈ T ∗ such that t′ ∈ IT (t) have the same label, L∗(t′) = a.

We next introduce a definition of bisimilarity between a standard and a
colored Petri net.

Definition 6. Given a labeled Petri net N1 = (P1, T1, F1, f1, M0,1, L1) and a
labeled colored Petri net N2 = (P2, T2, F2, Σ, C, G, f, M0,2, L2) with its corre-
sponding unfolded Petri net with equivalent labelling, N∗

2 = (P ∗
2 , T ∗

2 , F ∗
2 , f ∗

2 ,

M∗
0,2, L∗

2) we say that N1 and N2 are bisimilar if there is a bisimulation
relation R ⊆ N

P1 × N
P ∗

2 such that (M0,1, M∗
0,2) ∈ R.

We next prove that Hbas and Href are bisimilar. To this end, we label
the two networks. Each transition in Figures 2 and 3 has a name written
next to it, and moreover the transitions modeling the same reaction have the
same name in the two models. We consider as labeling function of the two
networks the function L that assigns to each transition its name as a label.

Theorem 1. The Petri net Hbas developed for the basic HSR model with
labeling L and the colored Petri net Href modeling the refined HSR with the
same labeling L are bisimilar.

Proof. The proof will use Hunf , the unfolded equivalent network of Href .
We define relation R ⊆ N

P × N
P ∗

such that:

(M1, M2) ∈ R iff M1(p) =
∑

q∈IP (p)

M2(q), ∀p ∈ P, (3)

where M1 is a marking of Hbas and M2 is a marking of Hunf .
We prove now that the first condition for R being a bisimulation relation

holds: for every (M1, M2) ∈ R if M1
a
−→Hbas

M ′
1 for some M ′

1, then there
exists some M ′

2 such that M2
a
−→Hunf

M ′
2 and (M ′

1, M ′
2) ∈ R;

Let ta denote the transition with label a in Hbas (by our labeling L, there
is only one such transition). The pre-places p ∈ •ta of transition ta in
Href have

∑

q∈IP (p) M2(q) elements, or by Equation (3) exactly M1(p) colored
tokens. Since ta is enabled by M1 in Hbas, it is also enabled in Href because
its pre-places are sufficiently marked and the color of tokens is not important
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(as we consider all possible combinations of choosing colored tokens to enable
a transition in Href , see Section 5). Let t∗

a ∈ It(ta) denote a transition that
is enabled in Hunf by marking M2.

M ′
1 and M ′

2 are computed as the standard update of a marking after firing
a transition, as detailed in Equations (4), (5).

M ′
1(p) =



























M1(p) − f1(p, ta) + f1(ta, p) if p ∈ •ta ∩ t•
a

M1(p) − f1(p, ta) if p ∈ •ta \ t•
a

M1(p) + f1(ta, p) if p ∈ t•
a \ •ta

M1(p) otherwise

(4)

M ′
2(q) =



























M2(q) − f∗
2 (q, t∗

a) + f∗
2 (t∗

a, q) if q ∈ •t∗
a ∩ t∗•

a

M2(q) − f∗
2 (q, t∗

a) if q ∈ •t∗
a \ t∗•

a

M2(q) + f∗
2 (t∗

a, q) if q ∈ t∗•
a \ •t∗

a

M2(q) otherwise

(5)

Whenever a place p ∈ P is a pre-(post-)place of ta, some of its place instances
are pre-(post-)places of the transition instance t∗

a. We sum over all place
instances corresponding to places in P :

∑

q∈IP (p)

M ′

2(q) =



























































∑

q∈IP (p)

M2(q) −
∑

q∈IP (p)
q∈

•t∗

a

f∗

2 (q, t∗

a) +
∑

q∈IP (p)
q∈t∗•

a

f∗

2 (t∗

a, q) if p ∈ •ta ∩ t•

a

∑

q∈IP (p)

M2(q) −
∑

q∈IP (p)
q∈

•t∗

a

f∗

2 (q, t∗

a) if p ∈ •ta \ t•

a

∑

q∈IP (p)

M2(q) +
∑

q∈IP (p)
q∈t∗•

a

f∗

2 (t∗

a, q) if p ∈ t•

a \ •ta

∑

q∈IP (p)

M2(q) otherwise

(6)

We next replace the partial sums in Equation (6) with their counterparts in
Equations (2) and (3):

∑

q∈IP (p)

M ′
2(q) =



























M1(p) − f1(p, ta) + f1(ta, p) if p ∈ •ta ∩ t•
a

M1(p) − f1(p, ta) if p ∈ •ta \ t•
a

M1(p) + f1(ta, p) if p ∈ t•
a \ •ta

M1(p) otherwise

(7)

The right hand side of Equations (4) and (7) is identical, so by definition of
relation R (Equation (3)) we conclude (M ′

1, M ′
2) ∈ R.

We prove now that the second condition for R being a bisimulation re-
lation holds: for every (M1, M1) ∈ R, if M2

a
−→Hunf

M ′
2 for some M ′

2, then

there exists some M ′
1 such that M1

a
−→Hbas

M ′
1 and (M ′

1, M ′
2) ∈ R.

By definition of R, (M1, M2) ∈ R implies that whenever a transition
t∗
a with label a is enabled by marking M2 in Hunf , the transition ta with

10



the same label a in Hbas is enabled, as its pre-places are sufficiently marked
according to Equation (2). This is shown in (8).

M1(p) =
∑

q∈IP (p)

M2(q), ∀p ∈ P ⇒ M1(p) ≥
∑

q∈IP (p)
q∈ •t∗

a

M2(q), ∀p ∈ •ta. (8)

Equations (5) and (4) show how the markings of places change in the two
networks when firing transitions t∗

a and ta, respectively:

We substitute M1 for its representation in relation to M2, as given by
Equation (3), in Equation (4):

M ′
1(p) =



























∑

q∈IP (p) M2(q) − f1(p, ta) + f1(ta, p) if p ∈ •ta ∩ t•
a

∑

q∈IP (p) M2(q) − f1(p, ta) if p ∈ •ta \ t•
a

∑

q∈IP (p) M2(q) + f1(ta, p) if p ∈ t•
a \ •ta

∑

q∈IP (p) M2(q) otherwise

(9)

We next substitute Equation (2), where we consider t∗
a as the transition

instance for the summation, in Equation (9):

M ′
1(p) =































































∑

q∈IP (p)
M2(q) −

∑

q∈IP (p)
q∈ •t∗

a

f∗
2 (q, t∗

a) +
∑

q∈IP (p)
q∈t∗•

a

f∗
2 (t∗

a, q) if p ∈ •ta ∩ t•
a

∑

q∈IP (p)
M2(q) −

∑

q∈IP (p)
q∈ •t∗

a

f∗
2 (q, t∗

a) if p ∈ •ta \ t•
a

∑

q∈IP (p)
M2(q) +

∑

q∈IP (p)
q∈t∗•

a

f∗
2 (t∗

a, q) if p ∈ t•
a \ •ta

∑

q∈IP (p)
M2(q) otherwise

(10)

A place p is connected to ta iff at least one of its instances is connected to t∗
a.

We sum the markings M ′
1 in Equation (5) over all instances of places p ∈ P :

∑

q∈IP (p)

M ′

2(q) =



























































∑

q∈IP (p)

M2(q) −
∑

q∈IP (p)
q∈

•t∗

a

f∗

2 (q, t∗

a) +
∑

q∈IP (p)
q∈t∗•

a

f∗

2 (t∗

a, q) if p ∈ •ta ∩ t•

a

∑

q∈IP (p)

M2(q) −
∑

q∈IP (p)
q∈

•t∗

a

f∗

2 (q, t∗

a) if p ∈ •ta \ t•

a

∑

q∈IP (p)

M2(q) +
∑

q∈IP (p)
q∈t∗•

a

f∗

2 (t∗

a, q) if p ∈ t•

a \ •ta

∑

q∈IP (p)

M2(q) otherwise

(11)
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The right hand side of equations (10) and (11) is identical, so we can
conclude that (M ′

1, M ′
2) ∈ R.

Relation R satisfies both conditions for being a bisimulation relation. By
Equation (1) we have that (M0,1, M0,2) ∈ R. In conclusion, Hbas and Href

are bisimilar.

7 Conclusions

We have developed two models for the heat shock response, using Petri nets
and their colored extension as modeling frameworks. The first model contains
10 places and 17 transitions, corresponding to 10 species and 17 reactions, as
in [15]. The second model contains the same number of places and transitions,
but these stand for 29 species and 77 reactions modeling the refinement of
the heat shock response that accounts for the acetylation of one of the main
actors of the response. The complexity is hidden in the colors that each token
in a place may have, but the representation is very compact (an important
aspect when modeling large systems).

We introduced a notion of bisimilarity between a standard and a colored
Petri net, and we proved that the two networks we have built are bisimilar.
The construction of Href was done in a systematic way that makes it possible
to generalize the method, and this is in the scope of a future paper.
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A The basic HSR molecular model

Table 1: The molecular model for the eukaryotic heat shock response pro-
posed in [15].

1. 2 hsf ⇄ hsf2 7. hsp + hsf3 → hsp: hsf +2 hsf

2. hsf + hsf2 ⇄ hsf3 8. hsp + hsf3: hse → hsp: hsf +2 hsf + hse

3. hsf3 + hse ⇄ hsf3: hse 9. hsp → ∅
4. hsf3: hse → hsf3: hse + hsp 10. prot → mfp

5. hsp + hsf ⇄ hsp: hsf 11. hsp + mfp ⇄ hsp: mfp

6. hsp + hsf2 → hsp: hsf + hsf 12. hsp: mfp → hsp + prot
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B The refined HSR molecular model

Table 2: The refinement of the molecular model proposed
in [15].

Reaction in
the basic
model

Reactions in the refined model

2 hsf ⇄ hsf2

hsf(0) + hsf(0)
⇄ hsf(0):hsf(0)

hsf(0) + hsf(1)
⇄ hsf(0):hsf(1)

hsf(1) + hsf(0)
⇄ hsf(1):hsf(0)

hsf(1) + hsf(1)
⇄ hsf(1):hsf(1)

hsf + hsf2 ⇄ hsf3

hsf(0) + hsf(0):hsf(0)
⇄ hsf(0):hsf(0):hsf(0)

hsf(0) + hsf(0):hsf(1)
⇄ hsf(0):hsf(0):hsf(1)

hsf(0) + hsf(1):hsf(0)
⇄ hsf(0):hsf(1):hsf(0)

hsf(0) + hsf(1):hsf(1)
⇄ hsf(0):hsf(1):hsf(1)

hsf(1) + hsf(0):hsf(0)
⇄ hsf(1):hsf(0):hsf(0)

hsf(1) + hsf(0):hsf(1)
⇄ hsf(1):hsf(0):hsf(1)

hsf(1) + hsf(1):hsf(0)
⇄ hsf(1):hsf(1):hsf(0)

hsf(1) + hsf(1):hsf(1)
⇄ hsf(1):hsf(1):hsf(1)

hsf3 + hse ⇄ hsf3: hse

hsf(0):hsf(0):hsf(0) + hse ⇄ hsf(0):hsf(0):hsf(0):hse

hsf(0):hsf(0):hsf(1) + hse ⇄ hsf(0):hsf(0):hsf(1):hse

hsf(0):hsf(1):hsf(0) + hse ⇄ hsf(0):hsf(1):hsf(0):hse

hsf(0):hsf(1):hsf(1) + hse ⇄ hsf(0):hsf(1):hsf(1):hse

hsf(1):hsf(0):hsf(0) + hse ⇄ hsf(1):hsf(0):hsf(0):hse

hsf(1):hsf(0):hsf(1) + hse ⇄ hsf(1):hsf(0):hsf(1):hse

hsf(1):hsf(1):hsf(0) + hse ⇄ hsf(1):hsf(1):hsf(0):hse

hsf(1):hsf(1):hsf(1) + hse ⇄ hsf(1):hsf(1):hsf(1):hse

hsf3: hse →
hsf3: hse + hsp

hsf(0):hsf(0):hsf(0):hse → hsf(0):hsf(0):hsf(0):hse + hsp

hsf(0):hsf(0):hsf(1):hse → hsf(0):hsf(0):hsf(1):hse + hsp

hsf(0):hsf(1):hsf(0):hse → hsf(0):hsf(1):hsf(0):hse + hsp

hsf(0):hsf(1):hsf(1):hse → hsf(0):hsf(1):hsf(1):hse + hsp

hsf(1):hsf(0):hsf(0):hse → hsf(1):hsf(0):hsf(0):hse + hsp

hsf(1):hsf(0):hsf(1):hse → hsf(1):hsf(0):hsf(1):hse + hsp

hsf(1):hsf(1):hsf(0):hse → hsf(1):hsf(1):hsf(0):hse + hsp

hsf(1):hsf(1):hsf(1):hse → hsf(1):hsf(1):hsf(1):hse + hsp

hsp + hsf ⇄ hsp: hsf
hsp + hsf(0)

⇄ hsp: hsf(0)

hsp + hsf(1)
⇄ hsp: hsf(1)

hsp + hsf2 →
hsp: hsf + hsf

hsp + hsf(0):hsf(0) → hsp: hsf(0) + hsf(0)

hsp + hsf(0):hsf(1) → hsp: hsf(0) + hsf(1)

hsp + hsf(1):hsf(0) → hsp: hsf(1) + hsf(0)
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Table 2: The refinement of the model proposed in [15] - Con-
tinued

hsp + hsf(1):hsf(1) → hsp: hsf(1) + hsf(1)

hsp + hsf3 →
hsp: hsf +2 hsf

hsp + hsf(0):hsf(0):hsf(0) → hsp: hsf(0) +2 hsf(0)

hsp + hsf(0):hsf(0):hsf(1) → hsp: hsf(0) + hsf(0) + hsf(1)

hsp + hsf(0):hsf(1):hsf(0) → hsp: hsf(0) + hsf(1) + hsf(0)

hsp + hsf(0):hsf(1):hsf(1) → hsp: hsf(0) +2 hsf(1)

hsp + hsf(1):hsf(0):hsf(0) → hsp: hsf(1) +2 hsf(0)

hsp + hsf(1):hsf(0):hsf(1) → hsp: hsf(1) + hsf(0) + hsf(1)

hsp + hsf(1):hsf(1):hsf(0) → hsp: hsf(1) + hsf(1) + hsf(0)

hsp + hsf(1):hsf(1):hsf(1) → hsp: hsf(1) +2 hsf(1)

hsp + hsf(0):hsf(0):hsf(0):hse → hsp: hsf(0) +2 hsf(0) + hse

hsp + hsf(0):hsf(0):hsf(1):hse → hsp: hsf(0) + hsf(0) + hsf(1) + hse

hsp + hsf(0):hsf(1):hsf(0):hse → hsp: hsf(0) + hsf(1) + hsf(0) + hse

hsp + hsf3: hse → hsp + hsf(0):hsf(1):hsf(1):hse → hsp: hsf(0) +2 hsf(1) + hse

hsp: hsf +2 hsf + hse hsp + hsf(1):hsf(0):hsf(0):hse → hsp: hsf(1) +2 hsf(0) + hse

hsp + hsf(1):hsf(0):hsf(1):hse → hsp: hsf(1) + hsf(0) + hsf(1) + hse

hsp + hsf(1):hsf(1):hsf(0):hse → hsp: hsf(1) + hsf(1) + hsf(0) + hse

hsp + hsf(1):hsf(1):hsf(1):hse → hsp: hsf(1) +2 hsf(1) + hse

hsp → ∅ hsp → ∅

prot → mfp prot → mfp

hsp + mfp ⇄

hsp: mfp

hsp + mfp ⇄ hsp: mfp

hsp: mfp →
hsp + prot

hsp: mfp → hsp + prot
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C Petri net for the basic HSR model

HSF

HSF

HSF2 HSF3

HSE

HSF3:HSE

HSP

HSP

HSP:HSF

MFP HSP:MFP

PROT

dimeriz fw

trimeriz fw

DNAbinding bw

HSFseq bw

dimer dissipation

trimer dissipation

DNAunbind

degradation

MFPseq fw

PROT refold

MFPseq bw

HSFseq fw

DNAbinding fwHSPformation

dimeriz bw trimeriz bw

PROT misfold

Figure 2: Snoopy representation of the basic heat shock response model
.
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D Colored Petri net for the refined HSR model

HSF
Mono

HSF
Mono

HSF2
Dim

HSF3
Trim

HSE
Dot

HSF3:HSE
TrimDot

HSP
Dot

HSP
Dot

HSP:HSF
DotMono

MFP
Dot

HSP:MFP
Dot

PROT
Dot

dimeriz fw

trimeriz fw

DNAbinding bw

HSFseq bw

dimer dissipation

trimer dissipation

DNAunbind

degradation

MFPseq fw

PROT refold

MFPseq bw

HSFseq fw

DNAbinding fwHSPformation

dimeriz bw trimeriz bw

PROT misfold

Figure 3: Snoopy representation of the refined heat shock response model.
The network is similar to the basic model network. We include here the
information about each place’s color set (brown text next to each place,
above the name of the place), and we omit all arc expressions, for readability
reasons.
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