
Seppo Horsmanheimo | Maryam Kamali |
Mikko Kolehmainen | Mats Neovius | Luigia Petre
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Åbo Akademi University, Department of Computer Science
mneovius@abo.fi

Luigia Petre
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Abstract

Smart electrical grids refer to networked systems for distributing and transporting
electricity from producers to consumers, by dynamically configuring the network
through remotely controlled (dis)connectors. The consumers of the grid have
typically distinct priorities, e.g., a hospital and an airport have the highest priority
and the street lighting has a lower priority. This means that when electricity
supply is compromised, e.g., during a storm, then the highest priority consumers
should either not be affected or should be the first for whom electricity provision is
recovered. In this paper, we propose a general formal model to study the provability
of such a property. We have chosen Event-B as our formal framework due to
its abstraction and refinement capabilities that support correct-by-construction
stepwise development of models; also, Event-B is tool supported. Being able to
prove various properties for such critical systems is fundamental nowadays, as
our society is increasingly powered by dynamic digital solutions to traditional
problems.

Keywords: Formal methods, Smart electrical grids, Event-B, Correct-by-Construction
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1 Introduction

Our society and lifestyles are rapidly changing to being powered by digital tech-
nologies. One prominent example is provided by the electrical grids that are
increasingly digital. In grids, as well as in other control systems, action is deter-
mined by sensing, monitoring, and measuring. The control part of the paradigm
is nowadays implemented in software, which forms a critical infrastructure for
decision making in these smart grids. Hence, the high-quality of the controlling
software is of utmost importance.

This modus operandi of smart grids leads to a high degree of flexibility for
the grid configuration and functions. Smart grids are networked systems for
connecting electricity generators to consumers, by dynamically configuring the
network through remotely controlled (dis)connectors. The consumers of the grid
have typically distinct priorities, e.g., a hospital and an airport have the highest
priority and the street lighting has a lower priority. This means that when electricity
supply is compromised, e.g., due to a storm or peak consumption, then the order
of (re-establishing) electricity provision is with respect to the priorities. Another
example of functional flexibility of smart grids is the possibility of (regularly)
changing priorities, e.g., in the evenings, factories and office buildings have a lower
lighting priority than living areas. In this context, the problem that we address here
is how can we trust that consumers with the highest priority have almost always a
path in the grid from an electricity generator; and, if such a connection is lost, is
finding an alternative one guaranteed?

The solution that we propose in this paper is based on formal methods [36].
Formal methods refer to the application of mathematical techniques to the design
of computer hardware and software, for delivering provably correct systems, i.e.,
systems of high-quality. Formal methods are based on the capture of system
requirements in a specific, precise model. Importantly, such a model can be
analysed for various properties and, if the formal method permits, in some cases
also stepwise developed until an implementation is formed. By following such
a formal development, we are sure that the final result correctly implements the
requirements of the system.

Examples of the industrial undertaking of formal methods are increasing. The
famous line 14 of the driverless Parisian metro [11], developed in 1998 using the B
method [1], is the first notable example of a formal method-based development,
reviewed in [25]. The method used by Siemens for developing the software
controlling the line 14 train ensured its correctness in a mathematical manner
that effectively eliminated the unit testing from the software lifecycle. No human
resources are now needed to operate the trains and in addition, the trains are faster,
hence fewer are needed in total. More recent examples of formal method usage in
industry can be seen for instance with Space Systems [15] and SAP [8].

The fundamental design techniques of formal methods that we employ here are
abstraction and refinement. We start from a simple, abstract model of the smart
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grid, that is striped away of many details (including connections among grid nodes),
so that it is easy to prove some desired properties for it. Among others, we prove
that high-priority consumers can recover from failure. Then, we add details in a
stepwise manner to our model, until we reach a level of abstraction that agrees
to our purposes. In this paper, we prove that, when connections to high-priority
consumers fail, the smart grid can find alternative connections for these consumers,
whenever there are connections available. We also prove that the more detailed
models correctly refine the less detailed models.

In our work we use the Event-B formal method [2] for system modelling and
analysis, due to its abstraction and refinement capabilities. Event-B comes with
an associated toolset, the Rodin Platform, a theorem prover-based environment
where proofs about the models are generated automatically and discharged either
automatically or interactively.

Our contribution is thus twofold:

1. We propose smart grid models at different levels of abstraction and prove
that the more concrete models refine the more abstract ones.

2. We demonstrate the recoverability property for smart grids as an invariant
for our models.

Importantly, as our proving is based on assumptions, we are able to reason on
when we can prove the recoverability property for smart grids and discuss why.
Also, our modelling is developed for reusability: depending on various criteria,
our recovery methodology can produce different reconnected paths, thus our most
detailed model can be reused for various purposes.

We proceed as follows. In Section 2 we describe the smart grids and our model
restrictions, in Section 3 we outline Event-B, and in Section 4 we describe our
Event-B model to the extent needed in this paper. In Section 5 we discuss some
interesting proving aspects of our approach. Related work is reviewed in Section 6
and some conclusions are presented in Section 7.

2 Smart Grids
The term grid indicates a structured framework of interconnected elements. Within
the domain of the electricity, the electrical grid refers to the interconnected network
delivering electricity from power plants to consumers. The grid comprises elec-
tricity generators labelled Gi, substations labelled Sj, and consumers labelled Ck,
where i,j,k denote natural numbers. This is illustrated in Figure 1a) where edges
between Gi and Sj or in between Sj denote the (high-voltage) transmission network
and the edges between Sj and Ck denote the distribution network.

The term Smart Grid (SG) comprises an intelligent grid of this kind, typically
considered an enhancement of the traditional 20th century grid. Some significant
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Figure 1: Smart Grid’s Layers of Operation: a) Information Flow; b) Power Flow
Tree; c) Smart Grid (SG) graph

differences are presented in Table 1 [14]. Gharavi and Ghafurian [17] define SG as
a system that uses information and provides two-way, cyber-secure communication.
This enables computational intelligence for a clean, safe, secure, reliable, resilient,
efficient and sustainable system. On the differences between the 20th century grid
and SG, we note that the bidirectional communication is fundamental, implying
several of the others. This connects SG with the information revolution era,
where ”smart” refers to using information regarding the grid for enabling pervasive
self* properties. A categorisation on the physical realisation of the bidirectional
communication [14] and a survey on SG [13] may be found elsewhere.

Table 1: Comparison between the 20th century grid and the smart grid
20th century grid [14] Smart grid [14] Smart grid [17]

1 Electromechanical Digital
2 One-way communication Two-way communication Interactive
3 Centralised generation Distributed generation
4 Hierarchical Network
5 Few sensors Sensors throughout
6 Blind Self-monitoring
7 Manual restoration Self-healing Self-healing
8 Failures and blackouts Adaptive and islanding Flexible
9 Manual Check/test Remote Check/test
10 Limited control Pervasive control
11 Few customer choices Many customer choices

Research on SG has several points of focus. First, smart infrastructure systems
are studied, in particular the communication infrastructure (the information flow
layer in Fig. 1a)). This addresses the communication technology and protocols, the
information subsystem concerned with information interoperability and the energy
subsystem concerned with, among others, small scale energy production such as
via solar panels. Second, the management system is of interest, considering energy
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efficiency, operation costs reduction, demand and supply balance, emission control
and utility maximization. Third, the smart protection system is very relevant, being
concerned with user errors, equipment failures, natural disasters and deliberate
cyber attacks [14]. Of these, in this paper we are concerned with the smart
protection system and its feature of failure recovery, implemented in software. This
is of outmost importance to increase the SG reliability and is strongly motivated
by the annual costs of outage, e.g., in 2002 these were estimated in the US to 79
billion dollars [24].

For this failure recovery software, we assume reliable outage detection; reports
on this by phasor measurement may be found elsewhere [33, 34, 37]. With respect
to failure recovery, we formally outline the requirements of a fully and a partly
connected grid (network) topology. We do recovery by switching (dis)connectors
on the edges of this network, i.e. by operating the dis(connectors) depicted on the
edges in Fig. 1c). Hence, we assume each element of the network to be remotely
controllable. We assume the momentary topology to be of a tree structure with an
added virtual root node, labelled VR in Fig. 1b). This tree connects all consumers
(leafs) with the generators (first level nodes) by substations (intermediate nodes).
The intermediate nodes may be connected (an open edge between S1 and S2),
much alike power substations in reality for the sake of redundancy. In addition,
we consider the consumers to have a priority of criticality determined by the cost
(monetary, moral, etc) of a shortage, where a hospital is more critical than residen-
tial houses. Contrary to the 20th century grid, except the momentary hierarchical
tree structure, the network structure covering for all possible connections is not
hierarchical; we assume it to be a graph.

A blackout partitions the grid tree to a tree connected to the virtual root and
a disconnected compromised subtree. Recovery effectively means reconnecting
this compromised subtree’s leafs to the virtual root node by finding an alternative
route in the tree. As the recovery strategy implemented may vary depending on
the setting, we implement a general strategy of circumventing the compromised
subtree’s root node; this general strategy can be adapted to many settings later.
When recovery is not possible (there are no alternative paths to choose from), an
operator could dispatch human resources for repairing the SG point of failure. The
priorities of consumers set the recovery order when needed. An optimal condition
with respect to our problem is thereby reached when the tree is fully connected, i.e.
all leafs, independently of priority, have a path to the root.

3 Event-B

The earlier B-Method [1] is a formal approach for specifying and developing
highly dependable software, and it has been successfully used in the development
of several complex real-life applications [11, 12]. The Event-B [2] formalism is
derived from the B-Method and the Action Systems [4, 6, 35] framework, and
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was created for modelling and reasoning about parallel, distributed and reactive
systems. The associated Rodin Platform [3, 12] tool provides automated support
for modelling and verification by theorem proving in Event-B. In the following,
we shortly describe the Event-B language to the extent needed in this paper.

3.1 The Event-B Language

In Event-B, a model of a system consists of a dynamic part, machine, and optionally
also a static part, context. An Event-B context can specify constants, carrier sets,
and axioms about these. A machine in Event-B optionally sees a context, and
describes the model state by variables, updated by events. Events are atomic sets
of (simultaneous) variable updates, and each event may contain guards, which are
associated predicates, that must evaluate to true for the event to be enabled, i.e., be
able to execute. Events can be declared as convergent, i.e., there is a natural number
expression called variant in the machine that decreases when this event is executed.
It is the proof method for expressing liveness properties and ensuring that our
model will eventually terminate. If more than one event is enabled simultaneously,
the choice between the events is non-deterministic. An Event-B machine should
also include invariants, i.e., properties that must hold for any reachable state of the
model. Thus, these properties must be established by a special initialisation event
and hold before and after every occurrence of any other event. The proof manager
in the Rodin Platform [2, 12] tool automatically generates what needs to be proved
in order for an invariant to hold.

Event-B provides a stepwise refinement-based approach to system development,
preserving correctness by gradually detailing a model. Starting from an abstract
model, refinement can be either horizontal or vertical. Horizontal refinement,
or superposition refinement [7, 23], refers to adding new variables, events and
constants in addition to existing ones. Old events can also be modified, typically
either updating the newly introduced variables or introducing more deterministic
assignments on the old variables, while also strengthening the event guards. Ver-
tical refinement, or data refinement [5], corresponds to replacing some abstract
variables with their concrete counterparts and accordingly changing the events.
When we only update the newly variables or strengthening the guards, an abstract
event extends to its refined model. Otherwise, an abstract event is refined to the
corresponding refined event. A refined event might contain the with clause that
declares a witness for each disappearing parameter of the corresponding abstract
event. The witness allows us to prove the correctness of refinement. In order to
guarantee the correctness of refinement, we need to show that the execution of a
refined event is not contradictory to its abstract version. It is shown by discharging
the simulation proof obligation (SIM) which is automatically generated by Roding
platform tool.
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4 Three Smart Grid Models: M0,M1,M2

In this section we describe the high-level models M0, M1 and M2 for SG. Our
models are at three increasing levels of detail so that each model is a refinement
of the previous one: M0 v M1 v M2. In the initial model, we specify the set of
consumers with different priorities, introduce random electricity outage and specify
the behaviour of a recovery mechanism. We define the correctness properties of the
recovery mechanism based on the priority of the consumers. We fold (hide) further
detail of SG and magically recover from the outage problem. In the second model,
we unfold (add) new data, refine events to model the tree structures in SG as well as
link failures. We design the recovery mechanism in a way that guarantees that, after
recovery, the structure of the momentary SG remains a tree and all high-priority
consumers are connected to a generator. In the third model, we detail our recovery
mechanism by refining (splitting) events to distinguish between successful and
unsuccessful recovery; in the latter case, we provide information on the failed
subtree, for human-directed reconfiguration, that we assume to take place.

4.1 The Initial Model M0

The initial model M0 that we construct is very abstract: we do not consider the
underlying SG connections but only the SG consumers; the SG connections are
introduced in the subsequent refinement. M0 thus allows us to specify our recovery
goal very abstractly. The model M0 is formed of the static part and the dynamic
part, as follows.

4.1.1 The Static Part

The static part of our model is described below and contains the sets NODE,
MODE, STATE and the constants consumer, generator, pr1, pr2, normal,
recovery, optimal, on and off . The SG nodes are elements of the finite and non-
empty NODE set (axm1 and axm2). Nodes can be either consumers or generators,
so the NODE set is partitioned into consumer and generator (axm3). Some
consumers have higher priority, so we partition consumer into non-empty set of
pr1 and pr2 (axm4-5). SG can be in three different modes (axm6) and the state of
consumers can be either on or off (axm7).

CONSTANTS consumer generator pr1 pr2 normal recovery optimal on off
SETS NODE MODE STATE
AXIOMS

@axm1 finite(NODE)
@axm2 NODE 6= ∅
@axm3 partition(NODE, consumer, generator)
@axm4 partition(consumer, pr1, pr2)
@axm5 pr1 6= ∅ ∧ pr2 6= ∅ ∧ generator 6= ∅
@axm6 partition(MODE, {optimal}, {normal}, {recovery})
@axm7 partition(STATE, {on}, {off})
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4.1.2 The Dynamic Part

In the dynamic part of the model M0, we define the state of consumers and the
SG mode. We specify that whenever there is some power outage in higher priority
consumers, there would be a mechanism to recover from the outage. We model a
magical recovery mechanism which eventually recovers high-priority consumers
from the outage.

The outline of the dynamic part is shown below. The cons st variable models
the state of each consumer (inv1) and the mode variable models the current mode
of SG (inv2). The pr1 consumers have higher priority than the pr2 consumers with
respect to recovery, modelled by invariant inv3: when SG is in normal mode, all
high-priority consumers are in on state, however, some lower priority consumers
are in off state (inv4). If SG mode is optimal, all consumers (higher and lower
priority) are in on state (inv5). When SG is in recovery mode, there is power
outage of at least one higher priority consumer (inv6).

VARIABLES
cons st mode

INVARIANTS
@inv1 cons st ∈ consumer → STATE
@inv2 mode ∈MODE
@inv3 mode = normal⇒ (∀c · c ∈ pr1⇒ cons st(c) = on)
@inv4 mode = normal⇒ (∃r·r ∈ pr2 ∧ cons st(r) = off)
@inv5 mode = optimal⇒ (∀c · c ∈ consumer ⇒ cons st(c) = on)
@inv6 mode = recovery ⇒ (∃c · c ∈ pr1 ∧ cons st(c) = off)

Our assumption is that initially all consumers are on and as a consequence, to
satisfy the invariants, SG is in the optimal state, as shown in the INITIALISA-
TION event above. The failure event models a random power outage that happens
to a subset i of consumers. SG mode changes from normal or optimal to either
recovery or normal depending on the priority of consumers. The state of the
consumer subset i with power outage updates from on to off .

INITIALISATION
BEGIN

@act1 mode := optimal
@act2 cons st := consumer × {on}

END

failure
ANY i m WHERE

@grd1 mode ∈ {normal, optimal}
@grd2 i ⊂ consumer ∧ i 6= ∅
@grd3 ((i ∩ pr1 6= ∅) ∧m = recovery)∨

((i ∩ pr1 = ∅) ∧m = normal)
THEN

@act1 mode := m
@act2 cons st := cons st C− (i× {off})

END

Two events failure recovery and recovery complete magically solve the out-
age, gradually reconnecting the compromised high- priority consumers, by switch-
ing their state to on. When the state of the last subset of consumers updates to
on in recovery complete, the SG mode switches to either normal or optimal
depending on the state of lower priority consumer. When SG is in normal mode,
there are still some lower priority consumers with power outage.
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failure recovery
ANY i WHERE

@grd1 i ⊂ pr1
@grd2 cons st[i] = {off} ∧ i 6= ∅
@grd3 mode = recovery
@grd4 ∃j · j /∈ i ∧ j ∈ pr1∧

cons st(j) = off
THEN

@act1 cons st := cons stC− (i×{on})
END

recovery complete
ANY i m WHERE

@grd1 i ⊂ pr1
@grd2 cons st[i] = {off} ∧ i 6= ∅
@grd3 mode = recovery
@grd4 cons st[(pr1\i)] = {on}
@grd5 (cons st[(consumer \ i)] = {on} ∧ m =

optimal)∨
(cons st[(consumer \ i)] 6= {on} ∧ m =

normal)
THEN

@act1 cons st := cons st C− (i× {on})
@act2 mode := m

END

To be sure that the recovery mechanism, modelled by failure recovery and
recovery complete events, eventually recovers the higher priority consumers
from power outage, we define the cons st−1[{off}] variant (not shown here). We
have proved that, with each execution of either failure recovery or recovery
complete events, the number of high-priority consumers with state off decreases.

The optimising and optimising complete events deal with this situation. The
SG mode switches to optimal when all consumers are in the on state.

optimising
ANY i WHERE

@grd1 mode = normal
@grd2 i ⊂ pr2 ∧ i 6= ∅
@grd3 cons st[i] = {off}
@grd4 (∃j ·j /∈ i ∧ j ∈ pr2 ∧ cons st(j) = off)

THEN
@act1 cons st := cons st C− (i× {on})

END

optimising complete
ANY i WHERE

@grd1 mode = normal
@grd2 i ⊆ pr2 ∧ i 6= ∅
@grd3 cons st[i] = {off}
@grd4 cons st[(consumer \ i)] = {on}

THEN
@act1 mode := optimal
@act2 cons st := cons st C− (i× {on})

END

In addition, we define a theorem to guarantee that the model is deadlock-free
as follows: the theorem is a disjunction of the guard of all events, meaning that at
any moment at least one event is enabled.

theorem
(mode = normal ∧ (∃ i·i ⊆ consumer ∧ i 6= ∅ ∧
(∃m·((i ∩ pr1 6= ∅) ∧m = recovery) ∨ ((i ∩ pr1 = ∅) ∧m = normal)))) ∨

(mode = optimal ∧ (∃i·i ⊆ consumer ∧ i 6= ∅ ∧
(∃m·((i ∩ pr1 6= ∅) ∧m = recovery) ∨ ((i ∩ pr1 = ∅) ∧m = normal))) ∨

(mode = recovery∧(∃i·i ⊆ pr1∧cons st[i] = {off}∧i 6= ∅∧(∃j ·j /∈ i∧j ∈ pr1∧cons st(j) = off)))∨
(mode = recovery ∧ (∃i·i ⊆ pr1 ∧ cons st[i] = {off} ∧ i 6= ∅ ∧ cons st[(pr1 \ i)] = {on}∧
(∃m·(cons st[(consumer \ i)] = {on} ∧m = optimal)∨
(cons st[(consumer \ i)] 6= {on} ∧m = normal))))∨

(mode = normal∧(∃i·i ⊆ pr2∧cons st[i] = {off}∧i 6= ∅∧(∃j ·j /∈ i∧j ∈ pr2∧cons st(j) = off)))∨
(mode = normal∧ cons st[consumer] = {on}∧ (∃i·i ⊆ pr2∧ i 6= ∅∧ cons st[(consumer \ i)] = {on}))

4.2 The Second Model M1

Recovery from the power outage that affects high-priority consumers is achieved in
the model M0 simply by switching their state from off to on. In this section, we
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refine the initial model M0 to also specify links between nodes in SG. For this, we
keep two structures. The SG graph denotes the entire grid, with all the available
links and nodes. The momentary SG tree denotes the currently used links and
nodes. This is illustrated in Figure 2. The SG tree is, in fact, extracted from the SG
graph. When the momentary SG tree suffers a failure, it needs to find an alternative
path, in the SG graph, to make all the higher priority consumers connected to SG
again.

Figure 2: An SG graph and an instance of one of its trees

4.2.1 The Static Part

In order to express and reason about the recovery property, we need to define
a closure property for relations. In the context shown below, the constant cl is
defined as a total function from netrel (NODE ↔ NODE, axm7) to netrel
(axm8). The characteristic properties of cl(r) are: (i) The relation r is included in
cl(r). (ii) The forward composition of cl(r) with r is included in cl(r). (iii) The
relation cl(r) is the smallest relation dealing with (i) and (ii). These properties
are modelled respectively by axm9, axm10, and axm11; the tree-adapted closure
theorems are introduced in thm1-3.

We also model a tree structure of the network, in the constant tree, with the
following properties: (i) A tree is a total surjection function from NODE \ {root}
to NODE \ consumer (axm12). (ii) The consumer set are leaves of tree and
root is the top point in a tree (axm12). (iii) The tree is acyclic (axm13). The
theorems (thm4-9) further describe tree properties.

Moreover, we define the net and initial net setting constants. The net con-
stant is an asymmetric, irreflexive and total surjective function modelling the SG
graph (axm14, axm15). The initial net setting constant is a tree (axm16-18),
extracted from net (axm19).

The adapted theorems for closure allow us to prove the adapted theorems of
the tree structure which will be used in the dynamic part of the second model to
guarantee the correctness of the SG tree evolution during the recovery process.
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constants
netrel cl tree root net initial net setting

axioms
@axm7 netrel = NODE↔NODE
@axm8 cl ∈ netrel→ netrel
@axm9 ∀r·r ⊆ cl(r)
@axm10 ∀r·r; cl(r) ⊆ cl(r)
@axm11 ∀r, t·(r ⊆ t ∧ r; t ⊆ t⇒ cl(r) ⊆ t)
theorem @thm1 ∀r·r ∈ netrel⇒ cl(r) = r ∪ (r; cl(r))
theorem @thm2 ∀t·(∀s·s ⊆ t−1[s]⇒ s = ∅)⇒ cl(t) ∩ (NODE C id) = ∅
theorem @thm3 cl(∅) = ∅
@axm12 tree ∈ NODE \ {root}�NODE \ consumer
@axm13 ∀s·s ⊆ tree−1[s]⇒ s = ∅
theorem @thm4 ∀T ·root ∈ T ∧ tree−1[T ] ⊆ T ⇒NODE ⊆ T
theorem @thm5 cl(tree−1)[{root}] ∪ {root} = NODE
theorem @thm6 cl(tree)[consumer] ∪ consumer = NODE
theorem @thm7 ∀T ·consumer ⊆ T ∧ tree[T ] ⊆ T ⇒NODE ⊆ T
theorem @thm8 ∀S ·S ⊆ tree[S]⇒ S = ∅
theorem @thm9 cl(tree) ∩ (NODE C id) = ∅
@axm14 net ∈ NODE \ {root}↔↔ generator
@axm15 net ∩ net−1 = ∅ ∧NODE C id ∩ net = ∅
@axm16 initial net setting ∈ NODE \ {root}�NODE \ consumer
@axm17 cl(initial net setting−1)[root] ∪ {root} = NODE
@axm18 ∀S ·S ⊆ initial net setting[S]⇒ S = ∅
@axm19 initial net setting ⊆ net
END

4.2.2 The Dynamic Part

In M1, we show how the recovery mechanism solves the power outage problem by
changing the SG momentary tree. There are five variables in M1: node, dyn net,
failed link, failed path and failed flag. The node variable is a subset of
NODE and models the nodes of the SG momentary tree (inv6). In our model,
root always belongs to the SG tree, hence root ∈ node (inv7). In inv8 we link
node to the abstract variable cons st from M0: we model that there is no consumer
with state off in set node, but all consumers that are in state on are members of
node. The dyn net models the SG tree with nodes and links between them: a
surjective function from node\{root} to node\ consumer (inv9) that is loop-free
(inv10).

In the initial model, power outage hits a subset of consumers randomly. In
M1, it happens due to some link failures in the SG tree. The partial function
failed link denotes the set of link failures in SG (inv12). We note that the root
cannot fail, because the root is virtual and actually not belonging to SG. We use it
for the sake of modelling. Each link failure leads to disconnectivity in a part of
tree. We store the disconnected subtree for each link failure in the failed path
function (inv13). In order to guarantee that a disconnected subtree of each link
failure is a tree we introduce inv14 and inv15. Invariant inv14 denotes that each
subtree is a partial function from NODE \ {root} to NODE \ {root}. Invariant
inv15 denotes that all the nodes in a subtree of a failed link, say i 7→ j, can be
reached from both nodes i and j. In other words, any node in the subtree is a child
of node i and j. In addition, we ensure that the built subtree of each failed link
satisfies inv9: consumers are leaves of the subtree (inv16).
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VARIABLES
node dyn net failed link failed path failed flag

INVARIANTS
@inv6 node ⊆ NODE
@inv7 root ∈ node
@inv8 cons st−1[{off}] ∩ node = ∅ ∧ cons st−1[{on}] ⊆ node
@inv9 dyn net ∈ node \ {root}� node \ consumer
@inv10 ∀s·(s ⊆ dyn net−1[s]⇒ s = ∅)
@inv12 failed link ∈ NODE \ {root} 7→NODE \ {root}
@inv13 failed path ∈ failed link 7→ (NODE↔NODE)
@inv14 ∀f ·f ∈ dom(failed path)⇒failed path(f) ∈ NODE\{root} 7→NODE\{root}
@inv15 ∀i, j ·i 7→ j ∈ dom(failed path)⇒ (∀k·k ∈ ((dom(failed path(i 7→ j))∪

ran(failed path(i 7→ j))) \ {j}) ∧ k ∈ (cl(failed path(i 7→ j)))−1[{j}])
@inv16 ∀i, j ·i 7→ j ∈ dom(failed path)⇒ consumer ∩ ran(failed path(i 7→ j)) = ∅
@inv17 failed flag ∈ BOOL
@inv18 mode = recovery⇒ dom(failed path) = failed link
@inv19 failed link 6= ∅ ∧ dyn net ∩ failed link = ∅⇒

(∃r·r ∈ consumer ∧ r /∈ (cl(dyn net))−1[{root}])
@inv20 failed flag = FALSE∧mode 6= recovery⇒failed link = ∅∧failed path = ∅
@inv21 ∀r·r ∈ consumer ∧ r /∈ (cl(dyn net))−1[{root}] ∧ failed link 6= ∅∧

dyn net ∩ failed link = ∅⇒ cons st(r) = off
theory @mthm1 ∀S ·(root ∈ S ∧ dyn net−1[S] ⊆ S⇒ node ⊆ S)
theory @mthm2 node \ {root} ⊆ (cl(dyn net))−1[{root}]
theory @mthm3 cl(dyn net) ∩ (NODE C id) = ∅

END

To update the value of the failed path variable after a link failure, we need
to define a flag to allow us to do preprocessing before recovery. This is just
for modelling purposes. The flag failed flag is modelled by inv17. When
failed flag = TRUE it models that changes to recovery mode. In other words,
when the network is in recovery mode, it means that failed path contains all
subtrees of all failures (inv18). The consequence of any failure is having at least
one consumer which suffers from power outage due to the tree structure of SG.
Invariant inv19 guarantees that the property is satisfied. Finally, invariant inv20
denotes that when the network is not in recovery mode, failed link is empty. It is
formulated as shown in inv21.

In order to ensure that every node in the dyn net is reachable from the root
node, we model the theorems mthm1-3, derived from existing invariants. Theorem
mthm2 denotes that all nodes in node except root are reachable from root. Theo-
rem mthm1 is used in the proof of mthm2 and mthm3 is introduced to satisfy the
no-loop property.

To address the newly added structures we add three new events in M1 as well
as refine the abstract events. The newly introduced events define failure of links
(Link fail event), preprocessing to update function failed path (Failed path up-
date event) and distributing the knowledge about link failure to the grid (Failed tree
update event). We explain these in more detail below.
Link fail This event models the failure of a non-empty (grd3) subset of links in SG,
except virtual links to root (grd1) when SG is in normal or optimal mode (grd4).
The failed flag variable which is initially FALSE (grd2) is set to TRUE (act1)
in order to enable the preprocessing event. The failed link set updates to the list
of failed links(act2) and failed path initiates to ∅ (act3). The only enabled event
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after the execution of the Link fail event is Failed path update event, to ensure
that preprocessing is performed before any further actions.

Failed path update This event is enabled when the failed flag is TRUE (grd1).
The event is enabled until all failed links (grd2) become members of dom(failed path)
(grd3). This event is aimed at storing a set of subtrees of the grid that are unreach-
able due to link failures. In order to compute the subtree for each individual failed
link, we need to add two computational parameters des and subtree. Parameter
des is the set of all descendants of nodes of a failed link (grd4). Parameter subtree
is the set of all links which form the subtree (grd5). Function failed path is
updated so that failed link becomes a symbolic ‘root’ for subtree (act1).

Link fail
ANY l WHERE

@grd1 l ⊆ dyn net B− {root}
@grd2 failed flag = FALSE
@grd3 l 6= ∅
@grd4 mode ∈ {optimal, normal}

THEN
@act1 failed flag := TRUE
@act2 failed link := l
@act3 failed path := ∅

END

Failed path update
ANY f des subtree l i WHERE

@grd1 failed flag = TRUE
@grd2 l ∈ failed link ∧ l = i 7→ f
@grd3 l /∈ dom(failed path)
@grd4 des = (cl(dyn net))−1[{f}]
@grd5 subtree = des C dyn net

THEN
@act1 failed path := failed path ∪

({l} × {subtree})
END

Failed tree update This event is enabled when preprocessing is complete: the
subtree of all failed links are assigned (grd2). In order to update SG based on link
failures, we remove a failed link, say l, with its subtree, stored in failed path(l)
from dyn net. The node set, the set of reachable nodes from root, and the function
cons st update accordingly. Function cons st updates in this event in order to
guarantee that if a consumer is unreachable in the grid, the consumer is in off
state (inv8 and inv21).

Failure event: The Failure event in the initial model is refined to two separate
events: pr1 Failure and pr2 Failure. The pr1 Failure event denotes failure of
higher priority with/without lower priority consumers (grd2). The pr2 Failure
event denotes failure of lower priority consumers (grd2). These events are enabled
when the preprocessing (grd3) and the SG updating are completed (grd4-6). They
simply reset failed flag (act2) and update the SG mode (act1 ). Since parameter
i in the abstract model is removed from the concrete events, we need to discharge
the similarity (SIM) proof obligations. Thus, we introduce cons st−1[{off}] as a
witness for the removed parameter i. SIM proof obligation is proved by showing
that there is at least one instance of i in cons st−1[{off}] which is concluded from
(inv21)
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Failed tree update
ANY f des subtree l i r WHERE
@grd1 failed flag = TRUE
@grd2 dom(failed path) = failed link
@grd3 l ∈ failed link
@grd4 l ∈ dyn net
@grd5 l = i 7→ f
@grd6 l /∈ dom(failed path)
@grd7 des = (cl(dyn net))−1[{f}]
@grd8 subtree = des C dyn net
@grd9 ∀k·k ∈ consumer∧k ∈ des⇒k ∈ r

THEN
@act1 dyn net := dyn net\

({l} ∪ subtree)
@act2 node := node \ des
@act3 cons st := cons st C− (r × {off})

END

pr1 Failure refines failure
WHERE
@grd1 mode ∈ {optimal, normal}
@grd2 rcv st−1[{off}] ∩ pr1 6= ∅
@grd3 failed flag = TRUE
@grd4 failed link 6= ∅
@grd5 ∀f ·f ∈ failed link⇒f ∈ dom(failed path)
@grd6 ∀f ·f ∈ failed link⇒ f /∈ dyn net
WITH

i i = cons st−1[{off}]
m m = recovery

THEN
@act1 mode := recovery
@act2 failed flag := FALSE
END

pr2 Failure refines failure
WHERE
@grd1 mode ∈ {optimal, normal}
@grd2 rcv st−1[{off}] ∩ pr1 = ∅
@grd3 failed flag = TRUE
@grd4 failed link 6= ∅
@grd5 ∀f ·f ∈ failed link⇒f ∈ dom(failed path)
@grd6 ∀f ·f ∈ failed link⇒ f /∈ dyn net
WITH

i i = cons st−1[{off}]
m m = normal

THEN
@act1 mode := normal
@act2 failed flag := FALSE
@act3 failed link := ∅
@act4 failed path := ∅
END

Fail rec event: There are two approaches for power outage recovery: (i) to find
an alternative path from the original graph, modeled as net in the static part of the
second model and (ii) to repair failed links (human intervention). The Fail rec
event combines these two approaches which can be taken to solve the power outage
problem for high-priority consumers. The abstract event is extended by adding
three computational parameters res, rec set and last. Parameter res is a subset of
all subtrees, extracted from failed path function (grd5-6).

Fail rec extends failure recovery
ANY i rec set last res WHERE

@grd5 ∀r·r ∈ failed link⇒ failed path(r) ⊆ res
@grd6 ∀k·k ∈ res⇒ (∃i·i ∈ failed link ∧ failed path(i) ⊆ res)
@grd7 rec set ⊆ res ∪ (net \ failed link)
@grd8 dyn net ∪ rec set ∈ NODE \ {root} 7→NODE
@grd7 dyn net ∪ rec set ∈

(node∪dom(rec set)∪ ran(rec set))\{root}→(node∪dom(rec set)∪ ran(rec set))
@grd9 ∀s·(s ⊆ (dyn net ∪ recovery set)−1[s]⇒ s = ∅)
@grd10 ∀p·p ∈ pr1 \ last⇒ p ∈ (cl(dyn net ∪ recovery set))−1[{root}]
@grd11 last ⊆ pr1
@grd12 cons st[last] = {off} ∧ (last ∩ cl(dyn net ∪ rec set)−1[{root}] = ∅)
@grd13 (cons st−1[{off}] ∩ pr1) \ last ⊆ dom(rec set ∪ dyn net)
@grd14 (node∪ dom(rec set)∪ ran(rec set)) ⊆ {root} ∪ (cl(dyn net∪ rec set))−1[{root}]
@grd15 i ⊆ dom(rec set)

THEN
@act2 dyn net := dyn net ∪ rec set
@act3 node := node ∪ dom(rec set) ∪ ran(rec set)

END
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Parameter rec set is a subset of parameter res and all existing links in the
original graph (grd7) except those failed ones with the following conditions: (i)
The union of rec set and dyn net does not introduce a loop and preserve the
tree structure of the grid (grd8-9) (ii) Consumers are either leaves or unreachable
(grd10), and (iii) The set of consumers that belongs to rec set are reachable (from
root) (grd14). Parameter last is a subset of high-priority consumers (grd11) that
are neither reachable in dyn net nor reachable in dyn net∪ dom(rec set) (grd12-
13). Parameter last is an evidence that the recovery is not completed yet. Parameter
rec set is a solution for the power outage problem of a subset of high-priority
consumers, represented as i in the event (grd15). The set of recovery links are
added to the current grid (act2) and correspondingly the node is updated by (act3).
Recovery complete event: This event is similar to Fail rec event, except it is the
final stage of recovery and the SG mode changes to normal or optimal depending
on the state of lower priority consumer after the event execution. In order to
show that it is the last recovery step, we need to add grd9 that denotes all high-
priority consumers are reachable in dyn net ∪ recovery set: there is no power
outage problem that hits any high-priority consumers. Therefore, the grid mode
can switch to normal or optimal and failed link and failed path update to
emptyset (act2-3).

Recovery complete extends Recovery complete
ANY rec set res WHERE

@grd5 ∀r·r ∈ failed link⇒ failed path(r) ⊆ res
@grd6 ∀k·k ∈ res⇒ (∃i·i ∈ failed link ∧ failed path(i) ⊆ res)
@grd7 rec set ⊆ res ∪ (net \ failed link)
@grd8 dyn net ∪ rec set ∈

(node ∪ dom(rec set) ∪ ran(rec set)) \ {root}→ (node ∪ dom(rec set) ∪ ran(rec set))
@grd9 ∀s·(s ⊆ (dyn net ∪ rec set)−1[s]⇒ s = ∅)
@grd10 ∀p·p ∈ pr1⇒ p ∈ (cl(dyn net ∪ recovery set))−1[{root}]
@grd11 (node ∪ dom(rec set) ∪ ran(rec set)) ⊆ {root} ∪ (cl(dyn net ∪ rec set))−1[{root}]

THEN
@act2 failed link := ∅
@act3 failed path := ∅
@act4 node := node ∪ dom(rec set) ∪ ran(re set)
@act5 dyn net := dyn net ∪ rec set

END

Optimising and Optimising complete events are refined to add links to the grid to
connect low priority consumers with the power outage problem provided the newly
added links preserve the tree structure of the grid. As the focus of our modeling
is on the recovery of high-priority consumers and lower priority consumers, we
keep these events consistent to the model and we do not prove that Optimising
and Optimising complete eventually solve the outage problem of low priority
consumers. However, it is observable that the same strategy can be taken to prove
properties for SG when it is in the optimal mode.
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4.3 The Third Model M2

In M1, we have defined the tree structure of the grid and non-deterministically
constructed a solution for power outage of high-priority consumers, regardless of
its cost. For instance, a solution could be repairing some failed links while there
would be other alternatives in the original network graph. In the second model
M1, we have not included any policy for selecting a solution from a set of possible
solutions because we intended to construct a reusable correct model. The generic
model supports further refinements following particular policies. One basic policy
for selecting a recovery solution can be first searching the original network graph
for existing links. If there are links in the network graph, those alternatives are
used first and then the rest of failures are recovered by repairing the failed links. In
the refined model M2, we specify this policy by restricting the non-determinism of
the abstract model M1.

4.3.1 The Dynamic Part

We add two new variables, which are the partial functions reconfigure link and
reestablish link, denoting respectively the links that exist in the network graph
and those that need to be repaired (inv22-23). During the recovery process the set of
links in reconfigure link and reestablish link are gradually added to dyn net
tree (inv24-25). These variables illustrate which links have been taken from the net-
work graph and which ones have been repaired. We split the Recovery complete
and Fail rec events in the second model each to two events Fail reconfigure and
Fail reestablish which gradually construct the solution regarding the given policy.

VARIABLES
reconfigure link reestablish link

INVARIANTS
@inv22 reconfigure link ∈ NODE \ {root} 7→NODE
@inv23 reestablish link ∈ NODE \ {root} 7→NODE
@inv24 mode = recovery⇒ reconfigure link ⊆ dyn net
@inv25 mode = recovery⇒ reestablish link ⊆ dyn net

END

Fail reconfigure event: This event is enabled if there is at least two high-priority
consumers with power outage and reachable in the network graph, excluding failed
links (grd1-4). If there is only one high-priority consumer with power outage and
reachable in the network graph, Fail reconfigure complete event will be enabled.
If there is such consumers, one of the possible paths (routes) is computed in the
guard of the event (

5 Verification of Models
Deciding from what kind of abstraction to start modelling and what details to add
at each refinement step is problem-specific. Often, we take decisions that address
modelling/proving complexity and enable reusability of models.
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In order to prove that the models satisfy their correctness properties we have to
check that they respect their invariants, in our case, the tree properties for SG and
the gradual reconstruction of the tree due to node failures. To prove this, we have
generated the proof obligations for all the models using the Rodin platform tool.
The proof statistics for our models are shown in Table 2. These figures express the
number of proof obligations generated by the Rodin platform as well as the number
of obligations automatically discharged by the platform and those interactively
proved. A high number of interactive proofs were due to reasoning about set com-
prehension and unions, not currently supported automatically in Rodin. In addition,
the interactive proving often involved manually suggesting values to discharging
various properties containing logical disjunctions or existential quantifiers. Extra
proving was also due to the fact that currently, we cannot create proof scripts and
reuse them whenever needed in Rodin. Thus, in some cases we had to manually
repeat very similar or almost identical proofs.

Table 2: Proof Statistics

Model Number of Proof Automatically Interactively

Obligations Discharged Discharged

Context 19 11 8

M0 Model 41 30 11

M1 Model 112 83 29

M2 Model 76 54 22

Total 248 178 70

One of the most essential requirements for proving the correctness of the
recovery mechanism is to show that each step of the recovery reduces the number
of disconnected high priority consumers. To prove this, we define the recovery
events as convergent [2] and introduce a numeric variant. The Rodin platform
generates a variant proof obligation ensuring that each convergent event decreases
the proposed numeric variant. The other essential requirements are to construct a
correct tree: each step of the recovery preserves the tree structure of dyn net. For
instance, to prove the preservation of the invariant inv11, stating that all consumers
which are in set node are leaves, for the event Fail rec of model M1, we have
distributed union and intersection throughout the generated proof obligation. The
distribution allowed us to split the proof obligation into three simple ones:

(1) consumer ∩ node ∩ (ran(dyn net) ∪ ran(rec set)) = ∅
(2) consumer ∩ dom(rec set) ∩ (ran(dyn net) ∪ ran(rec set)) = ∅
(3) consumer ∩ dom(rec set) ∩ (ran(dyn net) ∪ ran(rec set)) = ∅

16



To prove these proof obligations, we applied case distinction for the param-
eter rec set. When links in rec set were corresponding links in the range of
failed path, we could not prove the proof obligation. This was due to a missing
invariant: denoting links in range of failed path also follows the requirement that
consumers are leaves. We added the invariant inv16 and those discharged branches
of proof obligation were proved.

Hence, our most important result in this paper can be formulated as follows. If
an SG is constructed according to our modelling, then we can recover from link
failures by providing alternative paths from generator to high-priority consumers,
when there are paths available. There are two important issues to note here. First,
if there are no available paths to choose from, then, obviously, we cannot provide
any. However, in this case, we save (in failed path) the subtrees corresponding to
the failed links and at least human resources could be dispatched to repair them.
Second, our modelling is fundamentally based on the momentary SG having a tree
structure. We can recover from failure because we have the consumers as leaves
in this tree, i.e., they are not distributing electricity further. They might have this
capability in smart grids, and the available SG graph may have them as substations.
But in the momentary SG tree, they are leaves. This illustrates the strength of
abstraction (and proof) in modelling.

6 Related work
The area of failure identification, diagnosis and recovery in smart grids has been
extensively studied. However, until now the energy distribution and communication
related problems have been analysed separately. There has been less research on
the interdependency between smart grids and mobile communication networks in
large-scale fault scenarios. Clark and Pavlovski have presented their experiences
as a case study in deploying a cellular wireless solution to support smart grid
solutions [10]. Gao et al. have conducted a systematic review of communication
technologies in smart grids [16]. In [19] and [20], a system-level simulation
model including interdependencies between electricity distribution and mobile
communication networks has been presented and evaluated with field trials. The
method proposed here can have significant added value to system level simulations
to enable better adaptation and proactive fault management in smart grids and
future telecommunication systems. In addition, this could offer new crisis recovery
planning tools for public authorities, distribution system operators (DSOs), and
mobile network operators. The method proposed here is of specific interest, for
instance, to manufacturers of automated switch systems [31].

The formal aspects of electrical grids have also been studied before, for instance
by Calderaro et al: they captured the details of modelling a protection system
for the grid, using Petri Nets [9]. Probabilistic graphical models for modelling
spatially correlated data from phasor measurement units, as well as using statistical
hypothesis testing for fault diagnosis, was proposed by He and Zhang [18]. Apart
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from electrical grids, other types of distributed networks have also previously
been formally modelled, for instance sensor-actor networks [22], peer-to-peer
networks [28, 32], and network recovery [21].

The general formal model proposed in this article addresses the safety and
recoverability analysis of many of the advanced properties of smart grids as dis-
cussed for instance by Moslehi et al [27]. It can be extended to cover the main
aspects of smart grids, as discussed by Fang et al [13], and it should be noted
that the proposed model could be refined further to take into account various load
profiles [30] and even personalised electricity use information [29], to provide
further adaptation capabilities against failures and power outages. The proposed
method is of high interest also to smart grid (communication) capacity planning, as
discussed for instance by Luan et al [26]. The plan must take into account various
modes of operation. Luan et al discussed two modes, or scenarios, which they
called “Blue Sky Day” and “Storm Day”. Such scenario based planning can be
verified and proven correct with the proposed method.

7 Conclusions
In this paper we have illustrated the use of formal methods, notably the abstraction
and refinement techniques, in modelling recovery in smart electrical grids. This is
useful from several points of view. First, there is no report of proving this kind of
properties in related literature, hence our methodology proposes a novel view on
addressing these problems. Second, our modelling is intended for reusability and
can be extended in several directions. For instance, consumers could be divided
into more than the two classes of priority that we have modelled. However, by
abstracting away details we have captured the basic problem of addressing first
the high-priority consumers and the rest of the consumers could now be modelled
by partitioning pr2 consumers into other sets. Also, our link failures are non-
deterministic; however, we might need to simulate particular failures to see what
happens, if alternative paths are found. For instance, this is useful when a storm is
forecasted and the SG operators need to ensure that their high-priority consumers
are safe. To model this, we only need to refine the non-deterministic choice with
a particular choice and our models continue to work. Moreover, when we have
several recovery paths to choose from, some may be preferred with respect to
various criteria; in that case, the nondeterministic choice in M2 can be refined.

We have employed Event-B as our formal method due to its integrated support
of abstraction and refinement; also, the tool support from the Rodin platform is very
useful and can help for an easier acceptance of this methodology in industry. An
interesting aspect of Event-B is that the context modelling the constants, sets and
axioms on them needs, in principle, no proofs. However, for proving recovery as an
invariant of our modelling, we needed to ensure the tree structure of the momentary
SG, and so in M1 we have part of the axioms proved, to ensure consistency of our
context. This makes for a stronger model and it was largely facilitated due to the
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Event-B tool support.
In our model we have only considered a binary situation, i.e., there is a failure

or not. In reality, this type of failure is called blackout; there is at least another type
of failure, called brownout, referring to a situation where the power is not com-
pletely disconnected but the voltage drops below acceptable levels. Furthermore,
brownouts can be intentional, whereby dropping the voltage overall can prevent a
blackout in some part of the grid. As we have not modelled this situation in our
work, it remains a future research topic.
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