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Abstract

We present the results of computational experiments performed to study
empirically advantages and disadvantages of modeling uncertainty using the
concepts of fuzzy intervals. The minimum spanning tree problem and its
robust counterpart are chosen as target models in our investigation.

Keywords: robust spanning tree, fuzzy intervals, minmax regret, data un-
certainty, soft computing



1 Preface

We consider the special case of a minimum spanning tree problem where the
edge costs (weights) are not fixed but take their values from some intervals.
No stochastic distribution is given inside intervals. The interval function
is defined as the sum of interval weights over all edges of feasible spanning
tree. This problem was first mentioned in [8], where some questions con-
cerning solvability and computational complexity were studied. Contrary to
the classical minimum spanning tree problem which can be easily solved by
the algorithms of Kruskal (1956) [9] or Prim (1957) [11], minimum spanning
trees of the interval variant depend on weights realization and the optimal
objective value generally is not unique. Therefore, the authors of [8] proposed
to introduce the relation on the set of intervals, which gives the possibility
to transform the problem into a special bicriteria counterpart. The Pareto
set of the counterpart, which can be generated by standard multiobjective
methods, is taken to be the solution of the interval problem. It was shown
that the counterpart problem is intractable, and it follows that the interval
problem is also very hard to solve.

The special interest motivated by transportation problems and telecom-
munications applications induces not to solve the interval spanning tree prob-
lem itself, but to hedge against the worst case realization (scenario) of prob-
lem parameters, which can be interpreted as given with uncertainty. Playing
against worst case scenario is commonly known as robust optimization (see,
e.g. [7], [10]). As it was indicated in [7], in many cases the robust equivalent
of a polynomially solvable problem becomes NP-hard.

The robust spanning tree problem was originally formulated in [7] for
the case where edge costs are taken from some set of scenarios. It was
proven that the problem is NP-hard [2] if the number of scenarios is bounded.
Furthermore, strong NP-hardness of the problem for unbounded number of
scenarios has been shown.

The direct evidence of the NP-hardness of the robust spanning tree prob-
lem with interval data was presented in [1], while the basic theoretical back-
ground has been presented in [12]. Two different types of robustness were
introduced: absolute and relative robustness. It was proven that the absolute
robust spanning tree problem can be easily resolved, whereas the relative ro-
bust spanning tree problem is very hard to solve. A reformulation of the last
problem as a specific mixed integer program was presented. The concepts of
weak and strong edges were introduced as well as polynomial time algorithms
for their recognition were described. It was shown how these concepts can
be efficiently used in a preprocessing stage for solving the relative robust
spanning tree problem.

Since the robust spanning tree problem has a lot of applications in road
and telecommunication networks design, there is an obvious practical need to
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solve large scale instances with simple and fast procedures in order to find a
good approximation of optimal solution. Therefore, it is of special interest to
attack the problem with powerful metaheuristics the choice of which can be
motivated by previous success of these procedures developed for the problems
dealing with similar tree structures.

The first attempt to solve heuristically the robust spanning tree problem
(and other similar robust optimization problems) is developed in [5], where
the 2-approximation polynomial time algorithm with guaranteed perform-
ance ratio 2 is described. The idea of the algorithm is the following: 1) the
scenario in which the costs of all elements (edges) are at midpoints of their
corresponding cost intervals has to be defined 2) a standard optimization
algorithm for the optimization problem with fixed scenario has to be applied
(the polynomial time algorithms of Kruskal or Prim can be used to solve min-
imum spanning tree problem with fixed scenario). Obviously the proposed
approximation algorithm has polynomial time complexity since it exploits
polynomial time algorithms to solve once the problem with fixed edge costs.
The algorithm is very fast but in worst performance case it may produce a
solution with total cost value twice worse as optimal solution has.

Soft computing ideology contains a bunch of new and innovative ap-
proaches to analyze intelligent systems and networks under uncertainty. Soft
computing methods applied to real world problems offer another degree of
robustness and tractability for solutions. As a modeling tool soft computing
approaches utilize fuzzy set theory and fuzzy logic as well as macro heuristic
and approximate reasoning. Many deterministic models created to analyze
uncertainty can be naturally extended by their fuzzy counterparts where the
methodology of soft computing could be potentially beneficial. However deal-
ing with such models may create extra computational difficulties which have
to be scrutinized on their efficiency. In this paper we present such empirical
analysis on efficiency of utilizing the concept of fuzzy intervals and the usage
of corresponding soft computing methods for the minmax regret spanning
tree problem.

2 A comprehensive background on closed and

fuzzy intervals

We start this study by presenting some theory of closed and fuzzy intervals.
Especially closed intervals play a crucial role, because solving a fuzzy interval
problem can be turned into solving a closed interval problem. In this research
we solve minimum spanning tree problems and we determine a set E =
{e1, . . . , en} that consists of edges of a given undirected graph and a set V
that consists of the number of nodes. Furthermore, every feasible solution
has V − 1 edges and we denote the set of feasible solutions by Φ which in

2



this case consists of all possible spanning trees of considered graph.
Theory and algorithms used in this research are mainly borrowed from

[3], [4], [6]. We first formulate a general modeling pattern which is valid for
an arbitrary discrete optimization (over a finite family of subsets of the given
ground set E) problem P and then specify details regarding the spanning
tree topology.

2.1 Closed interval problem

Suppose that the values of the weights of e in problem P are only known to
belong to the closed intervals ŵe = [we, we] where lower bound we ≥ 0 for all
e ∈ E. If we = we then the value of the weight of e is precise and in this case
the interval ŵe is called degenerate. A particular realization of the weights
S = (wS

e )e∈E such that wS
e ∈ ŵe for all e ∈ E is called a scenario. Thus every

scenario represents a certain state of the world, that is a configuration of the
weights, which may occur with a positive, but perhaps unknown probability.
We will denote the set of all scenarios by Γ, that is the Cartesian product
of all the uncertainty intervals, namely Γ = ×e∈E ŵe. Among the scenarios
we will distinguish the extreme ones, in which every weight takes either the
extreme value of the lower bound we or the upper bound we. Let A ⊆ E
be a given subset of E. We will use S+

A to denote the extreme scenario in
which the elements e ∈ A have weights we and all the other elements have
weights we. Similarly, we define scenario S−

A , in which the elements e ∈ A
have weights we and all the other elements have weights we.

Now the weight of a given solution X ∈ Φ under a scenario S ∈ Γ is
defined as follows:

F (X,S) =
∑
e∈X

wS
e .

Let us denote by F ∗(S) the weight of the optimal solution under a scenario
S, that is

F ∗(S) = min
X∈Φ

F (X,S).

In order to obtain the value of F ∗(S) we must solve the deterministic com-
binatorial optimization problem P for the fixed scenario S ∈ Γ.

Now the regret of a solution X under scenario S ∈ Γ is defined as follows:

δX(S) = F (X,S)− F ∗(S). (1)

By means of this, the maximal regret of a given solution X is defined as
follows:

Z(X) = max
S∈Γ
{F (X,S)− F ∗(S)} = max

S∈Γ
δX(S). (2)

It is clear that Z(X) ≥ 0 for all solutionsX ∈ Φ. A scenario S that maximizes
the right hand side of (2) is called the worst case scenario for X and is
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denoted as S+
X . Using results of [4], [12], we can express the maximal regret

of a given solution X in the following way:

Z(X) = F (X,S+
X)− F ∗(S+

X) = δX(S
+
X). (3)

In this study we focus on the following minmax regret combinatorial
optimization problem which is a robust counterpart of P :

MINMAX REGRET P : min
X∈Φ

Z(X). (4)

A solution of closed interval problem P can be classified into possibly
optimal and necessarily optimal. If a solution X ∈ Φ is possibly optimal
then it has to be an optimal solution to the problem P for at least one
scenario S ∈ Γ. A solution X ∈ Φ is necessarily optimal if it is an optimal
solution to the problem P for all scenarios S ∈ Γ. Obviously, a necessarily
optimal solution is the best possible solution to the problem. Unfortunately,
usually it does not exist. However, every solution X must fulfill possible
optimality which is now the minimum requirement.

When we have a deviation of solution X in (1) under scenario S we can
calculate the optimality of solution. If the minimum deviation is

δX = min
S∈Γ

δX(S) = δX(S
−
X) = 0

then the solution is possibly optimal. On the other hand, if the maximum
deviation is

δX = max
S∈Γ

δX(S) = δX(S
+
X) = 0

then the solution is necessarily optimal. Furthermore every necessarily op-
timal solution is a solution of minmax regret optimization problem P . The
value of the objective function is then 0.

Similarly, we can calculate possibly and necessarily optimality for every
edge. Generally, this is a computationally difficult problem. We can solve it
efficiently only if P is a matroidal (a family of subsets over the ground set E
must be independent) problem such as minimum spanning tree problem.

2.2 Fuzzy interval problem

2.2.1 Notations

Fuzzy intervals have imprecise boundaries and existence of an element to this
interval is defined by a membership function. An element can therefore be
included in this range also partially. A fuzzy interval is now defined as a set
of two elements

ã = {(x, µã(x)) | x ∈ R} ,
where
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• ã is a fuzzy interval;

• x is an element from this range;

• µã : R→ [0, 1] is a membership function of ã;

• µã(x) is a degree of membership for an element.

The degree of membership µã(x) is the possibility, in which an element x is
included into a fuzzy interval. If the degree of membership of an element is
1 then this element is included completely into this fuzzy interval. Similarly,
an element is not included at all into the fuzzy interval if the degree of
membership for this element is 0. If the degree of membership is from an open
range (0, 1) then this element is partially included into this fuzzy set. In this
case the degree of membership expresses how strongly an element is included
into this fuzzy interval. However, the degree of membership is not equivalent
with probability and fuzzy intervals are not probability distributions. A
closed interval can be interpreted as a special case of a fuzzy interval, where
the degree of membership for each element is either 1 or 0.

A λ-cut of a fuzzy interval ã is a subset of R which is defined by a formula

ãλ = {x : µã(x) ≥ λ}, λ ∈ (0, 1].

In addition we also assume that all the elements with a strictly positive
degree of membership are included into the set ã0. We can show that ãλ is a
closed interval for all λ ∈ [0, 1]. Therefore a λ-cut can be written as a closed
interval ãλ = [a(λ), a(λ)]. Now we can see fuzzy interval as a family of closed
intervals, when parametrized by the value of λ ∈ [0, 1].

The membership function µã can now be expressed by using a family of
λ-cuts of a fuzzy interval ã. This is obtained by writing

µã(x) = sup{λ ∈ [0, 1] : x ∈ ãλ},
where µã(x) = 0 for all x ̸∈ ã0.

Let u be some unknown real-valued variable and ũ be a fuzzy interval
which is related to u. If A is a subset of R then the possibility and the
necessity of u ∈ A is defined as follows

Π(u ∈ A) = sup
x∈A

µũ(x)

N(u ∈ A) = 1− Π(u ̸∈ A) = inf
x ̸∈A

(1− µũ(x)).

In this study we use trapezoidal fuzzy intervals. One example of those
is shown in the figure 1. Now every trapezoidal fuzzy interval can be de-
scribed by a quadruple (a, a, α, β), where a ≤ a and α, β ≥ 0. It can also be
represented as a family of λ-cuts, where

ãλ = [a− (1− λ)α, a+ (1− λ)β], λ ∈ [0, 1]. (5)

From now on, we denote the fuzzy intervals of edges e ∈ E by w̃e.
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Figure 1: Trapezoidal fuzzy interval (a, a, α, β)

2.2.2 Degree of optimality and the problem to be solved

Possible and necessary optimality of a closed interval solution X can be
generalized into the degree of possible and necessary optimality of a solution
X under fuzzy weights. This degree is a real number from interval [0, 1].
With these we can obtain both degrees for the solution X by using fuzzy
deviations.

From now on, we use the marking Pλ on a combinatorial optimization
problem where λ ∈ [0, 1] and weights of edges are λ-cuts of fuzzy intervals.
Therefore in a problem Pλ the weight of the edge e ∈ E is w̃λ

e . We can denote
the set of all scenarios by Γλ = ×e∈E w̃λ

e . A fuzzy interval problem can be
transformed into the closed interval problem by giving the variable λ some
specific value and we can acquire both minimum and maximum deviations
of solution X. This can be done by using formulas

δX(λ) = min
S∈Γλ

δX(S) = δX(S
−
X) and

δX(λ) = max
S∈Γλ

δX(S) = δX(S
+
X).

With these deviations we can define the degrees of both possible and
necessary optimality. The degree of possible optimality of solution X is
obtained by

Π(X optimal) = sup{λ ∈ [0, 1] : δX(λ) = 0}. (6)

The degree of necessary optimality of solution X is obtained by

N(X optimal) = 1− inf{λ ∈ [0, 1] : δX(λ) = 0}. (7)

Proofs of these formulas can be found in [4]. Now we can see that the function
δX(λ) is non-decreasing and function δX(λ) is non-increasing. Therefore
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degrees of optimality can be defined with a given accuracy ϵ by using binary
search.

Before solving fuzzy interval problems we have to choose the objective
function. In this study we consider the degree of necessary optimality of
solution X and our aim is to maximize its value. Therefore the problem to
be solved can be written in a form

MOST NEC P : max
X∈Φ

N(X optimal). (8)

The value of N(X optimal) can be acquired by using (7). Thus the problem
MOST NEC P is equivalent to the optimization problem

min λ

s. t. δX(λ) = 0 (9)

X ∈ Φ

0 ≤ λ ≤ 1.

Our goal is to find the smallest value of λ ∈ [0, 1] for which there exists
a solution X that fulfills the condition δX(λ) = 0. Now X is the optimal
solution for the problem MOST NEC P and value of objective function is
N(X optimal) = 1 − λ∗. If the problem (9) has no feasible solutions then
N(X optimal) = 0 for all solutions X ∈ Φ.

Degree of necessary optimality is a extremely strict condition because it
requires the solutionX to be optimal for all weight realizations of the problem
Pλ. In most cases this solution does not exist and therefore N(X optimal) =
0 for all X ∈ Φ. Because of this we need to define a weaker condition called
the degree of necessary soft optimality.

Let the function µZ : [0,∞) → [0, 1] be non-increasing and its value is
µZ(0) = 1. This function models the fuzzy goal of the deviation δX and it
can be defined in any way such that the previous conditions are fulfilled. In
other words µZ(δX) defines the degree that can have the acceptable amount
of deviation. In this study we use the piecewise linear function µZ shown in
the figure 2. We can clearly see that δX = 0 is the best possible deviation.

Now we can define the degree of necessary soft optimality of solution X
by using the formula

N(X soft optimal) = inf
S
max{1− π(S), µZ(δX(S))}, (10)

where π(S) = mine∈E µw̃e(w
S
e ) and wS

e ∈ w̃e is some realization of the weights
of edges under some certain scenario. Especially when the problem MOST
NEC P has no feasible solution we can move on to solve the problem

MOST NEC SOFT P : max
X∈Φ

N(X soft optimal), (11)
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Figure 2: Function µZ which represents fuzzy goal of deviation δX

which is the generalization of the problem MOST NEC P . We can also
represent the problem MOST NEC SOFT P by using the equivalent form

min λ

s. t. δX(λ) ≤ µ−1
Z (1− λ) (12)

X ∈ Φ

0 ≤ λ ≤ 1,

where µ−1
Z is the pseudo-inverse function of µZ . We can define this pseudo-

inverse function as

µ−1
Z (y) = sup{x : µZ(x) ≥ y}, when y ∈ [0, 1].

3 Algorithms

In this section we present algorithms that have been used to solve fuzzy MIN-
MAX REGRET problems. Before solving problems we transform them to a
mixed integer linear programming problem. All algorithms were implemen-
ted by C++ and GLPK was used to solve optimization problems mentioned
in the algorithms.

3.1 Kruskal’s algorithm

By using Kruskal’s algorithm we can solve deterministic minimum spanning
tree problems easily. The algorithm is shown below.
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Algoritm 1. Kruskal’s algorithm

Require: Matroidal combinatorial optimization problem.
Ensure: Optimal solution X ∈ Φ.

1: Arrange edges in ascending order such that we1 ≤ we2 ≤ . . . ≤ wen .

2: X ← ∅
3: for i← 1 to n do

4: if X ∪ ei does not form a cycle then X ← X ∪ ei
5: end for

6: return X

3.2 Algorithms MOST NEC and MOST NEC SOFT

In this study we use two possible algorithms for solving fuzzy optimization
problems. In both algorithms we fix some specific value for the variable λ and
therefore we obtain the problem Pλ, which consists of closed intervals. By
solving Pλ we get the solution Y for this problem. Next we need the regret
Z(Y ) for the solution Y , and depending on this regret we either increase or
decrease the value of λ. These phases will be repeated until the difference
between old λ and new λ is small enough.

In the algorithm MOST NEC we solve two deterministic problems and
that solution which gives smaller maximal regret will be set as Y . In the
algorithm MOST NEC SOFT we first transform a MINMAX REGRET
problem into a certain form of a mixed integer linear programming problem
(MILP). This form is represented in [4]. By solving this MILP problem we
obtain the solution Y . Next we represent an approximation algorithm AMU,
which is needed in forthcoming algorithms, and after that we formulate the
algorithms designed to solve fuzzy interval problems.

Algoritm 2. AMU

Require: Problem MINMAX REGRET P .
Ensure: A 2-approximate solution Y .

1: for all e ∈ E do

2: wS1
E ← 1

2
(we + we)

3: wS2
e ← we

4: end for

5: Y1 ← optimal solution of scenario S1 by applying Kruskal’s al-
gorithm

6: Y2 ← optimal solution of scenario S2 by applying Kruskal’s al-
gorithm

7: if Z(Y1) ≤ Z(Y2) then return Y1 else return Y2.
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Algoritm 3. MOST NEC

Require: Problem P with fuzzy weights, accuracy ϵ.
Ensure: The most necessarily optimal solution X ∈ Φ with accuracy ϵ.

1: Form the problem P1 and compute solution Y by applying AMU.

2: if Z(Y ) > 0 in P1 then return any X ∈ Φ ( N(X optimal) = 0 for
all X ∈ Φ).

3: λ1 ← 0.5; λ2 ← 0; k ← 1

4: while |λ1 − λ2| ≥ ϵ do

5: λ2 ← λ1

6: Form the problem Pλ1 and compute solution Y by applying
AMU.

7: if Z(Y ) = 0 in Pλ1 then X ← Y ; λ1 ← λ1 − 1
2k+1

8: else λ1 ← λ1 +
1

2k+1

9: k ← k + 1

10: end while

11: return X (N(X optimal) = 1− λ1))

Algoritm 4. MOST NEC SOFT

Require: Problem P with fuzzy weights, accuracy ϵ. Choose function µZ .
Ensure: The necessarily soft optimal solution X ∈ Φ with accuracy ϵ.

1: λ1 ← 0.5; λ2 ← 0; k ← 1

2: while |λ1 − λ2| ≥ ϵ do

3: λ2 ← λ1

4: Compute Y by solving MINMAX REGRET Pλ1 .

5: if Z(Y ) ≤ µ−1
Z (1− λ1) in Pλ1

6: then X ← Y ; λ← λ1; λ1 ← λ1 − 1
2k+1

7: else λ1 ← λ1 +
1

2k+1

8: k ← k + 1

9: end while

10: Compute Y by solving MINMAX REGRET Pλ1 .

11: if Z(Y ) ≤ µ−1
Z (1− λ1) in Pλ1 then X ← Y ; λ← λ1;

12: return X (N(X soft optimal) = 1− λ))
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3.3 Algorithm DETECT POS

To reduce computational time needed to solve a closed interval MINMAX
REGRET problem we implemented the following algorithm called DETECT
POS. The reason for using this algorithm as preprocessing procedure is pretty
clear. Before solving the actual problem we can check for each edge whether
or not it is possibly optimal. If some edge is not possibly optimal it cannot
be included into the solution of a MINMAX REGRET problem. Therefore
values of these edges can be set to zero before we solve the problem, what
reduces computational efforts in all the other algorithms.

Algoritm 5. DETECT POS

Require: A matroidal problem P with interval weights, element f ∈ E.
Ensure: true if f is possibly (necessarily) optimal and false otherwise.

1: Order the elements of the problem P with respect to the scenario
S−
{f}.

2: B ← ∅
3: for i← 1 to n do

4: if B ∪ {ei} does not form a cycle then

5: B ← B ∪ {ei}
6: if ei = f return true

7: end if

8: end for

9: return false

3.4 About solving problems and comparing solutions

Our primary goal is to find out whether or not it is useful in general to use
fuzzy intervals in optimization problems. If fuzzy intervals are not worth us-
ing then it might be better to model a problem by using only closed intervals.
Therefore, when dealing with fuzzy interval problems we first solve MINMAX
REGRET problems P1 and P0 and calculate regrets of these solutions. In
what follows the regret of the problem P1 is marked with R1. Similarly, we
use the notation R0 for the regret of the problem P0. By using R1 and R0

we obtain the piecewise linear function µZ which is needed in the algorithm
MOST NEC SOFT. This µZ is acquired by setting A to R1 and B to R0

in the figure 2. Therefore, function µZ is defined as

µZ(x) =


1 , x ≤ A

− 1
B−A

x+ B
B−A

, A ≤ x ≤ B

0 , x ≥ B.
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By using µZ we obtain both the solution of the fuzzy interval problem
and the degree of soft necessary optimality 1−λ∗ of this solution. In addition
we gain the regrets of all three solutions (fuzzy interval, P1 and P0) on the
scenario of the Pλ∗

problem. In what follows the regret of the solution of a
fuzzy interval problem is marked with Rfuzzy. Similarly, we use the notation
R1

fuzzy for the regret of the solution of a problem P1 and the notation R0
fuzzy

for the regret of the solution of a problem P0.
However, we need a way to compare the solution of a fuzzy interval prob-

lem to solutions of problems P1 and P0. For this we count relative regrets
of R1

fuzzy and R0
fuzzy from the Rfuzzy. This relative regret is acquired with a

formula
Ri

fuzzy −Rfuzzy

Rfuzzy

, i = 0, 1.

From now on when talking about how much solutions of P1 and P0 differ
from the solution of fuzzy interval problem, we mean this relative regret.

Furthermore, when comparing solutions we also focus on edges that are
included to these solutions. Firstly, we check if there exists some edges that
are included in the solution of the fuzzy interval, but are not included in
either of the solution of P0 or P1. We also observe if there are any edges
that belong in both solutions of problems P0 and P1, but do not belong in
the solution of fuzzy interval problem. In addition we also look for edges
that exist in all three solutions. Finally we do some pairwise comparisons
to look for common edges between a fuzzy interval solution and solution of
a problem P0. Similarly, we perform pairwise comparisons between fuzzy
interval solution and solution of a problem P1.

In order to do all these examinations we implemented the following al-
gorithm called EDGE COMPARISON. The only thing it does not do is to
count relative regrets of solutions.

Algoritm 6. EDGE COMPARISON

Require: Matroidal problem P .
Ensure: Compares different solutions X, Y and W .

1: X ← Solution of the MINMAX REGRET problem P1

2: Y ← Solution of the MINMAX REGRET problem P0

3: A← Z(X) in the problem P1

4: B ← Z(Y ) in the problem P0

5: Define a function µZ by using variables A and B

6: Solve MOST NEC SOFT problem by using the function µZ

7: W ← solution gained at the previous line, 1 − λ ← Degree of the
necessary optimality of the solution W
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8: C ← Z(W ) in the problem Pλ

9: A← Z(X) in the problem Pλ

10: B ← Z(Y ) in the problem Pλ

11: Compare edges of solutions X, Y and W

4 Literature benchmark problems

We chose from literature different graphs benchmarks to examine. To those
graphs we selected complete graphs, complete bipartite graphs, King’s graphs
and grid graphs. For each type of graph we also solved cases of different sizes
and each individual graph was solved with at least 30 different weights. These
weights were generated randomly from interval [0,100]. Issues mentioned in
chapter 3.3 were calculated for each solution. Finally from these observations
we obtained minimums, maximums and means. Results are shown in the
appendix.

4.1 Grid graphs

In a grid graph two nodes are connected if they are
horizontally or vertically next to each other. We will
denote by A × B the size of the graph where A is the
number of nodes that lie at the horizontal row and B
is the number of nodes that lie at the vertical row. A
grid graph A×B has altogether A×B nodes and (A−
1) × B + (B − 1) × A edges. We chose to research
9 different grid graphs and each was solved with 50
different weights. The smallest considered grid graph had 9 nodes and largest
had 24 nodes, which is quite a many in comparison to the other types of graph
we solved. It is because a grid graph are really sparse and therefore solving
large graphs is faster. The number of nodes and edges of each considered
grid graphs benchmark are shown in Table 1.

size 3× 3 3× 4 4× 4 6× 3 10× 2 5× 4 7× 3 8× 3 6× 4
nodes 9 12 16 18 20 20 21 24 24
edges 12 17 24 27 28 31 32 37 38
observations 50 50 50 50 50 50 50 50 50

Table 1: Collection of grid graphs benchmarks
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Generally about the solutions of fuzzy, P1 and P0 problems

On average 75 − 82 % and even in the worst cases more than 50% of edges
belonged to all three solutions. There were also some small problems(less
than 20 nodes) where all three solutions were exactly the same. On average
25% of the observations contained one edge that was included into fuzzy
solution but was not included into neither the closed interval P1 solution
nor P0 solution. Furthermore, only 20− 34 % of the observations contained
1 − 2 edges that were included into both closed interval solutions but not
into fuzzy one. So it seems like those edges that belonged into both closed
interval solutions were quite robust for the fuzzy solution.

Degree of optimality

Degree of necessary soft optimality was about 0.52 in each graph. On the
smallest 3 × 3 graph degrees of necessary soft optimality were on range
[0.42; 0.62] and in the larger graphs this range was [0.45; 0.60].

Comparison of the fuzzy and P1 problems

Fuzzy solution and closed interval P1 solution were really close to each other
because on average over 90% of edges were common for both solutions. Even
in the worst cases over 72% of edges were the same. When the amount
of nodes increased the amount of exactly same solutions decreased. Fuzzy
and P1 solutions were the same in 23 observations (50 total) for grid graphs
containing only 9 nodes. However, on the grid graphs containing more than
16 nodes fuzzy and P1 solutions were the same in only 5− 8 observations.

Small graphs had most of the exactly same solution but these graphs
also had most cases where solution of P1 differed from the fuzzy solution
more than 10%. On average the deviation of solutions was nevertheless only
5.5 − 7.3 %. The largest deviations were on average 20 − 35% but on some
problems there were even deviations of 45%. In general on 70 − 80 % of
observations for each type of graph the solution P1 differed less than 10%
from the fuzzy solution. Moreover, on half of observations had the deviation
less than 5%.

Comparison of the fuzzy and P0 problems

On average 85 − 90 % of edges belonged into both fuzzy solution and P0

solution. On the worst cases only 60− 70 % of edges were the same. There
were also completely same solutions but number of them decreased when the
number of nodes increased.

The solution of the P0 problem differed in average 9−16 % from the fuzzy
solution. In each graph there also existed some cases where the deviation
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was more than 28%. In the 3× 3 graph there was one observation where the
deviation was even 72%. In each graph about 30% of the observations had
the deviation less than 10%. However, in the each graph only 15 − 30 % of
the observations had the deviation less than 5%.

The solution of P1 seems to be closer to the fuzzy solution and also
deviations of P1 and fuzzy solutions were smaller. However, in each graph
there were observations where both P1 solution and P0 solution was exactly
similar to the fuzzy solution. In P0 problems there were less these kind of
observations than in P1 problems.

4.2 King’s graphs

A King’s graph is quite similar as a grid graph but two
nodes obliquely next to each other are also connected.
A King’s graph A×B has in total of A×B nodes and
(A−1)×B+(B−1)×A+2×(A−1)×(B−1) edges. We
chose to research 5 different King’s graphs and largest
considered graph had now 18 nodes, because solving
a King’s graph takes a lot longer than solving a grid
graph. Table 2 contains information about number of nodes and edges in
generated instances.

size 3× 3 3× 4 8× 2 4× 4 6× 3
nodes 9 12 16 16 18
edges 20 29 36 42 47
observations 50 50 50 50 30

Table 2: Collection of King’s graphs benchmarks

Generally about the solutions of fuzzy, P1 and P0 problems

On average about 65% of the edges belonged to all three solutions, but in
the worst case only 35%. All three solutions were exactly the same only in
a few cases. About 30% of observations in the graphs having less than 36
edges had 1 − 2 edges such that they were included into fuzzy solution but
neither of closed interval solutions. Some of the closed interval solutions had
also 1− 2 edges that were not included into the fuzzy solution. About 20%
of observations in the graphs having less than 13 nodes and even 60% of
observations in the graphs having 18 nodes were like this.
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Degree of optimality

The degree of necessary soft optimality was on average 0.54 and generally
this degree was from range [0.44, 0.60].

Comparison of the fuzzy and P1 problems

On average 85% of edges belonged to both fuzzy solution and P1 solution.
Even in the worst case more than 65% of edges were the same. When the
amount of nodes in the graphs increased the amount of exactly same solutions
decreased significantly. In the 3 × 3 graph solutions were the same on 36%
of cases but in the largest graphs only 4− 8 % of cases.

On average the solution of P1 differed from the fuzzy solution only 4−5 %.
In each graph 80 − 90 % of observations had the deviation less than 10%.
Furthermore, the deviation was less than 5% on 50 − 70 % of observations.
There were not many large deviations and on general even in the worst cases
deviations were less than 15%. The smallest 3 × 3 graph had most cases
where deviation were greater than 10%.

Comparison of the fuzzy and P0 problems

On average 75% of edges belonged to both P0 and fuzzy solution. Even in
the worst cases more than a half of edges belonged to both solutions. In the
small graphs there were also some cases where both solutions were exactly
the same. However, in 4×4 and greater graphs there were no such solutions.

On average the solution of P0 is different from the fuzzy solution about
11 − 15 %. Now average deviations were rather great and therefore in each
graph only 30− 50 % of observations had the deviation less than 10%. Only
in 10− 20% of observations the deviation was less than 5% and in the worst
cases deviations were from range 30−40 %. After all it seems like P1 solution
is closer to fuzzy solution also on King’s graphs.

4.3 Complete bipartite graphs

A complete bipartite graph is a graph where nodes are
divided into two sets. Every node in the first set is
connected to every node in the second set. If the first
set has A nodes and the second set has B nodes we have
a complete bipartite graph A × B. It has altogether
A + B nodes and A × B edges. We selected 9 graphs
and the largest considered graph had only 14 nodes,
because solving time rose significantly after that. Even
in the graphs of 14 nodes computation time were huge
and so we solved those with only 30 different weights.
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The number of nodes and edges of each considered complete bipartite graphs
benchmark are shown in Table 3.

size 4× 4 6× 3 5× 5 6× 5 8× 4 6× 6 8× 5 10× 4 8× 6
nodes 8 9 10 11 12 12 13 14 14
edges 16 18 25 30 32 36 40 40 48
observations 50 50 50 50 50 50 50 30 30

Table 3: Collection of complete bipartite graphs benchmarks

Generally about the solutions of fuzzy, P1 and P0 problems

On average 60% of edges belonged to all three solutions. In the worst cases
there were only 3− 4 common edges in all three solutions even in the largest
graphs. The fuzzy solution consisted mostly of edges that belonged to either
P1 or P0 solution. For example, in graphs having less than 10 nodes only
20% of fuzzy solutions had 1 − 2 edges that does not belonged to P1 or P0

solution. Furthermore, on about 25% of cases there were 1 − 2 edges that
belonged to both P1 and P0 solution but not to the fuzzy one.

Degree of optimality

In each graph the degree of necessary soft optimality was on average 0.54. On
the graphs having less than 10 nodes the range of necessary soft optimality
was the widest and this range was [0.45; 0.65]. In the larger graphs the range
was a bit narrower, about [0.47; 0.60].

Comparison of the fuzzy and P1 problems

On average 85% of edges belonged to both fuzzy and P1 solution. Even in the
worst cases more than half of edges were common for both solutions. When
the amount of nodes increased the amount of exactly the same solutions
decreased. For example in 4 × 4 graph solutions were the same on 40% of
observations but in 8× 6 graph solutions were the same on only one case of
30.

Furthermore, solutions of P1 and fuzzy problem differed from each other
on average only 3− 6 %. In small graphs there were observations where the
deviation was large. For example in 4x4 graph the largest deviation was even
41.6%. In the graphs having more than 9 nodes the deviations were always
less than 15%. Moreover, in each graph the deviation was less than 10% on
80% of observations. Similarly, on 50 − 70 % of observations deviation was
less than 5%.
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Comparison of the fuzzy and P0 problems

On average 75% of edges were common for both P0 and fuzzy solution and in
the worst cases 45− 55 % of edges belonged to both solutions. The amount
of exactly same solutions decreased when the amount of nodes increased.
However, the amount of exactly same solutions between fuzzy and P0 prob-
lem was always smaller than the amount of exactly same solutions between
fuzzy and P1 problem. In the largest graphs there were no cases where fuzzy
solution and P0 solution would have been exactly the same.

On average the P0 solution differed from the fuzzy one about 12− 15 %.
Small graphs had the greatest deviations and in the worst case this deviation
was even 62.6%. In the graphs having more than 9 nodes the largest deviation
was 30%. Furthermore, in each graph less than half of observations had the
deviation less than 10%. After all solution of P1 appears to be much better
than solution of P0 when they are compared to the fuzzy solution.

4.4 Complete graphs

A graph is complete if it has maximum number of edges,
that is every node is connected to all the other nodes.
A complete graph with A nodes has in total of A ×
(A− 1)/2 edges. We solved here complete graphs with
6, 8, 10, 12 and 14 nodes and their amount of edges
and observations are shown below.

nodes 6 8 10 12 14
edges 15 28 45 66 91
observations 50 50 50 50 50

Table 4: Collection of complete graphs benchmarks

Generally about the solutions of fuzzy, P1 and
P0 problems

On average 55− 60 % of edges belonged to all three solutions. In the graph
of 6 nodes there was also one special case where these three solutions had
no common edges. In other graphs there were also some cases where all
three solutions had only a few common edges. In the graphs having less than
10 nodes, about 20% of observations had 1 − 3 edges that belonged to the
fuzzy solution but did not belong to either P1 or P0 solutions. In the larger
graphs this number was 40%. Furthermore, in each graph less than 20% of
observations had 1− 2 edges that belonged to both P0 and P1 solutions but
not to the fuzzy one.
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Degree of optimality

In the graphs having 6 or 8 nodes the degree of necessary soft optimality was
on average 0.54 and these values were from range [0.45; 0.63]. In the graphs
having 10 or 12 nodes this degree was on average 0.52−0.53 and values were
from range [0.46; 0.58]. In the largest graph with 14 nodes this degree was
on average 0.50 and values were from range [0.45; 0.55].

Comparison of the fuzzy and P1 problems

On average 80 − 87 % of edges of solutions belonged to both fuzzy and
P1 solution and even in the worst case this number was 54%. In the graphs
having less than 10 nodes the fuzzy solution and the P1 solution were exactly
the same on 40% of observations. Deviation of the P1 and fuzzy solution was
on average only 3.5 − 4.5 % and in the worst case this deviation was only
17%. Furthermore, on 90% of observations the deviation was less than 10%
and on 60% of observations this deviation was less than 5%.

Comparison of the fuzzy and P0 problems

On average 68 − 73 % of edges belonged to both fuzzy and P0 solutions.
In the worst cases only 20 − 40 % of edges of solutions were common. In
the larger graphs there were only a few cases where these solutions were
exactly the same, and in the graph having 10 nodes there were not these
cases. In the graph having 6 nodes the largest deviation was 47% but in
the larger graphs this deviation was at most only 20− 30%. On average the
solution of P0 differed from the fuzzy solution about 10 − 14 %. On about
40− 50 % of observations the deviation was less than 10% and on 20− 30 %
of observations this deviation was less than 5%. After all the solution of P1

seems to be closer to the fuzzy solution than the solution of P0.

5 Randomly generated problems

In randomly generated problems both graphs and weights of edges were gen-
erated randomly. The weights were generated in the same way as in the lit-
erature benchmark problems. In this paper we study the differences between
sparse and dense graphs. Generated graphs had 8, 10, 12 and 14 nodes. For
both densities and number of nodes we generated 10 different graphs and for
each graph we generated 20 different sets of weights. Only exceptions were
dense graphs having 12 or 14 nodes. For these graphs we generated only
10 sets of weights because computational time grew too large. Therefore,
for every sparse graphs and for both dense graphs having 8 and 10 nodes
we generated 200 observations and for both dense graphs having 12 and 14
graphs we generated 100 observations.
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5.1 Results

Generally about the solutions of fuzzy, P1 and P0 problems

Results for both small (8 and 10 nodes) and large (12 and 14 nodes) problems
were pretty similar. On average about 55 − 65 % of edges were common
for all three solutions in dense graphs. In sparse graphs this number was
65 − 75 %. When the amount of nodes and edges decreased the amount of
three solutions being exactly the same increased. In dense graphs having 12
or 14 nodes there were no observations where all three solutions would have
been exactly the same. Generally in less than half of the observations of all
graph types there were 1 − 3 edges that belonged to the fuzzy solution but
neither P1 nor P0 solution. However, in dense graphs having 12 or 14 nodes
there were some cases where more than half of observations were like this.
About 25% of observations of each case in all graph types had 1 − 2 edges
that belonged to both P1 and P0 solution but not to the fuzzy one.

Degree of optimality

On average the degree of necessary soft optimality was 0.52 − 0.55. These
values varied from range [0.45; 0.61] but in graphs having 8 nodes this range
was a bit wider, about [0.45; 0.66].

Comparison of the fuzzy and P1 problems

In the dense graphs about 80−90 % of edges belonged to both fuzzy and P1

solutions and in the sparse graphs this number was 85− 90 %. Even in the
worst cases more than half of the edges of solutions were common for both
densities. Generally in the small graphs all three solutions were exactly the
same on about half of observations and in the large graphs on 10− 20 % of
observations.

In the dense graphs the deviation of P1 and fuzzy solution was on average
2 − 6 % and in the sparse graphs 3 − 8 %. In the small sparse graphs this
deviation was in the worst cases even 40% and in the small dense graphs
about 20%. In the large sparse graphs deviations was about 20% in the
worst cases but only about 10% in the large dense graphs. Furthermore,
deviations was less than 5% in 50 − 75 % of observations. In the dense
graphs even 90 − 100 % of observations had deviation less than 10% and
especially in the dense graphs having 12 or 14 nodes almost all observations
had deviation less than 10%. In the sparse graphs this deviation was less
than 10% in 75− 90 % of observations.
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Comparison of the fuzzy and P0 problems

In the dense graphs about 65 − 75 % of edges belonged to both fuzzy and
P0 solutions and in the sparse graphs this number was 75 − 85 %. In the
worst cases only 30 − 40 % of edges were common for both solutions. In
the small problems these solutions were exactly the same in less than 25% of
observations. In the dense graphs having 10, 12 or 14 nodes there were a lot
of cases where solutions were not same in any of the observations. In the large
sparse graphs solutions were the same on about 5− 15 % of observations.

The deviation of the solutions of P0 and fuzzy was on average 10− 20 %.
In the large dense graphs the largest deviation was 35%, in the other graphs
about 50% and in the sparse graph having 8 nodes even 72%. In general the
deviation was less than 10% on 25 − 60 % of observations. However, in a
few large dense graphs this deviation was less than 10% for more then 90%
of observations. In general 35% of observations had deviation less than 5%
but there were some cases in the large dense graphs where this deviation was
more than 5% in all observations. Based on these notions it seems like the
solution of P1 is closer to the fuzzy solution than the solution of P0.

6 Summary and Conclusions

6.1 Summary of results

Generally about the solutions of fuzzy, P1 and P0 problems

In the all different graphs about 55 − 80 % of edges were common for all
three solutions. In the literature benchmark problems it could be seen that
the amount of common edges decreased when the graph became more dense.
Sparse grid graphs had most of the common edges in all three solutions, on
average 75− 80 %. In the complete graphs the amount of common edges in
all three solutions was smallest, about 55−60 %. Same notices could also be
seen on randomly generated graphs. Sparse graphs had the most common
edges and dense graphs the least. In the sparse graphs this number was
65− 75 % for all amounts of nodes and in the dense graphs it was 55− 65 %.
It seems like there is no difference in the amounts of common edges in all
three solutions between dense and complete graphs.

In the literature benchmark and randomly generated graphs there were in
general 1− 3 edges that belonged to the fuzzy solution but did not belong to
either P1 or P0 solutions. Furthermore, on about 20− 25 % of observations
there were 1− 2 edges that belonged to both P1 and P0 solutions but not to
the fuzzy one. Those edges that belonged to both P1 and P0 solutions were
in most cases included also into the fuzzy solution. Now these edges seem to
be rather robust with respect to the fuzzy solution.
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Degree of optimality

On average the degree of necessary soft optimality was always from range
[0.50; 0.55] and the smallest degree was 0.42 and the largest 0.66.

Comparison of the fuzzy, P1 and P0 problems

In both literature benchmark and randomly generated graphs on average
80− 90 % of edges were common for both fuzzy and P1 solution and even in
the worst cases more than half of edges belonged to both solutions. In the
grid graphs the amount of common edges of fuzzy and P1 solutions was on
average always over 90% and even in the worst cases over 72%. Generally
fuzzy solution and P0 solution had less common edges than fuzzy solution
and P1 solution.

In the randomly generated graphs there were some differences in common
edges of fuzzy and P0 solutions between sparse and dense graphs. About
65 − 75 % of edges were common in the dense graphs but in the sparse
graphs 75 − 85 %. In the graphs from literature benchmarks about 75% of
edges belonged to both fuzzy and P0 solutions. Especially in the grid graphs
on average 85− 90 % of edges belonged to both fuzzy and P0 solutions and
even in the worst cases this number was 60− 70 %. In the all other types of
graphs only about 20−40 % of edges were common for both solutions. Based
on these notions we can say that the P1 solution had mostly more common
edges with the fuzzy solution than P0.

The amount of cases where fuzzy solution and P1 solution were exactly
the same decreased when the amount of nodes increased. The similar notion
was also made between fuzzy solution and P0 solution. Furthermore, the
amount of exactly same solutions was always greater in randomly generated
sparse graph than in the same-sized dense graphs. Problem P1 had always
more exactly same solutions with the fuzzy one than the problem P0 had.

The deviation of the P1 and fuzzy solutions was on average 2− 8 % and
generally deviations of solutions of dense graphs were slightly smaller than
deviations of solutions of sparse graphs. Solutions of P0 had overall much
greater deviation, 10−17 %. In some observations there were deviations over
25% in both sparse graphs and small, dense graphs. The largest deviations
of the P0 and fuzzy solutions were generally over 30% and in some cases
even over 60%. In sparse graphs about 70 − 90% of observations had the
deviation less than 10% between the P1 and fuzzy solution and in dense
graphs at least 90% of observations had this kind of deviation between P1

and fuzzy solution. However, P0 solutions differed only on 20 − 50 % of
observations less than 10% from fuzzy solution. It is now clear that the P1

solution always differed from the fuzzy solution less than P0 solution.
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About computational times

Problem P1 was always solved in a few minutes even with the large amount
of nodes. Fuzzy problems and P0 problems were solved faster on sparse
graphs than on dense graphs. Grid graphs are very sparse and therefore
solving them took generally some seconds and even in the worst cases only
minutes. Solving sparse randomly generated graphs, complete graphs having
less than 12 nodes and complete bipartite graphs with less than 12 nodes
also took only a few minutes. In the dense graphs only the graphs having
10 nodes or less were solved as quickly. Solving times for grid graphs with
over 20 nodes and King’s graphs, complete bipartite graphs and complete
graphs with 12 nodes were dozens of minutes. With King’s graphs having
16−18 nodes, complete graphs and complete bipartite graphs having 14 nodes
and randomly generated dense graphs having 12 − 14 graphs the average
computational times were over an hour. With these graphs solving fuzzy
problem or P0 problem took in the worst cases even 20 hours.

6.2 Conclusions

Solving P1 problem took only a few minutes even in the largest graphs but
solving the corresponding fuzzy problem might have taken hours. Further-
more, the solution of P1 mostly differed only a little from the fuzzy solution.
If a slightly inaccurate solution is wanted, it is reasonable to use the solution
of P1 as the fuzzy solution, especially when dealing with the larger graphs.
In the smaller graphs the solution of P1 might also differ a lot from the fuzzy
solution in some observations. Furthermore, solving small fuzzy problems
did not take long. So if we want to obtain a definitely accurate solution on
smaller graphs, we can solve them as fuzzy problems. The solution of P0 was
in general worse than the solution of P1 and solving P0 problem also took
sometimes even longer than solving the fuzzy problem. Therefore it is not
recommendable to use the solution of P0 as the fuzzy solution.

Sparse graphs had generally more edges that belonged to all three solu-
tions than dense graphs. On some observations there were also really large
deviations between fuzzy and P1 solutions and between fuzzy and P0 solu-
tions. In addition, solutions of sparse graphs were obtained in a short time
so it is reasonable to solve them as fuzzy problems. In the dense graphs
deviations were on average 2−8 % and on over 90% of observations the devi-
ations were less than 10%. Solving dense graphs as fuzzy problems also took
a long time so using the solution of P1 as the fuzzy solution seems sensible.

On average the degree of necessary soft optimality 1−λ∗ was always from
range [0.50; 0.55] and therefore λ∗ was between 0.45 and 0.50. It might be
reasonable to research whether the solution of P0.5 problem could be used
as the solution of fuzzy problem. In addition it would be useful to test if
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problems in that case can be solved more quickly and is the deviation of P0.5

and fuzzy much smaller than the deviation of P1 and fuzzy.
Edges that belonged to both P1 and P0 solutions were almost always

included into the fuzzy solution. These edges appear to be rather robust and
it might be interesting to research if these edges could be directly fixed into
the fuzzy solution. After this operation this fixed fuzzy problem would be
solved as usual. Especially we could focus on finding out if this modification
would reduce solving times and if this modified solution would differ much
from the solution of the original fuzzy problem.
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A Summary table of results

Notations used in the following tables

• Xs = the solution of the fuzzy problem

• X1 = the solution of P1 problem

• X0 = the solution of P0 problem

• Xs = amount of edges only included into the fuzzy solution

• Xs ∩X1 ∩X0 = amount of edges included into all three solutions

• X1 ∩ X0, not Xs = amount of edges included into both P0 and P1

solutions but not into the fuzzy solution

• Xs ∩X1 = amount of edges included into both fuzzy and P1 solution

• Xs ∩X0 = amount of edges included into both fuzzy and P0 solution

• SOFT = degree of necessary soft optimality (1− λ∗)

• Rel1 = the deviation of P1 and fuzzy solution

• Rel2 = the deviation of P0 and fuzzy solution
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