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Abstract

This technical report introduces the current evolution of computing system
and their power dissipation and energy consumption. It focuses on the power and
energy consumption of microprocessor and presents in more details the two mech-
anisms, DVFS and DPM, available to increase the energy efficiency of computer
systems. Different traditional approaches to evaluate the load on a processor are
discussed and an extension of the notion of load taking into consideration Qual-
ity of Service of applications is proposed. Based on the extended load notion,
the construction of power and performance models and a design of a dedicated
benchmark, a run-time power manager is presented.

An evaluation of the presented benchmark and run-time power manager pro-
vides early results on the achievable power and energy savings and gives a com-
parison of the proposed approach with by default Completely Fair Linux scheduler
and load balancer.

Finally we present two ways of conducting power measurements by using both
internal and external power measurement devices. An open-hardware solution to
measure power from any kind of chip (provided that the current feed pin are ex-
posed) is presented together with an open-source logger software running on a
low-cost Raspberry Pi platform. This provide one concrete example to create a
cost efficient power tracing device without industrial scale manufacturing equip-
ment.

Keywords: Power, Energy, Measurements, Multi-Core, Benchmark, Model-based
run-time
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1 Introduction
Energy efficiency and power dissipation are becoming a key issues in all types of
computing systems, from hand-held devices to large scale distributed systems. On
the processor level, power dissipation is a major issue due to physical restrictions
of the transistors themselves. The power fed into a processor is dissipated as
heat and when exceeding a certain level this heat interferes with the transistor
operations. This phenomenon is called the power wall, which is the power limit a
processor can dissipate safely without heat induced damage or failures.

From the point of view of the average consumer, increasing processor energy
efficiency would prolong the time between recharging mobile devices such as lap-
tops and smart-phones and reduce noise levels of active cooling. Regarding data
centres this would allow them to decrease the overall electrical bill, enable them
smaller cooling infrastructures and provide more affordable cloud services. Low-
ering the energy consumption of data centres do not only affect their operational
costs and ecological footprint, but also have an impact on the possibilities to ex-
pand or construct new data centers.

In this report we present a number of processor level approaches to increase
the energy efficiency through different software designs. We also include as An-
nex the schematic of the developed external power meter and a description of the
data logger used to measure and log power values of the different studied comput-
ing platforms.

1.1 Trends in Computer Evolution

To better understand how the IT-industry expanded to its current form in only a
few decades, how the rate of development is being maintained and the challenges
of maintaining it, it helps to take a look at some trends and how they have affected
the semiconductor revolution.

Since the invent of the transistor, computer evolution, or more precisely chip
evolution, has more or less followed Moores law, which states that the complexity
of a single chip will double roughly every 18 months [26]. Moore’s original pre-
diction is shown in Figure 1. Even though this was an empirical observation at the
time, the accuracy of this observation has resulted in it being considered almost
as a physical law.

It has been argued that Moores law is somewhat of a self fulfilling prophesy,
since the industry has used the law as a guideline on which to base production
goals. In this way the law has not been a prediction per say, but more of a goal
towards which the industry has strived to and thus far succeeded in reaching. Nev-
ertheless, Moores law has proven to be accurate for the last decades.

The law has also been used to draw parallels between other, closely linked,
computational attributes such as computer performance. The growth of computer
performance has even become a common abbreviation of mores law, and states
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Figure 1: Moore’s law: complexity of chip increasing ever 18 months [26].

that computational performance will double roughly every 18 months [20]. Over
time this statement has also been shown to hold true.

Another, important observation that correlates with Moores’s law, is that the
energy efficiency of processors has also increased at a similar rate. This phe-
nomenon, called Koomey’s law, is partly a result of Dennard scaling which states
that as transistors decrease in size they are able to switch faster and use less power
[20] [3]. Koomey’s law is shown in Figure 2.

However as the size of individual transistors keep reducing other problems ap-
pear. One issue is the manufacturing difficulties and the physical effects of tran-
sistors as they get smaller, which has reduced the effects of Dennard scaling [3].
In order to keep performance and efficiency along with the evolutionary rate of
chip complexity, more and more effort has gone into creative design of hardware
as well as software. One example of this is the introduction of parallel chips.

Over the decades, the means of achieving performance increase has been re-
alized by clock frequency improvements, but since the middle 00s’, frequency
increase has decreased and even started to revert as illustrated in Figure 3.

The reason is the power wall, which is the maximum amount of power a pro-
cessor can dissipate safely with normal levels of cooling. In short, instead of in-
creasing the frequency for performance, the number of operational entities, cores,
are instead increased. The shift from constantly increasing the frequency to intro-
ducing more cores has kept Koomey’s law intact.

One can wonder why parallel computing has not become common in an earlier
stage. The simple answer is that there was really no need for parallel computing in
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Figure 2: Koomey’s law: computations per KWh over time [20].

the early decades of computer science. Already in 1967 Gene Amdahl presented
a paper in which the drawbacks and complexities of parallel systems where pre-
sented. This work was later converted into the well known Amdahl’s Law. Which
is used to calculate the relative performance increase based on the inherent par-
allelism of the software and number of available computational units. Regarding
the evolution of computational systems, at that time introducing parallelism did
not strictly seem worth the effort. In the same year Daniel Slotnick argued that the
need for re-innovation will come, and when it does, new solutions such as ways
of exploiting parallelism in an efficient manner will become important. His exact
words, later refereed to as Slotnick’s law, where:

”The parallel approach to computing, it must be said however, does
require that some original thinking be done about numerical analyses
and data management in order to secure efficient use. In an environ-

5



Figure 3: CPU clock frequency change over time [31] (y-axis is the clock fre-
quency in MHz)

ment which has represented the absence of the need to think as its
highest virtue this is a decided disadvantage.”

2 Power Dissipation and Energy Consumption in Mi-
croprocessors

To understand how energy is consumed in multi-core chips, the different com-
ponents consuming the energy must be defined and analysed. Since this report
focuses on CPU/chip level energy consumption, we first address the power dissi-
pation breakdown in semi-conductors.

2.1 Power breakdown

Power is dissipated on a microprocessor as work is being executed and by leakage
in the semiconductor material. The total power dissipated by a processing element
origins from two distinct sources:

1. The dynamic power dissipation Pd due to the switching activities

2. The static power dissipation Ps mainly due to leakage currents
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Figure 4: Total chip power breakdown and its trends [18]

The dynamic power is dissipated when the load capacitance of the circuit gates is
charged and discharged. Such activities occur when the CPU functional units are
active. Because the dynamic power is proportional to the square of the supply volt-
age Pd ∼ V dd2, much effort was put into the design of integrated circuits being
able to operate at a low supply voltage. However decreasing the supply voltage of
integrated circuits increases propagation delays which force the clock frequency
down accordingly. Therefore by dynamically adjusting the clock frequency along
with the supply voltage when using performance states can maximize the power
savings. The equation governing the dynamic power is given in Eq. 1.

Pd = C · f · V dd2 (1)

Where C is the circuit capacitance, f is the clock frequency and V dd is the core
voltage.

The static power is dissipated due to leakage current through transistors con-
sisting of subthreshold and gate-oxide leakage [18]. The leakage current is present
as long as the chip (or parts of the chip) is powered on. Moreover, when low-
ering the supply voltage of integrated circuits, the subthreshold leakage current
increases which also increases the dissipated static power [32, 4]. In addition to
this, scaling down the technology process of integrated circuits increases the gate
tunneling current which also leads to an increased static power [32]. Equation 2
shows the subthreshold leakage current

Isub = K1 ·W · e−Vth/n·Vθ(1− e−V/Vθ) (2)
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where K1 and n are architecture specific constants, W is the gate width and Vθ is
the thermal voltage (further explained in Section 2.3 covering the thermal impact
on leakage current). Gate-oxide leakage is the other leakage component and is
further explained in [18].

Until recently, the power dissipated by a processing element was mainly con-
sisting of the switching activities i.e. Pd � Ps [5]. However due to technology
scaling, the static power dissipation is exponentially increasing and starts to dom-
inate the overall power consumption in microprocessors [19, 32, 1], which leads
to increased research efforts in minimizing static power e.g. with the use of sleep
states and power gating. Figure 4 shows the power breakdown and its future
trends with technology scaling at that time. As seen in the figure, the static power
contribution was negligable in the early and mid- 90s’, and rapidly grew as the
manufacturing technology was scaling down.

2.2 Energy consumption

The amount of energy, in joule (J) , consumed by a processor is the product of the
average processor power Pavr and the corresponding period of time T as shown
in Equation 3

E = Pavr · T (3)

where Pavr is the sum of the average dynamic and static power Pavr = Pd−avr +
Ps−avr over the corresponding period of time T . Equation 3 is equivalent to Equa-
tion 4 , where the period of time T is defined by t1 and t2.

E =

∫ t2

t1

P (t) · dt (4)

The linear combination of power and time results in a two-variable optimiza-
tion problem for minimizing the energy consumption. Figures 5 and 6 illustrate
the relationship between the instantaneous power dissipation and energy con-
sumption of two systems over a period of 11 seconds. While system 1, on Figure
5, has a relatively high instantaneous power dissipation at 9 watts during one sec-
ond, its average power dissipation is lower that system 2, on Figure 6, which does
not dissipate more than 5 watts at any-time. Even if system 1 might generate more
heat during one second, it will consume 22% less energy than system 2.
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Figure 5: System 1 power dissipation and energy consumption
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Figure 6: System 2 power dissipation and energy consumption

The notion of energy is more complex than the notion of power. The time
factor t represents the execution time of a job and can be related to the notion of
system performance, quality of experience or quality of service, which are notions
sometimes difficult to define objectively.

We can recognize three different use cases for energy consumption and power
dissipation management:

1. Power-constrained. The CPU is executing workload (without timing guar-
antees) with a power cap for limiting the power envelope. Battery time is
usually maximized with this strategy while accepting some QoS degrada-
tion. For example web browsing in power-saving mode.

2. Time-constrained. The CPU is executing workload with a given deadline to
obtain a desired QoS. The hardware can be utilized without restrictions, but
the goal is to minimize Ptot while keeping QoS guarantees. For example
video decoding.

3. Operation-constrained. The CPU is executing a given amount of work
(specified by nr. operations etc.) without time limit and without limita-
tions on the hardware. The goal is to obtain a combination of Ptot and t
such that E is minimized. For example video encoding.

Depending on the use-case, different aspects are considered and the objective to-
ward which energy is optimized is not always clear. For example, mobile phones
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often use a strategy called “race-to-idle”[28] in which the processor is executing
the task as fast as possible to minimize time t while sacrificing power for a short
time. This strategy might- or might not be an optimal strategy depending on the
use-case. Further discussion is seen in Section 5.2.

2.3 Thermal influence

The temperature of a microprocessor directly influences the static power dissipa-
tion of the chip since the leakage current increases with increased temperature.
The rate at which the static power is increased depends on the architecture and
manufacturing techniques, and in this technical report we mainly focus on mobile
many-core processors. As recalled from Equation 2 the leakage current Isub is
exponentially dependent on the thermal voltage Vθ. The thermal voltage is a mea-
surement of the average energy of individual electrons. It increases linearly when
the temperature increases by a coefficient equal to kT

q
where k is the Boltzmann’s

constant, q is the electron charge and T the temperature. Higher temperature mod-
ifies the subthreshold slope [29], which degrades the “efficiency” of the transistor
operations. With higher temperature the voltage threshold also increases and re-
duce the voltage difference between an open and a closed transistor. This leads to
a higher number of electrons leaking through the transistor even if the transistor
is closed.

In order to determine the temperature-to-power ratio, we let a quad-core pro-
cessor (ARM based Exynos 4) idle with no workload in different ambient temper-
atures.

Figure 7 shows the increase in static power as a function of the temperature
for both board and CPU level measurements. At the left hand side of the curve,
the chip was put in a freezer and its internal temperature was measured to be 1 ◦C,
and afterwards it was placed in room temperature and heated up to 80 ◦C with an
external heat source. As seen from the figure, the power dissipation of the chip
increases more than twofold depending on the ambient temperature conditions.
The sudden drop in chip power at the 80 ◦C point is due to the chip’s frequency
throttling mechanism, which is automatically activated at this point in order to
prevent overheating leading to physical and functional damage.

3 DVFS and DPM
Over the years, a number of different mechanisms targeting the CPUs have been
developed in order to increase the energy efficiency of computer systems. One
common feature is to exploit variations in the level and type of a systems com-
putational load. This is done in order to tailor the performance and the power
dissipation to the workload. These mechanisms monitor and/or predict the system
load and place the CPU in a matching operational state. If the load is low, or of
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Figure 7: Static power dissipation as function of ambient temperature for an idling
ARM based Exynos 4 board

a nature that does not require high instantaneous performance, the mechanisms
are used to put the system in a low-power operational state and vice versa. The
availability and type of these operational states vary depending on the CPU ar-
chitecture and manufacturer. The exact way of reaching the operation states and
the transition duration depends on the specific mechanisms and the algorithm it
employs. Quite often these mechanisms can be configured or influenced depend-
ing on the user’s preferences and the system’s use case. In some cases the exact
operation state can be statically defined by the user.

Mechanisms that have been developed for this purpose are DVFS and DPM.

3.1 DVFS
DVFS is a common technique used in from server grade machines, desktops, lap-
tops to tablets, smart-phones to varieties of embedded systems. DVFS focuses on
the dynamic power dissipation of a CPU, where the dynamic power means the
power used for actual work. The dynamic power is dependent on the total capaci-
tance of the CPU, the switching activity i.e. the frequency and the supply voltage
squared. This relationship is shown in equation 5.

Pdynamic = C · f · V 2 (5)

By utilizing DVFS it is possible to reduce the dynamic power dissipation by
adjusting the clock frequency and/or supply voltage in order to match the load on
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Frequency Voltage P-state
3.4 GHz 1.0808 - 1.058 V P0

3.3 GHz 1.0608 V P1

3.2 GHz 1.0405 - 1.458 V P2

3.0 GHz 1.0057 - 1.0107 V P3

2.9 GHz 0.9907 - 0.9957 V P4

2.8 GHz 0.9757 - 0.9807 V P5

2.7 GHz 0.9657 V P6

2.6 GHz 0.9557 V P7

2.4 GHz 0.9357 V P8

2.3 GHz 0.9257 V P9

2.2 GHz 0.9202 V P10

2.1 GHz 0.9156 V P11

2.0 GHz 0.9056 - 0.9106 V P12

1.8 GHz 0.9006 - 0.9056 V P13

1.7 GHz 0.9006 - 0.9056 V P14

1.6 GHz 0.8956 - 0.9006 V P15

Table 1: P-states for a Intel Core i7-3770 processor

the system. From the equation it can be seen that the relationship between the
dynamic power and the frequency is linear, whilst the relationship between the
dynamic power and the supply voltage is quadratic. This makes it more beneficial
to reduce the supply voltage rather than the frequency. However, reducing the
supply voltage increases the propagation delay in the transistors which means that
the frequency must also be sufficiently reduced to accommodate any delays as a
results of supply voltage reduction. This also affects the opposite scenario in the
same way; by increasing the frequency beyond a certain point, the supply voltage
must be increased due to the propagation delays.

In practice DVFS is realized through a set of states, each having a predefined
voltage and frequency setting. The states are defined by the Advanced Configu-
ration and Power Interface (ACPI) and are called performance states or P-states.
The ACPI provides a standardized interface which the operating system can uti-
lize. Whereas the availability of the different voltage and frequency combinations,
the actual P-states, are hardware dependent. The level of the state is indicated by
the P-state number, P0...Pn, where higher number means a higher power saving.
Different CPU manufacturers provide different P-states, both varying in number
and frequency/voltage combinations for their processors.

As example, a set of available P-states on an Intel Core i7-3770 processor can
be seen in Table 1. The table was derived by manually switching between all avail-
able frequencies and by monitoring the core voltage through the i7z monitoring
tool.
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Each of these states impacts the power dissipation of the CPU in accordance to
equation 5. This effect is visualized in Figure 8 which shows the power dissipation
of each of the different Intel i7 P-states during full load. Full load was obtained
by stressing the CPU with the stress CPU test. The CPU power was isolated and
monitored utilizing a power measurement and logger device presented in section .

Figure 8: Total CPU power dissipation of Intel core i7-3770 in different P-states
during load

The figure shows the exponential relationship between the CPU power dis-
sipation and supply voltage as presented in Eq. 5. The figure also shows the
significant difference in power dissipation depending on which P-state is chosen,
which shows the potential impact of DVFS.

However, a linear increase in performance will usually result in an exponential
increase in power due to the effect of increasing the voltage. This also means that
an exponential decrease in power dissipation only requires a linear reduction in
performance. In order to provide a good trade-off between performance and power
dissipation, a number of different DVFS algorithms and methods used to match
different circumstances have been developed. For example, mobile devices, such
as laptops, smart-phones and tablets might utilize a relatively strict DVFS method
in order to preserve as much power as possible while more stationary systems
such as servers and desktops might use a more lenient method in order to trade a
lower power consumption against better system responsiveness.

DVFS can also be used for other purposes than power management; some
manufactures for example utilize the same technique for processor thermal con-
trol. By controlling the processors temperature, thermal related computational
errors and long term thermal damage can be kept to a minimum which increases
both the systems predictability and lifespan. Other benefits are lowered noise
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levels due to lower utilization of the CPU fan, which usually is the noisiest com-
ponent in a computer. One example of DVFS being used and marketed for this
purpose is the AMD cool and quiet system.

3.2 DVFS in Linux
In Linux, the entities responsible for governing the DVFS and switching between
P-states, for the purpose of power management, are appropriately named fre-
quency Governers. In the default Linux kernel, the following governors are com-
mon: Performance, Powersave, Userspace, Conservative and Ondemand. Other
DVFS methods, the equivalent of governors, used in Windows and Macintosh
systems will not be addressed in this report since they are not open source and
difficult to analyse in detail.

Powersave governor The Powersave governor, as the name implies, focuses on
minimizing the power dissipation, regardless of the circumstances. Its main, and
only functionality, is to statically assign the absolute lowest frequency and voltage
the system is capable of achieving. Activating the Power save governor will lock
the system to its highest P-state Pn.

Performance governor The Performance governor is the complete opposite of
the Powersave governor: it maximizes the performance under all circumstances.
Activating the Performance governor will lock the systems in its lowest P-state
P0, assuring maximum frequency at all times.

Userspace The Userspace governor also statically assigns a P-state for the sys-
tem. However, the Userspace governor allows the user to decide which P-state to
use. In practice, the user is able to choose the operation frequency of the CPU and
the system will adjust the voltages accordingly.

Conservative The conservative governor monitors the system load and adjusts
the P-state gradually until the frequency level is high enough to support the work-
load of the system. Similarly if the load is decreased it will gradually jump to a
higher P-state i.e. lower frequency. The governor measures the total system load
as a percentage of active CPU time over a predefined time window. For example
if the time window is set to 10ms and the CPU has been active for 5ms during
this period, the governor will perceive the CPU load as 50%. The governor is user
tunable, which means that the user can tailor its behaviour. The tunable parame-
ters include the time window over which the load is measured, the up and down
thresholds for the load levels and the magnitude of the P-state jumps themselves.
A figure of the conservative governors behaviour under load can be seen in Figure
9.
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The figure was derived by monitoring the frequency setting chosen by the
conservative governor, starting at idle, initiating a load spike, by using the stress
test and finally letting the CPU reach idle state. The CPU used in this visualization
was an Intel Core i7-3770 with a maximum frequency of 3.4 GHz and a minimum
frequency of 1.6 GHz running Ubuntu 13.10 with a 3.7.0 kernel version. The
convervative Governor was reconfigured in order to slow down its response time
and simplify the frequency monitoring, while still retaining the basic behaviour
pattern of the governor. The OS is capable of changing between 16 different P-
states on the CPU by increasing the CPU frequency, from the lowest of 1.6 GHz
to its highest setting in increments of a 0.1 GHz. The exact set of P-states, and
their corresponding frequency and voltage settings can be seen in Table 1.

Figure 9: Clock frequency output when using the conservative governor

Ondemand The ondemand governor works in a somewhat similar fashion than
the conservative governor, however, it is designed to supply fast performance in-
crease on demand. This governor also monitors the system load, in the same time-
windowed fashion as the conservative governor, but when reaching high load the
odemand governor will jump straight to the lowest P-state with the highest fre-
quency setting, available. If the load does not require the highest performance
point, the governor will calculate the lowest frequency capable of keeping the
load beneath the up-threshold limit and select the P-state corresponding to this
frequency in order to obtain a suitable performance level. As the conservative
governor, ondemand, also includes a set of tunable parameters to enabling the
user to tailor its behaviour. A figure of the ondemand governors behaviour during
load can be seen in Figure 10. This figure was also derived by monitoring the fre-
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quency changes during load on the same OS and hardware platform as in Figure
9.

The load in this particular test was created by utilizing Spurg-bench, which
enables the creation of load at certain load percentages (further discussed in Sec-
tion 7). This was done in order to grant the governor some leeway in choosing
the appropriate frequency. By utilizing Spurg-bench it was possible to induce a
somewhat varying load scenario over a convenient time interval. Spurg-bench was
set to run three sets of tasks, each set with four threads where each thread was set
to contribute 30% to the total load. As in the previous scenario, the ondemand
governor was configured to provide for an optimal measuring setting. Hence, it
is important to note that the figure does not depict an optimal ondemand perfor-
mance, rather it visualizes its behaviour.

From the figure, the behaviour of the ondemand governor is relatively easy
to disconcern. As the load starts the governor immediately chooses the highest
frequency. The governor later deemed this frequency to high and calculated the
lowest feasible frequency. Due to the slightly varying nature of the load, the cho-
sen new frequency was predicted too low and the governor immediately changes
to the highest frequency once again. This behaviour can bee seen to repeat itself
with varying settings for the lower frequency until the governor finds a stable fre-
quency at 3.2 GHz. The behavioral pattern of the ondemand governor shows that
it is mainly focused on delivering optimal performance as fast as possible should
the need arise as, opposed to the conservative governor.

Even though the principal implementation of a DVFS systems is relatively
straight forward, there are a number of important factors that needs to be ac-
counted for when designing such a system. Some of the most important issues
include:

• P-state transition latency
• Load monitoring
• Performance versus power trade-off

Switching latencies are an issue which must be taken into account when work-
ing with a DVFS system. Even though the switch between P-states can be done in
the order of milliseconds, this is a considerable amount of time from a processors
point of view.

3.3 DPM

DPM, is a common method for minimizing the static power dissipation of a CPU.
As shown in equation 2, the static power is based on the leakage current times the
supply voltage. The main purpose of DPM is to asses the load, and cut the supply
voltage to parts of the chip or system not currently needed. DPM can be realized
either through CPU sleep-states or more directly through CPU Hot-plugging
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Figure 10: Clock frequency output when using the ondemand governor

3.3.1 Sleep states

The states for different DPM settings are called sleep-states or C-states. The range
of available C-states, C0...Cn, vary and is highly dependent on the underlying
hardware. The higher the C-state value the deeper the sleep and the greater the
power savings are. The origin of the C-state model is the ACPI Interface specifi-
tion, from where a more detailed description can be found [24]. In general, deeper
sleep states introduces longer transition latencies. As example, the available sleep
states on the Intel i7-3770 and their description are as follow:

• C0: The highest C-state. Essentially the active state of the CPU. The state
in which it resides whilst executing instructions.

• C1: is a state that, according to the ACPI standard, must be supported by
all hardware architectures. This state is realized through the halt instruction
(HLT). When a core enters this state, clock signals to some parts of the
chip are gated. The bus interface unit and advanced programmable interrupt
controller remain clocked.

• C1E (Enhanced C1): This state is similar to C1, however, this state is also
capable of lowering the supply voltage.

• C3: This states offers further improved power savings by completely stop-
ping the internal clock signals, at the cost of transition latencies. In this
state the cache is maintained but snoops are ignored.
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• C6: The state of the core is saved inside a special static RAM, outside the
CPU itself. The voltage to the core can be completely cut off and the core
can essentially be shut down.

To illustrate the power saving potential of the different C-states we measured
the power consumption during idle when the processor was limited to a certain C-
state and frequency. The test was conducted on an Intel i7-3770 with the available
sleep-states as described in above and four cores available for all tests. For each
level of allowed C-state the frequency was statically set to the lowest: 1.6 GHz,
and gradually increased to the highest: 3.4 GHZ, with increments of 200 MHz.
The power was measured during each step. The results are depicted in Figure 11.

Figure 11: Power dissipation of CPU in different C-states and frequencies

From the figure the different C-state potential becomes clear. If only C0 is
allowed a significant amount of power is used even during idle, and the impact of
utilizing DVFS is quite large. The next set of columns depicts the effect of using
C1 when the CPU run the HLT instruction. From the Figure it can be noticed than
from state C1E decreasing the clock frequency does not influence any more the
power dissipation of the CPU.
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Load and sleep states The time a task will use the processor between system
calls is in general non-deterministic. The reasons for this are among others:

1. The time it takes for the hardware to execute a given set of instructions is in
general non-deterministic.

2. Non-deterministic input makes impossible to know which set of instructions
will be executed between system calls.

3. The Entscheduingsproblem is not generally solvable [35, 7].

These reasons together with the latency associated with entering sleep states makes
it very hard to find the optimal moments when the core should put to sleep and
be woken up. Intuitively, a low utilization should dissipate very little power but if
the moments when the cores are put to sleep are predicted very poorly the system
could end up dissipating more power. There is currently a trend in trying to shut
off as much of the chip as quickly as possible to minimize these effects.

3.3.2 DPM in Linux

DPM is accessible in Linux via the CPU hotplug interface. CPU hotplugging was
originally designed to replace a CPU in a multi-socketed system during runtime
and enable components to be serviced and replaced without shutting off the entire
system. The same functionality has later been adapted for power saving purposes,
since a shut down core does not dissipate static power consumption.

The effectiveness of hotplugging is hardware dependent, however in the ideal
case the power to the core is completely cut of and the core is removed from the
reach of the systems scheduler to insure that no work is placed on the CPU while
it is not active. In some cases the core is only removed from the schedulers reach
without actually cutting off its supply power but only placing the core in a state
of idle looping. This will result in having unusable core still dissipating power.
On some platforms this functionality is not available at all. On our test platform
the hotplug functionality will place the core in a Wait For Interrupt(wfi) state in
which the core clock is shut down, and re-activated as soon as the core receives
an interrupt from another core.

Even though this mechanism was not originally intended as means for saving
power it has been adapted as a power saving feature in a number of multi-core
embedded platforms such as mobile phones and tablets.

Hotplugging a core has different effects depending on the state of the core
designated to be turned off. In case the core is idle, turning it off will decrease
the total power consumption by the amount of static power the core dissipated.
When turning off a loaded core, the load dedicated to this core must be first re-
allocate to another core in order to make it idle. This scenario is illustrated in
Figure 12. The figure depicts a quad-core system utilizing the default, fair, load
distribution policy of the Completely Fair Scheduler (CFS). The figure illustrates
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Figure 12: Load distribution during hotplug events

two cores shut down i.e. hotplugged. This forces the load to be redistributed over
the remaining online cores.

Since hotplugging loaded cores includes the load transfer to other cores, it is
fair to expect a higher latency when hotplugging a higher loaded core than a idle
core. Hotplugging a CPU also introduces a larger latency than DVFS because
more complex and time consuming functionalities must be executed when using
hotplug, such as flushing the cache and transfer of CPU states.

Hotplug governors Experimental frequency governors including hotplug capa-
bilities has been created. The Hotplug and HotplugX governors utilize similar
characteristics as the ondemand governor, with the extended functionality of CPU
hotplug. The hotplug governor will disable idle CPU cores as a significantly long
period has elapsed and similarly switch a core back online as a significantly long
busy period has elapsed. The user can set these periods explicitly in the sysfs
interface.

While the functionality exists, there are no thorough investigation on “how
many” and “how fast” cores should run in order to achieve the most energy effi-
cient execution. The rules for switching on and off a core have simply been se-
lected based on specific use-case applications and the programmer’s good feeling.
A general combined mechanism for DVFS and DPM is thus lacking in current
multi-core systems.

We will hence investigate how to measure resource utilization and – if needed
– how to extend the current OS view to enable facilities for energy efficient pro-
gramming and scheduling.
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4 Load

When considering load balancing on the Linux kernel, load estimation is an es-
sential part. Ideally the exact contribution of one task to the CPU load would be
known as well as the exact amount of resources the task would need and for how
long. However, since this is seldom feasible, a best effort approximation is often
utilized. In Linux there has through the history been a number of ways to measure
the load, with varying complexity. Also, depending on the subsystem utilizing a
load metric in order to perform its function, the manner in which load is calcu-
lated and perceived varies. The definition of load is also dependent on resource
isolation i.e. what resource is being monitored. For example the CPU utilization
might be extremely high whilst the load on the disk or main memory is minimal.
In our research we have however focused on the behaviour of the CPU unless
stated otherwise.

Regardless, deriving a good load metric is extremely important when utilizing
load balancing. A good load metric should be able to:

• Correctly show the current load on a system

• Function as starting point for predicting future load behaviour

• Remain relatively stable and not be too sensitive for minor load bursts.

A suitable load metric could give an opportunity to optimize scheduling decisions
as well as DVFS and DPM in order to minimize power and energy consumption.

4.1 Notions of load

Load measurements in Linux are used in many parts of the system and come
in different forms. We will in the following sections present different ways of
currently measuring load.

4.1.1 Utilization

Probably the most basic notion of load is the utilization of a task on a processor,
and is defined as:

U =
C

T
(6)

where U is the utilization caused by the task, C is the execution-time for the task
and T is the period of the task. In practice all tasks do not have a period, or
sometimes it is impossible or infeasible to define it. However, there are other
methods of measuring load which are built on the notion of utilization.

21



4.1.2 Load window

The most common metrics can be found in different load monitoring systems such
as the System Monitor and htop, among others. These utilities visualize load as
a percentage value derived by tracing the busy vs. idle ratio over a certain time
window. The load window method of measuring load is built from the utilization
notion, where the period T is set to a fixed interval, and the execution-time C is
the execution time of all tasks running on a core during the current interval. This
method is illustrated in Figure 13. In multi-core systems, this can be calculated
on a per-core basis, i.e. one load level per core.

Figure 13: The load is calculated by measuring the busy vs. idle ratio over a time
window

An example of how the Linux system monitor and htop calculates and visual-
izes load as can be seen in Figure 14 where the per core load is seen in the system
monitor to the left and htop to the right.

Figure 14: Load calculated as a busy vs. idle time ratio presented in system moni-
tor and htop

This way of perceiving load, as a busy vs. idle ratio expressed in percentages,
is not only used to ease the visualization of workload to a human user, it is also
used as the main decision metric in various power management mechanisms such
as the Linux DVFS governors. A more detailed analysis of the governors and their
use of load metrics is presented in Section 3 Sleep States and DVFS.

4.1.3 Run-queue length

A more instantaneous version of the load averages values is the run-queue (RQ)
length i.e. the number of runnable tasks on the system. In a multi-core systems
there exists one RQ per core. This gives an instantaneous numeric value of how
many tasks each core has been allotted.
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This value is constantly undergoing change due to tasks finishing their execu-
tion and due to the influences of the system scheduler, meaning it does not provide
the same stability as the load average values. This means that although it is an im-
portant metric from the point of view of the system itself, and is used in among
other things different scheduling decision mechanisms, it does not provide very
much intuitive information to a human user.

4.1.4 Load average

Another load metric in Linux can be found in top, htop, based on the uptime shell
command and is derived from the load average [36]. An example output of the
uptime command can be seen in Figure 15 where the load average is highlighted
in red.

Figure 15: Output of uptime showing the load average value highlighted in red

These three values show the load average for the past 1, 5 and 15 minutes
respectively, whereas the actual load value is not based on CPU utilization but
rather on an exponentially weighted moving average of the number of tasks on
the system over the three different time periods.

Another perspective of the load average values is in the context of a multi-core
machine. For example a quad-core machine with a one minute load average of 2.0
could be seen as the system being loaded to 50% over the one minute time period
since the CPU has four cores to spread the load over. During this one minute pe-
riod, the amount of work done is equivalent to two tasks running continuously. In
case the load average would be 5.0 on a four core system, the system is considered
as overloaded, since it has the equivalent work of 5 continuously running tasks,
which is more than a four core system can handle simultaneously. The other two
values of the triplet show the same information over a longer time period in order
to provide more stable values.

The behaviour of the load average triplet is shown in Figure 16. The figure
was derived by sampling the load average once every 5 seconds over the period
of one hour. To induce load, the CPU stress test stress was used to execute four
threads for 30 minutes after which the stress test was shut down. The machine
on which this visualization was performed was the Intel-i7 platform with Ubuntu
13.10 presented in section 3.

From the figure, the behaviour of the load average and the difference in re-
sponse time of the three values can clearly be seen. The one minute value re-
acts fairly fast to the stress induced load and reaches a value around 4 due to the
four stress threads. Due to background tasks, the one minute value fluctuates and
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Figure 16: The three load average values over one hour under load

reaches a peak value of roughly 6. When the stress test stops, the value decreases
relatively fast. The 5 minute value increase more slowly and remains more stable
around the 4.5 mark until it to peaks due to background load and finally starts do
decrease when stress is terminated. The fifteen minute value increases very slowly
and is mostly unaffected by any other tasks than the ones induced by stress.

4.1.5 Load weight

Another load value used in Linux, and more precisely, in the normal scheduling
policy of the system scheduler is the load weight. The load weight is a per task
priority weighted load value which the system uses in order to schedule tasks i.e.
determine which task to run and for how long. In multi-core systems it is used
to distribute tasks over the set of available cores. The load weight is based on a
task’s priority, which in turn is calculated from the tasks nice value. The nice
value of a task ranges between -20 and 19 where a lower value indicates a higher
priority. If a task has a high nice value it can be seen to be ”nice” to its fellow
tasks an vice versa. The nice value are recalculated into priorities which range
from 0 to 139 where the priorities from 100 to 139 are reserved for normal tasks
and the priorities ranging from 0 to 99 are reserved for real-time tasks. This done
in order to ensure that real-time tasks always receive higher priorities. The Linux
kernel provides a set of macros to calculate priorities from nice values. When a
task’s priority is established the task’s load weight can be calculated. This is done
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through a priority-to-weight conversion table located in the scheduler source files
of the kernel. The table is shown in Figure 17.

Figure 17: Priority to weight conversion table

On the core level the load weights are used to decide which task to run and for
how long. The table in Figure 17 contains one entry for each of the 40 nice levels,
and in extension priority, with a multiplier of 1.25 between each entry. These spe-
cific values coupled with how they translate into the allotted run time for each task
ensures that for each nice level the task will be allotted 10% more, respectively
less, CPU time. This allows the load weights to effectively control the amount of
time each task is allowed. The load weights are also used to calculate a per task
timing variable called virtual runtime. The per task virtual runtime is essentially a
timing variable of how long the task has been able to run weighted with the task’s
load weight. By utilizing the virtual runtime instead of real runtime, the scheduler
can increase or decrease the time for an individual task in accordance to their load
weight. In practice this means that important tasks, tasks with a high load weight
can, from the scheduler point of view, have run for a shorter time period than they
actually have. This allows them to run for longer periods of time uninterrupted.

4.2 Load perception in the Linux SMP kernel
On a higher level, looking at a multi-core system, the load weights are also used
to decide on which core to place new and newly awakened tasks as well as during
load balancing. This is realised by a per RQ core load weight which is the sum
of all the task load weights currently on that particular RQ or core. In a default
Linux distribution the the Completely Fair Scheduler (CFS) tries to distribute load
as evenly as possible over the set of available cores. In order to place an initial
task the scheduler scans each RQ, locates the RQ with the lowest total load weight
and places the new task on that RQ. Over time this behaviour ensures an even
load distribution. However, since tasks are constantly finishing their execution
there will become imbalances in the load distribution and this is where the load
balancing mechanism comes in.

The load balancing functionality is called periodically on the level of each in-
dividual core. The core currently calling the load balancing functionality searches
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for a load imbalance amongst the set of cores, if found, the imbalance is calcu-
lated. The core that invoked load balancing, proceeds to find the busiest core and
starts to pull tasks from it onto itself until the imbalance is nullified.

Even though the utilization of load weights has been proven to function as a
load metric in Linux load distribution mechanisms, the notion of priority based
load values might bring forth some complications. One such is the lack of aware-
ness. Since the load weights are essentially a value of how much a particular tasks
wants or needs the system resources, it does not, directly, show how much re-
sources a task is actually using. In extension by looking at the per RQ load weight
it is difficult to tell how much actual work the RQs corresponding core is actually
doing. Due to the load weight metric being priority based, important tasks will be
seen as loading the system more than unimportant tasks regardless of how much
resources they actually need. On a multi-core system this means, from the sched-
uler point of view, few high priority tasks might load a core as much as multiple
low priority tasks.

In the default CFS scheduler the load weights work well since the scheduler
only needs to quantify the load of one core relative to the other since its main
purpose it to keep each core as evenly loaded as possible. However with different
scheduling goals, for example maximizing the system energy efficiency instead of
fairly distributing the tasks, the notion of load need to be extended as explained in
Chapter .

4.3 Load and DVFS

Usually when load is measured, DVFS is not accounted for. Dynamic clock fre-
quency governors in Linux are used to set the appropriate clock frequency of
the CPU according to the current workload. This is usually done by setting a
load limit, after which the core is considered overloaded and the frequency is in-
creased. The limit differs between systems, but is usually in the range [60% 95%].
Since the workload is determined by measuring the level of CPU utilization over a
certain time window, the load percentage will alter according to the current clock
frequency. For example, a task utilizing 80% of CPU resources at 400 MHz will
(in the theoretical case) utilize 40% when running at 800 MHz.

Consider for example the situation illustrated in Figure 18. When spreading
the workload on all four cores, all cores are loaded to 20% and the clock frequency
will never increase as no cores are considered overloaded. When executing n-
operations per time window, the system will execute 4n operations in total over
the selected time window. By instead placing all the workload on one CPU (right
hand side in Figure 18), the load threshold is more likely reached and the clock
frequency is increased (by 4x in this example). This means that each task contain-
ing 20% load will execute 4n-operations in the same time as in the previous case
and 16n-operations in total for the same time window.
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Figure 18: Executing on high clock frequency on as few cores as possible in-
creases performance for a given workload

4.4 Discussion

The concept of CPU load has been used to scale the CPU capabilities more closely
to the software requirement to save power. However, the notion of load (given as
utilization percentage, run-queue length or an average over time) does not describe
the intensions of the software, but only the resource usage. To facilitate more
energy efficient software, performance of the software should complement the
notion of load to more precisely express the software capabilities.

5 Extending the Notion of Load with QoS

By extending the notion of load with application performance, the resource man-
agement is able to allocate only the necessary amount of resources to the ap-
plications. To enable this, we extend the applications with additional meta-data
containing the performance and performance requirements.

5.1 Units of performance

The performance of an application can be measured and compared to the origi-
nally stated requirements to give a value on how well the application is perform-
ing; also know as Quality-of-Service (QoS). QoS is often introduced in soft real-
time systems [25] in which the deadlines for tasks are not hard. This means that
deadlines are allowed to be slightly missed as long as the result (quality) keeps a
sufficient level. QoS, also a term used in cloud computing [38], is used for sell-
ing a bundle of processing power to the user with a certain quality. By declaring
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a QoS limit for an application, it is allowed to relax the performance guarantees
with a certain percentage and still be inside the specifications for the application.

In order to create an energy efficient system, the tasks should:

1. Execute on the appropriate execution unit

2. Only allocate the necessary amount of resources, and therefore minimize
the energy consumption

For this, the notion of performance is an important measurement of how well
a task is able to satisfy the user. Since performance, with this definition, is a
subjective matter, the different ways of measuring and controlling performance
could be many.

The notion of QoS is used to interpret performance measurements from any
application, and by this information strive to satisfy all application requirements.
Tasks define – in our model – a performance metric to include in the execution.
The value of this metric is periodically measured, and the system ensures that the
task is given the necessary resources for upholding sufficient performance. With
this approach applications are given only the necessary amount of resources but
not more, since it would be considered waste.

The value of QoS for an application is determined by comparing the require-
ment in the specification with the actual measured performance. The ratio between
these two values is the QoS drop. If the QoS drop is more than allowed by the
specification, the system must control some actors giving the application more
resources and thus higher QoS. For example a web server can have a specified re-
quirement of serving 500 requests/s with a QoS of 90%, which means that it
will consider anything between 450 and 500 as acceptable according to the speci-
fication. Similarly a video transcoder can require 25 fps with a QoS limit down
to 23 fps. We suggest the new single entity QoS as the measurement of perfor-
mance. This means that applications can specify performance using any metric,
and request the allocation of resources according to this metric.

5.2 QoS aware execution strategy

In our work we focus on applications in which 1) QoS requirements can be defined
and 2) performance can be measured. An example is a video player illustrated in
Figure 19, which processes and displays a video for a set amount of time. From
this application we demand a steady playback (e.g. 25 frames per second) for the
whole execution, but the execution speed of the internal mechanisms such as the
decoder is completely dependent on the hardware resource allocation.

The popular (and easily implementable) execution strategy called race-to-idle
[28] was implemented to execute a task as fast as possible, after which the pro-
cessor enters a sleep state (if no other tasks are available). The ondemand (OD)

28



Figure 19: Overall structure of a video player with QoS requirements on the de-
coder

frequency governor in Linux supports this strategy by increasing the clock fre-
quency of the CPU as long as the workload is above an upthreshold limit.
Race-to-idle minimizes the execution time t, but on the other hand results in high
power dissipation P during the execution. A strategy such as race-to-idle will
have a negative impact on energy efficiency if the decrease in time is less than
the increase in power i.e. ∆−t < ∆+P compared to running on a lower clock
frequency. Depending on the CPU architecture and the manufacturing technology
this relation varies, but with current clock frequency levels, is it usually very en-
ergy inefficient to execute on high clock frequencies [39, 27]. It is also inefficient
to execute on very low clock frequencies [10] since the execution time becomes
large and the static power is dissipated during the whole execution.

Our strategy is to execute as slow as possible while still not missing a given
deadline; we call it QP-Aware. Figure 20 Illustrates two different execution strate-
gies for a video player: Part A) illustrates the race-to-idle strategy in which the
decoder is executed as fast as possible for a short time, after which it idles for
the rest of the video frame window. Part B) illustrates the QP-Aware strategy in
which the decoder executes as slowly as possible while still keeping the frame
deadline of the playback. If the execution time in case A) is twice as fast but
the power dissipation is more than twice as high, case B) will be more energy
efficient. Moreover, frequently switching the frequency and voltage introduces
some additional lag, which also impacts on the energy consumption. We argue
for a type B-kind of execution, in which the application executes on more energy
efficient frequency
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Figure 20: Two execution strategies: A) Race-to-idle B) QP-Aware

5.3 Conclusions

With the extended notion of resource requirements in the applications, we are able
to drive the hardware resource allocation more closely to the software require-
ments. In order to realize this energy efficient resource allocation, we need to
create a system able to intercept the added meta-data and accordingly control the
hardware. The following chapter introduce a QoS aware runtime power optimizer
exploiting DPM and DVFS mechanisms.

6 Power Optimization with DPM and DVFS

Current power managers, such as the frequency governors in Linux, base the re-
source allocation purely on system workload levels. Resources are allocated/deal-
located as the workload reaches a certain threshold, which is usually done on
system level rather than on core level. This means that the power management
has no information of the program behavior such as its parallelism, nor any no-
tion of how the workload should be mapped on the processing elements. With
our extended notion of QoS we can set-up the resource allocation according to the
performance requirements and which resource allocation technique to use.

We chose an optimization-based approach in which we aim to minimize the
power while keeping the performance requirements stated in the applications as
follows:

Minimize{Power(q, c)}Subject to:
∀n ∈ Applications :En − (q + c) < Sn −Qn

(7)
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where the variables: q and c are the actuators (DVFS and DPM). Sn is the setpoint,
En is the error value and Qn

1 is the lower QoS limit. The optimization rule
states to minimize power while eliminating enough errors to reach at least the
lower bound QoS limit. This is achieved by setting the actuators (q, c) to a level
sufficiently high for each application n.

By optimizing the balance between DVFS and DPM, we are able to find the
combination of dynamic and static power needed for a sufficient QoS level in the
applications. To solve the optimization problem, a description of the system is
needed which models the performance vs. power response to resource allocation
with both DVFS and DPM.

6.1 Performance Modeling
We have chosen an approach similar to the work in [34], in which a performance
model was used to describe the speed-up of DPM/DVFS regulation i.e. the speed-
up for activating cores vs. scaling the frequency. By combining the speed-up
with the power cost of increasing either DVFS or DPM in one direction, we can
calculate the most energy efficient combination, and with existing optimization
methods derive the energy efficient path from low-end to high-end performance
as illustrated in Figure 21

Figure 21: An example of the most energy efficient path from low-end to high-end
performance for a selected application

In order to determine whether to use DVFS or DPM, the optimizer requires
knowledge on how much it affects the applications. For example a sequential pro-

1E and Q are normalized to the range in which q and c operate
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gram would not gain any performance by increasing the #cores, while a parallel
application might save more energy by increasing the #cores instead of increasing
the clock frequency. We modeled DVFS performance as a linear combination of
clock frequency q as:

Perf(Appn, q) = Kq · q (8)

In contrast to the rather easy relation between performance and clock fre-
quency, modeling the performance as a function of #cores is more difficult since
the result depends highly on the inherited parallelism and scalability in the pro-
gram. To assist the optimizer, we added the notion of expressing parallelism in
the applications. The programmer is allowed to enter the parallelism of a program
in the range [0, 1] where 0 is a completely sequential program and 1 is an ideal
parallel program. This value can either be static or change dynamically accord-
ing to program phases. In case the exact number is not known, the programmer
can approximate a value to assist the optimization algorithm for finding at least a
nearly optimal result.

Our example model for DPM performance uses Amdahl’s law

S(N) =
1

(1− P ) + P
N

(9)

where P is the parallel proportion of the application and N is the number of
processing units. The final performance model for DPM is rewritten as:

Perf(Appn, c) = Kc ·
1

(1− P ) + P
c

(10)

where Kc is a constant and c is the number of cores. This models a higher
performance increase as long as the #cores is low but decreases as the #cores
increase.

6.2 Power Model
By creating a mathematical model of the system as function of resource usage,
it is possible to integrate already existing optimization tools for allocating the
appropriate amount of resources for the given workload. Especially in multi-
core systems, the relation between performance, temperature and power highly
depends on the resource allocation both in time and space dimensions.

6.2.1 Bottom-Up Model

The literature shows works such as [6, 21, 14, 17] in which multi-core power
models are created bottom-up from an analytical expression combining static and
dynamic power based on the clock frequency and the number of active cores. The
dynamic power is usually modeled as Pα

d where α is a constant usually in range
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[2 3] to model the non-linearity in dynamic power as function of frequency and
voltage. In its simplest form, static power is modeled as a constant Ps[6], which
gives the total power dissipation: P = Pα

d + Ps.
As long as the expression is used to model a single-core system, model can

be tuned rather accurately to the real-world system. We measured the total power
dissipation of a single-core system in each frequency step when loaded to 100%
and compared the results to a curve fitted matlab model based on the previous
expression. The result is shown in Figure 22, in which we clearly see the close
relation between the model and the data. The datapoints were obtained by mea-

Figure 22: Curve fitted model compared to real data for a single-core system

suring the power of the new Exynos 5 chip with one Cortex-a15 core running on
max load from 800 MHz to 1800MHz.

However, when expanding the model to a multi-core system the model must
account for the increased static power when activating cores and the dynamic
power of scaling the frequency. The authors in [6] suggest to simply add a multi-
plier N to the static/dynamic power where N is the number of cores. A simplified
expression of this would be P = Pα

d ·N+Ps ·N . This expression assumes that the
power dissipation is linearly related to the number of cores activated. We modeled
this expression in matlab and compared it to the real data measured from the same
Exynos 5 chip as previously mentioned.

The results are shown in Figure 23. As seen in the figure, the model agrees
with the data only for the N -value used as basis for the curve fit. When expanding
the model only by multiplying the number of cores the model, the data and model
starts to differ and the multi-core model – for this type of chip – is no longer valid.
One reason for this is shared resources in the chip which are not replicated when
activating more cores, another reason is the thermal influence which influences
the static power significantly [10] and increases the non-linearity of the power
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Figure 23: Curve fitted model compared to real data for a multi-core system

dissipation.
A first step to increase the accuracy could be to focus more closely on the

static power such as in [9]. The authors model the static power as a temperature
dependent Taylor series expansion as Pl = α1(t + tref ) + α2(t + tref )

2 where αi
are hardware dependent constants, t is the temperature of the chip and tref is a
reference temperature. The problem becomes hence to either measure or model
the temperature in order to have a t value in the expression and secondly the
ambient temperature will further influence the leakage, which is not taken into
account in the model.

6.2.2 Top-Down model

Instead of building the power model from bottom, we have chosen to derive it
directly Top-Down from an existing platform real-world conditions, and from real
workload running on the CPU. In contrast to the previously explained approach,
we measured the power on real hardware after which we find an analytical expres-
sion as close as possible to the real data.

We trained both power models (in this example of an Exynos 4 chip) by in-
creasing the frequency and # active cores (nr. of cores) step-wise while fully
loading the system. As workload we ran the stress benchmark under Linux on
four threads during all tests, which stressed all active cores on the CPU to their
maximum performance. Moreover, we trained two different models for different
ambient temperature conditions: Hot (in room temperature +20 degC) and Cold
(in freezer -20 degC) to account for operations in different ambient temperatures.
The dissipated power was measured for each point and is shown Figure 24.
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Figure 24: Power as function of #cores and clock frequency (fully loaded). Left:
Hot case Right: Cold case

As seen in the figures, the power dissipation of the chip peaked much higher
in hot ambient temperature, especially for the high clock frequencies and with
many cores. The resulting behavior of the frequency-to-power relation is clearly
not linear, especially for the hot case. We clearly see the effect of the static power
Ps, which is caused by leakage currents in the transistors and is present as long
as the core power source is enabled. The leakage currents increase as the tem-
perature increases because of a higher voltage threshold in the transistors, which
leads to higher total power dissipation. With these measurements we will derive a
unified equation for approximating the chip power under full load as function of
frequency and #cores.

We used a similar approach to [30], in which we fitted a two dimensional plane
(q,c) as a function of the power dissipation. The third degree polynomial

P (q, c) = p00 + p10q + p01c+ p20q
2 + p11qc+ p30q

3 + p21q
2c (11)

where pxx are coefficients was used to define the surface. We used Levenberg-
Marquardt’s algorithm [15] for multi dimensional curve fitting to find the optimal
coefficients, which minimizes the error between the model and the real data.

Table 2: Coefficients for power models

Hot
p00 p01 p10 p11 p20 p21 p30

2.34 0.0576 0.598 -0.0248 -0.1605 0.0097 0.0120
Cold

p00 p01 p10 p11 p20 p21 p30
2.29 0.0614 0.302 -0.0193 -0.0569 0.0056 0.0038

Table 2 shows the results for the hot and cold case and Figure 25 illustrates
the surface of the hot case with the given parameters where DVFS and DPM uti-
lization is given in the range [1,8] where 1 is minimum and 8 is maximum.
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Figure 25: Surface of the hot use case derived from Equation 11. Dots are real
data measurements

To verify our model we calculated the error difference between the real data
and the derived model. The presented values in Table 3 and Figure 26 show a
small average error for both cases. The hot case showed however a higher max-
imum error than the cold case because of a more difficult surface to fit with a
third degree polynomial. With the rather small average difference, we considered
these two models feasible for our experiments. The same procedure can be run

Figure 26: Verification of power model with real data (circles) and model (line).
Left: hot case, Right: cold case

Table 3: Differences between real data and model for both hot and cold case

Hot Max diff Avg. diff Cold Max diff Avg. diff
10.2% 0.6% 2.4% 0.03%

for any homogeneous multi-core chip by choosing a training benchmark (such as
stress) and by measuring the real power dissipation of the board.
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6.3 Run-time aspects
We evaluated the system on an Exynos 4412 board, which is a quad-core imple-
mentation based on the ARM Cortex-A9 MPCore CPU. All cores except Core0
can independently be placed in a sleep state by the DPM mechanism, which is
controlled by software. The DVFS mechanism can scale the frequency of the
CPU from 200 MHz to 1.6 GHz by increments of 100 MHz. We chose this chip
for the evaluation because of its feature rich hardware and since it is currently one
of the leading microprocessors used in mobile phones and tablets.

The power manager was mapped on top of the operating system and avail-
able as a middleware to the applications as illustrated in Figure 27. Applications
connected to the power manager issue library calls for sending configuration and
measurement parameters to the power manager such as performance and P-values.
Applications can also freely use the operating system as normally, and the power
manager can be bypassed completely if no performance requirements are needed
in the application. The power manager controls DVFS and DPM by using kernel
calls and the sysfs filesystem.

Figure 27: Placement of the power manager as a middleware on top of the OS

We implemented and mapped the power manager and its infrastructure on
Linux (kernel version 3.7.0) with the SQP solver and communications backbone
implemented in the c-language. The communication was established by using
posix queues to push and pull data between the power manager and the applica-
tions. The power manager was implemented as a periodic task, which means that
the optimization results and the actuator control is obtained with regular intervals.
In contrast to the theoretical simulation environment, the real implementation in-
troduces a certain lag time especially for switching on and off cores. The period
of the power manager should hence be set long enough to not suffer from the
hardware lag time, but also short enough to give an as fast as possible response.

To determine the period, we conducted experiments to measure the lag time
of DVFS and DPM. The measurements were simply done by shutting down and
waking up a core, and the time between the shut-down/wake-up call and the phys-
ical shut-down/wake-up of the core was measured for 100 iterations. Similarly
we measured the lag time for switching between two different clock frequencies
to determine the lag time for DVFS. The lag time showed to fluctuate depending
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on the clock frequency of the chip and the current workload of the chip. This
means that as the chip was running on a low frequency and with high workload,
the lag time was the largest. We chose to select an average scenario with a safety
margin in which the chip was running on the lowest frequency and with a work-
load level of 90% (since the applications running on a chip with higher workload
level would require more resources and the workload level would drop). The lag
time of such a scenario is seen in Table 4.

Table 4: Expected lag time for DVFS and DPM

Shut-down wake-up Change frequency
15 ms 20 ms 5 ms

Based on the lagtime experiments, we chose a period of 40 ms for the power
manager, which means that regulating the actuators will be completed before the
next period is reached.

6.4 Conclusions
We have presented an approach to identify two model describing system power
and performance. The performance model is completely generic and requires
only the QoS meta-data added in the applications and the multi-core scalability of
the applications. The power model has been tailored to a selected processor type,
but can easily be re-engineered for any kind of processor.

We insert the models into a chosen optimization solver, which in turn controls
the hardware actuators. After this setup, we evaluate the models by stressing the
system with real workload.

7 Spurg-bench: The Multi-Core Energy Benchmark
To evaluate the system under different conditions of workload, a predictable and
repeatable method of applying a specific workload on the system is needed. When
developing a consolidating load balancer [10], there was an emerging need for a
way of testing if the approach was both performance and energy efficient.

Looking at the commercial SPECPower benchmark [12], it is mainly designed
to give comparative power/throughput measurements of the computing resources
in a server system with low utilization [33].

A sensible approach is to have a load generator generating different kinds of
loads which would then be spread across cores using different policies. Spurg-
bench is designed with the goal to benchmark: 1) the scheduler and the load
balancer in the operating system, and 2) the hardware, i.e. CPU cores, mem-
ory buses, memories etc. Most existing benchmark software only test the hard-
ware [11, 37, 2, 8], i.e. they try run a computation as quickly as possible. How-
ever in order to benchmark the scheduler, load balancer and hardware, a load
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which would not run as quickly as possible but run multiple threads with a com-
putation which sleeps some fraction of the time is instead needed. Therefore as
existing benchmark software did not suite our purposes, the Spurg-bench load-
generator [23] was designed and implemented.

Spurg-bench is open source and available at https://github.com/ESLab/spurg-
bench.

7.1 Spurg-bench overview

The load generated by Spurg-bench consists of parallel threads, running and sleep-
ing to achieve a certain utilization. A Spurg-bench run is defined by a number of
operations, a number of threads and a load level. In practice this means that the
number of threads is spawned when the run starts and the threads tries to maintain
a certain sequential CPU-utilization. For example if we set Spurg-bench to gen-
erate a 50% load on a quad core system, Spurg-bench can spawn 4 threads which
tries to maintain 50% load or 8 threads which tries to maintain 25% load. Spurg-
bench tries to generate a load which minimizes the sleep time between system
calls, and is thus maximally power inefficient with respect to sleep states, due to
the argument in Section 3.3.1.

We emphasize here that we maintain a certain level of CPU-utilization, instead
of just generate, because we assume that the performance of the threads execution
environment is varying in a non-deterministic fashion. The non-determinism is
due to complex behavior of the system as a whole. The clock frequency of the
core the thread runs on can change or the thread can be migrated to a core with
different clock frequency or micro-architecture. These effects could be decreased
by locking the threads to cores, however, this is not wanted since the goal is to test
the behavior of the scheduler together with the load balancer and threads should
be able to migrate across the cores freely.

As there is no sufficient notification API for task migration or frequency changes
in Linux these effects were estimated, with the drawback that an inaccurate esti-
mation will yield an incorrect load level. The estimation is done with periodic
run-time observations, using an adaptive algorithm. The estimation will change
when the performance of the execution environment changes. There is a trade-off
between a fast enough adaptation to quickly achieve accuracy on changes in the
environment and stability of the estimator.

Spurg-bench has been used for a specific set of tests, but the design is built
using an abstraction containing three types of components:

1. The runner script, controls the execution of the of the run.

2. The load generator, directs the control-flow between the operation and sleep.

3. The operation, generates the actual load.
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The following sections will describe how these components interact and how they
have been implemented for our purposes.

7.2 The runner script
When a run starts, the user gives a set of parameters to Spurg-bench, which are
parsed by the runner script. The runner script then starts up threads with some
parameters, and starts monitoring the reported amount of operations they are ex-
ecuting. When the total amount of operations are executed the threads are joined
and the run is over.

Since the goal is to test schedulers and load balancing polices there is no fair-
ness guarantees and different threads can execute a significantly varying amount
of operations in a run. Because of this it is necessary to monitor the amount of
operations executed by threads instead of simply divide the total amount of oper-
ations among the threads on startup. Moreover to keep the monitoring overhead
low the amount of report messages is limited.

The runner script is the only component which has a user-interface. It is a
python-script with the following command-line interface:
usage: simple run.py [-h] [-n N] [-a dont set,set] [-l L] [-o O]

optional arguments:

-h, --help show this help message and exit

-n N Number of processes to start

-a dont set,set Affinity setting

-l L The load to set on processes

-o O Total number of operations to perform before exiting

The user can initiate a benchmark by running for example ./simple run.py
-n 4 -o 1000000 -l 0.25
This creates four threads with a total of 1M operations with a load of 25% for each
thread.

7.3 The load generator
The load generator has two responsibilities, 1) to direct control flow between the
operation and the idle state and 2) to estimate the instantaneous cycle count of the
operation. It has three states, operation, sleep and estimate, and the transitions
between these states are illustrated in Figure 28.

7.3.1 Pseudo algorithm

For describing how the load generators works, we begin with describing a high-
level pseudo algorithm, which describes the general functionality of the load gen-
erator. The pseudo algorithm is in subsequent sections refined to match the actual
implementation of the load generator.
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op.start

slp.

est.

new phase

Figure 28: State machine of load generator. States: operation (op.), sleep (slp.),
estimate (est.)

The load generator works in phases starting with phase 1 in state operation.
On transition from estimate to operation the load-generator enters a new phase
i + 1. Each phase has a set of parameters calculated in the estimate phase. In
the beginning of phase i the load generator will transition between the operation
and the sleep states o(i) times, and then enter the estimation state. An abstract
description of the load generator algorithm, derived from the state-machine, can
be found in Algorithm 1. The difference between the state-machine representation
in Figure 28 and the representation in Algorithm 1 is that time is added. From this
algorithm we can get the utilization of the load generator with

U(i) =
tpseudo(i)− o(i) · tsleep(i)

tpseudo(i)
,

derived from Equation 6 in the load section.

Algorithm 1 Load generator pseudo algorithm

i← 0, tsleep(0)← 0, n(0)← 1
loop
tpseudo(i)← time now()
for j = 1 to o(i) do
operation() // operation state.
sleep(tsleep(i)) // sleep state.

end for
tpseudo(i)← time now()
<< calculate tsleep(i+ 1) and o(i+ 1) >> // estimation state.
i← i+ 1 // enter phase i+ 1.

end loop
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7.3.2 Load generator algorithm

A problem with the pseudo algorithm in Algorithm 1 is that in practice it is not
possible to have a tsleep(i) < tsleepmin , for some tsleepmin , therefore a further re-
finement step is is done and is shown in Algorithm 22. Also, algorithmic support
is needed for sleeping for as short intervals as possible to minimize the possibil-
ities for the processor entering sleep states. Therefore we have added a double
loop construct in the actual algorithm, such that o(i) = n(i) ·m(i). For practical
reasons both the wall-time twall(i) and the cpu-time tcpu(i) is measured. This is
reflected in Algorithm 2.

1. The inner loop, looping the operation n(i) times has the purpose of increas-
ing the needed sleep time. Since it is possible to set n(i) before every phase
it is possible to have a minimum sleep time longer than Trun.

2. The outer loop, executing the inner loop and the sleep statementm(i) times,
is used to control the time between measurements. For optimal control per-
formance a constant measurement interval is needed. However, in practice
there is a minimal tsleep(i) which can be reliably achieved, therefore m(i) is
adjusted to achieve Tsleep(i) as close to tsleep(i) as possible.

7.3.3 Estimation of utilization

For the algorithm to be of any use it is required that the utilization ca be calcu-
lated. In practice, it is possible to calculate the utilization from the measurements
performed in Algorithm 2.

For each phase of a Spurg-bench we will have M(i) = {1, . . . ,m(i)} and
N(i) = {1, . . . , n(i)}. The CPU-time consumed during phase i is thus

Tcpu(i) =
∑

k,l∈M(i)×N(i)

Trun(i)(k,l). (12)

As can be seen from Algorithm 2, Tcpu(i) is measured. This measurement is
enough to estimate E

[
Trun(i)(k,l)

]
. The expected run-time is well defined as long

as the execution environment doesn’t change, under the assumption that small
fluctuations in Trun(i)(k,l) is due to random interference and is considered as vari-
ance. If we assume

∀k, l ∈M(i)×N(i) : Tcpu(i) = m(i) · n(i) · E
[
Trun(i)(k,l)

]
, (13)

we can derive an estimator for Trun(i) from Equation 12 as

T̂run(i) =
Tcpu(i)

m(i) · n(i)
. (14)

2For the sake of correctness the refined algorithm is based on the refined state-machine in
Figure 28.
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1. Note: The assumption in Equation 13 does not hold when the performance
of the execution environment changes, such as when the clock frequency
changes, any cache is flushed or when the thread is migrated to a core with
different performance.

To calculate the utilization for phase i the wall-time for each phase is mea-
sured. The wall-time can be modeled with the following equation:

Twall(i) =
∑

k∈M(i)

Tsleep(i)k +
∑

k,l∈M(i)×N(i)

Trun(i)(k,l) (15)

If we assume Equation 13,

∀k ∈M(i) : E [Tsleep(i)k] = tsleep(i) and

∀k, l ∈M(i)×N(i) : E
[
Trun(i)(k,l)

]
= T̂run(i),

we can now make another estimator for T̂run():

T̂run(i) =
T̂wall(i)−m(i) · tsleep(i)

m(i) · n(i)
(16)

and from the estimators calculate the utilization using Equation 6 as

Û(i) =
T̂run(i)

T̂wall(i)

=
T̂run(i)

m(i) · tsleep(i) +m(i) · n(i) · T̂run(i)

=

Tcpu(i)

m(i)·n(i)

m(i) · tsleep(i) + Tcpu(i)

=
Tcpu(i)

n(i) · (m(i)2 · tsleep(i) +m(i) · Tcpu(i))

(17)

7.3.4 Computation of parameters for phase i+ 1

In the previous section the utilization from the measurements in the algorithm
was calculated. Parameters for a phase i + 1 are obtainable from a state and the
measurements done in phase i. The parameters m(i+1), n(i+1) and tsleep(i+1)
need to be calculated. There are two separate cases that need to be considered.

1. If tsleep(i + 1) = 0, we can set m(n + 1) = 1 and set n(n + 1) according
to T̂run(i) to achieve some measurement period. In this case the algorithm
simply runs the operation without interruption.

2. If tsleep(i+1) > 0 we will have the invariant tsleep(i+1) > tsleepmin , as well
as m(i + 1), n(i + 1) ∈ Z+. In this case the operation is run a number of
time, and then sleep for a given amount of time. It is now easy to calculate
a minimal tsleep(i+ 1) with these properties.
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op.start
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new phase
inner loop

Figure 29: Refined version with double loop of the state machine (from Figure 28)
for the load generator, according to Algorithm 2. States: operation (op.), sleep
(slp.), estimate (est.)

Algorithm 2 Load generator structure

i← 0, tsleep(0)← 0, n(0)← 1
loop
twall1(i)← walltime now()
tcpu1(i)← cputime now()
for k = 1 to m(i) do

for l = 1 to n(i) do
operation() // operation state.

end for// inner loop end.
sleep(tsleep(i)) // sleep state.

end for// outer loop end.
tcpu2(i)← cputime now()
twall2(i)← walltime now()
<< calculate tsleep(i+ 1) and n(i+ 1) >> // estimation state.
i← i+ 1 // enter phase i+ 1.

end loop
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Figure 30: Illustration of a phase in a load generator, with it’s context-switches,
m(i) sleep intervals and m(i) · n(i) operations.

7.4 The operation

The load from Spurg-bench is mainly generated by the operation3. The operation
is simply a computation running some deterministic algorithm. Different imple-
mentations of the operation create different kinds of load on the CPU. The opera-
tion creates a load on the system and can exercise the CPUs, ALUs, floating-point
units, vector-units and memory hierarchy with caches and other memory units.

Since the load generated from Spurg-bench should be able to fluctuate to
keep a constant utilization while the performance of the execution environment
is changing, the operation should have a short enough execution time to give the
load generator a small control granularity. Although a small control granularity is
required, a very short execution time will introduce overhead. The execution time
should thus be preferably in the range of microseconds on a typical system. List-
ing 1 illustrates an example operation which can be used with Spurg-bench. When
run on a fairly new laptop the estimated time of this operation varies between 6
and 11µs, depending on the frequency.

For our purpose the operation in Listing 1 is sufficient although trivial since
we wanted to compare different scheduling and load balancing policies against
each other on the same hardware. For benchmarking hardware platforms against
each other an operation which better represents a real computation would be better
suited. We chose to use floating-point instruction for the operation to use more
energy, thus generating more heat among other things.

3There is also some load generated from the load generator and runner script, but they are
assumed to negligible.
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Listing 1: Example of a operation using the processors floating-point units.
1 i n t o p e r a t i o n ( )
2 {
3 i n t i ;
4 double a = 2 . 0 ;
5 f o r ( i = 0 ; i < 1000 ; i ++) {
6 a ∗= 2 . 0 ;
7 }
8 re turn 0 ;
9 }

7.5 Model Validation
We validated our analytically defined models with benchmarks on real hardware
to determine their suitability in a real-world system. For these experiments we
choose the Exynos 4 quad-core CPU and the derived power model given in Equa-
tion 11 with the parameters representing the hot case in Table 2. We hence stressed
the CPU with two benchmarks: Spurg-bench for each combination of clock fre-
quency and #cores. After the benchmarks, we multiplied the elapsed execution
time with the average power dissipation for each test to obtain the energy profile.

We used the following assumptions for each test:

• As n-Spurg-bench threads are running only when n-CPU cores are active.
The others are shut down.

• The number of operations per threads is constant for all test

• The load is 99% for a Spurg-bench thread

• No other workload is running except some light Linux background tasks

We evaluated configurations with 1,2,3 and 4 threads. Each experiment was
run with clock frequencies 400 MHz – 1600 MHz on a Exynos 4 platform and the
power was measured for each test. We executed 40k Spurg-bench operations for
each thread (which means that a low clock frequency will use much time but little
power and a fast clock will use much power but short time). Figure 31 shows the
total energy consumption for each Spurg-bench run. Very low clock frequencies
will use much energy since the execution time is very long even though the power
is low. On the opposite side, very high frequencies also use much energy due to
the very high dynamic power and high temperatures.

We modeled the same situation with the power model given in Equation 11
multiplied by the execution times obtained in the previous experiment. Figure 32
shows the model based results when multiplying the power model with the real
execution times.
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Figure 31: Power as function of #cores and clock frequency running Spurg-bench

In order to compare the model with real data, we calculated the error difference
for each set of frequency and #cores. Figure 33 shows the error between the model
and real data.

Figure 32: Power as function of #cores and clock frequency using the power
model in Equation 11

As we can see in this figure the error is quite small. We can see a difference
for 2 reasons:

• The model was trained with the stress benchmark while the test are run
with Spurg-bench. Since these two tests (most likely) use different kinds of
operations, the power dissipation differs somewhat.

• The 3rd degree polynomial is not perfectly representing the real data but it
is quite close.
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Figure 33: Difference between real data and model for each configuration

The mean error for the whole model was 3.22%.

8 Experimental Results
This section presents early results from the implemented power manager on the
Exynos 4412 based (quad-core ARM Cortex-A9) Odroid-x board [22]. To repli-
cate the default behavior and create a fair comparison to the frequency governors,
a monitoring application was created to log the load level of each CPU core and
to request additional resources in case the load level exceeded a certain threshold.
Furthermore, the monitor measured the number of active threads to give the notion
of system parallelism to the power manager.

Figure 34: Structure of the workload monitor: The load level is used as measure-
ment of performance and number of threads determines the P-value

Figure 34 illustrates the monitor structure: the total system workload is mea-
sured and used as the performance. A QoS setpoint is defined as the maxi-
mum workload allowed before adding more resources. The monitor measures
the amount of active threads during one iteration, which means that the P-value
will change between monitor iterations. Our notion of QoS is hence directly the
load level. The parallelism of the system was determined by measuring the num-
ber of actively running threads i.e. more threads equals a higher level of system
parallelism.
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8.1 Spurg-Bench
The first energy benchmark was the Spurg-Bench [23] (See previous Sections). As
workload, the user can select a certain number of operations to execute, which are
evenly divided among the created threads. For our experiments, we chose 100k
floating points as the operations executed by the Spurg-Bench threads. Spurg-
Bench finally measures the execution time of completing all of the operations.

We ran nine different use cases of Spurg-Bench with four threads and load
levels [10 20 30 40 50 60 70 80 90](in %) per thread. All experiments were
run both on the default Linux CFS with the ondemand governor and with our
optimized power manager directly controlling both DVFS and DPM though the
Linux sysfs interface. We ran each configuration in both hot (+20◦C) and cold
(−20◦C) ambient temperatures.

Figure 35: Power and time results from Spurg-Bench compared with the standard
Linux CFS+ondemand policy (Rings are data)

The execution time and the power trace for each experiment is shown in Figure
35. Compared to the default CFS+ondemand, the optimized case has an overall
higher power dissipation except for when the workload exceeds roughly 65%. On
the other hand, the optimized case has a much faster execution time as the load
levels go below 60%. These results are due to the combination of using CFS and
the ondemand governor: a) The workload is always distributed on all cores, which
leads to a very low load level on each core b) As long as the load levels are very
low, the upthreshold for increasing the clock frequency is not reached. This
means that the CPU retains a low clock frequency, and hence the execution time
of the work remains very slow.

While executing workload at slow phases decreases the dynamic power dissi-
pation, the energy consumption increases drastically because of the long execution
time. As a product of both power and time, energy is usually wasted when exe-
cuting workloads at very slow speeds because of the static leakage power ever
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present. The cold case was removed from Figure 35 because of illustrative rea-
sons, it resulted in similar execution times and an overall lower power dissipation
because of lower static leakage power.

The energy trace for Spurg-Bench is shown in Figure 36. Our optimized power
manager beats the standard CFS with ondemand governor with a large margin for
load levels lower than 60%, and for work loads above this point the results are
rather similar.

8.2 Mplayer video

Since Spurg-Bench is a synthetic benchmark, we chose a consumer product as
our next evaluation. The chosen experiment was a multi-threaded video decoding
benchmark using mplayer. We ran each video configuration with different lev-
els of parallelism by fixing the number of decoder threads of the video player with
the option -lavdopts threads=<n> and -benchmark to print evaluation
results. The experiments were run with three different video (Mpeg4) resolutions:
1080p, 720p and 480p on both the default Linux CFS with the ondemand gover-
nor and with our optimized power manager and each experiment was iterated 10
times.

Figure 37 shows the energy consumption for each number of threads, all video
resolutions and the power management schemes for the hot use-case. The effect
of low parallelism is mostly noticed in the 1080p case since high video quality
forces the maximum clock frequency, which has a very high dynamic power. The
high clock frequency also causes high temperatures, which increases the static

Figure 36: Energy results from Spurg-Bench compared with the standard Linux
CFS+ondemand policy (Rings are data)

50



Figure 37: Hot use-case: Mplayer benchmarks with different video resolutions
using Linux CFS+ondemand vs. optimized power manager

power further.
In the cold use-case shown in Figure 38, the overall energy consumption is

almost half of the energy consumption in the hot use-case (Figure 37). We espe-
cially notice the effects of lower leakage power in the 1080p cases, in which the
CPU is running on a very high clock frequency but still consumes a conservative
amount of energy. Since the consumed energy is lower, the margin for improve-
ments is tighter and the optimized power manager beats the CFS+ondemand only
slightly in the 720p case and the other use-cases show roughly the same energy
consumption.

Figure 38: Cold use-case: Mplayer benchmarks with different video resolutions
using Linux CFS+ondemand vs. optimized power manager

The choice of parallelism in the 720p and 480p case did not influence the
energy consumption for either CFS+ondemand or the optimized power manager
much because of: 1) The lower video quality allows the CPU to run on low/medium
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clock frequency, which has a significantly lower dynamic power dissipation i.e.
changing clock frequency in the low/medium frequency spectrum does not affect
the power dissipation significantly. 2) We benchmarked mplayer and noticed
that it does not fully scale to four cores, which results in energy waste when run-
ning on too many threads. We also noticed increased kernel space activity when
running more threads, which may result in energy waste roughly proportional to
the energy savings gained by increased parallelism.

In order to fine tune the application, mplayer could be modified to, instead
using workload as the performance metric, directly measure the framerate of the
decoder. This would result in a less generic, but a more power efficient system
designed for mplayer.

8.3 Mixed application
We finally evaluated the energy efficiency in a mixed-load scenario. The primary
load was the earlier mentioned mplayer video decoding threads, but further-
more we stressed the system with Spurg-Bench threads using different load lev-
els. This scenario was built to represent the presence of background tasks in a real
system executing a workload. We fixed the mplayer threads to -lavdopts
threads=4, i.e. four mplayer threads, and we generated two Spurg-Bench
threads each with the load level in the range [10% - 90%]. The Spurg-Bench
threads were run on a lower priority to not degrade the video playback, and the
threads executed a fixed number of operations during the video playback.

We decoded a 720p video during external Spurg-Bench loads in the range
[10% - 60%] and a 480p video during external Spurg-Bench loads in the range
[70% - 90%] to not overload the system. The results are shown in Figure 39.
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Figure 39: Energy results mplayer from benchmark in combination with back-
ground loads using Spurg-Bench threads, x-axis is the load level of the back-
ground task

As earlier concluded, the Linux CFS with the ondemand governor handles low
workload poorly. This effect is also noticed in the mixed-workload case especially
in cases with low external workload. The energy savings of the optimized power
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manager is obtained from a faster execution of the external workload, and after this
only dissipating power for decoding the video. Both methods become more equal
as the workload increases, but since our power manager relies on both DVFS and
DPM it manages the power usage more efficiently and has an edge over the default
configuration. By decreasing the ambient temperature the results of both methods
are rather similar with only a slight edge for the optimized power manager in the
low load cases, which is because of the lower static power dissipation.

9 Measurement set-ups
To calculate the energy, it is vital to have an efficient way of measuring the power
dissipation of the devices. An embedded platform consists of many components
(apart from the CPU), and different levels of granularity should be considered for
fair power evaluation.

9.1 External power measurements
Our first kind of test bench is based on external power measurements. The device
under evaluation is a Exynos 4412 chip implemented on the Odroid-x board [22]
and uses a quad-core ARM Cortex-A9 CPU. The board has 1GB DDR2 main
memory, six USB 2.0 ports, HDMI, audio and debug ports. The clock frequency
of the CPU can be scaled from 200 MHz to 1600 MHz in steps of 100 MHz and
all cores (except Core0) can be individually shut down on demand.

The power dissipation of the device is measured with an external power logger
implemented on a Raspberry Pi single-chip computer. The Raspberry Pi is con-
nected with probes on both the board level power supply and directly on the CPU
power supply, which means that the device is able to measure the power of both
the single CPU as well as the board including memory and peripheral devices.
The Raspberry Pi logs the current and voltage over a shunt resistor connected to a
fast A/D converter, which sends the power readings to the Raspberry Pi over the
i2c bus. Figure 40 shows the Odroid-x board connected to the Raspberry Pi with
the power probes visible.

A/D converter Figure 41 shows the schematics of the shut resistor and A/D
converter used for measure the power. The device supports eight probes which
can all be connected to individual devices. Each probe consists of two wires
connected in serie to the current feed of the device under measurement. A probe is
then connected to a INA226 A/D converter which measures both voltage, current
and calculates power. The obtained data is then sent on the i2c bus as serial data
in form voltage, current, power, and this sequence is continuously repeated. The
left part of Figure 41 shows the Raspberry Pi pin header which connects directly
by the Raspberry Pi and is read by the Datalogger software.
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Figure 40: Raspberry Pi used as external power meter and connected to the Odroid

Datalogger The power readings are logged by a Raspberry Pi connected to the
i2c bus as shown in last paragraph. The Raspberry Pi is accessible by ssh logins
and the power readings can be shown in real time or written to a log file. Power
readings are obtained by listening to the i2c bus and sorting out the serial sequence
of data in form of voltage,current and power. Figure 42 shows a screen shot of
the Raspberry Pi power reading program which plots: Time stamp, Board voltage,
Board current, Board power, CPU voltage, CPU current and CPU power from the
left column to the right. The Datalogger software is opensource and available at
https://github.com/ESLab/DataloggerExynos4412
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Figure 41: Schematics of the external power meter used in the Exynos 4412 board
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Figure 42: Screenshot of Raspberry Pi console measuring power

9.2 Internal power measurements
Other devices such as the Odroid-xu-e (Manual not available at this time) con-
tain internal registers for measuring voltage, power, temperature etc. This fea-
ture is very useful since no external device is needed. However, to measure the
power dissipation internally uses a certain amount of CPU power, which means
that measurement scripts or programs should be designed with this fact in mind
to not influence the measurement results. The device shown in Figure 43 is the
Odroid-xu-e with the Exynos 5410 CPU containing four ARM Cortex-A15 cores
and four ARM Cortex-A7 cores. The A7 cores can be clocked to frequencies be-
tween 250 and 1200 MHz, but the OS implementation is set to switch from the
A7 cores to the A15 as the clock frequency reaches 800 MHz. The A15 cores
can be clocked to 1600 MHz and even over clocked up to 1800 MHz. The chip is
designed to run low workload on the energy efficient A7 cores and high workload
on the faster A15 cores.

The internal registers in the Odroid-xu-e are capable of monitoring the Cortex-
A15 power, Cortex-A7 power, GPU power and memory power. These power
readings can therefore be sampled with a user defined rate and printed to a log file
with a simple script. An example script for reading the power of the Odroid-xu-e
is found at https://github.com/ESLab/Exynos5PowerMeter
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Figure 43: Odroid-xu device with the big.LITTLE configuration containing
4xCortex-A15 and 4xCortex-A7 cores
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10 Conclusion

In this report we have presented the most typical considerations and issues when
conducting power and energy measurements on multi-core microprocessors. The
report firstly explains the power dissipation and its relation to energy consump-
tion. As manufacturing technologies shrink and the cores increase in number, the
static leakage power in the transistors increases and starts to dominate the total
power dissipation [16]. DPM using sleep states as a technique to reduce the static
power dissipation of microprocessors by switching off parts of the chip such as
the CPU cores as the core is not in use. A problem with DPM, however, is to pro-
vide a notion of parallel workload since this information is not present in power
management systems today.

We have described the notion of load in typical Linux based systems and sug-
gested ways of extending this notions with QoS requirements and scalability pa-
rameters directly in the applications. These notions could create a more rich ap-
plication more tightly connected to the power management system, and could be
used to create more energy efficient scheduling and power management.

We have presented an energy benchmark for multi-core systems called Spurg-
bench, which is to our knowledge the only benchmark tool capable of variable
load generation suitable for embedded-type of platforms. The commercial tool
SpecPOWER [13] was initially evaluated on our system, however, since the tool
has been targeted for high-end processors, our embedded test bench was simply
too slow for the calibrations to be valid.

An evaluation of the presented benchmark and run-time power manager pro-
vides early results on the achievable power and energy savings and provides a
comparison of the proposed approach with by default Completely Fair Linux
scheduler and load balancer.

Finally we have demonstrated two ways of conducting power measurements
by using both internal and external power measurement devices. We have pre-
sented an open-hardware solution to read power traces from any kind of chip
provided that the current feed pin are exposed. Our open-source software running
on a low-cost Raspberry Pi platform is one example of creating a cost efficient
power tracing device without industrial scale manufacturing equipment.

References

[1] M. Anis and M.H. Aburahma. Leakage current variability in nanometer tech-
nologies. In System-on-Chip for Real-Time Applications, 2005. Proceedings.
Fifth International Workshop on, pages 60–63, July 2005.

[2] Christian Bienia. Benchmarking modern multiprocessors.

58



[3] M. Bohr. A 30 year retrospective on dennard x0027;s mosfet scaling paper.
Solid-State Circuits Society Newsletter, IEEE, 12(1):11–13, Winter 2007.

[4] S. Borkar. Design challenges of technology scaling. Micro, IEEE, 19(4):23
–29, jul-aug 1999.

[5] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power cmos digital
design. Solid-State Circuits, IEEE Journal of, 27(4):473 –484, apr 1992.

[6] Sangyeun Cho and R.G. Melhem. On the interplay of parallelization, pro-
gram performance, and energy consumption. Parallel and Distributed Sys-
tems, IEEE Transactions on, 21(3):342–353, March 2010.

[7] Alonzo Church. An unsolvable problem of elementary number theory.
58(2):pp. 345–363.

[8] Harold J. Curnow and Brian A. Wichmann. A synthetic benchmark.
19(1):4349.

[9] K. Dev, A.N. Nowroz, and S. Reda. Power mapping and modeling of multi-
core processors. In Low Power Electronics and Design (ISLPED), 2013
IEEE International Symposium on, pages 39–44, Sept 2013.

[10] Fredric Hällis, Simon Holmbacka, Wictor Lund, Robert Slotte, Sébastien
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