
Fareed Jokhio | Adnan Ashraf | Sébastien Lafond |
Ivan Porres | Johan Lilius

Cost-Efficient Dynamically Scalable
Video Transcoding in Cloud Computing

TUCS Technical Report
No 1098, December 2013

Cost-Efficient Dynamically Scalable
Video Transcoding in Cloud Computing

Fareed Jokhio
Adnan Ashraf
Sébastien Lafond
Ivan Porres
Johan Lilius

Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5A, 20520, Turku, Finland
{fjokhio, aashraf, slafond, iporres, jolilius}@abo.fi

TUCS Technical Report

No 1098, December 2013

Abstract

Video transcoding of a large number of on-demand videos requires a large scale
cluster of transcoding servers. Moreover, storage of multiple transcoded versions
of each source video requires a large amount of disk space. Infrastructure as
a Service (IaaS) clouds provide virtual machines (VMs) for creating a dynami-
cally scalable cluster of servers. Likewise, a cloud storage service may be used
to store a large number of transcoded videos. Moreover, it may be possible to
reduce the total IaaS cost by trading storage for computation, or vice versa. In
this paper, we present prediction-based dynamic resource allocation algorithms to
scale on-demand video transcoding service on a given IaaS cloud. The proposed
algorithms provide mechanisms for allocation and deallocation of VMs to a dy-
namically scalable cluster of video transcoding servers in a horizontal fashion. We
also present a computation and storage trade-off strategy for cost-efficient video
transcoding in the cloud called cost and popularity score based strategy. The pro-
posed strategy estimates computation cost, storage cost, and video popularity of
individual transcoded videos and then uses this information to make decisions on
how long a video should be stored or how frequently it should be re-transcoded
from a given source video. The proposed algorithms and the trade-off strategy are
demonstrated in a discrete-event simulation and are empirically evaluated using a
realistic load pattern.

Keywords: Video transcoding, dynamic resource allocation, computation and
storage trade-off, cost-efficiency, cloud computing

TUCS Laboratory
Embedded Systems Laboratory

Software Engineering Laboratory

1 Introduction
With an ever increasing number of digital videos delivered everyday via the Inter-
net, the number of video formats and video codecs used for digital video repre-
sentation are also increasing rapidly. Moreover, since video streaming of a large
number of videos requires a lot of server-side resources, digital videos are of-
ten stored and transmitted in compressed formats to conserve storage space and
communication bandwidth. With the emergence of a large number of video com-
pression techniques and packaging formats, such as MPEG-4 [32] and H.264 [33],
the diversity of digital video content representation has grown even faster. How-
ever, for a client-side device, it is practically impossible to support all the existing
video formats. Therefore, an unsupported format needs to be converted into one
of the supported formats before the video could be played on the device.

The process of converting a compressed digital video from one format to an-
other format is termed as video transcoding [31]. It may involve extracting video
and audio tracks from the file container, decoding the tracks, down-scaling frame-
size, dropping of frames, reducing bit-rate by applying coarser quantization, en-
coding the audio and video tracks into a suitable format, and packing those tracks
into a new container. Since video transcoding is a compute-intensive operation,
transcoding of a large number of on-demand videos requires a large scale clus-
ter of transcoding servers. Similarly, storage of multiple transcoded versions of
each source video requires a large amount of disk space. Moreover, in order to be
able to handle different load conditions in a cost-efficient manner, the cluster of
transcoding servers should be dynamically scalable.

Cloud computing provides theoretically infinite computing and storage re-
sources, which can be provisioned in an on-demand fashion under the pay-per-
use business model [4]. Infrastructure as a Service (IaaS) clouds, such as Amazon
Elastic Compute Cloud (EC2)1, provide Virtual Machines (VMs) for creating a
dynamically scalable cluster of servers. Likewise, a cloud storage service may be
used to store a large number of transcoded videos. Determining the number of
VMs and the amount of storage to provision from an IaaS cloud is an important
problem. The exact number of VMs and the exact amount of storage needed at
a specific time depend on the incoming load from service users and their perfor-
mance requirements.

In a cloud environment, a video transcoding operation can be performed in
several different ways. For example, it is possible to map an entire video stream
on a dedicated VM. However, it requires a large number of VMs to transcode sev-
eral simultaneous streams. Moreover, transcoding of high-definition (HD) video
streams may require a lot of time, which may violate the client-side performance
requirements of the desired play rate [9]. Another approach is to split the video
streams into smaller segments and then transcode them independently of one an-
other [19]. In this approach, one VM can be used to transcode a large number of

1http://aws.amazon.com/ec2/

1

video segments belonging to different video streams. Moreover, video segments
of a particular stream can be transcoded on multiple VMs.

In this paper, we present prediction-based dynamic resource allocation and
deallocation algorithms [22] to scale video transcoding service on a given IaaS
cloud in a horizontal fashion. The proposed algorithms allocate and deallocate
VMs to a dynamically scalable cluster of video transcoding servers. We use a two-
step load prediction method [2], which predicts the video transcoding rate a few
steps ahead in the future to allow proactive resource allocation under soft realtime
constraints. For cost-efficiency, we share VM resources among multiple video
streams. The sharing of the VM resources is based on video segmentation, which
splits the streams into smaller segments that can be transcoded independently of
one another [22]. We also investigate the computation and storage cost trade-off
for video transcoding in the cloud and present a cost-efficient strategy called cost
and popularity score based strategy [21]. The proposed strategy estimates compu-
tation cost, storage cost, and video popularity of individual transcoded videos and
then uses this information to make decisions on how long a video should be stored
or how frequently it should be re-transcoded from its source video. The objective
is to reduce the total IaaS cost by trading storage for computation, or vice versa.
Thus, the paper makes two contributions: (1) proactive resource allocation and
deallocation algorithms to scale video transcoding service on a given IaaS cloud;
and (2) a computation and storage cost trade-off strategy for video transcoding
in cloud computing. It extends the works published in [20], [21], and [22] and
provides an extended evaluation. The proposed algorithms and the trade-off strat-
egy are demonstrated in discrete-event simulations and are empirically evaluated
using a realistic load pattern.

We proceed as follows. Section 2 presents the system architecture of an on-
demand video transcoding service and sets the context for the proposed dynamic
resource allocation algorithms and the proposed trade-off strategy. Section 3 de-
scribes the proposed algorithms. The proposed trade-off strategy is presented in
Section 4. Section 5 describes experimental design and presents the results of the
experimental evaluation. In Section 6, we discuss important related works before
concluding in Section 7.

2 System Architecture

The system architecture of the cloud-based on-demand video transcoding service
is shown in Figure 1. It consists of a streaming server, a video splitter, a video
merger, a video repository, a dynamically scalable cluster of transcoding servers,
a load balancer, a master controller, and a load predictor. The video requests and
responses are routed through the streaming server. It uses an output video buffer,
which temporarily stores the transcoded videos at the server-side. Our resource
allocation algorithms are designed to avoid over and underflow of the video buffer.

2

Video

Repository

Streaming Server

Video

Splitter

Video segments

Load

Balancer
Master Controller

Config

Load Predictor

Transcoding

Server 1

.

.

.

Video requests/responses

Video segments

Transcoding

Server N

Video

Merger

Input video streams

Transcoded video streams

Transcoded jobs

Legend

Video data

Control

signals

Buffer

Figure 1: System architecture of the cloud-based on-demand video transcoding
service

The overflow occurs if the video transcoding rate exceeds the video play rate and
the capacity of the buffer. Likewise, the buffer underflow may occur when the
play rate exceeds the transcoding rate, while the buffer does not contain enough
frames either to avoid the underflow situation. Since the main focus of this paper
is on video transcoding, we assume that the streaming server is not a bottleneck.

The video streams in certain compressed formats are stored in the video repos-
itory. The streaming server accepts video requests from users and checks if the
required video is available in the video repository. If it finds the video in the de-
sired format and resolution, it starts streaming the video. However, if it finds that
the requested video is stored only in another format or resolution than the one de-
sired by the user, it sends the video for segmentation and subsequent transcoding.
Then, as soon as it receives the transcoded video from the video merger, it starts
streaming the video.

After each transcoding operation, the computation and storage trade-off strat-
egy determines if the transcoded video should be stored in the video repository
or not. Moreover, if a transcoded video is stored, then the trade-off strategy also
determines the duration for which the video should be stored. Therefore, it al-
lows us to trade computation for storage or vice versa in order to reduce the total
operational cost and to improve performance of the transcoding service.

The video splitter splits the video streams into smaller segments called jobs,
which are placed into the job queue. A compressed video consists of three

3

different types of frames namely, I-frames (intracoded frames), P-frames (pre-
dicted frames), and B-frames (bi-directional predicted frames). Due to inter-
dependencies among different types of frames, the video splitting or segmentation
is performed at the key frames, which are always I-frames. An I-frame followed
by P and B frames is termed as a group of pictures (GOP). GOPs represent atomic
units that can be transcoded independently of one another [22]. Video segmenta-
tion at GOP level is discussed in more detail in [19] and [23].

The load balancer employs a task assignment policy, which distributes load on
the transcoding servers. In other words, it decides when and to which transcoding
server a transcoding job should be sent. It maintains a configuration file, which
contains information about transcoding servers that perform the transcoding oper-
ations. As a result of the dynamic resource allocation and deallocation operations,
the configuration file is often updated with new information. The load balancer
serves the jobs in FIFO (First In, First Out) order. It implements one or more
job scheduling policies, such as, the shortest queue length policy, which selects a
transcoding server with the shortest queue length and the shortest queue waiting
time policy, which selects a transcoding server with the least queue waiting time.

The actual transcoding is performed by the transcoding servers. They get com-
pressed video segments, perform the required transcoding operations, and return
the transcoded video segments for merging. A transcoding server runs on a dy-
namically provisioned VM. Each transcoding server processes one or more simul-
taneous jobs. When a transcoding job arrives at a transcoding server, it is placed
in the server’s queue from where it is subsequently processed.

The master controller acts as the main controller and the resource allocator.
It implements prediction-based dynamic resource allocation and deallocation al-
gorithms, as described in Section 3. It also implements one or more computation
and storage trade-off strategies, such as the proposed cost and popularity score
based strategy, which is presented in Section 4. In our approach, the resource
allocation and deallocation is mainly based on the target play rate of the video
streams and the predicted transcoding rate of the transcoding servers. For load
prediction, the master controller uses load predictor, which predicts future load on
the transcoding servers. The video merger merges the transcoded jobs into video
streams, which form video responses. Our load prediction approach is described
in detail in [7] and [22]. It consists of a load tracker and a load predictor [2]. We
use exponential moving average (EMA) for the load tracker and a simple linear
regression model [26] for the load predictor.

3 Proactive VM Allocation Algorithms

In this section, the proposed dynamic VM allocation and deallocation algorithms
for video transcoding in the cloud are presented. The objective is to reduce the
over and under allocation of resources while satisfying the client-side performance

4

requirements. For the sake of clarity, the concepts used in the algorithms and their
notation are summarized in Table 1. The algorithms implement proactive control,
which uses a two-step load prediction approach [2] in which the current and the
past system load is tracked to predict the future system load. The predicted system
load is then used to make decisions on the allocation and deallocation of VMs to a
dynamically scalable cluster of transcoding servers. Moreover, a fixed minimum
number of transcoding servers is always maintained, which represents the base
capacity NB.

On discrete-time intervals, the master controller obtains the play rate of all
video streams and adds them together to get the total target play rate PR(t). It then
obtains the video transcoding rate from each transcoding server and calculates the
total transcoding rate TR(t). Moreover, for proactive VM allocation, it uses load
predictor to predict the total transcoding rate T̂R(t) a few steps ahead in the future.

The algorithms are designed to be cost-efficient while minimizing potential os-
cillations in the number of VMs [34]. This is desirable because, in practice, provi-
sioning of a VM takes a few minutes [5], [6]. Therefore, oscillations in the number
of VMs may lead to deteriorated performance. Moreover, since some contempo-
rary IaaS providers, such as Amazon EC2, charge on hourly basis, oscillations
will result in a higher provisioning cost. Therefore, the algorithms counteract os-
cillations by delaying new VM allocation operations until previous VM allocation
operations have been realized [18]. Furthermore, for cost-efficiency, the deallo-
cation algorithm terminates only those VMs whose renting period approaches its
completion.

3.1 VM Allocation Algorithm
The VM allocation algorithm is given as Algorithm 1. The first two steps deal with
the calculation of the target play rate PR(t) of all streams and the total transcoding
rate TR(t) of all transcoding servers (lines 3–7). The algorithm then obtains the
predicted total transcoding rate T̂R(t) from the load predictor (line 8). Moreover,
to avoid underflow of the output video buffer that temporarily stores transcoded
jobs at the server-side, it considers the size of the output video buffer BS(t). If
the target play rate exceeds the predicted transcoding rate while the buffer size
BS(t) falls below its lower thresholdBL (line 9), the algorithm chooses to allocate
resources by provisioning one or more VMs (line 10). The number of VMs to
provision NP (t) is calculated as follows

NP (t) =

⌈
PR(t)− T̂R(t)

TR(t)
|S(t)|

⌉
(1)

where |S(t)| is the number of transcoding servers at time t. The VM allocation al-
gorithm also takes into account the number of jobs waiting in the servers’ queues.
It checks the average queue length of all servers avgQJobs(t) and if the aver-
age queue length is above a predefined maximum upper threshold MAXQLUT

5

Table 1: Summary of concepts and their notation for VM allocation algorithms
Notation Description

avgQJobs(t) average queue length of all servers at discrete-time t
countover(t) over allocation count at t
NP (t) number of servers to provision at t based on PR(t) and T̂R(t)
NPQ

(t) number of servers to provision at t based on avgQJobs(t)
NT (t) number of servers to terminate at t
PR(t) sum of target play rates of all streams at t
S(t) set of transcoding servers at t
Sp(t) set of newly provisioned servers at t
Sc(t) servers close to completion of renting period at t
St(t) servers selected for termination at t
TR(t) total transcoding rate of all servers at t
T̂R(t) predicted total transcoding rate of all servers at t
RT (s, t) remaining time of server s at t with respect to renting hour
V (t) set of video streams at t

BL buffer size lower threshold in megabytes
BS(t) size of the output video buffer in megabytes
BU buffer size upper threshold in megabytes
CT over allocation count threshold
jobCompletion job completion delay
MAXQLUT maximum queue length upper threshold
NB number of servers to use as base capacity
RTL remaining time lower threshold
RTU remaining time upper threshold
startUp server startup delay

calcNP () calculate the value of NP (t)
calcNT () calculate the value of NT (t)
calcQNP () calculate the value of NPQ

(t) based on queue length
calRT (s, t) calculate the value of RT (s, t)
delay(d) delay for duration d
getPR() get PR(t) from video merger
getTR(s) get transcoding rate of server s
getT̂R() get T̂R(t) from load predictor
provision(n) provision n servers
select(n) select n servers for termination
sort(S) sort servers S on remaining time
terminate(S) terminate servers S

6

(line 12), it chooses to provision one or more servers (line 13). In this case, the
number of VMs to provision NPQ

(t) is calculated as follows

NPQ
(t) =

⌈
avgQJobs(t)

MAXQLUT

⌉
(2)

The algorithm then provisions NP (t) + NPQ
(t) VMs, which are added to the

cluster of transcoding servers (lines 20–21). To minimize potential oscillations
due to unnecessary VM allocations, the algorithm adds a delay for the VM startup
time (line 22). Furthermore, it ensures that the total number of VMs |S(t)| does
not exceed the total number of video streams |V (t)|. The algorithm adjusts the
number of VMs to provision NP (t) if |S(t)| + NP (t) exceeds |V (t)| (lines 16–
18). This is desirable because the transcoding rate of a video on a single VM is
usually higher than the required play rate.

Algorithm 1 VM allocation algorithm
1: while true do
2: NP (t) := 0, NPQ

(t) := 0
3: PR(t) := getPR()
4: TR(t) := 0
5: for sεS(t) do
6: TR(t) := TR(t) + getTR(s)
7: end for
8: T̂R(t) := getT̂R(TR(t))
9: if T̂R(t) < PR(t) ∧BS(t) < BL then

10: NP (t) := calcNP ()
11: end if
12: if avgQJobs(t) > MAXQLUT then
13: NPQ

(t) := calcQNP ()
14: end if
15: NP (t) := NP (t) +NPQ

(t)
16: if |S(t)|+NP (t) > |V (t)| then
17: NP (t) := |V (t)| − |S(t)|
18: end if
19: if NP (t) ≥ 1 then
20: Sp(t) := provision(NP (t))
21: S(t) := S(t) ∪ Sp(t)
22: delay(startUp)
23: end if
24: end while

7

3.2 VM Deallocation Algorithm
The VM deallocation algorithm is presented in Algorithm 2. The main objective
of the algorithm is to minimize the VM provisioning cost, which is a function of
the number of VMs and time. Thus, it terminates any redundant VMs as soon as
possible. Moreover, to avoid overflow of the output video buffer, it considers the
size of the output video buffer BS(t). After obtaining the target play rate PR(t)
and the predicted total transcoding rate T̂R(t) (lines 2–7), the algorithm makes
a comparison. If T̂R(t) exceeds PR(t) while the buffer size BS(t) exceeds its
upper threshold BU (line 8), it may choose to deallocate resources by terminating
one or more VMs. However, to minimize unnecessary oscillations, it deallocates
resources only when the buffer overflow situation persists for a predetermined
minimum amount of time.

Algorithm 2 VM deallocation algorithm
1: while true do
2: PR(t) := getPR()
3: TR(t) := 0
4: for sεS(t) do
5: TR(t) := TR(t) + getTR(s)
6: end for
7: T̂R(t) := getT̂R(TR(t))
8: if T̂R(t) > PR(t) ∧BS(t) > BU ∧ countover(t) > CT then
9: for sεS(t) do

10: RT (s, t) := calRT (s, t)
11: end for
12: Sc(t) := {∀sεS(t)|RT (s, t) < RTU ∧RT (s, t) > RTL}
13: if |Sc(t)| ≥ 1 then
14: NT (t) := calcNT ()
15: NT (t) := min(NT (t), |Sc(t)|)
16: if NT (t) ≥ 1 then
17: sort(Sc(t))
18: St(t) := select(NT (t))
19: S(t) := S(t) \ St(t)
20: delay(jobCompletion)
21: terminate(St(t))
22: end if
23: end if
24: end if
25: end while

In the next step, the algorithm calculates the remaining time of each transcod-
ing server RT (s, t) with respect to the completion of the renting period (lines 9–
11). It then checks if there are any transcoding servers whose remaining time is

8

less than the predetermined upper threshold of remaining timeRTU and more than
the lower threshold of remaining time RTL (line 12). The objective is to terminate
only those servers whose renting period is close to the completion, while exclud-
ing any servers that are extremely close to the completion of their renting period.
Therefore, it is not practically feasible to complete all running and pending jobs
on them before the start of the next renting period. If the algorithm finds at least
one such server Sc(t) (line 13), it calculates the number of servers to terminate
NT (t) as

NT (t) =

⌈
T̂R(t)− PR(t)

TR(t)
|S(t)|

⌉
−NB (3)

Then, it sorts the transcoding servers in Sc(t) on the basis of their remaining time
(line 17), and selects the servers with the lowest remaining time for termination
(line 18). The rationale of sorting of servers is to ensure cost-efficiency by select-
ing the servers closer to completion of their renting period. A VM that has been
selected for termination might have some pending jobs in its queue. Therefore, it
is necessary to ensure that the termination of a VM does not abandon any jobs in
its queue. One way to do this is to migrate all pending jobs to other VMs and then
terminate the VM [5], [6]. However, since transcoding of video segments takes
relatively less time to complete, it is more reasonable to let the jobs complete their
execution without requiring them to migrate and then terminate a VM when there
are no more running and pending jobs on it. Therefore, the deallocation algorithm
terminates a VM only when the VM renting period approaches its completion
and all jobs on the server complete their execution (line 20). Finally, the selected
servers are terminated and removed from the cluster (line 21).

4 Computation and Storage Trade-off Strategy

In this section, we present the proposed computation and storage trade-off strat-
egy. For the sake of clarity, we provide a summary of the notations in Table 2.
The proposed cost and popularity score based strategy estimates the computation
cost, the storage cost, and the video popularity of individual transcoded videos
and then uses this information to make decisions on how long a video should be
stored or how frequently it should be re-transcoded from a given source video. In
an on-demand video streaming service, the source videos are usually high quality
videos that comprise the primary datasets. Therefore, irrespective of their com-
putation and storage costs, they are never deleted from the video repository. The
transcoded videos, on the other hand, are the derived datasets that can be regener-
ated on-demand from their source videos. Therefore, they should only be stored
in the video repository when it is cost-efficient to store them. Thus, the proposed
strategy is only applicable to the transcoded videos. In other words, since the com-
putation and the storage costs of the source videos are not relevant, the proposed

9

Table 2: Summary of concepts and their notation for trade-off strategy
Notation Description

τ set of transcoded videos
τi ith transcoded video
NSτi new cost and popularity score of τi
RCT renting cost of a transcoding server per renting hour
Sτi total cumulative cost and popularity score of τi
SCτi storage cost of τi per time unit
SCm monthly storage cost per 1 gigabytes
SDτi storage duration for transcoded video τi
TCτi transcoding cost of τi
TTτi transcoding time of τi
V Smbτi transcoded video τi size in megabytes

DC decrement in Sτi
GBmb megabytes to gigabytes conversion factor
Hsec hour to seconds conversion factor
RPS month to desired time unit conversion factor

calcNS(τi) calculate NSτi
calcSC(τi) calculate SCτi
calcTC(τi) calculate TCτi
delay(SDτi) delay for SDτi

getS(τi) get Sτi
getSC(τi) get SCτi
getTC(τi) get TCτi
removeV ideo(τi) remove video τi

strategy is based only on the computation and storage costs of the transcoded
videos.

In cloud computing, the computation cost is essentially the cost of using VMs,
which is usually calculated on an hourly basis. The storage cost, on the other
hand, is often computed on a monthly basis. The computation cost of a transcoded
video depends on its transcoding time and on how often the video is re-transcoded.
Thus, if a video is frequently re-transcoded, the computation cost would increase
rapidly. On the other hand, the storage cost of a transcoded video depends on the
length of the storage duration and the video size on disk. Therefore, it increases
gradually with the passage of time. The longer the duration, the higher the cost.
Thus, our proposed strategy estimates an equilibrium point on the time axis where
the computation cost and the storage cost of a transcoded video become equal.
This estimated equilibrium point indicates the minimum duration for which the
video should be stored in the video repository. Figure 2 shows that if a video

10

Time

Cost

Transcoding Cost

Storage Cost

The point in time where the storage cost

 becomes higher than the transcoding cost

Figure 2: The estimated equilibrium point between the storage cost and the
transcoding cost of a transcoded video

is transcoded once and stored in the video repository, then initially the compu-
tation cost is higher than the storage cost. However, with the passage of time,
the storage cost continues to increase until it becomes equal to the computation
cost and then it grows even further unless the video is removed from the video
repository. Thus, if the video is deleted before its estimated equilibrium point
and then it is subsequently requested, the computation cost will increase due to
unnecessary re-transcoding. Likewise, if the video is stored beyond its estimated
equilibrium point and then it does not receive a subsequent request, the storage
cost will increase unnecessarily.

In an on-demand video streaming service, each transcoded video may be re-
quested and viewed a number of times. Frequently viewed, popular videos get a
lot of requests. While, sporadically viewed, less popular videos get only a few re-
quests. For cost-efficient storage, it is essential to use an estimate of the popularity
of the individual transcoded videos. This information can then be used to deter-
mine the exact duration for which a video should be stored in the video repository.
Therefore, the proposed strategy accounts for the popularity of individual trans-
coded videos. It uses the estimated computation cost, the estimated storage cost,
and the video popularity information to calculate a cost and popularity score Sτi
for each transcoded video τi. The higher the score the longer the video is stored
in the video repository. Thus, with the incorporation of the video cost and popu-
larity score, it becomes justifiable to store popular transcoded videos beyond their
estimated equilibrium point. In other words, it differentiates popular videos that
should be stored for a longer duration.

In our proposed strategy, the storage cost SCτi of a transcoded video τi is
calculated as

SCτi =
V Smbτi
GBmb

· SCm
RPS

· SDτi (4)

where V Smbτi is the size of the transcoded video τi in megabytes, GBmb is the

11

megabytes to gigabytes conversion factor, SCm is the monthly storage cost per 1
gigabytes of storage, RPS is the month to desired time unit conversion factor, and
SDτi is the length of the storage duration for the transcoded video τi. Similarly,
the transcoding cost TCτi of a transcoded video τi is calculated as

TCτi = TTτi ·
RCT
Hsec

(5)

where TTτi is the transcoding time of τi, RCT is the renting cost of a transcoding
server per renting hour, and Hsec is the hour to seconds conversion factor, which
is used to normalize the computation cost to a per second basis.

Whenever a new request for a transcoded video τi arrives at the streaming
server, the video cost and popularity score Sτi is updated to reflect the new costs
and the new popularity information. The new cost and popularity score NSτi
represents the estimated equilibrium point where the computation cost and the
storage cost of τi become equal. Therefore, it indicates the minimum duration for
which the video should be stored. The new cost and popularity score NSτi of a
video τi is calculated as the ratio of the transcoding cost TCτi and the storage cost
SCτi

NSτi =
TCτi
SCτi

(6)

Finally, the total cost and popularity score Sτi of a video τi is calculated by
accumulating the new cost and popularity score NSτi of the said video over time.
That is, for each new request of a transcoded video τi, we obtain the previous
value of the total cost and popularity score Sτi of the transcoded video, calculate
NSτi , and then add them together to produce the new value of the Sτi . Moreover,
the total cost and popularity score of a video that was not stored previously is set
to NSτi . The total cost and popularity score Sτi determines the exact duration
for which a video τi should be stored. The pseudocode for score calculation is
presented in Algorithm 3.

Algorithm 3 Calculation of cost and popularity score
1: while true do
2: if τi is requested then
3: SCτi := calcSC(τi)
4: TCτi := calcTC(τi)
5: NSτi := calcNS(τi)

6: Sτi :=

{
Sτi +NSτi , if τi was stored previously
NSτi , otherwise

7: end if
8: end while

Each transcoded video τi should be stored in the video repository for as long
as it is cost-efficient to store it. However, when a video loses its popularity, it

12

should be subsequently deleted to avoid unnecessary storage cost. Therefore, on
certain time intervals, the proposed strategy performs the following steps for each
transcoded video τi. It obtains the storage cost SCτi , the cost and popularity score
Sτi , and the transcoding cost TCτi . Then, it multiplies Sτi and TCτi and compares
it with SCτi as follows

SCτi > TCτi · Sτi (7)

If the inequality holds, it implies that it is cost-efficient to delete the transcoded
video. Therefore, the video is removed from the video repository. However, if the
inequality does not hold, it indicates that it is not cost-efficient to delete the video.
Therefore, the video is not removed. Moreover, the cost and popularity score Sτi
is decremented in accordance with the length of the time interval to reflect the
passage of time. In this way, when a popular video loses its popularity, it starts
losing its cost and popularity score as well until it is removed from the video
repository or it gets some new requests to regain its popularity. The pseudocode
to decrement cost and popularity score Sτi and to remove a video is given as
Algorithm 4.

Algorithm 4 Decrementing score and removing a video
1: while true do
2: for τiετ do
3: SCτi := getSC(τi)
4: TCτi := getTC(τi)
5: Sτi := getS(τi)
6: if SCτi > TCτi · Sτi then
7: removeV ideo(τi)
8: else
9: Sτi := Sτi −DC

10: end if
11: end for
12: delay(SDτi)
13: end while

5 Experimental Evaluation
Software simulations are often used to test and evaluate new approaches and
strategies involving complex environments [10], [8]. For our proposed resource
allocation algorithms and trade-off strategy, we have developed a discrete-event
simulation in the Python programming language. It is based on the SimPy simu-
lation framework [25]. Also, for a comparison of the results with the alternative
existing approaches, we have developed discrete-event simulations for two intu-
itive computation and storage trade-off strategies, which are the store all strategy

13

and the usage based strategy [36]. The store all strategy stores all transcoded
videos irrespective of their costs and popularity. While the usage based strategy
stores only popular videos and removes the rest. That is, it does not account for
the computation and storage costs.

5.1 Experimental Design and Setup

For the computation and storage costs, we used the Amazon EC2 and the Amazon
S32 cost models. The computation cost in Amazon EC2 is based on an hourly
charge model. Whereas, the storage cost of Amazon S3 is based on a monthly
charge model. In our experiment, we used only small instances. As of writing of
this paper, the cost of a small instance in Amazon EC2 is $0.06 per hour. Whereas,
the cost of storage space in Amazon S3 is based on a nonlinear cost model as
shown in Table 3.

The experiment used HD, SD (Standard-Definition), and mobile video
streams. Since SD videos currently have a higher demand than the HD and mo-
bile videos, we considered 20% HD, 30% mobile, and 50% SD video streams.
The GOP size for different types of videos was different. For HD videos, the av-
erage size of a video segment was 75 frames with a standard deviation of 7 frames.
Likewise, for SD and mobile videos, the average size of a segment was 250 frames
with a standard deviation of 20 frames.

In an on-demand video transcoding service, a source video is usually trans-
coded in many different formats. Therefore, we assumed that a source video can
be transcoded into a maximum of 30 different formats. Likewise, since in an on-
demand video streaming service, the number of source videos always continue to
grow, we used a continuously increasing number of source videos in our experi-
ment. However, since the number of the newly uploaded source videos is usually
only a small fraction of the total number of downloaded videos, the video upload
rate in our experiment was assumed to be 1% of the total number of the video
download requests. The desired time unit for storage, as used in the month to
desired time unit conversion factor RPS , was assumed to be one day. Therefore,
RPS was 30. Moreover, the minimum storage duration for a transcoded video
SDτi was also assumed to be one day.

The objective of the experiment was to evaluate the proposed algorithms and
trade-off strategy for a realistic load pattern. Therefore, it used a real load pattern,
which constitutes real video access data from Bambuser AB3. The load pattern
consists of approximately 40 days of real video access data. The total number of
frames in a video stream was in the range of 18000 to 90000, which represents an
approximate play time of 10 to 50 minutes with the frame rate of 30 frames per
second.

2http://aws.amazon.com/s3/
3http://bambuser.com/

14

Table 3: Amazon S3 storage pricing
Standard Storage

First 1 TB per month $ 0.095 per GB
Next 49 TB per month $ 0.080 per GB
Next 450 TB per month $ 0.070 per GB
Next 500 TB per month $ 0.065 per GB
Next 4000 TB per month $ 0.060 per GB
Over 5000 TB per month $ 0.055 per GB

5.2 Results and Analysis

In this section, we compare the experimental results of the proposed strategy with
that of the store all strategy and the usage based strategy. Each result in Figure 3 to
Figure 5 consists of seven different plots, which are number of user requests, num-
ber of transcoding servers, transcoding cost, storage cost, storage size, number of
source videos, and number of transcoded videos. The number of user requests plot
represents the load pattern of the video access data. In other words, it is the user
load on the streaming server. Due to data confidentiality, the exact volume of the
load can not be revealed. Therefore, we have omitted the scale of this plot from
all the results. The number of transcoding servers plot shows the total number
of transcoding servers being used at a particular time. The transcoding cost plot
represents the total computation cost of all transcoded videos in US dollars. Sim-
ilarly, the storage cost plot shows the storage cost in US dollars of all transcoded
videos, which are stored in the video repository. The storage size plot represents
the total size of the cloud storage used to store the transcoded videos. The number
of source videos plot shows the total number of source videos in the video reposi-
tory. Likewise, the number of transcoded videos is the total number of transcoded
videos in the video repository. The results are also summarized in Table 4.

Figure 3 presents the simulation results of the store all strategy. The results
span over a period of 40 days. At the end of the simulation, the total number of
transcoded videos in the video repository was 206590, while the total number of
source videos was 20902. The average number of transcoding servers was 102,
the total transcoding cost was $4458.42, the total storage cost was $4911.36, and
the total storage size was 42.16 terabytes. Since the store all strategy stores all
transcoded videos irrespective of their computation and storage costs, the storage
cost was very high due to a large number of transcoded videos stored in the video
repository. Therefore, the results indicate that the store all strategy is not cost-
efficient.

Figure 4 presents the results of the usage based strategy. At the end of the
simulation, the total number of transcoded videos in the video repository was
190734 for the same number of source videos as used in the store all strategy.

15

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25 30 35 40
 0

 50000

 100000

 150000

 200000

 250000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000Transcoding cost (US dollars)

Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Figure 3: Store all strategy

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25 30 35 40
 0

 50000

 100000

 150000

 200000

 250000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000Transcoding cost (US dollars)

Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Figure 4: Usage based strategy

16

Table 4: Summary of results
Strategy Avg. servers Transcoding cost Storage cost Total cost

Store all 102 $4458.42 $4911.36 $9369.78
Usage based 94 $4179.12 $4090.56 $8269.68
Score based 107 $4893.60 $2307.84 $7201.44

The average number of transcoding servers was 94, the total transcoding cost was
$4179.12, the total storage cost was $4090.56, and the total storage size was 34.19
terabytes. Since the usage based strategy stores only popular videos, the storage
cost of the usage based strategy was slightly less than that of the store all strategy.
Therefore, the results indicate that the usage based strategy is cost-efficient when
compared to the store all strategy. However, since it does not account for the
computation and the storage costs, it may remove some videos that have a high
transcoding cost.

Figure 5 presents the results of the proposed score based strategy. At the end
of the simulation, the total number of transcoded videos in the video repository
was 64392 for the same number of source videos as used in the store all strategy
and the usage based strategy. The average number of transcoding servers was 107,
the total transcoding cost was $4893.60, the total storage cost was $2307.84, and
the total storage size was 14.93 terabytes. Since the proposed strategy accounts
for the computation cost, the storage cost, and the video popularity information,
the storage cost was much less than that of the store all strategy and the usage
based strategy.

Figure 6 presents a comparison of the total costs, which consists of the com-
putation cost and the storage cost. The results show that the store all strategy has
the highest total cost. The usage based strategy has slightly less total cost than the
store all strategy. Moreover, the proposed storage has the least total cost among
all the three strategies. Therefore, the results indicate that the proposed strategy is
cost-efficient when compared to the store all and the usage based strategies.

6 Related Work

Distributed video transcoding with video segmentation was proposed in [19]
and [23]. Jokhio et al. [19] presented bit rate reduction video transcoding using
multiple processing units, while [23] analyzed different video segmentation meth-
ods to perform spatial resolution reduction video transcoding. Huang et al. [17]
presented a cloud-based video proxy to deliver transcoded videos for streaming.
The main contribution of their work is a multilevel transcoding parallelization
framework. Li et al. [24] proposed a cloud transcoder, which uses a compute cloud
as an intermediate platform to provide transcoding service. Shin and Koh [30]

17

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25 30 35 40
 0

 50000

 100000

 150000

 200000

 250000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000Transcoding cost (US dollars)

Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Figure 5: Proposed score based strategy

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 5 10 15 20 25 30 35 40

C
o

s
t

(U
S

 d
o
lla

rs
)

time (days)

Store all strategy
Usage based strategy

Cost and popularity score based strategy

Figure 6: Cost comparison

18

presented a hybrid scheme to determine an optimal threshold between the static
and dynamic transcoding. Ashraf et al. [8] proposed an admission control and
job scheduling approach for video transcoding in the cloud. None of these papers
addressed the VM allocation problem for video transcoding in cloud computing.

6.1 VM Allocation Approaches

The existing works on dynamic VM allocation can be classified into two main cat-
egories: Plan-based approaches and control theoretic approaches. The plan-based
approaches can be further classified into workload prediction approaches and per-
formance dynamics model approaches. One example of the workload prediction
approaches is Ardagna et al. [3], while TwoSpot [34], Hu et al. [16], Chieu et
al. [11], Iqbal et al. [18] and Han et al. [15] use a performance dynamics model.
Similarly, Dutreilh et al. [13], Pan et al. [27], Patikirikorala et al. [28], and Roy
et al. [29] are control theoretic approaches. One common difference between all
of these works and our proposed approach is that they are not designed specif-
ically for video transcoding in cloud computing. In contrast, our proposed ap-
proach is based on the important performance and VM allocation metrics for video
transcoding service, such as video play rate and server transcoding rate. Moreover,
it is cost-efficient as it uses a reduced number of VMs for a large number of video
streams, it provides proactive VM allocation under soft real-time constraints, and
it does not depend upon performance and dynamics of the underlying system. A
more detailed analysis of the VM allocation approaches can be found in [22].

6.2 Computation and Storage Trade-off Strategies

There are currently only a few works in the area of computation and storage trade-
off analysis for cost-efficient usage of cloud resources. One of the earlier attempts
include Adams et al. [1], who highlighted some of the important issues and fac-
tors involved in constructing a cost-benefit model, which can be used to analyze
the trade-offs between computation and storage. However, they did not propose
a strategy to find the right balance between computation and storage resources.
Deelman et al. [12] studied cost and performance trade-offs for an astronomy ap-
plication using Amazon EC2 and Amazon S3 cost models. The authors concluded
that, based on the likelihood of reuse, storing popular datasets in the cloud can be
cost-effective. However, they did not provide a concrete strategy for cost-effective
computation and storage of scientific datasets in the cloud.

Nectar system [14] is designed to automate the management of data and com-
putation in a data center. It initially stores all the derived datasets when they
are generated. However, when the available disk space falls below a threshold, all
obsolete or least-valued datasets are garbage collected to improve resource utiliza-
tion. Although Nectar provides a computation and storage trade-off strategy, it is

19

not designed to reduce the total cost of computation and storage in a cloud-based
service that uses IaaS resources.

Yuan et al. [36] proposed two strategies for cost-effective storage of scien-
tific datasets in the cloud, which compare the computation cost and the storage
cost of the datasets. They also presented a Cost Transitive Tournament Shortest
Path (CTT-SP) algorithm to find the best trade-off between the computation and
the storage resources. Their strategies are called cost rate based storage strat-
egy [35], [38] and local-optimization based storage strategy [37]. The cost rate
based storage strategy compares computation cost rate and storage cost rate to
decide storage status of a dataset. Whereas, the local-optimization based storage
strategy partitions a data dependency graph (DDG) of datasets into linear seg-
ments and applies the CTT-SP algorithm to achieve a localized optimization. In
contrast to the cost rate based storage strategy [35], [38], our proposed trade-off
strategy estimates an equilibrium point on the time axis where the computation
cost and the storage cost of a transcoded video become equal. Moreover, it esti-
mates video popularity of the individual transcoded videos to differentiate popu-
lar videos. The DDG-based local-optimization based storage strategy of Yuan et
al. [37] is not much relevant for video transcoding because video transcoding does
not involve a lot of data dependencies.

Most of the existing computation and storage trade-off strategies described
above were originally proposed for scientific datasets. To the best of our lim-
ited knowledge, there are currently no existing computation and storage trade-off
strategies for video transcoding. The difference of application domain may play
a vital role when determining cost-efficiency of the existing strategies. Therefore,
some of the existing strategies may have limited efficacy and little cost-efficiency
for video transcoding.

7 Conclusion

In this paper, we presented proactive VM allocation algorithms to scale video
transcoding service in a cloud environment. The proposed algorithms provide
a mechanism for creating a dynamically scalable cluster of video transcoding
servers by provisioning VMs from an IaaS cloud. The prediction of the future
user load is based on a two-step load prediction method, which allows proactive
VM allocation under soft real-time constraints. For cost-efficiency, we used video
segmentation which splits a video stream into smaller segments that can be trans-
coded independently of one another. This helped us to perform video transcoding
of multiple simultaneous streams on a single server.

We also proposed a cost-efficient computation and storage trade-off strategy
for video transcoding in the cloud. The proposed strategy estimates the compu-
tation cost, the storage cost, and the video popularity information of individual
transcoded videos and then uses this information to make decisions on how long a

20

video should be stored or how frequently it should be re-transcoded from a given
source video. The objective is to reduce the total IaaS cost by trading storage for
computation, or vice versa.

The proposed approach is demonstrated in a discrete-event simulation and
an experimental evaluation involving a realistic load pattern. Also, for the sake
of comparison, we simulated two intuitive computation and storage trade-off
strategies and compared their results with that of the proposed strategy. The re-
sults show that the proposed algorithms provide cost-efficient VM allocation for
transcoding a large number of video streams while minimizing oscillations in the
number of servers. The results also indicate that our proposed trade-off strategy is
more cost-efficient than the two intuitive strategies as it provided a good trade-off
between the computation and storage resources.

21

References
[1] Ian F. Adams, Darrell D. E. Long, Ethan L. Miller, Shankar Pasupathy, and

Mark W. Storer. Maximizing efficiency by trading storage for computation.
In Proceedings of the 2009 conference on Hot topics in cloud computing,
HotCloud’09, Berkeley, CA, USA, 2009. USENIX Association.

[2] Mauro Andreolini, Sara Casolari, and Michele Colajanni. Models and
framework for supporting runtime decisions in web-based systems. ACM
Trans. Web, 2(3):17:1–17:43, July 2008.

[3] Danilo Ardagna, Carlo Ghezzi, Barbara Panicucci, and Marco Trubian. Ser-
vice provisioning on the cloud: Distributed algorithms for joint capacity al-
location and admission control. In Elisabetta Di Nitto and Ramin Yahyapour,
editors, Towards a Service-Based Internet, volume 6481 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin / Heidelberg, 2010.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. A view of cloud computing. Commun. ACM,
53(4):50–58, April 2010.

[5] Adnan Ashraf, Benjamin Byholm, Joonas Lehtinen, and Ivan Porres. Feed-
back control algorithms to deploy and scale multiple web applications
per virtual machine. In Software Engineering and Advanced Applications
(SEAA), 38th EUROMICRO Conference on, pages 431–438, September
2012.

[6] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. CRAMP: Cost-efficient
resource allocation for multiple web applications with proactive scaling. 4th
IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), pages 581–586, 2012.

[7] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. A session-based adaptive
admission control approach for virtualized application servers. In Utility
and Cloud Computing (UCC), 5th IEEE/ACM International Conference on,
pages 65–72, 2012.

[8] Adnan Ashraf, Fareed Jokhio, Tewodros Deneke, Sebastien Lafond, Ivan
Porres, and Johan Lilius. Stream-based admission control and scheduling
for video transcoding in cloud computing. in Cluster, Cloud and Grid Com-
puting (CCGrid), 13th IEEE/ACM International Symposium on, pages 482–
489, 2013.

[9] N. Bjork and C. Christopoulos. Transcoder architectures for video coding.
Consumer Electronics, IEEE Transactions on, 44(1):88 –98, February 1998.

22

[10] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Csar A. F. De Rose,
and Rajkumar Buyya. CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1):23–50, 2011.

[11] T.C. Chieu, A. Mohindra, A.A. Karve, and A. Segal. Dynamic scaling
of web applications in a virtualized cloud computing environment. In e-
Business Engineering, 2009. ICEBE ’09. IEEE International Conference on,
pages 281 –286, October 2009.

[12] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John
Good. The cost of doing science on the cloud: the Montage example. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08,
pages 50:1–50:12, Piscataway, NJ, USA, 2008. IEEE Press.

[13] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck. From data
center resource allocation to control theory and back. In Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, pages 410 –417,
July 2010.

[14] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath,
Yuan Yu, and Li Zhuang. Nectar: automatic management of data and com-
putation in datacenters. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI’10, pages 1–8, Berke-
ley, CA, USA, 2010. USENIX Association.

[15] Rui Han, Li Guo, M.M. Ghanem, and Yike Guo. Lightweight resource scal-
ing for cloud applications. In Cluster, Cloud and Grid Computing (CCGrid),
2012 12th IEEE/ACM International Symposium on, pages 644 –651, May
2012.

[16] Ye Hu, Johnny Wong, Gabriel Iszlai, and Marin Litoiu. Resource provi-
sioning for cloud computing. In Proceedings of the 2009 Conference of
the Center for Advanced Studies on Collaborative Research, CASCON ’09,
pages 101–111, New York, NY, USA, 2009. ACM.

[17] Zixia Huang, Chao Mei, Li Erran Li, and Thomas Woo. CloudStream: De-
livering high-quality streaming videos through a cloud-based SVC proxy. In
INFOCOM, 2011 Proceedings IEEE, pages 201–205, 2011.

[18] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. Adap-
tive resource provisioning for read intensive multi-tier applications in the
cloud. Future Generation Computer Systems, 27(6):871 – 879, 2011.

[19] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius. Bit rate reduction video
transcoding with distributed computing. In Parallel, Distributed and

23

Network-Based Processing (PDP), 2012 20th Euromicro International Con-
ference on, pages 206 –212, February 2012.

[20] Fareed Jokhio, Adnan Ashraf, Tewodros Deneke, Sebastien Lafond, Ivan
Porres, and Johan Lilius. Developing Cloud Software: Algorithms, Appli-
cations, and Tools, chapter Proactive Virtual Machine Allocation for Video
Transcoding in the Cloud, pages 113–143. Turku Centre for Computer Sci-
ence (TUCS) General Publication Number 60, October 2013.

[21] Fareed Jokhio, Adnan Ashraf, Sebastien Lafond, and Johan Lilius. A com-
putation and storage trade-off strategy for cost-efficient video transcoding
in the cloud. In Software Engineering and Advanced Applications (SEAA),
39th Euromicro Conference on, pages 365–372, 2013.

[22] Fareed Jokhio, Adnan Ashraf, Sebastien Lafond, Ivan Porres, and Johan Lil-
ius. Prediction-based dynamic resource allocation for video transcoding in
cloud computing. In Parallel, Distributed and Network-Based Processing
(PDP), 21st Euromicro International Conference on, pages 254–261, 2013.

[23] Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien Lafond, and Johan Lil-
ius. Analysis of video segmentation for spatial resolution reduction video
transcoding. In Intelligent Signal Processing and Communications Systems
(ISPACS), 2011 International Symposium on, pages 1–6, December 2011.

[24] Zhenhua Li, Yan Huang, Gang Liu, Fuchen Wang, Zhi-Li Zhang, and Yafei
Dai. Cloud transcoder: Bridging the format and resolution gap between
internet videos and mobile devices. In The 22nd ACM Workshop on Network
and Operating Systems Support for Digital Audio and Video. ACM, 2012.

[25] Norman Matloff. A Discrete-Event Simulation Course Based on the SimPy
Language. University of California at Davis, 2006.

[26] D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear Re-
gression Analysis. Wiley Series in Probability and Statistics. John Wiley &
Sons, 2012.

[27] W. Pan, D. Mu, H. Wu, and L. Yao. Feedback control-based QoS guarantees
in web application servers. In High Performance Computing and Commu-
nications, 2008. HPCC ’08. 10th IEEE International Conference on, pages
328 –334, September 2008.

[28] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A multi-
model framework to implement self-managing control systems for QoS man-
agement. In Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’11, pages
218–227, 2011.

24

[29] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using
predictive models for workload forecasting. In Cloud Computing (CLOUD),
2011 IEEE International Conference on, pages 500 –507, July 2011.

[30] Ilhoon Shin and Kern Koh. Hybrid transcoding for QoS adaptive video-on-
demand services. IEEE Trans. on Consum. Electron., 50(2):732–736, May
2004.

[31] A. Vetro, C. Christopoulos, and Huifang Sun. Video transcoding archi-
tectures and techniques: an overview. Signal Processing Magazine, IEEE,
20(2):18 – 29, March 2003.

[32] J. Watkinson. The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4. Broad-
casting and communications. Elsevier/Focal Press, 2004.

[33] T. Wiegand, G. J. Sullivan, and A. Luthra. Draft ITU-T recommendation
and final draft international standard of joint video specification. Technical
report, 2003.

[34] Andreas Wolke and Gerhard Meixner. TwoSpot: A cloud platform for scal-
ing out web applications dynamically. In Elisabetta Di Nitto and Ramin
Yahyapour, editors, Towards a Service-Based Internet, volume 6481 of Lec-
ture Notes in Computer Science, pages 13–24. Springer Berlin / Heidelberg,
2010.

[35] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A cost-effective strategy
for intermediate data storage in scientific cloud workflow systems. In Par-
allel Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1–12, 2010.

[36] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. Computation and stor-
age trade-off for cost-effectively storing scientific datasets in the cloud. In
Borko Furht and Armando Escalante, editors, Handbook of Data Intensive
Computing, pages 129–153. Springer New York, 2011.

[37] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A local-optimisation
based strategy for cost-effective datasets storage of scientific applications in
the cloud. In Cloud Computing (CLOUD), 2011 IEEE International Confer-
ence on, pages 179–186, 2011.

[38] Dong Yuan, Yun Yang, Xiao Liu, Gaofeng Zhang, and Jinjun Chen. A data
dependency based strategy for intermediate data storage in scientific cloud
workflow systems. Concurrency and Computation: Practice and Experi-
ence, 24(9):956–976, 2012.

25

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

ISBN 978-952-12-3001-1
ISSN 1239-1891

