
Vesa Halava | Tero Harju | Mari Huova
On n-permutation Post Corresponden
eProblem

TUCS Te
hni
al ReportNo 1084, De
ember 2013





On n-permutation Post Corresponden
eProblemVesa HalavaDepartment of Mathemati
s and Statisti
sUniversity of TurkuFI-20014 Turku, Finlandvehalava�utu.fiTero HarjuDepartment of Mathemati
s and Statisti
sUniversity of TurkuFI-20014 Turku, Finlandharju�utu.fiMari HuovaDepartment of Mathemati
s and Statisti
sand TUCS - Turku Centre for Computer S
ien
eUniversity of TurkuFI-20014 Turku, Finlandmari.huova�utu.fi
TUCS Te
hni
al ReportNo 1084, De
ember 2013



Abstra
tWe give new and simpler proof for the unde
idability of the n-permutationPost Corresponden
e Problem that was originally proved by K. Ruohonen(A
ta Informati
a 19 (1983), 357 � 367). Our proof uses a re
ent unde
idabil-ity result on deterministi
 semi-Thue systems that says that it is unde
idable,for a given deterministi
 semi-Thue system T and a word u, whether or notthere exists a nonempty 
y
li
 derivation u −→∗
T u in T .Keywords: Permutation Post Corresponden
e Problem, semi-Thue system,word problem, deterministi
, 
y
li
 derivation
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1 Introdu
tionIn the history of 
omputation, the Post Corresponden
e Problem and it vari-ants have played a major role as a simply de�ned algorithmi
ally unde
idableproblem that 
an be used to prove other unde
idability results. For example,several problems in formal language theory and theory of integer matri
esare shown to be unde
idable by redu
ing the Post Corresponden
e Problemto them.The original formulation of the Post Corresponden
e Problem, or PCPfor short, by Emil Post [8℄ is the following:Problem 1 (PCP). Let B be an alphabet, and let B∗ be the set of all �nitewords over B, in
luding the empty word ε. Given an integer n and two �niteordered lists of words
(u1, u2, . . . , un) and (v1, v2, . . . , vn) (1)where ui, vi ∈ B∗ for all i = 1, 2, . . . , n, does there exist a �nite nonemptysequen
e i1, i2, . . . , ik of indi
es su
h that

ui1ui2 · · ·uik = vi1vi2 · · · vik? (2)An instan
e of the PCP 
onsists of two sequen
es (1) of words wherethe integer n ≥ 1 is 
alled the size of the instan
e. A sequen
e i1, i2, . . . , iksatisfying (2) is 
alled a solution of the instan
e. The PCP was proven to beunde
idable by its inventor Emil Post in 1946 in [8℄.The PCP is given an equivalent form in Problem 2. Let A and B betwo alphabets. A mapping h : A∗ → B∗ is a morphism, if h(uv) = h(u)h(v)holds for all u, v ∈ A∗. For an instan
e I in (1) with ui, vi ∈ B∗, let A =
{a1, a2, . . . , an} be an alphabet and de�ne two morphisms h, g : A∗ → B∗ by

g(ai) = ui and h(ai) = vifor all i = 1, 2, . . . , n. Then the original form of the PCP is equivalent to thefollowing problem.Problem 2 (PCP). Given two morphisms g, h : A∗ → B∗, does there exist anonempty word w ∈ A+ su
h that
g(w) = h(w) ?Now, a pair I = (g, h) of morphisms is said to be an instan
e of thePCP, and a word w satisfying h(w) = g(w) is 
alled a solution of the in-stan
e I. The size of the instan
e (g, h) is the 
ardinality of the domainalphabet A. Noti
e that the size of an instan
e refers to the same value inboth formulations of the PCP. 1



Several variants of the PCP are known to be unde
idable. By a variantwe mean a restri
tion of the PCP to a spe
i�
 type of instan
es. For example,it is known that the PCP is unde
idable for instan
es of size 7; see [7℄. It isalso known that the PCP is unde
idable for instan
es of inje
tive morphisms;see [5, 11℄ and [4℄ for a more re
ent proof to this end.In [10℄, K. Ruohonen proved that the following two variants of the PCPare unde
idable.Problem 3 (n-permutation PCP (nPPCP)). Given two morphisms h, g : A∗ →
B∗, does there exist a word w = w1w2 · · ·wn and a permutation σ of the set
{1, 2, . . . , n} su
h that

g(w1 · · ·wn) = h(wσ(1) · · ·wσ(n)).Problem 4 (Cir
ular PCP). Given two morphisms h, g : A∗ → B∗, doesthere exist words u, v ∈ A∗ with uv 6= ε su
h that
g(uv) = h(vu).Here the words w1 = uv and w2 = vu are 
alled 
onjugates of ea
hother. Hen
e, the 
ir
ular PCP 
ould be stated by asking whether thereexist 
onjugate words w1 and w2 su
h that g(w1) = h(w2). The phrase`
ir
ular PCP' refers to the problem setting where the words are 
onsideredto be 
y
li
, i.e., the last letter is followed by the �rst letter.Note that the 
ir
ular PCP is the same as the 2-permutation PCP, andtrivially the 1-permutation PCP is just the PCP.The unde
idability proofs by Ruohonen in [10℄ employ an unde
idableproperty of linearly bounded automata. The proofs by Ruohonen are ratherlong and te
hni
al, and therefore, there is a request for simpler proofs forthese problems. In [3℄, instead of linearly bounded automata, the authorsemployed a spe
ial variant of the word problem for semi-Thue systems whileproving the unde
idability of the 
ir
ular PCP. Here we shall use the samete
hniques for the nPPCP.Let us brie�y dis
uss this spe
ial form of the word problem. A semi-Thuesystem T is a pair (Σ, R) where Σ = {a1, a2, . . . , an} is a �nite alphabet, theelements of whi
h are 
alled generators of T , and R ⊆ Σ∗ ×Σ∗ is a relation.The elements of R are 
alled the rules of T . We shall also write x −→T y fora rule (x, y) ∈ R. We write u −→T v, if there exists a rule (x, y) ∈ R su
hthat u = u1xu2 and v = u1yu2 for some words u1 and u2. We denote by −→∗

Tthe re�exive and transitive 
losure of −→T , and by −→+
T the transitive 
losureof −→T .If the relation R is symmetri
, then T is a Thue system and then T
orresponds to a semigroup with generators Σ and relations R.In the word problem for a semi-Thue system T = (Σ, R) we are given twowords u, v ∈ Σ∗ and the task is to determine whether or not there exists a2



derivation from u to v using the rules in R i.e., u →∗
T y. The �rst proofsfor unde
idability of the word problem of semi-Thue systems were givenindependently by Post [9℄ and Markov [6℄.Let T = (Σ, R) be a semi-Thue system su
h that Σ = A∪B and A∩B = ∅.Then T is 
alled B-deterministi
, if1. R ⊆ A∗BA∗ × A∗BA∗, namely, if the rules 
ontain a unique letterfrom B on both sides,2. for all words w ∈ A∗BA∗, there is a unique derivation in TIn [3℄ it was proved that the word problem is unde
idable forB-deterministi
semi-Thue systems, and even in the following spe
ial form:Theorem 1. Let T = (Σ, R) be a B-deterministi
 semi-Thue system su
hthat Σ = A ∪ B and A ∩ B = ∅, and a, c ∈ A and S ∈ B. It is unde
idablewhether or not there exists a nonempty (
y
li
) derivation aSc −→+

T aSc.Note that in the above the derivation for the word aSc is unique in T .The proof of Theorem 1 uses the 
onstru
tion presented in [2℄ where thehalting problem of the Turing ma
hines is redu
ed to the word problem ofthis spe
ial type. This te
hnique is based on the 
onstru
tion of Karhumäkiand Saarela [4℄ for proving the unde
idability of inje
tive PCP.To redu
e an unde
idability result of the semi-Thue system to instan
esof the PCP, we apply the standard 
onstru
tion introdu
ed by Claus [1℄. Theidea is to simulate a derivation of the semi-Thue system T on a word u withtwo morphisms g, h su
h that there exist a word w with g(w) = h(w) if andonly if there is a derivation in T starting from u and ending in the givenword v. Here the word w 
orresponds to a required derivation a

ordingto T . Hen
e we may say that the morphisms g and h simulate derivations of
T starting from a given word u.2 Constru
tionWe shall shortly des
ribe the required details and properties of the 
onstru
-tion of the proof of Theorem 1 in [3℄.Let CM = (Σ, R) be a B-deterministi
 semi-Thue system with Σ = A∪Band A ∩ B = ∅ as 
onstru
ted in [3℄. For all t ∈ R, t ∈ A∗BA∗ × A∗BA∗.Moreover, there are two spe
ial symbols a, c ∈ A, and two spe
ial rules

tI = (aSc, uIbIvI) and tC = (uCbCvC , aSc) (3)in R su
h that S, bI , bC ∈ B are �xed by the determinism of CM. These rulesare the initial rule (tI) and the �nal rule (tC). Now, by [3℄ it is unde
idablewhether or not
aSc −→+

CM
aSc. (4)3



By the determinism of CM, the above derivation is unique if it exists. Also, bythe 
onstru
tion in [2℄, the spe
ial letters a and c has the following property:For all w,
aSc −→∗

CM
w implies w ∈ D∗aD∗bD∗c,where D = A \ {a, c} and b ∈ B. In other words, the letter c is the rightmarker symbol of the derivation.Denote the set of rules R by R = {tI , t1, . . . , tk, tC}. Next, we take n− 1
opies of the alphabets R and Σ. The ith 
opy of R and Σ are denoted by

R(i) = {t(i) | t ∈ R} and Σ(i) = {y(i) | y ∈ Σ},for i = 1, 2, . . . , n − 1. We let A(i) = {x(i) | x ∈ A}. De�ne Γ = R ∪ A,
Γ(i) = R(i) ∪ A(i), and

Γn = ∪n−1
i=1 Γ

(i) and Σn = ∪n−1
i=1 Σ

(i).For all words w ∈ (Σ ∪ R)∗, denote by w(i) the results when all letters in ware repla
ed by their ith 
opies.Next let∆ = Σn∪{d} where d is a new symbol not in Σ∪R, and let ℓd and
rd be the desyn
hronizing morphisms de�ned by ℓd(x) = dx and rd(x) = xdfor ea
h letter x ∈ Σn.Now let τ be a permutation of the set {1, . . . , n−1}. We de�ne two mor-phisms, g, h : Γ∗

n → ∆∗ as follows. For any letter a ∈ A and i = 1, 2, . . . , n−1,set
g(a(i)) = ℓd(a

(i)) = da(i) and h(a(i)) = rd(a
(τ(i))) = a(τ(i))d,and for t ∈ R with t 6= tC , say t = u1b1v1 −→ u2b2v2, we set

g(t(i)) = ℓd((u1b1v1)
(i)) and h(t(i)) = rd((u2b2v2)

(τ(i))),where u1, u2, v1, v2 ∈ Σ∗ and b1, b2 ∈ B, and i = 1, 2, . . . , n− 1.For the 
opies of tC = (ubCv, aSc), let
g(t

(i)
C ) = ℓd((ubCv)

(i)) and h(t
(i)
C ) = rd((aSc)

(τ(i)+1)),for i = 1, . . . , n− 2 and for i = n− 1, set
g(t

(i)
C ) = ℓd((ubCv)

(i))d and h(t
(i)
C ) = drd((aSc)

(1)).Assume now that there exists a 
y
li
 nonempty 
omputation
aSc = β0 −→ β1 −→ β2 −→ · · · −→ βk = aSc,in CM where βj = xj(ujbjvj)yj, and tj = (ujbjvj , u

′
jbj+1v

′
j) ∈ R, bj , bj+1 ∈ B,for j = 0, . . . , k − 1. Note that ne
essarily t0 = tI and tk−1 = tC , and by4




onstru
tion in [3℄, we have x0 = y0 = xk−1 = yk−1 = ε, in other words,
tI = (β0, β1) and tC = (βk−1, βk) = (βk−1, β0). De�ne now a word

w = x0t0y0x1t1y1 · · ·xk−1tk−1yk−1 = tIx1t1y1 · · ·xk−2tk−2yk−2tC .For i = 1, . . . , n− 2, our 
onstru
tion gives
g(w(i)) = ℓd((β0 · · ·βk−1)

(i)) = ℓd((aScβ1 · · ·βk−1)
(i))

h(w(i)) = rd((β1 · · ·βk−1)
(τ(i))(βk)

(τ(i)+1))

= rd((β1 · · ·βk−1)
(τ(i))(aSc)(τ(i)+1)).For i = n− 1, we have

g(w(i)) = ℓd((β0 · · ·βk−1)
(i))d = ℓd((aScβ1 · · ·βk−1)

(i))d

h(w(i)) = rd((β1 · · ·βk−1)
(τ(i)))drd((βk)

(1))

= rd((β1 · · ·βk−1)
(τ(i)))drd((aSc)

(1)).De�ne a word ω = w(1)w(2) · · ·w(n−1), then 
learly
g(ω) = ℓd((β0β1 · · ·βk−1)

(1) · · · (β0β1 · · ·βk−1)
(n−1))dand, sin
e β0 = βk,

h(ω) =rd[(β1 · · ·βk−1)
(τ(1))(β0)

(τ(1)+1)

(β1 · · ·βk−1)
τ(2)(β0)

(τ(2)+1) · · ·

(β0)
(τ(n−2)+1)(β1 · · ·βk−1)

(τ(n−1))]drd((β0)
(1)).De�ne next the permutation σ by setting σ(1) = n and σ(i) = τ (−1)(i−1)for i = 2, . . . , n. Next, let the words w′

i be su
h that
ω = w′

1t
(1)
C w′

2t
(2)
C · · ·w′

n−1t
(n−1)
C ,and, furthermore, set wi = w′

it
(i)
C for i = 1, . . . , n − 2, wn−1 = w′

n−1 and
wn = t

(n−1)
C . Finally, we have
h(wσ(1)wσ(2) · · ·wσ(n)) = h(wnw(τ (−1)(1)) · · ·w(τ (−1)(n−1)))

= drd((β0)
(1))rd[(β1 · · ·βk−1)

(1)(β0)
(1+1)

(β1 · · ·βk−1)
(2)(β0)

(2+1) · · ·

(β0)
(n−1)(β1 · · ·βk−1)

(n−1)]

= g(w1 · · ·wn).Therefore, we have shown 5



Lemma 1. If there exists a 
y
li
 
omputation aSc −→+ aSc in CM, thenthere exists a solution for the nPPCP for instan
e (g, h) de�ned above.For the other dire
tion, we proveLemma 2. Let (g, h) be an instan
e of the nPPCP as de�ned above. Ifthere exists a solution for the nPPCP, then there exists a nonempty 
y
li

omputation aSc −→+ aSc in semi-Thue system CM.Proof. Assume that the instan
e (g, h) of the nPPCP has a solution, say
ω = w1 · · ·wn and g(ω) = w = h(wσ(1) · · ·wσ(n)). First note a key featureof the 
onstru
tion: the letters from the set B appear only in the images ofrule symbols t(i) of some R(i).Now, the desyn
hronizing for
es that w ∈ d(Σd)+. Therefore, ω must
ontain (indeed, wσ(1) must begin with) the symbol t(n−1)

C , sin
e that is theonly symbol having d as the �rst symbol in the image of the morphism h.Sin
e h(t(n−1)
C ) = drd((aSc)

(1)), and sin
e (aSc)(1) 
an be generated as animage of g only by t(1)I , the word ω must begin with t(1)I . Next we see that
h(t

(1)
I ) = rd((β1)

(τ(1))), where tI = (aSc, β1) and
aSc −→ β1in CM. Continuing, in order to get ℓd(β(τ(1))

1 ) as an image of g, we ne
essarilyhave β1 = x1(u1b1v1)y1, and there must exists a rule t1 = (u1b1v1, u
′
1b2v

′
1) ∈ Rwith b1, b2 ∈ B, and (x1t1y1)

(τ(1)) is a fa
tor of ω. Therefore, for β2 =
x1u

′
1b2v

′
1, we have

aSc −→ β1 −→ β2in CM. Now,
h((x1t1y1)

(τ(1))) = rd((x1u
′

1b2v
′

1y1)
(τ(τ(1)))) = rd((β2)

(τ(τ(1)))).Omitting the 
opies of the letters, we may 
ontinue the reasoning and �ndthat there exists a derivation
aSc −→ β1 −→ · · · −→ βkin CM. On the other hand, sin
e ω is �nite, the derivation must be �nite. Theonly possibility for the reasoning to stop and not to for
e new 
on�gurationin the derivation, is that there is no next 
opy of the 
on�guration in theimage word w. This means that the rule that is used last must be t(n−1)

C ,sin
e its image in h was already pla
ed and for
ed ℓd((aSc)(1)) in the imageof g. Therefore, we have proved that if there exists a solution, there must bea 
y
li
 derivation
aSc −→ β1 −→ · · · −→ βk = aSc6



Theorem 2. There exists a nonempty 
omputation
aSc −→+ aScin CM if and only if there exists a nonempty ω ∈ Γn su
h that ω = w1w2 · · ·wnand g(ω) = h(wσ(1)wσ(2) · · ·wσ(n)) for some permutation σ on {1, . . . , n}.Proof. Follows from Lemmata 1 and 2.By Theorem 1, we now have a new proof of the following 
orollary.Corollary 1. The n-permutation PCP is unde
idable.Referen
es[1℄ V. Claus, Some remarks on PCP(k) and related problems, Bull. EATCS12 (1980), 54 � 61.[2℄ V. Halava and T. Harju, Word problem for deterministi
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ript (submitted), TUCS Te
hni
al Report1044, TUCS, 2012.[3℄ V. Halava and T. Harju, New proof for the unde
idability of the 
ir
ularPCP, A
ta Informati
a, to appear.[4℄ J. Karhumäki and A. Saarela, None�e
tive Regularity of Equality Lan-guages and Bounded Delay Morphisms, Dis
rete Mathemati
s & Theo-reti
al Computer S
ien
e, 12(4): 9�18, 2010.[5℄ M.Y. Le
erf, Ré
ursive insolubilité de l'équation générale de diagonali-sation de deux monomorphismes de monoïdes libres ϕx = ψx, ComptesRendus 257 (1963), 2940 � 2943.[6℄ A.A. Markov, On the impossibility of 
ertain algorithms in the theory ofasso
iative systems, Dokl. Akad. Nauk 55 (1947), 587 � 590; 58 (1947),353 � 356 (Russian).[7℄ Y. Matiyasevi
h and G. Sénizergues. De
ision problems for semi�Thuesystems with a few rules. Theor. Comput. S
i. 330(1):145-169, 2005[8℄ E. Post, A variant of a re
ursively unsolvable problem, Bulletin of Amer.Math. So
. 52 (1946), 264 � 268.[9℄ E. Post, Re
ursive unsolvability of a problem of Thue, J. Symb. Logi
 12(1947), 1 � 11. 7
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