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Abstract

It is demonstrated that unambiguous conjunctive grammars over a unary
alphabet Σ = {a} have non-trivial expressive power, and that their basic
properties are undecidable. The key result is that for every base k > 11 and
for every one-way real-time cellular automaton operating over the alphabet
of base-k digits

{dk+9
4
e, . . . , bk+1

2
c}, the language of all strings an with the

base-k notation of the form 1w1, where w is accepted by the automaton,
is generated by an unambiguous conjunctive grammar. Another encoding
is used to simulate a cellular automaton in a unary language containing
almost all strings. These constructions are used to show that for every fixed
unambiguous conjunctive language L0, testing whether a given unambiguous
conjunctive grammar generates L0 is undecidable.

Keywords: Keywords: conjunctive grammars, ambiguity, language equa-
tions, unary languages.
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1 Introduction

Conjunctive grammars, introduced by Okhotin [9], are an extension of the
context-free grammars, which allows the use of a conjunction operation in
any rules, in addition to the implicit disjunction already present in context-
free grammars. These grammars maintain the main principle behind the
context-free grammars—that of inductive definition of the membership of
strings in the language—inherit their parsing techniques and subcubic time
complexity [13], and augment their expressive power in a meaningful way.

Conjunctive grammars over a one-letter alphabet Σ = {a} were proved
non-trivial by Jeż [4], who constructed a grammar for the language {a4n |n >
0}. Subsequent work on such grammars revealed their high expressive power
and a number of undecidable properties [5]. Testing whether a given string an

is generated by a grammar G can be done in time |G| ·n(log n)3 ·2O(log∗ n) [14],
and if n is given in binary notation, this problem is EXPTIME-complete
already for a fixed grammar G [6]. These results also had impact on the study
of language equations [8, 12], essential to understanding their computational
completeness over a unary alphabet [7].

Unambiguous conjunctive grammars [11] are an important subclass of
conjunctive grammars defined by analogy with unambiguous context-free
grammars, and representing grammars that assign a unique syntactic struc-
ture to every well-formed sentence. Little is known about their properties,
besides a parsing algorithm with |G| · O(n2) running time, where n is the
length of the input [11]; for a unary alphabet, the running time can be im-
proved to |G| ·n(log n)2 · 2O(log∗ n) [14]. However, all the known results on the
expressive power of conjunctive grammars over a unary alphabet [4, 5, 6, 15]
rely upon ambiguous grammars, and it is not even known whether unam-
biguous grammars can generate anything non-regular.

This paper sets off by presenting the first example of an unambiguous
conjunctive grammar that generates a nonregular unary language. This is
the same language {a4n | n > 0}, yet the grammar generating it, given in
Section 3, is more involved than the known ambiguous grammar. Then
the paper proceeds with reimplementing, using unambiguous grammars, the
main general method for constructing conjunctive grammars over a unary
alphabet. This method involves simulating a one-way real-time cellular au-
tomaton [3, 10, 17] over an input alphabet Σk = {0, 1, . . . , k − 1} of base-k
digits, by a grammar generating all strings an, with the base-k representation
of n accepted by the cellular automaton. The known construction of such
conjunctive grammars [5] essentially uses concatenations of highly populated
sets, and hence the resulting grammars are ambiguous. This paper defines
a different simulation, under the assumption that the input alphabet of the
cellular automaton is not the entire set of base-k digits, but its subset of size
at most around k

4
. This restriction allows simulating the automaton, so that

all concatenations in the grammar remain unambiguous.
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The simulation of a cellular automaton presented in Section 5 produces
languages that grow exponentially fast; these languages have density 0, in
the sense that the fraction of strings of length up to n belonging to these lan-
guages tends to 0. As the concatenation of any two unary languages of non-
zero density is always ambiguous, this limitation of the given construction
might appear to be inherent to unambiguous conjunctive grammars. How-
ever, the next Section 6 nevertheless succeeds in representing non-regular
unary languages of density 1 (that is, containing almost all strings) by an
unambiguous conjunctive grammar, and extends the simulation of cellular
automata to this kind of unary languages.

These constructions yield undecidability results for unambiguous con-
junctive grammars, presented in the last Section 7. For every fixed language
L0 generated by some unambiguous conjunctive grammar, it is proved that
testing whether a given unambiguous conjunctive grammar generates L0 is
undecidable. This is compared to the known decidable properties of the
unambiguous case of standard context-free grammars [16].

2 Conjunctive grammars and ambiguity

Conjunctive grammars generalize context-free grammars by allowing an ex-
plicit conjunction operation in the rules. This is more of a variant of the
definition of the context-free grammars than something entirely new. In
particular, it leaves the context-freeness intact, and only extends the set of
logical connectives used to combine syntactical conditions.

Definition 1 (Okhotin [9]). A conjunctive grammar is a quadruple G =
(Σ, N, P, S), in which Σ and N are disjoint finite non-empty sets of terminal
and nonterminal symbols respectively; P is a finite set of grammar rules, each
of the form

A → α1& . . . &αn (with A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗), (*)

while S ∈ N is a nonterminal designated as the start symbol.

A rule (*) informally means that every string generated by each conjunct
αi is therefore generated by A. This understanding may be formalized either
by term rewriting [9], or, equivalently, by a system of language equations.
According to the definition by language equations, conjunction is interpreted
as intersection of languages as follows.

Definition 2. Let G = (Σ, N, P, S) be a conjunctive grammar. The associ-
ated system of language equations is the following system in variables N :

A =
⋃

A→α1&...&αn∈P

n⋂
i=1

αi (for all A ∈ N),
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where each αi in the equation is a concatenation of variables and constant
languages {a} representing terminal symbols (or constant {ε} if αi is the
empty string). Let (. . . , LA, . . .) be its least solution (that is, such a solution
that every other solution (. . . , L′A, . . .) has LA ⊆ L′A for all A ∈ N) and
denote LG(A) := LA for each A ∈ N . Define L(G) := LG(S).

To see that such a system always has a least solution, it is sufficient to
know that the operations in its right-hand side (in this case, union, intersec-
tion and concatenation) are monotone and continuous with respect to the
partial ordering of componentwise inclusion on vectors of languages. This is
known to be the case. Therefore, the right-hand side of the equation is a
monotone and continuous operator ϕ on vectors of languages, and the least
solution is given by the least upper bound of the iterative application of this
operator, beginning with a vector of empty languages:

⊔

k>0

ϕk(∅, . . . ,∅)

(the notation
⊔

refers to a componentwise union of vectors).
An equivalent definition of conjunctive grammars is given via term rewrit-

ing, which generalizes the string rewriting used by Chomsky to define context-
free grammars.

Definition 3 ([9]). Given a conjunctive grammar G, consider terms over
concatenation and conjunction with symbols from Σ ∪ N as atomic terms.
The relation =⇒ of immediate derivability on the set of terms is defined as
follows:

• Using a rule A → α1& . . . &αn, a subterm A ∈ N of any term ϕ(A)
can be rewritten as ϕ(A) =⇒ ϕ(α1& . . . &αn).

• A conjunction of several identical strings can be rewritten by one such
string: ϕ(w& . . . &w) =⇒ ϕ(w), for every w ∈ Σ∗.

The language generated by a term ϕ is LG(ϕ) = {w |w ∈ Σ∗, ϕ =⇒∗ w}. The
language generated by the grammar is L(G) = LG(S) = {w |w ∈ Σ∗, S =⇒∗

w}.
Examples of conjunctive grammars for such non-context-free languages

as {anbncn |n > 0} and {wcw |w ∈ {a, b}∗} can be found in the literature [9].
This paper concentrates on a subclass of conjunctive grammars defined

by analogy with unambiguous context-free grammars.

Definition 4 ([11]). A conjunctive grammar G = (Σ, N, P, S) is said to be

I. with unambiguous choice of a rule, if different rules for every single
nonterminal A generate disjoint languages, that is, for every string w
there exists at most one rule

A → α1& . . . &αm,

with w ∈ LG(α1) ∩ . . . ∩ LG(αm).
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II. with unambiguous concatenation, if for every conjunct α = s1 . . . s` and
for every string w there exists at most one factorization w = u1 . . . u`

with ui ∈ LG(si) for all i.

If both conditions are satisfied, the grammar is called unambiguous. A con-
junctive language L can be called inherently ambiguous if every conjunctive
grammar generating it is ambiguous.

3 Representing powers of four

Consider the following grammar generating the language {a4n |n > 0}, which
was the first example of a conjunctive grammar over a unary alphabet repre-
senting a non-regular language. Even though much was learned about these
grammars since this example, it still remains the smallest and the easiest to
understand.

Example 1 (Jeż [4]). The conjunctive grammar

A1 → A1A3&A2A2 | a
A2 → A1A1&A2A6 | aa
A3 → A1A2&A6A6 | aaa
A6 → A1A2&A3A3

with the start symbol A1 generates the language L(G) = {a4n | n > 0}. In
particular, LG(Ai) = {ai·4n | n > 0} for i = 1, 2, 3, 6.

The grammar is best explained in terms of base-4 notation of the lengths
of the strings. Let Σ4 = {0, 1, 2, 3} be the alphabet of base-4 digits, and for
every w ∈ Σ∗

4, let (w)4 denote the integer with base-4 notation w. For any
L ⊆ Σ∗

4, denote a(L)4 = {a(w)4 |w ∈ L}. Then the languages generated by the
nonterminals of the above grammar are a(10∗)4 , a(20∗)4 , a(30∗)4 and a(120∗)4 .

Consider the system of language equations corresponding to the grammar:
the equation for A1 is

A1 = (A1A3 ∩ A2A2) ∪ {a},

etc. Substituting the given four languages into the intersection A1A3 ∩A2A2

in the first equation, one obtains the following language:

a(10∗)4a(30∗)4 ∩ a(20∗)4a(20∗)4 =

=
(
a(10+)4 ∪ a(10∗30∗)4 ∪ a(30∗10∗)4

) ∩ (
a(10+)4 ∪ a(20∗20∗)4

)
= a(10+)4 .

That is, both concatenations contain some garbage, yet the garbage in the
concatenations is disjoint, and is accordingly filtered out by the intersection.
Finally, the union with {a} yields the language {a4n | n > 0}, and thus the
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first equation turns into an equality. The rest of the equations are verified
similarly, and hence the given four languages form a solution. By a standard
argument, one can prove that the system has a unique ε-free solution [1,
Thm. 2.3].

The grammar in Example 1 is ambiguous, because of the concatenations
A2A2, A1A1, A6A6 and A3A3: since concatenation of unary strings is commu-
tative, a concatenation of a language with itself is unambiguous only if this
language is empty or a singleton. However, it is possible to remake the above
grammar without ever using such concatenations, though that requires repre-
senting a larger collection of languages. The following grammar becomes the
first evidence of non-triviality of unambiguous conjunctive grammars over a
unary alphabet.

Example 2. The conjunctive grammar

A1 → A1A3&A7A9 | a | a4

A2 → A1A7&A2A6 | a2

A3 → A1A2&A3A9 | a3

A6 → A1A2&A9A15 | a6

A7 → A1A3&A1A6

A9 → A1A2&A2A7

A15 → A6A9&A2A7

is unambiguous and generates the language {a4n | n > 0}. Each nonterminal
Ai generates the language LG(Ai) = {ai·4n | n > 0}.

The correctness is established in the same way as in Example 1. For
instance, the first equation is checked as

a(10∗)4a(30∗)4 ∩ a(130∗)4a(210∗)4 =
(
a(10+)4 ∪ a(10∗30∗)4 ∪ a(30∗10∗)4

)∩
∩ (

a(10>2)4 ∪ a(2110∗)4 ∪ a(2230∗)4 ∪ a(130∗210∗)4 ∪ a(210∗130∗)4
)

= a(10>2)4 .

Furthermore, the form of both concatenations is simple enough to see that
they are unambiguous. For example, in the concatenation A1A3, each string
of the form a(10n)4 is produced in a unique way by concatenating a4n−1 ∈
LG(A1) to a3·4n−1 ∈ LG(A3); every string a(10m−n−130n)4 is produced uniquely
by concatenating a4m−1

to a3·4n−1
; the same argument applies to all strings

in a(30∗10∗)4 . The choice of a rule is always unambiguous, because there
is only one non-terminating rule for each nonterminal, while terminating
rules generate shorter strings than the non-terminating rule for the same
nonterminal.

4 Representing powers of k

In this section, unambiguous grammars for the languages Lk = {akn |n > 1},
with k > 9, are constructed. The nonterminal symbols of each grammar
generate the languages {ac·kn | n > 0}, for all c ∈ {k, k + 1, . . . , k2 − 1}. In
other words, these are the languages a(ij0∗)k , for some base-k digits i, j with
i 6= 0. All these languages are thus proved to be unambiguous conjunctive.
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Lemma 1. For every k > 9, the following conjunctive grammar with the set
of nonterminals N = {Ai,j | i, j ∈ {0, . . . , k − 1}, i 6= 0} and with the start
symbol A1,0 generates the language a(k0+)k :

A1,j → Ak−1,0Aj+1,0&Ak−2,0Aj+2,0 | a(1j)k , for j < k
3

+ 2

Ai,j → Ai−1,k−1Aj+1,0&Ai−1,k−2Aj+2,0 | a(ij)k , for i > 2, j < k
3

+ 2

Ai,j → Ai,j−1A1,0&Ai,j−2A2,0 | a(ij)k , for i > 1, j > k
3

+ 2

In particular, each nonterminal Ai,j generates the language a(ij0∗)k .

First, it has to be proved that the nonterminals of the constructed gram-
mar indeed generate the desired languages.

Claim 1. The system of language equations corresponding to the grammar
in Lemma 1 has a unique solution in ε-free languages, with Ai,j = a(ij0∗)k for
each i, j. Furthermore, the grammar is with unambiguous choice of rules.

Proof. The intended solution Ai,j = a(ij0∗)k is ε-free, and one can prove by
a standard argument [1] that this system has a unique solution in ε-free
languages. So it is enough to check that the given values are a solution. To
this end, the system will be evaluated under the substitution Ai,j = a(ij0∗)k .

To show that the choice of a rule in the grammar is unambiguous, note,
that each of the nonterminals has only two rules, one terminating and one
non-terminating. It is later shown, that the language generated by the non-
terminating rule consists of strings strictly longer than the string generated
by the terminating rule. This will be enough to conclude that the grammar
has unambiguous choice of a rule.

Getting back to substituting the intended solution into the equations,
note, that it involves a lot of manipulations with positional notation of num-
bers, and therefore it is more convenient to represent the system of language
equations as a system of equations over sets of natural numbers, with un-
knowns Xi,j ⊆ N. The concatenation of languages is replaced by the following
addition operation on sets of numbers: S + T = {m + n | m ∈ S, n ∈ T}.
Then the system of equations takes the following form:

X1,j =
(
Xk−1,0 + Xj+1,0 ∩Xk−2,0 + Xj+2,0

) ∪ (1j)k for j < k
3

+ 2 (1a)

Xi,j =
(
Xi−1,k−1 + Xj+1,0 ∩Xi−1,k−2 + Xj+2,0

) ∪ (ij)k for i > 2, j < k
3

+ 2
(1b)

Xi,j =
(
Xi,j−1 + X1,0 ∩Xi,j−2 + X2,0

) ∪ (ij)k for i > 1, j > k
3

+ 2.
(1c)

To verify an equation of the first type (1a), with j < k
3

+ 2, one should
check that

(1j0+)k =
(
((k−1)0+)k +((j +1)0+)k

)∩(
((k−2)0+)k +((j +2)0+)k

)
. (2)

6



The two intersected sets of numbers are calculated separately as follows:

((k − 1)0+)k + ((j + 1)0+)k =

((k − 1)0∗(j + 1)0+)k ∪ (1j0+)k ∪ ((j + 1)0∗(k − 1)0+)k,

((k − 2)0+)k + ((j + 2)0+)k =

((k − 2)0∗(j + 2)0+)k ∪ (1j0+)k ∪ ((j + 2)0∗(k − 2)0+)k.

Their intersection obviously contains (1j0+)k, and it remains to see that no
other numbers get into it, that is, that

((k − 1)0∗(j + 1)0+)k ∩ ((k − 2)0∗(j + 2)0+)k = ∅,

((k − 1)0∗(j + 1)0+)k ∩ ((j + 2)0∗(k − 2)0+)k = ∅,

((j + 1)0∗(k − 1)0+)k ∩ ((k − 2)0∗(j + 2)0+)k = ∅,

((j + 1)0∗(k − 1)0+)k ∩ ((j + 2)0∗(k − 2)0+)k = ∅.

Each of the sets being intersected has all elements with the same leading
digit, and those digits are different for each pair of sets: k− 1 6= k− 2 in the
first line; in the second line, k− 1 6= j + 2, because j + 2 < k

3
+ 4 < k− 1 for

k > 9; then, j + 1 6= k− 2 for the same reason; and j + 1 6= j + 2. Thus (1a)
holds, and the subsequent union with (1j)k on the right-hand side of (1a)
produces the set (1j0∗)k, and the equation holds true.

Similar calculations are performed for each equation (1b) with i > 2 and
j < k

3
+ 2. It is to be shown that

(ij0+)k =
(
((i−1)(k−1)0∗)k+((j+1)0+)k

)∩(
((i−1)(k−2)0∗)k+((j+2)0+)k

)
.

(3)
Each of the two sums on the right-hand side of (3) is now evaluated. Consider
the first sum. The added sets contain numbers with digits i − 1 and j + 1,
which can be added to each other. Thus the value of the sum depends on
whether i + j < k, in which case a digit i + j is obtained, or i + j > k, in
which case a digit i + j − k with a carry is obtained. To be more precise, if
i + j < k, then

((i− 1)(k − 1)0∗)k + ((j + 1)0+)k =

((i− 1)(k − 1)0∗(j + 1)0+)k ∪ (ij0+)k∪ (4a)

((i + j)(k − 1)0∗)k ∪ ((j + 1)0∗(i− 1)(k − 1)0∗)k,

and if i + j > k, then

((i− 1)(k − 1)0∗)k + ((j + 1)0+)k =

((i− 1)(k − 1)0∗(j + 1)0+)k ∪ (ij0+)k∪ (4b)

(1(i + j − k)(k − 1)0∗)k ∪ ((j + 1)0∗(i− 1)(k − 1)0∗)k.
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Similarly, the value of the second sum depends on whether i + j + 1 < k or
not. That is, if i + j + 1 < k, then

((i− 1)(k − 2)0∗)k + ((j + 2)0+)k =

((i− 1)(k − 2)0∗(j + 2)0+)k ∪ (ij0+)k∪ (5a)

((i + j + 1)(k − 2)0∗)k ∪ ((j + 2)0∗(i− 1)(k − 2)0∗)k,

and if i + j + 1 > k, then

((i− 1)(k − 2)0∗)k + ((j + 2)0+)k =

((i− 1)(k − 2)0∗(j + 2)0+)k ∪ (ij0+)k∪ (5b)

(1(i + j − k + 1)(k − 2)0∗)k ∪ ((j + 2)0∗(i− 1)(k − 2)0∗)k.

Each right-hand side of (4a)–(5b) contains (ij0∗)k, thus also their intersec-
tion on the right-hand side of (3) contains (ij0∗)k, and it remains to show
that the intersection of any other component of (4a) or (4b) with any other
component of (5a) or (5b) is empty. This time, the numbers are distinguished
by their last (least significant) non-zero digits : all numbers in (4a) and (4b)
(except for numbers from (ij0∗)k) have j + 1 or k − 1, while all numbers in
(5a) and (5b) (other than the numbers from (ij0∗)k) have j + 2 or k− 2. As
in the previous case, these numbers are distinct, which proves (3), and thus
the equation (1b) is checked.

The last case of an equation (1c), with any i > 1 and j > k
3

+ 2, follows
by a similar argument. It is to be shown that

(ij0+)k =
(
(i(j − 1)0∗)k + (10+)k

) ∩ (
(i(j − 2)0∗)k + (20+)k

)
. (6)

The value of the first sum on the right-hand side of (6) is different for i < k−1
and for i = k − 1. In the first case it is equal to

(i(j − 1)0∗)k + (10+)k =

(i(j − 1)0∗10+)k ∪ (ij0+)k ∪ ((i + 1)(j − 1)0∗)k ∪ (10∗i(j − 1)0∗)k, (7a)

while for i = k − 1 the sum equals

(i(j − 1)0∗)k + (10+)k =

(i(j − 1)0∗10+)k ∪ (ij0+)k ∪ (1(i + 1− k)(j − 1)0∗)k ∪ (10∗i(j − 1)0∗)k.
(7b)

The second sum on the right-hand side of (6) is similarly expanded. For
i < k − 2 it is represented as

(i(j − 2)0∗)k + (20+)k =

(i(j − 2)0∗20+)k ∪ (ij0+)k ∪ ((i + 2)(j − 2)0∗)k ∪ (20∗i(j − 2)0∗)k, (8a)
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and for i > k − 2 as

(i(j − 2)0∗)k + (20+)k =

(i(j − 2)0∗20+)k ∪ (ij0+)k ∪ (1(i + 2− k)(j − 2)0∗)k ∪ (20∗i(j − 2)0∗)k.
(8b)

Both sums (regardless of the value of i) contain the subset (ij0+)k, which
hence belongs to the intersection. To see that there is nothing else in the
intersection, one has to show that the intersection of any other set on the
right-hand side of (7a) or (7b) with any set from the right-hand side of (8a)
or (8b) is empty. These sets are again distinguished by their last non-zero
digit: the numbers from sets on the right-hand side of (7a) or (7b) (other
than (ij0+)k) have either 1 or j − 1 as the last non-zero digit, while the
numbers from the sets on the right-hand side of (8a) or (8b) (other than
(ij0+)k) have either 2 or j − 2. By the case assumption, j > k

3
+ 2 > 5 and

so it holds that 1 < 2 < j − 2 < j − 1. Therefore, the numbers appearing on
the right-hand side of (7a) or (7b) are different than the numbers appearing
on the right-hand side of (8a) or (8b). And so (6) holds.

It is left to show that the grammar has unambiguous choice of a rule.
As already mentioned, this is done by comparing the lengths of the strings
generated by the terminating and non-terminating rules. For the first case,
that is of i = 1 and j < k

3
+ 2, observe that the set (1j0+)k describes the

lengths of strings generated by the non-terminating rule, as demonstrated
in (2); this is strictly larger than the length of the constant string (1j)k in this
case. Similar argument applies to the other cases, with (3) and (6) giving the
lengths of the strings generated by the non-terminating rules in these cases.
This shows that the choice of a rule in the grammar is unambiguous.

In order to show that the constructed grammar has unambiguous con-
catenation, it is proved that the concatenation of a language a(ij0∗)k with a
language a(i′j′0∗)k is in most cases unambiguous, and that none of the con-
catenations actually used in the grammar are among the few exceptions to
this rule.

Claim 2. Let k > 2, and consider any two different languages of the form
K = a(ij0∗)k and L = a(i′j′0∗)k , with i, i′ ∈ Σk \ {0} and j, j′ ∈ Σk, except
those with i = j = i′ and j′ = 0, or vice versa. Then the concatenation KL
is unambiguous.

Proof. The goal is to show that if a(ij0`)ka(i′j′0m)k = a(ij0`′)ka(i′j′0m′)k , or, in
other words, if

(k · i + j)(k` − k`′) = (k · i′ + j′)(km′ − km) (9)

for i, j, i′, j′ as in the statement, then ` = `′ and m = m′.
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It is first shown that ` = `′ or m = m′ implies the claim: if ` = `′, then
the left-hand side of (9) is zero, and therefore its right-hand side is zero as
well, which holds only if m′ = m, as claimed. Similarly, m = m′ implies
` = `′. Assume that ` 6= `′ and m 6= m′; by the symmetry, it may be further
assumed that ` > `′, which shows that both sides of (9) are non-negative,
hence km′

> km and it can be concluded that m′ > m. Then (9) can be
equally written as

(k · i + j)k`′(k`−`′ − 1) = (k · i′ + j′)km(km′−m − 1). (10)

In the following, the analysis splits, depending on whether j = 0 or j′ = 0.
Consider first the case, when both j and j′ are nonzero. Then the left-

hand side of (10) is divisible by k`′ , but not by k`′+1, while the number on
the right-hand side is divisible by km, but not by km+1. Therefore, `′ = m
and the equation (10) is simplified to

(k · i + j)(k`−`′ − 1) = (k · i′ + j′)(km′−m − 1). (11)

Since K 6= L, it holds that i 6= i′ or j 6= j′. Together with the assumption
that 0 < i, j, i′, j′ < k this yields that ki + j 6= ki′ + j′. Again by the
symmetry it may be assumed that k · i+j > k · i′+j′. Then (11) implies that
(km′−m−1) > (k`−`′−1), that is, (km′−m−1−1) > (k`−`′−1). This is enough
to estimate both sides of (11) with contradictory values. The left-hand side
of (11) is at most

(k · i + j)(k`−`′ − 1) 6 (k · (k − 1) + k − 1)(km′−m−1 − 1) <

< k2(km′−m−1 − 1) = km′−m+1 − k2,

while the right-hand side of (11) is at least

(k · i′ + j′)(km′−m − 1) > (k + 1)(km′−m − 1) =

= km′−m+1 − k + km′−m − 1 > km′−m+1 − 1.

Together those two estimations yield km′−m+1 − k2 > km′−m+1 − 1, which is
not possible, as k > 1. The obtained contradiction shows that ` = `′ and
m = m′, as desired.

The second case, of j = j′ = 0, follows by a similar argument as in the
first case: the difference is that the left-hand side of (10) in this case is
divisible by k`′+1, but not by k`′+2, and the number on the right-hand side is
divisible by km+1, but not by km+2, which yields the equality `′ = m. Then
the equations (10) can be represented as

i(k`−`′ − 1) = i′(km′−m − 1).

Since ` > `′, the left-hand side is equal to −i modulo k and, as m′ > m, the
right-hand side is equal to −i′ modulo k. Since 0 < i, i′ < k, it is concluded
that i = i′, contradiction.
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It is left to consider the case, in which exactly one of the following
holds: j = 0 or j′ = 0. By symmetry it may be assumed that j 6= 0
and j′ = 0. Then the number on the left-hand side of (10) is divisi-
ble by k`′ , but not by k`′+1 and the number on the right-hand side is
divisible by km+1, but not by km+2. Thus `′ = m + 1. Consider the

original equality a(ij0`)ka(i′0m+1)k = a(ij0`′)ka(i′0m′+1)k , which implies that
(ij0`)k + (i′0m+1)k = (ij0`′)k + (i′0m′+1)k. Consider the positional nota-
tions of numbers represented by both these sums. Since ` > `′ = m + 1, the
k-positional of (ij0`)k +(i′0m+1)k has three non-zero digits: i, j and i′, which
appear in this order. The analysis for (ij0`′)k + (i′0m′+1)k is more compli-
cated: it is already known that m′ + 1 > m + 1 = `′, that is m′ + 1 > `′ + 1.
In the following, it is distinguished, whether m′+1 > `′+1 or m′+1 = `′+1:

• If m′ + 1 > `′ + 1 then the number (ij0`′)k + (i′0m′+1)k has three
non-zero digits in its k-positional notation: i′, i and j, which appear
in this order. Recall, that the order of non-zero digits in k-positional
notation of (ij0`)k + (i′0m+1)k is i, j and i′. Since these two numbers
are equal, i = i′, j = i and i′ = j, that is, i = i′ = j. This is exactly
the combination excluded explicitly by the assumptions of the lemma,
contradiction.

• If m′ + 1 = `′ + 1, the i and i′ in the positional notation of (ij0`′)k

and (i′0m′+1)k are added to each other. If i + i′ < k then (ij0`′)k +
(i′0m′+1)k = ((i + i′)j0`′)k, which has only two non-zero digits in its
base-k positional notation. This contradicts the fact that (ij0`)k +
(i′0m+1)k has three non-zero digits in its k-positional notation. If i+i′ >
k then (ij0`′)k + (i′0m′+1)k = (1(i + i′ − k)j0`′)k. The sum of digits
in k-positional notation of this number is i + i′ + j − k, while the sum
of digits in k-positional notation of (ij0`)k + (i′0m+1)k is i + i′ + j,
contradiction.

The obtained contradiction completes the proof.

Now the proof of Lemma 1 is inferred from both Claims 1–2.

Proof of Lemma 1. By Claim 1, each nonterminal Ai,j generates the language
a(ij0∗)k . Furthermore, by the same claim, the choice of a rule in the grammar
is unambiguous. By Claim 2 the concatenation Ai,jAi′,j′ is unambiguous,
unless

1. i = i′ and j = j′ or

2. i = i′ = j and j′ = 0 or

3. i = i′ = j′ and j = 0.

So it is enough to show that none of the forbidden cases takes place. There
are three types of rules in the grammar, let us consider them separately.

11



• rules for A1,j for j < k
3

+ 2. Then there are two concatenations in this
rule: Ak−1,0Aj+1,0 and Ak−2,0Aj+2,0. By the case assumption j < k

3
+ 2

and k > 9 and thus j+2 < k
3
+4 6 k−2. Consequently k−1 > k−2 >

k +2 > j +1 and so both concatenations in this rule are unambiguous.

• rules for i > 2 and j < k
3
+2. In this case there are two concatenations

in the rule: Ai−1,k−1Aj+1,0 and Ai−1,k−2Aj+2,0. Consider the former.
Since k − 1 6= 0 the only case, in which this concatenation could be
unambiguous, is when i = j + 1 = k − 1. However, as in the previous
case, j+1 < k−1 and so this cannot hold. Similarly, the concatenation
Ai−1,k−2Aj+2,0 is unambiguous, as k − 2 > j + 2.

• In the last case, when i > 1 and j > k
3

+ 2 there are also two con-
catenations in the rule: Ai,j−1A1,0 and Ai,j−2A2,0. Consider the latter:
since j − 2 > 0, the only case in which this concatenation may be un-
ambiguous, is when i = 2 = j − 2. However, by the case assumption
j > k

3
+ 2 > 5. Hence j − 2 > 3. Similar analysis shows also that the

concatenation Ai,j−2A2,0 is unambiguous.

Hence, concatenation in the grammar is unambiguous.

5 Simulating trellis automata

This section extends the main general method for constructing conjunctive
grammars over a unary alphabet to the case of unambiguous conjunctive
grammars. The overall idea is to simulate a one-way real-time cellular au-
tomaton, also known as a trellis automaton, operating on base-k represen-
tations of numbers, by a grammar generating unary representations of the
same numbers.

A trellis automaton [2, 10], defined as a quintuple (Ω, Q, I, δ, F ), processes

an input string of length n > 1 using a uniform array of n(n+1)
2

nodes, as
presented in the figure below. Each node computes a value from a fixed
finite set Q. The nodes in the bottom row obtain their values directly from
the input symbols using a function I : Ω → Q. The rest of the nodes compute
the function δ : Q×Q → Q of the values in their predecessors. The string is
accepted if and only if the value computed by the topmost node belongs to
the set of accepting states F ⊆ Q.

Definition 5. A trellis automaton is a quintuple M = (Ω, Q, I, δ, F ), in
which:
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• Ω is the input alphabet,

• Q is a finite non-empty set of states,

• I : Ω → Q is a function that sets the ini-
tial states,

• δ : Q×Q → Q is the transition function,
and

• F ⊆ Q is the set of final states.
Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)),

while I is extended to a homomorphism I : Ω∗ → Q∗. Let LM(q) =
{w | δ(I(w)) = q} and define L(M) =

⋃
q∈F LM(q).

Consider a trellis automaton with the input alphabet Ω = Σk =
{0, 1, . . . , k − 1} of base-k digits, and assume that it does not accept any
strings beginning with 0. Then, every string of digits accepted by the au-
tomaton defines a certain number, and thus the automaton defines a set of
non-negative integers. The goal is to represent the same set of numbers in
unary notation by a conjunctive grammar. For conjunctive grammars of the
general form, without the unambiguity condition, this is always possible.

Theorem A (Jeż, Okhotin [5]). For every k > 2 and for every trellis au-
tomaton M over the alphabet Σk, with L(M) ∩ 0Σ∗

k = ∅, there exists a
conjunctive grammar generating the language {a(w)k | w ∈ L(M)}.

The grammar simulates the computation of a trellis automaton M =
(Ω, Q, I, δ, F ) using the nonterminal symbols Aq with q ∈ Q, which generate

the languages LG(Aq) = {a(1w10`)k | δ(w) = q, ` > 0}, so that each string of
digits w ∈ Σ∗

k is represented in unary notation by the strings a(1w1)k , a(1w10)k ,
a(1w100)k , etc.1 The recursive dependence of Lq on each other simulates the
definition of the trellis automata in terms of these unary encodings as follows.
Consider a string w = iuj with i, j ∈ Ω and u ∈ Ω∗. Then δ(w) = q if and
only if q = δ(q′, q′′), where q′ = δ(iu) and q′′ = δ(uj). In terms of unary
encodings, a(1iuj10`)k ∈ Lq if and only if a(1iu10`+1)k ∈ Lq′ and a(1uj10`)k ∈ Lq′′

(note the additional 0 in the first case), and this dependence is expressed in
the rules of a conjunctive grammar. The desired language {a(w)k |w ∈ L(M)}
is expressed through Aq with q ∈ F by an additional series of rules.

However, the grammar produced by Theorem A is always ambiguous,
and there is no general way of expressing the same languages LG(Aq) ⊆ a∗

in an unambiguous grammar, for the following reason. The construction of

1For the more obvious encoding as {a(w)k | δ(w) = q}, the constructions would not
work [5].
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unambiguous grammars, as presented in Lemma 1, relies on concatenating
exponentially growing languages, and the sparsity of such languages in some
cases allows their concatenation to be unambiguous. However, the languages
LG(Aq), as defined above, may be denser than that, and their concatenation
with any infinite language is ambiguous.

Thus, the first step of simulating a trellis automaton by an unambiguous
conjunctive grammar is to define a unary encoding of the languages LM(q)
that always grows exponentially, regardless of the form of LM(q). This is
done by choosing the base k to be larger than the cardinality of the input
alphabet Ω of M , and assuming that Ω is a subset of the set of all digits.

Theorem 1. For every trellis automaton over a d-letter input alphabet Ω,
let c > max(5, d+2) and assume that Ω = {c, . . . , c+d−1}. Then, for every
base k > 2c + 2d − 3, there exists an unambiguous conjunctive grammar
generating the language {a(1w1)k | w ∈ L}.

If a base k > 11 is fixed, then, for instance, the following values of c
and d are suitable: c = k+9

4
, d = k−3

4
. They induce the alphabet Ω =

{k+9
4

, . . . , k+1
2
}.

The smallest values of c and k for an alphabet with d = 2 letters are
c = 5 and k = 11, so that Ω = {5, 6}.

The construction developed in this paper to prove Theorem 1 is generally
analogous to the one used in Theorem A; in particular, it uses a very similar
unary representation of strings over Ω. Let M = (Ω, Q, I, δ, F ). For every
state q ∈ Q and for all s, s′ ∈ {1, 2}, the grammar has a nonterminal Xs,s′

q ,
which defines the language

Ls,s′
q = {a(sws′0`)k | ` > 0, δ(w) = q}. (12)

In this construction, the symbols s and s′ surrounding the string w may be 1
or 2, whereas Theorem A uses only 1 for that purpose; this is an insignificant
technical detail. The crucial difference with Theorem A is that each string
w processed by M uses only digits from a small subset of Σk, which makes
each Xs,s′

q generate an exponentially growing language.
In terms of this encoding, computations of a trellis automaton are sim-

ulated as follows. In a trellis automaton, if a string w = iuj with i, j ∈ Ω
and u ∈ Ω∗ has δ(iu) = q1, δ(uj) = q2 and δ(q1, q2) = q, then δ(w) = q.
A grammar simulating this single step of computation has to generate the
four strings a(siujs′0`)k with s, s′ ∈ {1, 2} by the corresponding nonterminals
Xs,s′

q , using the eight strings a(sius′0`+1)k ∈ Ls,s′
q1

and a(sujs′0`)k ∈ Ls,s′
q2

, for all
s, s′ ∈ {1, 2}.

Fix any s, s′ ∈ {1, 2}. The string a(siujs′0`)k is generated in several phases.
The first phase expresses all strings a(siujs′0`)k with δ(uj) = q2 and with
arbitrary i ∈ Ω. That is, using two strings of the form a(s′′ujs′0`)k , where s′′ ∈
{1, 2}, a string a(siujs′0`)k is defined. On a high level this is done by appending
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the digit i to the left of the encoded string uj. In terms of the encodings,

a(s(i−s′′)0|ujs′|+`)k should be concatenated to a(s′′ujs′0`)k . The operations on
a(1ujs′0`)k and a(2ujs′0`)k , which correspond to two possible values 1 and 2 of
s′′, are performed simultaneously in the expression λs

i , defined as follows:

λs
i (x, y) = (x · a(s(i−1)0∗)k) ∩ (y · a(s(i−2)0∗)k) (13)

and it can be shown that on arguments a(1ujs′0`)k and a(2ujs′0`)k its value is
a(siujs′0`)k .

The second phase defines a symmetric operation ρs′
j , which appends js′ to

the right in the encoded string. Given two strings a(siu10`+1)k and a(siu20`+1)k

its value is a(siujs′0`)k .

ρs′
j (x, y) = (x · a((j−1)s′0∗)k) ∩ (y · a((j−2)s′0∗)k) (14)

The third phase corresponds to the intersection of both defined opera-
tions: note that a(siujs′0`)k is expressible by both (13) and (14) applied to
appropriate strings, and so a(siujs′0`)k belongs to their intersection.

The following lemma establishes that these operations work as intended.

Lemma 2. Let K ⊆ Ω+ or K = {ε} and let s′ ∈ {1, 2}. Define L1 =
a(1Ks′0∗)k and L2 = a(2Ks′0∗)k . Then for each i ∈ Ω and s ∈ {1, 2}

λs
i (L1, L2) = a(siKs′0∗)k . (15)

Proof. The case of K = {ε} can be shown in a similar fashion as Lemma 1,
moreover, the proof of the general case for K ⊆ Ω+ can be adapted also for
K = {ε}. Thus only the proof for the general case of K ⊆ Ω+ is considered.

Substituting the languages into (15) yields that the following equality is
to be shown:

a(1Ks′0∗)k · a(s(i−1)0∗)k ∩ a(2Ks′0∗)k · a(s(i−1)0∗)k = a(siKs′0∗)k

The proof of this equality is done it terms of equations over sets of numbers,
i.e., it is shown that

((1Ks′0∗)k + (s(i− 1)0∗)k) ∩ ((2Ks′0∗)k + (s(i− 1)0∗)k) = (siKs′0∗)k

(16)
Denote the set on the right-hand side of (16) by S.

Consider arbitrary x1 = (1w1s
′0`1)k ∈ (1Ks′0∗)k and y1 = (s(i −

1)0m1)k ∈ (s(i − 1)0∗)k. It is shown that the form of base-k positional
notation of x1 + y1 reflects the relation between m1 and `1.

Claim 3. Consider the sum x1 + y1 as above. Then:

i. the last non-zero digit of x1 + y1 is i− 1 if and only if `1 > m1;

ii. the last non-zero digit of x1 + y1 is i− 1 + s′ if and only if `1 = m1;
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iii. One of the following two sets of conditions holds if and only if `1 <
m1 < |w1s

′|+ `1:

• the last non-zero digit of x1 + y1 is s′ and x1 + y1 has a unique
digit at least c+ d, which is at position m1 +1 from the right, and
all 0s in this notation form a suffix, or

• the positional notation of x1 + y1 is in the set (Σ∗
k0Ω

∗s′0∗)k and
the first 0 to the left of s′ is at position m1 + 1 from the right

iv. the sum x1 + y1 is in S if and only if m1 = |w1s
′|+ `1

v. the sum x1 + y1 is in the set (s(i − 1)0∗1Ω∗s′0∗)k if and only if m1 >
|w1s

′|+ `1.

Proof. Consider the last non-zero digit of x1 + y1. If `1 > m1, then this digit
comes from y1 and is equal to i− 1; if `1 = m1, then this digit is obtained as
the sum of last non-zero digits of x1 and y1 and is equal to s′+ i−1, which is
at most 2+ c+d− 2 = c+d < k, so it is a valid digit. Lastly, when m1 > `1,
this digit is obtained from last non-zero digit of x1 and is equal to s′. Since
i > 5 and s′ 6 2, it can be concluded that s′ < i− 1 < i, and this shows (i)
and (ii).

It is left to show (iii–v). Assume that m1 > `1, and that the last non-zero
digit of x1 + y1 comes from x1 and is equal to s′. Observe that the sets of
numbers described in (iii–v) are disjoint: indeed, the numbers in S contain
neither any digits of value c+ d or more, nor any digit 0 to the left of s′, and
hence the sets described in (iii) and in (iv) are disjoint. Similar argument
applies to the numbers in (s(i − 1)0∗1Ω∗s′0∗)k and the numbers defined in
(iii): clearly, all digits in the latter are smaller than c + d, and if it had a
zero to the left of s′, then there would be a digit from {1, 2} between this
zero and s′; hence, the sets from (iii) and (v) are also disjoint. Lastly, the
sets S and (s(i − 1)0∗1Ω∗s′0∗)k are disjoint, as the elements of the former
have only two digits from set {1, 2} in their base-k positional notation, while
the numbers from the latter set have exactly three such digits. Thus sets
described in (iv) and (v) are also disjoint. Hence, in order to show (iii–v), it
is enough to demonstrate, that

• if `1 < m1 < |w1s
′|+ `1, then the base-k positional notation of x1 + y1

has a last non-zero digit s′, and either

– it has a digit at least c + d and all zeroes in the notation form a
suffix, or

– it is in the set (Σ∗
k0Ω

∗s′0∗)k

• if m1 = |w1s
′|+ `1, then x1 + y1 ∈ S

• if m1 > |w1s
′|+ `1, then x1 + y1 ∈ (s(i− 1)0∗1Ω∗s′0∗)k.
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Consider what is the digit on the m1 + 1 position from the right in x1 =
(1w1s

′0`1)k, recall that y1 has i− 1 at this position. Since m1 > `1, there are
three possibilities:

• it is one of the digit’s from Ω, say ω, which happens when `1 < m1 <
|w1s

′|+ `1. In this case, the sum of digits at position m1 + 1 in x1 + y1

is ω + i− 1. Since both ω and i are in Ω, the sum ω + i− 1 is at least
2c − 1 and at most 2c + 2d − 3 6 k. This means that the sum may
cause a carry. If there is no carry, the digit at position m1 + 1 is at
least c+ d; and if there is a carry, the digit at position m1 +1 is 0, and
furthermore, between this 0 and s1 there are only digits from Ω.

• it is the leading digit 1, which happens when m1 = |w1s
′|+ `1. In this

case x1 + y1 = (1w1s
′0`1)k + (s(i− 1)0|w1s′|+`1)k = (siw1s

′0`1)k.

• there is no digit on position m1 + 1 in base-k positional notation of
x1, as it is too short. This happens when m1 > |1w1| + `1. Then
x1 + y1 = (1w1s

′0`1)k + (s(i− 1)0m1)k = (s(i− 1)0m1−|1w1|−`1w1s
′0`1)k.

This ends the case inspection and the proof.

A similar characterisation can be obtained for addition of x2 and y2, where
x1 = (2w2s

′0`2)k ∈ (2Ks′0∗)k and y2 = (s(i− 2)0m2)k ∈ (s(i− 2)0∗)k.

Claim 4. Consider the sum x2 + y2 as above. Then

• the last non-zero digit of x2 + y2 is i− 2 if and only if `2 > m2;

• the last non-zero digit of x2 + y2 is i− 2 + s′ if and only if `2 = m2;

• the last non-zero digit of x2 + y2 is s′, all zeroes form a suffix of the
notation, and there is a digit that is at least c + d if and only if `2 <
m2 < |w2s

′| + `2, and furthermore, the digit that is at least c + d is at
position m2 + 1 from the right;

• the sum x2 + y2 is in S if and only if m2 = |w2s
′|+ `2

• the sum x2 + y2 is in the set (s(i − 2)0∗2Ω∗s′0∗)k if and only if m2 >
|w2s

′|+ `2.

The proof of Claim 4 is similar to the proof of Claim 3, and so it is
omitted. Observe that the statement of Claim 4 is simplified, as compared
to Claim 3: this is because the sum of the highest digit from Ω (i.e., c+d−1)
with the greatest value of i− 1, i.e., c + d− 2, is k, which causes a carry; on
the other hand, the sum of c + d− 1 and i− 2 is always at most k − 1, and
hence does not cause a carry.

Suppose now that x1 + y1 = x2 + y2. It will be shown that this implies
that x1 + y1 ∈ S. The analysis depends on the relation between `2 and m2
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• Suppose that `2 > m2. Then by Claim 4 the last non-zero digit of
x2 + y2 is i− 2. On the other hand, by Claim 3 the last non-zero digit
of x1 + y1 is either at least i− 1 or at most 2, so it cannot be i− 2

• Suppose that `2 = m2. Then by Claim 4 the last non-zero digit of
x2 + y2 is i − 2 + s′. On the other hand, by Claim 3, the last non-
zero digit of x1 + y1 can be s′, which is clearly smaller than i− 2 + s′,
i − 1 + s′, which is clearly larger, or i − 1, which is the only feasible
case and happens if and only if `1 > m1. Consider then the second-last
non-zero digit of x2 + y2 = x1 + y1: since `1 > m1 the second-last digit
of x1 + y1 is either s (if `1 > m1 + 1) or s′ + s (if `1 = m1 + 1); on
the other hand, as `2 = m2 and ε /∈ K, there is a digit from Ω on this
position in x2 and so the second-last non-zero digit of x2 +y2 is at least
c + s′. Since s < s′ + s′ ≤ 4 < c + s, this rules out this case.

• Suppose now that `2 < m2 < |w2s
′|+ `2 − 1. Then the leading digit of

x2 + y2 is 2, which comes from x2. Furthermore, Claim 4 yields that
x2 + y2 has a digit at least c + d, which is moreover at position m2 + 1.
Also, all zeroes in the base-k notation of x2+y2 form a suffix. The digit
with value at least c + d also appears in x1 + y1 and furthermore all
zeroes in this notation form a suffix. From Claim 3 it can be inferred
that `1 < m1 < |w1s

′|+`1 and that the digit at least c+d is at position
m1 + 1. Hence, m1 = m2. Consider the leading digit in x1 + y1. It is
either 1 (when m1 < |w1s

′|+`1−1) or 1+s (when m1 = |w1s
′|+`1−1).

As 1 < 2, this rules out the former case. In the latter case, the length
of the positional notation of x1 + y1 is m1 + 2, on the other hand, the
length of the positional notation of x2 + y2 is at least m2 + 3; since
m1 = m2, this is a contradition.

• Consider m2 = |w2s
′| + `2 − 1. Then an analysis similar to the one

in the previous case yields that the leading digit in x2 + y2 is 2 + s
and x2 + y2 has a digit at least c + d, which is at position m2 + 1 and
furthermore all zeroes form a suffix. Then, as x1 + y1 also has a digit
that is at least c + d and all its zeroes form a suffix, it is concluded,
that m1 < |w1s

′| + `1. Then the leading digit of x1 + y1 is either 1, if
the inequality is tight, or 1 + s if it is not. In both cases, this is less
than 2 + s.

• If m2 = |w2s
′|+ `2 then x2 + y2 ∈ S, by Claim 4, and there is nothing

more to prove.

• Suppose now that m2 > |w2s
′| + `2. By Claim 4 the base-k positional

notation of x2 + y2 has 3 digits from the set {1, 2}, and so clearly also
x1 + y1 has them. Using Claim 3 it follows that this is possible only in
two cases: when m1 > |w1s

′| + `1 or when m1 > |w1s
′| + `1 or when

`1 < m < |w1s
′|+ `1. However, in the former case x1 + y1 has a digit 0
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which is to the left of s′ and there are only digits from Ω between this
s′ and 0, which does not hold for x2 + y2. Thus m1 > |w1s

′| + `1, and
consequently the second-leading digit of x1 + y1 is i− 1. On the other
hand, from Claim 4 guarantees that the second-leading digit of x2 + y2

is i− 2, contradiction.

The case analysis above yields that the left-hand side of (16) is a subset of
the right-hand side. To show the converse, consider any (siw0`)k ∈ S. Then,
by definition, x1 = (1w0`)k ∈ (1Ks′0∗)k and y1 = (s(i− 1)0`+|w|)k ∈ (s(i−
1)0∗)k. Clearly, x1 + y1 = (siw0`)k. One can give a similar representation
of x2 ∈ (2Ks′0∗)k and y2 ∈ (s(i − 2)0∗)k, such that x2 + y2 = (siw0`)k.
Therefore, (siw0`)k ∈

(
(1Ks′0∗)k + (s(i − 1)0∗)k

) ∩ (
(2Ks′0∗)k + (s(i −

2)0∗)k

)
, and thus the stated equality (16) holds.

Similarly to Lemma 2, the following property of ρs′
j shows that it works

as intended.

Lemma 3. Let K ⊆ Ω+ and let s ∈ {1, 2}. Define L1 = a(sK10∗)k and
L2 = a(sK20∗)k . Then, for every j ∈ Ω and s′ ∈ {1, 2},

ρs′
j (L1, L2) = a(sKjs′0∗)k . (17)

The other crucial property of the expressions λs
i and ρi

s is that, under the
substitution of languages of the intended form, the concatenations therein
are unambiguous.

Lemma 4. Let K = {ε} or K ⊆ Ω∗ and let s′ ∈ {1, 2}. Define L1 =
a(1Ks′0∗)k and L2 = a(2Ks′0∗)k . Then, for each s ∈ {1, 2} and i ∈ Ω, both
concatenations in λs

i (L1, L2) are unambiguous.

Proof. The case for K = {ε} follows easily from Lemma 2, so in the rest of
the proof only the case of K ⊆ Ω+ is considered.

Consider first the λ1
i , i.e., s = 1. Let x1 = (1w1s

′0`1)k ∈ (1Ks′0∗)k,
y1 = (s(i − 1)0m1)k ∈ (s(i − 1)0∗)k and x2 = (1w2s

′0`2)k ∈ (s(i − 1)0∗)k,
y2 = (s(i− 1)0m2)k ∈ (s(i− 1)0∗)k be such that x1 + y1 = x2 + y2. Claim 3
is employed to show that x1 = x2 and y1 = y2. Observe, that it is enough
to show that m1 = m2, as this yields y1 = y2 and consequently also x1 = x2.
Consider the relation between `1 and m1

• if `1 > m1 then by Claim 3 the last non-zero digit of x1 + y1 is i − 1
and it comes from y1, in particular, it is on position m1 + 1 from the
right. Clearly, i− 1 is also the last non-zero digit of x2 + y2, and again
from Claim 3 it is obtained that the `2 > m2. Hence, the last non-zero
digit of x2 + y2 is on position m2 + 1. Consequently, m1 = m2, which
ends the proof in this case.
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• Suppose that `1 = m2. Using Claim 3 is is obtained that the last non-
zero digit of x1+y1 is i−1+s′ and it is on position m1+1 = `1+1 from
the right. By an argument as in the previous case it can be deduced
that `2 = m2 and the last non-zero digit of x2+y2 is on position m2+1.
Hence, m1 = m2, as claimed.

• Let now `1 < m1 < |sw1| + `1. By Claim 3, the number x1 + y1 in its
base-k notation either has a unique digit which is at least c + d and all
0s form a suffix, or has a digit 0 to the left of s′ and there are only digits
from Ω between them. In the former case the digit that is at least c+d
is on position m1 +1 from the right, in the second case this 0 is as well
at position m1 + 1. Consider the former case. Clearly, x2 + y2 has the
same digit on this position and, by Claim 3, it can be concluded that
this digit is on position m2 + 1 from the right and so m2 = m1, which
ends the proof in this case. If x1 + y1 has 0 to the left of s′, then so
does x2 + y2, and, by Claim 3, such a digit 0 is at position m2 +1 from
the right. Hence m2 = m1, which ends also this subcase.

• Let now m1 = |sw1| + `1. Then, by Claim 3, the number x1 + y1 is
in S. Moreover the length of the base-k notation of x1 + y1 is m1 + 2.
On the other hand, x2 + y2 also belongs to S and, by Claim 3, it holds
that m2 = |sw2| + `2. In particular, the length of the base-k notation
of x2 + y2 is m2 + 2. Thus m1 = m2, as desired.

• Consider the last case, when m1 > |sw1|+ `1. Then by Claim 3, x1 +y1

is in the set (s(i − 1)0∗1Ω∗s′0∗)k, and so clearly so is x2 + y2. Using
Claim 3 again yields that m2 > |sw2|+ `2. Observe that the length of
the base-k notation of x1 +y1 is m1 +2 and the length of such notation
for x2 + y2 is m2 +2. Thus m1 = m2, which ends the proof in this case.

The case inspection above yields that x1 + y1 = x2 + y2 implies x1 = x2 and
y1 = y2. Thus λ1

i is with unambiguous concatenation. The proof for λ2
i is

similar and is thus omitted.

Similarly, the concatenations in ρs′
j are unambiguous under the right sub-

stitution.

Lemma 5. Let K ⊆ Ω∗ and let s ∈ {1, 2}. Define L1 = a(sK10∗)k and
L2 = a(sK20∗)k . Then for each j ∈ Ω and s′ ∈ {1, 2}, both concatenations in
ρs′

j (L1, L2) are unambiguous.

Using the expressions λi
s and ρs′

j , each representing a conjunction of two
concatenations, the main part of the grammar for the proof of Theorem 1 is
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constructed as follows:

Xs,s′
q → λs

b(A1,s′ , A2,s′) for b ∈ Ω such that δ(b) = q

(18a)

Xs,s′
δ(q′,q′′) → λs

i (X
1,s′
q′′ , X2,s′

q′′ ) & ρs′
j (Xs,1

q′ , X2,2
q′ ) for i, j ∈ Ω and q′, q′′ ∈ Q

(18b)

Xs,s′ → Xs,s′
q for q ∈ F

(18c)

Here, the nonterminals Ai,j are from Lemma 1, and each of them generates
the corresponding language a(ij0∗)k . Whenever the expressions λi

s and ρs′
j use

constant languages of the form a(ij0∗)k , the grammar accordingly refers to
the appropriate Ai,j.

Proof of Theorem 1. The proof follows by showing the claim:

Main Claim. The given conjunctive grammar (18) is unambiguous, and
each nonterminal Xs,s′

q generates {a(sws′0`)k | δ(w) = q, ` > 0}, while each

Xs,s′ generates {a(sws′0`)k | a(w)k ∈ L(M), ` > 0}, for all s, s′ ∈ Ω and q ∈ Q.

Observe, that with the main claim established, it is enough to restrict
L(X1,1) to strings of odd length, which is done by adding the following ad-
ditional rules

X → X1,1
& O, (19)

O → a | aaO (20)

to the grammar (18). Then X generates {a(1w1)k | a(w)k ∈ L(M)}.
Now the Main Claim is shown.
Consider the resolved system of equations associated with the gram-

mar (18). Observe that all constants in (18) come from the grammar defining
the nonterminals Ai,j, see Lemma 1, and all these constants are ε-free. Hence,
the associated resolved system uses only constants that are ε-free and thus
has a unique ε-free solution, which coincides with the least solution. Since the
desired solution consists of sets that are all ε-free, it is enough to check that
Xs,s′

q = {a(sws′0`)k | δ(b) = q, ` > 0}, Xs,s′ = {a(sws′0`)k | w ∈ L(M), ` > 0}
is indeed a solution.

Consider first the rule (18a) and the expressions corresponding to its right-
hand side. Lemma 2 is used to determine the value of this expression under
substitution of a(1s′0∗)k for A1,s′ and a(2s′0∗)k for A2,s′ . In the terminology of
the lemma, K = {ε}. Then L1 = a(1Ks′0∗)k and L2 = a(2Ks′0∗)k , and, by the
lemma,

λs
b(a

(1s′0∗)k , a(2s′0∗)k) = a(sbKs′0∗)k

= a(sbs′0∗)k .
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Taking the union over b ∈ Ω such that δ(b) = q yields that
⋃

b∈Ω
δ(b)=q

λs
b(a

(1s′0∗)k , a(2s′0∗)k) = {a(sbs′0`)k | b ∈ Ω, δ(b) = q, ` > 0}.

Furthermore observe, that as M is deterministic, the union is taken over
disjoint sets.

Turning to the rules (18b), Lemmata 2 and 3 are used to determine the
value of the corresponding expression under the appropriate substitution:
Lemma 2 for λs

i (X
1,s′
q′′ , X2,s′

q′′ ) and Lemma 3 for ρs′
j (Xs,1

q′ , X2,2
q′ ). In the first

case, using the terminology of Lemma 2, let Kq′′ = {w | δ(w) = q′′}, then
L1 = a(1Kq′′s

′0∗)k and L2 = a(2Kq′′a
′0∗)k ; then the lemma states that

λs
i (a

(1Kq′′s
′0∗)k , a(2Kq′′s

′0∗)k) = a(siKq′′s
′0∗)k .

Applying Lemma 3 to the second expression, with the values Kq′ =
{w | δ(w) = q′}, L1 = a(sKq′′10

∗)k and L2 = a(sKq′20
∗)k , yields

ρs′
j (a(sKq′10

∗)k , a(sKq′20
∗)k) = a(sKq′js

′0∗)k .

Then the conjunction in (18b) defines

λs
i (a

(1Kq′′s
′0∗)k , a(2Kq′′s

′0∗)k) ∩ ρs′
j ((a(sKq′10

∗)k , (a(sKq′20
∗)k) =

= a(siKq′′s
′0∗)k ∩ a(sKq′js

′0∗)k =

= {a(siwjs′0`)k | δ(iw) = q′, δ(wj) = q′′, ` > 0}.
Taking the union over q′, q′′ such that δ(q′, q′′) = q yields

⋃

q′,q′′∈Q,
δ(q′,q′′)=q

{a(siwjs′0`)k | δ(iw) = q′, δ(wj′) = q′′, ` > 0} =

= {a(siwjs′0`)k | δ(iwj) = q, ` > 0}.
Notice that as M is deterministic, the above union is over disjoint sets. Lastly,
taking the union over i, j,∈ Ω gives

⋃
i,j∈Ω

{a(siwjs′0`)k | δ(iwj) = q, ` > 0} =

= {a(sw′s′0`)k | δ(w′) = q, |w′| > 2, ` > 0}.
The union is again over disjoint sets. The variable Xs,s′

q is defined as the
union of all rules (18a) and (18b), which is

Xs,s′
q = {a(sw′s′0`)k | δ(w′) = q, |w′| > 2, ` > 0}∪

∪ {a(sw′s′0`)k | δ(w′) = q, |w′| = 1, ` > 0}
= {a(sw′s′0`)k | δ(w′) = q, ` > 0},
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as desired. Since the conditions |w′| = 1 and |w′| > 2 are mutually exclusive,
this is again a union of disjoint sets, and consequently, the choice of a rule
for Xs,s′

q is unambiguous.

Lastly, consider the equation for Xs,s′ , which corresponds to the
rules (18c). Since the value of the variables Xs,s′

q is already known, it easily
follows that

Xs,s′ =
⋃
q∈F

{a(sws′0`)k | δ(w) = q, ` > 0}

= {a(sw0`)k | δ(w) ∈ F, ` > 0}
= {a(sw0`)k | δ(w) ∈ L(M), ` > 0},

as desired. Furthermore, as M is deterministic, this is a union of disjoint
sets.

Turning to the unambiguity of the grammar (18), Lemma 1 supplies an
unambiguous conjunctive grammar for the languages a(ij0∗)k , and it remains
to show that each concatenation and union in (18) is unambiguous. The only
concatenations that appear in (18) are in the subexpressions λs

i and ρs′
j , and

in each case, the assumptions of Lemmata 4 and 5 are met; consequently, all
concatenations in the system (18) are unambiguous. The unambiguity of the
choice of a rule has already been shown above.

6 Dense encoding of trellis automata

For a language L ⊆ a∗, consider the number

d(L) = lim
n→∞

|L ∩ {ε, a, a2, . . . , an−1}|
n

,

called the density of L [15]. This limit, if it exists, always lies within the
bounds 0 6 d(L) 6 1. Let a language be called sparse, if d(L) = 0, and
dense, if d(L) = 1.

All unambiguous conjunctive grammars constructed so far generate only
sparse unary languages (actually, only exponentially-growing languages). Us-
ing only sparse languages in the constructions is, to some extent, a necessity,
because languages are expressed in the grammar by concatenating them to
each other, and a concatenation of a non-sparse unary language with any
infinite language is bound to be ambiguous. Of course, this does
not mean that non-sparse sets cannot be represented at all—for instance,
it is easy to modify the grammar in Example 2 to represent the language
{a4n | n > 0} ∪ a(aa)∗ of density 1

2
—but only that, once represented, non-

sparse sets cannot be non-trivially concatenated to anything.
This section develops a method of simulating the computation of a trellis

automaton in an unambiguous conjunctive grammar generating a unary lan-
guage of density 1. This result parallels that of Theorem 1, which simulates
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a trellis automaton in a grammar generating a unary language of density 0.
The proof of the new result is actually inferred from Theorem 1 by developing
constructions on top of it.

The general idea of the new construction is based on the following repre-
sentation of a∗ by an unambiguous concatenation:

Example 3. Let k > 2 be any power of two, and consider the languages L1,
L2, . . . , L k

2
, defined by Li = a(i{i,0}∗)k ∪ {ε}. Then L1L2L4L8 . . . L k

2
= a∗,

and this concatenation is unambiguous.

The correctness of this example is established in the following lemma.

Lemma 6. Let k > 2 be any power of two. Then every integer n > 0
is uniquely representable as a sum n = n1 + n2 + n4 + n8 + . . . + n k

2
with

nc ∈ (c{0, c}∗)k ∪ {ε}.
Proof. The argument is based on the fact that each number d ∈ {0, . . . , k−1}
is uniquely representable as a sum d = d1 + d2 + d4 + d8 + . . . + d k

2
with

dc ∈ {0, c}; the choice of nonzero summands is determined by the binary
notation of d.

Now let n > 0 be any integer and consider its representation n = n1 +
n2 + n4 + n8 + . . . + n k

2
with nc ∈ ({0, c}∗)k. Each i-th base-k digit of n is a

obtained as a sum of the i-th digits of n1, . . . , n k
2
. This sum is at most k− 1

in every position, and hence there is no carry anywhere. Since each i-th digit
of n is uniquely representable as a sum of digits that may occur in the base-k
notation of n1, . . . , n k

2
, this uniquely determines each digit of each nc.

To construct the actual representation, define the homomorphisms
hc : Σk → {0, c} with c ∈ {1, 2, 4, 8, . . . , k

2
} by hc(i) = 0 if b i

c
c is even and

hc(i) = c if b i
c
c is odd. Let n = (w)k. Then the desired representation is

given by (h1(w))k + (h2(w))k + (h4(w))k + . . . + (h k
2
(w))k. For example,

(12345670)8 = (10101010)8 + (2200220)8 + (44440)8.

Consider the concatenation in Example 3. Let one of the languages Li

(in the actual construction, this shall be L2) be replaced with a language
L′i ⊆ Li, which encodes a computation of a trellis automaton operating on
the two-letter input alphabet {0, i} similarly to the encoding in Theorem 1.
Then the concatenation L = L1 . . . Li−1L

′
iLi+1 . . . Lk/2 is still unambiguous,

and the density of the language L is controlled by the given linear conjunctive
language, and can be set to any desired value. This construction leads to
representing the following languages by unambiguous conjunctive grammars.

Theorem 2. Let L be a linear conjunctive language over a two-letter alphabet
Γ = {e, f}, which does not contain any strings beginning with e. Let k > 16
be any power of two and define a homomorphism h : Σ∗

k → Γ∗ by h(4i) =
h(4i + 1) = e and h(4i + 2) = h(4i + 3) = f for all i ∈ {0, . . . , k

4
− 1}. Then

the language {a(w)k |h(w) ∈ e∗L} is generated by an unambiguous conjunctive
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grammar. Given a trellis automaton recognizing L, this grammar can be
effectively constructed.

In order to prove the theorem according to the above general idea, there
are several independent claims to be established. First, one needs to represent
the sets L1, L2, . . . , L k

2
by unambiguous grammars. Next, a representation L′2

of a linear conjunctive language is obtained by modifying the representation
from Theorem 1 using additional rules.

Lemma 7. For k > 16 and c 6 k
2
, where both k and c are powers of two, there

is an unambiguous conjunctive grammar generating the language a(c{0,c}∗)k .

Proof. Observe, that the language c{0, c}∗ clearly is linear conjunctive, and
thus (for some values of c), the Theorem 1 yields a construction of languages
a1c{0,c}

∗1, which is “similar” to desired language a(c{0,c}∗)k . However, the
construction employed in Theorem 1 greatly simplifies, when it is applied
to the particular language c{0, c}∗. In particular, the construction can be
refactored, so that it works for every c 6 k/2.

The proof proceeds by first constructing grammars for the languages
a(s{0,c}∗)k for s ∈ {k

2
+ 2, k

2
+ 5}, then the grammar for a(c{0,c}∗)k is obtained

out of them. The two aforementioned languages are constructed using a re-
cursive dependence similar to the one described by expression λs

i , see (13),
and the obtained rules are simplifications of the rules used in λs

i .
Consider the following grammar, it uses some of the nonterminals Ai,j

defined in Section 4, as well as new nonterminals X k
2
+2, X k

2
+5 and C.

Xs → &
i∈{ k

2
+2, k

2
+5}

As−1,k+j−iXi for j ∈ {0, c} and s ∈ {k

2
+ 2,

k

2
+ 5}

Xs → a(s)k for s ∈ {k

2
+ 2,

k

2
+ 5}

C → &
i∈{ k

2
+2, k

2
+5}

Ac−1,k+j−iXi for j ∈ {0, c}

As the nonterminals Ai,j are supplied with the rules defined in Lemma 1, they
define the languages a(ij0∗)k ; the other nonterminals generate the languages

L(Xs) = a(s{0,c}∗)k (21a)

L(C) = a(c{0,c}∗)k (21b)

As already noted, this grammar is a simple variation of the construction
for λs

i , defined in (13). In particular, it can be shown in the same way
as for λs

i that the constructed grammar is unambiguous and generates the
desired languages. To be more precise: as in Lemma 2 it can be shown that
the grammar generates the intended languages, i.e., that (21) holds. The
unambiguity of concatenation is shown as in Lemma 4; the nonterminal C
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has only one rule and so there is no ambiguity of rule choice for it, furthermore
both X k

2
+2 and X k

2
+5 have only two rules and one of them is terminating,

hence the unambiguity of choice easily follows.

The second step is the encoding of the language accepted by a TA in L′2 ⊆
L2 = a(2{0,2}∗)k . Theorem 1 gives a construction that encodes a language
L(M) for M working over alphabet {c, c+1, . . . , c+d−1} as a(1L(M)1)k . If d
is set to 3 and M is restricted to use only two digits {c, c+2} out of {c, c+1, c+
2}, the encoding provided by Theorem 1 is a subset of a(1{c,c+2}∗1)k . Thus, a
natural approach is to, on one hand, modify M into M ′, which works exactly
the same as M but it uses digits {0, 2} instead of {c, c+2}; and on the other
hand modify the encoding a(1L(M)1)k so that every a(1(c+dm)(c+dm−1)...(c+d0)1)k

is replaced with a(2dmdm−1...d00)k . In this way, a(1L(M)1)k is changed into into
a(2L(M ′)0)k ⊆ L2.

Changing M into M ′ is done by simple syntactic modifications in the def-
inition trellis automaton M , the changes of the encoding a(1L(M)1)k are done
on each of its string separately. Consider a string a(1(c+dm)(c+dm−1)...(c+d0)1)k .
Then 1(c+dm)(c+dm−1) . . . (c+d0)1 should be replaced with 2dmdm−1 . . . d00,
the replacement is done position by position. On the technical level this is
done by concatenating an appropriate string from a((k−c+1)+)k :

a(1(c+dm)(c+dm−1)...(c+d0)1)k · a((k−c−1)m+1)k · ac = a(2dmdm−1...d00)k

The correctness of this construction is one of the key features of proof of The-
orem 3. However, first one needs to make sure that the language a((k−c−1)+)k

can be represented by an unambiguous conjunctive grammar; this is shown
in the below Lemma 8.

Lemma 8. For k > 16 and c 6 k
2
, where both k and c are powers of two, there

is an unambiguous conjunctive grammar generating the language a((k−c−1)+)k .

Proof. The construction is a simple variant of the construction of languages in
Lemma 7: nonterminals Y1 and Y2 should generate the languages a(1(k−c−1)∗)k

and a(2(k−c−1)∗)k , respectively. These languages can be represented through
each other by a recursive definition. Then a nonterminal D is defined using
them, it produces the language a(k−c−1+)k .

Consider the grammar

Ys → &
i∈{1,2}

As,c−iYi | a(s)k for s ∈ {1, 2}

D → &
i∈{1,2}

Ac−i,0Yi

in which the noterminals Ai,j are supplied with the rules as in Lemma 1.
Then the new nonterminalsof this grammar generate the languages

L(Ys) = a(s(k−c−1)∗)k

L(D) = a((k−c−1)+)k
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The proof follows in the same way as the proof in Lemma 7. Furthermore,
as in Lemma 7, it is shown that this grammar is unambiguous.

Theorem 3. For every linear conjunctive language L ⊆ {0, 2}∗ \ 0{0, 2}∗
and for every base k > 16 that is a power of two, there is an unambiguous
conjunctive grammar generating the language {a(w)k | w ∈ L}.
Proof. Consider the languages L(0) = ({2}−1L{0}−1) \ {ε} and L(2) =
({2}−1L{2}−1)\{ε}. By known closure properties of linear conjunctive gram-
mars, both of these languages are linear conjunctive. Since they moreover
are ε-free, they are also recognised by some trellis automata, i.e., there are
trellis automata M0 and M2 such that L(M0) = L(0) and L(M2) = L(2).
Consider a trellis automaton M ′

0 which looks exactly like M0 except that it
works over alphabet {c, c + 2} instead of {0, 2}. By Theorem 1 there is an
unambiguous conjunctive grammar with a nonterminal Z defining a language
{a(1w1)k | w ∈ L(M ′

0)}. Add to this grammar a rule

Z0 → ZDac & C,

and the rules for nonterminals C and D are as in Lemma 7 and Lemma 8.
It is shown that Z0 generates the language

{a(2bmbm−1...b10)k | a(1(bm+c)(bm−1+c)...(b1+c)1)k ∈ L(Z)}
= {a(2bmbm−1...b10)k | (bm + c)(bm−1 + c) . . . (b1 + c) ∈ L(M ′

0)}.

Furthermore, the rule for Z0 has unambiguous concatenation.
Consider any a(1(bm+c)(bm−1+c)...(b1+c)1)k ∈ L(Z) and a((k−c−1)m+2)k ∈ L(D)

and their concatenation. The digits of 1(bm + c)(bm−1 + c) . . . (b1 + c)1 are
processed one by one: a k − c − 1 and a carry of 1 is added to every digit,
which is either c or c + 2. The former is turned to 0 and the latter to 2. The
following intersection with a(2{0,2}∗)k ensures that every digit is processed.

A formal proof that the rule indeed generates the given language follows in
a similar way as in Lemma 13. Also the unambiguity of concatenation follows
in the same way as in Lemma 4. By definition (bm +c)(bm−1 +c) . . . (b1 +c) ∈
L(M ′

0) if and only if bmbm−1 . . . b1 ∈ L(M0). Hence,

L(Z0) = {a(2w0)k | w ∈ L(M0)} = {a(2w0)k | 2w0 ∈ L} = a(L∩2{0,2}∗0)k .

Now, a similar construction is applied for the automaton M2 recognising
the language L(2): consider the automaton M ′

2 which looks like M2 except
that it uses the alphabet {c, c + 2} instead of {0, 2}. Then, similarly to the
construcion of the nonterminal Z0, a grammar for a nonterminal Z2 can be
constructed so that

L(Z2) = {a(2w0)k | w ∈ L(M2)} = {a(2w0)k | 2w2 ∈ L}.
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Then
L(a2Z2) = a(L∩2{0,2}∗2)k .

Add a nonterminal Z ′ to the grammar, let it have the rules

Z ′ → Z0 | a2Z2

Z ′ → am for am ∈ (L ∩ Σ62)k

Then Z ′ generates the language

a(L∩2{0,2}∗0)k ∪ a(L∩2{0,2}∗2)k ∪ a(L∩Σ62)k = a(L)k .

Concerning the unambiguity of the constructed grammar: the grammar
for nonterminal Z, which generates the language {a(1w1)k |w ∈ L}, is unam-
biguous by Theorem 1. It was already shown that the rules for nonterminals
Z(0) and Z(2) have unambiguous concatenation. Lastly, the rule for Z ′ has
only trivial concatenation with a2, which is unambiguous, and different rules
for Z ′ clearly generate disjoint languages, hence the unambiguity of choice
follows.

Proof of Theorem 2. Observe that h(0) = e and h(2) = f and consider the
language L′ = h−1(L) ∩ {0, 2}∗. It is intuitively obtained by taking a string
from L and replacing each of its es by 0 and each of its fs by 2. Observe
that h(L′) = L. Furthermore, since none of the strings in L begins with e,
L′ ⊆ {0, 2}∗ \ 0{0, 2}∗.

Let k be a power of 2 (be it 16). By Lemma 7, the languages a(c{0,c}∗)k

for c ∈ {1, 2, 4, 8, . . . , k
2
} are all unambiguous conjunctive, and hence so are

the languages Lc = a(c{0,c}∗)k ∪ {ε}. Then, by Lemma 6, the concatenation
L1L2L4 · · ·L k

2
is unambiguous and equal to a∗.

The theorem is proved by replacing L2 in this concatenation with a lan-
guage given by Theorem 3 for the language L′ denote this language by L′2.
To be more precise, L′2 = {a(w)k |w ∈ L′}; rewriting this in terms of L instead
of L′ yields

L′2 = {a(w)k | h(w) ∈ L,w ∈ {0, 2}∗}. (22)

As obviously L′2 ⊆ L2, the concatenation L1L
′
2L4 · · ·L k

2
is unambiguous, it

remains to be shown that it is equal to {a(w)k | h(w) ∈ e∗L}.
Consider any an, where n = (w)k. Take the unique representation of n,

provided by Lemma 6, i.e., n = (w1)k + (w2)k + (w4)k + (w8)k + . . .+ (w k
2
)k,

where wc ∈ {c(0, c)∗} for each c ∈ {1, 2, 4, . . . , k
2
}. Observe first that

an ∈ L1L
′
2L4 · · ·L k

2
⇐⇒ a(w2)k ∈ L′2. (23)

Indeed, by Lemma 6 it holds that an ∈ L1L2L4 · · ·L k
2

and its factorisation

into elements of a(w1)k ∈ L1, a(w2)k , . . . , a
(w k

2
)k ∈ L k

2
is unique. So either
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this is also a factorisation into elements of L1, L′2, L4, . . . , L k
2
, in which case

a(w2)k ∈ L′2, or a(w2)k /∈ L′2 and so an /∈ L1L
′
2L4 · · ·L k

2
.

Then observe that
h(w) = h(0|w|−|w2|w2). (24)

Indeed, fix i and consider the i-th digits dc in base-k positional notation of
(wc)k, for c ∈ {1, 2, . . . , k

2
}. Some of these numbers may be shorter than

i, extend their notation by leading zeroes up to position |w|. Then dc is in
{0, c}. Then the sum d1 + d2 + . . . + d k

2
is at most k − 1 and so there are

no carries in the sum (w1)k + (w2)k + (w4)k + (w8)k + . . . + (w k
2
)k. Hence,

the i-th digit d in w is equal to d1 + d2 + . . . + d k
2
. It is easy to check that

straight from the definition that h(d) = h(d2). As this holds for an arbitrary
position i, this holds for 0|w|−|w2|w2 as well.

Now, it can be concluded that an ∈ L1L
′
2L4 · · ·L k

2
if and only if h(w) ∈ L.

⇒© Suppose that an ∈ L1L
′
2L4 · · ·L k

2
. Then by (23), a(w2)k ∈ L′2.

From (22) it can be then concluded that w2 ∈ {0, 2}∗ and h(w2) ∈ L. The
latter, by (24), yields that h(w) ∈ e|w|−|w2|L, and so consequently h(w) ∈ e∗L.

⇐© So suppose that h(w) ∈ e∗L, hence there is m such that h(w) ∈ emL.
By (24), h(w) = h(0|w|−|w2|w2). Since the leading symbol in w2 is 2 (or there
is no symbol at all) and h(2) = f , it can be concluded that the e-prefix of
h(w) is of length |w|−|w2|, and so m = |w|−|w2|. Hence, h(w2) ∈ L. By (22)
this means that a(w2)k ∈ L′2 and then (23) implies an ∈ L1L

′
2L4 · · ·L k

2
, which

concludes the proof.

With Theorem 2 established, one can infer from it the following encoding
of an arbitrary trellis automaton over a two-letter alphabet in a dense unary
language.

Corollary 1. For every linear conjunctive language L over Γ = {e, f} and
for every base k > 256 that is an even power of two, there exists an unam-
biguous conjunctive language K ⊆ a∗ of density 1, with w ∈ L if and only if
a(g(w))k ∈ K, where g : Γ∗ → Σ∗

k is a letter-to-letter homomorphism defined
by g(e) = 2

√
k and g(f) = 2

√
k + 2.

Given a trellis automaton recognizing L, a grammar for K can be effec-
tively constructed.

To prove this corollary, construct another linear conjunctive language
L̃ = h0(L) ∪ ({e, f}∗ \ {fe, ff}∗), where h0 : Γ∗ → Γ∗ is a homomorphism

with h0(e) = fe, h0(f) = ff . Applying Theorem 2 to L̃ yields the desired
unary language.

7 Decision problems

Already for standard context-free grammars, many basic decision problems
are undecidable, such as testing whether two given grammars generate the
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same language (the equivalence problem), or even testing whether a given
grammar generates the fixed language {a, b}∗. A few problems are known to
be decidable: for instance, one can test in polynomial time whether a given
context-free grammar generates the empty set. In contrast, for conjunctive
grammars, there is a uniform undecidability result: for every language L0

generated by some conjunctive grammar, testing whether a given conjunctive
grammar generates L0 is undecidable [5].

Turning to unambiguous subclasses, the decidability status of the equiv-
alence problem for unambiguous context-free grammars is among the major
unsolved questions in formal language theory. On the other hand, as proved
by Salomaa and Soittola [16, Thm. 5.5], testing whether a given unambiguous
context-free grammar generates a given regular language is decidable: this
remarkable proof proceeds by reducing the decision problem to a statement
of elementary analysis, and then using Tarski’s algorithm to solve it.

This section establishes the undecidability of the main decision problems
for unambiguous conjunctive grammars over a unary alphabet. The under-
lying idea is the same as in the previous results for ambiguous conjunctive
grammars [5]: the language of computation histories of a Turing machine is
represented by a trellis automaton, its alphabet is reinterpreted as an alpha-
bet of digits, so that each computation history is associated to a number, and
then the unary notations of these numbers are represented by a conjunctive
grammar [5]. However, Theorems 1–2 proved in this paper for the unam-
biguous case are more restricted than the known constructions of ambiguous
conjunctive grammars [5], and the same undecidability methods require a
careful re-implementation.

For a Turing machine T over an input alphabet Θ, its computations are
represented as strings over an auxiliary alphabet Ω. For every w ∈ L(T ), let
CT (w) ∈ Ω∗ denote some representation of the accepting computation of T
on w. The language

VALC(T ) = {CT (w) | w ∈ Θ∗ and CT (w) is an accepting computation}

over the alphabet Ω is the language of valid accepting computations of T . It
is well-known that for a certain simple encoding CT : Θ∗ → Ω∗, the language
VALC(T ) is an intersection of two linear context-free languages, and hence
recognized by a trellis automaton [10].

Consider the following first undecidability result for unambiguous con-
junctive grammars, proved by embedding VALC(T ) into a sparse unary lan-
guage using Theorem 1.

Lemma 9. It is undecidable to determine whether a given unambiguous con-
junctive grammar over a unary alphabet generates ∅.

Proof. Reduction from the Turing machine emptiness problem. Given a Tur-
ing machine T , consider the language VALC(T ) defined over the alphabet
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Ω. Let d be the cardinality of this alphabet, let c = max(5, d + 2) and
k = 2c + 2d − 3; renaming the symbols of this alphabet to base-k digits
{c, . . . , c + d − 1}, assume that VALC(T ) ⊆ Σ∗

k. Then, according to Theo-
rem 1, one can construct an unambiguous conjunctive grammar generating
the language L = a(1VALC(T )1)k . Since L = ∅ if and only if VALC(T ) = ∅,
which holds if and only if L(T ) = ∅, an algorithm solving the emptiness prob-
lem for unambiguous conjunctive grammars over a unary alphabet would test
the emptiness of L(T ), which is known to be undecidable.

By a similar argument, using Theorem 2 instead of Theorem 1 to embed
VALC(T ) in a dense unary language, one can prove the following second
undecidability result.

Lemma 10. It is undecidable to determine whether a given unambiguous
conjunctive grammar over a unary alphabet generates a∗.

Proof. The proof elaborates that of Lemma 9.
Let M be a Turing machine, define the language VALC(T ) over the al-

phabet Ω, and consider a code g : Ω → {e, f}∗, which maps each symbol to
a string of a fixed length ` > 1, beginning with f . Consider the language
L ⊆ {e, f}∗ defined by

L =
(
f{e, f}∗ \ L0

) ∪ (
L0 \ g(VALC(T ))

)
,

where

L0 =
(
g(Ω)

)∗
.

Since linear conjunctive languages are closed under codes and under all
Boolean operations, the language L is linear conjunctive. Applying The-
orem 2 with k = 16 to L yields an unambiguous conjunctive grammar G
generating the language {a(w)k | h(w) ∈ e∗L}, where h : Σ16 → {e, f}∗ is
some homomorphism. It is claimed that L(G) = a∗ if and only if L(T ) = ∅.

If L(T ) = ∅, then VALC(T ) = ∅, and hence L = f{e, f}∗ ∪ {ε}. Then
e∗L = {e, f}∗, and therefore L(G) = {a(w)k | h(w) ∈ {e, f}∗} = a∗.

If L(T ) 6= ∅, then there exists a string x ∈ VALC(T ) representing an
accepting computation of T . Then its image g(x) ∈ f{e, f}∗ is not in L. Let
w ∈ Σ∗

16 be any string of digits with h(w) ∈ e∗g(x). Then the string a(w)k is
missing from L(G), and accordingly L(G) 6= a∗.

Knowing the undecidability of both the equality to ∅ (Lemma 9) and the
equality to a∗ (Lemma 10), one can extend these results to the problem of
equality to any fixed language, as follows.

Theorem 4. For every alphabet Σ and for every language L0 ⊆ Σ∗ generated
by an unambiguous conjunctive grammar, it is undecidable whether a given
unambiguous conjunctive grammar generates L0.

31



Proof. The proof splits into two cases, depending on whether L0 is finite or
infinite.

Let L0 be finite, and suppose, for the sake of contradiction, that it is
decidable whether a given unambiguous conjunctive grammar generates the
language L0. It is claimed that then one can decide whether a given unam-
biguous conjunctive grammar G generates the empty language. Let `0 be
the length of the longest string in L0 and choose any string w0 ∈ Σ∗ with
|w0| > `0. Construct the grammar G′ that generates L0 ∪ w · L(G). Then
L(G′) = L0 if L(G) = ∅, and if L(G) 6= ∅, then L(G′) is a proper superset of
L0. Thus, any algorithm for testing whether L(G′) is equal to L0 can decide
the emptiness of L(G), contradicting Lemma 9.

If L0 is infinite, then, again, suppose that one can decide whether a
grammar generates L0. The claim is that there is an algorithm for testing
whether a given unambiguous conjunctive grammar G over a one-letter al-
phabet generates the language a∗. For a given G, construct a related gram-
mar G̃ = (Σ, N, P, S) over the alphabet Σ, which generates the language

L(G̃) = {w | w ∈ Σ∗, a|w| ∈ L(G)}. Let G0 = (Σ, N0, P0, S0) be an unam-
biguous conjunctive grammar generating L0. Construct a new grammar G′

over the alphabet Σ

S ′ → A&S0

A → bA&bS (for all b ∈ Σ)

A → ε

S0 → . . . (the rules generating L0)

S → . . . (the rules generating {w | w ∈ Σ∗, a|w| ∈ L(G)})

If L(G) = a∗, then L(G̃) = Σ∗, hence the rules for A in G′ generate the
language Σ∗, and therefore L(G′) = L0.

Let L(G) 6= a∗. Then, for some number ` > 0, none of the strings in
Σ` are in LG′(S), and, accordingly, none of the strings of length ` + 1 are in
LG′(A). The latter implies that all strings in LG′(A) are of length at most `,
and therefore, L(G′) is finite. Since L0 is infinite by assumption, it follows
that L(G′) 6= L0.

Now, if there existed an algorithm for testing whether an unambiguous
conjunctive grammar generates L0, this algorithm would answer the question
of whether L(G) is a∗, which is undecidable by Lemma 10.

8 Conclusion

The expressive power of unambiguous conjunctive grammars over a unary
alphabet has been developed up to the point of simulating a cellular au-
tomaton in a “sparse” unary language (Theorem 1), and in a “dense” unary
language (Theorem 2). Though these are rather restricted representations, as
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compared to those constructed earlier for ambiguous conjunctive grammars
over the unary alphabet [5], they were sufficient to establish uniform unde-
cidability results for the problem of testing equivalence to a fixed language
(Theorem 4).

The paper leaves the following key question unsettled: do there exist any
inherently ambiguous conjunctive languages, that is, those generated only by
ambiguous grammars? In particular, can any such examples be found in the
domain of unary languages?

Finally, the undecidability results of Section 7 bring to mind a long-
standing open problem in formal language theory: is the equivalence problem
for unambiguous context-free grammars decidable? Already for the subclass
of unambiguous linear context-free grammars, its decidability status is un-
known.
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