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AbstratWe give new and simpler proof for the undeidability of the n-permutationPost Correspondene Problem that was originally proved by K. Ruohonen(Ata Informatia 19 (1983), 357 � 367). Our proof uses a reent undeidabil-ity result on deterministi semi-Thue systems that says that it is undeidable,for a given deterministi semi-Thue system T and a word u, whether or notthere exists a nonempty yli derivation u −→∗
T u in T .Keywords: Permutation Post Correspondene Problem, semi-Thue system,word problem, deterministi, yli derivation
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1 IntrodutionIn the history of omputation, the Post Correspondene Problem and it vari-ants have played a major role as a simply de�ned algorithmially undeidableproblem that an be used to prove other undeidability results. For example,several problems in formal language theory and theory of integer matriesare shown to be undeidable by reduing the Post Correspondene Problemto them.The original formulation of the Post Correspondene Problem, or PCPfor short, by Emil Post [8℄ is the following:Problem 1 (PCP). Let B be an alphabet, and let B∗ be the set of all �nitewords over B, inluding the empty word ε. Given an integer n and two �niteordered lists of words
(u1, u2, . . . , un) and (v1, v2, . . . , vn) (1)where ui, vi ∈ B∗ for all i = 1, 2, . . . , n, does there exist a �nite nonemptysequene i1, i2, . . . , ik of indies suh that

ui1ui2 · · ·uik = vi1vi2 · · · vik? (2)An instane of the PCP onsists of two sequenes (1) of words wherethe integer n ≥ 1 is alled the size of the instane. A sequene i1, i2, . . . , iksatisfying (2) is alled a solution of the instane. The PCP was proven to beundeidable by its inventor Emil Post in 1946 in [8℄.The PCP is given an equivalent form in Problem 2. Let A and B betwo alphabets. A mapping h : A∗ → B∗ is a morphism, if h(uv) = h(u)h(v)holds for all u, v ∈ A∗. For an instane I in (1) with ui, vi ∈ B∗, let A =
{a1, a2, . . . , an} be an alphabet and de�ne two morphisms h, g : A∗ → B∗ by

g(ai) = ui and h(ai) = vifor all i = 1, 2, . . . , n. Then the original form of the PCP is equivalent to thefollowing problem.Problem 2 (PCP). Given two morphisms g, h : A∗ → B∗, does there exist anonempty word w ∈ A+ suh that
g(w) = h(w) ?Now, a pair I = (g, h) of morphisms is said to be an instane of thePCP, and a word w satisfying h(w) = g(w) is alled a solution of the in-stane I. The size of the instane (g, h) is the ardinality of the domainalphabet A. Notie that the size of an instane refers to the same value inboth formulations of the PCP. 1



Several variants of the PCP are known to be undeidable. By a variantwe mean a restrition of the PCP to a spei� type of instanes. For example,it is known that the PCP is undeidable for instanes of size 7; see [7℄. It isalso known that the PCP is undeidable for instanes of injetive morphisms;see [5, 11℄ and [4℄ for a more reent proof to this end.In [10℄, K. Ruohonen proved that the following two variants of the PCPare undeidable.Problem 3 (n-permutation PCP (nPPCP)). Given two morphisms h, g : A∗ →
B∗, does there exist a word w = w1w2 · · ·wn and a permutation σ of the set
{1, 2, . . . , n} suh that

g(w1 · · ·wn) = h(wσ(1) · · ·wσ(n)).Problem 4 (Cirular PCP). Given two morphisms h, g : A∗ → B∗, doesthere exist words u, v ∈ A∗ with uv 6= ε suh that
g(uv) = h(vu).Here the words w1 = uv and w2 = vu are alled onjugates of eahother. Hene, the irular PCP ould be stated by asking whether thereexist onjugate words w1 and w2 suh that g(w1) = h(w2). The phrase`irular PCP' refers to the problem setting where the words are onsideredto be yli, i.e., the last letter is followed by the �rst letter.Note that the irular PCP is the same as the 2-permutation PCP, andtrivially the 1-permutation PCP is just the PCP.The undeidability proofs by Ruohonen in [10℄ employ an undeidableproperty of linearly bounded automata. The proofs by Ruohonen are ratherlong and tehnial, and therefore, there is a request for simpler proofs forthese problems. In [3℄, instead of linearly bounded automata, the authorsemployed a speial variant of the word problem for semi-Thue systems whileproving the undeidability of the irular PCP. Here we shall use the sametehniques for the nPPCP.Let us brie�y disuss this speial form of the word problem. A semi-Thuesystem T is a pair (Σ, R) where Σ = {a1, a2, . . . , an} is a �nite alphabet, theelements of whih are alled generators of T , and R ⊆ Σ∗ ×Σ∗ is a relation.The elements of R are alled the rules of T . We shall also write x −→T y fora rule (x, y) ∈ R. We write u −→T v, if there exists a rule (x, y) ∈ R suhthat u = u1xu2 and v = u1yu2 for some words u1 and u2. We denote by −→∗

Tthe re�exive and transitive losure of −→T , and by −→+
T the transitive losureof −→T .If the relation R is symmetri, then T is a Thue system and then Torresponds to a semigroup with generators Σ and relations R.In the word problem for a semi-Thue system T = (Σ, R) we are given twowords u, v ∈ Σ∗ and the task is to determine whether or not there exists a2



derivation from u to v using the rules in R i.e., u →∗
T y. The �rst proofsfor undeidability of the word problem of semi-Thue systems were givenindependently by Post [9℄ and Markov [6℄.Let T = (Σ, R) be a semi-Thue system suh that Σ = A∪B and A∩B = ∅.Then T is alled B-deterministi, if1. R ⊆ A∗BA∗ × A∗BA∗, namely, if the rules ontain a unique letterfrom B on both sides,2. for all words w ∈ A∗BA∗, there is a unique derivation in TIn [3℄ it was proved that the word problem is undeidable forB-deterministisemi-Thue systems, and even in the following speial form:Theorem 1. Let T = (Σ, R) be a B-deterministi semi-Thue system suhthat Σ = A ∪ B and A ∩ B = ∅, and a, c ∈ A and S ∈ B. It is undeidablewhether or not there exists a nonempty (yli) derivation aSc −→+

T aSc.Note that in the above the derivation for the word aSc is unique in T .The proof of Theorem 1 uses the onstrution presented in [2℄ where thehalting problem of the Turing mahines is redued to the word problem ofthis speial type. This tehnique is based on the onstrution of Karhumäkiand Saarela [4℄ for proving the undeidability of injetive PCP.To redue an undeidability result of the semi-Thue system to instanesof the PCP, we apply the standard onstrution introdued by Claus [1℄. Theidea is to simulate a derivation of the semi-Thue system T on a word u withtwo morphisms g, h suh that there exist a word w with g(w) = h(w) if andonly if there is a derivation in T starting from u and ending in the givenword v. Here the word w orresponds to a required derivation aordingto T . Hene we may say that the morphisms g and h simulate derivations of
T starting from a given word u.2 ConstrutionWe shall shortly desribe the required details and properties of the onstru-tion of the proof of Theorem 1 in [3℄.Let CM = (Σ, R) be a B-deterministi semi-Thue system with Σ = A∪Band A ∩ B = ∅ as onstruted in [3℄. For all t ∈ R, t ∈ A∗BA∗ × A∗BA∗.Moreover, there are two speial symbols a, c ∈ A, and two speial rules

tI = (aSc, uIbIvI) and tC = (uCbCvC , aSc) (3)in R suh that S, bI , bC ∈ B are �xed by the determinism of CM. These rulesare the initial rule (tI) and the �nal rule (tC). Now, by [3℄ it is undeidablewhether or not
aSc −→+

CM
aSc. (4)3



By the determinism of CM, the above derivation is unique if it exists. Also, bythe onstrution in [2℄, the speial letters a and c has the following property:For all w,
aSc −→∗

CM
w implies w ∈ D∗aD∗bD∗c,where D = A \ {a, c} and b ∈ B. In other words, the letter c is the rightmarker symbol of the derivation.Denote the set of rules R by R = {tI , t1, . . . , tk, tC}. Next, we take n− 1opies of the alphabets R and Σ. The ith opy of R and Σ are denoted by

R(i) = {t(i) | t ∈ R} and Σ(i) = {y(i) | y ∈ Σ},for i = 1, 2, . . . , n − 1. We let A(i) = {x(i) | x ∈ A}. De�ne Γ = R ∪ A,
Γ(i) = R(i) ∪ A(i), and

Γn = ∪n−1
i=1 Γ

(i) and Σn = ∪n−1
i=1 Σ

(i).For all words w ∈ (Σ ∪ R)∗, denote by w(i) the results when all letters in ware replaed by their ith opies.Next let∆ = Σn∪{d} where d is a new symbol not in Σ∪R, and let ℓd and
rd be the desynhronizing morphisms de�ned by ℓd(x) = dx and rd(x) = xdfor eah letter x ∈ Σn.Now let τ be a permutation of the set {1, . . . , n−1}. We de�ne two mor-phisms, g, h : Γ∗

n → ∆∗ as follows. For any letter a ∈ A and i = 1, 2, . . . , n−1,set
g(a(i)) = ℓd(a

(i)) = da(i) and h(a(i)) = rd(a
(τ(i))) = a(τ(i))d,and for t ∈ R with t 6= tC , say t = u1b1v1 −→ u2b2v2, we set

g(t(i)) = ℓd((u1b1v1)
(i)) and h(t(i)) = rd((u2b2v2)

(τ(i))),where u1, u2, v1, v2 ∈ Σ∗ and b1, b2 ∈ B, and i = 1, 2, . . . , n− 1.For the opies of tC = (ubCv, aSc), let
g(t

(i)
C ) = ℓd((ubCv)

(i)) and h(t
(i)
C ) = rd((aSc)

(τ(i)+1)),for i = 1, . . . , n− 2 and for i = n− 1, set
g(t

(i)
C ) = ℓd((ubCv)

(i))d and h(t
(i)
C ) = drd((aSc)

(1)).Assume now that there exists a yli nonempty omputation
aSc = β0 −→ β1 −→ β2 −→ · · · −→ βk = aSc,in CM where βj = xj(ujbjvj)yj, and tj = (ujbjvj , u

′
jbj+1v

′
j) ∈ R, bj , bj+1 ∈ B,for j = 0, . . . , k − 1. Note that neessarily t0 = tI and tk−1 = tC , and by4



onstrution in [3℄, we have x0 = y0 = xk−1 = yk−1 = ε, in other words,
tI = (β0, β1) and tC = (βk−1, βk) = (βk−1, β0). De�ne now a word

w = x0t0y0x1t1y1 · · ·xk−1tk−1yk−1 = tIx1t1y1 · · ·xk−2tk−2yk−2tC .For i = 1, . . . , n− 2, our onstrution gives
g(w(i)) = ℓd((β0 · · ·βk−1)

(i)) = ℓd((aScβ1 · · ·βk−1)
(i))

h(w(i)) = rd((β1 · · ·βk−1)
(τ(i))(βk)

(τ(i)+1))

= rd((β1 · · ·βk−1)
(τ(i))(aSc)(τ(i)+1)).For i = n− 1, we have

g(w(i)) = ℓd((β0 · · ·βk−1)
(i))d = ℓd((aScβ1 · · ·βk−1)

(i))d

h(w(i)) = rd((β1 · · ·βk−1)
(τ(i)))drd((βk)

(1))

= rd((β1 · · ·βk−1)
(τ(i)))drd((aSc)

(1)).De�ne a word ω = w(1)w(2) · · ·w(n−1), then learly
g(ω) = ℓd((β0β1 · · ·βk−1)

(1) · · · (β0β1 · · ·βk−1)
(n−1))dand, sine β0 = βk,

h(ω) =rd[(β1 · · ·βk−1)
(τ(1))(β0)

(τ(1)+1)

(β1 · · ·βk−1)
τ(2)(β0)

(τ(2)+1) · · ·

(β0)
(τ(n−2)+1)(β1 · · ·βk−1)

(τ(n−1))]drd((β0)
(1)).De�ne next the permutation σ by setting σ(1) = n and σ(i) = τ (−1)(i−1)for i = 2, . . . , n. Next, let the words w′

i be suh that
ω = w′

1t
(1)
C w′

2t
(2)
C · · ·w′

n−1t
(n−1)
C ,and, furthermore, set wi = w′

it
(i)
C for i = 1, . . . , n − 2, wn−1 = w′

n−1 and
wn = t

(n−1)
C . Finally, we have
h(wσ(1)wσ(2) · · ·wσ(n)) = h(wnw(τ (−1)(1)) · · ·w(τ (−1)(n−1)))

= drd((β0)
(1))rd[(β1 · · ·βk−1)

(1)(β0)
(1+1)

(β1 · · ·βk−1)
(2)(β0)

(2+1) · · ·

(β0)
(n−1)(β1 · · ·βk−1)

(n−1)]

= g(w1 · · ·wn).Therefore, we have shown 5



Lemma 1. If there exists a yli omputation aSc −→+ aSc in CM, thenthere exists a solution for the nPPCP for instane (g, h) de�ned above.For the other diretion, we proveLemma 2. Let (g, h) be an instane of the nPPCP as de�ned above. Ifthere exists a solution for the nPPCP, then there exists a nonempty yliomputation aSc −→+ aSc in semi-Thue system CM.Proof. Assume that the instane (g, h) of the nPPCP has a solution, say
ω = w1 · · ·wn and g(ω) = w = h(wσ(1) · · ·wσ(n)). First note a key featureof the onstrution: the letters from the set B appear only in the images ofrule symbols t(i) of some R(i).Now, the desynhronizing fores that w ∈ d(Σd)+. Therefore, ω mustontain (indeed, wσ(1) must begin with) the symbol t(n−1)

C , sine that is theonly symbol having d as the �rst symbol in the image of the morphism h.Sine h(t(n−1)
C ) = drd((aSc)

(1)), and sine (aSc)(1) an be generated as animage of g only by t(1)I , the word ω must begin with t(1)I . Next we see that
h(t

(1)
I ) = rd((β1)

(τ(1))), where tI = (aSc, β1) and
aSc −→ β1in CM. Continuing, in order to get ℓd(β(τ(1))

1 ) as an image of g, we neessarilyhave β1 = x1(u1b1v1)y1, and there must exists a rule t1 = (u1b1v1, u
′
1b2v

′
1) ∈ Rwith b1, b2 ∈ B, and (x1t1y1)

(τ(1)) is a fator of ω. Therefore, for β2 =
x1u

′
1b2v

′
1, we have

aSc −→ β1 −→ β2in CM. Now,
h((x1t1y1)

(τ(1))) = rd((x1u
′

1b2v
′

1y1)
(τ(τ(1)))) = rd((β2)

(τ(τ(1)))).Omitting the opies of the letters, we may ontinue the reasoning and �ndthat there exists a derivation
aSc −→ β1 −→ · · · −→ βkin CM. On the other hand, sine ω is �nite, the derivation must be �nite. Theonly possibility for the reasoning to stop and not to fore new on�gurationin the derivation, is that there is no next opy of the on�guration in theimage word w. This means that the rule that is used last must be t(n−1)

C ,sine its image in h was already plaed and fored ℓd((aSc)(1)) in the imageof g. Therefore, we have proved that if there exists a solution, there must bea yli derivation
aSc −→ β1 −→ · · · −→ βk = aSc6



Theorem 2. There exists a nonempty omputation
aSc −→+ aScin CM if and only if there exists a nonempty ω ∈ Γn suh that ω = w1w2 · · ·wnand g(ω) = h(wσ(1)wσ(2) · · ·wσ(n)) for some permutation σ on {1, . . . , n}.Proof. Follows from Lemmata 1 and 2.By Theorem 1, we now have a new proof of the following orollary.Corollary 1. The n-permutation PCP is undeidable.Referenes[1℄ V. Claus, Some remarks on PCP(k) and related problems, Bull. EATCS12 (1980), 54 � 61.[2℄ V. Halava and T. Harju, Word problem for deterministi and reversiblesemi-Thue systems, manusript (submitted), TUCS Tehnial Report1044, TUCS, 2012.[3℄ V. Halava and T. Harju, New proof for the undeidability of the irularPCP, Ata Informatia, to appear.[4℄ J. Karhumäki and A. Saarela, None�etive Regularity of Equality Lan-guages and Bounded Delay Morphisms, Disrete Mathematis & Theo-retial Computer Siene, 12(4): 9�18, 2010.[5℄ M.Y. Leerf, Réursive insolubilité de l'équation générale de diagonali-sation de deux monomorphismes de monoïdes libres ϕx = ψx, ComptesRendus 257 (1963), 2940 � 2943.[6℄ A.A. Markov, On the impossibility of ertain algorithms in the theory ofassoiative systems, Dokl. Akad. Nauk 55 (1947), 587 � 590; 58 (1947),353 � 356 (Russian).[7℄ Y. Matiyasevih and G. Sénizergues. Deision problems for semi�Thuesystems with a few rules. Theor. Comput. Si. 330(1):145-169, 2005[8℄ E. Post, A variant of a reursively unsolvable problem, Bulletin of Amer.Math. So. 52 (1946), 264 � 268.[9℄ E. Post, Reursive unsolvability of a problem of Thue, J. Symb. Logi 12(1947), 1 � 11. 7
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8





Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tus.�



University of Turku
• Department of Information Tehnology
• Department of Mathematis
Åbo Akademi University
• Department of Information Tehnologies
Turku Shool of Eonomis
• Institute of Information Systems Sienes

ISBN 978-952-12-2921-3ISSN 1239-1891


