
Jeanette Heidenberg | Jussi Katajala | Iván Porres

Maintainability Index for Decision Support on
Refactoring

TUCS Technical Report
No 992, November 2010





Maintainability Index for Decision Support on
Refactoring

Jeanette Heidenberg
TUCS Turku Centre for Computer Science
Åbo Akademi University
Joukahaisenkatu 3-5, FI-20520 Turku, Finland
jeanette.heidenberg@abo.fi

Jussi Katajala
OY LM Ericsson Ab
Hirsalantie 11, FI-02420 Jorvas, Finland
jussi.katajala@ericsson.com

Iván Porres
TUCS Turku Centre for Computer Science
Åbo Akademi University
Joukahaisenkatu 3-5, FI-20520 Turku, Finland
ivan.porres@abo.fi

TUCS Technical Report

No 992, November 2010



Abstract

Maintainability is a software attribute that needs to be continuously ad-
dressed during the entire development life-cycle. But the decision to refactor
in order to keep the software product maintainable is not always an easy one.
In this paper, we present a metrics-based approach for assessing the main-
tainability of code under development with the purpose of providing decision
support for refactoring decisions. Our approach is developed and validated
in the context of a large, mature telecommunications product.
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1 Introduction

According to the IEEE standard glossary [1] maintenance is “the process of
modifying a software system or component after delivery.” As such, main-
tenance is usually associated with the last stages of the development cycle.
This may not necessarily be the case in an iterative development process
such as the Rational Unified Process [16] or Scrum [22], where the software
is effectively under maintenance already after the first iteration. The cost of
maintaining and further developing a poorly designed system can be high.
This cost increases the longer the technological shortcomings go uncorrected,
until the code becomes unmanageable and essentially has to be completely
rewritten. This escalating problem is often called technical debt, or design
debt [7]. In order to ensure that the technical debt does not escalate out
of control, the maintainability of the product under development should be
addressed in all stages of the software process.

Refactoring [11] is the state of the practice for fighting the build-up of
technical debt. The design and architecture of the product should be un-
der constant improvement in order to accommodate new constraints and
requirements. Looking for code and design “smells” (code or design patterns
indicating bad design) and amending these should be an integral part of the
development work.

In reality the development team often has a difficult choice to make.
Whereas smaller refactoring efforts can usually be easily included in the
implementation effort, larger changes may require a greater effort and have
to be planned for. The project will face situations where they have to weigh
the cost of refactoring against the cost of cutting features from the delivery.
This decision is essentially a business decision, but it cannot be made without
a clear insight into its technical merits. In a large corporation the business
expertise and technical expertise is usually represented by different people,
often in different organizations, working towards different goals and using
different vocabularies. A lack of trust between the two is not uncommon.
For these reasons, reaching a decision to refactor may not be a trivial task.

In this paper, we present a metrics-based approach for assessing the main-
tainability of code under development with the purpose of providing decision
support for refactoring decisions. Our goal is to provide development teams
with a method for assessing and visualizing the technical debt in a way that
supports decision making and facilitates prioritization of refactoring efforts.

Our approach is developed in the context of a large, mature telecommu-
nications product. The product in question has been under development for
several years and has seen a development effort comprising hundreds of per-
son years, using several programming languages. Metrics from a number of
subsystems developed using IBM Rational Rose RealTime are collected. A
model for quantifying the maintainability of the subsystems is created and
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calibrated against the technical experts’ intuition of the maintainability of
the subsystems in question. We also validate the metrics against the before
and after states of a large refactoring effort (of one person year) known to
have had a positive effect of maintainability.

2 Background

2.1 Software Metrics

Software metrics are usually classified [9] as either product metrics or process
metrics. A software product metric is a function that quantifies a property
of the measured software. Lines of code (LOC) is an example of a software
product metric. In contrast, a software process metric is a function that
quantifies a property of the process used to develop software. Average LOC
per person-month is an example of a process metric.

In this paper we suggest the usage of metrics in order to assess the main-
tainability of code under development. The purpose of this assessment is to
provide the project with decision support for refactoring. We believe that
a good collection of trusted metrics can facilitate communication between
business stake-holders and technical experts to this end. We issue a strong
warning against the temptation to use these metrics to draw conclusions
regarding the skill or professionalism of the developers. It is essential to un-
derstand that a subsystem’s maintainability is not necessarily a reflection of
the competence of the development team. Many other factors influence this
attribute. These include the complexity of the implemented features, the
maturity of the product itself, the maturity of the used interfaces, clarity of
the requirements, and time pressure to mention but a few. For this reason,
the metrics proposed here should be used as information measurements only
and never for comparing the “goodness” of teams or individual developers.

2.2 Measuring Maintainability

We strive to measure the maintainability of software. Intuitively, we de-
fine maintainability as the ease of which a software system or component
can be modified to add or remove features, correct defects, improve quality
attributes such as performance, or adapt to changes in its environment.

We base our definition on standards such as the ISO 9126 [14]. Maintain-
ability is one of the six quality attributes listed in the ISO 9126 standard,
alongside functionality, reliability, usability, efficiency, and portability. As we
are addressing maintainability from the point of view of the developer, we are
interested in the internal aspects of this attribute, as opposed to the external
ones observed by, e.g., the customer. More specifically, we are interested in
the sub-attributes analyzability and changeability.
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In [12] we demonstrated by means of analysis of historical data as well as
a controlled experiment, that the use of certain design constructs can indicate
low maintainability in Rational Rose RT models. Briand et. al. have reached
similar conclusions [4] for object oriented software. Studies provide sets of
OO metrics for Java [17] and C++ [5] that can be used for decision support
for refactoring. Mäntylä and Lassenius show that such metrics can indeed be
used to predict refactoring needs [18], especially if complemented by manual
reviews of critical parts of the code [19]. It is even possible to estimate
the cost of maintenance based on complexity metrics, as demonstrated by
Fioravanti [10]. In contrast, Yu et. al. argue that it is not possible to
measure maintainability. However, their results make use of process metrics
only and are restricted to open-source contexts.

Coleman et.al. [6] present a number of methods for deriving a maintain-
ability index based on internal product metrics. We loosely follow their
approach, especially with regards to taking advantage of the intuition of the
developers in order to calibrate their index.

Moha et.al. [20] present a complete method for identifying code and de-
sign smells, starting from the identification and definition of smells, continu-
ing with processing the definition into executable algorithms, actual detection
of smells, and ending with the manual validation of the found smells.

2.3 M-MGw Software

This study was performed in the context of the Ericsson Media Gateway for
Mobile Networks (M-MGw) [8], which is a part of the softswitch solution
for Ericsson’s Mobile Core Network. The M-MGw was first commercially
launched in early 2003 and has since then been under development and main-
tenance with more than 100 people working actively in the projects at any
one time. The M-MGw is a mature and industrialized product, with an
install base of several hundred units in customer networks around the world.

The M-MGw is developed using 3 different languages and environments:
C, Java, and C++ in IBM Rational Rose RealTime. C is used to implement
low-level code running on digital signal processors (DSP). The C code in-
cludes strict resource and real-time constraints. Java is used to implement
monitoring and configuration facilities, including their user interfaces. The
Java code has no special resource or performance constraints. IBM Ratio-
nal Rose RealTime is used to describe reactive software using statecharts and
C++. The Rational Rose RealTime models contain performance constraints,
but no real-time constraints. The models contain action code in C++ and
are compiled to executable software with no separate step where the gener-
ated code would be modified. This study was performed in the context of
the subsystems developed using C++ in IBM Rational Rose RealTime.
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2.4 IBM Rational Rose RealTime

IBM Rational Rose RealTime is a modelling tool for reactive systems, used
for model-driven development with a subset of the UML 2.0 [21] standard
called UM RealTime.

The Rational Rose RealTime modeling approach is based on the concept
of a capsule. A capsule is an active component with its own thread of control.
It can communicate with other capsules via ports. A port may require or
realize an interface and an interface is defined as a set of signals. Capsule
communication is asynchronous. The main behavior of a capsule is specified
using a statechart diagram. In the M-MGw product, the guards and actions
of a statechart are defined using the C++ programming language. A capsule
may contain other capsules and passive objects, which are instances of C++
classes.

The execution of a transition is triggered by the reception of a signal on
one of the capsule’s ports. The triggered transition decides whether it deals
with the signal immediately or defers it until later. A deferred signal may
be recalled at any time during execution. When a transition is triggered, the
currently active state may change. If the previously active state contained an
exit action, the code within this action will be executed before the transition
code is executed. If the target state contains an entry action, the code
within this action will be executed after the transition code is executed.
Transitions may be composed of multiple transitions, either through nesting
of states or by choice points. A choice point contains a boolean expression,
and depending on the value of this expression the next transition in the chain
is selected.

2.5 The Challenges of Technical Debt

This work is part of a larger body of work instigated by the studied organ-
isation as the answer to a specific need. As the model driven approach of
IBM Rational Rose RealTime was rather new to the industry at the point in
time of the study, there was a lack of consensus among the developers as to
what constitutes good statechart design heuristics.

Partly as a consequence of this lack of consensus, the organisation did
not properly address technical debt. The business stakeholders and technical
staff did not have a good way of discussing technical debt. The business
stakeholders suspected the developers of being overzealous in perfecting the
technical details of the system, while the technical staff felt they were not
given enough time to restructure and refactor code that had deteriorated
over time.

The technical debt of one subsystem eventually reached a limit where it
could not be properly maintained any longer. A major restructuring effort
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was carried out with good results, and the organisation decided to learn more
about maintainability of IBM Rational Rose RealTime models and how to,
properly and in a timely fashion, address technical debt.

The question of what constitutes good statechart design was studied using
statistical methods and a controlled experiment and was reported in [12]. The
question of how to address technical debt is discussed in this paper.

3 Towards a Maintainability Index

This study was performed in a specific context with a specific goal of im-
proving the practices of the researched organization. This mainly affects the
study in the fact that the approach is pragmatic. The metrics need to be
easy to collect, in order for the organization to be able to deploy this practice
without encumbering the daily work of the developers. The metrics presenta-
tion should be easy to understand, in order for it to serve as a good decision
support system for both technical and business staff. The metrics should be
trustworthy, in order for it to be effective as a negotiation tool.

In order to serve the pragmatic needs of the organization, the metrics
collected are summarized in a maintainability index (MI). The purpose of
the maintainability index is to give an estimate of the technical debt of the
system in order to provide the projects with decision support on when and
where to intensify the refactoring efforts.

The M-MGw product is implemented in an incremental, iterative manner.
Small, internal deliveries are built and delivered for internal quality assurance
following a regular cadence. A number of such internal deliveries constitute
a formal delivery of the product. Quality assurance is a continuous effort on
different integration levels and a significant effort is invested in ensuring that
the formal delivery is of high quality.

In building a model of the maintainability of the IBM Rational Rose Re-
alTime models of the system under study, we collected metrics from seven
subsystems of one delivery of the M-MGw product. This we calibrate against
the intuition of subsystem experts regarding the maintainability of the sub-
systems in question. In the following, we account for the way these data were
collected and how they were used to evolve a model. This model was finally
validated by checking it against three deliveries of the same subsystem: a
version known to have poor maintainability, a restructured version known
to have significantly improved maintainability, and the version which was
current at the time of the study, and which was known to have deteriorated
somewhat since the restructuring effort.
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Sys1 Sys2 Sys3 Sys4 Sys5 Sys6 Sys7
Rating: M H L H H M L

Table 1: Maintainability Rating per Subsystem

3.1 Expert Intuition

For model calibration, we used the intuitive perception of a group of experts
regarding the maintainability of seven subsystems of the embedded system
developed by the organization in question. These experts were seasoned
developers and architects with extensive experience in working with the spe-
cific subsystems. They were either the technical owner of the subsystem in
question or held the role of software design architect or system architect.

This group of experts had formed with the objective to evaluate the qual-
ity of the architecture of one specifically problematic subsystem. During this
effort, one of the conclusions they reached was that they did not always agree
on what constitutes good design and whether a certain solution would be a
smell or an acceptable solution. This is an issue that is somewhat overlooked
in approaches such as the one proposed by Moha et. al. [20], but that in our
experience is not uncommon in the industry.

What the experts did agree on, however, was the relative maintainablitiy
of the subsystems, when compared to each other. This was based on their
vast experience in working with the different subsystems, systematic archi-
tectural reviews of the systems as well as experience of the defect trends in
the subsystems over serveral years. Table 1 depicts this intuitive evaluation
of the maintainability of the subsystems on a a three-point ordinal scale,
where one (L) signifies low maintainability and a clear need for refactoring,
two (M) signifies medium maintainability and possible need for refactoring
and three (H) signifies high maintainability and no need for refactoring.

It is worth noting that the evaluation was not explicitly collected for this
study, but was rather a by-product of the architectural evaluation effort.
Given more time and resources, we would have asked the experts to make
a more detailed rating. As we were limited in this respect, we chose to use
three-point scale, since a more detailed scale would have required a larger
evaluation effort by the experts.

3.2 Metrics Collection

The data points were gathered from three internal deliveries of the Rational
Rose RealTime subsystems of the product. First, we looked at the (then)
current internal delivery which would best match the experts’ intuition. We
refer to this delivery as dn. We also looked at historical data for one of
the subsystems, Sys6. This subsystem underwent major restructuring at an
earlier point in the lifetime of the product, since it had been determined that
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its technical debt had lead to an increasing maintenance effort. We look at
the delivery before (dr−1) and just after (dr) the refactoring of this subsystem.

Ericsson as a company values process maturity and as such has a high
standard of adherence to good software development practices. Good tools
and practices for configuration management are used. The software reposi-
tory contains ample information on what version of the code was delivered
in which delivery, thus enabling us to easily extract the relevant data from
the repository.

As there were no commercial tools available for collecting metrics on
systems designed using IBM Rational Rose RealTime, we collected metrics
using an in-house tool designed specifically for the purpose.

As a part of the earlier effort to clarify what constitutes good design of
statecharts [12] we had a studied a vast collection of metrics, and ended up
with a list of problematic design idioms to look for. Based on this study,
we also have a set of threshold values (or “trigger points” according to the
terminology used by Coleman et.al. [6]) for when these design idioms should
raise a warning flag. Furthermore, we used simple size and complexity metrics
to evaluate the maintainability of the action code in transitions, methods and
choice points.

Below follows a list of the selected metrics. Some of the selected metrics
are related purely to the visual aspects (V ) of the state machines, while
others are related to the action code (C ) in C++. The thresholds values were
selected based on the experience of our expert group, and were appropriate
for the context in question at the time of the study. The intention is for the
thresholds to be evaluated and updated periodically to reflect the current
state of the system as it evolves.

(V ) Ratio Choice Points / State This metric calculates the ratio of choice
points per state in the statechart. A large number indicates that there
are many different paths through the statechart. This may indicate the
antipattern commonly known as “flag jungle” among the organisation’s
developers. In this antipattern, the statechart depends on too many
attributes for decision making and some form of abstraction should be
considered, either by splitting the offending capsule or by turning some
of the attributes into states. The suggested threshold for this metric
is 1.

(V ) Visual Cyclomatic Complexity This metric calculates the cyclo-
matic complexity of the statechart as the number of transitions plus two
minus the sum of the number of states and choice points:

∑
transitions−

(
∑

states+
∑

choicepoints)+2. The suggested threshold for this metric
is 100.

(V ) Visual Size This metric calculates the number of visual elements in
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the statechart (ports, operations, attributes, states, choice points, tran-
sitions.) The suggested threshold for this metric is 300.

(C ) Method and Transition LOC This metric calculates the number of
efficient lines of code in methods and transitions. The suggested thresh-
old for this metric is 80.

(C ) Method and Transition Cyclomatic Complexity This metric cal-
culates McCabe’s cyclomatic complexity for action code in methods and
transitions. The suggested threshold for this metric is 10.

(C ) Choice Point LOC This metric calculates the number of efficient lines
of code in choice points. The suggested threshold for this metric is 20.
Note that this is much lower than the threshold for methods and tran-
sitions. This is due to the findings in our previous study, where choice
points seem to have a higher impact on the defect rate.

(C ) Choice Point Cyclomatic Complexity This metric calculates Mc-
Cabe’s cyclomatic complexity for action code in choice points. The
suggested threshold fro this metric is 5. Please note that this is much
lower than the threshold for methods and transitions, for the same
reason as the LOC metric.

(C ) Entry / Exit Actions This metric indicates whether there are entry
or exit actions in the statechart. (Warning)

(C ) Defer / Recall This metric indicates whether there are calls to defer
or recall in the action code of the statechart. (Warning)

We use the term design flaw to denote a location in a subsystem where the
measurement for one of the metrics listed above falls outside of the trigger.
We do not attempt to measure the degree of fit, i.e., much the design flaw
deviates from the trigger point range. Please note that we do not consider a
design flaw to be a defect. Although a design flaw may make the subsystem
more difficult to maintain, it does not necessarily degrade the functionality of
the subsystem. We also make this distinction for the reason that, although
the aim usually is to deliver a product without defects, it is not always
economically feasible to deliver a flawless product.

3.3 Definition of a Maintainability Index (MI)

Based on the metrics collected and with the calibration the intuition of the
developers we proceed to construct a model for assessing the maintainability.
We call this model a maintainability index (MI). We divide our MI into two
parts: the MI for action code (MIc)and the MI for visual elements (MIv).
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Our MI is based on the total number of design flaws, both visual and code
based. The count of design flaws found for the visual part of the measured
subsystem is denoted flv. The count of design flaws found for the action code
is denoted flc.

The maintainability index is not normalized over size, as the intention is
first and foremost to help the developers understand the size of the technical
debt by finding and flagging indications of problematic design. Normalization
over size would hide the true extent of the technical debt in large subsystems.

It may be difficult to understand the maintainability of a subsystem given
just on a number, though. If a subsystem has the a visual MI of 46 and code
MI of 2, should that subsystem be improved or not? In order to simplify
evaluation, the maintainability index is translated to a number between 0
and 1, where 1 indicates very good maintainability and 0 indicates very poor
maintainability.

The first step in this translation is to consider the relative weight of
the two parts: the code flaws (flc) and visual flaws (flv). Looking at the
collected data from delivery dn, we observe that the difference is in an order
of magnitude of 10 (see Figure 1). Further evaluation places the median for
the ratio flc/flv at about 20 (see Figure 2. The outlier is the reworked Sys6,
which had exceptionally few visual flaws due to the improvement work it had
seen some deliveries earlier.

0 5 10 15 20 25 30

0
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0
20
0
30
0
40
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0

Visual

C
od
e

Figure 1: The number of code flaws and visual flaws for each subsystem.

We continue to plotting the subsystems of delivery dn together with the
expert rating of the subsystems. The rating is translated to numeric val-
ues between 0 and 1, so that low maintainability (L) corresponds to value
0, medium (M) to value 0.5 and high (H) to value 1. When looking at the
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Figure 2: Boxplot of code flaws divided by visual flaws.

resulting graph (see Figure 3) , we notice that Sys3 seems to be an out-
lier. This was known to be an especially problematic subsystem, and the
experience was that the maintainability of this subsystem was much lower
than that of the others. The figure also shows a linear fit of the subsystems,
excluding outlier Sys3.

Visual flaws + Code flaws/20

In
tu
iti
on

0.
0

0.
5

1.
0

0 4 8 13 18 23 28 33 38 43 48 53 58

Figure 3: A plot of flv + flv/20 of the sybsystems of delivery dn.

Using this linear fit, we define the overall maintainability index for our
IBM Rational Rose RealTime subsystems. The index is limited to the interval
[0..1] and defined a follows:

MI(flc, flv) = min(max(
19

16
− flc/20 + flv

16
, 0), 1)

Figure 4 depicts this function. In order to make the maintainability index
more easily accessible for non-technical staff, we define five color coded levels
ranging from red (for very poor maintainability) to green (for very good
maintainability). The thresholds for these five levels can be seen in the figure
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and were derived by dividing the interval [3..19] (representing the minimum
and maximum of the function) in equally sized sections.

2 4 6 8 10 12 14 16 18 20 22 24

1

G
re

en
 (5

)

O
ra

ng
e 

(2
)

R
ed

 (1
)

Visual flaws + Code flaws/20

M
I

1 3 5 7 9
Li

gh
t g

re
en

 (4
)

Ye
llo

w
 (3

)
Figure 4: Maintainability function for IBM Rational Rose RealTime Models

For transparency reasons, MI can be split up into its components (MIc
and MIc). This way it is easier to see whether a subsystem needs code
improvements or improvements in the visual elements. Using the fact that
we have constructed our MI as MIv + MIc/20 we deduce the following two
functions for MIc and MIv, where flv and flc are the number of design flaws
for visual elements and action code respectively.

MIc(flc) = min(max(
19

16
− flc

160
, 0), 1)

MIv(flv) = min(max(
19

16
− flv

8
, 0), 1)

Figures 5 and 6 depict these functions.
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Figure 5: Maintainability function for code flaws.
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Figure 6: Maintainability function for visual flaws

3.4 Data Presentation and Evaluation

Table 2 lists the metrics gathered for delivery dn of each of the subsystems,
and also for deliveries dr−1 and dr in the case of subsystem Sys6. The
table also shows the calculated values for MIc, MIv and MIrrt together with
their corresponding color levels, as well as the expert rating for each of the
subsystems.

3.5 Validation against a Refactoring Effort

Figure 7 highlights the different values for MI for the three deliveries of
Sys6. The first (dr−1) is the last delivery before the refactoring; the second
(dr) is the first delivery after the refactoring; the third (dn) is the current
delivery. As we can see, the maintainability index increases substantially
after the refactoring. During this refactoring, both the code and the visual
design were improved. As a result, the project could measure a significant
decrease in defect reports and many of the defects that were found in earlier
deliveries and mapped to the current delivery could be discarded, since the
fault just simply did not exist any more due to the refactoring. The size of
this refactoring effort was approximately one person year.

It is also interesting to note that Sys6 has seen a slight degradation
in maintainability between dr and dn, when no refactoring has been done.
The experts have noticed this degradation, and we can also measure a lower
maintainability index.

4 Suggestions for Deployment Practices
In this section we give some suggestions on how to deploy a software main-
tainability index in an organization.

We suggest that the MI metrics should be collected at least at delivery
and the resulting list should be stored. For every warning, an action should
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Sys1 Sys2 Sys3 Sys4 Sys5 Sys6 Sys6 Sys6 Sys7
dn dn dn dn dn dr−1 dr dn dn

Visual size warnings: 0 0 3 0 2 0 0 0 0
Visual cyclomatic complexity warnings: 1 2 4 0 1 2 0 1 2
Visual choice points/states warnings: 2 1 4 0 0 0 0 0 5
Number of entry actions (warnings): 0 0 11 1 1 3 2 0 4
Number of exit actions (warnings): 0 0 7 2 0 3 0 0 0

Class operation amount warnings: 3 4 2 0 1 2 2 2 6
Number of defers (warnings): 15 0 48 8 3 45 19 30 28
Number of recalls (warnings): 4 0 19 7 4 32 14 20 23
Class operation LOC warnings: 27 1 49 0 5 2 5 14 16
Capsule operation LOC warnings: 11 1 44 2 0 0 0 1 5
Transition LOC warnings: 19 6 28 2 11 2 2 6 3
Choice point LOC warnings: 0 3 36 1 0 0 0 0 1
Class operation CC warnings: 38 0 160 0 12 5 17 29 42
Capsule operation CC warnings: 26 1 96 4 0 11 1 9 18
Transition CC warnings: 27 1 60 3 10 11 5 11 11
Choice point CC warnings: 0 2 44 1 0 0 0 0 1

SUMMARY:
Total number of code warnings: 170 19 586 28 46 110 65 122 154
Total number of visual warnings: 3 3 29 3 2 10 2 1 11

MIc: 0.13 1.00 0.00 1.00 0.90 0.50 0.78 0.43 0.22
Color level: (2) (5) (1) (5) (4) (3) (4) (3) (2)
MIv : 0.81 0.81 0.00 0.81 0.94 0.00 0.94 1.00 0.00
Color level: (4) (4) (1) (4) (4) (1) (4) (5) (1)
MI: 0.47 0.94 0.00 0.91 0.92 0.21 0.85 0.74 0.02
Color level: (3) (4) (1) (4) (4) (1) (4) (4) (2)

Expert rating: M H L H H L H M L

Table 2: Metrics per Subsystem
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Figure 7: MI for Sys6 Before and After Refactoring

be proposed. This action may be modified by the designer to describe the
solution in more detail. Each warning should have a status field, where it
can be noted whether it has been fixed or not. Figure 8 is an example of how
this could be documented.

As we would rather have the tool find false positives than miss real prob-
lems, all the findings that are not easily amended should be manually checked.
If a finding is a false positive it should be possible to exclude it from the index.
To avoid discarding real findings, a system expert should always approve the
discarding of a finding. We consider human intervention to be important in
this analysis, as there may be special circumstances that require exceptional
coding practices.

MyCapsule

Class/capsule Warning Action Status

Method size Split method Corrected

YourCapsule Cyclomatic 
complexity

Split capsule, 
use active class

Planned for 
delivery 65

HisCapsule Choice points 
per state

Split capsule, 
use active class

Planned for 
delivery 67

HerCapsule Uses defer/
recall

No action, used 
safely

No action 
(approved by JK)

Figure 8: Maintainability Index Actions

We also strongly suggest that the organization defines a process for main-
taining the model, including the definition of the MI function as well as its
thresholds. The model should be evaluated regularly and adjusted when
necessary. Both the overall maturity of the product and the business goals
of the project may be taken into account when defining the model. When
a product reaches high maturity, it may be more appropriate with stricter
thresholds than when the first versions of the product are created and the
business priority may be to hit a market window. The type of product and
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the estimated time it needs to be under maintenance also affect this deci-
sion. A safety critical system with a total life time of several decades needs
to display better maintainability than a mobile phone application, which is
in use for only a couple of years. The model should be adjusted to reflect
these circumstances.

4.1 MI Deployment Level (MDL)

As with any process improvement initiative, the deployment of the new
method may take time and need gradual introduction efforts. In order to
ensure that the level to which the maintainability index has been analyzed
and acted upon is clear to both the team and the project, we suggest a main-
tainability index deployment level (MDL) to be measured. These are the
suggested levels.

Lvl 1: the metrics have been collected.

Lvl 2: the metrics have been collected. Actions for the findings have been
suggested.

Lvl 3: the metrics have been collected. Actions for the findings have been
suggested and the minor ones implemented.

Lvl 4: the metrics have been collected. Actions for the findings have been
implemented or planned for later implementation, including project
approval.

Lvl 5: the metrics have been collected. Actions for all the findings have
been taken.

Targets for when the subsystems should have reached the certain levels
should be agreed upon.

4.2 Visualization

The MI and MDL can be visualized using a graphical visualization method
familiar from, e.g., the balanced score card approach [15]. An example for
two subsystems is displayed in Figure 9. For each subsystem, a gauge and a
progress bar shows the current status of the subsystem. The cost to improve
the MI by one step can be estimated, e.g., by looking at how much the
measurements deviate from the threshold and based on historical data of the
cost of similar changes. Initially, this number can be based on cost estimates
given by the developers.

It should be possible to drill down into the subsystem to see exactly where
the problem is located. In the example in Figure 10, we have drilled down
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Subsystem Maintainability Idx Deployment Level

System 1

System 7

3

2 4

1 5

MI: 2
Cost: 1200 ph

MDL: 4

3

2 4

1 5

MI: 3
Cost: 100 ph

MDL: 3

Figure 9: Maintainability Index Visualization

into the System 1 subsystem and are looking at the visual and code indexes
and the number of warnings that are the cause for the index.

3

Index Type Warnings Maintainability Idx

Visual

170Code

3

2 4

1 5

MI: 4
Cost: 90 ph

3

2 4

1 5

MI: 2
Cost: 10 ph

Figure 10: Maintainability Index Drilldown

We should be able to further drill down into the two different index types
to see the individual capsules and warnings. For an example of this, see
Figure 11.

5 Related Work

Different methods for measuring maintainability have been proposed and val-
idated through empirical methods before. Many use an approach similar to
ours, including a qualitative element, where subjects evaluate the design or
code based on their experience and knowledge of good design [4, 19, 18, 3, 6].
The main difference is the fact that most studies are performed in a small
setting with small example software systems (or “toy code application[s]”
to quote Mäntylä and Lassenius [18]) and students as subjects, whereas
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Visual Warnings
- Visual Size Warnings:
- Visual Cyclomatic Complexity Warnings:     
     - Capsule1C
- Choice Points/States Warnings:
     - Capsule2C 
     - Capsule3C
- Number of Entry Actions (Warning):
- Number of Exit Actions (Warning):

3
0
1 

111 
2

1.125
1.083 

0 
0

100

1
1

Warning Value Thrshld

Figure 11: Maintainability Index Drilldown

our study was performed in an industry setting with real systems and ex-
perienced software industry professionals as subjects. Although academic
studies are invaluable for furthering the state of the art, there are issues that
arise specifically when the trying to apply the results in an industrial setting.

Coleman et.al. [6] provide methods for deriving a maintainability index
for the purpose of decision support. They also calibrate their models using
expert intuition. One difference between their approach and ours is the fact
that our focus is more on early diagnostics and actionable metrics, whereas
their approach partly relies on after-the-fact metrics such as effort. Although
this can be estimated for diagnostic purposes, we chose to focus on a purely
internal product metric for our purposes. As an effect our approach provides
specific detailed improvement proposal support.

Moha et.al. [20] present a very complete method for specification and
detection of smells. They rely on domain experts to identify and specify
smells and how they are mesured in the specific context. In academic settings
this can be rather easily acieved by, e.g., majority rule. It is our experience,
however, that in an industrial setting it may be more difficult for the domain
experts to reach consensus by voting, since the most experienced experts are
most likely to have some attachment to the system, either by having been
involved in the development of the system or at least by knowing they will
be involved in it in the future.

Asthana and Olivieri [2] have done similar work in an industry context.
Their “Software Readiness Index” has a very different purpose than ours,
though. They look at the entire life-cycle of the software system and mea-
sure whether it is ready for release. Their focus is more on process metrics,
whereas we are more interested in internal product metrics. Furthermore,
they use quantitative data only and do not evaluate their results formally.
There are many similarities between our approaches, especially due to our
wish to provide an organization with decision support.

Our recommendation is to use an approach such as ours to help the orga-
nization understand what constitutes maintainability in their domain, cap-
turing the experience of the domain experts and providing the organization
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with decision support on where to focus their refactoring efforts.

6 Conclusions and Future Work
In this paper we present an approach to assess the maintainability of software
systems and their need for refactoring. It is based on the collection of internal
product metrics. This work was performed in the context of a large software
system in the telecommunications industry and with the help of experts from
the industry. The studied subsystems were written using IBM Rational Rose
RealTime and C++.

The historic data on one subsystem gave us data points just before and
after a major refactoring. It was clear that the maintainability of the sub-
system had improved substantially due to this refactoring. This observation
was confirmed by our model. Through our model, we could also observe that
this subsystem had later seen a slight degradation in maintainability. This
confirms the accepted fact that continuous refactoring is needed in order to
preserve the maintainability of a software system.

Future work includes long-term evaluation of the impact on software
maintainability of methods such as the one defined here, including the evo-
lution of the model itself. The process paradigm in the context of this study
was an iterative, incremental one. It would be interesting to see the impact
of this method in other contexts. Heidenberg and Porres have presented a
method for adopting this approach in an agile and lean context [13] as well.
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