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Abstract

We give new and simpler proof for the undecidability of the n-permutation
Post Correspondence Problem that was originally proved by K. Ruohonen
(Acta Informatica 19 (1983), 357 — 367). Our proof uses a recent undecidabil-
ity result on deterministic semi-Thue systems that says that it is undecidable,
for a given deterministic semi-Thue system 7" and a word u, whether or not
there exists a nonempty cyclic derivation v —% w in 7.
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1 Introduction

In the history of computation, the Post Correspondence Problem and it vari-
ants have played a major role as a simply defined algorithmically undecidable
problem that can be used to prove other undecidability results. For example,
several problems in formal language theory and theory of integer matrices
are shown to be undecidable by reducing the Post Correspondence Problem
to them.

The original formulation of the Post Correspondence Problem, or PCP
for short, by Emil Post [8] is the following:

Problem 1 (PCP). Let B be an alphabet, and let B* be the set of all finite
words over B, including the empty word . Given an integer n and two finite
ordered lists of words

(ug,ug,y ... uy) and (vi,va,...,0,) (1)
where u;,v; € B* for alli = 1,2,...,n, does there exist a finite nonempty
sequence iy, 1o, . .., 1 of indices such that

Wiy Wiy =+ WUjy, = Uiy Vig =+~ Uik? (2)

An instance of the PCP consists of two sequences (1) of words where
the integer n > 1 is called the size of the instance. A sequence 11,1, ...,
satisfying (2) is called a solution of the instance. The PCP was proven to be
undecidable by its inventor Emil Post in 1946 in [8].

The PCP is given an equivalent form in Problem 2. Let A and B be
two alphabets. A mapping h: A* — B* is a morphism, if h(uv) = h(u)h(v)
holds for all u,v € A*. For an instance [ in (1) with u;,v; € B*, let A =
{ai,as,...,a,} be an alphabet and define two morphisms h, g: A* — B* by

g(a;)) =u; and h(a;) =1

forall2=1,2,...,n. Then the original form of the PCP is equivalent to the
following problem.

Problem 2 (PCP). Given two morphisms g, h: A* — B*, does there exist a
nonempty word w € A" such that

Now, a pair I = (g,h) of morphisms is said to be an instance of the
PCP, and a word w satisfying h(w) = g(w) is called a solution of the in-
stance I. The size of the instance (g, h) is the cardinality of the domain
alphabet A. Notice that the size of an instance refers to the same value in
both formulations of the PCP.



Several variants of the PCP are known to be undecidable. By a variant
we mean a restriction of the PCP to a specific type of instances. For example,
it is known that the PCP is undecidable for instances of size 7; see [7]. It is
also known that the PCP is undecidable for instances of injective morphisms;
see [5, 11| and [4] for a more recent proof to this end.

In [10], K. Ruohonen proved that the following two variants of the PCP
are undecidable.

Problem 3 (n-permutation PCP (nPPCP)). Given two morphisms h, g: A* —
B*, does there exist a word w = wyws - - - w, and a permutation o of the set
{1,2,...,n} such that

gw -+ wyn) = MW (1) + +* Wo(n))-

Problem 4 (Circular PCP). Given two morphisms h,g: A* — B*, does
there exist words u,v € A* with uwv # € such that

g(uv) = h(vu).

Here the words w; = wv and wy = wu are called conjugates of each
other. Hence, the circular PCP could be stated by asking whether there
exist conjugate words w; and wsy such that g(w;) = h(ws). The phrase
‘circular PCP’ refers to the problem setting where the words are considered
to be cyclic, i.e., the last letter is followed by the first letter.

Note that the circular PCP is the same as the 2-permutation PCP, and
trivially the 1-permutation PCP is just the PCP.

The undecidability proofs by Ruohonen in [10] employ an undecidable
property of linearly bounded automata. The proofs by Ruohonen are rather
long and technical, and therefore, there is a request for simpler proofs for
these problems. In [3], instead of linearly bounded automata, the authors
employed a special variant of the word problem for semi-Thue systems while
proving the undecidability of the circular PCP. Here we shall use the same
techniques for the nPPCP.

Let us briefly discuss this special form of the word problem. A semi-Thue
system T is a pair (3, R) where ¥ = {ay, as, ...,a,} is a finite alphabet, the
elements of which are called generators of T, and R C ¥* x ¥* is a relation.
The elements of R are called the rules of T'. We shall also write x —r y for
a rule (z,y) € R. We write u —r v, if there exists a rule (z,y) € R such
that ©w = wyrus and v = uyyus for some words u; and us. We denote by —7
the reflexive and transitive closure of —7, and by — the transitive closure
of —T.

If the relation R is symmetric, then 7" is a Thue system and then T
corresponds to a semigroup with generators ¥ and relations R.

In the word problem for a semi-Thue system 7" = (¥, R) we are given two
words u,v € X* and the task is to determine whether or not there exists a
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deriwation from u to v using the rules in R i.e., u —% y. The first proofs
for undecidability of the word problem of semi-Thue systems were given
independently by Post [9] and Markov [6].

Let T'= (X, R) be a semi-Thue system such that ¥ = AUB and ANB = ).
Then T is called B-deterministic, if

1. R € A*BA* x A*BA*, namely, if the rules contain a unique letter
from B on both sides,

2. for all words w € A*BA*, there is a unique derivation in T

In [3] it was proved that the word problem is undecidable for B-deterministic
semi-Thue systems, and even in the following special form:

Theorem 1. Let T = (3, R) be a B-deterministic semi-Thue system such
that X = AUB and ANB =0, and a,c € A and S € B. It is undecidable
whether or not there exists a nonempty (cyclic) derivation aSc —1. aSc.

Note that in the above the derivation for the word aSc is unique in 7.
The proof of Theorem 1 uses the construction presented in [2| where the
halting problem of the Turing machines is reduced to the word problem of
this special type. This technique is based on the construction of Karhuméki
and Saarela [4] for proving the undecidability of injective PCP.

To reduce an undecidability result of the semi-Thue system to instances
of the PCP, we apply the standard construction introduced by Claus [1]. The
idea is to simulate a derivation of the semi-Thue system 7" on a word u with
two morphisms g, h such that there exist a word w with g(w) = h(w) if and
only if there is a derivation in 7T starting from u and ending in the given
word v. Here the word w corresponds to a required derivation according
to T'. Hence we may say that the morphisms g and h simulate derivations of
T starting from a given word u.

2 Construction

We shall shortly describe the required details and properties of the construc-
tion of the proof of Theorem 1 in [3].

Let Cyp = (3, R) be a B-deterministic semi-Thue system with ¥ = AUB
and AN B = () as constructed in [3]. For all t € R, t € A*BA* x A*BA*.
Moreover, there are two special symbols a,c € A, and two special rules

tr = (aSc, usbrvr)  and  to = (ucbcve, aSc) (3)

in R such that S, b;,bc € B are fixed by the determinism of C'y,. These rules
are the initial rule (¢;) and the final rule (t¢). Now, by [3] it is undecidable
whether or not

aSc —%M aSec. (4)
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By the determinism of C'y,, the above derivation is unique if it exists. Also, by
the construction in [2], the special letters a and ¢ has the following property:
For all w,

aSc —¢,, w implies w € D*aD*bD"c,

where D = A\ {a,c} and b € B. In other words, the letter ¢ is the right
marker symbol of the derivation.

Denote the set of rules R by R = {t;,t1,...,tx, tc}. Next, we take n — 1
copies of the alphabets R and >. The ith copy of R and X are denoted by

RY =t |t e R} and 30 ={y0|yex),

fori =1,2,....,n—1. Welet AW = {20 | € A}. Define I' = RU A,
' =ROUA® and

r,=uT® and %, =ur!n®,

For all words w € (X U R)*, denote by w® the results when all letters in w
are replaced by their ith copies.

Next let A = 33,,U{d} where d is a new symbol not in YUR, and let ¢, and
rq be the desynchronizing morphisms defined by (4(x) = dx and ry4(x) = xd
for each letter x € XJ,,.

Now let 7 be a permutation of the set {1,...,n—1}. We define two mor-
phisms, g, h: I} — A* as follows. For any lettera € Aandi=1,2,...,n—1,
set

g(a(i)) — gd(a(i)) — da  and h(a(i)) - rd(a(T(i))) = a7,
and for t € R with t # t¢, say t = u1bjvy — usbovs, we set
g(t(i)) = ﬁd((ulblful)(i)) and h(t(i)) = Td((UQbQ’UQ)(T(i))),

where uy, us, v1,v9 € X* and by,00 € B,and i =1,2,...,n — 1.
For the copies of t¢ = (ubcv, aSc), let

g(t¢)) = La((ubev)®)  and  R(te)) = ra(aSe)TOH),
fori=1,...,n—2and for i =n — 1, set
gty = Ly((ubcv)P)d  and  h(tY) = dry((aSc)D).
Assume now that there exists a cyclic nonempty computation
aSc=py — p1 — P2 = -+ = [ = aSkc,

in CM where ﬁj = xj(ujijj)yj, and t]‘ = (Ujijj, U;bj_i_ﬂ)}) S R, bj, bj+1 € B,
for j = 0,...,k — 1. Note that necessarily ty = t; and t;,_; = t¢, and by
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construction in [3|, we have g = yo = 1 = Yr_1 = &, in other words,

tr = (Po, 51) and te = (Bk—1, Br) = (Br—1, Bo). Define now a word
w = ZoloYoT1t1yr + -+ Th—1lk—1Yk—1 = tix1laiyr - - - Tp—2lp—2Yk—2lc.
Fori:=1,...,n — 2, our construction gives
g(w(i)) = La((Bo - 'ﬁk71>(i)) = La((aSchy - ’ﬁk71>(i))

h(wD) = rg((By -+ - Bee1) T (B) TO+D)
= ra((Br- - Br-1) TP (aSe)TOHY),

9(w") = Cal(Bo - Ber) V) = La((aSeBy -+ B1)?)d
h(wD) = ra((Br - - Br1) TD)dra((B) ")
=714((Br- - Br1) "dry((aSc)M).

Define a word w = wMw® ... w1 then clearly

g(w) = La((Bofr - ﬁk—l)(l) o (Bofy - ﬁk_l)(n_l))d

and, since [y = S,

h(w) =rg[(By - - - Bre1) TW)(By)TD+D
(B .Bk_l)r@) (ﬁo)(’r@)—l—l) o
(ﬁo>(7'(n—2)+1) (ﬁl . ﬁkfl>(T(n_1))]d7"d((ﬁo)(1)),

Define next the permutation o by setting o(1) = n and o (i) = 7V (i —1)
for i = 2,...,n. Next, let the words w, be such that

o= Dl g
and, furthermore, set w; = wgtg) fori=1,...,n —2, w,_; = w/,_, and
w, = tgf_l). Finally, we have

W(We(1)Wo(2) -+ - Wan)) = M(WnW(1(1)) W=D (1))
= dra((8o)M)ral(Br -+ Bre1)™M (Bo) Y
(B - '5@—1)(2)(50)(2“) e
(50)(71—1)(51 .. .Bk_l)(n—l)]

Therefore, we have shown



Lemma 1. If there ewists a cyclic computation aSc —* aSc in Cpy, then
there erists a solution for the nPPCP for instance (g, h) defined above.

For the other direction, we prove

Lemma 2. Let (g,h) be an instance of the nPPCP as defined above. If
there exists a solution for the nPPCP, then there exists a nonempty cyclic
computation aSc —T aSc in semi-Thue system Cpy.

Proof. Assume that the instance (g,h) of the nPPCP has a solution, say
w=w - w, and g(w) = w = h(Wsq1) - - - Wo(n)). First note a key feature
of the construction: the letters from the set B appear only in the images of
rule symbols t® of some R®.

Now, the desynchronizing forces that w € d(Xd)". Therefore, w must
contain (indeed, wy(1) must begin with) the symbol t(cnfl), since that is the
only symbol having d as the first symbol in the image of the morphism h.
Since h(t(cn_l)) = drg((aSc)M), and since (aSc)V) can be generated as an

)

image of g only by t(ll), the word w must begin with t(l1 . Next we see that

h(tM) = ra((8)M), where t; = (aSc, 8;) and
aSc — B4

in C'yy. Continuing, in order to get £4( Y(l))) as an image of g, we necessarily
have 31 = 1 (u1byv1)y1, and there must exists a rule t; = (u1byvq, u)bovy) € R
with b1,b, € B, and (z:t19,)"") is a factor of w. Therefore, for 3y =
x1uibyv], we have

aSc — ﬁl — 52

in Cyq. Now,
h((xltlyl)(f(n)) — rd((xlu'lbwiyl)(f(f(””) _ Td((&)(T(T(l)))).

Omitting the copies of the letters, we may continue the reasoning and find
that there exists a derivation

aSc— 1 — -+ — B

in C'ys. On the other hand, since w is finite, the derivation must be finite. The
only possibility for the reasoning to stop and not to force new configuration
in the derivation, is that there is no next copy of the configuration in the
image word w. This means that the rule that is used last must be t(g_l),
since its image in h was already placed and forced £4((aSc)V) in the image
of g. Therefore, we have proved that if there exists a solution, there must be
a cyclic derivation

aSc— B — - = P =aSc



Theorem 2. There exists a nonempty computation
aSc —1 aSc

in Cry if and only if there exists a nonempty w € T, such that w = wiws - - - w,
and g(w) = h(We1)Wa(2) - - - Wo(n)) for some permutation o on {1,...,n}.

Proof. Follows from Lemmata 1 and 2. O
By Theorem 1, we now have a new proof of the following corollary.

Corollary 1. The n-permutation PCP is undecidable.
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