
Sergiu Ivanov | Vladimir Rogojin | Sepinoud Azimi | Ion Petre

WEBRSIM: A web-based reaction systems
simulator

TUCS Technical Report
No 1195, May 2018

WEBRSIM: A web-based reaction systems
simulator
Sergiu Ivanov

IBISC, Université Évry, Université Paris-Saclay, France
sergiu.ivanov@univ-evry.fr

Vladimir Rogojin
Åbo Akademi University, Department of Information Technologies
vrogojin@abo.fi

Sepinoud Azimi
Åbo Akademi University, Department of Information Technologies
20126 Milano, Italy
sazimi@abo.fi

Ion Petre
Åbo Akademi University, Department of Information Technologies
ipetre@abo.fi

TUCS Technical Report
No 1195, May 2018

Abstract

We discuss in this paper WEBRSIM, the first web-based simulator for reac-
tion systems. The simulator has an easy-to-use interface to input a reaction
system and four functionalities: to compute the interactive process driven
by a given context sequence, the behaviour graph of the reaction system,
its conservation dependency graph, and all its conserved sets. WEBRSIM
comes with a browser-based friendly interface and offers a fast software to
support computational modeling with reaction systems.

Keywords: Reaction systems; web-based simulator; interactive processes;
behaviour graph; conserved sets; conservation dependency graph; rewriting
systems.

TUCS Laboratory
Computational Biomodeling Laboratory (Combio Lab)

1 Introduction
Reaction systems, first introduced in [13], is a qualitative framework inspired
by two cellular regulation mechanisms, facilitation and inhibition, which con-
trol the interaction between biochemical reactions. Intuitively (and on a high
level of abstraction), a biochemical reaction is enabled when all components
needed to facilitate the reaction are present and all components that inhibit
it are absent from the environment. Based on this intuition a reaction in
the reaction systems formalism is defined as a triplet a = (Ra, Ia, Pa) where
Ra represents the set of reactants, Ia the set of inhibitors and Pa the set
of products corresponding to reaction a. As a result of being triggered, the
reaction transforms its set of reactants to the corresponding set of products.

The two main assumptions considered in the reaction systems framework
are the following:

• Threshold assumption: an element is either abundantly present in the
environment or it is absent from it. This implies that there is no count-
ing in the reaction systems framework and as a result reaction systems
are (at least in their basic version) a qualitative modelling framework.

• No permanency assumption: an element vanishes from the environment
if no reaction is triggered to produce it back. This principle is supported
by abstract biochemical considerations that maintaining an element
in the environment is the result of an active (and energy-consuming)
process. In the absence of such an explicit mechanism to maintain it,
an element disappears from the environment.

Research done in the field of reaction systems has been very diverse, see
for example [4, 6, 7, 8, 10, 12, 14, 20] for several recent contributions. The
simple, yet expressive nature of this framework has attracted researchers
from both theoretical and practical areas of science to focus on studying and
analysing reaction systems. One of the main lines of such efforts focuses on
modelling real world problems through reaction systems’ framework. Such
applications vary from biological modelling to number theory to quantum
computing, see for example [4, 5, 9, 16, 20]. To study the properties of such
models, especially the bio-inspired ones, a series of studies was initiated to
formalise several properties of central interest in biomodeling and to study
the computational complexity of deciding those properties, such as mass
conservation, invariants, steady states, multistability, stationary processes,
elementary fluxes, and periodicity: [1, 2, 3, 5].

The dynamics of a reaction system model can be observed through inter-
active processes. Intuitively, interactive processes describe the step-by-step
evolution of a reaction system’s model from one state to the next driven
by external environment interventions. Many of the above mentioned prop-
erties of a reaction system’s model can be captured through its interactive

1

processes. Reaction systems models corresponding to real world processes
get quickly highly complex. That is why, even though it is straightforward
to write an interactive process of a reaction system, doing this manually
can very easily become tedious and highly error-prone. In this paper we in-
troduce a reaction system simulator, WEBRSIM that automates the process of
calculating states of a reaction system’s model for a corresponding interactive
process to overcome this issue. The simulator also provides the conserved
sets of a given reaction system’s model. The basic simulation engine behind
WEBRSIM, brsim, was discussed in passing in [2].

Other software supporting modeling with reaction system exist. The
one closest to WEBRSIM was introduced in [18] in the form of a CPU- and
GPU-based simulator for reaction systems: HERESY. The basic approach
to simulating reaction systems is similar in HERESY and WEBRSIM, with the
added feature of HERESY to parallelise the computation on Graphics Process-
ing Units (GPU). The comparison done in [18] between HERESY and brsim
shows that the running time in brsim is only marginally slower than the
highly parallelised GPU-version of HERESY and much faster than its CPU
version. WEBRSIM is highly user friendly as it comes with a web-based version
that may be used through a standard browser, whereas HERESY requires some
knowledge of Python programming to be able to invoke its graphical user in-
terface. As WEBRSIM comes with the open source code [22] (as does HERESY),
it also provides the possibility of tweaking the code to the need of more ex-
pert users. Where both HERESY and WEBRSIM provide interactive processes
simulation for reaction systems, WEBRSIM takes one step further and imple-
ments an algorithm to compute the behaviour graph, the conserved sets, as
well as the dependency graph.

Another useful software for modeling with reaction systems is the one in
[17], that offers the possibility to do model checking of temporal properties,
a feature not offered by WEBRSIM.

2 Preliminaries
In this section, we recall the notion of a reaction system, as well as some
related concepts. For more details we refer to [13] and [11].

Definition 2.1 ([13]). Let S be a finite set. A reaction a in S is a triplet of
finite nonempty sets a = (Ra, Ia, Pa), where Ra, Ia, Pa ⊆ S and Ra ∩ Ia = ∅.
We say that Ra, Ia, and Pa are the sets of reactants, inhibitors, and products
of a, respectively. The set of all reactions in S is denoted by rac(S).

A reaction system (in short, RS) is an ordered pair A = (S, A), where S is
a finite set of symbols (also called sometimes elements, species, or entities)
and A ⊆ rac(S). The set S is called the background (set) of A.

We use the following notations:

2

R =
∪

a∈A

Ra, P =
∪

a∈A

Pa, and supp(A) = R ∪ P .

The set supp(A) will be called the support set of A.

The following definition introduces the result of a reaction and of a reac-
tion system.

Definition 2.2 ([13]). Let A = (S, A) be a reaction system, T ⊆ S, and
a ∈ A. We say that a is enabled by T , denoted by ena(T), if Ra ⊆ T and
Ia ∩ T = ∅.

(1) The result of a on T is defined as follows:

resa(T) =
{

Pa, if ena(T),
∅, otherwise.

(2) The result of A on T is defined as follows:

resA(T) = ∪
a∈A Pa.

(3) An interactive process in A is a pair π = (γ, δ), where γ = (C0, C1, ..., Cn)
and δ = (D1, D2, ..., Dn), n ≥ 1, are sequences of subsets of S with
D1 = resA(C0) and, for each 1 < i ≤ n, Di = resA(Ci−1 ∪ Di−1).

2.1 Running example
The heat shock response is one of the highly conserved cellular defence mech-
anisms among eukaryotes against environmental stressors such as high tem-
peratures, toxins, bacterial infection, etc. In this paper we consider a simpli-
fied model of the heat shock response of [19]. This model’s set of reactions
is in Table 1 and the model was proposed in [3].

When a cell is exposed to stress, proteins misfold (reaction (7) in Table 1)
into complexes that disables certain cell functions which can eventually lead
to cell death. To reverse such effects, the number of a special family of
molecular chaperones, called heat shock proteins (hsp’s), increases. These
molecular chaperones bind to misfolded proteins and facilitate their correct
refolding (reactions (8),(9) in Table 1).

Table 1: The molecular model of the eukaryotic heat shock
response proposed in [19].

No. Reaction No. Reaction
(1) 3 hsf ⇄ hsf3 (6) hsp + hsf3: hse → hsp: hsf +2 hsf + hse
(2) hsf3 + hse ⇄ hsf3: hse (7) prot → mfp
(3) hsf3: hse → hsf3: hse + hsp (8) hsp + mfp ⇄ hsp: mfp
(4) hsp + hsf ⇄ hsp: hsf (9) hsp: mfp → hsp + prot
(5) hsp + hsf3 → hsp: hsf +2 hsf 3

A family of proteins called heat shock transcription factors (hsf’s) reg-
ulates the expression of hsp’s. In a trimeric state (hsf3) they bind to heat
shock elements (hse’s - the hsp-encoding gene promoter regions) and acti-
vate the transcription of hsp’s (reactions (1)-(3) in Table 1). By binding to
the hsf3: hse’s, hsf3’s, and hsf’s and breaking down the complexes, the hsp’s
downregulate their expression which leads to stopping the expression activity
(reactions (4)-(6)).

We use the reaction system model corresponding to the heat shock re-
sponse model of Table 1 as the running example in this paper. This reaction
system was first introduced in [3]. The reaction system model for the heat
shock response is presented in Table 2. As discussed in [3], this RS-based
model for the heat shock response is satisfactory in that its conserved sets (see
below) correspond exactly to the mass conservation relations of the quanti-
tative model of [19].

Table 2: Reaction system for heat shock response

No. Reaction No. Reaction
1 ({hsf}, {hsp}, {hsf3}) 11 ({hsp, hsf3: hse}, {mfp}, {hsp: hsf, hse})
2 ({hsp, hsf}, {mfp}, {hsp: hsf}) 12 ({hsf3: hse, hsp, mfp}, {dI}, {hsf3: hse, hsp})
3 ({hsf, hsp, mfp}, {dI}, {hsf3}) 13 ({hse}, {hsf3}, {hse})
4 ({hsf3}, {hse, hsp}, {hsf}) 14 ({hsp: hsf, stress}, {nostress}, {hsp, hsf})
5 ({hsp, hsf3}, {mfp}, {hsp: hsf, hsf}) 15 ({hsp: hsf, nostress}, {stress}, {hsp: hsf})
6 ({hsf3, hsp, mfp}, {hse}, {hsf}) 16 ({prot, stress}, {nostress}, {prot, mfp})
7 ({hsf3, hse}, {hsp}, {hsf3: hse}) 17 ({prot, nostress}, {stress}, {prot})
8 ({hse, hsf3, hsp}, {mfp}, {hse}) 18 ({hsp, mfp}, {dI}, {hsp: mfp})
9 ({hsf3, hse, hsp, mfp}, {dI}, {hsf3: hse}) 19 ({mfp}, {hsp}, {mfp})
10 ({hsf3: hse}, {hsp}, {hsf3: hse, hsp}) 20 ({hsp: mfp}, {dI}, {hsp, prot})

We now recall the definition of conserved sets for reaction systems models,
as proposed in [1].

Definition 2.3 (Conserved sets, [1]). Let A = (S, A) be a reaction system.
We say that a set M ⊆ supp(A) is conserved if for any W ⊆ supp(A),
M ∩ W ̸= ∅ if and only if M ∩ resA(W) ̸= ∅.

For our running example, a conserved set is M = {hse, hsf3: hse}. For an
arbitrary set W ⊆ supp(A), let us suppose hse ∈ W ∩ M . We claim that at
least one of the reactions (7), (8), (9), or (13) is enabled by W :

• if hsf3 ̸∈ W , then reaction (13) is enabled,

• if hsf3 ∈ W and hsp ̸∈ W , then reaction (7) is enabled,

• if {hsf3, hsp} ⊆ W and mfp ̸∈ W , then reaction (8) is enabled, and

• if {hsf3, hsp, mfp} ⊆ W , then reaction (9) is enabled.

The product sets of these reactions contain either hse or hsf3: hse, so resA(W)∩
M ̸= ∅. Similarly we can argue that if hsf3: hse ∈ W ∩ M , then either of the

4

reactions (10), (11), and (12) are enabled and therefore resA(W) ∩ M ̸= ∅
as well. As a result we can conclude that whenever resA(W) ∩ M ̸= ∅, then
W ∩ M ̸= ∅. Consequently, W ∩ M ̸= ∅ if and only if resA(W) ∩ M ̸= ∅,
i.e., M is a conserved set.

3 The Back-End of WEBRSIM
In this section we will recall the algorithms behind WEBRSIM, briefly discuss
its design and Haskell-based implementation brsim, and show an example of
how a concrete reaction system can be analysed with brsim.

3.1 Direct Simulation
The principal goal of brsim is automating the execution of reaction sys-
tems to avoid error-prone manual analysis. Due to the fact that, technically,
reaction systems are a particular case of set rewriting, their simulation is
straightforward. The worst-case time complexity of the simulation can be
bounded in the following way:

1. Checking that a reaction a = (Ra, Ia, Pa) is enabled on a set W can be
done in O(m log |W |), where m = max(|Ra|, |Ia|) (e.g., see the docu-
mentation of the module Data.Set [21] for details and sharper bounds).

2. Filtering a set of reactions A to only keep the ones enabled on the
set W can be done in O(|A| · m log |W |), where m = max{|Ra|, |Ia| :
a = (Ra, Ia, Pa) ∈ A} (extension of the definition from the previous
paragraph).

3. Applying a set of enabled reactions A to a set W essentially consists
in putting together all the product sets in A; the complexity of this
operation does not depend on the size of W . Taking the union of all
product sets in A can be done in O(|A| · k log k), where k = max{|Pa| :
a = (Ra, Ia, Pa) ∈ A} is the maximal size of a product set in A.

4. Finally, running the whole set of reactions A for t steps can be done in
O

(
t|A| · (m log |S| + k log k)

)
, where k and m are defined as in points

2 and 3, and S is the universe of species.

Thus, a rougher but easier to read upper bound on the worst-case com-
plexity of a t-step simulation of a reaction system (S, A) is O

(
t|A|·|S| log |S|

)
.

3.2 Mass Conservation Analysis
Besides directly simulating reaction systems, brsim can also list all conserved
sets. As mentioned in [1], deciding whether a set M is conserved in a given

5

reaction system is coNP-complete. It turns out that, in case one needs to
enumerate all sets conserved by a given reaction system, it is possible to
do better than just going through every possible set of species and checking
whether it is conserved [2].

We will now briefly recall the central ideas of the algorithm for listing all
conserved sets, presented in detail in [2]. The main steps are as follows:

1. Build the behaviour graph Gb: The behaviour graph of a reaction system
(S, A) is the graph whose nodes are all subsets of S and which contains
the edge (W, W ′) iff resA(W) = W ′.

2. Build the conservation dependency graph Gcd: The conservation depen-
dency graph of a reaction system (S, A) is a graph whose vertices are
species from S, and which contains the edge (x, y) if y appears in at
least one of the sets of the connected component of Gb which also con-
tains the singleton set {x}. The graph Gcd has an important property:
if it contains the edge (x, y), then every conserved set that contains y
must also contain x.

3. Build the condensation G̃cd of Gcd: The condensation of a directed
graph is the directed acyclic graph of its strongly connected compo-
nents.

4. Enumerate the source sets of G̃cd: Given a directed acyclic graph G =
(V, E), a subset of its nodes X ⊆ V is a source set if all edges in E
involving a node x ∈ X have x as the source node.

5. Check which source sets are also conserved sets: As shown in [2, Propo-
sition 3.3], any set conserved by a given reaction system must be a
source set of G̃cd. The converse implication is not necessarily true,
meaning that one still needs to check conservation directly, but for a
reduced number of candidates.

Subsection 4.2 of [2] showcases the performance of this algorithm on mul-
tiple examples, showing situations in which the number of candidates is con-
siderably reduced, as well as situations in which all subsets of species must
eventually be analysed.

Our simulator brsim includes an exact implementation of the algorithm,
including the optimisations further reducing the number of candidates. More-
over, brsim can output the behaviour graph and the conservation dependency
graph of a given reaction system.

3.3 Overview of the Implementation
brsim is written in Haskell and is distributed under GPLv3 [15]. The source
code is freely available in an online Git repository [22].

6

brsim is a stand-alone command line application. It is principally in-
tended to be run in batch mode, in which it reads the description of a reac-
tion system and the context sequence from a file and outputs the sequence
of states the reaction system traverses (the result sequence). brsim can be
also run in interactive mode, in which it prompts the user to input the next
context at every simulation step. Finally, brsim can be told to output the
behaviour graph or the conservation dependency graph of the reaction sys-
tem. Further technical details can be found on the project page [22], as well
as by running brsim help.

Haskell was chosen as the implementation language for brsim mainly be-
cause it is a strictly typed, functional programming language, implying easy
transposition of formal definitions into runnable code, as well as verifying
some properties of the software at compile time via type checking. More-
over, Haskell has a rich ecosystem including libraries for graph manipulation
and quick development of user interfaces. Finally, an overwhelming major-
ity of Haskell’s ecosystem is distributed under free or open-source software
licences, meaning that brsim can be freely reused (provided the terms of the
license are respected).

3.4 Example of Usage
In this section we will briefly show how brsim can be used to analyse the
reaction system from our running example.

To run a reaction system, brsim needs its list of reactions. The input
format is very close to the typical way in which reactions are written. For
example, the reaction ({a, b}, {e, f}, {c, d}) will be transcribed as follows:
a b, e f, c d. Table 3 shows how to transcribe the reaction system from
the running example.

A similar syntax is used to supply brsim with a context sequence to
drive the activity of the reaction system. Table 4 shows how do transcribe
the context sequence from the running example.

We can now run the simulator using the following command:
brsim run example.rs –context=example.ctx

The output of this command is shown in Table 5.
To see which sets are conserved by the reaction system from the running

example, the following command should be issued to brsim:
brsim show conserved-sets example.rs

The output produced for the reaction system from the running example is
shown in Table 6. The dot in the first line of the listing stands for the empty
set (which is always trivially conserved).

Finally, brsim can be told to show the behaviour graph and the conser-
vation dependency graph of the reaction system from the running example
using the following respective commands:

7

hsf , hsp , h s f3
h s f hsp mfp , dI , h s f3
hsf3 , hse hsp , h s f
h s f3 hsp mfp , hse , h s f
h s f3 hse , hsp , h s f3 : hse
hs f3 hse hsp mfp , dI , h s f3 : hse
hse , hsf3 , hse
hse hs f3 hsp , mfp , hse
hs f3 : hse , hsp , h s f3 : hse hsp
hs f3 : hse hsp mfp , dI , h s f3 : hse hsp

hsp hsf , mfp , hsp : h s f
hsp : h s f s t r e s s , no s t r e s s , hsp hs f
hsp : h s f no s t r e s s , s t r e s s , hsp : h s f
hsp hsf3 , mfp , hsp : h s f
hsp hs f3 : hse , mfp , hsp : h s f hse
prot s t r e s s , no s t r e s s , prot mfp
prot nos t r e s s , s t r e s s , prot
hsp mfp , dI , hsp : mfp
mfp , hsp , mfp
hsp : mfp , dI , hsp prot

Table 3: The input file example.rs describing the reaction system from the
running example.

h s f prot hse n o s t r e s s
n o s t r e s s
n o s t r e s s
n o s t r e s s
n o s t r e s s
n o s t r e s s

Table 4: The input file example.ctx describing the context sequence from
the running example.

8

hse hs f3 prot
hs f3 : hse prot
hs f3 : hse hsp prot
hse hsp : h s f prot
hse hsp : h s f prot
hse hsp : h s f prot

Table 5: The output of brsim run example.rs –context=example.ctx.

.
hse hs f3 : hse

Table 6: The output of brsim show conserved-sets example.rs.

brsim show behaviour-graph example.rs
brsim show cons-dep-graph example.rs

Figure 1 shows the conservation dependency graph of the reaction system
from the running example as output by brsim and rendered using a circular
layout filter. We do not show the behaviour graph here for reasons of space:
it contains 2048 nodes (since the reaction system has 11 species).

4 The Web-Service
From the very beginning, we developed brsim with portability and ease of use
in mind. To improve user experience even further, we decided to also deploy
an online version, which is freely available here [23]. This page includes two
examples giving some typical usage patterns.

The online version of brsim covers an essential subset of the functional-
ity: simulating reaction systems, enumerating all conserved sets, and show-
ing the behaviour and the conservation dependency graphs. As before,
reactions are described in a format close to how they are usually writ-
ten. For example, hse hsf3 hsp, mfp, hse would stand for the reaction
({hse, hsf3, hsp}, {mfp}, {hse}). To run a simulation, the reactions and the
context sequence should be given in the two text fields available on the page.
The context sequence is not required for enumerating the conserved sets or for
showing the conservation dependency graph. Obviously, since the behaviour
graph’s size is exponential in the size of the background set, its calculation
is only possible for modest-sized models.

The implementation of the online instance of the simulator is quite straight-
forward: when the user clicks on one of the four buttons “Simulate”, “Be-
haviour graph”, “Conservation dependency graph”, or “Conserved sets”, the

9

Figure 1: The conservation dependency graph of the reaction system from
the running example as constructed by brsim and rendered using a circular
layout filter.

web server executes the corresponding command of brsim. The result, when
ready, is rendered on the page. The online interface was mainly written in
basic PHP and JavaScript, the staple technologies of web programming.

5 Discussion
Reaction systems is the latest addition to the burgeoning field of computa-
tional modelling frameworks for complex systems. It is a qualitative frame-
work focusing on the cause-effects of various events in a given system: a
reaction can only be triggered once its reactants were produced (by other
reactions) and none of its inhibitors are present in the environment. In par-
ticular, it gives the modeller the ability to trace explicitly why a certain
event (reaction) was eventually triggered. Its two main principles, the non-
permanency assumption and the threshold assumption, distinguish it quite
drastically from other modelling frameworks, both quantitative (say ODE-
based, or Petri net-based), or qualitative (say Boolean networks). In our
experience, see [3], [4], [5], the modeller is forced in reaction systems to be
explicit about the nature of all interactions in the system, rather than rely on

10

the interplay between numerical parameters of the system, which necessarily
brings a plus of clarity in the model’s assumptions.

Having an easy-to-use computer support for reaction systems is a crucial
ingredient in developing the research on this topic, both the theoretical line
exploring their mathematical properties, as well as the applied one explor-
ing their modelling expressivity in various domains. This is exactly where
WEBRSIM contributes, by offering a user-friendly, browser-based software for
reaction systems. The software takes a simple textual input and it gives a
simple output directly in the browser. It hides from the user the technical
details of the implementation through its web-based service. At the same
time, the source code of the back-end engine is openly available at [22] for
the experienced users to experiment with.

WEBRSIM is highly efficient, even with its current hosting on a standard
web server. For example, we ran the simulation for the reaction system model
of the Erbb signalling as the benchmark of [18]. This model comprised of
6720 reactions and the simulation in WEBRSIM was successfully performed
in less than three seconds. Detailed experiments done in [18] show that in
fact WEBRSIM’s computational efficiency is only marginally less than that of
a highly parallelised version of HERESY [18], running on a dedicated GPU
hardware with thousands of processors. WEBRSIM thus gives access to the
standard user to a highly efficient simulation and analysis platform for reac-
tion systems.

References
[1] Sepinoud Azimi, Cristian Gratie, Sergiu Ivanov, Luca Manzoni, Ion Pe-

tre, and Antonio E. Porreca. Complexity of model checking for reaction
systems. Theor. Comput. Sci., 623:103–113, 2016.

[2] Sepinoud Azimi, Cristian Gratie, Sergiu Ivanov, and Ion Petre. De-
pendency graphs and mass conservation in reaction systems. Theor.
Comput. Sci., 598:23–39, 2015.

[3] Sepinoud Azimi, Bogdan Iancu, and Ion Petre. Reaction system models
for the heat shock response. Fundamenta Informaticae, 131(3-4):299–
312, 2014.

[4] Sepinoud Azimi, Charmi Panchal, Eugen Czeizler, and Ion Petre. Re-
action systems models for the self-assembly of intermediate filaments.
Ann. Univ. Buchar, 62(2):9–24, 2015.

[5] Sepinoud Azimi, Charmi Panchal, Andrzej Mizera, and Ion Petre. Multi-
stability, limit cycles, and period-doubling bifurcation with reaction

11

systems. International Journal of Foundations of Computer Science,
28(08):1007–1020, 2017.

[6] Robert Brijder, Andrzej Ehrenfeucht, and Grzegorz Rozenberg. A note
on causalities in reaction systems. Electronic Communications of the
EASST, 30:1–10, 2010.

[7] Robert Brijder, Andrzej Ehrenfeucht, and Grzegorz Rozenberg. Reac-
tion systems with duration. In Computation, cooperation, and life, pages
191–202. Springer, 2011.

[8] Luca Corolli, Carlo Maj, Fabrizio Marini, Daniela Besozzi, and Gian-
carlo Mauri. An excursion in reaction systems: From computer science
to biology. Theoretical Computer Science, 454:95–108, 2012.

[9] Luca Corolli, Carlo Maj, Fabrizio Marini, Daniela Besozzi, and Gian-
carlo Mauri. An excursion in reaction systems: From computer science
to biology. Theoretical computer science, 454:95–108, 2012.

[10] Andrzej Ehrenfeucht, Michael Main, and Grzegorz Rozenberg. Combi-
natorics of life and death for reaction systems. International Journal of
Foundations of Computer Science, 21(03):345–356, 2010.

[11] Andrzej Ehrenfeucht, Ion Petre, and Grzegorz Rozenberg. Reaction
Systems: A Model of Computation Inspired by the Functioning of the
Living Cell, chapter Chapter 1, pages 1–32. WORLD SCIENTIFIC,
2017.

[12] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Events and modules in
reaction systems. Theoretical Computer Science, 376(1):3–16, 2007.

[13] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Reaction systems. Fun-
damenta Informaticae, 75(1):263–280, 2007.

[14] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Introducing time in re-
action systems. Theoretical Computer Science, 410(4):310–322, 2009.

[15] Free Software Foundation. GNU General Public License.
http://www.gnu.org/licenses/gpl.html.

[16] Mika Hirvensalo. Quantum computing. In Encyclopedia of Sciences and
Religions, pages 1922–1926. Springer, 2013.

[17] Artur Meski, Wojciech Penczek, and Grzegorz Rozenberg. Model check-
ing temporal properties of reaction systems. Information Sciences,
313:24–42, 2015.

12

[18] Marco S Nobile, Antonio E Porreca, Simone Spolaor, Luca Manzoni,
Paolo Cazzaniga, Giancarlo Mauri, and Daniela Besozzi. Efficient sim-
ulation of reaction systems on graphics processing units. Fundamenta
Informaticae, 154(1-4):307–321, 2017.

[19] Ion Petre, Andrzej Mizera, Claire L. Hyder, Annika Meinander, Andrey
Mikhailov, Richard I. Morimoto, Lea Sistonen, John E. Eriksson, and
Ralph-Johan Back. A simple mass-action model for the eukaryotic heat
shock response and its mathematical validation. Natural Computing,
10(1):595–612, 2011.

[20] Arto Salomaa. Applications of the chinese remainder theorem to reaction
systems with duration. Theoretical Computer Science, 598:15–22, 2015.

[21] Documentation of Data.Set. http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-Set.html.

[22] GitHub — scolobb/brsim: A Basic Reaction System Simulator.
https://github.com/scolobb/brsim.

[23] Web interface for Basic Reaction System Simulator.
http://combio.abo.fi/research/reaction-systems/reaction-system-simulator/.

13

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

ISBN 978-952-12-3715-7
ISSN 1239-1891

